diff options
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 2964 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6054 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 161 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 7851 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 20418 |
5 files changed, 18750 insertions, 18698 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 09ef621d..ef4be2ef 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(1960506 . 3537001164) +(1962751 . 3537569211) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-3968 . T) (-3966 . T) (-3965 . T) ((-3973 "*") . T) (-3964 . T) (-3969 . T) (-3963 . T)) +((-3974 . T) (-3972 . T) (-3971 . T) ((-3979 "*") . T) (-3970 . T) (-3975 . T) (-3969 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3074) +(-32 R -3077) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (QUOTE (-943 (-478))))) +((|HasCategory| |#1| (QUOTE (-944 (-479))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -3971))) +((|HasAttribute| |#1| (QUOTE -3977))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-3971 . T) (-3972 . T)) +((-3977 . T) (-3978 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-3965 . T) (-3966 . T) (-3968 . T)) +((-3971 . T) (-3972 . T) (-3974 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3074 UP UPUP -2594) +(-40 -3077 UP UPUP -2599) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-3964 |has| (-343 |#2|) (-308)) (-3969 |has| (-343 |#2|) (-308)) (-3963 |has| (-343 |#2|) (-308)) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-343 |#2|) (QUOTE (-116))) (|HasCategory| (-343 |#2|) (QUOTE (-118))) (|HasCategory| (-343 |#2|) (QUOTE (-295))) (OR (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-313))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-187))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-802 (-1075))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-295))) (|HasCategory| (-343 |#2|) (QUOTE (-802 (-1075)))))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-802 (-1075))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-804 (-1075)))))) (|HasCategory| (-343 |#2|) (QUOTE (-575 (-478)))) (OR (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-943 (-343 (-478)))))) (|HasCategory| (-343 |#2|) (QUOTE (-943 (-343 (-478))))) (|HasCategory| (-343 |#2|) (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-187))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-804 (-1075))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-802 (-1075)))))) -(-41 R -3074) +((-3970 |has| (-344 |#2|) (-308)) (-3975 |has| (-344 |#2|) (-308)) (-3969 |has| (-344 |#2|) (-308)) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-344 |#2|) (QUOTE (-116))) (|HasCategory| (-344 |#2|) (QUOTE (-118))) (|HasCategory| (-344 |#2|) (QUOTE (-295))) (OR (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-295)))) (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-314))) (OR (-12 (|HasCategory| (-344 |#2|) (QUOTE (-188))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (|HasCategory| (-344 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-344 |#2|) (QUOTE (-188))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-187))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (|HasCategory| (-344 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-803 (-1080))))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-295))) (|HasCategory| (-344 |#2|) (QUOTE (-803 (-1080)))))) (OR (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-803 (-1080))))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-805 (-1080)))))) (|HasCategory| (-344 |#2|) (QUOTE (-576 (-479)))) (OR (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-944 (-344 (-479)))))) (|HasCategory| (-344 |#2|) (QUOTE (-944 (-344 (-479))))) (|HasCategory| (-344 |#2|) (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-314))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-187))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-805 (-1080))))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-188))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-803 (-1080)))))) +(-41 R -3077) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -357) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (|%list| (QUOTE -358) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-254)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-3968 |has| |#1| (-489)) (-3966 . T) (-3965 . T)) -((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) +((-3974 |has| |#1| (-490)) (-3972 . T) (-3971 . T)) +((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-3971 . T) (-3972 . T)) -((OR (-12 (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3836) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-749)))) (-12 (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3836) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003))))) (OR (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-547 (-765))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-749))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-749))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-749))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003))) (OR (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3836) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003))))) +((-3977 . T) (-3978 . T)) +((OR (-12 (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3842) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-750)))) (-12 (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3842) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006))))) (OR (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-548 (-766))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-468)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-750))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-750))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-750))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006))) (OR (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (-12 (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3842) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) +((|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| $ (QUOTE (-954))) (|HasCategory| $ (QUOTE (-943 (-478))))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| $ (QUOTE (-955))) (|HasCategory| $ (QUOTE (-944 (-479))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-3968 . T)) +((-3974 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3074) +(-54 |Base| R -3077) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -158,28 +158,28 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-3971 . T) (-3972 . T)) +((-3977 . T) (-3978 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) (-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL ((|HasCategory| |#1| (QUOTE (-308)))) (-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) (-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -202,11 +202,11 @@ NIL NIL (-68) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-3971 . T) ((-3973 "*") . T) (-3972 . T) (-3968 . T) (-3966 . T) (-3965 . T) (-3964 . T) (-3969 . T) (-3963 . T) (-3962 . T) (-3961 . T) (-3960 . T) (-3959 . T) (-3967 . T) (-3970 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3958 . T)) +((-3977 . T) ((-3979 "*") . T) (-3978 . T) (-3974 . T) (-3972 . T) (-3971 . T) (-3970 . T) (-3975 . T) (-3969 . T) (-3968 . T) (-3967 . T) (-3966 . T) (-3965 . T) (-3973 . T) (-3976 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3964 . T)) NIL (-69 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-3968 . T)) +((-3974 . T)) NIL (-70 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -222,35 +222,35 @@ NIL NIL (-73 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) (-74 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-3973 "*")))) +((|HasAttribute| |#1| (QUOTE (-3979 "*")))) (-75 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) NIL NIL (-76 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-3972 . T)) +((-3978 . T)) NIL (-77) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-478) (QUOTE (-814))) (|HasCategory| (-478) (QUOTE (-943 (-1075)))) (|HasCategory| (-478) (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-118))) (|HasCategory| (-478) (QUOTE (-548 (-467)))) (|HasCategory| (-478) (QUOTE (-926))) (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749))) (OR (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749)))) (|HasCategory| (-478) (QUOTE (-943 (-478)))) (|HasCategory| (-478) (QUOTE (-1052))) (|HasCategory| (-478) (QUOTE (-789 (-323)))) (|HasCategory| (-478) (QUOTE (-789 (-478)))) (|HasCategory| (-478) (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-478) (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-478) (QUOTE (-187))) (|HasCategory| (-478) (QUOTE (-804 (-1075)))) (|HasCategory| (-478) (QUOTE (-188))) (|HasCategory| (-478) (QUOTE (-802 (-1075)))) (|HasCategory| (-478) (QUOTE (-447 (-1075) (-478)))) (|HasCategory| (-478) (QUOTE (-256 (-478)))) (|HasCategory| (-478) (QUOTE (-238 (-478) (-478)))) (|HasCategory| (-478) (QUOTE (-254))) (|HasCategory| (-478) (QUOTE (-477))) (|HasCategory| (-478) (QUOTE (-575 (-478)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (|HasCategory| (-478) (QUOTE (-116))))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-479) (QUOTE (-815))) (|HasCategory| (-479) (QUOTE (-944 (-1080)))) (|HasCategory| (-479) (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-118))) (|HasCategory| (-479) (QUOTE (-549 (-468)))) (|HasCategory| (-479) (QUOTE (-927))) (|HasCategory| (-479) (QUOTE (-734))) (|HasCategory| (-479) (QUOTE (-750))) (OR (|HasCategory| (-479) (QUOTE (-734))) (|HasCategory| (-479) (QUOTE (-750)))) (|HasCategory| (-479) (QUOTE (-944 (-479)))) (|HasCategory| (-479) (QUOTE (-1056))) (|HasCategory| (-479) (QUOTE (-790 (-324)))) (|HasCategory| (-479) (QUOTE (-790 (-479)))) (|HasCategory| (-479) (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-479) (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-479) (QUOTE (-187))) (|HasCategory| (-479) (QUOTE (-805 (-1080)))) (|HasCategory| (-479) (QUOTE (-188))) (|HasCategory| (-479) (QUOTE (-803 (-1080)))) (|HasCategory| (-479) (QUOTE (-448 (-1080) (-479)))) (|HasCategory| (-479) (QUOTE (-256 (-479)))) (|HasCategory| (-479) (QUOTE (-238 (-479) (-479)))) (|HasCategory| (-479) (QUOTE (-254))) (|HasCategory| (-479) (QUOTE (-478))) (|HasCategory| (-479) (QUOTE (-576 (-479)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-815)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-815)))) (|HasCategory| (-479) (QUOTE (-116))))) (-78) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-79) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-3972 . T) (-3971 . T)) -((-12 (|HasCategory| (-83) (QUOTE (-256 (-83)))) (|HasCategory| (-83) (QUOTE (-1003)))) (|HasCategory| (-83) (QUOTE (-548 (-467)))) (|HasCategory| (-83) (QUOTE (-749))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-83) (QUOTE (-1003))) (|HasCategory| (-83) (QUOTE (-547 (-765)))) (|HasCategory| (-83) (QUOTE (-72)))) +((-3978 . T) (-3977 . T)) +((-12 (|HasCategory| (-83) (QUOTE (-256 (-83)))) (|HasCategory| (-83) (QUOTE (-1006)))) (|HasCategory| (-83) (QUOTE (-549 (-468)))) (|HasCategory| (-83) (QUOTE (-750))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| (-83) (QUOTE (-1006))) (|HasCategory| (-83) (QUOTE (-548 (-766)))) (|HasCategory| (-83) (QUOTE (-72)))) (-80 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL (-81 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) @@ -272,22 +272,22 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-86 -3074 UP) +(-86 -3077 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-87 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-88 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-87 |#1|) (QUOTE (-814))) (|HasCategory| (-87 |#1|) (QUOTE (-943 (-1075)))) (|HasCategory| (-87 |#1|) (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-118))) (|HasCategory| (-87 |#1|) (QUOTE (-548 (-467)))) (|HasCategory| (-87 |#1|) (QUOTE (-926))) (|HasCategory| (-87 |#1|) (QUOTE (-733))) (|HasCategory| (-87 |#1|) (QUOTE (-749))) (OR (|HasCategory| (-87 |#1|) (QUOTE (-733))) (|HasCategory| (-87 |#1|) (QUOTE (-749)))) (|HasCategory| (-87 |#1|) (QUOTE (-943 (-478)))) (|HasCategory| (-87 |#1|) (QUOTE (-1052))) (|HasCategory| (-87 |#1|) (QUOTE (-789 (-323)))) (|HasCategory| (-87 |#1|) (QUOTE (-789 (-478)))) (|HasCategory| (-87 |#1|) (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-87 |#1|) (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-87 |#1|) (QUOTE (-575 (-478)))) (|HasCategory| (-87 |#1|) (QUOTE (-187))) (|HasCategory| (-87 |#1|) (QUOTE (-804 (-1075)))) (|HasCategory| (-87 |#1|) (QUOTE (-188))) (|HasCategory| (-87 |#1|) (QUOTE (-802 (-1075)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -447) (QUOTE (-1075)) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -256) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -238) (|%list| (QUOTE -87) (|devaluate| |#1|)) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (QUOTE (-254))) (|HasCategory| (-87 |#1|) (QUOTE (-477))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-814)))) (|HasCategory| (-87 |#1|) (QUOTE (-116))))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-87 |#1|) (QUOTE (-815))) (|HasCategory| (-87 |#1|) (QUOTE (-944 (-1080)))) (|HasCategory| (-87 |#1|) (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-118))) (|HasCategory| (-87 |#1|) (QUOTE (-549 (-468)))) (|HasCategory| (-87 |#1|) (QUOTE (-927))) (|HasCategory| (-87 |#1|) (QUOTE (-734))) (|HasCategory| (-87 |#1|) (QUOTE (-750))) (OR (|HasCategory| (-87 |#1|) (QUOTE (-734))) (|HasCategory| (-87 |#1|) (QUOTE (-750)))) (|HasCategory| (-87 |#1|) (QUOTE (-944 (-479)))) (|HasCategory| (-87 |#1|) (QUOTE (-1056))) (|HasCategory| (-87 |#1|) (QUOTE (-790 (-324)))) (|HasCategory| (-87 |#1|) (QUOTE (-790 (-479)))) (|HasCategory| (-87 |#1|) (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-87 |#1|) (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-87 |#1|) (QUOTE (-576 (-479)))) (|HasCategory| (-87 |#1|) (QUOTE (-187))) (|HasCategory| (-87 |#1|) (QUOTE (-805 (-1080)))) (|HasCategory| (-87 |#1|) (QUOTE (-188))) (|HasCategory| (-87 |#1|) (QUOTE (-803 (-1080)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -448) (QUOTE (-1080)) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -256) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (|%list| (QUOTE -238) (|%list| (QUOTE -87) (|devaluate| |#1|)) (|%list| (QUOTE -87) (|devaluate| |#1|)))) (|HasCategory| (-87 |#1|) (QUOTE (-254))) (|HasCategory| (-87 |#1|) (QUOTE (-478))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-815)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-87 |#1|) (QUOTE (-815)))) (|HasCategory| (-87 |#1|) (QUOTE (-116))))) (-89 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -3972))) +((|HasAttribute| |#1| (QUOTE -3978))) (-90 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -298,15 +298,15 @@ NIL NIL (-92 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) (-93 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-94) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL (-95 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -314,24 +314,24 @@ NIL NIL (-96 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-3971 . T) (-3972 . T)) +((-3977 . T) (-3978 . T)) NIL (-97 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) (-98 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) (-99) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL NIL (-100) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| (-99) (QUOTE (-256 (-99)))) (|HasCategory| (-99) (QUOTE (-749)))) (-12 (|HasCategory| (-99) (QUOTE (-256 (-99)))) (|HasCategory| (-99) (QUOTE (-1003))))) (|HasCategory| (-99) (QUOTE (-547 (-765)))) (|HasCategory| (-99) (QUOTE (-548 (-467)))) (OR (|HasCategory| (-99) (QUOTE (-749))) (|HasCategory| (-99) (QUOTE (-1003)))) (|HasCategory| (-99) (QUOTE (-749))) (OR (|HasCategory| (-99) (QUOTE (-72))) (|HasCategory| (-99) (QUOTE (-749))) (|HasCategory| (-99) (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-99) (QUOTE (-1003))) (|HasCategory| (-99) (QUOTE (-72))) (-12 (|HasCategory| (-99) (QUOTE (-256 (-99)))) (|HasCategory| (-99) (QUOTE (-1003))))) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| (-99) (QUOTE (-256 (-99)))) (|HasCategory| (-99) (QUOTE (-750)))) (-12 (|HasCategory| (-99) (QUOTE (-256 (-99)))) (|HasCategory| (-99) (QUOTE (-1006))))) (|HasCategory| (-99) (QUOTE (-548 (-766)))) (|HasCategory| (-99) (QUOTE (-549 (-468)))) (OR (|HasCategory| (-99) (QUOTE (-750))) (|HasCategory| (-99) (QUOTE (-1006)))) (|HasCategory| (-99) (QUOTE (-750))) (OR (|HasCategory| (-99) (QUOTE (-72))) (|HasCategory| (-99) (QUOTE (-750))) (|HasCategory| (-99) (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| (-99) (QUOTE (-1006))) (|HasCategory| (-99) (QUOTE (-72))) (-12 (|HasCategory| (-99) (QUOTE (-256 (-99)))) (|HasCategory| (-99) (QUOTE (-1006))))) (-101) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -350,13 +350,13 @@ NIL NIL (-105) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-3973 "*") . T)) +(((-3979 "*") . T)) NIL -(-106 |minix| -2601 R) +(-106 |minix| -2606 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree."))) NIL NIL -(-107 |minix| -2601 S T$) +(-107 |minix| -2606 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -378,8 +378,8 @@ NIL NIL (-112) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-3971 . T) (-3961 . T) (-3972 . T)) -((OR (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-313)))) (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-1003))))) (|HasCategory| (-115) (QUOTE (-548 (-467)))) (|HasCategory| (-115) (QUOTE (-313))) (|HasCategory| (-115) (QUOTE (-749))) (|HasCategory| (-115) (QUOTE (-1003))) (|HasCategory| (-115) (QUOTE (-547 (-765)))) (|HasCategory| (-115) (QUOTE (-72))) (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-1003))))) +((-3977 . T) (-3967 . T) (-3978 . T)) +((OR (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-314)))) (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-1006))))) (|HasCategory| (-115) (QUOTE (-549 (-468)))) (|HasCategory| (-115) (QUOTE (-314))) (|HasCategory| (-115) (QUOTE (-750))) (|HasCategory| (-115) (QUOTE (-1006))) (|HasCategory| (-115) (QUOTE (-548 (-766)))) (|HasCategory| (-115) (QUOTE (-72))) (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-1006))))) (-113 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -394,7 +394,7 @@ NIL NIL (-116) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-3968 . T)) +((-3974 . T)) NIL (-117 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) @@ -402,9 +402,9 @@ NIL NIL (-118) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-3968 . T)) +((-3974 . T)) NIL -(-119 -3074 UP UPUP) +(-119 -3077 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -415,14 +415,14 @@ NIL (-121 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasAttribute| |#1| (QUOTE -3971))) +((|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasAttribute| |#1| (QUOTE -3977))) (-122 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-123 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-3966 . T) (-3965 . T) (-3968 . T)) +((-3972 . T) (-3971 . T) (-3974 . T)) NIL (-124) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -444,7 +444,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-129 R -3074) +(-129 R -3077) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -475,10 +475,10 @@ NIL (-136 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-908))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3967)) (|HasAttribute| |#2| (QUOTE -3970)) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-489)))) +((|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3973)) (|HasAttribute| |#2| (QUOTE -3976)) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-490)))) (-137 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-3964 OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3967 |has| |#1| (-6 -3967)) (-3970 |has| |#1| (-6 -3970)) (-1359 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 OR (|has| |#1| (-490)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3973 |has| |#1| (-6 -3973)) (-3976 |has| |#1| (-6 -3976)) (-1364 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-138 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -490,8 +490,8 @@ NIL NIL (-140 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-3964 OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3967 |has| |#1| (-6 -3967)) (-3970 |has| |#1| (-6 -3970)) (-1359 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-295))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313))) (OR (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-802 (-1075))))) (|HasCategory| |#1| (QUOTE (-804 (-1075))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-814))))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-908))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-965))) (-12 (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-187)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-188))) (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasAttribute| |#1| (QUOTE -3967)) (|HasAttribute| |#1| (QUOTE -3970)) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-804 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-802 (-1075))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +((-3970 OR (|has| |#1| (-490)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3973 |has| |#1| (-6 -3973)) (-3976 |has| |#1| (-6 -3976)) (-1364 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-295))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-314))) (OR (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-803 (-1080))))) (|HasCategory| |#1| (QUOTE (-805 (-1080))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-308)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-815))))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| |#1| (|%list| (QUOTE -448) (QUOTE (-1080)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-966))) (-12 (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-815))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-308)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-187)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-188))) (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasAttribute| |#1| (QUOTE -3973)) (|HasAttribute| |#1| (QUOTE -3976)) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-805 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-803 (-1080))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) (-141 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -506,7 +506,7 @@ NIL NIL (-144) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-145) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -514,7 +514,7 @@ NIL NIL (-146 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-3973 "*") . T) (-3964 . T) (-3969 . T) (-3963 . T) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") . T) (-3970 . T) (-3975 . T) (-3969 . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-147) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -531,7 +531,7 @@ NIL (-150 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-850 |#2|) (|%list| (QUOTE -789) (|devaluate| |#1|)))) +((|HasCategory| (-851 |#2|) (|%list| (QUOTE -790) (|devaluate| |#1|)))) (-151 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -568,7 +568,7 @@ NIL ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-160 R -3074) +(-160 R -3077) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -596,23 +596,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-167 -3074 UP UPUP R) +(-167 -3077 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-168 -3074 FP) +(-168 -3077 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-169) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-478) (QUOTE (-814))) (|HasCategory| (-478) (QUOTE (-943 (-1075)))) (|HasCategory| (-478) (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-118))) (|HasCategory| (-478) (QUOTE (-548 (-467)))) (|HasCategory| (-478) (QUOTE (-926))) (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749))) (OR (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749)))) (|HasCategory| (-478) (QUOTE (-943 (-478)))) (|HasCategory| (-478) (QUOTE (-1052))) (|HasCategory| (-478) (QUOTE (-789 (-323)))) (|HasCategory| (-478) (QUOTE (-789 (-478)))) (|HasCategory| (-478) (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-478) (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-478) (QUOTE (-187))) (|HasCategory| (-478) (QUOTE (-804 (-1075)))) (|HasCategory| (-478) (QUOTE (-188))) (|HasCategory| (-478) (QUOTE (-802 (-1075)))) (|HasCategory| (-478) (QUOTE (-447 (-1075) (-478)))) (|HasCategory| (-478) (QUOTE (-256 (-478)))) (|HasCategory| (-478) (QUOTE (-238 (-478) (-478)))) (|HasCategory| (-478) (QUOTE (-254))) (|HasCategory| (-478) (QUOTE (-477))) (|HasCategory| (-478) (QUOTE (-575 (-478)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (|HasCategory| (-478) (QUOTE (-116))))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-479) (QUOTE (-815))) (|HasCategory| (-479) (QUOTE (-944 (-1080)))) (|HasCategory| (-479) (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-118))) (|HasCategory| (-479) (QUOTE (-549 (-468)))) (|HasCategory| (-479) (QUOTE (-927))) (|HasCategory| (-479) (QUOTE (-734))) (|HasCategory| (-479) (QUOTE (-750))) (OR (|HasCategory| (-479) (QUOTE (-734))) (|HasCategory| (-479) (QUOTE (-750)))) (|HasCategory| (-479) (QUOTE (-944 (-479)))) (|HasCategory| (-479) (QUOTE (-1056))) (|HasCategory| (-479) (QUOTE (-790 (-324)))) (|HasCategory| (-479) (QUOTE (-790 (-479)))) (|HasCategory| (-479) (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-479) (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-479) (QUOTE (-187))) (|HasCategory| (-479) (QUOTE (-805 (-1080)))) (|HasCategory| (-479) (QUOTE (-188))) (|HasCategory| (-479) (QUOTE (-803 (-1080)))) (|HasCategory| (-479) (QUOTE (-448 (-1080) (-479)))) (|HasCategory| (-479) (QUOTE (-256 (-479)))) (|HasCategory| (-479) (QUOTE (-238 (-479) (-479)))) (|HasCategory| (-479) (QUOTE (-254))) (|HasCategory| (-479) (QUOTE (-478))) (|HasCategory| (-479) (QUOTE (-576 (-479)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-815)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-815)))) (|HasCategory| (-479) (QUOTE (-116))))) (-170) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-171 R -3074) +(-171 R -3077) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -626,19 +626,19 @@ NIL NIL (-174 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) (-175 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-3968 . T)) +((-3974 . T)) NIL -(-176 R -3074) +(-176 R -3077) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-177) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3746 . T) (-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3752 . T) (-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-178) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -646,19 +646,19 @@ NIL NIL (-179 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-489))) (|HasAttribute| |#1| (QUOTE (-3973 "*"))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-490))) (|HasAttribute| |#1| (QUOTE (-3979 "*"))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-72)))) (-180 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-181 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-3972 . T)) +((-3978 . T)) NIL (-182 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-3968 . T)) +((-3974 . T)) NIL (-183 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -670,7 +670,7 @@ NIL NIL (-185 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL (-186 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -682,33 +682,33 @@ NIL NIL (-188) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-3968 . T)) +((-3974 . T)) NIL (-189 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -3971))) +((|HasAttribute| |#1| (QUOTE -3977))) (-190 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-3972 . T)) +((-3978 . T)) NIL (-191) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-192 S -2601 R) +(-192 S -2606 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749))) (|HasAttribute| |#3| (QUOTE -3968)) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-1003)))) -(-193 -2601 R) +((|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-750))) (|HasAttribute| |#3| (QUOTE -3974)) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-955))) (|HasCategory| |#3| (QUOTE (-1006)))) +(-193 -2606 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-3965 |has| |#2| (-954)) (-3966 |has| |#2| (-954)) (-3968 |has| |#2| (-6 -3968)) (-3971 . T)) +((-3971 |has| |#2| (-955)) (-3972 |has| |#2| (-955)) (-3974 |has| |#2| (-6 -3974)) (-3977 . T)) NIL -(-194 -2601 R) +(-194 -2606 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-3965 |has| |#2| (-954)) (-3966 |has| |#2| (-954)) (-3968 |has| |#2| (-6 -3968)) (-3971 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (OR (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-954))))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (|HasCategory| |#2| (QUOTE (-1003))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-1003))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-954))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -3968)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) -(-195 -2601 A B) +((-3971 |has| |#2| (-955)) (-3972 |has| |#2| (-955)) (-3974 |has| |#2| (-6 -3974)) (-3977 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-711))) (OR (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-750)))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-314))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-955))))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-955))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (|HasCategory| |#2| (QUOTE (-1006))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-1006))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-955))))) (|HasCategory| (-479) (QUOTE (-750))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasAttribute| |#2| (QUOTE -3974)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) +(-195 -2606 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -722,7 +722,7 @@ NIL NIL (-198) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-3964 . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-199 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -730,20 +730,20 @@ NIL NIL (-200 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (-201 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-202 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL (-203 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3973 "*") |has| |#2| (-144)) (-3964 |has| |#2| (-489)) (-3969 |has| |#2| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-814))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-323)))) (|HasCategory| (-766 |#1|) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-478)))) (|HasCategory| (-766 |#1|) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-467))))) (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3969)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(((-3979 "*") |has| |#2| (-144)) (-3970 |has| |#2| (-490)) (-3975 |has| |#2| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-815))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-815)))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-490)))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-324)))) (|HasCategory| (-767 |#1|) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-479)))) (|HasCategory| (-767 |#1|) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-468))))) (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3975)) (|HasCategory| |#2| (QUOTE (-386))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) (-204) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -758,23 +758,23 @@ NIL NIL (-207 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-3968 OR (-2542 (|has| |#4| (-954)) (|has| |#4| (-188))) (|has| |#4| (-6 -3968)) (-2542 (|has| |#4| (-954)) (|has| |#4| (-802 (-1075))))) (-3965 |has| |#4| (-954)) (-3966 |has| |#4| (-954)) (-3971 . T)) -((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-802 (-1075)))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-308))) (OR (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-954)))) (OR (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-308)))) (|HasCategory| |#4| (QUOTE (-954))) (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (QUOTE (-710))) (OR (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (QUOTE (-749)))) (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (QUOTE (-313))) (OR (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-575 (-478)))) (|HasCategory| |#4| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#4| (QUOTE (-575 (-478)))) (|HasCategory| |#4| (QUOTE (-954))))) (|HasCategory| |#4| (QUOTE (-802 (-1075)))) (OR (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-802 (-1075)))) (|HasCategory| |#4| (QUOTE (-954)))) (|HasCategory| |#4| (QUOTE (-188))) (OR (|HasCategory| |#4| (QUOTE (-188))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-804 (-1075)))) (|HasCategory| |#4| (QUOTE (-954)))) (|HasCategory| |#4| (QUOTE (-802 (-1075))))) (|HasCategory| |#4| (QUOTE (-1003))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-802 (-1075)))) (|HasCategory| |#4| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#4| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#4| (QUOTE (-954)))) (-12 (|HasCategory| |#4| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#4| (QUOTE (-1003))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-802 (-1075)))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-943 (-478)))) (|HasCategory| |#4| (QUOTE (-1003)))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (|HasCategory| |#4| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-710))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-749))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-802 (-1075)))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-943 (-478)))) (|HasCategory| |#4| (QUOTE (-1003)))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-313))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-658))) (|HasCategory| |#4| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#4| (QUOTE (-943 (-478)))) (|HasCategory| |#4| (QUOTE (-954))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#4| (QUOTE (-575 (-478)))) (|HasCategory| |#4| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-802 (-1075)))) (|HasCategory| |#4| (QUOTE (-954)))) (-12 (|HasCategory| |#4| (QUOTE (-804 (-1075)))) (|HasCategory| |#4| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-954)))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-954))))) (-12 (|HasCategory| |#4| (QUOTE (-943 (-478)))) (|HasCategory| |#4| (QUOTE (-1003)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-943 (-478)))) (|HasCategory| |#4| (QUOTE (-1003)))) (|HasCategory| |#4| (QUOTE (-954)))) (-12 (|HasCategory| |#4| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#4| (QUOTE (-1003)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-802 (-1075)))) (|HasCategory| |#4| (QUOTE (-954)))) (|HasAttribute| |#4| (QUOTE -3968)) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-954))))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-954)))) (-12 (|HasCategory| |#4| (QUOTE (-804 (-1075)))) (|HasCategory| |#4| (QUOTE (-954)))) (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-102))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-547 (-765)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|))))) +((-3974 OR (-2547 (|has| |#4| (-955)) (|has| |#4| (-188))) (|has| |#4| (-6 -3974)) (-2547 (|has| |#4| (-955)) (|has| |#4| (-803 (-1080))))) (-3971 |has| |#4| (-955)) (-3972 |has| |#4| (-955)) (-3977 . T)) +((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-659))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-711))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-750))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-803 (-1080)))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-955))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-308))) (OR (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-955)))) (OR (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-308)))) (|HasCategory| |#4| (QUOTE (-955))) (|HasCategory| |#4| (QUOTE (-659))) (|HasCategory| |#4| (QUOTE (-711))) (OR (|HasCategory| |#4| (QUOTE (-711))) (|HasCategory| |#4| (QUOTE (-750)))) (|HasCategory| |#4| (QUOTE (-750))) (|HasCategory| |#4| (QUOTE (-314))) (OR (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-576 (-479)))) (|HasCategory| |#4| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-576 (-479)))) (|HasCategory| |#4| (QUOTE (-955))))) (|HasCategory| |#4| (QUOTE (-803 (-1080)))) (OR (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-803 (-1080)))) (|HasCategory| |#4| (QUOTE (-955)))) (|HasCategory| |#4| (QUOTE (-188))) (OR (|HasCategory| |#4| (QUOTE (-188))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-955))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-805 (-1080)))) (|HasCategory| |#4| (QUOTE (-955)))) (|HasCategory| |#4| (QUOTE (-803 (-1080))))) (|HasCategory| |#4| (QUOTE (-1006))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#4| (QUOTE (-659))) (|HasCategory| |#4| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#4| (QUOTE (-711))) (|HasCategory| |#4| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#4| (QUOTE (-750))) (|HasCategory| |#4| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#4| (QUOTE (-803 (-1080)))) (|HasCategory| |#4| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#4| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#4| (QUOTE (-955)))) (-12 (|HasCategory| |#4| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#4| (QUOTE (-1006))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-711))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-750))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-803 (-1080)))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-944 (-479)))) (|HasCategory| |#4| (QUOTE (-1006)))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-659))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (|HasCategory| |#4| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-711))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-750))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-803 (-1080)))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-944 (-479)))) (|HasCategory| |#4| (QUOTE (-1006)))) (-12 (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-659))) (|HasCategory| |#4| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#4| (QUOTE (-944 (-479)))) (|HasCategory| |#4| (QUOTE (-955))))) (|HasCategory| (-479) (QUOTE (-750))) (-12 (|HasCategory| |#4| (QUOTE (-576 (-479)))) (|HasCategory| |#4| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-803 (-1080)))) (|HasCategory| |#4| (QUOTE (-955)))) (-12 (|HasCategory| |#4| (QUOTE (-805 (-1080)))) (|HasCategory| |#4| (QUOTE (-955))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-955)))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-955))))) (-12 (|HasCategory| |#4| (QUOTE (-944 (-479)))) (|HasCategory| |#4| (QUOTE (-1006)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-944 (-479)))) (|HasCategory| |#4| (QUOTE (-1006)))) (|HasCategory| |#4| (QUOTE (-955)))) (-12 (|HasCategory| |#4| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#4| (QUOTE (-1006)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-803 (-1080)))) (|HasCategory| |#4| (QUOTE (-955)))) (|HasAttribute| |#4| (QUOTE -3974)) (-12 (|HasCategory| |#4| (QUOTE (-188))) (|HasCategory| |#4| (QUOTE (-955))))) (-12 (|HasCategory| |#4| (QUOTE (-187))) (|HasCategory| |#4| (QUOTE (-955)))) (-12 (|HasCategory| |#4| (QUOTE (-805 (-1080)))) (|HasCategory| |#4| (QUOTE (-955)))) (|HasCategory| |#4| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-102))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-548 (-766)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|))))) (-208 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-3968 OR (-2542 (|has| |#3| (-954)) (|has| |#3| (-188))) (|has| |#3| (-6 -3968)) (-2542 (|has| |#3| (-954)) (|has| |#3| (-802 (-1075))))) (-3965 |has| |#3| (-954)) (-3966 |has| |#3| (-954)) (-3971 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-308))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308)))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-710))) (OR (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749)))) (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-313))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-575 (-478)))) (|HasCategory| |#3| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#3| (QUOTE (-575 (-478)))) (|HasCategory| |#3| (QUOTE (-954))))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (OR (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (|HasCategory| |#3| (QUOTE (-188))) (OR (|HasCategory| |#3| (QUOTE (-188))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-804 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (|HasCategory| |#3| (QUOTE (-802 (-1075))))) (|HasCategory| |#3| (QUOTE (-1003))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#3| (QUOTE (-1003))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-1003)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-1003)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-954))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#3| (QUOTE (-575 (-478)))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1075)))) (|HasCategory| |#3| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954))))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-1003)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-1003)))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#3| (QUOTE (-1003)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (|HasAttribute| |#3| (QUOTE -3968)) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-954))))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-547 (-765)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) +((-3974 OR (-2547 (|has| |#3| (-955)) (|has| |#3| (-188))) (|has| |#3| (-6 -3974)) (-2547 (|has| |#3| (-955)) (|has| |#3| (-803 (-1080))))) (-3971 |has| |#3| (-955)) (-3972 |has| |#3| (-955)) (-3977 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-955))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-308))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308)))) (|HasCategory| |#3| (QUOTE (-955))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-711))) (OR (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-750)))) (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-314))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-576 (-479)))) (|HasCategory| |#3| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-576 (-479)))) (|HasCategory| |#3| (QUOTE (-955))))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (OR (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (|HasCategory| |#3| (QUOTE (-188))) (OR (|HasCategory| |#3| (QUOTE (-188))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-955))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-805 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (|HasCategory| |#3| (QUOTE (-803 (-1080))))) (|HasCategory| |#3| (QUOTE (-1006))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#3| (QUOTE (-1006))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-1006)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-1006)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-955))))) (|HasCategory| (-479) (QUOTE (-750))) (-12 (|HasCategory| |#3| (QUOTE (-576 (-479)))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-805 (-1080)))) (|HasCategory| |#3| (QUOTE (-955))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-955))))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-1006)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-1006)))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#3| (QUOTE (-1006)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (|HasAttribute| |#3| (QUOTE -3974)) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-955))))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-805 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-548 (-766)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) (-209 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-188)))) (-210 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) NIL (-211 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-3971 . T) (-3972 . T)) +((-3977 . T) (-3978 . T)) NIL (-212 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -815,15 +815,15 @@ NIL (-221 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-187)))) +((|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-187)))) (-222 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-223 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| |#3| (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| |#3| (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#3| (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#3| (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#3| (QUOTE (-548 (-467))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| |#3| (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| |#3| (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#3| (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#3| (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#3| (QUOTE (-549 (-468))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) (-224 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -836,11 +836,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-227 R -3074) +(-227 R -3077) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-228 R -3074) +(-228 R -3077) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -863,10 +863,10 @@ NIL (-233 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1003)))) +((|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-1006)))) (-234 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-3972 . T)) +((-3978 . T)) NIL (-235 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -887,18 +887,18 @@ NIL (-239 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -3972))) +((|HasAttribute| |#1| (QUOTE -3978))) (-240 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-241 S R |Mod| -2019 -3495 |exactQuo|) +(-241 S R |Mod| -2024 -3500 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-242) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-3964 . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-243) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -910,16 +910,16 @@ NIL NIL (-245 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-3968 OR (|has| |#1| (-954)) (|has| |#1| (-406))) (-3965 |has| |#1| (-954)) (-3966 |has| |#1| (-954))) -((|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (OR (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-658)))) (|HasCategory| |#1| (QUOTE (-406))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-1003)))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1075)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-250))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-406)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-658)))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-658)))) +((-3974 OR (|has| |#1| (-955)) (|has| |#1| (-407))) (-3971 |has| |#1| (-955)) (-3972 |has| |#1| (-955))) +((|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-955)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (OR (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-955)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-955)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-955)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-955)))) (OR (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-407))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-1006)))) (OR (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (|%list| (QUOTE -448) (QUOTE (-1080)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-250))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-407)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (OR (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-659)))) (-246 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL (-247 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3836) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-547 (-765))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1003))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3842) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-548 (-766))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-468)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-1006))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (-248) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -927,16 +927,16 @@ NIL (-249 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-954)))) +((|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-955)))) (-250) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-251 -3074 S) +(-251 -3077 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-252 E -3074) +(-252 E -3077) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -946,7 +946,7 @@ NIL NIL (-254) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-255 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -956,7 +956,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-257 -3074) +(-257 -3077) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -970,12 +970,12 @@ NIL NIL (-260 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-814))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-943 (-1075)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-116))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-548 (-467)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-733))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-749))) (OR (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-733))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-749)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-943 (-478)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-1052))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-789 (-323)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-789 (-478)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-575 (-478)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-187))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-804 (-1075)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-188))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-802 (-1075)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -447) (QUOTE (-1075)) (|%list| (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -256) (|%list| (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -238) (|%list| (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1151) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-254))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-477))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-814)))) (|HasCategory| (-1151 |#1| |#2| |#3| |#4|) (QUOTE (-116))))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-815))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-944 (-1080)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-116))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-549 (-468)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-927))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-734))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-750))) (OR (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-734))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-750)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-944 (-479)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-1056))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-790 (-324)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-790 (-479)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-576 (-479)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-187))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-805 (-1080)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-188))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-803 (-1080)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -448) (QUOTE (-1080)) (|%list| (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -256) (|%list| (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -238) (|%list| (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1156) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-254))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-478))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-815)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-815)))) (|HasCategory| (-1156 |#1| |#2| |#3| |#4|) (QUOTE (-116))))) (-261 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-3968 OR (-12 (|has| |#1| (-489)) (OR (|has| |#1| (-954)) (|has| |#1| (-406)))) (|has| |#1| (-954)) (|has| |#1| (-406))) (-3966 |has| |#1| (-144)) (-3965 |has| |#1| (-144)) ((-3973 "*") |has| |#1| (-489)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-489)) (-3963 |has| |#1| (-489))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-943 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-954))) (OR (-12 (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-954))))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-943 (-478))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954)))) (-12 (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#1| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-943 (-478)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| $ (QUOTE (-954))) (|HasCategory| $ (QUOTE (-943 (-478))))) +((-3974 OR (-12 (|has| |#1| (-490)) (OR (|has| |#1| (-955)) (|has| |#1| (-407)))) (|has| |#1| (-955)) (|has| |#1| (-407))) (-3972 |has| |#1| (-144)) (-3971 |has| |#1| (-144)) ((-3979 "*") |has| |#1| (-490)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-490)) (-3969 |has| |#1| (-490))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-944 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-490))) (OR (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-955))) (OR (-12 (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-955))))) (OR (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#1| (QUOTE (-1016)))) (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-944 (-479))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-955)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-955)))) (OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-955)))) (-12 (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1016)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#1| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-944 (-479)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| $ (QUOTE (-955))) (|HasCategory| $ (QUOTE (-944 (-479))))) (-262 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -984,7 +984,7 @@ NIL ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-264 R -3074) +(-264 R -3077) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -994,8 +994,8 @@ NIL NIL (-266 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|))))))) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|)))) (|HasCategory| (-344 (-479)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|))))))) (-267 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1006,8 +1006,8 @@ NIL NIL (-269 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-3966 . T) (-3965 . T)) -((|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| (-478) (QUOTE (-709)))) +((-3972 . T) (-3971 . T)) +((|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| (-479) (QUOTE (-710)))) (-270 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1015,26 +1015,26 @@ NIL (-271 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-687) (QUOTE (-709)))) +((|HasCategory| (-688) (QUOTE (-710)))) (-272 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144)))) +((|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-144)))) (-273 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-274 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) -(-275 S -3074) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-275 S -3077) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-313)))) -(-276 -3074) +((|HasCategory| |#2| (QUOTE (-314)))) +(-276 -3077) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-277 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) @@ -1044,7 +1044,7 @@ NIL ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-279 -3074 UP UPUP R) +(-279 -3077 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1052,33 +1052,33 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-281 S -3074 UP UPUP R) +(-281 S -3077 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-282 -3074 UP UPUP R) +(-282 -3077 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL (-283 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -447) (QUOTE (-1075)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (|%list| (QUOTE -448) (QUOTE (-1080)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|)))) (-284 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-285 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| (-810 |#1|) (QUOTE (-116))) (|HasCategory| (-810 |#1|) (QUOTE (-313)))) (|HasCategory| (-810 |#1|) (QUOTE (-118))) (|HasCategory| (-810 |#1|) (QUOTE (-313))) (|HasCategory| (-810 |#1|) (QUOTE (-116)))) -(-286 S -3074 UP UPUP) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| (-811 |#1|) (QUOTE (-116))) (|HasCategory| (-811 |#1|) (QUOTE (-314)))) (|HasCategory| (-811 |#1|) (QUOTE (-118))) (|HasCategory| (-811 |#1|) (QUOTE (-314))) (|HasCategory| (-811 |#1|) (QUOTE (-116)))) +(-286 S -3077 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-308)))) -(-287 -3074 UP UPUP) +((|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-308)))) +(-287 -3077 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-3964 |has| (-343 |#2|) (-308)) (-3969 |has| (-343 |#2|) (-308)) (-3963 |has| (-343 |#2|) (-308)) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 |has| (-344 |#2|) (-308)) (-3975 |has| (-344 |#2|) (-308)) (-3969 |has| (-344 |#2|) (-308)) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-288 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) @@ -1086,16 +1086,16 @@ NIL NIL (-289 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| (-810 |#1|) (QUOTE (-116))) (|HasCategory| (-810 |#1|) (QUOTE (-313)))) (|HasCategory| (-810 |#1|) (QUOTE (-118))) (|HasCategory| (-810 |#1|) (QUOTE (-313))) (|HasCategory| (-810 |#1|) (QUOTE (-116)))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| (-811 |#1|) (QUOTE (-116))) (|HasCategory| (-811 |#1|) (QUOTE (-314)))) (|HasCategory| (-811 |#1|) (QUOTE (-118))) (|HasCategory| (-811 |#1|) (QUOTE (-314))) (|HasCategory| (-811 |#1|) (QUOTE (-116)))) (-290 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-116)))) (-291 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-116)))) (-292 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1110,51 +1110,51 @@ NIL NIL (-295) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-296 R UP -3074) +(-296 R UP -3077) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-297 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| (-810 |#1|) (QUOTE (-116))) (|HasCategory| (-810 |#1|) (QUOTE (-313)))) (|HasCategory| (-810 |#1|) (QUOTE (-118))) (|HasCategory| (-810 |#1|) (QUOTE (-313))) (|HasCategory| (-810 |#1|) (QUOTE (-116)))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| (-811 |#1|) (QUOTE (-116))) (|HasCategory| (-811 |#1|) (QUOTE (-314)))) (|HasCategory| (-811 |#1|) (QUOTE (-118))) (|HasCategory| (-811 |#1|) (QUOTE (-314))) (|HasCategory| (-811 |#1|) (QUOTE (-116)))) (-298 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-116)))) (-299 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-116)))) (-300 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-116)))) (-301 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-302 -3074 GF) +(-302 -3077 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-303 -3074 FP FPP) +(-303 -3077 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL (-304 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-116)))) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-116)))) (-305 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL NIL (-306 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-3968 . T)) +((-3974 . T)) NIL (-307 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1162,7 +1162,7 @@ NIL NIL (-308) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL (-309 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) @@ -1175,3538 +1175,3558 @@ NIL (-311 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-489)))) +((|HasCategory| |#2| (QUOTE (-490)))) (-312 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-3968 |has| |#1| (-489)) (-3966 . T) (-3965 . T)) +((-3974 |has| |#1| (-490)) (-3972 . T) (-3971 . T)) +NIL +(-313 S) +((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) +NIL NIL -(-313) +(-314) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-314 S R UP) +(-315 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL ((|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-308)))) -(-315 R UP) +(-316 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-3965 . T) (-3966 . T) (-3968 . T)) +((-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-316 A S) +(-317 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3972)) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1003)))) -(-317 S) +((|HasAttribute| |#1| (QUOTE -3978)) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-1006)))) +(-318 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-3971 . T)) +((-3977 . T)) NIL -(-318 S A R B) +(-319 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-319 |VarSet| R) +(-320 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3966 . T) (-3965 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3972 . T) (-3971 . T)) NIL -(-320 S V) +(-321 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-321 S R) +(-322 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (QUOTE (-575 (-478))))) -(-322 R) +((|HasCategory| |#2| (QUOTE (-576 (-479))))) +(-323 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL -(-323) +(-324) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3954 . T) (-3962 . T) (-3746 . T) (-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3960 . T) (-3968 . T) (-3752 . T) (-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-324 |Par|) +(-325 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-325 |Par|) +(-326 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-326 R S) -((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-3966 . T) (-3965 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003))))) (-327 R S) +((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) +((-3972 . T) (-3971 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006))))) +(-328 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) ((|HasCategory| |#1| (QUOTE (-144)))) -(-328 R |Basis|) +(-329 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL -(-329 S) +(-330 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-330 S) +(-331 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-749)))) -(-331) +((|HasCategory| |#1| (QUOTE (-750)))) +(-332) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-332) +(-333) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-333 |n| |class| R) +(-334 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL -(-334 -3074 UP UPUP R) +(-335 -3077 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-335 -3074 UP) +(-336 -3077 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-336 R) +(-337 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-337 S) +(-338 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-338) +(-339) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-339 S) +(-340 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -3954)) (|HasAttribute| |#1| (QUOTE -3962))) -(-340) +((|HasAttribute| |#1| (QUOTE -3960)) (|HasAttribute| |#1| (QUOTE -3968))) +(-341) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3746 . T) (-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3752 . T) (-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-341 R) +(-342 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-447 (-1075) $))) (|HasCategory| |#1| (QUOTE (-256 $))) (|HasCategory| |#1| (QUOTE (-238 $ $))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#1| (QUOTE (-1119))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-385)))) -(-342 R S) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-448 (-1080) $))) (|HasCategory| |#1| (QUOTE (-256 $))) (|HasCategory| |#1| (QUOTE (-238 $ $))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#1| (QUOTE (-1124))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-1124)))) (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (|%list| (QUOTE -448) (QUOTE (-1080)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-386)))) +(-343 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-343 S) +(-344 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-3958 -12 (|has| |#1| (-6 -3969)) (|has| |#1| (-385)) (|has| |#1| (-6 -3958))) (-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-943 (-1075)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-733))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-733))) (|HasCategory| |#1| (QUOTE (-749)))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-477))) (-12 (|HasAttribute| |#1| (QUOTE -3958)) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-344 A B) +((-3964 -12 (|has| |#1| (-6 -3975)) (|has| |#1| (-386)) (|has| |#1| (-6 -3964))) (-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-944 (-1080)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#1| (QUOTE (-927))) (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-734))) (|HasCategory| |#1| (QUOTE (-750)))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-1056))) (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -448) (QUOTE (-1080)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-478))) (-12 (|HasAttribute| |#1| (QUOTE -3964)) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-345 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-345 S R UP) +(-346 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-346 R UP) +(-347 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3965 . T) (-3966 . T) (-3968 . T)) +((-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-347 A S) +(-348 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) -(-348 S) +((|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) +(-349 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-349 R -3074 UP A) +(-350 R -3077 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-3968 . T)) +((-3974 . T)) NIL -(-350 R1 F1 U1 A1 R2 F2 U2 A2) +(-351 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-351 R -3074 UP A |ibasis|) +(-352 R -3077 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -943) (|devaluate| |#2|)))) -(-352 AR R AS S) +((|HasCategory| |#4| (|%list| (QUOTE -944) (|devaluate| |#2|)))) +(-353 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-353 S R) +(-354 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-308)))) -(-354 R) +(-355 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-3968 |has| |#1| (-489)) (-3966 . T) (-3965 . T)) +((-3974 |has| |#1| (-490)) (-3972 . T) (-3971 . T)) NIL -(-355 R) +(-356 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-356 S R) +(-357 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-548 (-467))))) -(-357 R) +((|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-407))) (|HasCategory| |#2| (QUOTE (-1016))) (|HasCategory| |#2| (QUOTE (-549 (-468))))) +(-358 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-3968 OR (|has| |#1| (-954)) (|has| |#1| (-406))) (-3966 |has| |#1| (-144)) (-3965 |has| |#1| (-144)) ((-3973 "*") |has| |#1| (-489)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-489)) (-3963 |has| |#1| (-489))) +((-3974 OR (|has| |#1| (-955)) (|has| |#1| (-407))) (-3972 |has| |#1| (-144)) (-3971 |has| |#1| (-144)) ((-3979 "*") |has| |#1| (-490)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-490)) (-3969 |has| |#1| (-490))) NIL -(-358 R A S B) +(-359 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-359 R FE |x| |cen|) +(-360 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-360 R FE |Expon| UPS TRAN |x|) +(-361 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-361 A S) +(-362 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313)))) -(-362 S) +((|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-314)))) +(-363 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-3971 . T) (-3961 . T) (-3972 . T)) +((-3977 . T) (-3967 . T) (-3978 . T)) NIL -(-363 S A R B) +(-364 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-364 R -3074) +(-365 R -3077) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-365 R E) +(-366 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-3958 -12 (|has| |#1| (-6 -3958)) (|has| |#2| (-6 -3958))) (-3965 . T) (-3966 . T) (-3968 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -3958)) (|HasAttribute| |#2| (QUOTE -3958)))) -(-366 R -3074) +((-3964 -12 (|has| |#1| (-6 -3964)) (|has| |#2| (-6 -3964))) (-3971 . T) (-3972 . T) (-3974 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -3964)) (|HasAttribute| |#2| (QUOTE -3964)))) +(-367 R -3077) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-367 R -3074) +(-368 R -3077) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-368 R -3074) +(-369 R -3077) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-369 R -3074) +(-370 R -3077) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-370) +(-371) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-371 R -3074 UP) +(-372 R -3077 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (QUOTE (-943 (-48))))) -(-372) +((|HasCategory| |#2| (QUOTE (-944 (-48))))) +(-373) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-373 |f|) +(-374 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-374) +(-375) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-375 UP) +(-376 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-376 R UP -3074) +(-377 R UP -3077) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-377 R UP) +(-378 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-378 R) +(-379 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-340)))) -(-379) +((|HasCategory| |#1| (QUOTE (-341)))) +(-380) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-380 |Dom| |Expon| |VarSet| |Dpol|) +(-381 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL ((|HasCategory| |#1| (QUOTE (-308)))) -(-381 |Dom| |Expon| |VarSet| |Dpol|) +(-382 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-382 |Dom| |Expon| |VarSet| |Dpol|) +(-383 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-383 |Dom| |Expon| |VarSet| |Dpol|) +(-384 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-384 S) +(-385 S) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-385) +(-386) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-386 R |n| |ls| |gamma|) +(-387 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-3968 |has| (-343 (-850 |#1|)) (-489)) (-3966 . T) (-3965 . T)) -((|HasCategory| (-343 (-850 |#1|)) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| (-343 (-850 |#1|)) (QUOTE (-489)))) -(-387 |vl| R E) +((-3974 |has| (-344 (-851 |#1|)) (-490)) (-3972 . T) (-3971 . T)) +((|HasCategory| (-344 (-851 |#1|)) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| (-344 (-851 |#1|)) (QUOTE (-490)))) +(-388 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3973 "*") |has| |#2| (-144)) (-3964 |has| |#2| (-489)) (-3969 |has| |#2| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-814))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-323)))) (|HasCategory| (-766 |#1|) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-478)))) (|HasCategory| (-766 |#1|) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-467))))) (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3969)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-388 R BP) +(((-3979 "*") |has| |#2| (-144)) (-3970 |has| |#2| (-490)) (-3975 |has| |#2| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-815))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-815)))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-490)))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-324)))) (|HasCategory| (-767 |#1|) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-479)))) (|HasCategory| (-767 |#1|) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-468))))) (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3975)) (|HasCategory| |#2| (QUOTE (-386))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-389 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL NIL -(-389 OV E S R P) +(-390 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-390 E OV R P) +(-391 E OV R P) ((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}"))) NIL NIL -(-391 R) +(-392 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-392 R FE) +(-393 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-393 RP TP) +(-394 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-394 |vl| R IS E |ff| P) +(-395 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL -(-395 E V R P Q) +(-396 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-396 R E |VarSet| P) +(-397 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-3972 . T) (-3971 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-548 (-467)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#4| (QUOTE (-547 (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-397 S R E) +((-3978 . T) (-3977 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-549 (-468)))) (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#4| (QUOTE (-548 (-766)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-398 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-398 R E) +(-399 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-399) +(-400) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-400) +(-401) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-401) +(-402) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-402 S R E) +(-403 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-403 R E) +(-404 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-404 |lv| -3074 R) +(-405 |lv| -3077 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-405 S) +(-406 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-406) +(-407) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-3968 . T)) +((-3974 . T)) NIL -(-407 |Coef| |var| |cen|) +(-408 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|))))))) -(-408 |Key| |Entry| |Tbl| |dent|) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|)))) (|HasCategory| (-344 (-479)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|))))))) +(-409 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3972 . T)) -((-12 (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3836) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-547 (-765))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) -(-409 R E V P) +((-3978 . T)) +((-12 (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3842) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-548 (-766))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-468)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) +(-410 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-3972 . T) (-3971 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-548 (-467)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#4| (QUOTE (-547 (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-410) +((-3978 . T) (-3977 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-549 (-468)))) (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-548 (-766)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-411) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-411) +(-412) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-412 |Key| |Entry| |hashfn|) +(-413 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3836) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-547 (-765))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1003))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-413) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3842) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-548 (-766))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-468)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-1006))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-414) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-414 |vl| R) +(-415 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-3973 "*") |has| |#2| (-144)) (-3964 |has| |#2| (-489)) (-3969 |has| |#2| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-814))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-323)))) (|HasCategory| (-766 |#1|) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-478)))) (|HasCategory| (-766 |#1|) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-467))))) (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3969)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-415 -2601 S) +(((-3979 "*") |has| |#2| (-144)) (-3970 |has| |#2| (-490)) (-3975 |has| |#2| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-815))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-815)))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-490)))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-324)))) (|HasCategory| (-767 |#1|) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-479)))) (|HasCategory| (-767 |#1|) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-468))))) (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3975)) (|HasCategory| |#2| (QUOTE (-386))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-416 -2606 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3965 |has| |#2| (-954)) (-3966 |has| |#2| (-954)) (-3968 |has| |#2| (-6 -3968)) (-3971 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (OR (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-954))))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (|HasCategory| |#2| (QUOTE (-1003))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-1003))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-954))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -3968)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) -(-416) +((-3971 |has| |#2| (-955)) (-3972 |has| |#2| (-955)) (-3974 |has| |#2| (-6 -3974)) (-3977 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-711))) (OR (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-750)))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-314))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-955))))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-955))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (|HasCategory| |#2| (QUOTE (-1006))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-1006))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-955))))) (|HasCategory| (-479) (QUOTE (-750))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasAttribute| |#2| (QUOTE -3974)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) +(-417) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-417 S) +(-418 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-418 -3074 UP UPUP R) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-419 -3077 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-419 BP) +(-420 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}."))) NIL NIL -(-420) +(-421) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-478) (QUOTE (-814))) (|HasCategory| (-478) (QUOTE (-943 (-1075)))) (|HasCategory| (-478) (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-118))) (|HasCategory| (-478) (QUOTE (-548 (-467)))) (|HasCategory| (-478) (QUOTE (-926))) (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749))) (OR (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749)))) (|HasCategory| (-478) (QUOTE (-943 (-478)))) (|HasCategory| (-478) (QUOTE (-1052))) (|HasCategory| (-478) (QUOTE (-789 (-323)))) (|HasCategory| (-478) (QUOTE (-789 (-478)))) (|HasCategory| (-478) (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-478) (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-478) (QUOTE (-187))) (|HasCategory| (-478) (QUOTE (-804 (-1075)))) (|HasCategory| (-478) (QUOTE (-188))) (|HasCategory| (-478) (QUOTE (-802 (-1075)))) (|HasCategory| (-478) (QUOTE (-447 (-1075) (-478)))) (|HasCategory| (-478) (QUOTE (-256 (-478)))) (|HasCategory| (-478) (QUOTE (-238 (-478) (-478)))) (|HasCategory| (-478) (QUOTE (-254))) (|HasCategory| (-478) (QUOTE (-477))) (|HasCategory| (-478) (QUOTE (-575 (-478)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (|HasCategory| (-478) (QUOTE (-116))))) -(-421 A S) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-479) (QUOTE (-815))) (|HasCategory| (-479) (QUOTE (-944 (-1080)))) (|HasCategory| (-479) (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-118))) (|HasCategory| (-479) (QUOTE (-549 (-468)))) (|HasCategory| (-479) (QUOTE (-927))) (|HasCategory| (-479) (QUOTE (-734))) (|HasCategory| (-479) (QUOTE (-750))) (OR (|HasCategory| (-479) (QUOTE (-734))) (|HasCategory| (-479) (QUOTE (-750)))) (|HasCategory| (-479) (QUOTE (-944 (-479)))) (|HasCategory| (-479) (QUOTE (-1056))) (|HasCategory| (-479) (QUOTE (-790 (-324)))) (|HasCategory| (-479) (QUOTE (-790 (-479)))) (|HasCategory| (-479) (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-479) (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-479) (QUOTE (-187))) (|HasCategory| (-479) (QUOTE (-805 (-1080)))) (|HasCategory| (-479) (QUOTE (-188))) (|HasCategory| (-479) (QUOTE (-803 (-1080)))) (|HasCategory| (-479) (QUOTE (-448 (-1080) (-479)))) (|HasCategory| (-479) (QUOTE (-256 (-479)))) (|HasCategory| (-479) (QUOTE (-238 (-479) (-479)))) (|HasCategory| (-479) (QUOTE (-254))) (|HasCategory| (-479) (QUOTE (-478))) (|HasCategory| (-479) (QUOTE (-576 (-479)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-815)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-815)))) (|HasCategory| (-479) (QUOTE (-116))))) +(-422 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -3971)) (|HasAttribute| |#1| (QUOTE -3972)) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-547 (-765))))) -(-422 S) +((|HasAttribute| |#1| (QUOTE -3977)) (|HasAttribute| |#1| (QUOTE -3978)) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-548 (-766))))) +(-423 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-423 S) +(-424 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-424) +(-425) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'."))) NIL NIL -(-425 S) +(-426 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-426) +(-427) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-427 -3074 UP |AlExt| |AlPol|) +(-428 -3077 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-428) +(-429) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| $ (QUOTE (-954))) (|HasCategory| $ (QUOTE (-943 (-478))))) -(-429 S |mn|) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| $ (QUOTE (-955))) (|HasCategory| $ (QUOTE (-944 (-479))))) +(-430 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) -(-430 R |mnRow| |mnCol|) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-431 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-431 K R UP) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-432 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-432 R UP -3074) +(-433 R UP -3077) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-433 |mn|) +(-434 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data."))) -((-3972 . T) (-3971 . T)) -((-12 (|HasCategory| (-83) (QUOTE (-256 (-83)))) (|HasCategory| (-83) (QUOTE (-1003)))) (|HasCategory| (-83) (QUOTE (-548 (-467)))) (|HasCategory| (-83) (QUOTE (-749))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-83) (QUOTE (-1003))) (|HasCategory| (-83) (QUOTE (-547 (-765)))) (|HasCategory| (-83) (QUOTE (-72)))) -(-434 K R UP L) +((-3978 . T) (-3977 . T)) +((-12 (|HasCategory| (-83) (QUOTE (-256 (-83)))) (|HasCategory| (-83) (QUOTE (-1006)))) (|HasCategory| (-83) (QUOTE (-549 (-468)))) (|HasCategory| (-83) (QUOTE (-750))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| (-83) (QUOTE (-1006))) (|HasCategory| (-83) (QUOTE (-548 (-766)))) (|HasCategory| (-83) (QUOTE (-72)))) +(-435 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-435) +(-436) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-436 R Q A B) +(-437 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-437 -3074 |Expon| |VarSet| |DPoly|) +(-438 -3077 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (QUOTE (-548 (-1075))))) -(-438 |vl| |nv|) +((|HasCategory| |#3| (QUOTE (-549 (-1080))))) +(-439 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-439) +(-440) ((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-440 A S) +(-441 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003))))) -(-441 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006))))) +(-442 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003))))) -(-442 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006))))) +(-443 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-443 A S) +(-444 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003))))) -(-444 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006))))) +(-445 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003))))) -(-445 A S) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006))))) +(-446 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003))))) -(-446 S A B) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006))))) +(-447 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-447 A B) +(-448 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-448 S E |un|) +(-449 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-709)))) -(-449 S |mn|) +((|HasCategory| |#2| (QUOTE (-710)))) +(-450 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) -(-450) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-451) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-451 |p| |n|) +(-452 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((OR (|HasCategory| (-511 |#1|) (QUOTE (-116))) (|HasCategory| (-511 |#1|) (QUOTE (-313)))) (|HasCategory| (-511 |#1|) (QUOTE (-118))) (|HasCategory| (-511 |#1|) (QUOTE (-313))) (|HasCategory| (-511 |#1|) (QUOTE (-116)))) -(-452 R |mnRow| |mnCol| |Row| |Col|) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((OR (|HasCategory| (-512 |#1|) (QUOTE (-116))) (|HasCategory| (-512 |#1|) (QUOTE (-314)))) (|HasCategory| (-512 |#1|) (QUOTE (-118))) (|HasCategory| (-512 |#1|) (QUOTE (-314))) (|HasCategory| (-512 |#1|) (QUOTE (-116)))) +(-453 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-453 R |Row| |Col| M) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-454 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -3972))) -(-454 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -3978))) +(-455 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -3972))) -(-455 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -3978))) +(-456 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-489))) (|HasAttribute| |#1| (QUOTE (-3973 "*"))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-72)))) -(-456) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-490))) (|HasAttribute| |#1| (QUOTE (-3979 "*"))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-72)))) +(-457) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-457) +(-458) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-458 S) +(-459 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-459) +(-460) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-460 GF) +(-461 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF."))) NIL NIL -(-461) +(-462) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-462 R) +(-463 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-463 |Varset|) +(-464 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| (-687) (QUOTE (-1003))))) -(-464 K -3074 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| (-688) (QUOTE (-1006))))) +(-465 K -3077 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-465) +(-466) NIL NIL NIL -(-466) +(-467) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-467) +(-468) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-468 R) +(-469 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-469 |Coef| UTS) +(-470 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-470 K -3074 |Par|) +(-471 K -3077 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-471 R BP |pMod| |nextMod|) +(-472 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-472 OV E R P) +(-473 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-473 K UP |Coef| UTS) +(-474 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-474 |Coef| UTS) +(-475 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-475 R UP) +(-476 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-476 S) +(-477 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-477) +(-478) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-3969 . T) (-3970 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3975 . T) (-3976 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-478) +(-479) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3959 . T) (-3963 . T) (-3958 . T) (-3969 . T) (-3970 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3965 . T) (-3969 . T) (-3964 . T) (-3975 . T) (-3976 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-479) +(-480) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-480) +(-481) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-481) +(-482) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-482) +(-483) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-483 |Key| |Entry| |addDom|) +(-484 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3836) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-547 (-765))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1003))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-484 R -3074) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3842) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-548 (-766))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-468)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-1006))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-485 R -3077) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-485 R0 -3074 UP UPUP R) +(-486 R0 -3077 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-486) +(-487) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-487 R) +(-488 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3746 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3752 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-488 S) +(-489 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-489) +(-490) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-490 R -3074) +(-491 R -3077) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-491 I) +(-492 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-492 R -3074 L) +(-493 R -3077 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -595) (|devaluate| |#2|)))) -(-493) +((|HasCategory| |#3| (|%list| (QUOTE -596) (|devaluate| |#2|)))) +(-494) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-494 -3074 UP UPUP R) +(-495 -3077 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-495 -3074 UP) +(-496 -3077 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-496 R -3074 L) +(-497 R -3077 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -595) (|devaluate| |#2|)))) -(-497 R -3074) +((|HasCategory| |#3| (|%list| (QUOTE -596) (|devaluate| |#2|)))) +(-498 R -3077) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| |#2| (QUOTE (-564))))) -(-498 -3074 UP) +((-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| |#2| (QUOTE (-1043)))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| |#2| (QUOTE (-565))))) +(-499 -3077 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-499 S) +(-500 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-500 -3074) +(-501 -3077) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-501 R) +(-502 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3746 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3752 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-502) +(-503) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-503 R -3074) +(-504 R -3077) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| |#2| (QUOTE (-236))) (|HasCategory| |#2| (QUOTE (-564))) (|HasCategory| |#2| (QUOTE (-943 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-236)))) (|HasCategory| |#1| (QUOTE (-489)))) -(-504 -3074 UP) +((-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| |#2| (QUOTE (-236))) (|HasCategory| |#2| (QUOTE (-565))) (|HasCategory| |#2| (QUOTE (-944 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-236)))) (|HasCategory| |#1| (QUOTE (-490)))) +(-505 -3077 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-505 R -3074) +(-506 R -3077) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-506) +(-507) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-507) +(-508) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file."))) NIL NIL -(-508) +(-509) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-509) +(-510) ((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-510 |p| |unBalanced?|) +(-511 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-511 |p|) +(-512 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| $ (QUOTE (-313)))) -(-512) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| $ (QUOTE (-314)))) +(-513) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-513 -3074) +(-514 -3077) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-3966 . T) (-3965 . T)) -((|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-943 (-1075))))) -(-514 E -3074) +((-3972 . T) (-3971 . T)) +((|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-944 (-1080))))) +(-515 E -3077) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-515 R -3074) +(-516 R -3077) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL -(-516) +(-517) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-517 I) +(-518 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-518 GF) +(-519 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-519 R) +(-520 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-118)))) -(-520) +(-521) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-521 R E V P TS) +(-522 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-522) +(-523) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-523 E V R P) +(-524 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-524 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))) (|HasCategory| (-478) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478)))))) (-525 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))) (|HasCategory| (-479) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-479)))))) +(-526 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-3973 "*") |has| |#1| (-489)) (-3964 |has| |#1| (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-489)))) -(-526) +(((-3979 "*") |has| |#1| (-490)) (-3970 |has| |#1| (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-490)))) +(-527) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-527 A B) +(-528 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-528 A B C) +(-529 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-529 R -3074 FG) +(-530 R -3077 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-530 S) +(-531 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-531 R |mn|) +(-532 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-954))) (-12 (|HasCategory| |#1| (QUOTE (-908))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) -(-532 S |Index| |Entry|) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-955))) (-12 (|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-533 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -3972)) (|HasCategory| |#2| (QUOTE (-749))) (|HasAttribute| |#1| (QUOTE -3971)) (|HasCategory| |#3| (QUOTE (-1003)))) -(-533 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -3978)) (|HasCategory| |#2| (QUOTE (-750))) (|HasAttribute| |#1| (QUOTE -3977)) (|HasCategory| |#3| (QUOTE (-1006)))) +(-534 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-534) +(-535) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-535 R A) +(-536 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-3968 OR (-2542 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) (-3966 . T) (-3965 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) -(-536) +((-3974 OR (-2547 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) (-3972 . T) (-3971 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -355) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -355) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -355) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#2| (|%list| (QUOTE -355) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) +(-537) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-537) +(-538) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-538) +(-539) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-539) +(-540) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-540) +(-541) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-541) +(-542) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-542 |Entry|) +(-543 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (QUOTE (|:| -3836 (-1059))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-1003)))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-548 (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| (-1059) (QUOTE (-749))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-72)))) -(-543 S |Key| |Entry|) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (QUOTE (|:| -3842 (-1063))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-1006)))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-549 (-468)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| (-1063) (QUOTE (-750))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-544 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-544 |Key| |Entry|) +(-545 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-3972 . T)) +((-3978 . T)) NIL -(-545 S) +(-546 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#1| (QUOTE (-548 (-793 (-478)))))) -(-546 R S) +((|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#1| (QUOTE (-549 (-794 (-479)))))) +(-547 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-547 S) +(-548 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-548 S) +(-549 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-549 -3074 UP) +(-550 -3077 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-550 S) +(-551 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-551) +(-552) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-552 S) +(-553 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-553 A R S) +(-554 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-748)))) -(-554 S R) +((-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-749)))) +(-555 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-555 R) +(-556 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-3968 . T)) +((-3974 . T)) NIL -(-556 R -3074) +(-557 R -3077) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-557 R UP) +(-558 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-3966 . T) (-3965 . T) ((-3973 "*") . T) (-3964 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478))))) -(-558 R E V P TS ST) +((-3972 . T) (-3971 . T) ((-3979 "*") . T) (-3970 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479))))) +(-559 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-559 OV E Z P) +(-560 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-560) +(-561) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-561 |VarSet| R |Order|) +(-562 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-3968 . T)) +((-3974 . T)) NIL -(-562 R |ls|) +(-563 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-563 R -3074) +(-564 R -3077) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-564) +(-565) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-565 |lv| -3074) +(-566 |lv| -3077) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-566) +(-567) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-3972 . T)) -((-12 (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-1003)))) (OR (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-1003)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-1003)))) (OR (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-547 (-765)))) (|HasCategory| (-51) (QUOTE (-547 (-765))))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-548 (-467)))) (-12 (|HasCategory| (-51) (QUOTE (-256 (-51)))) (|HasCategory| (-51) (QUOTE (-1003)))) (|HasCategory| (-1059) (QUOTE (-749))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (QUOTE (-1003)))) -(-567 R A) +((-3978 . T)) +((-12 (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-1006)))) (OR (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-1006)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-1006)))) (OR (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-548 (-766)))) (|HasCategory| (-51) (QUOTE (-548 (-766))))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-549 (-468)))) (-12 (|HasCategory| (-51) (QUOTE (-256 (-51)))) (|HasCategory| (-51) (QUOTE (-1006)))) (|HasCategory| (-1063) (QUOTE (-750))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1006))) (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (QUOTE (-1006)))) +(-568 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-3968 OR (-2542 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) (-3966 . T) (-3965 . T)) -((OR (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (|%list| (QUOTE -354) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) -(-568 S R) +((-3974 OR (-2547 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) (-3972 . T) (-3971 . T)) +((OR (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -355) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -355) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -355) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#2| (|%list| (QUOTE -355) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -312) (|devaluate| |#1|)))) +(-569 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-308)))) -(-569 R) +(-570 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3966 . T) (-3965 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3972 . T) (-3971 . T)) NIL -(-570 R FE) +(-571 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-571 R) +(-572 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-572 |vars|) +(-573 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-573 S R) +(-574 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2540 (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-308)))) -(-574 K B) +((-2545 (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-308)))) +(-575 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-3966 . T) (-3965 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| (-572 |#2|) (QUOTE (-1003))))) -(-575 R) +((-3972 . T) (-3971 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| (-573 |#2|) (QUOTE (-1006))))) +(-576 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-576 K B) +(-577 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL -(-577 S) +(-578 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-578 S) +(-579 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) -(-579 A B) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-580 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-580 A B) +(-581 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-581 A B C) +(-582 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-582 T$) +(-583 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-583 S) +(-584 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-584 S) +(-585 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-585 R) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-586 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-586 S E |un|) +(-587 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-587 A S) +(-588 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -3972))) -(-588 S) +((|HasAttribute| |#1| (QUOTE -3978))) +(-589 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-589 M R S) +(-590 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-3966 . T) (-3965 . T)) -((|HasCategory| |#1| (QUOTE (-707)))) -(-590 R -3074 L) +((-3972 . T) (-3971 . T)) +((|HasCategory| |#1| (QUOTE (-708)))) +(-591 R -3077 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-591 A -2472) +(-592 A -2477) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-308)))) -(-592 A) +((-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-308)))) +(-593 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-308)))) -(-593 A M) +((-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-308)))) +(-594 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-308)))) -(-594 S A) +((-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-308)))) +(-595 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-308)))) -(-595 A) +(-596 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-3965 . T) (-3966 . T) (-3968 . T)) +((-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-596 -3074 UP) +(-597 -3077 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-597 A L) +(-598 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-598 S) +(-599 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-599) +(-600) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-600 R) +(-601 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-601 |VarSet| R) +(-602 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-3966 . T) (-3965 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-3972 . T) (-3971 . T)) ((|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-144)))) -(-602 A S) +(-603 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-603 S) +(-604 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL -(-604 -3074 |Row| |Col| M) +(-605 -3077 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-605 -3074) +(-606 -3077) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-606 R E OV P) +(-607 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-607 |n| R) +(-608 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-3968 . T) (-3971 . T) (-3965 . T) (-3966 . T)) -((|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasAttribute| |#2| (QUOTE (-3973 #1="*"))) (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-489))) (OR (|HasAttribute| |#2| (QUOTE (-3973 #1#))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-144)))) -(-608) +((-3974 . T) (-3977 . T) (-3971 . T) (-3972 . T)) +((|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasAttribute| |#2| (QUOTE (-3979 #1="*"))) (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-490))) (OR (|HasAttribute| |#2| (QUOTE (-3979 #1#))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-144)))) +(-609) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-609 |VarSet|) +(-610 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-610 A S) +(-611 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-611 S) +(-612 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-612) +(-613) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-613 |VarSet|) +(-614 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-614 A) +(-615 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-615 A C) +(-616 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-616 A B C) +(-617 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-617) +(-618) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-618 A) +(-619 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-619 A C) +(-620 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-620 A B C) +(-621 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-621 S R |Row| |Col|) +(-622 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-3973 "*"))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-489)))) -(-622 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-3979 "*"))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-490)))) +(-623 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-3971 . T) (-3972 . T)) +((-3977 . T) (-3978 . T)) NIL -(-623 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-624 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-624 R |Row| |Col| M) +(-625 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-489)))) -(-625 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-3971 . T) (-3972 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-489))) (|HasAttribute| |#1| (QUOTE (-3973 "*"))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-490)))) (-626 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-3977 . T) (-3978 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#1| (QUOTE (-254))) (|HasCategory| |#1| (QUOTE (-490))) (|HasAttribute| |#1| (QUOTE (-3979 "*"))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-627 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-627 T$) +(-628 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-628 R Q) +(-629 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-629 S) +(-630 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-3972 . T)) +((-3978 . T)) NIL -(-630 U) +(-631 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-631) +(-632) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-632 OV E -3074 PG) +(-633 OV E -3077 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-633 R) +(-634 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-634 S D1 D2 I) +(-635 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-635 S) +(-636 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-636 S) +(-637 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-637 S T$) +(-638 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-638 S -2650 I) +(-639 S -2654 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-639 E OV R P) +(-640 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-640 R) +(-641 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3965 . T) (-3966 . T) (-3968 . T)) +((-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-641 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-642 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-642) +(-643) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-643 R |Mod| -2019 -3495 |exactQuo|) +(-644 R |Mod| -2024 -3500 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-644 R P) +(-645 R P) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3967 |has| |#1| (-308)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| (-985) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| (-985) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-985) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-985) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| (-985) (QUOTE (-548 (-467))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-645 IS E |ff|) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3973 |has| |#1| (-308)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| (-987) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| (-987) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-987) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-987) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| (-987) (QUOTE (-549 (-468))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-1056))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-646 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-646 R M) +(-647 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-3966 |has| |#1| (-144)) (-3965 |has| |#1| (-144)) (-3968 . T)) +((-3972 |has| |#1| (-144)) (-3971 |has| |#1| (-144)) (-3974 . T)) ((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118)))) -(-647 R |Mod| -2019 -3495 |exactQuo|) +(-648 R |Mod| -2024 -3500 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-3968 . T)) +((-3974 . T)) NIL -(-648 S R) +(-649 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-649 R) +(-650 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL -(-650 -3074) +(-651 -3077) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-3968 . T)) +((-3974 . T)) NIL -(-651 S) +(-652 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-652) +(-653) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-653 S) +(-654 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-654) +(-655) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-655 S R UP) +(-656 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-295))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313)))) -(-656 R UP) +((|HasCategory| |#2| (QUOTE (-295))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-314)))) +(-657 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-3964 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 |has| |#1| (-308)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-657 S) +(-658 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-658) +(-659) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity."))) NIL NIL -(-659 -3074 UP) +(-660 -3077 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-660 |VarSet| E1 E2 R S PR PS) +(-661 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented "))) NIL NIL -(-661 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-662 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-662 E OV R PPR) +(-663 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-663 |vl| R) +(-664 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-3973 "*") |has| |#2| (-144)) (-3964 |has| |#2| (-489)) (-3969 |has| |#2| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-814))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-323)))) (|HasCategory| (-766 |#1|) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-478)))) (|HasCategory| (-766 |#1|) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| (-766 |#1|) (QUOTE (-548 (-467))))) (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3969)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-664 E OV R PRF) +(((-3979 "*") |has| |#2| (-144)) (-3970 |has| |#2| (-490)) (-3975 |has| |#2| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-815))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-815)))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-490)))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-324)))) (|HasCategory| (-767 |#1|) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-479)))) (|HasCategory| (-767 |#1|) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| (-767 |#1|) (QUOTE (-549 (-468))))) (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasAttribute| |#2| (QUOTE -3975)) (|HasCategory| |#2| (QUOTE (-386))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-665 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-665 E OV R P) +(-666 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-666 R S M) +(-667 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-667 R M) +(-668 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-3966 |has| |#1| (-144)) (-3965 |has| |#1| (-144)) (-3968 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-749)))) -(-668 S) -((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-3971 . T) (-3961 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) +((-3972 |has| |#1| (-144)) (-3971 |has| |#1| (-144)) (-3974 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-750)))) (-669 S) +((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) +((-3977 . T) (-3967 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-670 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-3961 . T) (-3972 . T)) +((-3967 . T) (-3978 . T)) NIL -(-670) +(-671) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-671 S) +(-672 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-672 |Coef| |Var|) +(-673 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3966 . T) (-3965 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3972 . T) (-3971 . T) (-3974 . T)) NIL -(-673 OV E R P) +(-674 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-674 E OV R P) +(-675 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-675 S R) +(-676 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-676 R) +(-677 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL -(-677 S) +(-678 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-678) +(-679) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-679 S) +(-680 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-680) +(-681) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-681 |Par|) +(-682 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-682 -3074) +(-683 -3077) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-683 P -3074) +(-684 P -3077) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-684 T$) +(-685 T$) NIL NIL NIL -(-685 UP -3074) +(-686 UP -3077) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-686 R) +(-687 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-687) +(-688) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-3973 "*") . T)) +(((-3979 "*") . T)) NIL -(-688 R -3074) +(-689 R -3077) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-689) +(-690) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-690 S) +(-691 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-691 R |PolR| E |PolE|) +(-692 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-692 R E V P TS) +(-693 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-693 -3074 |ExtF| |SUEx| |ExtP| |n|) +(-694 -3077 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-694 BP E OV R P) +(-695 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-695 |Par|) +(-696 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-696 R |VarSet|) +(-697 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| |#2| (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| |#2| (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-548 (-467))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-548 (-1075))))) (|HasCategory| |#2| (QUOTE (-548 (-1075)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-548 (-1075))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-478)))) (|HasCategory| |#2| (QUOTE (-548 (-1075)))) (-2540 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-548 (-1075)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-548 (-1075)))) (-2540 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478)))))) (-2540 (|HasCategory| |#1| (QUOTE (-38 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-478)))) (|HasCategory| |#2| (QUOTE (-548 (-1075)))) (-2540 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478)))))) (-2540 (|HasCategory| |#1| (QUOTE (-477))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-548 (-1075)))) (-2540 (|HasCategory| |#1| (QUOTE (-897 (-478))))))) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-697 R) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| |#2| (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| |#2| (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-549 (-468))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-549 (-1080))))) (|HasCategory| |#2| (QUOTE (-549 (-1080)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-549 (-1080))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-479)))) (|HasCategory| |#2| (QUOTE (-549 (-1080)))) (-2545 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-549 (-1080)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-549 (-1080)))) (-2545 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479)))))) (-2545 (|HasCategory| |#1| (QUOTE (-38 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-479)))) (|HasCategory| |#2| (QUOTE (-549 (-1080)))) (-2545 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479)))))) (-2545 (|HasCategory| |#1| (QUOTE (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-549 (-1080)))) (-2545 (|HasCategory| |#1| (QUOTE (-898 (-479))))))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-698 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3967 |has| |#1| (-308)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| (-985) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| (-985) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-985) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-985) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| (-985) (QUOTE (-548 (-467))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-698 R S) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3973 |has| |#1| (-308)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| (-987) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| (-987) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-987) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-987) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| (-987) (QUOTE (-549 (-468))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-1056))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-699 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-699 R) +(-700 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478)))))) -(-700 R E V P) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479)))))) +(-701 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL -(-701 S) +(-702 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-749)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-954))) (|HasCategory| |#1| (QUOTE (-144)))) -(-702) +((-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-750)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-144)))) +(-703) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-703) +(-704) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-704) +(-705) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-705 |Curve|) +(-706 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-706 S) +(-707 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-707) +(-708) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-708 S) +(-709 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-709) +(-710) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-710) +(-711) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-711) +(-712) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-712 S R) +(-713 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313)))) -(-713 R) +((|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-314)))) +(-714 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-3965 . T) (-3966 . T) (-3968 . T)) +((-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-714) +(-715) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-715 R) +(-716 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| (-902 |#1|) (QUOTE (-943 (-343 (-478)))))) (OR (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| (-902 |#1|) (QUOTE (-943 (-478))))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-477))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-902 |#1|) (QUOTE (-943 (-343 (-478))))) (|HasCategory| (-902 |#1|) (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478))))) -(-716 OR R OS S) +((-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (|%list| (QUOTE -448) (QUOTE (-1080)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| (-903 |#1|) (QUOTE (-944 (-344 (-479)))))) (OR (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| (-903 |#1|) (QUOTE (-944 (-479))))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-903 |#1|) (QUOTE (-944 (-344 (-479))))) (|HasCategory| (-903 |#1|) (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479))))) +(-717 OR R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-717 R -3074 L) +(-718 R -3077 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-718 R -3074) +(-719 R -3077) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-719 R -3074) +(-720 R -3077) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-720 -3074 UP UPUP R) +(-721 -3077 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-721 -3074 UP L LQ) +(-722 -3077 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-722 -3074 UP L LQ) +(-723 -3077 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-723 -3074 UP) +(-724 -3077 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-724 -3074 L UP A LO) +(-725 -3077 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-725 -3074 UP) +(-726 -3077 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-726 -3074 LO) +(-727 -3077 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-727 -3074 LODO) +(-728 -3077 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-728 -2601 S |f|) +(-729 -2606 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3965 |has| |#2| (-954)) (-3966 |has| |#2| (-954)) (-3968 |has| |#2| (-6 -3968)) (-3971 . T)) -((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (OR (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-313))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-954))))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (|HasCategory| |#2| (QUOTE (-1003))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-1003))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-954))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -3968)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-954)))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-954)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) -(-729 R) +((-3971 |has| |#2| (-955)) (-3972 |has| |#2| (-955)) (-3974 |has| |#2| (-6 -3974)) (-3977 . T)) +((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-711))) (OR (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-750)))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-314))) (OR (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-955))))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (|HasCategory| |#2| (QUOTE (-188))) (OR (|HasCategory| |#2| (QUOTE (-188))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-955))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (|HasCategory| |#2| (QUOTE (-1006))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-1006))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-955))))) (|HasCategory| (-479) (QUOTE (-750))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1006)))) (-12 (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-1006)))) (|HasAttribute| |#2| (QUOTE -3974)) (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-955)))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-955)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) +(-730 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| (-731 (-1075)) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| (-731 (-1075)) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-731 (-1075)) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-731 (-1075)) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| (-731 (-1075)) (QUOTE (-548 (-467))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-730 |Kernels| R |var|) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| (-732 (-1080)) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| (-732 (-1080)) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-732 (-1080)) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-732 (-1080)) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| (-732 (-1080)) (QUOTE (-549 (-468))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-731 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-3973 "*") |has| |#2| (-308)) (-3964 |has| |#2| (-308)) (-3969 |has| |#2| (-308)) (-3963 |has| |#2| (-308)) (-3968 . T) (-3966 . T) (-3965 . T)) +(((-3979 "*") |has| |#2| (-308)) (-3970 |has| |#2| (-308)) (-3975 |has| |#2| (-308)) (-3969 |has| |#2| (-308)) (-3974 . T) (-3972 . T) (-3971 . T)) ((|HasCategory| |#2| (QUOTE (-308)))) -(-731 S) +(-732 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-732 S) +(-733 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-749)))) -(-733) +((|HasCategory| |#1| (QUOTE (-750)))) +(-734) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-734 P R) +(-735 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-3965 . T) (-3966 . T) (-3968 . T)) +((-3971 . T) (-3972 . T) (-3974 . T)) ((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-188)))) -(-735 S) +(-736 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-3971 . T) (-3961 . T) (-3972 . T)) +((-3977 . T) (-3967 . T) (-3978 . T)) NIL -(-736 R) +(-737 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-3968 |has| |#1| (-748))) -((|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (OR (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-943 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-477)))) -(-737 R S) +((-3974 |has| |#1| (-749))) +((|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-749)))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-944 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-478)))) +(-738 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-738 R) +(-739 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-3966 |has| |#1| (-144)) (-3965 |has| |#1| (-144)) (-3968 . T)) +((-3972 |has| |#1| (-144)) (-3971 |has| |#1| (-144)) (-3974 . T)) ((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118)))) -(-739 A S) +(-740 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-740 S) +(-741 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-741) +(-742) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-742) +(-743) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-743 R) +(-744 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-3968 |has| |#1| (-748))) -((|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (OR (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-943 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-477)))) -(-744 R S) +((-3974 |has| |#1| (-749))) +((|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-749)))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-944 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-478)))) +(-745 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-745) +(-746) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-746 -2601 S) +(-747 -2606 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-747) +(-748) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-748) +(-749) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-3968 . T)) +((-3974 . T)) NIL -(-749) +(-750) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-750 T$ |f|) +(-751 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (QUOTE (-547 (-765))))) -(-751 S) +((|HasCategory| |#1| (QUOTE (-548 (-766))))) +(-752 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-752) +(-753) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-753 S R) +(-754 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144)))) -(-754 R) +((|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-144)))) +(-755 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-3965 . T) (-3966 . T) (-3968 . T)) +((-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-755 R C) +(-756 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) -(-756 R |sigma| -3224) +((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) +(-757 R |sigma| -3228) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-308)))) -(-757 |x| R |sigma| -3224) +((-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-308)))) +(-758 |x| R |sigma| -3228) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-308)))) -(-758 R) +((-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-308)))) +(-759 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478)))))) -(-759) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479)))))) +(-760) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-760) +(-761) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-761) +(-762) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-762 S) +(-763 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-763) +(-764) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-764) +(-765) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-765) +(-766) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-766 |VariableList|) +(-767 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-767) +(-768) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-768 R |vl| |wl| |wtlevel|) +(-769 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3966 |has| |#1| (-144)) (-3965 |has| |#1| (-144)) (-3968 . T)) +((-3972 |has| |#1| (-144)) (-3971 |has| |#1| (-144)) (-3974 . T)) ((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308)))) -(-769 R PS UP) +(-770 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-770 R |x| |pt|) +(-771 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-771 |p|) +(-772 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-772 |p|) +(-773 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-773 |p|) +(-774 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-771 |#1|) (QUOTE (-814))) (|HasCategory| (-771 |#1|) (QUOTE (-943 (-1075)))) (|HasCategory| (-771 |#1|) (QUOTE (-116))) (|HasCategory| (-771 |#1|) (QUOTE (-118))) (|HasCategory| (-771 |#1|) (QUOTE (-548 (-467)))) (|HasCategory| (-771 |#1|) (QUOTE (-926))) (|HasCategory| (-771 |#1|) (QUOTE (-733))) (|HasCategory| (-771 |#1|) (QUOTE (-749))) (OR (|HasCategory| (-771 |#1|) (QUOTE (-733))) (|HasCategory| (-771 |#1|) (QUOTE (-749)))) (|HasCategory| (-771 |#1|) (QUOTE (-943 (-478)))) (|HasCategory| (-771 |#1|) (QUOTE (-1052))) (|HasCategory| (-771 |#1|) (QUOTE (-789 (-323)))) (|HasCategory| (-771 |#1|) (QUOTE (-789 (-478)))) (|HasCategory| (-771 |#1|) (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-771 |#1|) (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-771 |#1|) (QUOTE (-575 (-478)))) (|HasCategory| (-771 |#1|) (QUOTE (-187))) (|HasCategory| (-771 |#1|) (QUOTE (-804 (-1075)))) (|HasCategory| (-771 |#1|) (QUOTE (-188))) (|HasCategory| (-771 |#1|) (QUOTE (-802 (-1075)))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -447) (QUOTE (-1075)) (|%list| (QUOTE -771) (|devaluate| |#1|)))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -256) (|%list| (QUOTE -771) (|devaluate| |#1|)))) (|HasCategory| (-771 |#1|) (|%list| (QUOTE -238) (|%list| (QUOTE -771) (|devaluate| |#1|)) (|%list| (QUOTE -771) (|devaluate| |#1|)))) (|HasCategory| (-771 |#1|) (QUOTE (-254))) (|HasCategory| (-771 |#1|) (QUOTE (-477))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-771 |#1|) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-771 |#1|) (QUOTE (-814)))) (|HasCategory| (-771 |#1|) (QUOTE (-116))))) -(-774 |p| PADIC) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-772 |#1|) (QUOTE (-815))) (|HasCategory| (-772 |#1|) (QUOTE (-944 (-1080)))) (|HasCategory| (-772 |#1|) (QUOTE (-116))) (|HasCategory| (-772 |#1|) (QUOTE (-118))) (|HasCategory| (-772 |#1|) (QUOTE (-549 (-468)))) (|HasCategory| (-772 |#1|) (QUOTE (-927))) (|HasCategory| (-772 |#1|) (QUOTE (-734))) (|HasCategory| (-772 |#1|) (QUOTE (-750))) (OR (|HasCategory| (-772 |#1|) (QUOTE (-734))) (|HasCategory| (-772 |#1|) (QUOTE (-750)))) (|HasCategory| (-772 |#1|) (QUOTE (-944 (-479)))) (|HasCategory| (-772 |#1|) (QUOTE (-1056))) (|HasCategory| (-772 |#1|) (QUOTE (-790 (-324)))) (|HasCategory| (-772 |#1|) (QUOTE (-790 (-479)))) (|HasCategory| (-772 |#1|) (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-772 |#1|) (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-772 |#1|) (QUOTE (-576 (-479)))) (|HasCategory| (-772 |#1|) (QUOTE (-187))) (|HasCategory| (-772 |#1|) (QUOTE (-805 (-1080)))) (|HasCategory| (-772 |#1|) (QUOTE (-188))) (|HasCategory| (-772 |#1|) (QUOTE (-803 (-1080)))) (|HasCategory| (-772 |#1|) (|%list| (QUOTE -448) (QUOTE (-1080)) (|%list| (QUOTE -772) (|devaluate| |#1|)))) (|HasCategory| (-772 |#1|) (|%list| (QUOTE -256) (|%list| (QUOTE -772) (|devaluate| |#1|)))) (|HasCategory| (-772 |#1|) (|%list| (QUOTE -238) (|%list| (QUOTE -772) (|devaluate| |#1|)) (|%list| (QUOTE -772) (|devaluate| |#1|)))) (|HasCategory| (-772 |#1|) (QUOTE (-254))) (|HasCategory| (-772 |#1|) (QUOTE (-478))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-772 |#1|) (QUOTE (-815)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-772 |#1|) (QUOTE (-815)))) (|HasCategory| (-772 |#1|) (QUOTE (-116))))) +(-775 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-943 (-1075)))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-733))) (|HasCategory| |#2| (QUOTE (-749))) (OR (|HasCategory| |#2| (QUOTE (-733))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-789 (-323)))) (|HasCategory| |#2| (QUOTE (-789 (-478)))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (|%list| (QUOTE -447) (QUOTE (-1075)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-477))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-775 S T$) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-944 (-1080)))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-750))) (OR (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-750)))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1056))) (|HasCategory| |#2| (QUOTE (-790 (-324)))) (|HasCategory| |#2| (QUOTE (-790 (-479)))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (|%list| (QUOTE -448) (QUOTE (-1080)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-478))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-776 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-547 (-765))))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003))))) (-12 (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-547 (-765)))))) -(-776) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-548 (-766))))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-1006))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-548 (-766)))))) +(-777) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-777) +(-778) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-778) +(-779) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-779 CF1 CF2) +(-780 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-780 |ComponentFunction|) +(-781 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-781 CF1 CF2) +(-782 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-782 |ComponentFunction|) +(-783 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-783) +(-784) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-784 CF1 CF2) +(-785 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-785 |ComponentFunction|) +(-786 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-786) +(-787) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-787 R) +(-788 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-788 R S L) +(-789 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-789 S) +(-790 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-790 |Base| |Subject| |Pat|) +(-791 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2540 (|HasCategory| |#2| (QUOTE (-943 (-1075))))) (-2540 (|HasCategory| |#2| (QUOTE (-954))))) (-12 (|HasCategory| |#2| (QUOTE (-954))) (-2540 (|HasCategory| |#2| (QUOTE (-943 (-1075)))))) (|HasCategory| |#2| (QUOTE (-943 (-1075))))) -(-791 R S) +((-12 (-2545 (|HasCategory| |#2| (QUOTE (-944 (-1080))))) (-2545 (|HasCategory| |#2| (QUOTE (-955))))) (-12 (|HasCategory| |#2| (QUOTE (-955))) (-2545 (|HasCategory| |#2| (QUOTE (-944 (-1080)))))) (|HasCategory| |#2| (QUOTE (-944 (-1080))))) +(-792 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-792 R A B) +(-793 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-793 R) +(-794 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0"))) NIL NIL -(-794 R -2650) +(-795 R -2654) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-795 R S) +(-796 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-796 |VarSet|) +(-797 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list."))) NIL NIL -(-797 UP R) +(-798 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-798 A T$ S) +(-799 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-799 T$ S) +(-800 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-800 UP -3074) +(-801 UP -3077) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-801 R S) +(-802 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL -(-802 S) +(-803 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-3968 . T)) +((-3974 . T)) NIL -(-803 A S) +(-804 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-804 S) +(-805 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-805 S) +(-806 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-806 S) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-807 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-3968 . T)) -((OR (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-749)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-749)))) -(-807 |n| R) +((-3974 . T)) +((OR (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-750)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-750)))) +(-808 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-808 S) +(-809 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-3968 . T)) +((-3974 . T)) NIL -(-809 S) +(-810 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-810 |p|) +(-811 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| $ (QUOTE (-313)))) -(-811 R E |VarSet| S) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| $ (QUOTE (-314)))) +(-812 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-812 R S) +(-813 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-813 S) +(-814 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-116)))) -(-814) +(-815) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-815 R0 -3074 UP UPUP R) +(-816 R0 -3077 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-816 UP UPUP R) +(-817 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-817 UP UPUP) +(-818 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-818 R) +(-819 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-819 R) +(-820 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-820 E OV R P) +(-821 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-821) +(-822) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-822 -3074) +(-823 -3077) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-823) +(-824) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-3973 "*") . T)) +(((-3979 "*") . T)) NIL -(-824 R) +(-825 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-825) +(-826) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-826 |xx| -3074) +(-827 |xx| -3077) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-827 -3074 P) +(-828 -3077 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-828 R |Var| |Expon| GR) +(-829 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-829) +(-830) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-830 S) +(-831 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-831) +(-832) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-832) +(-833) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-833) +(-834) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-834 R -3074) +(-835 R -3077) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-835 S A B) +(-836 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-836 S R -3074) +(-837 S R -3077) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-837 I) +(-838 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-838 S E) +(-839 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-839 S R L) +(-840 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-840 S E V R P) +(-841 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -789) (|devaluate| |#1|)))) -(-841 -2650) +((|HasCategory| |#3| (|%list| (QUOTE -790) (|devaluate| |#1|)))) +(-842 -2654) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-842 R -3074 -2650) +(-843 R -3077 -2654) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-843 S R Q) +(-844 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-844 S) +(-845 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-845 S R P) +(-846 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-846) +(-847) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-847 R) +(-848 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-954))) (-12 (|HasCategory| |#1| (QUOTE (-908))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) -(-848 |lv| R) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-955))) (-12 (|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-849 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-849 |TheField| |ThePols|) +(-850 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-748)))) -(-850 R) +((|HasCategory| |#1| (QUOTE (-749)))) +(-851 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| (-1075) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| (-1075) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-1075) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-1075) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| (-1075) (QUOTE (-548 (-467))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-851 R S) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| (-1080) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| (-1080) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-1080) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-1080) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| (-1080) (QUOTE (-549 (-468))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-852 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-852 |x| R) +(-853 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-853 S R E |VarSet|) +(-854 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-814))) (|HasAttribute| |#2| (QUOTE -3969)) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-789 (-323)))) (|HasCategory| |#2| (QUOTE (-789 (-323)))) (|HasCategory| |#4| (QUOTE (-789 (-478)))) (|HasCategory| |#2| (QUOTE (-789 (-478)))) (|HasCategory| |#4| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#4| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#4| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-548 (-467))))) -(-854 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-815))) (|HasAttribute| |#2| (QUOTE -3975)) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#4| (QUOTE (-790 (-324)))) (|HasCategory| |#2| (QUOTE (-790 (-324)))) (|HasCategory| |#4| (QUOTE (-790 (-479)))) (|HasCategory| |#2| (QUOTE (-790 (-479)))) (|HasCategory| |#4| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#4| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#4| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-549 (-468))))) +(-855 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) NIL -(-855 E V R P -3074) +(-856 E V R P -3077) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-856 E |Vars| R P S) +(-857 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-857 E V R P -3074) +(-858 E V R P -3077) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-385)))) -(-858) +((|HasCategory| |#3| (QUOTE (-386)))) +(-859) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-859) +(-860) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-860 R E) +(-861 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasAttribute| |#1| (QUOTE -3969))) -(-861 R L) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasAttribute| |#1| (QUOTE -3975))) +(-862 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-862 S) +(-863 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) -(-863 A B) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-864 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-864) +(-865) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-865 -3074) +(-866 -3077) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-866 I) +(-867 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-867) +(-868) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-868 A B) +(-869 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-3968 -12 (|has| |#2| (-406)) (|has| |#1| (-406)))) -((OR (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-749))))) (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-406)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-406)))) (-12 (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-658))))) (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-313)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-710))) (|HasCategory| |#2| (QUOTE (-710)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-406))) (|HasCategory| |#2| (QUOTE (-406)))) (-12 (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-658))))) (-12 (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-658)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-749))))) -(-869) +((-3974 -12 (|has| |#2| (-407)) (|has| |#1| (-407)))) +((OR (-12 (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-711)))) (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-750))))) (-12 (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-711)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-711)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-711)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#2| (QUOTE (-407)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#2| (QUOTE (-407)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-314)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-711))) (|HasCategory| |#2| (QUOTE (-711)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-407))) (|HasCategory| |#2| (QUOTE (-407)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-750))))) +(-870) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-870 T$) +(-871 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-871 T$) +(-872 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-872 S T$) +(-873 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-873) +(-874) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-874 S) +(-875 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-3971 . T) (-3972 . T)) +((-3977 . T) (-3978 . T)) NIL -(-875 R |polR|) +(-876 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-385)))) -(-876) +((|HasCategory| |#1| (QUOTE (-386)))) +(-877) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-877) +(-878) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-878 S |Coef| |Expon| |Var|) +(-879 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-879 |Coef| |Expon| |Var|) +(-880 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-880) +(-881) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-881 S R E |VarSet| P) +(-882 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-489)))) -(-882 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-490)))) +(-883 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-3971 . T)) +((-3977 . T)) NIL -(-883 R E V P) +(-884 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-254)))) (|HasCategory| |#1| (QUOTE (-385)))) -(-884 K) +((-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-254)))) (|HasCategory| |#1| (QUOTE (-386)))) +(-885 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-885 |VarSet| E RC P) +(-886 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-886 R) +(-887 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL -(-887 R1 R2) +(-888 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-888 R) +(-889 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-889 K) +(-890 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-890 R E OV PPR) +(-891 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-891 K R UP -3074) +(-892 K R UP -3077) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-892 R |Var| |Expon| |Dpoly|) +(-893 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-254))))) -(-893 |vl| |nv|) +(-894 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-894 R E V P TS) +(-895 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-895) +(-896) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-896 A S) +(-897 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-943 (-1075)))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-733))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-1052)))) -(-897 S) +((|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-944 (-1080)))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-927))) (|HasCategory| |#2| (QUOTE (-734))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-1056)))) +(-898 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-898 A B R S) +(-899 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-899 |n| K) +(-900 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-900) +(-901) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-901 S) +(-902 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-3971 . T) (-3972 . T)) +((-3977 . T) (-3978 . T)) NIL -(-902 R) +(-903 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-3964 |has| |#1| (-242)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-242))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-242))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (|%list| (QUOTE -447) (QUOTE (-1075)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-477)))) -(-903 S R) +((-3970 |has| |#1| (-242)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-242))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-242))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (|%list| (QUOTE -448) (QUOTE (-1080)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -238) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-478)))) +(-904 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-242)))) -(-904 R) +((|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-242)))) +(-905 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-3964 |has| |#1| (-242)) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 |has| |#1| (-242)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-905 QR R QS S) +(-906 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-906 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) (-907 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-908 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-908) +(-909) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-909 -3074 UP UPUP |radicnd| |n|) +(-910 -3077 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-3964 |has| (-343 |#2|) (-308)) (-3969 |has| (-343 |#2|) (-308)) (-3963 |has| (-343 |#2|) (-308)) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-343 |#2|) (QUOTE (-116))) (|HasCategory| (-343 |#2|) (QUOTE (-118))) (|HasCategory| (-343 |#2|) (QUOTE (-295))) (OR (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-313))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-187))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (|HasCategory| (-343 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-802 (-1075))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-295))) (|HasCategory| (-343 |#2|) (QUOTE (-802 (-1075)))))) (OR (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-802 (-1075))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-804 (-1075)))))) (|HasCategory| (-343 |#2|) (QUOTE (-575 (-478)))) (OR (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-943 (-343 (-478)))))) (|HasCategory| (-343 |#2|) (QUOTE (-943 (-343 (-478))))) (|HasCategory| (-343 |#2|) (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-187))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-804 (-1075))))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-188))) (|HasCategory| (-343 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-343 |#2|) (QUOTE (-308))) (|HasCategory| (-343 |#2|) (QUOTE (-802 (-1075)))))) -(-910 |bb|) +((-3970 |has| (-344 |#2|) (-308)) (-3975 |has| (-344 |#2|) (-308)) (-3969 |has| (-344 |#2|) (-308)) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-344 |#2|) (QUOTE (-116))) (|HasCategory| (-344 |#2|) (QUOTE (-118))) (|HasCategory| (-344 |#2|) (QUOTE (-295))) (OR (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-295)))) (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-314))) (OR (-12 (|HasCategory| (-344 |#2|) (QUOTE (-188))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (|HasCategory| (-344 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-344 |#2|) (QUOTE (-188))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-187))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (|HasCategory| (-344 |#2|) (QUOTE (-295)))) (OR (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-803 (-1080))))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-295))) (|HasCategory| (-344 |#2|) (QUOTE (-803 (-1080)))))) (OR (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-803 (-1080))))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-805 (-1080)))))) (|HasCategory| (-344 |#2|) (QUOTE (-576 (-479)))) (OR (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-944 (-344 (-479)))))) (|HasCategory| (-344 |#2|) (QUOTE (-944 (-344 (-479))))) (|HasCategory| (-344 |#2|) (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-314))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-187))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-805 (-1080))))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-188))) (|HasCategory| (-344 |#2|) (QUOTE (-308)))) (-12 (|HasCategory| (-344 |#2|) (QUOTE (-308))) (|HasCategory| (-344 |#2|) (QUOTE (-803 (-1080)))))) +(-911 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-478) (QUOTE (-814))) (|HasCategory| (-478) (QUOTE (-943 (-1075)))) (|HasCategory| (-478) (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-118))) (|HasCategory| (-478) (QUOTE (-548 (-467)))) (|HasCategory| (-478) (QUOTE (-926))) (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749))) (OR (|HasCategory| (-478) (QUOTE (-733))) (|HasCategory| (-478) (QUOTE (-749)))) (|HasCategory| (-478) (QUOTE (-943 (-478)))) (|HasCategory| (-478) (QUOTE (-1052))) (|HasCategory| (-478) (QUOTE (-789 (-323)))) (|HasCategory| (-478) (QUOTE (-789 (-478)))) (|HasCategory| (-478) (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-478) (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-478) (QUOTE (-187))) (|HasCategory| (-478) (QUOTE (-804 (-1075)))) (|HasCategory| (-478) (QUOTE (-188))) (|HasCategory| (-478) (QUOTE (-802 (-1075)))) (|HasCategory| (-478) (QUOTE (-447 (-1075) (-478)))) (|HasCategory| (-478) (QUOTE (-256 (-478)))) (|HasCategory| (-478) (QUOTE (-238 (-478) (-478)))) (|HasCategory| (-478) (QUOTE (-254))) (|HasCategory| (-478) (QUOTE (-477))) (|HasCategory| (-478) (QUOTE (-575 (-478)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-478) (QUOTE (-814)))) (|HasCategory| (-478) (QUOTE (-116))))) -(-911) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-479) (QUOTE (-815))) (|HasCategory| (-479) (QUOTE (-944 (-1080)))) (|HasCategory| (-479) (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-118))) (|HasCategory| (-479) (QUOTE (-549 (-468)))) (|HasCategory| (-479) (QUOTE (-927))) (|HasCategory| (-479) (QUOTE (-734))) (|HasCategory| (-479) (QUOTE (-750))) (OR (|HasCategory| (-479) (QUOTE (-734))) (|HasCategory| (-479) (QUOTE (-750)))) (|HasCategory| (-479) (QUOTE (-944 (-479)))) (|HasCategory| (-479) (QUOTE (-1056))) (|HasCategory| (-479) (QUOTE (-790 (-324)))) (|HasCategory| (-479) (QUOTE (-790 (-479)))) (|HasCategory| (-479) (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-479) (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-479) (QUOTE (-187))) (|HasCategory| (-479) (QUOTE (-805 (-1080)))) (|HasCategory| (-479) (QUOTE (-188))) (|HasCategory| (-479) (QUOTE (-803 (-1080)))) (|HasCategory| (-479) (QUOTE (-448 (-1080) (-479)))) (|HasCategory| (-479) (QUOTE (-256 (-479)))) (|HasCategory| (-479) (QUOTE (-238 (-479) (-479)))) (|HasCategory| (-479) (QUOTE (-254))) (|HasCategory| (-479) (QUOTE (-478))) (|HasCategory| (-479) (QUOTE (-576 (-479)))) (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-815)))) (OR (-12 (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-479) (QUOTE (-815)))) (|HasCategory| (-479) (QUOTE (-116))))) +(-912) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-912) +(-913) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-913 RP) +(-914 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-914 S) +(-915 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-915 A S) +(-916 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -3972)) (|HasCategory| |#2| (QUOTE (-1003)))) -(-916 S) +((|HasAttribute| |#1| (QUOTE -3978)) (|HasCategory| |#2| (QUOTE (-1006)))) +(-917 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-917 S) +(-918 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-918) +(-919) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-3964 . T) (-3969 . T) (-3963 . T) (-3966 . T) (-3965 . T) ((-3973 "*") . T) (-3968 . T)) +((-3970 . T) (-3975 . T) (-3969 . T) (-3972 . T) (-3971 . T) ((-3979 "*") . T) (-3974 . T)) NIL -(-919 R -3074) +(-920 R -3077) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-920 R -3074) +(-921 R -3077) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-921 -3074 UP) +(-922 -3077 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-922 -3074 UP) +(-923 -3077 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-923 S) +(-924 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-924 F1 UP UPUP R F2) +(-925 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-925) +(-926) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-926) +(-927) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-927 |Pol|) +(-928 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-928 |Pol|) +(-929 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-929) +(-930) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-930 |TheField|) +(-931 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-3964 . T) (-3969 . T) (-3963 . T) (-3966 . T) (-3965 . T) ((-3973 "*") . T) (-3968 . T)) -((OR (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| (-343 (-478)) (QUOTE (-943 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| (-343 (-478)) (QUOTE (-943 (-343 (-478))))) (|HasCategory| (-343 (-478)) (QUOTE (-943 (-478))))) -(-931 -3074 L) +((-3970 . T) (-3975 . T) (-3969 . T) (-3972 . T) (-3971 . T) ((-3979 "*") . T) (-3974 . T)) +((OR (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| (-344 (-479)) (QUOTE (-944 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| (-344 (-479)) (QUOTE (-944 (-344 (-479))))) (|HasCategory| (-344 (-479)) (QUOTE (-944 (-479))))) +(-932 -3077 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-932 S) +(-933 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}."))) NIL NIL -(-933 R E V P) +(-934 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3972 . T) (-3971 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-548 (-467)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#4| (QUOTE (-547 (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-934) +((-3978 . T) (-3977 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-549 (-468)))) (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-548 (-766)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-935) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-935 R) +(-936 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-3973 "*")))) -(-936 R) +((|HasAttribute| |#1| (QUOTE (-3979 "*")))) +(-937 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-254)))) -(-937 S) +((-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-314)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-254)))) +(-938 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-938 S) +(-939 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-939 S) +(-940 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-940 -3074 |Expon| |VarSet| |FPol| |LFPol|) +(-941 -3077 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-941) +(-942) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-942 A S) +(-943 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-943 S) +(-944 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-944 Q R) +(-945 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-945 R) +(-946 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-946) +(-947) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-947 UP) +(-948 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-948 R) +(-949 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-949 T$) +(-950 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-950 T$) +(-951 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-951 R |ls|) +(-952 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-3972 . T) (-3971 . T)) -((-12 (|HasCategory| (-696 |#1| (-766 |#2|)) (QUOTE (-1003))) (|HasCategory| (-696 |#1| (-766 |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -696) (|devaluate| |#1|) (|%list| (QUOTE -766) (|devaluate| |#2|)))))) (|HasCategory| (-696 |#1| (-766 |#2|)) (QUOTE (-548 (-467)))) (|HasCategory| (-696 |#1| (-766 |#2|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| (-766 |#2|) (QUOTE (-313))) (|HasCategory| (-696 |#1| (-766 |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| (-696 |#1| (-766 |#2|)) (QUOTE (-72)))) -(-952) +((-3978 . T) (-3977 . T)) +((-12 (|HasCategory| (-697 |#1| (-767 |#2|)) (QUOTE (-1006))) (|HasCategory| (-697 |#1| (-767 |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -697) (|devaluate| |#1|) (|%list| (QUOTE -767) (|devaluate| |#2|)))))) (|HasCategory| (-697 |#1| (-767 |#2|)) (QUOTE (-549 (-468)))) (|HasCategory| (-697 |#1| (-767 |#2|)) (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| (-767 |#2|) (QUOTE (-314))) (|HasCategory| (-697 |#1| (-767 |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| (-697 |#1| (-767 |#2|)) (QUOTE (-72)))) +(-953) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-953 S) +(-954 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-954) +(-955) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-3968 . T)) +((-3974 . T)) NIL -(-955 |xx| -3074) +(-956 |xx| -3077) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-956 S) +(-957 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-957 S |m| |n| R |Row| |Col|) +(-958 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-254))) (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-489))) (|HasCategory| |#4| (QUOTE (-144)))) -(-958 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-254))) (|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-490))) (|HasCategory| |#4| (QUOTE (-144)))) +(-959 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-3971 . T) (-3966 . T) (-3965 . T)) +((-3977 . T) (-3972 . T) (-3971 . T)) NIL -(-959 |m| |n| R) +(-960 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-3971 . T) (-3966 . T) (-3965 . T)) -((|HasCategory| |#3| (QUOTE (-144))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308)))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-254))) (|HasCategory| |#3| (QUOTE (-489))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-547 (-765))))) -(-960 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-3977 . T) (-3972 . T) (-3971 . T)) +((|HasCategory| |#3| (QUOTE (-144))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308)))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (QUOTE (-254))) (|HasCategory| |#3| (QUOTE (-490))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-548 (-766))))) +(-961 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-961 R) +(-962 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-962) +(-963) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-963 S T$) +(-964 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1003)))) -(-964 S) +((|HasCategory| |#1| (QUOTE (-1006)))) +(-965 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-965) +(-966) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-966 |TheField| |ThePolDom|) +(-967 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-967) +(-968) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-3959 . T) (-3963 . T) (-3958 . T) (-3969 . T) (-3970 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3965 . T) (-3969 . T) (-3964 . T) (-3975 . T) (-3976 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-968 S R E V) +(-969 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (|HasCategory| |#2| (QUOTE (-477))) (|HasCategory| |#2| (QUOTE (-38 (-478)))) (|HasCategory| |#2| (QUOTE (-897 (-478)))) (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#4| (QUOTE (-548 (-1075))))) -(-969 R E V) +((|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-38 (-479)))) (|HasCategory| |#2| (QUOTE (-898 (-479)))) (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#4| (QUOTE (-549 (-1080))))) +(-970 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) NIL -(-970) +(-971) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-971 S |TheField| |ThePols|) +(-972 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-972 |TheField| |ThePols|) +(-973 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-973 R E V P TS) +(-974 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-974 S R E V P) +(-975 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-975 R E V P) +(-976 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL -(-976 R E V P TS) +(-977 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-977) +(-978) +((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) +NIL +NIL +(-979) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-978 |Base| R -3074) +(-980 |Base| R -3077) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-979 |f|) +(-981 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-980 |Base| R -3074) +(-982 |Base| R -3077) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-981 R |ls|) +(-983 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-982 R UP M) +(-984 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-3964 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-295))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-313))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-295)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-804 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))))) -(-983 UP SAE UPA) +((-3970 |has| |#1| (-308)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-295))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-314))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-295)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-295))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-295)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-805 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-308)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))))) +(-985 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-984 UP SAE UPA) +(-986 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-985) +(-987) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-986) +(-988) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-987 S) +(-989 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-988) +(-990) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-989 R) +(-991 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-990 R) +(-992 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| (-991 (-1075)) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| (-991 (-1075)) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-991 (-1075)) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-991 (-1075)) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| (-991 (-1075)) (QUOTE (-548 (-467))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-991 S) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| (-993 (-1080)) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| (-993 (-1080)) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-993 (-1080)) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-993 (-1080)) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| (-993 (-1080)) (QUOTE (-549 (-468))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-188))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-993 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-992 S) +(-994 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1003)))) -(-993 R S) +((|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1006)))) +(-995 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-748)))) -(-994) +((|HasCategory| |#1| (QUOTE (-749)))) +(-996) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-995 S) +(-997 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-992 |#1|) (QUOTE (-1003)))) -(-996 R S) +((|HasCategory| (-994 |#1|) (QUOTE (-1006)))) +(-998 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-997 S) +(-999 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-998 S L) +(-1000 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-999 S) +(-1001) +((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) +NIL +NIL +(-1002 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-3971 . T) (-3961 . T) (-3972 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#1| (QUOTE (-313))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) -(-1000 A S) +((-3977 . T) (-3967 . T) (-3978 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#1| (QUOTE (-314))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-1003 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1001 S) +(-1004 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-3961 . T)) +((-3967 . T)) NIL -(-1002 S) +(-1005 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1003) +(-1006) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1004 |m| |n|) +(-1007 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1005) +(-1008) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1006 |Str| |Sym| |Int| |Flt| |Expr|) +(-1009 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1007 |Str| |Sym| |Int| |Flt| |Expr|) +(-1010 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1008 R E V P TS) +(-1011 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1009 R E V P TS) +(-1012 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1010 R E V P) +(-1013 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL -(-1011) +(-1014) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1012 S) +(-1015 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1013) +(-1016) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1014 |dimtot| |dim1| S) +(-1017 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3965 |has| |#3| (-954)) (-3966 |has| |#3| (-954)) (-3968 |has| |#3| (-6 -3968)) (-3971 . T)) -((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-547 (-765)))) (|HasCategory| |#3| (QUOTE (-308))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-710))) (OR (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749)))) (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-313))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-575 (-478)))) (|HasCategory| |#3| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#3| (QUOTE (-575 (-478)))) (|HasCategory| |#3| (QUOTE (-954))))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-1003)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954))) (|HasCategory| |#3| (QUOTE (-1003)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (|HasCategory| |#3| (QUOTE (-188))) (OR (|HasCategory| |#3| (QUOTE (-188))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-804 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (|HasCategory| |#3| (QUOTE (-802 (-1075))))) (|HasCategory| |#3| (QUOTE (-1003))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-943 (-343 (-478)))))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#3| (QUOTE (-1003))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-1003)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-710))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-749))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-1003)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-658))) (|HasCategory| |#3| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-954))))) (|HasCategory| (-478) (QUOTE (-749))) (-12 (|HasCategory| |#3| (QUOTE (-575 (-478)))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-804 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-1003)))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-478)))) (|HasCategory| |#3| (QUOTE (-1003)))) (-12 (|HasCategory| |#3| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#3| (QUOTE (-1003)))) (|HasAttribute| |#3| (QUOTE -3968)) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-954)))) (-12 (|HasCategory| |#3| (QUOTE (-802 (-1075)))) (|HasCategory| |#3| (QUOTE (-954)))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) -(-1015 R |x|) +((-3971 |has| |#3| (-955)) (-3972 |has| |#3| (-955)) (-3974 |has| |#3| (-6 -3974)) (-3977 . T)) +((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-955))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-548 (-766)))) (|HasCategory| |#3| (QUOTE (-308))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-308)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-955))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-711))) (OR (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-750)))) (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-314))) (OR (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-576 (-479)))) (|HasCategory| |#3| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-576 (-479)))) (|HasCategory| |#3| (QUOTE (-955))))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955))) (|HasCategory| |#3| (QUOTE (-1006)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955))) (|HasCategory| |#3| (QUOTE (-1006)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (|HasCategory| |#3| (QUOTE (-188))) (OR (|HasCategory| |#3| (QUOTE (-188))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-955))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-805 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (|HasCategory| |#3| (QUOTE (-803 (-1080))))) (|HasCategory| |#3| (QUOTE (-1006))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-944 (-344 (-479)))))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#3| (QUOTE (-1006))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-1006)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-711))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-750))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-1006)))) (-12 (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-955))))) (|HasCategory| (-479) (QUOTE (-750))) (-12 (|HasCategory| |#3| (QUOTE (-576 (-479)))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-187))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-805 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-1006)))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-479)))) (|HasCategory| |#3| (QUOTE (-1006)))) (-12 (|HasCategory| |#3| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#3| (QUOTE (-1006)))) (|HasAttribute| |#3| (QUOTE -3974)) (-12 (|HasCategory| |#3| (QUOTE (-188))) (|HasCategory| |#3| (QUOTE (-955)))) (-12 (|HasCategory| |#3| (QUOTE (-803 (-1080)))) (|HasCategory| |#3| (QUOTE (-955)))) (|HasCategory| |#3| (QUOTE (-144))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1006))) (|HasCategory| |#3| (|%list| (QUOTE -256) (|devaluate| |#3|))))) +(-1018 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-385)))) -(-1016) +((|HasCategory| |#1| (QUOTE (-386)))) +(-1019) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1017 R -3074) +(-1020) +((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) +NIL +NIL +(-1021 R -3077) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1018 R) +(-1022 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1019) +(-1023) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1020) +(-1024) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-3959 . T) (-3963 . T) (-3958 . T) (-3969 . T) (-3970 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3965 . T) (-3969 . T) (-3964 . T) (-3975 . T) (-3976 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1021 S) +(-1025 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-3971 . T) (-3972 . T)) +((-3977 . T) (-3978 . T)) NIL -(-1022 S |ndim| R |Row| |Col|) +(-1026 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-308))) (|HasAttribute| |#3| (QUOTE (-3973 "*"))) (|HasCategory| |#3| (QUOTE (-144)))) -(-1023 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-308))) (|HasAttribute| |#3| (QUOTE (-3979 "*"))) (|HasCategory| |#3| (QUOTE (-144)))) +(-1027 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-3971 . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3977 . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1024 R |Row| |Col| M) +(-1028 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1025 R |VarSet|) +(-1029 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| |#2| (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| |#2| (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-548 (-467))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-1026 |Coef| |Var| SMP) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| |#2| (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| |#2| (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-549 (-468))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-1030 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-308)))) -(-1027 R E V P) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-308)))) +(-1031 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL -(-1028 UP -3074) +(-1032 UP -3077) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1029 R) +(-1033 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1030 R) +(-1034 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1031 R) +(-1035 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1032 S A) +(-1036 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-749)))) -(-1033 R) +((|HasCategory| |#1| (QUOTE (-750)))) +(-1037 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1034 R) +(-1038 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1035) +(-1039) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1036) +(-1040) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1037) +(-1041) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1038) +(-1042) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1039) +(-1043) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1040 V C) +(-1044 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1041 V C) +(-1045 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| (-1040 |#1| |#2|) (|%list| (QUOTE -256) (|%list| (QUOTE -1040) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1040 |#1| |#2|) (QUOTE (-1003)))) (|HasCategory| (-1040 |#1| |#2|) (QUOTE (-1003))) (OR (|HasCategory| (-1040 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1040 |#1| |#2|) (QUOTE (-1003)))) (|HasCategory| (-1040 |#1| |#2|) (QUOTE (-547 (-765)))) (|HasCategory| (-1040 |#1| |#2|) (QUOTE (-72)))) -(-1042 |ndim| R) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| (-1044 |#1| |#2|) (|%list| (QUOTE -256) (|%list| (QUOTE -1044) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1044 |#1| |#2|) (QUOTE (-1006)))) (|HasCategory| (-1044 |#1| |#2|) (QUOTE (-1006))) (OR (|HasCategory| (-1044 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1044 |#1| |#2|) (QUOTE (-1006)))) (|HasCategory| (-1044 |#1| |#2|) (QUOTE (-548 (-766)))) (|HasCategory| (-1044 |#1| |#2|) (QUOTE (-72)))) +(-1046 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-3968 . T) (-3960 |has| |#2| (-6 (-3973 "*"))) (-3971 . T) (-3965 . T) (-3966 . T)) -((|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasAttribute| |#2| (QUOTE (-3973 #1="*"))) (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasAttribute| |#2| (QUOTE (-3973 #1#))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-144)))) -(-1043 S) +((-3974 . T) (-3966 |has| |#2| (-6 (-3979 "*"))) (-3977 . T) (-3971 . T) (-3972 . T)) +((|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-187))) (|HasAttribute| |#2| (QUOTE (-3979 #1="*"))) (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-308))) (OR (|HasAttribute| |#2| (QUOTE (-3979 #1#))) (|HasCategory| |#2| (QUOTE (-188))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-144)))) +(-1047 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1044) +(-1048) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL -(-1045 R E V P TS) +(-1049 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1046 R E V P) +(-1050 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3972 . T) (-3971 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-548 (-467)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#4| (QUOTE (-547 (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1047) +((-3978 . T) (-3977 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-549 (-468)))) (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-548 (-766)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1051) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1048 S) +(-1052 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1049 A S) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1053 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1050 S) +(-1054 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1051 |Key| |Ent| |dent|) +(-1055 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3972 . T)) -((-12 (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3836) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-547 (-765))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) -(-1052) +((-3978 . T)) +((-12 (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3842) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-548 (-766))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-468)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) +(-1056) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1053) +(-1057) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1054 |Coef|) +(-1058 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1055 S) +(-1059 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-3972 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1056 S) +((-3978 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1060 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1057 A B) +(-1061 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1058 A B C) +(-1062 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1059) +(-1063) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-749)))) (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-1003))))) (|HasCategory| (-115) (QUOTE (-547 (-765)))) (|HasCategory| (-115) (QUOTE (-548 (-467)))) (OR (|HasCategory| (-115) (QUOTE (-749))) (|HasCategory| (-115) (QUOTE (-1003)))) (|HasCategory| (-115) (QUOTE (-749))) (OR (|HasCategory| (-115) (QUOTE (-72))) (|HasCategory| (-115) (QUOTE (-749))) (|HasCategory| (-115) (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| (-115) (QUOTE (-1003))) (|HasCategory| (-115) (QUOTE (-72))) (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-1003))))) -(-1060 |Entry|) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-750)))) (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-1006))))) (|HasCategory| (-115) (QUOTE (-548 (-766)))) (|HasCategory| (-115) (QUOTE (-549 (-468)))) (OR (|HasCategory| (-115) (QUOTE (-750))) (|HasCategory| (-115) (QUOTE (-1006)))) (|HasCategory| (-115) (QUOTE (-750))) (OR (|HasCategory| (-115) (QUOTE (-72))) (|HasCategory| (-115) (QUOTE (-750))) (|HasCategory| (-115) (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| (-115) (QUOTE (-1006))) (|HasCategory| (-115) (QUOTE (-72))) (-12 (|HasCategory| (-115) (QUOTE (-256 (-115)))) (|HasCategory| (-115) (QUOTE (-1006))))) +(-1064 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (QUOTE (|:| -3836 (-1059))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-1003)))) (OR (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-1003)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-1003)))) (OR (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-547 (-765))))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-548 (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-1003))) (|HasCategory| (-1059) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (QUOTE (-72)))) -(-1061 A) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (QUOTE (|:| -3842 (-1063))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-1006)))) (OR (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-1006)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-1006)))) (OR (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-548 (-766))))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-549 (-468)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-1006))) (|HasCategory| (-1063) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (QUOTE (-72)))) +(-1065 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478)))))) -(-1062 |Coef|) +((|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479)))))) +(-1066 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1063 |Coef|) +(-1067 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1064 R UP) +(-1068 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-254)))) -(-1065 |n| R) +(-1069 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1066 S1 S2) +(-1070 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1067 |Coef| |var| |cen|) +(-1071) +((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) +NIL +NIL +(-1072 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3973 "*") OR (-2542 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-733))) (|has| |#1| (-144)) (-2542 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-814)))) (-3964 OR (-2542 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-733))) (|has| |#1| (-489)) (-2542 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-814)))) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-804 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-187)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (|HasCategory| (-478) (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-943 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-548 (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-926)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-733)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-749))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-943 (-478))))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (|%list| (QUOTE -238) (|%list| (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (|%list| (QUOTE -256) (|%list| (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (|%list| (QUOTE -447) (QUOTE (-1075)) (|%list| (QUOTE -1074) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-789 (-323))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-254)))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-116))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-804 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-749)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-814)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-116)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1074 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-1068 R -3074) +(((-3979 "*") OR (-2547 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-734))) (|has| |#1| (-144)) (-2547 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-815)))) (-3970 OR (-2547 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-734))) (|has| |#1| (-490)) (-2547 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-815)))) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-805 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-187)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|))))) (|HasCategory| (-479) (QUOTE (-1016))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-944 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-549 (-468))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-927)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-734)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-750))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-944 (-479))))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-1056)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (|%list| (QUOTE -238) (|%list| (QUOTE -1079) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1079) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (|%list| (QUOTE -256) (|%list| (QUOTE -1079) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (|%list| (QUOTE -448) (QUOTE (-1080)) (|%list| (QUOTE -1079) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-790 (-324))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-479))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-254)))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-116))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-805 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-750)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-815)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-116)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1079 |#1| |#2| |#3|) (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-1073 R -3077) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1069 R) +(-1074 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1070 R) +(-1075 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3967 |has| |#1| (-308)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-323)))) (|HasCategory| (-985) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#1| (QUOTE (-789 (-478)))) (|HasCategory| (-985) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-985) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-985) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-548 (-467)))) (|HasCategory| (-985) (QUOTE (-548 (-467))))) (|HasCategory| |#1| (QUOTE (-575 (-478)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-814)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (|HasCategory| |#1| (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-804 (-1075)))) (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3969)) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-1071 R S) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3973 |has| |#1| (-308)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-324)))) (|HasCategory| (-987) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#1| (QUOTE (-790 (-479)))) (|HasCategory| (-987) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-987) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-987) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-549 (-468)))) (|HasCategory| (-987) (QUOTE (-549 (-468))))) (|HasCategory| |#1| (QUOTE (-576 (-479)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-815)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (|HasCategory| |#1| (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-1056))) (|HasCategory| |#1| (QUOTE (-805 (-1080)))) (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasCategory| |#1| (QUOTE (-187))) (|HasCategory| |#1| (QUOTE (-188))) (|HasAttribute| |#1| (QUOTE -3975)) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-1076 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1072 E OV R P) +(-1077 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1073 |Coef| |var| |cen|) +(-1078 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|))))))) -(-1074 |Coef| |var| |cen|) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|)))) (|HasCategory| (-344 (-479)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|))))))) +(-1079 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-687)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-687)) (|devaluate| |#1|)))) (|HasCategory| (-687) (QUOTE (-1013))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-687))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-687))))) (|HasCategory| |#1| (QUOTE (-308))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|))))))) -(-1075) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-688)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-688)) (|devaluate| |#1|)))) (|HasCategory| (-688) (QUOTE (-1016))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-688))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-688))))) (|HasCategory| |#1| (QUOTE (-308))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|))))))) +(-1080) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1076 R) +(-1081 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1077 R) +(-1082 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-6 -3969)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#1| (QUOTE (-943 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-943 (-478)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-385))) (-12 (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| (-877) (QUOTE (-102)))) (|HasAttribute| |#1| (QUOTE -3969))) -(-1078) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-6 -3975)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#1| (QUOTE (-944 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-944 (-479)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-386))) (-12 (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| (-878) (QUOTE (-102)))) (|HasAttribute| |#1| (QUOTE -3975))) +(-1083) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1079) +(-1084) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1080) +(-1085) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1081 N) +(-1086 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1082 N) +(-1087 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1083) +(-1088) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1084 R) +(-1089 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1085) +(-1090) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1086 S) +(-1091 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1087 |Key| |Entry|) +(-1092 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-3971 . T) (-3972 . T)) -((-12 (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3836) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003)))) (OR (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| |#2| (QUOTE (-547 (-765))))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-467)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#2| (QUOTE (-1003))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-547 (-765)))) (|HasCategory| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) -(-1088 S) +((-3977 . T) (-3978 . T)) +((-12 (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -256) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3842) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006)))) (OR (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| |#2| (QUOTE (-548 (-766))))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-549 (-468)))) (-12 (|HasCategory| |#2| (QUOTE (-1006))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-1006))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-548 (-766)))) (|HasCategory| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) +(-1093 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1089 S) +(-1094 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1090 R) +(-1095 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1091 S |Key| |Entry|) +(-1096 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1092 |Key| |Entry|) +(-1097 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-3972 . T)) +((-3978 . T)) NIL -(-1093 |Key| |Entry|) +(-1098 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1094) +(-1099) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1095 S) +(-1100 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1096) +(-1101) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1097 R) +(-1102 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1098) +(-1103) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1099 S) +(-1104 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1100) +(-1105) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1101 S) +(-1106 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-3972 . T) (-3971 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1003))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-72)))) -(-1102 S) +((-3978 . T) (-3977 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1006))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-72)))) +(-1107 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1103) +(-1108) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1104 R -3074) +(-1109 R -3077) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1105 R |Row| |Col| M) +(-1110 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1106 R -3074) +(-1111 R -3077) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -789) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -548) (|%list| (QUOTE -793) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -789) (|devaluate| |#1|))))) -(-1107 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -549) (|%list| (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -790) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -549) (|%list| (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -790) (|devaluate| |#1|))))) +(-1112 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-308)))) -(-1108 S R E V P) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-116))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-308)))) +(-1113 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-313)))) -(-1109 R E V P) +((|HasCategory| |#4| (QUOTE (-314)))) +(-1114 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL -(-1110 |Curve|) +(-1115 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1111) +(-1116) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1112 S) +(-1117 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-547 (-765))))) -(-1113 -3074) +((|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-548 (-766))))) +(-1118 -3077) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1114) +(-1119) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1115) +(-1120) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1116 S) +(-1121 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-749)))) -(-1117) +((|HasCategory| |#1| (QUOTE (-750)))) +(-1122) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1118 S) +(-1123 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1119) +(-1124) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1120) +(-1125) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1121) +(-1126) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1122) +(-1127) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1123) +(-1128) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1124 |Coef| |var| |cen|) +(-1129 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-3973 "*") OR (-2542 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-733))) (|has| |#1| (-144)) (-2542 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-814)))) (-3964 OR (-2542 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-733))) (|has| |#1| (-489)) (-2542 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-814)))) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-804 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-187)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|))))) (|HasCategory| (-478) (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-943 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-548 (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-926)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-733)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-749))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-943 (-478))))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (|%list| (QUOTE -238) (|%list| (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (|%list| (QUOTE -256) (|%list| (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (|%list| (QUOTE -447) (QUOTE (-1075)) (|%list| (QUOTE -1154) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-789 (-323))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-254)))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-814))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-116))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-733)))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-733)))) (|HasCategory| |#1| (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-804 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-749)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-814)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-116)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1154 |#1| |#2| |#3|) (QUOTE (-814)))) (|HasCategory| |#1| (QUOTE (-116))))) -(-1125 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3979 "*") OR (-2547 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-734))) (|has| |#1| (-144)) (-2547 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-815)))) (-3970 OR (-2547 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-734))) (|has| |#1| (-490)) (-2547 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-815)))) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-805 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-188)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-187)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|))))) (|HasCategory| (-479) (QUOTE (-1016))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-944 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-549 (-468))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-927)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-734)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-750))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-944 (-479))))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-1056)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (|%list| (QUOTE -238) (|%list| (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (|%list| (QUOTE -256) (|%list| (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (|%list| (QUOTE -448) (QUOTE (-1080)) (|%list| (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-790 (-324))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-479))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-254)))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-116))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-734)))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-734)))) (|HasCategory| |#1| (QUOTE (-144)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-805 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-750)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-116)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| $ (QUOTE (-116))) (|HasCategory| (-1159 |#1| |#2| |#3|) (QUOTE (-815)))) (|HasCategory| |#1| (QUOTE (-116))))) +(-1130 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1126 |Coef|) +(-1131 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1127 S |Coef| UTS) +(-1132 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-308)))) -(-1128 |Coef| UTS) +(-1133 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1129 |Coef| UTS) +(-1134 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-116))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-116))))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-802 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-804 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-188))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-187))))) (|HasCategory| (-478) (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548 (-467))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-926)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-733)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-733)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-749))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-943 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -447) (QUOTE (-1075)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-575 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-789 (-323))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-478))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-749)))) (|HasCategory| |#2| (QUOTE (-814))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-477)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-254)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-116))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-187))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-804 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-478)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-804 (-1075))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-116)))))) -(-1130 ZP) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (|HasCategory| |#1| (QUOTE (-116))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-116))))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-803 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-805 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-188))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-188)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-187))))) (|HasCategory| (-479) (QUOTE (-1016))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-308))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-549 (-468))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-927)))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-734)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-734)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-750))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-944 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1056)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -238) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -256) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (|%list| (QUOTE -448) (QUOTE (-1080)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-576 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-790 (-324))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-479))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-750)))) (|HasCategory| |#2| (QUOTE (-815))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-254)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-116))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-187))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-805 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-479)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-805 (-1080))))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-187)))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#1| (QUOTE (-116))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-116)))))) +(-1135 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1131 S) +(-1136 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1003)))) -(-1132 R S) +((|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1006)))) +(-1137 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-748)))) -(-1133 |x| R) +((|HasCategory| |#1| (QUOTE (-749)))) +(-1138 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-3973 "*") |has| |#2| (-144)) (-3964 |has| |#2| (-489)) (-3967 |has| |#2| (-308)) (-3969 |has| |#2| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-489)))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-323)))) (|HasCategory| (-985) (QUOTE (-789 (-323))))) (-12 (|HasCategory| |#2| (QUOTE (-789 (-478)))) (|HasCategory| (-985) (QUOTE (-789 (-478))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-323))))) (|HasCategory| (-985) (QUOTE (-548 (-793 (-323)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-793 (-478))))) (|HasCategory| (-985) (QUOTE (-548 (-793 (-478)))))) (-12 (|HasCategory| |#2| (QUOTE (-548 (-467)))) (|HasCategory| (-985) (QUOTE (-548 (-467))))) (|HasCategory| |#2| (QUOTE (-575 (-478)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-478)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478)))))) (|HasCategory| |#2| (QUOTE (-943 (-343 (-478))))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-814)))) (OR (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-814)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-804 (-1075)))) (|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-188))) (|HasAttribute| |#2| (QUOTE -3969)) (|HasCategory| |#2| (QUOTE (-385))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) -(-1134 |x| R |y| S) +(((-3979 "*") |has| |#2| (-144)) (-3970 |has| |#2| (-490)) (-3973 |has| |#2| (-308)) (-3975 |has| |#2| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-144))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-490)))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-324)))) (|HasCategory| (-987) (QUOTE (-790 (-324))))) (-12 (|HasCategory| |#2| (QUOTE (-790 (-479)))) (|HasCategory| (-987) (QUOTE (-790 (-479))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-324))))) (|HasCategory| (-987) (QUOTE (-549 (-794 (-324)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-794 (-479))))) (|HasCategory| (-987) (QUOTE (-549 (-794 (-479)))))) (-12 (|HasCategory| |#2| (QUOTE (-549 (-468)))) (|HasCategory| (-987) (QUOTE (-549 (-468))))) (|HasCategory| |#2| (QUOTE (-576 (-479)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-479)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479)))))) (|HasCategory| |#2| (QUOTE (-944 (-344 (-479))))) (OR (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-815)))) (OR (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-815)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1056))) (|HasCategory| |#2| (QUOTE (-805 (-1080)))) (|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasCategory| |#2| (QUOTE (-187))) (|HasCategory| |#2| (QUOTE (-188))) (|HasAttribute| |#2| (QUOTE -3975)) (|HasCategory| |#2| (QUOTE (-386))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| $ (QUOTE (-116)))) (|HasCategory| |#2| (QUOTE (-116))))) +(-1139 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1135 R Q UP) +(-1140 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1136 R UP) +(-1141 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1137 R UP) +(-1142 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1138 R U) +(-1143 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1139 S R) +(-1144 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-385))) (|HasCategory| |#2| (QUOTE (-489))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-1052)))) -(-1140 R) +((|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-386))) (|HasCategory| |#2| (QUOTE (-490))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-1056)))) +(-1145 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3967 |has| |#1| (-308)) (-3969 |has| |#1| (-6 -3969)) (-3966 . T) (-3965 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3973 |has| |#1| (-308)) (-3975 |has| |#1| (-6 -3975)) (-3972 . T) (-3971 . T) (-3974 . T)) NIL -(-1141 R PR S PS) +(-1146 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1142 S |Coef| |Expon|) +(-1147 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-802 (-1075)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#2|) (QUOTE (-1075)))))) -(-1143 |Coef| |Expon|) +((|HasCategory| |#2| (QUOTE (-803 (-1080)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1016))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#2|) (QUOTE (-1080)))))) +(-1148 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1144 RC P) +(-1149 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1145 |Coef| |var| |cen|) +(-1150 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|))))))) -(-1146 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|)))) (|HasCategory| (-344 (-479)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|))))))) +(-1151 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1147 |Coef|) +(-1152 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1148 S |Coef| ULS) +(-1153 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1149 |Coef| ULS) +(-1154 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1150 |Coef| ULS) +(-1155 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3969 |has| |#1| (-308)) (-3963 |has| |#1| (-308)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478))) (|devaluate| |#1|)))) (|HasCategory| (-343 (-478)) (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-489)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -343) (QUOTE (-478)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-343 (-478)))))) -(-1151 R FE |var| |cen|) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3975 |has| |#1| (-308)) (-3969 |has| |#1| (-308)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#1| (QUOTE (-144))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479))) (|devaluate| |#1|)))) (|HasCategory| (-344 (-479)) (QUOTE (-1016))) (|HasCategory| |#1| (QUOTE (-308))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (OR (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-490)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -344) (QUOTE (-479)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-344 (-479)))))) +(-1156 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-3973 "*") |has| (-1145 |#2| |#3| |#4|) (-144)) (-3964 |has| (-1145 |#2| |#3| |#4|) (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-38 (-343 (-478))))) (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-116))) (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-144))) (OR (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-38 (-343 (-478))))) (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-943 (-343 (-478)))))) (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-943 (-343 (-478))))) (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-943 (-478)))) (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-385))) (|HasCategory| (-1145 |#2| |#3| |#4|) (QUOTE (-489)))) -(-1152 A S) +(((-3979 "*") |has| (-1150 |#2| |#3| |#4|) (-144)) (-3970 |has| (-1150 |#2| |#3| |#4|) (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-38 (-344 (-479))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-116))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-144))) (OR (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-38 (-344 (-479))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-944 (-344 (-479)))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-944 (-344 (-479))))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-944 (-479)))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-386))) (|HasCategory| (-1150 |#2| |#3| |#4|) (QUOTE (-490)))) +(-1157 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -3972))) -(-1153 S) +((|HasAttribute| |#1| (QUOTE -3978))) +(-1158 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1154 |Coef| |var| |cen|) +(-1159 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-489))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-489)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-802 (-1075)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-687)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-687)) (|devaluate| |#1|)))) (|HasCategory| (-687) (QUOTE (-1013))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-687))))) (|HasSignature| |#1| (|%list| (QUOTE -3922) (|%list| (|devaluate| |#1|) (QUOTE (-1075)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-687))))) (|HasCategory| |#1| (QUOTE (-308))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#1| (QUOTE (-29 (-478)))) (|HasCategory| |#1| (QUOTE (-864))) (|HasCategory| |#1| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-343 (-478))))) (|HasSignature| |#1| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1075))))) (|HasSignature| |#1| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#1|))))))) -(-1155 |Coef1| |Coef2| UTS1 UTS2) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-490))) (OR (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-116))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-803 (-1080)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-688)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-688)) (|devaluate| |#1|)))) (|HasCategory| (-688) (QUOTE (-1016))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-688))))) (|HasSignature| |#1| (|%list| (QUOTE -3928) (|%list| (|devaluate| |#1|) (QUOTE (-1080)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-688))))) (|HasCategory| |#1| (QUOTE (-308))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#1| (QUOTE (-29 (-479)))) (|HasCategory| |#1| (QUOTE (-865))) (|HasCategory| |#1| (QUOTE (-1105)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-344 (-479))))) (|HasSignature| |#1| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1080))))) (|HasSignature| |#1| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#1|))))))) +(-1160 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1156 S |Coef|) +(-1161 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (QUOTE (-29 (-478)))) (|HasCategory| |#2| (QUOTE (-864))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasSignature| |#2| (|%list| (QUOTE -3063) (|%list| (|%list| (QUOTE -578) (QUOTE (-1075))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3788) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1075))))) (|HasCategory| |#2| (QUOTE (-38 (-343 (-478))))) (|HasCategory| |#2| (QUOTE (-308)))) -(-1157 |Coef|) +((|HasCategory| |#2| (QUOTE (-29 (-479)))) (|HasCategory| |#2| (QUOTE (-865))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasSignature| |#2| (|%list| (QUOTE -3066) (|%list| (|%list| (QUOTE -579) (QUOTE (-1080))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3794) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1080))))) (|HasCategory| |#2| (QUOTE (-38 (-344 (-479))))) (|HasCategory| |#2| (QUOTE (-308)))) +(-1162 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-3973 "*") |has| |#1| (-144)) (-3964 |has| |#1| (-489)) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") |has| |#1| (-144)) (-3970 |has| |#1| (-490)) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1158 |Coef| UTS) +(-1163 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1159 -3074 UP L UTS) +(-1164 -3077 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-489)))) -(-1160) +((|HasCategory| |#1| (QUOTE (-490)))) +(-1165) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1161 |sym|) +(-1166 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1162 S R) +(-1167 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-908))) (|HasCategory| |#2| (QUOTE (-954))) (|HasCategory| |#2| (QUOTE (-658))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1163 R) +((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1168 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-3972 . T) (-3971 . T)) +((-3978 . T) (-3977 . T)) NIL -(-1164 R) +(-1169 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-3972 . T) (-3971 . T)) -((OR (-12 (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-547 (-765)))) (|HasCategory| |#1| (QUOTE (-548 (-467)))) (OR (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-749))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-478) (QUOTE (-749))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-658))) (|HasCategory| |#1| (QUOTE (-954))) (-12 (|HasCategory| |#1| (QUOTE (-908))) (|HasCategory| |#1| (QUOTE (-954)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) -(-1165 A B) +((-3978 . T) (-3977 . T)) +((OR (-12 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-548 (-766)))) (|HasCategory| |#1| (QUOTE (-549 (-468)))) (OR (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| |#1| (QUOTE (-750))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006)))) (|HasCategory| (-479) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-955))) (-12 (|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-955)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1006))) (|HasCategory| |#1| (|%list| (QUOTE -256) (|devaluate| |#1|))))) +(-1170 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1166) +(-1171) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1167) +(-1172) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1168) +(-1173) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1169) +(-1174) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1170) +(-1175) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1171 A S) +(-1176 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1172 S) +(-1177 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-3966 . T) (-3965 . T)) +((-3972 . T) (-3971 . T)) NIL -(-1173 R) +(-1178 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1174 K R UP -3074) +(-1179 K R UP -3077) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1175) +(-1180) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1176) +(-1181) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1177 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1182 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-3966 |has| |#1| (-144)) (-3965 |has| |#1| (-144)) (-3968 . T)) +((-3972 |has| |#1| (-144)) (-3971 |has| |#1| (-144)) (-3974 . T)) ((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308)))) -(-1178 R E V P) +(-1183 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-3972 . T) (-3971 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-548 (-467)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-489))) (|HasCategory| |#3| (QUOTE (-313))) (|HasCategory| |#4| (QUOTE (-547 (-765)))) (|HasCategory| |#4| (QUOTE (-72)))) -(-1179 R) +((-3978 . T) (-3977 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#4| (|%list| (QUOTE -256) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-549 (-468)))) (|HasCategory| |#4| (QUOTE (-1006))) (|HasCategory| |#1| (QUOTE (-490))) (|HasCategory| |#3| (QUOTE (-314))) (|HasCategory| |#4| (QUOTE (-548 (-766)))) (|HasCategory| |#4| (QUOTE (-72)))) +(-1184 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-3965 . T) (-3966 . T) (-3968 . T)) +((-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1180 |vl| R) +(-1185 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-3968 . T) (-3964 |has| |#2| (-6 -3964)) (-3966 . T) (-3965 . T)) -((|HasCategory| |#2| (QUOTE (-144))) (|HasAttribute| |#2| (QUOTE -3964))) -(-1181 R |VarSet| XPOLY) +((-3974 . T) (-3970 |has| |#2| (-6 -3970)) (-3972 . T) (-3971 . T)) +((|HasCategory| |#2| (QUOTE (-144))) (|HasAttribute| |#2| (QUOTE -3970))) +(-1186 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1182 S -3074) +(-1187 S -3077) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-313))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118)))) -(-1183 -3074) +((|HasCategory| |#2| (QUOTE (-314))) (|HasCategory| |#2| (QUOTE (-116))) (|HasCategory| |#2| (QUOTE (-118)))) +(-1188 -3077) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-3963 . T) (-3969 . T) (-3964 . T) ((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +((-3969 . T) (-3975 . T) (-3970 . T) ((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL -(-1184 |vl| R) +(-1189 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-3964 |has| |#2| (-6 -3964)) (-3966 . T) (-3965 . T) (-3968 . T)) +((-3970 |has| |#2| (-6 -3970)) (-3972 . T) (-3971 . T) (-3974 . T)) NIL -(-1185 |VarSet| R) +(-1190 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-3964 |has| |#2| (-6 -3964)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-649 (-343 (-478))))) (|HasAttribute| |#2| (QUOTE -3964))) -(-1186 R) +((-3970 |has| |#2| (-6 -3970)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-650 (-344 (-479))))) (|HasAttribute| |#2| (QUOTE -3970))) +(-1191 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-3964 |has| |#1| (-6 -3964)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasAttribute| |#1| (QUOTE -3964))) -(-1187 |vl| R) +((-3970 |has| |#1| (-6 -3970)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasAttribute| |#1| (QUOTE -3970))) +(-1192 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-3964 |has| |#2| (-6 -3964)) (-3966 . T) (-3965 . T) (-3968 . T)) +((-3970 |has| |#2| (-6 -3970)) (-3972 . T) (-3971 . T) (-3974 . T)) NIL -(-1188 R E) +(-1193 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-3968 . T) (-3969 |has| |#1| (-6 -3969)) (-3964 |has| |#1| (-6 -3964)) (-3966 . T) (-3965 . T)) -((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3968)) (|HasAttribute| |#1| (QUOTE -3969)) (|HasAttribute| |#1| (QUOTE -3964))) -(-1189 |VarSet| R) +((-3974 . T) (-3975 |has| |#1| (-6 -3975)) (-3970 |has| |#1| (-6 -3970)) (-3972 . T) (-3971 . T)) +((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-308))) (|HasAttribute| |#1| (QUOTE -3974)) (|HasAttribute| |#1| (QUOTE -3975)) (|HasAttribute| |#1| (QUOTE -3970))) +(-1194 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-3964 |has| |#2| (-6 -3964)) (-3966 . T) (-3965 . T) (-3968 . T)) -((|HasCategory| |#2| (QUOTE (-144))) (|HasAttribute| |#2| (QUOTE -3964))) -(-1190) +((-3970 |has| |#2| (-6 -3970)) (-3972 . T) (-3971 . T) (-3974 . T)) +((|HasCategory| |#2| (QUOTE (-144))) (|HasAttribute| |#2| (QUOTE -3970))) +(-1195) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1191 A) +(-1196 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1192 R |ls| |ls2|) +(-1197 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1193 R) +(-1198 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1194 |p|) +(-1199 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-3973 "*") . T) (-3965 . T) (-3966 . T) (-3968 . T)) +(((-3979 "*") . T) (-3971 . T) (-3972 . T) (-3974 . T)) NIL NIL NIL @@ -4724,4 +4744,4 @@ NIL NIL NIL NIL -((-3 NIL 1960486 1960491 1960496 1960501) (-2 NIL 1960466 1960471 1960476 1960481) (-1 NIL 1960446 1960451 1960456 1960461) (0 NIL 1960426 1960431 1960436 1960441) (-1194 "ZMOD.spad" 1960235 1960248 1960364 1960421) (-1193 "ZLINDEP.spad" 1959333 1959344 1960225 1960230) (-1192 "ZDSOLVE.spad" 1949293 1949315 1959323 1959328) (-1191 "YSTREAM.spad" 1948788 1948799 1949283 1949288) (-1190 "YDIAGRAM.spad" 1948422 1948431 1948778 1948783) (-1189 "XRPOLY.spad" 1947642 1947662 1948278 1948347) (-1188 "XPR.spad" 1945437 1945450 1947360 1947459) (-1187 "XPOLYC.spad" 1944756 1944772 1945363 1945432) (-1186 "XPOLY.spad" 1944311 1944322 1944612 1944681) (-1185 "XPBWPOLY.spad" 1942782 1942802 1944117 1944186) (-1184 "XFALG.spad" 1939830 1939846 1942708 1942777) (-1183 "XF.spad" 1938293 1938308 1939732 1939825) (-1182 "XF.spad" 1936736 1936753 1938177 1938182) (-1181 "XEXPPKG.spad" 1935995 1936021 1936726 1936731) (-1180 "XDPOLY.spad" 1935609 1935625 1935851 1935920) (-1179 "XALG.spad" 1935277 1935288 1935565 1935604) (-1178 "WUTSET.spad" 1931280 1931297 1934911 1934938) (-1177 "WP.spad" 1930487 1930531 1931138 1931205) (-1176 "WHILEAST.spad" 1930285 1930294 1930477 1930482) (-1175 "WHEREAST.spad" 1929956 1929965 1930275 1930280) (-1174 "WFFINTBS.spad" 1927619 1927641 1929946 1929951) (-1173 "WEIER.spad" 1925841 1925852 1927609 1927614) (-1172 "VSPACE.spad" 1925514 1925525 1925809 1925836) (-1171 "VSPACE.spad" 1925207 1925220 1925504 1925509) (-1170 "VOID.spad" 1924884 1924893 1925197 1925202) (-1169 "VIEWDEF.spad" 1920085 1920094 1924874 1924879) (-1168 "VIEW3D.spad" 1904046 1904055 1920075 1920080) (-1167 "VIEW2D.spad" 1891945 1891954 1904036 1904041) (-1166 "VIEW.spad" 1889665 1889674 1891935 1891940) (-1165 "VECTOR2.spad" 1888304 1888317 1889655 1889660) (-1164 "VECTOR.spad" 1887023 1887034 1887274 1887301) (-1163 "VECTCAT.spad" 1884935 1884946 1886991 1887018) (-1162 "VECTCAT.spad" 1882656 1882669 1884714 1884719) (-1161 "VARIABLE.spad" 1882436 1882451 1882646 1882651) (-1160 "UTYPE.spad" 1882080 1882089 1882426 1882431) (-1159 "UTSODETL.spad" 1881375 1881399 1882036 1882041) (-1158 "UTSODE.spad" 1879591 1879611 1881365 1881370) (-1157 "UTSCAT.spad" 1877070 1877086 1879489 1879586) (-1156 "UTSCAT.spad" 1874217 1874235 1876638 1876643) (-1155 "UTS2.spad" 1873812 1873847 1874207 1874212) (-1154 "UTS.spad" 1868824 1868852 1872344 1872441) (-1153 "URAGG.spad" 1863545 1863556 1868814 1868819) (-1152 "URAGG.spad" 1858230 1858243 1863501 1863506) (-1151 "UPXSSING.spad" 1855998 1856024 1857434 1857567) (-1150 "UPXSCONS.spad" 1853816 1853836 1854189 1854338) (-1149 "UPXSCCA.spad" 1852387 1852407 1853662 1853811) (-1148 "UPXSCCA.spad" 1851100 1851122 1852377 1852382) (-1147 "UPXSCAT.spad" 1849689 1849705 1850946 1851095) (-1146 "UPXS2.spad" 1849232 1849285 1849679 1849684) (-1145 "UPXS.spad" 1846587 1846615 1847423 1847572) (-1144 "UPSQFREE.spad" 1845002 1845016 1846577 1846582) (-1143 "UPSCAT.spad" 1842797 1842821 1844900 1844997) (-1142 "UPSCAT.spad" 1840293 1840319 1842398 1842403) (-1141 "UPOLYC2.spad" 1839764 1839783 1840283 1840288) (-1140 "UPOLYC.spad" 1834844 1834855 1839606 1839759) (-1139 "UPOLYC.spad" 1829842 1829855 1834606 1834611) (-1138 "UPMP.spad" 1828774 1828787 1829832 1829837) (-1137 "UPDIVP.spad" 1828339 1828353 1828764 1828769) (-1136 "UPDECOMP.spad" 1826600 1826614 1828329 1828334) (-1135 "UPCDEN.spad" 1825817 1825833 1826590 1826595) (-1134 "UP2.spad" 1825181 1825202 1825807 1825812) (-1133 "UP.spad" 1822651 1822666 1823038 1823191) (-1132 "UNISEG2.spad" 1822148 1822161 1822607 1822612) (-1131 "UNISEG.spad" 1821501 1821512 1822067 1822072) (-1130 "UNIFACT.spad" 1820604 1820616 1821491 1821496) (-1129 "ULSCONS.spad" 1814647 1814667 1815017 1815166) (-1128 "ULSCCAT.spad" 1812384 1812404 1814493 1814642) (-1127 "ULSCCAT.spad" 1810229 1810251 1812340 1812345) (-1126 "ULSCAT.spad" 1808469 1808485 1810075 1810224) (-1125 "ULS2.spad" 1807983 1808036 1808459 1808464) (-1124 "ULS.spad" 1800249 1800277 1801194 1801617) (-1123 "UINT8.spad" 1800126 1800135 1800239 1800244) (-1122 "UINT64.spad" 1800002 1800011 1800116 1800121) (-1121 "UINT32.spad" 1799878 1799887 1799992 1799997) (-1120 "UINT16.spad" 1799754 1799763 1799868 1799873) (-1119 "UFD.spad" 1798819 1798828 1799680 1799749) (-1118 "UFD.spad" 1797946 1797957 1798809 1798814) (-1117 "UDVO.spad" 1796827 1796836 1797936 1797941) (-1116 "UDPO.spad" 1794408 1794419 1796783 1796788) (-1115 "TYPEAST.spad" 1794327 1794336 1794398 1794403) (-1114 "TYPE.spad" 1794259 1794268 1794317 1794322) (-1113 "TWOFACT.spad" 1792911 1792926 1794249 1794254) (-1112 "TUPLE.spad" 1792418 1792429 1792823 1792828) (-1111 "TUBETOOL.spad" 1789285 1789294 1792408 1792413) (-1110 "TUBE.spad" 1787932 1787949 1789275 1789280) (-1109 "TSETCAT.spad" 1776003 1776020 1787900 1787927) (-1108 "TSETCAT.spad" 1764060 1764079 1775959 1775964) (-1107 "TS.spad" 1762688 1762704 1763654 1763751) (-1106 "TRMANIP.spad" 1757052 1757069 1762376 1762381) (-1105 "TRIMAT.spad" 1756015 1756040 1757042 1757047) (-1104 "TRIGMNIP.spad" 1754542 1754559 1756005 1756010) (-1103 "TRIGCAT.spad" 1754054 1754063 1754532 1754537) (-1102 "TRIGCAT.spad" 1753564 1753575 1754044 1754049) (-1101 "TREE.spad" 1752204 1752215 1753236 1753263) (-1100 "TRANFUN.spad" 1752043 1752052 1752194 1752199) (-1099 "TRANFUN.spad" 1751880 1751891 1752033 1752038) (-1098 "TOPSP.spad" 1751554 1751563 1751870 1751875) (-1097 "TOOLSIGN.spad" 1751217 1751228 1751544 1751549) (-1096 "TEXTFILE.spad" 1749778 1749787 1751207 1751212) (-1095 "TEX1.spad" 1749334 1749345 1749768 1749773) (-1094 "TEX.spad" 1746528 1746537 1749324 1749329) (-1093 "TBCMPPK.spad" 1744629 1744652 1746518 1746523) (-1092 "TBAGG.spad" 1743687 1743710 1744609 1744624) (-1091 "TBAGG.spad" 1742753 1742778 1743677 1743682) (-1090 "TANEXP.spad" 1742161 1742172 1742743 1742748) (-1089 "TALGOP.spad" 1741885 1741896 1742151 1742156) (-1088 "TABLEAU.spad" 1741366 1741377 1741875 1741880) (-1087 "TABLE.spad" 1739641 1739664 1739911 1739938) (-1086 "TABLBUMP.spad" 1736420 1736431 1739631 1739636) (-1085 "SYSTEM.spad" 1735648 1735657 1736410 1736415) (-1084 "SYSSOLP.spad" 1733131 1733142 1735638 1735643) (-1083 "SYSPTR.spad" 1733030 1733039 1733121 1733126) (-1082 "SYSNNI.spad" 1732253 1732264 1733020 1733025) (-1081 "SYSINT.spad" 1731657 1731668 1732243 1732248) (-1080 "SYNTAX.spad" 1727991 1728000 1731647 1731652) (-1079 "SYMTAB.spad" 1726059 1726068 1727981 1727986) (-1078 "SYMS.spad" 1722088 1722097 1726049 1726054) (-1077 "SYMPOLY.spad" 1721221 1721232 1721303 1721430) (-1076 "SYMFUNC.spad" 1720722 1720733 1721211 1721216) (-1075 "SYMBOL.spad" 1718217 1718226 1720712 1720717) (-1074 "SUTS.spad" 1715330 1715358 1716749 1716846) (-1073 "SUPXS.spad" 1712672 1712700 1713521 1713670) (-1072 "SUPFRACF.spad" 1711777 1711795 1712662 1712667) (-1071 "SUP2.spad" 1711169 1711182 1711767 1711772) (-1070 "SUP.spad" 1708253 1708264 1709026 1709179) (-1069 "SUMRF.spad" 1707227 1707238 1708243 1708248) (-1068 "SUMFS.spad" 1706856 1706873 1707217 1707222) (-1067 "SULS.spad" 1699109 1699137 1700067 1700490) (-1066 "SUCH.spad" 1698799 1698814 1699099 1699104) (-1065 "SUBSPACE.spad" 1690930 1690945 1698789 1698794) (-1064 "SUBRESP.spad" 1690100 1690114 1690886 1690891) (-1063 "STTFNC.spad" 1686568 1686584 1690090 1690095) (-1062 "STTF.spad" 1682667 1682683 1686558 1686563) (-1061 "STTAYLOR.spad" 1675344 1675355 1682574 1682579) (-1060 "STRTBL.spad" 1673731 1673748 1673880 1673907) (-1059 "STRING.spad" 1672599 1672608 1672984 1673011) (-1058 "STREAM3.spad" 1672172 1672187 1672589 1672594) (-1057 "STREAM2.spad" 1671300 1671313 1672162 1672167) (-1056 "STREAM1.spad" 1671006 1671017 1671290 1671295) (-1055 "STREAM.spad" 1668002 1668013 1670609 1670624) (-1054 "STINPROD.spad" 1666938 1666954 1667992 1667997) (-1053 "STEPAST.spad" 1666172 1666181 1666928 1666933) (-1052 "STEP.spad" 1665489 1665498 1666162 1666167) (-1051 "STBL.spad" 1663879 1663907 1664046 1664061) (-1050 "STAGG.spad" 1662578 1662589 1663869 1663874) (-1049 "STAGG.spad" 1661275 1661288 1662568 1662573) (-1048 "STACK.spad" 1660697 1660708 1660947 1660974) (-1047 "SRING.spad" 1660457 1660466 1660687 1660692) (-1046 "SREGSET.spad" 1658189 1658206 1660091 1660118) (-1045 "SRDCMPK.spad" 1656766 1656786 1658179 1658184) (-1044 "SRAGG.spad" 1651949 1651958 1656734 1656761) (-1043 "SRAGG.spad" 1647152 1647163 1651939 1651944) (-1042 "SQMATRIX.spad" 1644829 1644847 1645745 1645832) (-1041 "SPLTREE.spad" 1639571 1639584 1644367 1644394) (-1040 "SPLNODE.spad" 1636191 1636204 1639561 1639566) (-1039 "SPFCAT.spad" 1635000 1635009 1636181 1636186) (-1038 "SPECOUT.spad" 1633552 1633561 1634990 1634995) (-1037 "SPADXPT.spad" 1625643 1625652 1633542 1633547) (-1036 "spad-parser.spad" 1625108 1625117 1625633 1625638) (-1035 "SPADAST.spad" 1624809 1624818 1625098 1625103) (-1034 "SPACEC.spad" 1609024 1609035 1624799 1624804) (-1033 "SPACE3.spad" 1608800 1608811 1609014 1609019) (-1032 "SORTPAK.spad" 1608349 1608362 1608756 1608761) (-1031 "SOLVETRA.spad" 1606112 1606123 1608339 1608344) (-1030 "SOLVESER.spad" 1604568 1604579 1606102 1606107) (-1029 "SOLVERAD.spad" 1600594 1600605 1604558 1604563) (-1028 "SOLVEFOR.spad" 1599056 1599074 1600584 1600589) (-1027 "SNTSCAT.spad" 1598656 1598673 1599024 1599051) (-1026 "SMTS.spad" 1596973 1596999 1598250 1598347) (-1025 "SMP.spad" 1594781 1594801 1595171 1595298) (-1024 "SMITH.spad" 1593626 1593651 1594771 1594776) (-1023 "SMATCAT.spad" 1591744 1591774 1593570 1593621) (-1022 "SMATCAT.spad" 1589794 1589826 1591622 1591627) (-1021 "SKAGG.spad" 1588763 1588774 1589762 1589789) (-1020 "SINT.spad" 1588062 1588071 1588629 1588758) (-1019 "SIMPAN.spad" 1587790 1587799 1588052 1588057) (-1018 "SIGNRF.spad" 1586915 1586926 1587780 1587785) (-1017 "SIGNEF.spad" 1586201 1586218 1586905 1586910) (-1016 "SIG.spad" 1585563 1585572 1586191 1586196) (-1015 "SHP.spad" 1583507 1583522 1585519 1585524) (-1014 "SHDP.spad" 1573000 1573027 1573517 1573614) (-1013 "SGROUP.spad" 1572608 1572617 1572990 1572995) (-1012 "SGROUP.spad" 1572214 1572225 1572598 1572603) (-1011 "SGCF.spad" 1565353 1565362 1572204 1572209) (-1010 "SFRTCAT.spad" 1564299 1564316 1565321 1565348) (-1009 "SFRGCD.spad" 1563362 1563382 1564289 1564294) (-1008 "SFQCMPK.spad" 1558175 1558195 1563352 1563357) (-1007 "SEXOF.spad" 1558018 1558058 1558165 1558170) (-1006 "SEXCAT.spad" 1555846 1555886 1558008 1558013) (-1005 "SEX.spad" 1555738 1555747 1555836 1555841) (-1004 "SETMN.spad" 1554198 1554215 1555728 1555733) (-1003 "SETCAT.spad" 1553683 1553692 1554188 1554193) (-1002 "SETCAT.spad" 1553166 1553177 1553673 1553678) (-1001 "SETAGG.spad" 1549715 1549726 1553146 1553161) (-1000 "SETAGG.spad" 1546272 1546285 1549705 1549710) (-999 "SET.spad" 1544582 1544592 1545678 1545717) (-998 "SEGXCAT.spad" 1543739 1543751 1544572 1544577) (-997 "SEGCAT.spad" 1542665 1542675 1543729 1543734) (-996 "SEGBIND2.spad" 1542364 1542376 1542655 1542660) (-995 "SEGBIND.spad" 1542124 1542134 1542312 1542317) (-994 "SEGAST.spad" 1541855 1541863 1542114 1542119) (-993 "SEG2.spad" 1541291 1541303 1541811 1541816) (-992 "SEG.spad" 1541105 1541115 1541210 1541215) (-991 "SDVAR.spad" 1540382 1540392 1541095 1541100) (-990 "SDPOL.spad" 1538080 1538090 1538370 1538497) (-989 "SCPKG.spad" 1536170 1536180 1538070 1538075) (-988 "SCOPE.spad" 1535348 1535356 1536160 1536165) (-987 "SCACHE.spad" 1534045 1534055 1535338 1535343) (-986 "SASTCAT.spad" 1533955 1533963 1534035 1534040) (-985 "SAOS.spad" 1533828 1533836 1533945 1533950) (-984 "SAERFFC.spad" 1533542 1533561 1533818 1533823) (-983 "SAEFACT.spad" 1533244 1533263 1533532 1533537) (-982 "SAE.spad" 1530895 1530910 1531505 1531640) (-981 "RURPK.spad" 1528555 1528570 1530885 1530890) (-980 "RULESET.spad" 1528009 1528032 1528545 1528550) (-979 "RULECOLD.spad" 1527862 1527874 1527999 1528004) (-978 "RULE.spad" 1526111 1526134 1527852 1527857) (-977 "RTVALUE.spad" 1525847 1525855 1526101 1526106) (-976 "RSETGCD.spad" 1522290 1522309 1525837 1525842) (-975 "RSETCAT.spad" 1512259 1512275 1522258 1522285) (-974 "RSETCAT.spad" 1502248 1502266 1512249 1512254) (-973 "RSDCMPK.spad" 1500749 1500768 1502238 1502243) (-972 "RRCC.spad" 1499134 1499163 1500739 1500744) (-971 "RRCC.spad" 1497517 1497548 1499124 1499129) (-970 "RPTAST.spad" 1497220 1497228 1497507 1497512) (-969 "RPOLCAT.spad" 1476725 1476739 1497088 1497215) (-968 "RPOLCAT.spad" 1456023 1456039 1476388 1476393) (-967 "ROMAN.spad" 1455352 1455360 1455889 1456018) (-966 "ROIRC.spad" 1454433 1454464 1455342 1455347) (-965 "RNS.spad" 1453410 1453418 1454335 1454428) (-964 "RNS.spad" 1452473 1452483 1453400 1453405) (-963 "RNGBIND.spad" 1451634 1451647 1452428 1452433) (-962 "RNG.spad" 1451370 1451378 1451624 1451629) (-961 "RMODULE.spad" 1451152 1451162 1451360 1451365) (-960 "RMCAT2.spad" 1450573 1450629 1451142 1451147) (-959 "RMATRIX.spad" 1449383 1449401 1449725 1449764) (-958 "RMATCAT.spad" 1444963 1444993 1449339 1449378) (-957 "RMATCAT.spad" 1440433 1440465 1444811 1444816) (-956 "RLINSET.spad" 1440138 1440148 1440423 1440428) (-955 "RINTERP.spad" 1440027 1440046 1440128 1440133) (-954 "RING.spad" 1439498 1439506 1440007 1440022) (-953 "RING.spad" 1438977 1438987 1439488 1439493) (-952 "RIDIST.spad" 1438370 1438378 1438967 1438972) (-951 "RGCHAIN.spad" 1436925 1436940 1437818 1437845) (-950 "RGBCSPC.spad" 1436715 1436726 1436915 1436920) (-949 "RGBCMDL.spad" 1436278 1436289 1436705 1436710) (-948 "RFFACTOR.spad" 1435741 1435751 1436268 1436273) (-947 "RFFACT.spad" 1435477 1435488 1435731 1435736) (-946 "RFDIST.spad" 1434474 1434482 1435467 1435472) (-945 "RF.spad" 1432149 1432159 1434464 1434469) (-944 "RETSOL.spad" 1431569 1431581 1432139 1432144) (-943 "RETRACT.spad" 1430998 1431008 1431559 1431564) (-942 "RETRACT.spad" 1430425 1430437 1430988 1430993) (-941 "RETAST.spad" 1430238 1430246 1430415 1430420) (-940 "RESRING.spad" 1429586 1429632 1430176 1430233) (-939 "RESLATC.spad" 1428911 1428921 1429576 1429581) (-938 "REPSQ.spad" 1428643 1428653 1428901 1428906) (-937 "REPDB.spad" 1428351 1428361 1428633 1428638) (-936 "REP2.spad" 1418066 1418076 1428193 1428198) (-935 "REP1.spad" 1412287 1412297 1418016 1418021) (-934 "REP.spad" 1409842 1409850 1412277 1412282) (-933 "REGSET.spad" 1407668 1407684 1409476 1409503) (-932 "REF.spad" 1407187 1407197 1407658 1407663) (-931 "REDORDER.spad" 1406394 1406410 1407177 1407182) (-930 "RECLOS.spad" 1405291 1405310 1405994 1406087) (-929 "REALSOLV.spad" 1404432 1404440 1405281 1405286) (-928 "REAL0Q.spad" 1401731 1401745 1404422 1404427) (-927 "REAL0.spad" 1398576 1398590 1401721 1401726) (-926 "REAL.spad" 1398449 1398457 1398566 1398571) (-925 "RDUCEAST.spad" 1398171 1398179 1398439 1398444) (-924 "RDIV.spad" 1397827 1397851 1398161 1398166) (-923 "RDIST.spad" 1397395 1397405 1397817 1397822) (-922 "RDETRS.spad" 1396260 1396277 1397385 1397390) (-921 "RDETR.spad" 1394400 1394417 1396250 1396255) (-920 "RDEEFS.spad" 1393500 1393516 1394390 1394395) (-919 "RDEEF.spad" 1392511 1392527 1393490 1393495) (-918 "RCFIELD.spad" 1389730 1389738 1392413 1392506) (-917 "RCFIELD.spad" 1387035 1387045 1389720 1389725) (-916 "RCAGG.spad" 1384972 1384982 1387025 1387030) (-915 "RCAGG.spad" 1382836 1382848 1384891 1384896) (-914 "RATRET.spad" 1382197 1382207 1382826 1382831) (-913 "RATFACT.spad" 1381890 1381901 1382187 1382192) (-912 "RANDSRC.spad" 1381210 1381218 1381880 1381885) (-911 "RADUTIL.spad" 1380967 1380975 1381200 1381205) (-910 "RADIX.spad" 1378012 1378025 1379557 1379650) (-909 "RADFF.spad" 1375929 1375965 1376047 1376203) (-908 "RADCAT.spad" 1375525 1375533 1375919 1375924) (-907 "RADCAT.spad" 1375119 1375129 1375515 1375520) (-906 "QUEUE.spad" 1374533 1374543 1374791 1374818) (-905 "QUATCT2.spad" 1374154 1374172 1374523 1374528) (-904 "QUATCAT.spad" 1372325 1372335 1374084 1374149) (-903 "QUATCAT.spad" 1370261 1370273 1372022 1372027) (-902 "QUAT.spad" 1368868 1368878 1369210 1369275) (-901 "QUAGG.spad" 1367702 1367712 1368836 1368863) (-900 "QQUTAST.spad" 1367471 1367479 1367692 1367697) (-899 "QFORM.spad" 1367090 1367104 1367461 1367466) (-898 "QFCAT2.spad" 1366783 1366799 1367080 1367085) (-897 "QFCAT.spad" 1365486 1365496 1366685 1366778) (-896 "QFCAT.spad" 1363822 1363834 1365023 1365028) (-895 "QEQUAT.spad" 1363381 1363389 1363812 1363817) (-894 "QCMPACK.spad" 1358296 1358315 1363371 1363376) (-893 "QALGSET2.spad" 1356292 1356310 1358286 1358291) (-892 "QALGSET.spad" 1352397 1352429 1356206 1356211) (-891 "PWFFINTB.spad" 1349813 1349834 1352387 1352392) (-890 "PUSHVAR.spad" 1349152 1349171 1349803 1349808) (-889 "PTRANFN.spad" 1345288 1345298 1349142 1349147) (-888 "PTPACK.spad" 1342376 1342386 1345278 1345283) (-887 "PTFUNC2.spad" 1342199 1342213 1342366 1342371) (-886 "PTCAT.spad" 1341454 1341464 1342167 1342194) (-885 "PSQFR.spad" 1340769 1340793 1341444 1341449) (-884 "PSEUDLIN.spad" 1339655 1339665 1340759 1340764) (-883 "PSETPK.spad" 1326360 1326376 1339533 1339538) (-882 "PSETCAT.spad" 1320760 1320783 1326340 1326355) (-881 "PSETCAT.spad" 1315134 1315159 1320716 1320721) (-880 "PSCURVE.spad" 1314133 1314141 1315124 1315129) (-879 "PSCAT.spad" 1312916 1312945 1314031 1314128) (-878 "PSCAT.spad" 1311789 1311820 1312906 1312911) (-877 "PRTITION.spad" 1310487 1310495 1311779 1311784) (-876 "PRTDAST.spad" 1310206 1310214 1310477 1310482) (-875 "PRS.spad" 1299824 1299841 1310162 1310167) (-874 "PRQAGG.spad" 1299259 1299269 1299792 1299819) (-873 "PROPLOG.spad" 1298863 1298871 1299249 1299254) (-872 "PROPFUN2.spad" 1298486 1298499 1298853 1298858) (-871 "PROPFUN1.spad" 1297892 1297903 1298476 1298481) (-870 "PROPFRML.spad" 1296460 1296471 1297882 1297887) (-869 "PROPERTY.spad" 1295956 1295964 1296450 1296455) (-868 "PRODUCT.spad" 1293653 1293665 1293937 1293992) (-867 "PRINT.spad" 1293405 1293413 1293643 1293648) (-866 "PRIMES.spad" 1291666 1291676 1293395 1293400) (-865 "PRIMELT.spad" 1289787 1289801 1291656 1291661) (-864 "PRIMCAT.spad" 1289430 1289438 1289777 1289782) (-863 "PRIMARR2.spad" 1288197 1288209 1289420 1289425) (-862 "PRIMARR.spad" 1287252 1287262 1287422 1287449) (-861 "PREASSOC.spad" 1286634 1286646 1287242 1287247) (-860 "PR.spad" 1285152 1285164 1285851 1285978) (-859 "PPCURVE.spad" 1284289 1284297 1285142 1285147) (-858 "PORTNUM.spad" 1284080 1284088 1284279 1284284) (-857 "POLYROOT.spad" 1282929 1282951 1284036 1284041) (-856 "POLYLIFT.spad" 1282194 1282217 1282919 1282924) (-855 "POLYCATQ.spad" 1280320 1280342 1282184 1282189) (-854 "POLYCAT.spad" 1273822 1273843 1280188 1280315) (-853 "POLYCAT.spad" 1266844 1266867 1273212 1273217) (-852 "POLY2UP.spad" 1266296 1266310 1266834 1266839) (-851 "POLY2.spad" 1265893 1265905 1266286 1266291) (-850 "POLY.spad" 1263561 1263571 1264076 1264203) (-849 "POLUTIL.spad" 1262526 1262555 1263517 1263522) (-848 "POLTOPOL.spad" 1261274 1261289 1262516 1262521) (-847 "POINT.spad" 1260157 1260167 1260244 1260271) (-846 "PNTHEORY.spad" 1256859 1256867 1260147 1260152) (-845 "PMTOOLS.spad" 1255634 1255648 1256849 1256854) (-844 "PMSYM.spad" 1255183 1255193 1255624 1255629) (-843 "PMQFCAT.spad" 1254774 1254788 1255173 1255178) (-842 "PMPREDFS.spad" 1254236 1254258 1254764 1254769) (-841 "PMPRED.spad" 1253723 1253737 1254226 1254231) (-840 "PMPLCAT.spad" 1252800 1252818 1253652 1253657) (-839 "PMLSAGG.spad" 1252385 1252399 1252790 1252795) (-838 "PMKERNEL.spad" 1251964 1251976 1252375 1252380) (-837 "PMINS.spad" 1251544 1251554 1251954 1251959) (-836 "PMFS.spad" 1251121 1251139 1251534 1251539) (-835 "PMDOWN.spad" 1250411 1250425 1251111 1251116) (-834 "PMASSFS.spad" 1249386 1249402 1250401 1250406) (-833 "PMASS.spad" 1248404 1248412 1249376 1249381) (-832 "PLOTTOOL.spad" 1248184 1248192 1248394 1248399) (-831 "PLOT3D.spad" 1244648 1244656 1248174 1248179) (-830 "PLOT1.spad" 1243821 1243831 1244638 1244643) (-829 "PLOT.spad" 1238744 1238752 1243811 1243816) (-828 "PLEQN.spad" 1226146 1226173 1238734 1238739) (-827 "PINTERPA.spad" 1225930 1225946 1226136 1226141) (-826 "PINTERP.spad" 1225552 1225571 1225920 1225925) (-825 "PID.spad" 1224526 1224534 1225478 1225547) (-824 "PICOERCE.spad" 1224183 1224193 1224516 1224521) (-823 "PI.spad" 1223800 1223808 1224157 1224178) (-822 "PGROEB.spad" 1222409 1222423 1223790 1223795) (-821 "PGE.spad" 1214082 1214090 1222399 1222404) (-820 "PGCD.spad" 1213036 1213053 1214072 1214077) (-819 "PFRPAC.spad" 1212185 1212195 1213026 1213031) (-818 "PFR.spad" 1208888 1208898 1212087 1212180) (-817 "PFOTOOLS.spad" 1208146 1208162 1208878 1208883) (-816 "PFOQ.spad" 1207516 1207534 1208136 1208141) (-815 "PFO.spad" 1206935 1206962 1207506 1207511) (-814 "PFECAT.spad" 1204645 1204653 1206861 1206930) (-813 "PFECAT.spad" 1202383 1202393 1204601 1204606) (-812 "PFBRU.spad" 1200271 1200283 1202373 1202378) (-811 "PFBR.spad" 1197831 1197854 1200261 1200266) (-810 "PF.spad" 1197405 1197417 1197636 1197729) (-809 "PERMGRP.spad" 1192175 1192185 1197395 1197400) (-808 "PERMCAT.spad" 1190836 1190846 1192155 1192170) (-807 "PERMAN.spad" 1189392 1189406 1190826 1190831) (-806 "PERM.spad" 1185202 1185212 1189225 1189240) (-805 "PENDTREE.spad" 1184616 1184626 1184896 1184901) (-804 "PDSPC.spad" 1183429 1183439 1184606 1184611) (-803 "PDSPC.spad" 1182240 1182252 1183419 1183424) (-802 "PDRING.spad" 1182082 1182092 1182220 1182235) (-801 "PDMOD.spad" 1181898 1181910 1182050 1182077) (-800 "PDECOMP.spad" 1181368 1181385 1181888 1181893) (-799 "PDDOM.spad" 1180806 1180819 1181358 1181363) (-798 "PDDOM.spad" 1180242 1180257 1180796 1180801) (-797 "PCOMP.spad" 1180095 1180108 1180232 1180237) (-796 "PBWLB.spad" 1178693 1178710 1180085 1180090) (-795 "PATTERN2.spad" 1178431 1178443 1178683 1178688) (-794 "PATTERN1.spad" 1176775 1176791 1178421 1178426) (-793 "PATTERN.spad" 1171350 1171360 1176765 1176770) (-792 "PATRES2.spad" 1171022 1171036 1171340 1171345) (-791 "PATRES.spad" 1168605 1168617 1171012 1171017) (-790 "PATMATCH.spad" 1166846 1166877 1168357 1168362) (-789 "PATMAB.spad" 1166275 1166285 1166836 1166841) (-788 "PATLRES.spad" 1165361 1165375 1166265 1166270) (-787 "PATAB.spad" 1165125 1165135 1165351 1165356) (-786 "PARTPERM.spad" 1163181 1163189 1165115 1165120) (-785 "PARSURF.spad" 1162615 1162643 1163171 1163176) (-784 "PARSU2.spad" 1162412 1162428 1162605 1162610) (-783 "script-parser.spad" 1161932 1161940 1162402 1162407) (-782 "PARSCURV.spad" 1161366 1161394 1161922 1161927) (-781 "PARSC2.spad" 1161157 1161173 1161356 1161361) (-780 "PARPCURV.spad" 1160619 1160647 1161147 1161152) (-779 "PARPC2.spad" 1160410 1160426 1160609 1160614) (-778 "PARAMAST.spad" 1159538 1159546 1160400 1160405) (-777 "PAN2EXPR.spad" 1158950 1158958 1159528 1159533) (-776 "PALETTE.spad" 1158064 1158072 1158940 1158945) (-775 "PAIR.spad" 1157138 1157151 1157707 1157712) (-774 "PADICRC.spad" 1154543 1154561 1155706 1155799) (-773 "PADICRAT.spad" 1152603 1152615 1152816 1152909) (-772 "PADICCT.spad" 1151152 1151164 1152529 1152598) (-771 "PADIC.spad" 1150855 1150867 1151078 1151147) (-770 "PADEPAC.spad" 1149544 1149563 1150845 1150850) (-769 "PADE.spad" 1148296 1148312 1149534 1149539) (-768 "OWP.spad" 1147544 1147574 1148154 1148221) (-767 "OVERSET.spad" 1147117 1147125 1147534 1147539) (-766 "OVAR.spad" 1146898 1146921 1147107 1147112) (-765 "OUTFORM.spad" 1136306 1136314 1146888 1146893) (-764 "OUTBFILE.spad" 1135740 1135748 1136296 1136301) (-763 "OUTBCON.spad" 1134810 1134818 1135730 1135735) (-762 "OUTBCON.spad" 1133878 1133888 1134800 1134805) (-761 "OUT.spad" 1132996 1133004 1133868 1133873) (-760 "OSI.spad" 1132471 1132479 1132986 1132991) (-759 "OSGROUP.spad" 1132389 1132397 1132461 1132466) (-758 "ORTHPOL.spad" 1130900 1130910 1132332 1132337) (-757 "OREUP.spad" 1130394 1130422 1130621 1130660) (-756 "ORESUP.spad" 1129736 1129760 1130115 1130154) (-755 "OREPCTO.spad" 1127625 1127637 1129656 1129661) (-754 "OREPCAT.spad" 1121812 1121822 1127581 1127620) (-753 "OREPCAT.spad" 1115889 1115901 1121660 1121665) (-752 "ORDTYPE.spad" 1115126 1115134 1115879 1115884) (-751 "ORDTYPE.spad" 1114361 1114371 1115116 1115121) (-750 "ORDSTRCT.spad" 1114147 1114162 1114310 1114315) (-749 "ORDSET.spad" 1113847 1113855 1114137 1114142) (-748 "ORDRING.spad" 1113664 1113672 1113827 1113842) (-747 "ORDMON.spad" 1113519 1113527 1113654 1113659) (-746 "ORDFUNS.spad" 1112651 1112667 1113509 1113514) (-745 "ORDFIN.spad" 1112471 1112479 1112641 1112646) (-744 "ORDCOMP2.spad" 1111764 1111776 1112461 1112466) (-743 "ORDCOMP.spad" 1110290 1110300 1111372 1111401) (-742 "OPSIG.spad" 1109952 1109960 1110280 1110285) (-741 "OPQUERY.spad" 1109533 1109541 1109942 1109947) (-740 "OPERCAT.spad" 1108999 1109009 1109523 1109528) (-739 "OPERCAT.spad" 1108463 1108475 1108989 1108994) (-738 "OP.spad" 1108205 1108215 1108285 1108352) (-737 "ONECOMP2.spad" 1107629 1107641 1108195 1108200) (-736 "ONECOMP.spad" 1106435 1106445 1107237 1107266) (-735 "OMSAGG.spad" 1106223 1106233 1106391 1106430) (-734 "OMLO.spad" 1105656 1105668 1106109 1106148) (-733 "OINTDOM.spad" 1105419 1105427 1105582 1105651) (-732 "OFMONOID.spad" 1103558 1103568 1105375 1105380) (-731 "ODVAR.spad" 1102819 1102829 1103548 1103553) (-730 "ODR.spad" 1102463 1102489 1102631 1102780) (-729 "ODPOL.spad" 1100111 1100121 1100451 1100578) (-728 "ODP.spad" 1089748 1089768 1090121 1090218) (-727 "ODETOOLS.spad" 1088397 1088416 1089738 1089743) (-726 "ODESYS.spad" 1086091 1086108 1088387 1088392) (-725 "ODERTRIC.spad" 1082124 1082141 1086048 1086053) (-724 "ODERED.spad" 1081523 1081547 1082114 1082119) (-723 "ODERAT.spad" 1079156 1079173 1081513 1081518) (-722 "ODEPRRIC.spad" 1076249 1076271 1079146 1079151) (-721 "ODEPRIM.spad" 1073647 1073669 1076239 1076244) (-720 "ODEPAL.spad" 1073033 1073057 1073637 1073642) (-719 "ODEINT.spad" 1072468 1072484 1073023 1073028) (-718 "ODEEF.spad" 1067963 1067979 1072458 1072463) (-717 "ODECONST.spad" 1067508 1067526 1067953 1067958) (-716 "OCTCT2.spad" 1067149 1067167 1067498 1067503) (-715 "OCT.spad" 1065464 1065474 1066178 1066217) (-714 "OCAMON.spad" 1065312 1065320 1065454 1065459) (-713 "OC.spad" 1063108 1063118 1065268 1065307) (-712 "OC.spad" 1060643 1060655 1062805 1062810) (-711 "OASGP.spad" 1060458 1060466 1060633 1060638) (-710 "OAMONS.spad" 1059980 1059988 1060448 1060453) (-709 "OAMON.spad" 1059738 1059746 1059970 1059975) (-708 "OAMON.spad" 1059494 1059504 1059728 1059733) (-707 "OAGROUP.spad" 1059032 1059040 1059484 1059489) (-706 "OAGROUP.spad" 1058568 1058578 1059022 1059027) (-705 "NUMTUBE.spad" 1058159 1058175 1058558 1058563) (-704 "NUMQUAD.spad" 1046135 1046143 1058149 1058154) (-703 "NUMODE.spad" 1037487 1037495 1046125 1046130) (-702 "NUMFMT.spad" 1036327 1036335 1037477 1037482) (-701 "NUMERIC.spad" 1028442 1028452 1036133 1036138) (-700 "NTSCAT.spad" 1026950 1026966 1028410 1028437) (-699 "NTPOLFN.spad" 1026527 1026537 1026893 1026898) (-698 "NSUP2.spad" 1025919 1025931 1026517 1026522) (-697 "NSUP.spad" 1019356 1019366 1023776 1023929) (-696 "NSMP.spad" 1016268 1016287 1016560 1016687) (-695 "NREP.spad" 1014670 1014684 1016258 1016263) (-694 "NPCOEF.spad" 1013916 1013936 1014660 1014665) (-693 "NORMRETR.spad" 1013514 1013553 1013906 1013911) (-692 "NORMPK.spad" 1011456 1011475 1013504 1013509) (-691 "NORMMA.spad" 1011144 1011170 1011446 1011451) (-690 "NONE1.spad" 1010820 1010830 1011134 1011139) (-689 "NONE.spad" 1010561 1010569 1010810 1010815) (-688 "NODE1.spad" 1010048 1010064 1010551 1010556) (-687 "NNI.spad" 1008943 1008951 1010022 1010043) (-686 "NLINSOL.spad" 1007569 1007579 1008933 1008938) (-685 "NFINTBAS.spad" 1005129 1005146 1007559 1007564) (-684 "NETCLT.spad" 1005103 1005114 1005119 1005124) (-683 "NCODIV.spad" 1003327 1003343 1005093 1005098) (-682 "NCNTFRAC.spad" 1002969 1002983 1003317 1003322) (-681 "NCEP.spad" 1001135 1001149 1002959 1002964) (-680 "NASRING.spad" 1000739 1000747 1001125 1001130) (-679 "NASRING.spad" 1000341 1000351 1000729 1000734) (-678 "NARNG.spad" 999741 999749 1000331 1000336) (-677 "NARNG.spad" 999139 999149 999731 999736) (-676 "NAALG.spad" 998704 998714 999107 999134) (-675 "NAALG.spad" 998289 998301 998694 998699) (-674 "MULTSQFR.spad" 995247 995264 998279 998284) (-673 "MULTFACT.spad" 994630 994647 995237 995242) (-672 "MTSCAT.spad" 992724 992745 994528 994625) (-671 "MTHING.spad" 992383 992393 992714 992719) (-670 "MSYSCMD.spad" 991817 991825 992373 992378) (-669 "MSETAGG.spad" 991662 991672 991785 991812) (-668 "MSET.spad" 989608 989618 991356 991395) (-667 "MRING.spad" 986585 986597 989316 989383) (-666 "MRF2.spad" 986147 986161 986575 986580) (-665 "MRATFAC.spad" 985693 985710 986137 986142) (-664 "MPRFF.spad" 983733 983752 985683 985688) (-663 "MPOLY.spad" 981537 981552 981896 982023) (-662 "MPCPF.spad" 980801 980820 981527 981532) (-661 "MPC3.spad" 980618 980658 980791 980796) (-660 "MPC2.spad" 980271 980304 980608 980613) (-659 "MONOTOOL.spad" 978622 978639 980261 980266) (-658 "MONOID.spad" 977943 977951 978612 978617) (-657 "MONOID.spad" 977262 977272 977933 977938) (-656 "MONOGEN.spad" 976010 976023 977122 977257) (-655 "MONOGEN.spad" 974780 974795 975894 975899) (-654 "MONADWU.spad" 972860 972868 974770 974775) (-653 "MONADWU.spad" 970938 970948 972850 972855) (-652 "MONAD.spad" 970098 970106 970928 970933) (-651 "MONAD.spad" 969256 969266 970088 970093) (-650 "MOEBIUS.spad" 967992 968006 969236 969251) (-649 "MODULE.spad" 967862 967872 967960 967987) (-648 "MODULE.spad" 967752 967764 967852 967857) (-647 "MODRING.spad" 967087 967126 967732 967747) (-646 "MODOP.spad" 965744 965756 966909 966976) (-645 "MODMONOM.spad" 965475 965493 965734 965739) (-644 "MODMON.spad" 962545 962557 963260 963413) (-643 "MODFIELD.spad" 961907 961946 962447 962540) (-642 "MMLFORM.spad" 960767 960775 961897 961902) (-641 "MMAP.spad" 960509 960543 960757 960762) (-640 "MLO.spad" 958968 958978 960465 960504) (-639 "MLIFT.spad" 957580 957597 958958 958963) (-638 "MKUCFUNC.spad" 957115 957133 957570 957575) (-637 "MKRECORD.spad" 956703 956716 957105 957110) (-636 "MKFUNC.spad" 956110 956120 956693 956698) (-635 "MKFLCFN.spad" 955078 955088 956100 956105) (-634 "MKBCFUNC.spad" 954573 954591 955068 955073) (-633 "MHROWRED.spad" 953084 953094 954563 954568) (-632 "MFINFACT.spad" 952484 952506 953074 953079) (-631 "MESH.spad" 950279 950287 952474 952479) (-630 "MDDFACT.spad" 948498 948508 950269 950274) (-629 "MDAGG.spad" 947789 947799 948478 948493) (-628 "MCDEN.spad" 946999 947011 947779 947784) (-627 "MAYBE.spad" 946299 946310 946989 946994) (-626 "MATSTOR.spad" 943615 943625 946289 946294) (-625 "MATRIX.spad" 942394 942404 942878 942905) (-624 "MATLIN.spad" 939762 939786 942278 942283) (-623 "MATCAT2.spad" 939044 939092 939752 939757) (-622 "MATCAT.spad" 930606 930628 939012 939039) (-621 "MATCAT.spad" 922040 922064 930448 930453) (-620 "MAPPKG3.spad" 920955 920969 922030 922035) (-619 "MAPPKG2.spad" 920293 920305 920945 920950) (-618 "MAPPKG1.spad" 919121 919131 920283 920288) (-617 "MAPPAST.spad" 918460 918468 919111 919116) (-616 "MAPHACK3.spad" 918272 918286 918450 918455) (-615 "MAPHACK2.spad" 918041 918053 918262 918267) (-614 "MAPHACK1.spad" 917685 917695 918031 918036) (-613 "MAGMA.spad" 915491 915508 917675 917680) (-612 "MACROAST.spad" 915086 915094 915481 915486) (-611 "LZSTAGG.spad" 912340 912350 915076 915081) (-610 "LZSTAGG.spad" 909592 909604 912330 912335) (-609 "LWORD.spad" 906337 906354 909582 909587) (-608 "LSTAST.spad" 906121 906129 906327 906332) (-607 "LSQM.spad" 904399 904413 904793 904844) (-606 "LSPP.spad" 903934 903951 904389 904394) (-605 "LSMP1.spad" 901777 901791 903924 903929) (-604 "LSMP.spad" 900634 900662 901767 901772) (-603 "LSAGG.spad" 900303 900313 900602 900629) (-602 "LSAGG.spad" 899992 900004 900293 900298) (-601 "LPOLY.spad" 898954 898973 899848 899917) (-600 "LPEFRAC.spad" 898225 898235 898944 898949) (-599 "LOGIC.spad" 897827 897835 898215 898220) (-598 "LOGIC.spad" 897427 897437 897817 897822) (-597 "LODOOPS.spad" 896357 896369 897417 897422) (-596 "LODOF.spad" 895403 895420 896314 896319) (-595 "LODOCAT.spad" 894069 894079 895359 895398) (-594 "LODOCAT.spad" 892733 892745 894025 894030) (-593 "LODO2.spad" 892047 892059 892454 892493) (-592 "LODO1.spad" 891488 891498 891768 891807) (-591 "LODO.spad" 890913 890929 891209 891248) (-590 "LODEEF.spad" 889715 889733 890903 890908) (-589 "LO.spad" 889116 889130 889649 889676) (-588 "LNAGG.spad" 885303 885313 889106 889111) (-587 "LNAGG.spad" 881454 881466 885259 885264) (-586 "LMOPS.spad" 878222 878239 881444 881449) (-585 "LMODULE.spad" 878006 878016 878212 878217) (-584 "LMDICT.spad" 877387 877397 877635 877662) (-583 "LLINSET.spad" 877094 877104 877377 877382) (-582 "LITERAL.spad" 877000 877011 877084 877089) (-581 "LIST3.spad" 876311 876325 876990 876995) (-580 "LIST2MAP.spad" 873238 873250 876301 876306) (-579 "LIST2.spad" 871940 871952 873228 873233) (-578 "LIST.spad" 869822 869832 871165 871192) (-577 "LINSET.spad" 869601 869611 869812 869817) (-576 "LINFORM.spad" 869064 869076 869569 869596) (-575 "LINEXP.spad" 867807 867817 869054 869059) (-574 "LINELT.spad" 867178 867190 867690 867717) (-573 "LINDEP.spad" 866027 866039 867090 867095) (-572 "LINBASIS.spad" 865663 865678 866017 866022) (-571 "LIMITRF.spad" 863610 863620 865653 865658) (-570 "LIMITPS.spad" 862520 862533 863600 863605) (-569 "LIECAT.spad" 862004 862014 862446 862515) (-568 "LIECAT.spad" 861516 861528 861960 861965) (-567 "LIE.spad" 859520 859532 860794 860936) (-566 "LIB.spad" 857691 857699 858137 858152) (-565 "LGROBP.spad" 855044 855063 857681 857686) (-564 "LFCAT.spad" 854103 854111 855034 855039) (-563 "LF.spad" 853058 853074 854093 854098) (-562 "LEXTRIPK.spad" 848681 848696 853048 853053) (-561 "LEXP.spad" 846700 846727 848661 848676) (-560 "LETAST.spad" 846399 846407 846690 846695) (-559 "LEADCDET.spad" 844805 844822 846389 846394) (-558 "LAZM3PK.spad" 843549 843571 844795 844800) (-557 "LAUPOL.spad" 842216 842229 843116 843185) (-556 "LAPLACE.spad" 841799 841815 842206 842211) (-555 "LALG.spad" 841575 841585 841779 841794) (-554 "LALG.spad" 841359 841371 841565 841570) (-553 "LA.spad" 840799 840813 841281 841320) (-552 "KVTFROM.spad" 840542 840552 840789 840794) (-551 "KTVLOGIC.spad" 840086 840094 840532 840537) (-550 "KRCFROM.spad" 839832 839842 840076 840081) (-549 "KOVACIC.spad" 838563 838580 839822 839827) (-548 "KONVERT.spad" 838285 838295 838553 838558) (-547 "KOERCE.spad" 838022 838032 838275 838280) (-546 "KERNEL2.spad" 837725 837737 838012 838017) (-545 "KERNEL.spad" 836445 836455 837574 837579) (-544 "KDAGG.spad" 835554 835576 836425 836440) (-543 "KDAGG.spad" 834671 834695 835544 835549) (-542 "KAFILE.spad" 833561 833577 833796 833823) (-541 "JVMOP.spad" 833474 833482 833551 833556) (-540 "JVMMDACC.spad" 832528 832536 833464 833469) (-539 "JVMFDACC.spad" 831844 831852 832518 832523) (-538 "JVMCSTTG.spad" 830573 830581 831834 831839) (-537 "JVMCFACC.spad" 830019 830027 830563 830568) (-536 "JVMBCODE.spad" 829930 829938 830009 830014) (-535 "JORDAN.spad" 827747 827759 829208 829350) (-534 "JOINAST.spad" 827449 827457 827737 827742) (-533 "IXAGG.spad" 825582 825606 827439 827444) (-532 "IXAGG.spad" 823570 823596 825429 825434) (-531 "IVECTOR.spad" 822385 822400 822540 822567) (-530 "ITUPLE.spad" 821561 821571 822375 822380) (-529 "ITRIGMNP.spad" 820408 820427 821551 821556) (-528 "ITFUN3.spad" 819914 819928 820398 820403) (-527 "ITFUN2.spad" 819658 819670 819904 819909) (-526 "ITFORM.spad" 819013 819021 819648 819653) (-525 "ITAYLOR.spad" 817007 817022 818877 818974) (-524 "ISUPS.spad" 809456 809471 815993 816090) (-523 "ISUMP.spad" 808957 808973 809446 809451) (-522 "ISAST.spad" 808676 808684 808947 808952) (-521 "IRURPK.spad" 807393 807412 808666 808671) (-520 "IRSN.spad" 805397 805405 807383 807388) (-519 "IRRF2F.spad" 803890 803900 805353 805358) (-518 "IRREDFFX.spad" 803491 803502 803880 803885) (-517 "IROOT.spad" 801830 801840 803481 803486) (-516 "IRFORM.spad" 801154 801162 801820 801825) (-515 "IR2F.spad" 800368 800384 801144 801149) (-514 "IR2.spad" 799396 799412 800358 800363) (-513 "IR.spad" 797232 797246 799278 799305) (-512 "IPRNTPK.spad" 796992 797000 797222 797227) (-511 "IPF.spad" 796557 796569 796797 796890) (-510 "IPADIC.spad" 796326 796352 796483 796552) (-509 "IP4ADDR.spad" 795883 795891 796316 796321) (-508 "IOMODE.spad" 795405 795413 795873 795878) (-507 "IOBFILE.spad" 794790 794798 795395 795400) (-506 "IOBCON.spad" 794655 794663 794780 794785) (-505 "INVLAPLA.spad" 794304 794320 794645 794650) (-504 "INTTR.spad" 787698 787715 794294 794299) (-503 "INTTOOLS.spad" 785506 785522 787325 787330) (-502 "INTSLPE.spad" 784834 784842 785496 785501) (-501 "INTRVL.spad" 784400 784410 784748 784829) (-500 "INTRF.spad" 782832 782846 784390 784395) (-499 "INTRET.spad" 782264 782274 782822 782827) (-498 "INTRAT.spad" 780999 781016 782254 782259) (-497 "INTPM.spad" 779462 779478 780720 780725) (-496 "INTPAF.spad" 777338 777356 779391 779396) (-495 "INTHERTR.spad" 776612 776629 777328 777333) (-494 "INTHERAL.spad" 776282 776306 776602 776607) (-493 "INTHEORY.spad" 772721 772729 776272 776277) (-492 "INTG0.spad" 766485 766503 772650 772655) (-491 "INTFACT.spad" 765552 765562 766475 766480) (-490 "INTEF.spad" 763963 763979 765542 765547) (-489 "INTDOM.spad" 762586 762594 763889 763958) (-488 "INTDOM.spad" 761271 761281 762576 762581) (-487 "INTCAT.spad" 759538 759548 761185 761266) (-486 "INTBIT.spad" 759045 759053 759528 759533) (-485 "INTALG.spad" 758233 758260 759035 759040) (-484 "INTAF.spad" 757733 757749 758223 758228) (-483 "INTABL.spad" 756115 756146 756278 756305) (-482 "INT8.spad" 755995 756003 756105 756110) (-481 "INT64.spad" 755874 755882 755985 755990) (-480 "INT32.spad" 755753 755761 755864 755869) (-479 "INT16.spad" 755632 755640 755743 755748) (-478 "INT.spad" 755158 755166 755498 755627) (-477 "INS.spad" 752661 752669 755060 755153) (-476 "INS.spad" 750250 750260 752651 752656) (-475 "INPSIGN.spad" 749720 749733 750240 750245) (-474 "INPRODPF.spad" 748816 748835 749710 749715) (-473 "INPRODFF.spad" 747904 747928 748806 748811) (-472 "INNMFACT.spad" 746879 746896 747894 747899) (-471 "INMODGCD.spad" 746383 746413 746869 746874) (-470 "INFSP.spad" 744680 744702 746373 746378) (-469 "INFPROD0.spad" 743760 743779 744670 744675) (-468 "INFORM1.spad" 743385 743395 743750 743755) (-467 "INFORM.spad" 740596 740604 743375 743380) (-466 "INFINITY.spad" 740148 740156 740586 740591) (-465 "INETCLTS.spad" 740125 740133 740138 740143) (-464 "INEP.spad" 738671 738693 740115 740120) (-463 "INDE.spad" 738320 738337 738581 738586) (-462 "INCRMAPS.spad" 737757 737767 738310 738315) (-461 "INBFILE.spad" 736853 736861 737747 737752) (-460 "INBFF.spad" 732703 732714 736843 736848) (-459 "INBCON.spad" 730969 730977 732693 732698) (-458 "INBCON.spad" 729233 729243 730959 730964) (-457 "INAST.spad" 728894 728902 729223 729228) (-456 "IMPTAST.spad" 728602 728610 728884 728889) (-455 "IMATRIX.spad" 727612 727638 728124 728151) (-454 "IMATQF.spad" 726706 726750 727568 727573) (-453 "IMATLIN.spad" 725327 725351 726662 726667) (-452 "IIARRAY2.spad" 724796 724834 724999 725026) (-451 "IFF.spad" 724209 724225 724480 724573) (-450 "IFAST.spad" 723823 723831 724199 724204) (-449 "IFARRAY.spad" 721350 721365 723048 723075) (-448 "IFAMON.spad" 721212 721229 721306 721311) (-447 "IEVALAB.spad" 720625 720637 721202 721207) (-446 "IEVALAB.spad" 720036 720050 720615 720620) (-445 "IDPOAMS.spad" 719714 719726 719948 719953) (-444 "IDPOAM.spad" 719356 719368 719626 719631) (-443 "IDPO.spad" 719091 719103 719268 719273) (-442 "IDPC.spad" 717820 717832 719081 719086) (-441 "IDPAM.spad" 717487 717499 717732 717737) (-440 "IDPAG.spad" 717156 717168 717399 717404) (-439 "IDENT.spad" 716808 716816 717146 717151) (-438 "IDECOMP.spad" 714047 714065 716798 716803) (-437 "IDEAL.spad" 709009 709048 713995 714000) (-436 "ICDEN.spad" 708222 708238 708999 709004) (-435 "ICARD.spad" 707615 707623 708212 708217) (-434 "IBPTOOLS.spad" 706222 706239 707605 707610) (-433 "IBITS.spad" 705735 705748 705868 705895) (-432 "IBATOOL.spad" 702720 702739 705725 705730) (-431 "IBACHIN.spad" 701227 701242 702710 702715) (-430 "IARRAY2.spad" 700288 700314 700899 700926) (-429 "IARRAY1.spad" 699367 699382 699513 699540) (-428 "IAN.spad" 697749 697757 699198 699291) (-427 "IALGFACT.spad" 697360 697393 697739 697744) (-426 "HYPCAT.spad" 696784 696792 697350 697355) (-425 "HYPCAT.spad" 696206 696216 696774 696779) (-424 "HOSTNAME.spad" 696022 696030 696196 696201) (-423 "HOMOTOP.spad" 695765 695775 696012 696017) (-422 "HOAGG.spad" 693047 693057 695755 695760) (-421 "HOAGG.spad" 690079 690091 692789 692794) (-420 "HEXADEC.spad" 688304 688312 688669 688762) (-419 "HEUGCD.spad" 687395 687406 688294 688299) (-418 "HELLFDIV.spad" 687001 687025 687385 687390) (-417 "HEAP.spad" 686458 686468 686673 686700) (-416 "HEADAST.spad" 685999 686007 686448 686453) (-415 "HDP.spad" 675632 675648 676009 676106) (-414 "HDMP.spad" 673179 673194 673795 673922) (-413 "HB.spad" 671454 671462 673169 673174) (-412 "HASHTBL.spad" 669788 669819 669999 670026) (-411 "HASAST.spad" 669504 669512 669778 669783) (-410 "HACKPI.spad" 668995 669003 669406 669499) (-409 "GTSET.spad" 667922 667938 668629 668656) (-408 "GSTBL.spad" 666305 666340 666479 666494) (-407 "GSERIES.spad" 663677 663704 664496 664645) (-406 "GROUP.spad" 662950 662958 663657 663672) (-405 "GROUP.spad" 662231 662241 662940 662945) (-404 "GROEBSOL.spad" 660725 660746 662221 662226) (-403 "GRMOD.spad" 659306 659318 660715 660720) (-402 "GRMOD.spad" 657885 657899 659296 659301) (-401 "GRIMAGE.spad" 650798 650806 657875 657880) (-400 "GRDEF.spad" 649177 649185 650788 650793) (-399 "GRAY.spad" 647648 647656 649167 649172) (-398 "GRALG.spad" 646743 646755 647638 647643) (-397 "GRALG.spad" 645836 645850 646733 646738) (-396 "GPOLSET.spad" 645294 645317 645506 645533) (-395 "GOSPER.spad" 644571 644589 645284 645289) (-394 "GMODPOL.spad" 643719 643746 644539 644566) (-393 "GHENSEL.spad" 642802 642816 643709 643714) (-392 "GENUPS.spad" 639095 639108 642792 642797) (-391 "GENUFACT.spad" 638672 638682 639085 639090) (-390 "GENPGCD.spad" 638274 638291 638662 638667) (-389 "GENMFACT.spad" 637726 637745 638264 638269) (-388 "GENEEZ.spad" 635685 635698 637716 637721) (-387 "GDMP.spad" 633074 633091 633848 633975) (-386 "GCNAALG.spad" 626997 627024 632868 632935) (-385 "GCDDOM.spad" 626189 626197 626923 626992) (-384 "GCDDOM.spad" 625443 625453 626179 626184) (-383 "GBINTERN.spad" 621463 621501 625433 625438) (-382 "GBF.spad" 617246 617284 621453 621458) (-381 "GBEUCLID.spad" 615128 615166 617236 617241) (-380 "GB.spad" 612654 612692 615084 615089) (-379 "GAUSSFAC.spad" 611967 611975 612644 612649) (-378 "GALUTIL.spad" 610293 610303 611923 611928) (-377 "GALPOLYU.spad" 608747 608760 610283 610288) (-376 "GALFACTU.spad" 606960 606979 608737 608742) (-375 "GALFACT.spad" 597173 597184 606950 606955) (-374 "FUNDESC.spad" 596851 596859 597163 597168) (-373 "FUNCTION.spad" 596700 596712 596841 596846) (-372 "FT.spad" 595000 595008 596690 596695) (-371 "FSUPFACT.spad" 593914 593933 594950 594955) (-370 "FST.spad" 592000 592008 593904 593909) (-369 "FSRED.spad" 591480 591496 591990 591995) (-368 "FSPRMELT.spad" 590346 590362 591437 591442) (-367 "FSPECF.spad" 588437 588453 590336 590341) (-366 "FSINT.spad" 588097 588113 588427 588432) (-365 "FSERIES.spad" 587288 587300 587917 588016) (-364 "FSCINT.spad" 586605 586621 587278 587283) (-363 "FSAGG2.spad" 585340 585356 586595 586600) (-362 "FSAGG.spad" 584457 584467 585296 585335) (-361 "FSAGG.spad" 583536 583548 584377 584382) (-360 "FS2UPS.spad" 578051 578085 583526 583531) (-359 "FS2EXPXP.spad" 577192 577215 578041 578046) (-358 "FS2.spad" 576847 576863 577182 577187) (-357 "FS.spad" 571119 571129 576626 576842) (-356 "FS.spad" 565193 565205 570702 570707) (-355 "FRUTIL.spad" 564147 564157 565183 565188) (-354 "FRNAALG.spad" 559424 559434 564089 564142) (-353 "FRNAALG.spad" 554713 554725 559380 559385) (-352 "FRNAAF2.spad" 554161 554179 554703 554708) (-351 "FRMOD.spad" 553569 553599 554090 554095) (-350 "FRIDEAL2.spad" 553173 553205 553559 553564) (-349 "FRIDEAL.spad" 552398 552419 553153 553168) (-348 "FRETRCT.spad" 551917 551927 552388 552393) (-347 "FRETRCT.spad" 551343 551355 551816 551821) (-346 "FRAMALG.spad" 549723 549736 551299 551338) (-345 "FRAMALG.spad" 548135 548150 549713 549718) (-344 "FRAC2.spad" 547740 547752 548125 548130) (-343 "FRAC.spad" 545727 545737 546114 546287) (-342 "FR2.spad" 545063 545075 545717 545722) (-341 "FR.spad" 538851 538861 544124 544193) (-340 "FPS.spad" 535690 535698 538741 538846) (-339 "FPS.spad" 532557 532567 535610 535615) (-338 "FPC.spad" 531603 531611 532459 532552) (-337 "FPC.spad" 530735 530745 531593 531598) (-336 "FPATMAB.spad" 530497 530507 530725 530730) (-335 "FPARFRAC.spad" 529339 529356 530487 530492) (-334 "FORDER.spad" 529030 529054 529329 529334) (-333 "FNLA.spad" 528454 528476 528998 529025) (-332 "FNCAT.spad" 527049 527057 528444 528449) (-331 "FNAME.spad" 526941 526949 527039 527044) (-330 "FMONOID.spad" 526622 526632 526897 526902) (-329 "FMONCAT.spad" 523791 523801 526612 526617) (-328 "FMCAT.spad" 521467 521485 523759 523786) (-327 "FM1.spad" 520832 520844 521401 521428) (-326 "FM.spad" 520447 520459 520686 520713) (-325 "FLOATRP.spad" 518190 518204 520437 520442) (-324 "FLOATCP.spad" 515629 515643 518180 518185) (-323 "FLOAT.spad" 508943 508951 515495 515624) (-322 "FLINEXP.spad" 508665 508675 508933 508938) (-321 "FLINEXP.spad" 508344 508356 508614 508619) (-320 "FLASORT.spad" 507670 507682 508334 508339) (-319 "FLALG.spad" 505340 505359 507596 507665) (-318 "FLAGG2.spad" 504057 504073 505330 505335) (-317 "FLAGG.spad" 501123 501133 504037 504052) (-316 "FLAGG.spad" 498090 498102 501006 501011) (-315 "FINRALG.spad" 496175 496188 498046 498085) (-314 "FINRALG.spad" 494186 494201 496059 496064) (-313 "FINITE.spad" 493338 493346 494176 494181) (-312 "FINAALG.spad" 482523 482533 493280 493333) (-311 "FINAALG.spad" 471720 471732 482479 482484) (-310 "FILECAT.spad" 470254 470271 471710 471715) (-309 "FILE.spad" 469837 469847 470244 470249) (-308 "FIELD.spad" 469243 469251 469739 469832) (-307 "FIELD.spad" 468735 468745 469233 469238) (-306 "FGROUP.spad" 467398 467408 468715 468730) (-305 "FGLMICPK.spad" 466193 466208 467388 467393) (-304 "FFX.spad" 465579 465594 465912 466005) (-303 "FFSLPE.spad" 465090 465111 465569 465574) (-302 "FFPOLY2.spad" 464150 464167 465080 465085) (-301 "FFPOLY.spad" 455492 455503 464140 464145) (-300 "FFP.spad" 454900 454920 455211 455304) (-299 "FFNBX.spad" 453423 453443 454619 454712) (-298 "FFNBP.spad" 451947 451964 453142 453235) (-297 "FFNB.spad" 450415 450436 451631 451724) (-296 "FFINTBAS.spad" 447929 447948 450405 450410) (-295 "FFIELDC.spad" 445514 445522 447831 447924) (-294 "FFIELDC.spad" 443185 443195 445504 445509) (-293 "FFHOM.spad" 441957 441974 443175 443180) (-292 "FFF.spad" 439400 439411 441947 441952) (-291 "FFCGX.spad" 438258 438278 439119 439212) (-290 "FFCGP.spad" 437158 437178 437977 438070) (-289 "FFCG.spad" 435953 435974 436842 436935) (-288 "FFCAT2.spad" 435700 435740 435943 435948) (-287 "FFCAT.spad" 428865 428887 435539 435695) (-286 "FFCAT.spad" 422109 422133 428785 428790) (-285 "FF.spad" 421560 421576 421793 421886) (-284 "FEVALAB.spad" 421268 421278 421550 421555) (-283 "FEVALAB.spad" 420752 420764 421036 421041) (-282 "FDIVCAT.spad" 418848 418872 420742 420747) (-281 "FDIVCAT.spad" 416942 416968 418838 418843) (-280 "FDIV2.spad" 416598 416638 416932 416937) (-279 "FDIV.spad" 416056 416080 416588 416593) (-278 "FCTRDATA.spad" 415064 415072 416046 416051) (-277 "FCOMP.spad" 414443 414453 415054 415059) (-276 "FAXF.spad" 407478 407492 414345 414438) (-275 "FAXF.spad" 400565 400581 407434 407439) (-274 "FARRAY.spad" 398757 398767 399790 399817) (-273 "FAMR.spad" 396901 396913 398655 398752) (-272 "FAMR.spad" 395029 395043 396785 396790) (-271 "FAMONOID.spad" 394713 394723 394983 394988) (-270 "FAMONC.spad" 393033 393045 394703 394708) (-269 "FAGROUP.spad" 392673 392683 392929 392956) (-268 "FACUTIL.spad" 390885 390902 392663 392668) (-267 "FACTFUNC.spad" 390087 390097 390875 390880) (-266 "EXPUPXS.spad" 386979 387002 388278 388427) (-265 "EXPRTUBE.spad" 384267 384275 386969 386974) (-264 "EXPRODE.spad" 381435 381451 384257 384262) (-263 "EXPR2UPS.spad" 377557 377570 381425 381430) (-262 "EXPR2.spad" 377262 377274 377547 377552) (-261 "EXPR.spad" 372907 372917 373621 373908) (-260 "EXPEXPAN.spad" 369852 369877 370484 370577) (-259 "EXITAST.spad" 369588 369596 369842 369847) (-258 "EXIT.spad" 369259 369267 369578 369583) (-257 "EVALCYC.spad" 368719 368733 369249 369254) (-256 "EVALAB.spad" 368299 368309 368709 368714) (-255 "EVALAB.spad" 367877 367889 368289 368294) (-254 "EUCDOM.spad" 365467 365475 367803 367872) (-253 "EUCDOM.spad" 363119 363129 365457 365462) (-252 "ES2.spad" 362632 362648 363109 363114) (-251 "ES1.spad" 362202 362218 362622 362627) (-250 "ES.spad" 355073 355081 362192 362197) (-249 "ES.spad" 347865 347875 354986 354991) (-248 "ERROR.spad" 345192 345200 347855 347860) (-247 "EQTBL.spad" 343528 343550 343737 343764) (-246 "EQ2.spad" 343246 343258 343518 343523) (-245 "EQ.spad" 338152 338162 340947 341053) (-244 "EP.spad" 334478 334488 338142 338147) (-243 "ENV.spad" 333156 333164 334468 334473) (-242 "ENTIRER.spad" 332824 332832 333100 333151) (-241 "EMR.spad" 332112 332153 332750 332819) (-240 "ELTAGG.spad" 330366 330385 332102 332107) (-239 "ELTAGG.spad" 328584 328605 330322 330327) (-238 "ELTAB.spad" 328059 328072 328574 328579) (-237 "ELFUTS.spad" 327494 327513 328049 328054) (-236 "ELEMFUN.spad" 327183 327191 327484 327489) (-235 "ELEMFUN.spad" 326870 326880 327173 327178) (-234 "ELAGG.spad" 324841 324851 326850 326865) (-233 "ELAGG.spad" 322749 322761 324760 324765) (-232 "ELABOR.spad" 322095 322103 322739 322744) (-231 "ELABEXPR.spad" 321027 321035 322085 322090) (-230 "EFUPXS.spad" 317803 317833 320983 320988) (-229 "EFULS.spad" 314639 314662 317759 317764) (-228 "EFSTRUC.spad" 312654 312670 314629 314634) (-227 "EF.spad" 307430 307446 312644 312649) (-226 "EAB.spad" 305730 305738 307420 307425) (-225 "DVARCAT.spad" 302736 302746 305720 305725) (-224 "DVARCAT.spad" 299740 299752 302726 302731) (-223 "DSMP.spad" 297473 297487 297778 297905) (-222 "DSEXT.spad" 296775 296785 297463 297468) (-221 "DSEXT.spad" 295997 296009 296687 296692) (-220 "DROPT1.spad" 295662 295672 295987 295992) (-219 "DROPT0.spad" 290527 290535 295652 295657) (-218 "DROPT.spad" 284486 284494 290517 290522) (-217 "DRAWPT.spad" 282659 282667 284476 284481) (-216 "DRAWHACK.spad" 281967 281977 282649 282654) (-215 "DRAWCX.spad" 279445 279453 281957 281962) (-214 "DRAWCURV.spad" 278992 279007 279435 279440) (-213 "DRAWCFUN.spad" 268524 268532 278982 278987) (-212 "DRAW.spad" 261400 261413 268514 268519) (-211 "DQAGG.spad" 259578 259588 261368 261395) (-210 "DPOLCAT.spad" 254935 254951 259446 259573) (-209 "DPOLCAT.spad" 250378 250396 254891 254896) (-208 "DPMO.spad" 243081 243097 243219 243425) (-207 "DPMM.spad" 235797 235815 235922 236128) (-206 "DOMTMPLT.spad" 235568 235576 235787 235792) (-205 "DOMCTOR.spad" 235323 235331 235558 235563) (-204 "DOMAIN.spad" 234434 234442 235313 235318) (-203 "DMP.spad" 232027 232042 232597 232724) (-202 "DMEXT.spad" 231894 231904 231995 232022) (-201 "DLP.spad" 231254 231264 231884 231889) (-200 "DLIST.spad" 229875 229885 230479 230506) (-199 "DLAGG.spad" 228292 228302 229865 229870) (-198 "DIVRING.spad" 227834 227842 228236 228287) (-197 "DIVRING.spad" 227420 227430 227824 227829) (-196 "DISPLAY.spad" 225610 225618 227410 227415) (-195 "DIRPROD2.spad" 224428 224446 225600 225605) (-194 "DIRPROD.spad" 213798 213814 214438 214535) (-193 "DIRPCAT.spad" 212993 213009 213696 213793) (-192 "DIRPCAT.spad" 211814 211832 212519 212524) (-191 "DIOSP.spad" 210639 210647 211804 211809) (-190 "DIOPS.spad" 209635 209645 210619 210634) (-189 "DIOPS.spad" 208605 208617 209591 209596) (-188 "DIFRING.spad" 208443 208451 208585 208600) (-187 "DIFFSPC.spad" 208022 208030 208433 208438) (-186 "DIFFSPC.spad" 207599 207609 208012 208017) (-185 "DIFFMOD.spad" 207088 207098 207567 207594) (-184 "DIFFDOM.spad" 206253 206264 207078 207083) (-183 "DIFFDOM.spad" 205416 205429 206243 206248) (-182 "DIFEXT.spad" 205235 205245 205396 205411) (-181 "DIAGG.spad" 204865 204875 205215 205230) (-180 "DIAGG.spad" 204503 204515 204855 204860) (-179 "DHMATRIX.spad" 202880 202890 204025 204052) (-178 "DFSFUN.spad" 196520 196528 202870 202875) (-177 "DFLOAT.spad" 193127 193135 196410 196515) (-176 "DFINTTLS.spad" 191358 191374 193117 193122) (-175 "DERHAM.spad" 189272 189304 191338 191353) (-174 "DEQUEUE.spad" 188661 188671 188944 188971) (-173 "DEGRED.spad" 188278 188292 188651 188656) (-172 "DEFINTRF.spad" 185860 185870 188268 188273) (-171 "DEFINTEF.spad" 184398 184414 185850 185855) (-170 "DEFAST.spad" 183782 183790 184388 184393) (-169 "DECIMAL.spad" 182011 182019 182372 182465) (-168 "DDFACT.spad" 179832 179849 182001 182006) (-167 "DBLRESP.spad" 179432 179456 179822 179827) (-166 "DBASIS.spad" 179058 179073 179422 179427) (-165 "DBASE.spad" 177722 177732 179048 179053) (-164 "DATAARY.spad" 177208 177221 177712 177717) (-163 "CYCLOTOM.spad" 176714 176722 177198 177203) (-162 "CYCLES.spad" 173506 173514 176704 176709) (-161 "CVMP.spad" 172923 172933 173496 173501) (-160 "CTRIGMNP.spad" 171423 171439 172913 172918) (-159 "CTORKIND.spad" 171026 171034 171413 171418) (-158 "CTORCAT.spad" 170267 170275 171016 171021) (-157 "CTORCAT.spad" 169506 169516 170257 170262) (-156 "CTORCALL.spad" 169095 169105 169496 169501) (-155 "CTOR.spad" 168786 168794 169085 169090) (-154 "CSTTOOLS.spad" 168031 168044 168776 168781) (-153 "CRFP.spad" 161803 161816 168021 168026) (-152 "CRCEAST.spad" 161523 161531 161793 161798) (-151 "CRAPACK.spad" 160590 160600 161513 161518) (-150 "CPMATCH.spad" 160091 160106 160512 160517) (-149 "CPIMA.spad" 159796 159815 160081 160086) (-148 "COORDSYS.spad" 154805 154815 159786 159791) (-147 "CONTOUR.spad" 154232 154240 154795 154800) (-146 "CONTFRAC.spad" 149982 149992 154134 154227) (-145 "CONDUIT.spad" 149740 149748 149972 149977) (-144 "COMRING.spad" 149414 149422 149678 149735) (-143 "COMPPROP.spad" 148932 148940 149404 149409) (-142 "COMPLPAT.spad" 148699 148714 148922 148927) (-141 "COMPLEX2.spad" 148414 148426 148689 148694) (-140 "COMPLEX.spad" 144120 144130 144364 144622) (-139 "COMPILER.spad" 143669 143677 144110 144115) (-138 "COMPFACT.spad" 143271 143285 143659 143664) (-137 "COMPCAT.spad" 141346 141356 143008 143266) (-136 "COMPCAT.spad" 139162 139174 140826 140831) (-135 "COMMUPC.spad" 138910 138928 139152 139157) (-134 "COMMONOP.spad" 138443 138451 138900 138905) (-133 "COMMAAST.spad" 138206 138214 138433 138438) (-132 "COMM.spad" 138017 138025 138196 138201) (-131 "COMBOPC.spad" 136940 136948 138007 138012) (-130 "COMBINAT.spad" 135707 135717 136930 136935) (-129 "COMBF.spad" 133129 133145 135697 135702) (-128 "COLOR.spad" 131966 131974 133119 133124) (-127 "COLONAST.spad" 131632 131640 131956 131961) (-126 "CMPLXRT.spad" 131343 131360 131622 131627) (-125 "CLLCTAST.spad" 131005 131013 131333 131338) (-124 "CLIP.spad" 127113 127121 130995 131000) (-123 "CLIF.spad" 125768 125784 127069 127108) (-122 "CLAGG.spad" 122305 122315 125758 125763) (-121 "CLAGG.spad" 118726 118738 122181 122186) (-120 "CINTSLPE.spad" 118081 118094 118716 118721) (-119 "CHVAR.spad" 116219 116241 118071 118076) (-118 "CHARZ.spad" 116134 116142 116199 116214) (-117 "CHARPOL.spad" 115660 115670 116124 116129) (-116 "CHARNZ.spad" 115422 115430 115640 115655) (-115 "CHAR.spad" 112790 112798 115412 115417) (-114 "CFCAT.spad" 112118 112126 112780 112785) (-113 "CDEN.spad" 111338 111352 112108 112113) (-112 "CCLASS.spad" 109518 109526 110780 110819) (-111 "CATEGORY.spad" 108592 108600 109508 109513) (-110 "CATCTOR.spad" 108483 108491 108582 108587) (-109 "CATAST.spad" 108109 108117 108473 108478) (-108 "CASEAST.spad" 107823 107831 108099 108104) (-107 "CARTEN2.spad" 107213 107240 107813 107818) (-106 "CARTEN.spad" 102965 102989 107203 107208) (-105 "CARD.spad" 100260 100268 102939 102960) (-104 "CAPSLAST.spad" 100042 100050 100250 100255) (-103 "CACHSET.spad" 99666 99674 100032 100037) (-102 "CABMON.spad" 99221 99229 99656 99661) (-101 "BYTEORD.spad" 98896 98904 99211 99216) (-100 "BYTEBUF.spad" 96882 96890 98168 98195) (-99 "BYTE.spad" 96358 96365 96872 96877) (-98 "BTREE.spad" 95497 95506 96030 96057) (-97 "BTOURN.spad" 94568 94577 95169 95196) (-96 "BTCAT.spad" 93961 93970 94536 94563) (-95 "BTCAT.spad" 93374 93385 93951 93956) (-94 "BTAGG.spad" 92841 92848 93342 93369) (-93 "BTAGG.spad" 92328 92337 92831 92836) (-92 "BSTREE.spad" 91135 91144 92000 92027) (-91 "BRILL.spad" 89341 89351 91125 91130) (-90 "BRAGG.spad" 88298 88307 89331 89336) (-89 "BRAGG.spad" 87219 87230 88254 88259) (-88 "BPADICRT.spad" 85279 85290 85525 85618) (-87 "BPADIC.spad" 84952 84963 85205 85274) (-86 "BOUNDZRO.spad" 84609 84625 84942 84947) (-85 "BOP1.spad" 82068 82077 84599 84604) (-84 "BOP.spad" 77211 77218 82058 82063) (-83 "BOOLEAN.spad" 76760 76767 77201 77206) (-82 "BOOLE.spad" 76411 76418 76750 76755) (-81 "BOOLE.spad" 76060 76069 76401 76406) (-80 "BMODULE.spad" 75773 75784 76028 76055) (-79 "BITS.spad" 75205 75212 75419 75446) (-78 "BINDING.spad" 74627 74634 75195 75200) (-77 "BINARY.spad" 72862 72869 73217 73310) (-76 "BGAGG.spad" 72068 72077 72842 72857) (-75 "BGAGG.spad" 71282 71293 72058 72063) (-74 "BEZOUT.spad" 70423 70449 71232 71237) (-73 "BBTREE.spad" 67366 67375 70095 70122) (-72 "BASTYPE.spad" 66866 66873 67356 67361) (-71 "BASTYPE.spad" 66364 66373 66856 66861) (-70 "BALFACT.spad" 65824 65836 66354 66359) (-69 "AUTOMOR.spad" 65275 65284 65804 65819) (-68 "ATTREG.spad" 61998 62005 65027 65270) (-67 "ATTRAST.spad" 61715 61722 61988 61993) (-66 "ATRIG.spad" 61185 61192 61705 61710) (-65 "ATRIG.spad" 60653 60662 61175 61180) (-64 "ASTCAT.spad" 60557 60564 60643 60648) (-63 "ASTCAT.spad" 60459 60468 60547 60552) (-62 "ASTACK.spad" 59863 59872 60131 60158) (-61 "ASSOCEQ.spad" 58697 58708 59819 59824) (-60 "ARRAY2.spad" 58130 58139 58369 58396) (-59 "ARRAY12.spad" 56843 56854 58120 58125) (-58 "ARRAY1.spad" 55722 55731 56068 56095) (-57 "ARR2CAT.spad" 51504 51525 55690 55717) (-56 "ARR2CAT.spad" 47306 47329 51494 51499) (-55 "ARITY.spad" 46678 46685 47296 47301) (-54 "APPRULE.spad" 45962 45984 46668 46673) (-53 "APPLYORE.spad" 45581 45594 45952 45957) (-52 "ANY1.spad" 44652 44661 45571 45576) (-51 "ANY.spad" 43503 43510 44642 44647) (-50 "ANTISYM.spad" 41948 41964 43483 43498) (-49 "ANON.spad" 41657 41664 41938 41943) (-48 "AN.spad" 40125 40132 41488 41581) (-47 "AMR.spad" 38310 38321 40023 40120) (-46 "AMR.spad" 36358 36371 38073 38078) (-45 "ALIST.spad" 33596 33617 33946 33973) (-44 "ALGSC.spad" 32731 32757 33468 33521) (-43 "ALGPKG.spad" 28514 28525 32687 32692) (-42 "ALGMFACT.spad" 27707 27721 28504 28509) (-41 "ALGMANIP.spad" 25208 25223 27551 27556) (-40 "ALGFF.spad" 23026 23053 23243 23399) (-39 "ALGFACT.spad" 22145 22155 23016 23021) (-38 "ALGEBRA.spad" 21978 21987 22101 22140) (-37 "ALGEBRA.spad" 21843 21854 21968 21973) (-36 "ALAGG.spad" 21355 21376 21811 21838) (-35 "AHYP.spad" 20736 20743 21345 21350) (-34 "AGG.spad" 19445 19452 20726 20731) (-33 "AGG.spad" 18118 18127 19401 19406) (-32 "AF.spad" 16563 16578 18067 18072) (-31 "ADDAST.spad" 16249 16256 16553 16558) (-30 "ACPLOT.spad" 14840 14847 16239 16244) (-29 "ACFS.spad" 12697 12706 14742 14835) (-28 "ACFS.spad" 10640 10651 12687 12692) (-27 "ACF.spad" 7394 7401 10542 10635) (-26 "ACF.spad" 4234 4243 7384 7389) (-25 "ABELSG.spad" 3775 3782 4224 4229) (-24 "ABELSG.spad" 3314 3323 3765 3770) (-23 "ABELMON.spad" 2859 2866 3304 3309) (-22 "ABELMON.spad" 2402 2411 2849 2854) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 1962731 1962736 1962741 1962746) (-2 NIL 1962711 1962716 1962721 1962726) (-1 NIL 1962691 1962696 1962701 1962706) (0 NIL 1962671 1962676 1962681 1962686) (-1199 "ZMOD.spad" 1962480 1962493 1962609 1962666) (-1198 "ZLINDEP.spad" 1961578 1961589 1962470 1962475) (-1197 "ZDSOLVE.spad" 1951538 1951560 1961568 1961573) (-1196 "YSTREAM.spad" 1951033 1951044 1951528 1951533) (-1195 "YDIAGRAM.spad" 1950667 1950676 1951023 1951028) (-1194 "XRPOLY.spad" 1949887 1949907 1950523 1950592) (-1193 "XPR.spad" 1947682 1947695 1949605 1949704) (-1192 "XPOLYC.spad" 1947001 1947017 1947608 1947677) (-1191 "XPOLY.spad" 1946556 1946567 1946857 1946926) (-1190 "XPBWPOLY.spad" 1945027 1945047 1946362 1946431) (-1189 "XFALG.spad" 1942075 1942091 1944953 1945022) (-1188 "XF.spad" 1940538 1940553 1941977 1942070) (-1187 "XF.spad" 1938981 1938998 1940422 1940427) (-1186 "XEXPPKG.spad" 1938240 1938266 1938971 1938976) (-1185 "XDPOLY.spad" 1937854 1937870 1938096 1938165) (-1184 "XALG.spad" 1937522 1937533 1937810 1937849) (-1183 "WUTSET.spad" 1933525 1933542 1937156 1937183) (-1182 "WP.spad" 1932732 1932776 1933383 1933450) (-1181 "WHILEAST.spad" 1932530 1932539 1932722 1932727) (-1180 "WHEREAST.spad" 1932201 1932210 1932520 1932525) (-1179 "WFFINTBS.spad" 1929864 1929886 1932191 1932196) (-1178 "WEIER.spad" 1928086 1928097 1929854 1929859) (-1177 "VSPACE.spad" 1927759 1927770 1928054 1928081) (-1176 "VSPACE.spad" 1927452 1927465 1927749 1927754) (-1175 "VOID.spad" 1927129 1927138 1927442 1927447) (-1174 "VIEWDEF.spad" 1922330 1922339 1927119 1927124) (-1173 "VIEW3D.spad" 1906291 1906300 1922320 1922325) (-1172 "VIEW2D.spad" 1894190 1894199 1906281 1906286) (-1171 "VIEW.spad" 1891910 1891919 1894180 1894185) (-1170 "VECTOR2.spad" 1890549 1890562 1891900 1891905) (-1169 "VECTOR.spad" 1889268 1889279 1889519 1889546) (-1168 "VECTCAT.spad" 1887180 1887191 1889236 1889263) (-1167 "VECTCAT.spad" 1884901 1884914 1886959 1886964) (-1166 "VARIABLE.spad" 1884681 1884696 1884891 1884896) (-1165 "UTYPE.spad" 1884325 1884334 1884671 1884676) (-1164 "UTSODETL.spad" 1883620 1883644 1884281 1884286) (-1163 "UTSODE.spad" 1881836 1881856 1883610 1883615) (-1162 "UTSCAT.spad" 1879315 1879331 1881734 1881831) (-1161 "UTSCAT.spad" 1876462 1876480 1878883 1878888) (-1160 "UTS2.spad" 1876057 1876092 1876452 1876457) (-1159 "UTS.spad" 1871069 1871097 1874589 1874686) (-1158 "URAGG.spad" 1865790 1865801 1871059 1871064) (-1157 "URAGG.spad" 1860475 1860488 1865746 1865751) (-1156 "UPXSSING.spad" 1858243 1858269 1859679 1859812) (-1155 "UPXSCONS.spad" 1856061 1856081 1856434 1856583) (-1154 "UPXSCCA.spad" 1854632 1854652 1855907 1856056) (-1153 "UPXSCCA.spad" 1853345 1853367 1854622 1854627) (-1152 "UPXSCAT.spad" 1851934 1851950 1853191 1853340) (-1151 "UPXS2.spad" 1851477 1851530 1851924 1851929) (-1150 "UPXS.spad" 1848832 1848860 1849668 1849817) (-1149 "UPSQFREE.spad" 1847247 1847261 1848822 1848827) (-1148 "UPSCAT.spad" 1845042 1845066 1847145 1847242) (-1147 "UPSCAT.spad" 1842538 1842564 1844643 1844648) (-1146 "UPOLYC2.spad" 1842009 1842028 1842528 1842533) (-1145 "UPOLYC.spad" 1837089 1837100 1841851 1842004) (-1144 "UPOLYC.spad" 1832087 1832100 1836851 1836856) (-1143 "UPMP.spad" 1831019 1831032 1832077 1832082) (-1142 "UPDIVP.spad" 1830584 1830598 1831009 1831014) (-1141 "UPDECOMP.spad" 1828845 1828859 1830574 1830579) (-1140 "UPCDEN.spad" 1828062 1828078 1828835 1828840) (-1139 "UP2.spad" 1827426 1827447 1828052 1828057) (-1138 "UP.spad" 1824896 1824911 1825283 1825436) (-1137 "UNISEG2.spad" 1824393 1824406 1824852 1824857) (-1136 "UNISEG.spad" 1823746 1823757 1824312 1824317) (-1135 "UNIFACT.spad" 1822849 1822861 1823736 1823741) (-1134 "ULSCONS.spad" 1816892 1816912 1817262 1817411) (-1133 "ULSCCAT.spad" 1814629 1814649 1816738 1816887) (-1132 "ULSCCAT.spad" 1812474 1812496 1814585 1814590) (-1131 "ULSCAT.spad" 1810714 1810730 1812320 1812469) (-1130 "ULS2.spad" 1810228 1810281 1810704 1810709) (-1129 "ULS.spad" 1802494 1802522 1803439 1803862) (-1128 "UINT8.spad" 1802371 1802380 1802484 1802489) (-1127 "UINT64.spad" 1802247 1802256 1802361 1802366) (-1126 "UINT32.spad" 1802123 1802132 1802237 1802242) (-1125 "UINT16.spad" 1801999 1802008 1802113 1802118) (-1124 "UFD.spad" 1801064 1801073 1801925 1801994) (-1123 "UFD.spad" 1800191 1800202 1801054 1801059) (-1122 "UDVO.spad" 1799072 1799081 1800181 1800186) (-1121 "UDPO.spad" 1796653 1796664 1799028 1799033) (-1120 "TYPEAST.spad" 1796572 1796581 1796643 1796648) (-1119 "TYPE.spad" 1796504 1796513 1796562 1796567) (-1118 "TWOFACT.spad" 1795156 1795171 1796494 1796499) (-1117 "TUPLE.spad" 1794663 1794674 1795068 1795073) (-1116 "TUBETOOL.spad" 1791530 1791539 1794653 1794658) (-1115 "TUBE.spad" 1790177 1790194 1791520 1791525) (-1114 "TSETCAT.spad" 1778248 1778265 1790145 1790172) (-1113 "TSETCAT.spad" 1766305 1766324 1778204 1778209) (-1112 "TS.spad" 1764933 1764949 1765899 1765996) (-1111 "TRMANIP.spad" 1759297 1759314 1764621 1764626) (-1110 "TRIMAT.spad" 1758260 1758285 1759287 1759292) (-1109 "TRIGMNIP.spad" 1756787 1756804 1758250 1758255) (-1108 "TRIGCAT.spad" 1756299 1756308 1756777 1756782) (-1107 "TRIGCAT.spad" 1755809 1755820 1756289 1756294) (-1106 "TREE.spad" 1754449 1754460 1755481 1755508) (-1105 "TRANFUN.spad" 1754288 1754297 1754439 1754444) (-1104 "TRANFUN.spad" 1754125 1754136 1754278 1754283) (-1103 "TOPSP.spad" 1753799 1753808 1754115 1754120) (-1102 "TOOLSIGN.spad" 1753462 1753473 1753789 1753794) (-1101 "TEXTFILE.spad" 1752023 1752032 1753452 1753457) (-1100 "TEX1.spad" 1751579 1751590 1752013 1752018) (-1099 "TEX.spad" 1748773 1748782 1751569 1751574) (-1098 "TBCMPPK.spad" 1746874 1746897 1748763 1748768) (-1097 "TBAGG.spad" 1745932 1745955 1746854 1746869) (-1096 "TBAGG.spad" 1744998 1745023 1745922 1745927) (-1095 "TANEXP.spad" 1744406 1744417 1744988 1744993) (-1094 "TALGOP.spad" 1744130 1744141 1744396 1744401) (-1093 "TABLEAU.spad" 1743611 1743622 1744120 1744125) (-1092 "TABLE.spad" 1741886 1741909 1742156 1742183) (-1091 "TABLBUMP.spad" 1738665 1738676 1741876 1741881) (-1090 "SYSTEM.spad" 1737893 1737902 1738655 1738660) (-1089 "SYSSOLP.spad" 1735376 1735387 1737883 1737888) (-1088 "SYSPTR.spad" 1735275 1735284 1735366 1735371) (-1087 "SYSNNI.spad" 1734498 1734509 1735265 1735270) (-1086 "SYSINT.spad" 1733902 1733913 1734488 1734493) (-1085 "SYNTAX.spad" 1730236 1730245 1733892 1733897) (-1084 "SYMTAB.spad" 1728304 1728313 1730226 1730231) (-1083 "SYMS.spad" 1724333 1724342 1728294 1728299) (-1082 "SYMPOLY.spad" 1723466 1723477 1723548 1723675) (-1081 "SYMFUNC.spad" 1722967 1722978 1723456 1723461) (-1080 "SYMBOL.spad" 1720462 1720471 1722957 1722962) (-1079 "SUTS.spad" 1717575 1717603 1718994 1719091) (-1078 "SUPXS.spad" 1714917 1714945 1715766 1715915) (-1077 "SUPFRACF.spad" 1714022 1714040 1714907 1714912) (-1076 "SUP2.spad" 1713414 1713427 1714012 1714017) (-1075 "SUP.spad" 1710498 1710509 1711271 1711424) (-1074 "SUMRF.spad" 1709472 1709483 1710488 1710493) (-1073 "SUMFS.spad" 1709101 1709118 1709462 1709467) (-1072 "SULS.spad" 1701354 1701382 1702312 1702735) (-1071 "syntax.spad" 1701123 1701132 1701344 1701349) (-1070 "SUCH.spad" 1700813 1700828 1701113 1701118) (-1069 "SUBSPACE.spad" 1692944 1692959 1700803 1700808) (-1068 "SUBRESP.spad" 1692114 1692128 1692900 1692905) (-1067 "STTFNC.spad" 1688582 1688598 1692104 1692109) (-1066 "STTF.spad" 1684681 1684697 1688572 1688577) (-1065 "STTAYLOR.spad" 1677358 1677369 1684588 1684593) (-1064 "STRTBL.spad" 1675745 1675762 1675894 1675921) (-1063 "STRING.spad" 1674613 1674622 1674998 1675025) (-1062 "STREAM3.spad" 1674186 1674201 1674603 1674608) (-1061 "STREAM2.spad" 1673314 1673327 1674176 1674181) (-1060 "STREAM1.spad" 1673020 1673031 1673304 1673309) (-1059 "STREAM.spad" 1670016 1670027 1672623 1672638) (-1058 "STINPROD.spad" 1668952 1668968 1670006 1670011) (-1057 "STEPAST.spad" 1668186 1668195 1668942 1668947) (-1056 "STEP.spad" 1667503 1667512 1668176 1668181) (-1055 "STBL.spad" 1665893 1665921 1666060 1666075) (-1054 "STAGG.spad" 1664592 1664603 1665883 1665888) (-1053 "STAGG.spad" 1663289 1663302 1664582 1664587) (-1052 "STACK.spad" 1662711 1662722 1662961 1662988) (-1051 "SRING.spad" 1662471 1662480 1662701 1662706) (-1050 "SREGSET.spad" 1660203 1660220 1662105 1662132) (-1049 "SRDCMPK.spad" 1658780 1658800 1660193 1660198) (-1048 "SRAGG.spad" 1653963 1653972 1658748 1658775) (-1047 "SRAGG.spad" 1649166 1649177 1653953 1653958) (-1046 "SQMATRIX.spad" 1646843 1646861 1647759 1647846) (-1045 "SPLTREE.spad" 1641585 1641598 1646381 1646408) (-1044 "SPLNODE.spad" 1638205 1638218 1641575 1641580) (-1043 "SPFCAT.spad" 1637014 1637023 1638195 1638200) (-1042 "SPECOUT.spad" 1635566 1635575 1637004 1637009) (-1041 "SPADXPT.spad" 1627657 1627666 1635556 1635561) (-1040 "spad-parser.spad" 1627122 1627131 1627647 1627652) (-1039 "SPADAST.spad" 1626823 1626832 1627112 1627117) (-1038 "SPACEC.spad" 1611038 1611049 1626813 1626818) (-1037 "SPACE3.spad" 1610814 1610825 1611028 1611033) (-1036 "SORTPAK.spad" 1610363 1610376 1610770 1610775) (-1035 "SOLVETRA.spad" 1608126 1608137 1610353 1610358) (-1034 "SOLVESER.spad" 1606582 1606593 1608116 1608121) (-1033 "SOLVERAD.spad" 1602608 1602619 1606572 1606577) (-1032 "SOLVEFOR.spad" 1601070 1601088 1602598 1602603) (-1031 "SNTSCAT.spad" 1600670 1600687 1601038 1601065) (-1030 "SMTS.spad" 1598987 1599013 1600264 1600361) (-1029 "SMP.spad" 1596795 1596815 1597185 1597312) (-1028 "SMITH.spad" 1595640 1595665 1596785 1596790) (-1027 "SMATCAT.spad" 1593758 1593788 1595584 1595635) (-1026 "SMATCAT.spad" 1591808 1591840 1593636 1593641) (-1025 "SKAGG.spad" 1590777 1590788 1591776 1591803) (-1024 "SINT.spad" 1590076 1590085 1590643 1590772) (-1023 "SIMPAN.spad" 1589804 1589813 1590066 1590071) (-1022 "SIGNRF.spad" 1588929 1588940 1589794 1589799) (-1021 "SIGNEF.spad" 1588215 1588232 1588919 1588924) (-1020 "syntax.spad" 1587632 1587641 1588205 1588210) (-1019 "SIG.spad" 1586994 1587003 1587622 1587627) (-1018 "SHP.spad" 1584938 1584953 1586950 1586955) (-1017 "SHDP.spad" 1574431 1574458 1574948 1575045) (-1016 "SGROUP.spad" 1574039 1574048 1574421 1574426) (-1015 "SGROUP.spad" 1573645 1573656 1574029 1574034) (-1014 "SGCF.spad" 1566784 1566793 1573635 1573640) (-1013 "SFRTCAT.spad" 1565730 1565747 1566752 1566779) (-1012 "SFRGCD.spad" 1564793 1564813 1565720 1565725) (-1011 "SFQCMPK.spad" 1559606 1559626 1564783 1564788) (-1010 "SEXOF.spad" 1559449 1559489 1559596 1559601) (-1009 "SEXCAT.spad" 1557277 1557317 1559439 1559444) (-1008 "SEX.spad" 1557169 1557178 1557267 1557272) (-1007 "SETMN.spad" 1555629 1555646 1557159 1557164) (-1006 "SETCAT.spad" 1555114 1555123 1555619 1555624) (-1005 "SETCAT.spad" 1554597 1554608 1555104 1555109) (-1004 "SETAGG.spad" 1551146 1551157 1554577 1554592) (-1003 "SETAGG.spad" 1547703 1547716 1551136 1551141) (-1002 "SET.spad" 1546012 1546023 1547109 1547148) (-1001 "syntax.spad" 1545715 1545724 1546002 1546007) (-1000 "SEGXCAT.spad" 1544871 1544884 1545705 1545710) (-999 "SEGCAT.spad" 1543797 1543807 1544861 1544866) (-998 "SEGBIND2.spad" 1543496 1543508 1543787 1543792) (-997 "SEGBIND.spad" 1543256 1543266 1543444 1543449) (-996 "SEGAST.spad" 1542987 1542995 1543246 1543251) (-995 "SEG2.spad" 1542423 1542435 1542943 1542948) (-994 "SEG.spad" 1542237 1542247 1542342 1542347) (-993 "SDVAR.spad" 1541514 1541524 1542227 1542232) (-992 "SDPOL.spad" 1539212 1539222 1539502 1539629) (-991 "SCPKG.spad" 1537302 1537312 1539202 1539207) (-990 "SCOPE.spad" 1536480 1536488 1537292 1537297) (-989 "SCACHE.spad" 1535177 1535187 1536470 1536475) (-988 "SASTCAT.spad" 1535087 1535095 1535167 1535172) (-987 "SAOS.spad" 1534960 1534968 1535077 1535082) (-986 "SAERFFC.spad" 1534674 1534693 1534950 1534955) (-985 "SAEFACT.spad" 1534376 1534395 1534664 1534669) (-984 "SAE.spad" 1532027 1532042 1532637 1532772) (-983 "RURPK.spad" 1529687 1529702 1532017 1532022) (-982 "RULESET.spad" 1529141 1529164 1529677 1529682) (-981 "RULECOLD.spad" 1528994 1529006 1529131 1529136) (-980 "RULE.spad" 1527243 1527266 1528984 1528989) (-979 "RTVALUE.spad" 1526979 1526987 1527233 1527238) (-978 "syntax.spad" 1526697 1526705 1526969 1526974) (-977 "RSETGCD.spad" 1523140 1523159 1526687 1526692) (-976 "RSETCAT.spad" 1513109 1513125 1523108 1523135) (-975 "RSETCAT.spad" 1503098 1503116 1513099 1513104) (-974 "RSDCMPK.spad" 1501599 1501618 1503088 1503093) (-973 "RRCC.spad" 1499984 1500013 1501589 1501594) (-972 "RRCC.spad" 1498367 1498398 1499974 1499979) (-971 "RPTAST.spad" 1498070 1498078 1498357 1498362) (-970 "RPOLCAT.spad" 1477575 1477589 1497938 1498065) (-969 "RPOLCAT.spad" 1456873 1456889 1477238 1477243) (-968 "ROMAN.spad" 1456202 1456210 1456739 1456868) (-967 "ROIRC.spad" 1455283 1455314 1456192 1456197) (-966 "RNS.spad" 1454260 1454268 1455185 1455278) (-965 "RNS.spad" 1453323 1453333 1454250 1454255) (-964 "RNGBIND.spad" 1452484 1452497 1453278 1453283) (-963 "RNG.spad" 1452220 1452228 1452474 1452479) (-962 "RMODULE.spad" 1452002 1452012 1452210 1452215) (-961 "RMCAT2.spad" 1451423 1451479 1451992 1451997) (-960 "RMATRIX.spad" 1450233 1450251 1450575 1450614) (-959 "RMATCAT.spad" 1445813 1445843 1450189 1450228) (-958 "RMATCAT.spad" 1441283 1441315 1445661 1445666) (-957 "RLINSET.spad" 1440988 1440998 1441273 1441278) (-956 "RINTERP.spad" 1440877 1440896 1440978 1440983) (-955 "RING.spad" 1440348 1440356 1440857 1440872) (-954 "RING.spad" 1439827 1439837 1440338 1440343) (-953 "RIDIST.spad" 1439220 1439228 1439817 1439822) (-952 "RGCHAIN.spad" 1437775 1437790 1438668 1438695) (-951 "RGBCSPC.spad" 1437565 1437576 1437765 1437770) (-950 "RGBCMDL.spad" 1437128 1437139 1437555 1437560) (-949 "RFFACTOR.spad" 1436591 1436601 1437118 1437123) (-948 "RFFACT.spad" 1436327 1436338 1436581 1436586) (-947 "RFDIST.spad" 1435324 1435332 1436317 1436322) (-946 "RF.spad" 1432999 1433009 1435314 1435319) (-945 "RETSOL.spad" 1432419 1432431 1432989 1432994) (-944 "RETRACT.spad" 1431848 1431858 1432409 1432414) (-943 "RETRACT.spad" 1431275 1431287 1431838 1431843) (-942 "RETAST.spad" 1431088 1431096 1431265 1431270) (-941 "RESRING.spad" 1430436 1430482 1431026 1431083) (-940 "RESLATC.spad" 1429761 1429771 1430426 1430431) (-939 "REPSQ.spad" 1429493 1429503 1429751 1429756) (-938 "REPDB.spad" 1429201 1429211 1429483 1429488) (-937 "REP2.spad" 1418916 1418926 1429043 1429048) (-936 "REP1.spad" 1413137 1413147 1418866 1418871) (-935 "REP.spad" 1410692 1410700 1413127 1413132) (-934 "REGSET.spad" 1408518 1408534 1410326 1410353) (-933 "REF.spad" 1408037 1408047 1408508 1408513) (-932 "REDORDER.spad" 1407244 1407260 1408027 1408032) (-931 "RECLOS.spad" 1406141 1406160 1406844 1406937) (-930 "REALSOLV.spad" 1405282 1405290 1406131 1406136) (-929 "REAL0Q.spad" 1402581 1402595 1405272 1405277) (-928 "REAL0.spad" 1399426 1399440 1402571 1402576) (-927 "REAL.spad" 1399299 1399307 1399416 1399421) (-926 "RDUCEAST.spad" 1399021 1399029 1399289 1399294) (-925 "RDIV.spad" 1398677 1398701 1399011 1399016) (-924 "RDIST.spad" 1398245 1398255 1398667 1398672) (-923 "RDETRS.spad" 1397110 1397127 1398235 1398240) (-922 "RDETR.spad" 1395250 1395267 1397100 1397105) (-921 "RDEEFS.spad" 1394350 1394366 1395240 1395245) (-920 "RDEEF.spad" 1393361 1393377 1394340 1394345) (-919 "RCFIELD.spad" 1390580 1390588 1393263 1393356) (-918 "RCFIELD.spad" 1387885 1387895 1390570 1390575) (-917 "RCAGG.spad" 1385822 1385832 1387875 1387880) (-916 "RCAGG.spad" 1383686 1383698 1385741 1385746) (-915 "RATRET.spad" 1383047 1383057 1383676 1383681) (-914 "RATFACT.spad" 1382740 1382751 1383037 1383042) (-913 "RANDSRC.spad" 1382060 1382068 1382730 1382735) (-912 "RADUTIL.spad" 1381817 1381825 1382050 1382055) (-911 "RADIX.spad" 1378862 1378875 1380407 1380500) (-910 "RADFF.spad" 1376779 1376815 1376897 1377053) (-909 "RADCAT.spad" 1376375 1376383 1376769 1376774) (-908 "RADCAT.spad" 1375969 1375979 1376365 1376370) (-907 "QUEUE.spad" 1375383 1375393 1375641 1375668) (-906 "QUATCT2.spad" 1375004 1375022 1375373 1375378) (-905 "QUATCAT.spad" 1373175 1373185 1374934 1374999) (-904 "QUATCAT.spad" 1371111 1371123 1372872 1372877) (-903 "QUAT.spad" 1369718 1369728 1370060 1370125) (-902 "QUAGG.spad" 1368552 1368562 1369686 1369713) (-901 "QQUTAST.spad" 1368321 1368329 1368542 1368547) (-900 "QFORM.spad" 1367940 1367954 1368311 1368316) (-899 "QFCAT2.spad" 1367633 1367649 1367930 1367935) (-898 "QFCAT.spad" 1366336 1366346 1367535 1367628) (-897 "QFCAT.spad" 1364672 1364684 1365873 1365878) (-896 "QEQUAT.spad" 1364231 1364239 1364662 1364667) (-895 "QCMPACK.spad" 1359146 1359165 1364221 1364226) (-894 "QALGSET2.spad" 1357142 1357160 1359136 1359141) (-893 "QALGSET.spad" 1353247 1353279 1357056 1357061) (-892 "PWFFINTB.spad" 1350663 1350684 1353237 1353242) (-891 "PUSHVAR.spad" 1350002 1350021 1350653 1350658) (-890 "PTRANFN.spad" 1346138 1346148 1349992 1349997) (-889 "PTPACK.spad" 1343226 1343236 1346128 1346133) (-888 "PTFUNC2.spad" 1343049 1343063 1343216 1343221) (-887 "PTCAT.spad" 1342304 1342314 1343017 1343044) (-886 "PSQFR.spad" 1341619 1341643 1342294 1342299) (-885 "PSEUDLIN.spad" 1340505 1340515 1341609 1341614) (-884 "PSETPK.spad" 1327210 1327226 1340383 1340388) (-883 "PSETCAT.spad" 1321610 1321633 1327190 1327205) (-882 "PSETCAT.spad" 1315984 1316009 1321566 1321571) (-881 "PSCURVE.spad" 1314983 1314991 1315974 1315979) (-880 "PSCAT.spad" 1313766 1313795 1314881 1314978) (-879 "PSCAT.spad" 1312639 1312670 1313756 1313761) (-878 "PRTITION.spad" 1311337 1311345 1312629 1312634) (-877 "PRTDAST.spad" 1311056 1311064 1311327 1311332) (-876 "PRS.spad" 1300674 1300691 1311012 1311017) (-875 "PRQAGG.spad" 1300109 1300119 1300642 1300669) (-874 "PROPLOG.spad" 1299713 1299721 1300099 1300104) (-873 "PROPFUN2.spad" 1299336 1299349 1299703 1299708) (-872 "PROPFUN1.spad" 1298742 1298753 1299326 1299331) (-871 "PROPFRML.spad" 1297310 1297321 1298732 1298737) (-870 "PROPERTY.spad" 1296806 1296814 1297300 1297305) (-869 "PRODUCT.spad" 1294503 1294515 1294787 1294842) (-868 "PRINT.spad" 1294255 1294263 1294493 1294498) (-867 "PRIMES.spad" 1292516 1292526 1294245 1294250) (-866 "PRIMELT.spad" 1290637 1290651 1292506 1292511) (-865 "PRIMCAT.spad" 1290280 1290288 1290627 1290632) (-864 "PRIMARR2.spad" 1289047 1289059 1290270 1290275) (-863 "PRIMARR.spad" 1288102 1288112 1288272 1288299) (-862 "PREASSOC.spad" 1287484 1287496 1288092 1288097) (-861 "PR.spad" 1286002 1286014 1286701 1286828) (-860 "PPCURVE.spad" 1285139 1285147 1285992 1285997) (-859 "PORTNUM.spad" 1284930 1284938 1285129 1285134) (-858 "POLYROOT.spad" 1283779 1283801 1284886 1284891) (-857 "POLYLIFT.spad" 1283044 1283067 1283769 1283774) (-856 "POLYCATQ.spad" 1281170 1281192 1283034 1283039) (-855 "POLYCAT.spad" 1274672 1274693 1281038 1281165) (-854 "POLYCAT.spad" 1267694 1267717 1274062 1274067) (-853 "POLY2UP.spad" 1267146 1267160 1267684 1267689) (-852 "POLY2.spad" 1266743 1266755 1267136 1267141) (-851 "POLY.spad" 1264411 1264421 1264926 1265053) (-850 "POLUTIL.spad" 1263376 1263405 1264367 1264372) (-849 "POLTOPOL.spad" 1262124 1262139 1263366 1263371) (-848 "POINT.spad" 1261007 1261017 1261094 1261121) (-847 "PNTHEORY.spad" 1257709 1257717 1260997 1261002) (-846 "PMTOOLS.spad" 1256484 1256498 1257699 1257704) (-845 "PMSYM.spad" 1256033 1256043 1256474 1256479) (-844 "PMQFCAT.spad" 1255624 1255638 1256023 1256028) (-843 "PMPREDFS.spad" 1255086 1255108 1255614 1255619) (-842 "PMPRED.spad" 1254573 1254587 1255076 1255081) (-841 "PMPLCAT.spad" 1253650 1253668 1254502 1254507) (-840 "PMLSAGG.spad" 1253235 1253249 1253640 1253645) (-839 "PMKERNEL.spad" 1252814 1252826 1253225 1253230) (-838 "PMINS.spad" 1252394 1252404 1252804 1252809) (-837 "PMFS.spad" 1251971 1251989 1252384 1252389) (-836 "PMDOWN.spad" 1251261 1251275 1251961 1251966) (-835 "PMASSFS.spad" 1250236 1250252 1251251 1251256) (-834 "PMASS.spad" 1249254 1249262 1250226 1250231) (-833 "PLOTTOOL.spad" 1249034 1249042 1249244 1249249) (-832 "PLOT3D.spad" 1245498 1245506 1249024 1249029) (-831 "PLOT1.spad" 1244671 1244681 1245488 1245493) (-830 "PLOT.spad" 1239594 1239602 1244661 1244666) (-829 "PLEQN.spad" 1226996 1227023 1239584 1239589) (-828 "PINTERPA.spad" 1226780 1226796 1226986 1226991) (-827 "PINTERP.spad" 1226402 1226421 1226770 1226775) (-826 "PID.spad" 1225376 1225384 1226328 1226397) (-825 "PICOERCE.spad" 1225033 1225043 1225366 1225371) (-824 "PI.spad" 1224650 1224658 1225007 1225028) (-823 "PGROEB.spad" 1223259 1223273 1224640 1224645) (-822 "PGE.spad" 1214932 1214940 1223249 1223254) (-821 "PGCD.spad" 1213886 1213903 1214922 1214927) (-820 "PFRPAC.spad" 1213035 1213045 1213876 1213881) (-819 "PFR.spad" 1209738 1209748 1212937 1213030) (-818 "PFOTOOLS.spad" 1208996 1209012 1209728 1209733) (-817 "PFOQ.spad" 1208366 1208384 1208986 1208991) (-816 "PFO.spad" 1207785 1207812 1208356 1208361) (-815 "PFECAT.spad" 1205495 1205503 1207711 1207780) (-814 "PFECAT.spad" 1203233 1203243 1205451 1205456) (-813 "PFBRU.spad" 1201121 1201133 1203223 1203228) (-812 "PFBR.spad" 1198681 1198704 1201111 1201116) (-811 "PF.spad" 1198255 1198267 1198486 1198579) (-810 "PERMGRP.spad" 1193025 1193035 1198245 1198250) (-809 "PERMCAT.spad" 1191686 1191696 1193005 1193020) (-808 "PERMAN.spad" 1190242 1190256 1191676 1191681) (-807 "PERM.spad" 1186052 1186062 1190075 1190090) (-806 "PENDTREE.spad" 1185466 1185476 1185746 1185751) (-805 "PDSPC.spad" 1184279 1184289 1185456 1185461) (-804 "PDSPC.spad" 1183090 1183102 1184269 1184274) (-803 "PDRING.spad" 1182932 1182942 1183070 1183085) (-802 "PDMOD.spad" 1182748 1182760 1182900 1182927) (-801 "PDECOMP.spad" 1182218 1182235 1182738 1182743) (-800 "PDDOM.spad" 1181656 1181669 1182208 1182213) (-799 "PDDOM.spad" 1181092 1181107 1181646 1181651) (-798 "PCOMP.spad" 1180945 1180958 1181082 1181087) (-797 "PBWLB.spad" 1179543 1179560 1180935 1180940) (-796 "PATTERN2.spad" 1179281 1179293 1179533 1179538) (-795 "PATTERN1.spad" 1177625 1177641 1179271 1179276) (-794 "PATTERN.spad" 1172200 1172210 1177615 1177620) (-793 "PATRES2.spad" 1171872 1171886 1172190 1172195) (-792 "PATRES.spad" 1169455 1169467 1171862 1171867) (-791 "PATMATCH.spad" 1167696 1167727 1169207 1169212) (-790 "PATMAB.spad" 1167125 1167135 1167686 1167691) (-789 "PATLRES.spad" 1166211 1166225 1167115 1167120) (-788 "PATAB.spad" 1165975 1165985 1166201 1166206) (-787 "PARTPERM.spad" 1164031 1164039 1165965 1165970) (-786 "PARSURF.spad" 1163465 1163493 1164021 1164026) (-785 "PARSU2.spad" 1163262 1163278 1163455 1163460) (-784 "script-parser.spad" 1162782 1162790 1163252 1163257) (-783 "PARSCURV.spad" 1162216 1162244 1162772 1162777) (-782 "PARSC2.spad" 1162007 1162023 1162206 1162211) (-781 "PARPCURV.spad" 1161469 1161497 1161997 1162002) (-780 "PARPC2.spad" 1161260 1161276 1161459 1161464) (-779 "PARAMAST.spad" 1160388 1160396 1161250 1161255) (-778 "PAN2EXPR.spad" 1159800 1159808 1160378 1160383) (-777 "PALETTE.spad" 1158914 1158922 1159790 1159795) (-776 "PAIR.spad" 1157988 1158001 1158557 1158562) (-775 "PADICRC.spad" 1155393 1155411 1156556 1156649) (-774 "PADICRAT.spad" 1153453 1153465 1153666 1153759) (-773 "PADICCT.spad" 1152002 1152014 1153379 1153448) (-772 "PADIC.spad" 1151705 1151717 1151928 1151997) (-771 "PADEPAC.spad" 1150394 1150413 1151695 1151700) (-770 "PADE.spad" 1149146 1149162 1150384 1150389) (-769 "OWP.spad" 1148394 1148424 1149004 1149071) (-768 "OVERSET.spad" 1147967 1147975 1148384 1148389) (-767 "OVAR.spad" 1147748 1147771 1147957 1147962) (-766 "OUTFORM.spad" 1137156 1137164 1147738 1147743) (-765 "OUTBFILE.spad" 1136590 1136598 1137146 1137151) (-764 "OUTBCON.spad" 1135660 1135668 1136580 1136585) (-763 "OUTBCON.spad" 1134728 1134738 1135650 1135655) (-762 "OUT.spad" 1133846 1133854 1134718 1134723) (-761 "OSI.spad" 1133321 1133329 1133836 1133841) (-760 "OSGROUP.spad" 1133239 1133247 1133311 1133316) (-759 "ORTHPOL.spad" 1131750 1131760 1133182 1133187) (-758 "OREUP.spad" 1131244 1131272 1131471 1131510) (-757 "ORESUP.spad" 1130586 1130610 1130965 1131004) (-756 "OREPCTO.spad" 1128475 1128487 1130506 1130511) (-755 "OREPCAT.spad" 1122662 1122672 1128431 1128470) (-754 "OREPCAT.spad" 1116739 1116751 1122510 1122515) (-753 "ORDTYPE.spad" 1115976 1115984 1116729 1116734) (-752 "ORDTYPE.spad" 1115211 1115221 1115966 1115971) (-751 "ORDSTRCT.spad" 1114997 1115012 1115160 1115165) (-750 "ORDSET.spad" 1114697 1114705 1114987 1114992) (-749 "ORDRING.spad" 1114514 1114522 1114677 1114692) (-748 "ORDMON.spad" 1114369 1114377 1114504 1114509) (-747 "ORDFUNS.spad" 1113501 1113517 1114359 1114364) (-746 "ORDFIN.spad" 1113321 1113329 1113491 1113496) (-745 "ORDCOMP2.spad" 1112614 1112626 1113311 1113316) (-744 "ORDCOMP.spad" 1111140 1111150 1112222 1112251) (-743 "OPSIG.spad" 1110802 1110810 1111130 1111135) (-742 "OPQUERY.spad" 1110383 1110391 1110792 1110797) (-741 "OPERCAT.spad" 1109849 1109859 1110373 1110378) (-740 "OPERCAT.spad" 1109313 1109325 1109839 1109844) (-739 "OP.spad" 1109055 1109065 1109135 1109202) (-738 "ONECOMP2.spad" 1108479 1108491 1109045 1109050) (-737 "ONECOMP.spad" 1107285 1107295 1108087 1108116) (-736 "OMSAGG.spad" 1107073 1107083 1107241 1107280) (-735 "OMLO.spad" 1106506 1106518 1106959 1106998) (-734 "OINTDOM.spad" 1106269 1106277 1106432 1106501) (-733 "OFMONOID.spad" 1104408 1104418 1106225 1106230) (-732 "ODVAR.spad" 1103669 1103679 1104398 1104403) (-731 "ODR.spad" 1103313 1103339 1103481 1103630) (-730 "ODPOL.spad" 1100961 1100971 1101301 1101428) (-729 "ODP.spad" 1090598 1090618 1090971 1091068) (-728 "ODETOOLS.spad" 1089247 1089266 1090588 1090593) (-727 "ODESYS.spad" 1086941 1086958 1089237 1089242) (-726 "ODERTRIC.spad" 1082974 1082991 1086898 1086903) (-725 "ODERED.spad" 1082373 1082397 1082964 1082969) (-724 "ODERAT.spad" 1080006 1080023 1082363 1082368) (-723 "ODEPRRIC.spad" 1077099 1077121 1079996 1080001) (-722 "ODEPRIM.spad" 1074497 1074519 1077089 1077094) (-721 "ODEPAL.spad" 1073883 1073907 1074487 1074492) (-720 "ODEINT.spad" 1073318 1073334 1073873 1073878) (-719 "ODEEF.spad" 1068813 1068829 1073308 1073313) (-718 "ODECONST.spad" 1068358 1068376 1068803 1068808) (-717 "OCTCT2.spad" 1067999 1068017 1068348 1068353) (-716 "OCT.spad" 1066314 1066324 1067028 1067067) (-715 "OCAMON.spad" 1066162 1066170 1066304 1066309) (-714 "OC.spad" 1063958 1063968 1066118 1066157) (-713 "OC.spad" 1061493 1061505 1063655 1063660) (-712 "OASGP.spad" 1061308 1061316 1061483 1061488) (-711 "OAMONS.spad" 1060830 1060838 1061298 1061303) (-710 "OAMON.spad" 1060588 1060596 1060820 1060825) (-709 "OAMON.spad" 1060344 1060354 1060578 1060583) (-708 "OAGROUP.spad" 1059882 1059890 1060334 1060339) (-707 "OAGROUP.spad" 1059418 1059428 1059872 1059877) (-706 "NUMTUBE.spad" 1059009 1059025 1059408 1059413) (-705 "NUMQUAD.spad" 1046985 1046993 1058999 1059004) (-704 "NUMODE.spad" 1038337 1038345 1046975 1046980) (-703 "NUMFMT.spad" 1037177 1037185 1038327 1038332) (-702 "NUMERIC.spad" 1029292 1029302 1036983 1036988) (-701 "NTSCAT.spad" 1027800 1027816 1029260 1029287) (-700 "NTPOLFN.spad" 1027377 1027387 1027743 1027748) (-699 "NSUP2.spad" 1026769 1026781 1027367 1027372) (-698 "NSUP.spad" 1020206 1020216 1024626 1024779) (-697 "NSMP.spad" 1017118 1017137 1017410 1017537) (-696 "NREP.spad" 1015520 1015534 1017108 1017113) (-695 "NPCOEF.spad" 1014766 1014786 1015510 1015515) (-694 "NORMRETR.spad" 1014364 1014403 1014756 1014761) (-693 "NORMPK.spad" 1012306 1012325 1014354 1014359) (-692 "NORMMA.spad" 1011994 1012020 1012296 1012301) (-691 "NONE1.spad" 1011670 1011680 1011984 1011989) (-690 "NONE.spad" 1011411 1011419 1011660 1011665) (-689 "NODE1.spad" 1010898 1010914 1011401 1011406) (-688 "NNI.spad" 1009793 1009801 1010872 1010893) (-687 "NLINSOL.spad" 1008419 1008429 1009783 1009788) (-686 "NFINTBAS.spad" 1005979 1005996 1008409 1008414) (-685 "NETCLT.spad" 1005953 1005964 1005969 1005974) (-684 "NCODIV.spad" 1004177 1004193 1005943 1005948) (-683 "NCNTFRAC.spad" 1003819 1003833 1004167 1004172) (-682 "NCEP.spad" 1001985 1001999 1003809 1003814) (-681 "NASRING.spad" 1001589 1001597 1001975 1001980) (-680 "NASRING.spad" 1001191 1001201 1001579 1001584) (-679 "NARNG.spad" 1000591 1000599 1001181 1001186) (-678 "NARNG.spad" 999989 999999 1000581 1000586) (-677 "NAALG.spad" 999554 999564 999957 999984) (-676 "NAALG.spad" 999139 999151 999544 999549) (-675 "MULTSQFR.spad" 996097 996114 999129 999134) (-674 "MULTFACT.spad" 995480 995497 996087 996092) (-673 "MTSCAT.spad" 993574 993595 995378 995475) (-672 "MTHING.spad" 993233 993243 993564 993569) (-671 "MSYSCMD.spad" 992667 992675 993223 993228) (-670 "MSETAGG.spad" 992512 992522 992635 992662) (-669 "MSET.spad" 990458 990468 992206 992245) (-668 "MRING.spad" 987435 987447 990166 990233) (-667 "MRF2.spad" 986997 987011 987425 987430) (-666 "MRATFAC.spad" 986543 986560 986987 986992) (-665 "MPRFF.spad" 984583 984602 986533 986538) (-664 "MPOLY.spad" 982387 982402 982746 982873) (-663 "MPCPF.spad" 981651 981670 982377 982382) (-662 "MPC3.spad" 981468 981508 981641 981646) (-661 "MPC2.spad" 981121 981154 981458 981463) (-660 "MONOTOOL.spad" 979472 979489 981111 981116) (-659 "MONOID.spad" 978793 978801 979462 979467) (-658 "MONOID.spad" 978112 978122 978783 978788) (-657 "MONOGEN.spad" 976860 976873 977972 978107) (-656 "MONOGEN.spad" 975630 975645 976744 976749) (-655 "MONADWU.spad" 973710 973718 975620 975625) (-654 "MONADWU.spad" 971788 971798 973700 973705) (-653 "MONAD.spad" 970948 970956 971778 971783) (-652 "MONAD.spad" 970106 970116 970938 970943) (-651 "MOEBIUS.spad" 968842 968856 970086 970101) (-650 "MODULE.spad" 968712 968722 968810 968837) (-649 "MODULE.spad" 968602 968614 968702 968707) (-648 "MODRING.spad" 967937 967976 968582 968597) (-647 "MODOP.spad" 966594 966606 967759 967826) (-646 "MODMONOM.spad" 966325 966343 966584 966589) (-645 "MODMON.spad" 963395 963407 964110 964263) (-644 "MODFIELD.spad" 962757 962796 963297 963390) (-643 "MMLFORM.spad" 961617 961625 962747 962752) (-642 "MMAP.spad" 961359 961393 961607 961612) (-641 "MLO.spad" 959818 959828 961315 961354) (-640 "MLIFT.spad" 958430 958447 959808 959813) (-639 "MKUCFUNC.spad" 957965 957983 958420 958425) (-638 "MKRECORD.spad" 957553 957566 957955 957960) (-637 "MKFUNC.spad" 956960 956970 957543 957548) (-636 "MKFLCFN.spad" 955928 955938 956950 956955) (-635 "MKBCFUNC.spad" 955423 955441 955918 955923) (-634 "MHROWRED.spad" 953934 953944 955413 955418) (-633 "MFINFACT.spad" 953334 953356 953924 953929) (-632 "MESH.spad" 951129 951137 953324 953329) (-631 "MDDFACT.spad" 949348 949358 951119 951124) (-630 "MDAGG.spad" 948639 948649 949328 949343) (-629 "MCDEN.spad" 947849 947861 948629 948634) (-628 "MAYBE.spad" 947149 947160 947839 947844) (-627 "MATSTOR.spad" 944465 944475 947139 947144) (-626 "MATRIX.spad" 943244 943254 943728 943755) (-625 "MATLIN.spad" 940612 940636 943128 943133) (-624 "MATCAT2.spad" 939894 939942 940602 940607) (-623 "MATCAT.spad" 931456 931478 939862 939889) (-622 "MATCAT.spad" 922890 922914 931298 931303) (-621 "MAPPKG3.spad" 921805 921819 922880 922885) (-620 "MAPPKG2.spad" 921143 921155 921795 921800) (-619 "MAPPKG1.spad" 919971 919981 921133 921138) (-618 "MAPPAST.spad" 919310 919318 919961 919966) (-617 "MAPHACK3.spad" 919122 919136 919300 919305) (-616 "MAPHACK2.spad" 918891 918903 919112 919117) (-615 "MAPHACK1.spad" 918535 918545 918881 918886) (-614 "MAGMA.spad" 916341 916358 918525 918530) (-613 "MACROAST.spad" 915936 915944 916331 916336) (-612 "LZSTAGG.spad" 913190 913200 915926 915931) (-611 "LZSTAGG.spad" 910442 910454 913180 913185) (-610 "LWORD.spad" 907187 907204 910432 910437) (-609 "LSTAST.spad" 906971 906979 907177 907182) (-608 "LSQM.spad" 905249 905263 905643 905694) (-607 "LSPP.spad" 904784 904801 905239 905244) (-606 "LSMP1.spad" 902627 902641 904774 904779) (-605 "LSMP.spad" 901484 901512 902617 902622) (-604 "LSAGG.spad" 901153 901163 901452 901479) (-603 "LSAGG.spad" 900842 900854 901143 901148) (-602 "LPOLY.spad" 899804 899823 900698 900767) (-601 "LPEFRAC.spad" 899075 899085 899794 899799) (-600 "LOGIC.spad" 898677 898685 899065 899070) (-599 "LOGIC.spad" 898277 898287 898667 898672) (-598 "LODOOPS.spad" 897207 897219 898267 898272) (-597 "LODOF.spad" 896253 896270 897164 897169) (-596 "LODOCAT.spad" 894919 894929 896209 896248) (-595 "LODOCAT.spad" 893583 893595 894875 894880) (-594 "LODO2.spad" 892897 892909 893304 893343) (-593 "LODO1.spad" 892338 892348 892618 892657) (-592 "LODO.spad" 891763 891779 892059 892098) (-591 "LODEEF.spad" 890565 890583 891753 891758) (-590 "LO.spad" 889966 889980 890499 890526) (-589 "LNAGG.spad" 886153 886163 889956 889961) (-588 "LNAGG.spad" 882304 882316 886109 886114) (-587 "LMOPS.spad" 879072 879089 882294 882299) (-586 "LMODULE.spad" 878856 878866 879062 879067) (-585 "LMDICT.spad" 878237 878247 878485 878512) (-584 "LLINSET.spad" 877944 877954 878227 878232) (-583 "LITERAL.spad" 877850 877861 877934 877939) (-582 "LIST3.spad" 877161 877175 877840 877845) (-581 "LIST2MAP.spad" 874088 874100 877151 877156) (-580 "LIST2.spad" 872790 872802 874078 874083) (-579 "LIST.spad" 870672 870682 872015 872042) (-578 "LINSET.spad" 870451 870461 870662 870667) (-577 "LINFORM.spad" 869914 869926 870419 870446) (-576 "LINEXP.spad" 868657 868667 869904 869909) (-575 "LINELT.spad" 868028 868040 868540 868567) (-574 "LINDEP.spad" 866877 866889 867940 867945) (-573 "LINBASIS.spad" 866513 866528 866867 866872) (-572 "LIMITRF.spad" 864460 864470 866503 866508) (-571 "LIMITPS.spad" 863370 863383 864450 864455) (-570 "LIECAT.spad" 862854 862864 863296 863365) (-569 "LIECAT.spad" 862366 862378 862810 862815) (-568 "LIE.spad" 860370 860382 861644 861786) (-567 "LIB.spad" 858541 858549 858987 859002) (-566 "LGROBP.spad" 855894 855913 858531 858536) (-565 "LFCAT.spad" 854953 854961 855884 855889) (-564 "LF.spad" 853908 853924 854943 854948) (-563 "LEXTRIPK.spad" 849531 849546 853898 853903) (-562 "LEXP.spad" 847550 847577 849511 849526) (-561 "LETAST.spad" 847249 847257 847540 847545) (-560 "LEADCDET.spad" 845655 845672 847239 847244) (-559 "LAZM3PK.spad" 844399 844421 845645 845650) (-558 "LAUPOL.spad" 843066 843079 843966 844035) (-557 "LAPLACE.spad" 842649 842665 843056 843061) (-556 "LALG.spad" 842425 842435 842629 842644) (-555 "LALG.spad" 842209 842221 842415 842420) (-554 "LA.spad" 841649 841663 842131 842170) (-553 "KVTFROM.spad" 841392 841402 841639 841644) (-552 "KTVLOGIC.spad" 840936 840944 841382 841387) (-551 "KRCFROM.spad" 840682 840692 840926 840931) (-550 "KOVACIC.spad" 839413 839430 840672 840677) (-549 "KONVERT.spad" 839135 839145 839403 839408) (-548 "KOERCE.spad" 838872 838882 839125 839130) (-547 "KERNEL2.spad" 838575 838587 838862 838867) (-546 "KERNEL.spad" 837295 837305 838424 838429) (-545 "KDAGG.spad" 836404 836426 837275 837290) (-544 "KDAGG.spad" 835521 835545 836394 836399) (-543 "KAFILE.spad" 834411 834427 834646 834673) (-542 "JVMOP.spad" 834324 834332 834401 834406) (-541 "JVMMDACC.spad" 833378 833386 834314 834319) (-540 "JVMFDACC.spad" 832694 832702 833368 833373) (-539 "JVMCSTTG.spad" 831423 831431 832684 832689) (-538 "JVMCFACC.spad" 830869 830877 831413 831418) (-537 "JVMBCODE.spad" 830780 830788 830859 830864) (-536 "JORDAN.spad" 828597 828609 830058 830200) (-535 "JOINAST.spad" 828299 828307 828587 828592) (-534 "IXAGG.spad" 826432 826456 828289 828294) (-533 "IXAGG.spad" 824420 824446 826279 826284) (-532 "IVECTOR.spad" 823235 823250 823390 823417) (-531 "ITUPLE.spad" 822411 822421 823225 823230) (-530 "ITRIGMNP.spad" 821258 821277 822401 822406) (-529 "ITFUN3.spad" 820764 820778 821248 821253) (-528 "ITFUN2.spad" 820508 820520 820754 820759) (-527 "ITFORM.spad" 819863 819871 820498 820503) (-526 "ITAYLOR.spad" 817857 817872 819727 819824) (-525 "ISUPS.spad" 810306 810321 816843 816940) (-524 "ISUMP.spad" 809807 809823 810296 810301) (-523 "ISAST.spad" 809526 809534 809797 809802) (-522 "IRURPK.spad" 808243 808262 809516 809521) (-521 "IRSN.spad" 806247 806255 808233 808238) (-520 "IRRF2F.spad" 804740 804750 806203 806208) (-519 "IRREDFFX.spad" 804341 804352 804730 804735) (-518 "IROOT.spad" 802680 802690 804331 804336) (-517 "IRFORM.spad" 802004 802012 802670 802675) (-516 "IR2F.spad" 801218 801234 801994 801999) (-515 "IR2.spad" 800246 800262 801208 801213) (-514 "IR.spad" 798082 798096 800128 800155) (-513 "IPRNTPK.spad" 797842 797850 798072 798077) (-512 "IPF.spad" 797407 797419 797647 797740) (-511 "IPADIC.spad" 797176 797202 797333 797402) (-510 "IP4ADDR.spad" 796733 796741 797166 797171) (-509 "IOMODE.spad" 796255 796263 796723 796728) (-508 "IOBFILE.spad" 795640 795648 796245 796250) (-507 "IOBCON.spad" 795505 795513 795630 795635) (-506 "INVLAPLA.spad" 795154 795170 795495 795500) (-505 "INTTR.spad" 788548 788565 795144 795149) (-504 "INTTOOLS.spad" 786356 786372 788175 788180) (-503 "INTSLPE.spad" 785684 785692 786346 786351) (-502 "INTRVL.spad" 785250 785260 785598 785679) (-501 "INTRF.spad" 783682 783696 785240 785245) (-500 "INTRET.spad" 783114 783124 783672 783677) (-499 "INTRAT.spad" 781849 781866 783104 783109) (-498 "INTPM.spad" 780312 780328 781570 781575) (-497 "INTPAF.spad" 778188 778206 780241 780246) (-496 "INTHERTR.spad" 777462 777479 778178 778183) (-495 "INTHERAL.spad" 777132 777156 777452 777457) (-494 "INTHEORY.spad" 773571 773579 777122 777127) (-493 "INTG0.spad" 767335 767353 773500 773505) (-492 "INTFACT.spad" 766402 766412 767325 767330) (-491 "INTEF.spad" 764813 764829 766392 766397) (-490 "INTDOM.spad" 763436 763444 764739 764808) (-489 "INTDOM.spad" 762121 762131 763426 763431) (-488 "INTCAT.spad" 760388 760398 762035 762116) (-487 "INTBIT.spad" 759895 759903 760378 760383) (-486 "INTALG.spad" 759083 759110 759885 759890) (-485 "INTAF.spad" 758583 758599 759073 759078) (-484 "INTABL.spad" 756965 756996 757128 757155) (-483 "INT8.spad" 756845 756853 756955 756960) (-482 "INT64.spad" 756724 756732 756835 756840) (-481 "INT32.spad" 756603 756611 756714 756719) (-480 "INT16.spad" 756482 756490 756593 756598) (-479 "INT.spad" 756008 756016 756348 756477) (-478 "INS.spad" 753511 753519 755910 756003) (-477 "INS.spad" 751100 751110 753501 753506) (-476 "INPSIGN.spad" 750570 750583 751090 751095) (-475 "INPRODPF.spad" 749666 749685 750560 750565) (-474 "INPRODFF.spad" 748754 748778 749656 749661) (-473 "INNMFACT.spad" 747729 747746 748744 748749) (-472 "INMODGCD.spad" 747233 747263 747719 747724) (-471 "INFSP.spad" 745530 745552 747223 747228) (-470 "INFPROD0.spad" 744610 744629 745520 745525) (-469 "INFORM1.spad" 744235 744245 744600 744605) (-468 "INFORM.spad" 741446 741454 744225 744230) (-467 "INFINITY.spad" 740998 741006 741436 741441) (-466 "INETCLTS.spad" 740975 740983 740988 740993) (-465 "INEP.spad" 739521 739543 740965 740970) (-464 "INDE.spad" 739170 739187 739431 739436) (-463 "INCRMAPS.spad" 738607 738617 739160 739165) (-462 "INBFILE.spad" 737703 737711 738597 738602) (-461 "INBFF.spad" 733553 733564 737693 737698) (-460 "INBCON.spad" 731819 731827 733543 733548) (-459 "INBCON.spad" 730083 730093 731809 731814) (-458 "INAST.spad" 729744 729752 730073 730078) (-457 "IMPTAST.spad" 729452 729460 729734 729739) (-456 "IMATRIX.spad" 728462 728488 728974 729001) (-455 "IMATQF.spad" 727556 727600 728418 728423) (-454 "IMATLIN.spad" 726177 726201 727512 727517) (-453 "IIARRAY2.spad" 725646 725684 725849 725876) (-452 "IFF.spad" 725059 725075 725330 725423) (-451 "IFAST.spad" 724673 724681 725049 725054) (-450 "IFARRAY.spad" 722200 722215 723898 723925) (-449 "IFAMON.spad" 722062 722079 722156 722161) (-448 "IEVALAB.spad" 721475 721487 722052 722057) (-447 "IEVALAB.spad" 720886 720900 721465 721470) (-446 "IDPOAMS.spad" 720564 720576 720798 720803) (-445 "IDPOAM.spad" 720206 720218 720476 720481) (-444 "IDPO.spad" 719941 719953 720118 720123) (-443 "IDPC.spad" 718670 718682 719931 719936) (-442 "IDPAM.spad" 718337 718349 718582 718587) (-441 "IDPAG.spad" 718006 718018 718249 718254) (-440 "IDENT.spad" 717658 717666 717996 718001) (-439 "IDECOMP.spad" 714897 714915 717648 717653) (-438 "IDEAL.spad" 709859 709898 714845 714850) (-437 "ICDEN.spad" 709072 709088 709849 709854) (-436 "ICARD.spad" 708465 708473 709062 709067) (-435 "IBPTOOLS.spad" 707072 707089 708455 708460) (-434 "IBITS.spad" 706585 706598 706718 706745) (-433 "IBATOOL.spad" 703570 703589 706575 706580) (-432 "IBACHIN.spad" 702077 702092 703560 703565) (-431 "IARRAY2.spad" 701138 701164 701749 701776) (-430 "IARRAY1.spad" 700217 700232 700363 700390) (-429 "IAN.spad" 698599 698607 700048 700141) (-428 "IALGFACT.spad" 698210 698243 698589 698594) (-427 "HYPCAT.spad" 697634 697642 698200 698205) (-426 "HYPCAT.spad" 697056 697066 697624 697629) (-425 "HOSTNAME.spad" 696872 696880 697046 697051) (-424 "HOMOTOP.spad" 696615 696625 696862 696867) (-423 "HOAGG.spad" 693897 693907 696605 696610) (-422 "HOAGG.spad" 690929 690941 693639 693644) (-421 "HEXADEC.spad" 689154 689162 689519 689612) (-420 "HEUGCD.spad" 688245 688256 689144 689149) (-419 "HELLFDIV.spad" 687851 687875 688235 688240) (-418 "HEAP.spad" 687308 687318 687523 687550) (-417 "HEADAST.spad" 686849 686857 687298 687303) (-416 "HDP.spad" 676482 676498 676859 676956) (-415 "HDMP.spad" 674029 674044 674645 674772) (-414 "HB.spad" 672304 672312 674019 674024) (-413 "HASHTBL.spad" 670638 670669 670849 670876) (-412 "HASAST.spad" 670354 670362 670628 670633) (-411 "HACKPI.spad" 669845 669853 670256 670349) (-410 "GTSET.spad" 668772 668788 669479 669506) (-409 "GSTBL.spad" 667155 667190 667329 667344) (-408 "GSERIES.spad" 664527 664554 665346 665495) (-407 "GROUP.spad" 663800 663808 664507 664522) (-406 "GROUP.spad" 663081 663091 663790 663795) (-405 "GROEBSOL.spad" 661575 661596 663071 663076) (-404 "GRMOD.spad" 660156 660168 661565 661570) (-403 "GRMOD.spad" 658735 658749 660146 660151) (-402 "GRIMAGE.spad" 651648 651656 658725 658730) (-401 "GRDEF.spad" 650027 650035 651638 651643) (-400 "GRAY.spad" 648498 648506 650017 650022) (-399 "GRALG.spad" 647593 647605 648488 648493) (-398 "GRALG.spad" 646686 646700 647583 647588) (-397 "GPOLSET.spad" 646144 646167 646356 646383) (-396 "GOSPER.spad" 645421 645439 646134 646139) (-395 "GMODPOL.spad" 644569 644596 645389 645416) (-394 "GHENSEL.spad" 643652 643666 644559 644564) (-393 "GENUPS.spad" 639945 639958 643642 643647) (-392 "GENUFACT.spad" 639522 639532 639935 639940) (-391 "GENPGCD.spad" 639124 639141 639512 639517) (-390 "GENMFACT.spad" 638576 638595 639114 639119) (-389 "GENEEZ.spad" 636535 636548 638566 638571) (-388 "GDMP.spad" 633924 633941 634698 634825) (-387 "GCNAALG.spad" 627847 627874 633718 633785) (-386 "GCDDOM.spad" 627039 627047 627773 627842) (-385 "GCDDOM.spad" 626293 626303 627029 627034) (-384 "GBINTERN.spad" 622313 622351 626283 626288) (-383 "GBF.spad" 618096 618134 622303 622308) (-382 "GBEUCLID.spad" 615978 616016 618086 618091) (-381 "GB.spad" 613504 613542 615934 615939) (-380 "GAUSSFAC.spad" 612817 612825 613494 613499) (-379 "GALUTIL.spad" 611143 611153 612773 612778) (-378 "GALPOLYU.spad" 609597 609610 611133 611138) (-377 "GALFACTU.spad" 607810 607829 609587 609592) (-376 "GALFACT.spad" 598023 598034 607800 607805) (-375 "FUNDESC.spad" 597701 597709 598013 598018) (-374 "FUNCTION.spad" 597550 597562 597691 597696) (-373 "FT.spad" 595850 595858 597540 597545) (-372 "FSUPFACT.spad" 594764 594783 595800 595805) (-371 "FST.spad" 592850 592858 594754 594759) (-370 "FSRED.spad" 592330 592346 592840 592845) (-369 "FSPRMELT.spad" 591196 591212 592287 592292) (-368 "FSPECF.spad" 589287 589303 591186 591191) (-367 "FSINT.spad" 588947 588963 589277 589282) (-366 "FSERIES.spad" 588138 588150 588767 588866) (-365 "FSCINT.spad" 587455 587471 588128 588133) (-364 "FSAGG2.spad" 586190 586206 587445 587450) (-363 "FSAGG.spad" 585307 585317 586146 586185) (-362 "FSAGG.spad" 584386 584398 585227 585232) (-361 "FS2UPS.spad" 578901 578935 584376 584381) (-360 "FS2EXPXP.spad" 578042 578065 578891 578896) (-359 "FS2.spad" 577697 577713 578032 578037) (-358 "FS.spad" 571969 571979 577476 577692) (-357 "FS.spad" 566043 566055 571552 571557) (-356 "FRUTIL.spad" 564997 565007 566033 566038) (-355 "FRNAALG.spad" 560274 560284 564939 564992) (-354 "FRNAALG.spad" 555563 555575 560230 560235) (-353 "FRNAAF2.spad" 555011 555029 555553 555558) (-352 "FRMOD.spad" 554419 554449 554940 554945) (-351 "FRIDEAL2.spad" 554023 554055 554409 554414) (-350 "FRIDEAL.spad" 553248 553269 554003 554018) (-349 "FRETRCT.spad" 552767 552777 553238 553243) (-348 "FRETRCT.spad" 552193 552205 552666 552671) (-347 "FRAMALG.spad" 550573 550586 552149 552188) (-346 "FRAMALG.spad" 548985 549000 550563 550568) (-345 "FRAC2.spad" 548590 548602 548975 548980) (-344 "FRAC.spad" 546577 546587 546964 547137) (-343 "FR2.spad" 545913 545925 546567 546572) (-342 "FR.spad" 539701 539711 544974 545043) (-341 "FPS.spad" 536540 536548 539591 539696) (-340 "FPS.spad" 533407 533417 536460 536465) (-339 "FPC.spad" 532453 532461 533309 533402) (-338 "FPC.spad" 531585 531595 532443 532448) (-337 "FPATMAB.spad" 531347 531357 531575 531580) (-336 "FPARFRAC.spad" 530189 530206 531337 531342) (-335 "FORDER.spad" 529880 529904 530179 530184) (-334 "FNLA.spad" 529304 529326 529848 529875) (-333 "FNCAT.spad" 527899 527907 529294 529299) (-332 "FNAME.spad" 527791 527799 527889 527894) (-331 "FMONOID.spad" 527472 527482 527747 527752) (-330 "FMONCAT.spad" 524641 524651 527462 527467) (-329 "FMCAT.spad" 522317 522335 524609 524636) (-328 "FM1.spad" 521682 521694 522251 522278) (-327 "FM.spad" 521297 521309 521536 521563) (-326 "FLOATRP.spad" 519040 519054 521287 521292) (-325 "FLOATCP.spad" 516479 516493 519030 519035) (-324 "FLOAT.spad" 509793 509801 516345 516474) (-323 "FLINEXP.spad" 509515 509525 509783 509788) (-322 "FLINEXP.spad" 509194 509206 509464 509469) (-321 "FLASORT.spad" 508520 508532 509184 509189) (-320 "FLALG.spad" 506190 506209 508446 508515) (-319 "FLAGG2.spad" 504907 504923 506180 506185) (-318 "FLAGG.spad" 501973 501983 504887 504902) (-317 "FLAGG.spad" 498940 498952 501856 501861) (-316 "FINRALG.spad" 497025 497038 498896 498935) (-315 "FINRALG.spad" 495036 495051 496909 496914) (-314 "FINITE.spad" 494188 494196 495026 495031) (-313 "FINITE.spad" 493338 493348 494178 494183) (-312 "FINAALG.spad" 482523 482533 493280 493333) (-311 "FINAALG.spad" 471720 471732 482479 482484) (-310 "FILECAT.spad" 470254 470271 471710 471715) (-309 "FILE.spad" 469837 469847 470244 470249) (-308 "FIELD.spad" 469243 469251 469739 469832) (-307 "FIELD.spad" 468735 468745 469233 469238) (-306 "FGROUP.spad" 467398 467408 468715 468730) (-305 "FGLMICPK.spad" 466193 466208 467388 467393) (-304 "FFX.spad" 465579 465594 465912 466005) (-303 "FFSLPE.spad" 465090 465111 465569 465574) (-302 "FFPOLY2.spad" 464150 464167 465080 465085) (-301 "FFPOLY.spad" 455492 455503 464140 464145) (-300 "FFP.spad" 454900 454920 455211 455304) (-299 "FFNBX.spad" 453423 453443 454619 454712) (-298 "FFNBP.spad" 451947 451964 453142 453235) (-297 "FFNB.spad" 450415 450436 451631 451724) (-296 "FFINTBAS.spad" 447929 447948 450405 450410) (-295 "FFIELDC.spad" 445514 445522 447831 447924) (-294 "FFIELDC.spad" 443185 443195 445504 445509) (-293 "FFHOM.spad" 441957 441974 443175 443180) (-292 "FFF.spad" 439400 439411 441947 441952) (-291 "FFCGX.spad" 438258 438278 439119 439212) (-290 "FFCGP.spad" 437158 437178 437977 438070) (-289 "FFCG.spad" 435953 435974 436842 436935) (-288 "FFCAT2.spad" 435700 435740 435943 435948) (-287 "FFCAT.spad" 428865 428887 435539 435695) (-286 "FFCAT.spad" 422109 422133 428785 428790) (-285 "FF.spad" 421560 421576 421793 421886) (-284 "FEVALAB.spad" 421268 421278 421550 421555) (-283 "FEVALAB.spad" 420752 420764 421036 421041) (-282 "FDIVCAT.spad" 418848 418872 420742 420747) (-281 "FDIVCAT.spad" 416942 416968 418838 418843) (-280 "FDIV2.spad" 416598 416638 416932 416937) (-279 "FDIV.spad" 416056 416080 416588 416593) (-278 "FCTRDATA.spad" 415064 415072 416046 416051) (-277 "FCOMP.spad" 414443 414453 415054 415059) (-276 "FAXF.spad" 407478 407492 414345 414438) (-275 "FAXF.spad" 400565 400581 407434 407439) (-274 "FARRAY.spad" 398757 398767 399790 399817) (-273 "FAMR.spad" 396901 396913 398655 398752) (-272 "FAMR.spad" 395029 395043 396785 396790) (-271 "FAMONOID.spad" 394713 394723 394983 394988) (-270 "FAMONC.spad" 393033 393045 394703 394708) (-269 "FAGROUP.spad" 392673 392683 392929 392956) (-268 "FACUTIL.spad" 390885 390902 392663 392668) (-267 "FACTFUNC.spad" 390087 390097 390875 390880) (-266 "EXPUPXS.spad" 386979 387002 388278 388427) (-265 "EXPRTUBE.spad" 384267 384275 386969 386974) (-264 "EXPRODE.spad" 381435 381451 384257 384262) (-263 "EXPR2UPS.spad" 377557 377570 381425 381430) (-262 "EXPR2.spad" 377262 377274 377547 377552) (-261 "EXPR.spad" 372907 372917 373621 373908) (-260 "EXPEXPAN.spad" 369852 369877 370484 370577) (-259 "EXITAST.spad" 369588 369596 369842 369847) (-258 "EXIT.spad" 369259 369267 369578 369583) (-257 "EVALCYC.spad" 368719 368733 369249 369254) (-256 "EVALAB.spad" 368299 368309 368709 368714) (-255 "EVALAB.spad" 367877 367889 368289 368294) (-254 "EUCDOM.spad" 365467 365475 367803 367872) (-253 "EUCDOM.spad" 363119 363129 365457 365462) (-252 "ES2.spad" 362632 362648 363109 363114) (-251 "ES1.spad" 362202 362218 362622 362627) (-250 "ES.spad" 355073 355081 362192 362197) (-249 "ES.spad" 347865 347875 354986 354991) (-248 "ERROR.spad" 345192 345200 347855 347860) (-247 "EQTBL.spad" 343528 343550 343737 343764) (-246 "EQ2.spad" 343246 343258 343518 343523) (-245 "EQ.spad" 338152 338162 340947 341053) (-244 "EP.spad" 334478 334488 338142 338147) (-243 "ENV.spad" 333156 333164 334468 334473) (-242 "ENTIRER.spad" 332824 332832 333100 333151) (-241 "EMR.spad" 332112 332153 332750 332819) (-240 "ELTAGG.spad" 330366 330385 332102 332107) (-239 "ELTAGG.spad" 328584 328605 330322 330327) (-238 "ELTAB.spad" 328059 328072 328574 328579) (-237 "ELFUTS.spad" 327494 327513 328049 328054) (-236 "ELEMFUN.spad" 327183 327191 327484 327489) (-235 "ELEMFUN.spad" 326870 326880 327173 327178) (-234 "ELAGG.spad" 324841 324851 326850 326865) (-233 "ELAGG.spad" 322749 322761 324760 324765) (-232 "ELABOR.spad" 322095 322103 322739 322744) (-231 "ELABEXPR.spad" 321027 321035 322085 322090) (-230 "EFUPXS.spad" 317803 317833 320983 320988) (-229 "EFULS.spad" 314639 314662 317759 317764) (-228 "EFSTRUC.spad" 312654 312670 314629 314634) (-227 "EF.spad" 307430 307446 312644 312649) (-226 "EAB.spad" 305730 305738 307420 307425) (-225 "DVARCAT.spad" 302736 302746 305720 305725) (-224 "DVARCAT.spad" 299740 299752 302726 302731) (-223 "DSMP.spad" 297473 297487 297778 297905) (-222 "DSEXT.spad" 296775 296785 297463 297468) (-221 "DSEXT.spad" 295997 296009 296687 296692) (-220 "DROPT1.spad" 295662 295672 295987 295992) (-219 "DROPT0.spad" 290527 290535 295652 295657) (-218 "DROPT.spad" 284486 284494 290517 290522) (-217 "DRAWPT.spad" 282659 282667 284476 284481) (-216 "DRAWHACK.spad" 281967 281977 282649 282654) (-215 "DRAWCX.spad" 279445 279453 281957 281962) (-214 "DRAWCURV.spad" 278992 279007 279435 279440) (-213 "DRAWCFUN.spad" 268524 268532 278982 278987) (-212 "DRAW.spad" 261400 261413 268514 268519) (-211 "DQAGG.spad" 259578 259588 261368 261395) (-210 "DPOLCAT.spad" 254935 254951 259446 259573) (-209 "DPOLCAT.spad" 250378 250396 254891 254896) (-208 "DPMO.spad" 243081 243097 243219 243425) (-207 "DPMM.spad" 235797 235815 235922 236128) (-206 "DOMTMPLT.spad" 235568 235576 235787 235792) (-205 "DOMCTOR.spad" 235323 235331 235558 235563) (-204 "DOMAIN.spad" 234434 234442 235313 235318) (-203 "DMP.spad" 232027 232042 232597 232724) (-202 "DMEXT.spad" 231894 231904 231995 232022) (-201 "DLP.spad" 231254 231264 231884 231889) (-200 "DLIST.spad" 229875 229885 230479 230506) (-199 "DLAGG.spad" 228292 228302 229865 229870) (-198 "DIVRING.spad" 227834 227842 228236 228287) (-197 "DIVRING.spad" 227420 227430 227824 227829) (-196 "DISPLAY.spad" 225610 225618 227410 227415) (-195 "DIRPROD2.spad" 224428 224446 225600 225605) (-194 "DIRPROD.spad" 213798 213814 214438 214535) (-193 "DIRPCAT.spad" 212993 213009 213696 213793) (-192 "DIRPCAT.spad" 211814 211832 212519 212524) (-191 "DIOSP.spad" 210639 210647 211804 211809) (-190 "DIOPS.spad" 209635 209645 210619 210634) (-189 "DIOPS.spad" 208605 208617 209591 209596) (-188 "DIFRING.spad" 208443 208451 208585 208600) (-187 "DIFFSPC.spad" 208022 208030 208433 208438) (-186 "DIFFSPC.spad" 207599 207609 208012 208017) (-185 "DIFFMOD.spad" 207088 207098 207567 207594) (-184 "DIFFDOM.spad" 206253 206264 207078 207083) (-183 "DIFFDOM.spad" 205416 205429 206243 206248) (-182 "DIFEXT.spad" 205235 205245 205396 205411) (-181 "DIAGG.spad" 204865 204875 205215 205230) (-180 "DIAGG.spad" 204503 204515 204855 204860) (-179 "DHMATRIX.spad" 202880 202890 204025 204052) (-178 "DFSFUN.spad" 196520 196528 202870 202875) (-177 "DFLOAT.spad" 193127 193135 196410 196515) (-176 "DFINTTLS.spad" 191358 191374 193117 193122) (-175 "DERHAM.spad" 189272 189304 191338 191353) (-174 "DEQUEUE.spad" 188661 188671 188944 188971) (-173 "DEGRED.spad" 188278 188292 188651 188656) (-172 "DEFINTRF.spad" 185860 185870 188268 188273) (-171 "DEFINTEF.spad" 184398 184414 185850 185855) (-170 "DEFAST.spad" 183782 183790 184388 184393) (-169 "DECIMAL.spad" 182011 182019 182372 182465) (-168 "DDFACT.spad" 179832 179849 182001 182006) (-167 "DBLRESP.spad" 179432 179456 179822 179827) (-166 "DBASIS.spad" 179058 179073 179422 179427) (-165 "DBASE.spad" 177722 177732 179048 179053) (-164 "DATAARY.spad" 177208 177221 177712 177717) (-163 "CYCLOTOM.spad" 176714 176722 177198 177203) (-162 "CYCLES.spad" 173506 173514 176704 176709) (-161 "CVMP.spad" 172923 172933 173496 173501) (-160 "CTRIGMNP.spad" 171423 171439 172913 172918) (-159 "CTORKIND.spad" 171026 171034 171413 171418) (-158 "CTORCAT.spad" 170267 170275 171016 171021) (-157 "CTORCAT.spad" 169506 169516 170257 170262) (-156 "CTORCALL.spad" 169095 169105 169496 169501) (-155 "CTOR.spad" 168786 168794 169085 169090) (-154 "CSTTOOLS.spad" 168031 168044 168776 168781) (-153 "CRFP.spad" 161803 161816 168021 168026) (-152 "CRCEAST.spad" 161523 161531 161793 161798) (-151 "CRAPACK.spad" 160590 160600 161513 161518) (-150 "CPMATCH.spad" 160091 160106 160512 160517) (-149 "CPIMA.spad" 159796 159815 160081 160086) (-148 "COORDSYS.spad" 154805 154815 159786 159791) (-147 "CONTOUR.spad" 154232 154240 154795 154800) (-146 "CONTFRAC.spad" 149982 149992 154134 154227) (-145 "CONDUIT.spad" 149740 149748 149972 149977) (-144 "COMRING.spad" 149414 149422 149678 149735) (-143 "COMPPROP.spad" 148932 148940 149404 149409) (-142 "COMPLPAT.spad" 148699 148714 148922 148927) (-141 "COMPLEX2.spad" 148414 148426 148689 148694) (-140 "COMPLEX.spad" 144120 144130 144364 144622) (-139 "COMPILER.spad" 143669 143677 144110 144115) (-138 "COMPFACT.spad" 143271 143285 143659 143664) (-137 "COMPCAT.spad" 141346 141356 143008 143266) (-136 "COMPCAT.spad" 139162 139174 140826 140831) (-135 "COMMUPC.spad" 138910 138928 139152 139157) (-134 "COMMONOP.spad" 138443 138451 138900 138905) (-133 "COMMAAST.spad" 138206 138214 138433 138438) (-132 "COMM.spad" 138017 138025 138196 138201) (-131 "COMBOPC.spad" 136940 136948 138007 138012) (-130 "COMBINAT.spad" 135707 135717 136930 136935) (-129 "COMBF.spad" 133129 133145 135697 135702) (-128 "COLOR.spad" 131966 131974 133119 133124) (-127 "COLONAST.spad" 131632 131640 131956 131961) (-126 "CMPLXRT.spad" 131343 131360 131622 131627) (-125 "CLLCTAST.spad" 131005 131013 131333 131338) (-124 "CLIP.spad" 127113 127121 130995 131000) (-123 "CLIF.spad" 125768 125784 127069 127108) (-122 "CLAGG.spad" 122305 122315 125758 125763) (-121 "CLAGG.spad" 118726 118738 122181 122186) (-120 "CINTSLPE.spad" 118081 118094 118716 118721) (-119 "CHVAR.spad" 116219 116241 118071 118076) (-118 "CHARZ.spad" 116134 116142 116199 116214) (-117 "CHARPOL.spad" 115660 115670 116124 116129) (-116 "CHARNZ.spad" 115422 115430 115640 115655) (-115 "CHAR.spad" 112790 112798 115412 115417) (-114 "CFCAT.spad" 112118 112126 112780 112785) (-113 "CDEN.spad" 111338 111352 112108 112113) (-112 "CCLASS.spad" 109518 109526 110780 110819) (-111 "CATEGORY.spad" 108592 108600 109508 109513) (-110 "CATCTOR.spad" 108483 108491 108582 108587) (-109 "CATAST.spad" 108109 108117 108473 108478) (-108 "CASEAST.spad" 107823 107831 108099 108104) (-107 "CARTEN2.spad" 107213 107240 107813 107818) (-106 "CARTEN.spad" 102965 102989 107203 107208) (-105 "CARD.spad" 100260 100268 102939 102960) (-104 "CAPSLAST.spad" 100042 100050 100250 100255) (-103 "CACHSET.spad" 99666 99674 100032 100037) (-102 "CABMON.spad" 99221 99229 99656 99661) (-101 "BYTEORD.spad" 98896 98904 99211 99216) (-100 "BYTEBUF.spad" 96882 96890 98168 98195) (-99 "BYTE.spad" 96358 96365 96872 96877) (-98 "BTREE.spad" 95497 95506 96030 96057) (-97 "BTOURN.spad" 94568 94577 95169 95196) (-96 "BTCAT.spad" 93961 93970 94536 94563) (-95 "BTCAT.spad" 93374 93385 93951 93956) (-94 "BTAGG.spad" 92841 92848 93342 93369) (-93 "BTAGG.spad" 92328 92337 92831 92836) (-92 "BSTREE.spad" 91135 91144 92000 92027) (-91 "BRILL.spad" 89341 89351 91125 91130) (-90 "BRAGG.spad" 88298 88307 89331 89336) (-89 "BRAGG.spad" 87219 87230 88254 88259) (-88 "BPADICRT.spad" 85279 85290 85525 85618) (-87 "BPADIC.spad" 84952 84963 85205 85274) (-86 "BOUNDZRO.spad" 84609 84625 84942 84947) (-85 "BOP1.spad" 82068 82077 84599 84604) (-84 "BOP.spad" 77211 77218 82058 82063) (-83 "BOOLEAN.spad" 76760 76767 77201 77206) (-82 "BOOLE.spad" 76411 76418 76750 76755) (-81 "BOOLE.spad" 76060 76069 76401 76406) (-80 "BMODULE.spad" 75773 75784 76028 76055) (-79 "BITS.spad" 75205 75212 75419 75446) (-78 "BINDING.spad" 74627 74634 75195 75200) (-77 "BINARY.spad" 72862 72869 73217 73310) (-76 "BGAGG.spad" 72068 72077 72842 72857) (-75 "BGAGG.spad" 71282 71293 72058 72063) (-74 "BEZOUT.spad" 70423 70449 71232 71237) (-73 "BBTREE.spad" 67366 67375 70095 70122) (-72 "BASTYPE.spad" 66866 66873 67356 67361) (-71 "BASTYPE.spad" 66364 66373 66856 66861) (-70 "BALFACT.spad" 65824 65836 66354 66359) (-69 "AUTOMOR.spad" 65275 65284 65804 65819) (-68 "ATTREG.spad" 61998 62005 65027 65270) (-67 "ATTRAST.spad" 61715 61722 61988 61993) (-66 "ATRIG.spad" 61185 61192 61705 61710) (-65 "ATRIG.spad" 60653 60662 61175 61180) (-64 "ASTCAT.spad" 60557 60564 60643 60648) (-63 "ASTCAT.spad" 60459 60468 60547 60552) (-62 "ASTACK.spad" 59863 59872 60131 60158) (-61 "ASSOCEQ.spad" 58697 58708 59819 59824) (-60 "ARRAY2.spad" 58130 58139 58369 58396) (-59 "ARRAY12.spad" 56843 56854 58120 58125) (-58 "ARRAY1.spad" 55722 55731 56068 56095) (-57 "ARR2CAT.spad" 51504 51525 55690 55717) (-56 "ARR2CAT.spad" 47306 47329 51494 51499) (-55 "ARITY.spad" 46678 46685 47296 47301) (-54 "APPRULE.spad" 45962 45984 46668 46673) (-53 "APPLYORE.spad" 45581 45594 45952 45957) (-52 "ANY1.spad" 44652 44661 45571 45576) (-51 "ANY.spad" 43503 43510 44642 44647) (-50 "ANTISYM.spad" 41948 41964 43483 43498) (-49 "ANON.spad" 41657 41664 41938 41943) (-48 "AN.spad" 40125 40132 41488 41581) (-47 "AMR.spad" 38310 38321 40023 40120) (-46 "AMR.spad" 36358 36371 38073 38078) (-45 "ALIST.spad" 33596 33617 33946 33973) (-44 "ALGSC.spad" 32731 32757 33468 33521) (-43 "ALGPKG.spad" 28514 28525 32687 32692) (-42 "ALGMFACT.spad" 27707 27721 28504 28509) (-41 "ALGMANIP.spad" 25208 25223 27551 27556) (-40 "ALGFF.spad" 23026 23053 23243 23399) (-39 "ALGFACT.spad" 22145 22155 23016 23021) (-38 "ALGEBRA.spad" 21978 21987 22101 22140) (-37 "ALGEBRA.spad" 21843 21854 21968 21973) (-36 "ALAGG.spad" 21355 21376 21811 21838) (-35 "AHYP.spad" 20736 20743 21345 21350) (-34 "AGG.spad" 19445 19452 20726 20731) (-33 "AGG.spad" 18118 18127 19401 19406) (-32 "AF.spad" 16563 16578 18067 18072) (-31 "ADDAST.spad" 16249 16256 16553 16558) (-30 "ACPLOT.spad" 14840 14847 16239 16244) (-29 "ACFS.spad" 12697 12706 14742 14835) (-28 "ACFS.spad" 10640 10651 12687 12692) (-27 "ACF.spad" 7394 7401 10542 10635) (-26 "ACF.spad" 4234 4243 7384 7389) (-25 "ABELSG.spad" 3775 3782 4224 4229) (-24 "ABELSG.spad" 3314 3323 3765 3770) (-23 "ABELMON.spad" 2859 2866 3304 3309) (-22 "ABELMON.spad" 2402 2411 2849 2854) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 8ace30e1..719c62d8 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,276 +1,276 @@ -(198330 . 3537001169) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-343 |#2|) |#3|) . T)) -((((-343 (-478))) |has| (-343 |#2|) (-943 (-343 (-478)))) (((-478)) |has| (-343 |#2|) (-943 (-478))) (((-343 |#2|)) . T)) -((((-343 |#2|)) . T)) -((((-478)) |has| (-343 |#2|) (-575 (-478))) (((-343 |#2|)) . T)) -((((-343 |#2|)) . T)) -((((-343 |#2|) |#3|) . T)) -(|has| (-343 |#2|) (-118)) -((((-343 |#2|) |#3|) . T)) -(|has| (-343 |#2|) (-116)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -(|has| (-343 |#2|) (-188)) -((($) OR (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-187)))) -(OR (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-187))) -((((-343 |#2|)) . T)) -((($ (-1075)) OR (|has| (-343 |#2|) (-802 (-1075))) (|has| (-343 |#2|) (-804 (-1075))))) -((((-1075)) OR (|has| (-343 |#2|) (-802 (-1075))) (|has| (-343 |#2|) (-804 (-1075))))) -((((-1075)) |has| (-343 |#2|) (-802 (-1075)))) -((((-343 |#2|)) . T)) +(198618 . 3537569215) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-344 |#2|) |#3|) . T)) +((((-344 (-479))) |has| (-344 |#2|) (-944 (-344 (-479)))) (((-479)) |has| (-344 |#2|) (-944 (-479))) (((-344 |#2|)) . T)) +((((-344 |#2|)) . T)) +((((-479)) |has| (-344 |#2|) (-576 (-479))) (((-344 |#2|)) . T)) +((((-344 |#2|)) . T)) +((((-344 |#2|) |#3|) . T)) +(|has| (-344 |#2|) (-118)) +((((-344 |#2|) |#3|) . T)) +(|has| (-344 |#2|) (-116)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +(|has| (-344 |#2|) (-188)) +((($) OR (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-187)))) +(OR (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-187))) +((((-344 |#2|)) . T)) +((($ (-1080)) OR (|has| (-344 |#2|) (-803 (-1080))) (|has| (-344 |#2|) (-805 (-1080))))) +((((-1080)) OR (|has| (-344 |#2|) (-803 (-1080))) (|has| (-344 |#2|) (-805 (-1080))))) +((((-1080)) |has| (-344 |#2|) (-803 (-1080)))) +((((-344 |#2|)) . T)) (((|#3|) . T)) -((((-343 |#2|) (-343 |#2|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-478)) |has| (-343 |#2|) (-575 (-478))) (((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +((((-344 |#2|) (-344 |#2|)) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-479)) |has| (-344 |#2|) (-576 (-479))) (((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (((|#1| |#2| |#3|) . T)) -((((-478) |#1|) . T)) +((((-479) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1042 |#2| |#1|)) . T) ((|#1|) . T)) -((((-765)) . T)) -((((-1042 |#2| |#1|)) . T) ((|#1|) . T) (((-478)) . T)) +((((-1046 |#2| |#1|)) . T) ((|#1|) . T)) +((((-766)) . T)) +((((-1046 |#2| |#1|)) . T) ((|#1|) . T) (((-479)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-765)) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-766)) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) -((((-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) (((-1131 (-478)) $) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -((((-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) +((((-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) (((-1136 (-479)) $) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +((((-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-140 (-323))) . T) (((-177)) . T) (((-323)) . T)) -((((-343 (-478))) . T) (((-478)) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-545 $) $) . T)) -((((-343 (-478))) . T) (((-478)) . T) (((-545 $)) . T)) -((((-1025 (-478) (-545 $))) . T) (($) . T) (((-478)) . T) (((-343 (-478))) . T) (((-545 $)) . T)) -((((-765)) . T)) -((((-765)) . T)) -(((|#1|) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-478)) . T) (($) . T)) +((((-140 (-324))) . T) (((-177)) . T) (((-324)) . T)) +((((-344 (-479))) . T) (((-479)) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-546 $) $) . T)) +((((-344 (-479))) . T) (((-479)) . T) (((-546 $)) . T)) +((((-1029 (-479) (-546 $))) . T) (($) . T) (((-479)) . T) (((-344 (-479))) . T) (((-546 $)) . T)) +((((-766)) . T)) +((((-766)) . T)) +(((|#1|) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-479)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-478)) . T)) +(((|#1|) . T) (((-479)) . T)) (((|#1|) . T)) -((((-765)) . T)) -((((-687)) . T)) -((((-687)) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-688)) . T)) +((((-688)) . T)) +((((-766)) . T)) (((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) (((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -((((-478) |#1|) . T)) -((((-1131 (-478)) $) . T) (((-478) |#1|) . T)) -((((-478) |#1|) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +((((-479) |#1|) . T)) +((((-1136 (-479)) $) . T) (((-479) |#1|) . T)) +((((-479) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(|has| |#1| (-1003)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1006)) (((|#1|) . T)) (((|#1|) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) (((|#1| |#1|) . T)) -((((-765)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-910 2)) . T) (((-343 (-478))) . T) (((-765)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((($) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -((((-478) (-478)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-467)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) -((((-343 (-478))) . T) (((-478)) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T)) -((((-765)) . T)) +((((-766)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-911 2)) . T) (((-344 (-479))) . T) (((-766)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((($) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +((((-479) (-479)) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-468)) . T) (((-794 (-479))) . T) (((-324)) . T) (((-177)) . T)) +((((-344 (-479))) . T) (((-479)) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T)) +((((-766)) . T)) ((((-83)) . T)) ((((-83)) . T)) -((((-478) (-83)) . T)) -((((-478) (-83)) . T)) -((((-478) (-83)) . T) (((-1131 (-478)) $) . T)) -((((-467)) . T)) +((((-479) (-83)) . T)) +((((-479) (-83)) . T)) +((((-479) (-83)) . T) (((-1136 (-479)) $) . T)) +((((-468)) . T)) ((((-83)) . T)) -((((-765)) . T)) +((((-766)) . T)) ((((-83)) . T)) ((((-83)) . T)) -((((-467)) . T)) -((((-765)) . T)) -((((-1075)) . T)) -((((-765)) . T)) +((((-468)) . T)) +((((-766)) . T)) +((((-1080)) . T)) +((((-766)) . T)) ((($) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-478)) . T) (($) . T)) +((((-479)) . T) (($) . T)) (((|#1|) . T)) -((((-765)) . T)) +((((-766)) . T)) ((((-87 |#1|)) . T)) ((((-87 |#1|)) . T)) -((((-87 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-87 |#1|)) . T) (((-343 (-478))) . T)) -((((-87 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-87 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-87 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-87 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-87 |#1|) (-87 |#1|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) +((((-87 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-87 |#1|)) . T) (((-344 (-479))) . T)) +((((-87 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-87 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-87 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-87 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-87 |#1|) (-87 |#1|)) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) ((((-87 |#1|)) . T)) -((((-1075) (-87 |#1|)) |has| (-87 |#1|) (-447 (-1075) (-87 |#1|))) (((-87 |#1|) (-87 |#1|)) |has| (-87 |#1|) (-256 (-87 |#1|)))) +((((-1080) (-87 |#1|)) |has| (-87 |#1|) (-448 (-1080) (-87 |#1|))) (((-87 |#1|) (-87 |#1|)) |has| (-87 |#1|) (-256 (-87 |#1|)))) ((((-87 |#1|)) |has| (-87 |#1|) (-256 (-87 |#1|)))) ((((-87 |#1|) $) |has| (-87 |#1|) (-238 (-87 |#1|) (-87 |#1|)))) ((((-87 |#1|)) . T)) -((($) . T) (((-87 |#1|)) . T) (((-343 (-478))) . T)) +((($) . T) (((-87 |#1|)) . T) (((-344 (-479))) . T)) ((((-87 |#1|)) . T)) ((((-87 |#1|)) . T)) ((((-87 |#1|)) . T)) -((((-478)) . T) (((-87 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) +((((-479)) . T) (((-87 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) ((((-87 |#1|)) . T)) ((((-87 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) +((((-766)) . T)) ((((-99)) . T)) ((((-99)) . T)) -((((-1059)) . T) (((-862 (-99))) . T) (((-765)) . T)) +((((-1063)) . T) (((-863 (-99))) . T) (((-766)) . T)) ((((-99)) . T)) -((((-478) (-99)) . T)) -((((-1131 (-478)) $) . T) (((-478) (-99)) . T)) -((((-478) (-99)) . T)) +((((-479) (-99)) . T)) +((((-1136 (-479)) $) . T) (((-479) (-99)) . T)) +((((-479) (-99)) . T)) ((((-99)) . T)) ((((-99)) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-687)) . T)) -((((-687)) . T)) -((((-765)) . T)) -((((-478) |#3|) . T)) -((((-478) (-687)) . T) ((|#3| (-687)) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-688)) . T)) +((((-688)) . T)) +((((-766)) . T)) +((((-479) |#3|) . T)) +((((-479) (-688)) . T) ((|#3| (-688)) . T)) +((((-766)) . T)) (((|#3|) . T)) -((((-578 $)) . T) (((-578 |#3|)) . T) (((-1042 |#2| |#3|)) . T) (((-194 |#2| |#3|)) . T) ((|#3|) . T)) -(((|#3| (-687)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-439)) . T)) -((((-155)) . T) (((-765)) . T)) -((((-765)) . T)) +((((-579 $)) . T) (((-579 |#3|)) . T) (((-1046 |#2| |#3|)) . T) (((-194 |#2| |#3|)) . T) ((|#3|) . T)) +(((|#3| (-688)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-440)) . T)) +((((-155)) . T) (((-766)) . T)) +((((-766)) . T)) ((((-115)) . T)) ((((-115)) . T)) ((((-115)) . T)) @@ -278,9 +278,9 @@ ((((-115)) . T)) ((((-115)) . T)) ((((-115)) . T)) -((((-578 (-115))) . T) (((-1059)) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-579 (-115))) . T) (((-1063)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -288,1336 +288,1336 @@ (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-478)) . T)) +(((|#2|) . T) (((-479)) . T)) (((|#2|) . T) (($) . T)) -((((-765)) . T)) -(((|#2|) . T) (($) . T) (((-478)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) +((((-766)) . T)) +(((|#2|) . T) (($) . T) (((-479)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) (OR (|has| |#1| (-116)) (|has| |#1| (-295))) -((((-765)) . T)) +((((-766)) . T)) (|has| |#1| (-118)) (((|#1|) . T)) -((((-1075)) |has| |#1| (-802 (-1075)))) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075))))) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075))))) +((((-1080)) |has| |#1| (-803 (-1080)))) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080))))) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080))))) (((|#1|) . T)) (OR (|has| |#1| (-188)) (|has| |#1| (-187)) (|has| |#1| (-295))) ((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)) (|has| |#1| (-295)))) (OR (|has| |#1| (-188)) (|has| |#1| (-295))) (OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295))) (OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295))) -(OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) -(OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) +(OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-490))) +(OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-490))) (OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295))) (OR (|has| |#1| (-308)) (|has| |#1| (-295))) -(OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308)) (|has| |#1| (-295))) +(OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-308)) (|has| |#1| (-295))) (OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((|#1|) . T)) -((((-1075) |#1|) |has| |#1| (-447 (-1075) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) +((((-1080) |#1|) |has| |#1| (-448 (-1080) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) (((|#1|) |has| |#1| (-256 |#1|))) (((|#1| $) |has| |#1| (-238 |#1| |#1|))) (((|#1|) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) -(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) -(((|#1|) . T)) -((((-478)) |has| |#1| (-789 (-478))) (((-323)) |has| |#1| (-789 (-323)))) -(((|#1|) . T)) -((((-478)) . T) (($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-943 (-343 (-478))))) ((|#1|) . T)) -(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) -(((|#1| (-1070 |#1|)) . T)) -(((|#1| (-1070 |#1|)) . T)) -((($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($ $) . T) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -(((|#1| (-1070 |#1|)) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) +(((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) +(((|#1|) . T)) +((((-479)) |has| |#1| (-790 (-479))) (((-324)) |has| |#1| (-790 (-324)))) +(((|#1|) . T)) +((((-479)) . T) (($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-944 (-344 (-479))))) ((|#1|) . T)) +(((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) +(((|#1| (-1075 |#1|)) . T)) +(((|#1| (-1075 |#1|)) . T)) +((($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($ $) . T) (((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-254)) (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +(((|#1| (-1075 |#1|)) . T)) (|has| |#1| (-295)) (|has| |#1| (-295)) (|has| |#1| (-295)) -(OR (|has| |#1| (-313)) (|has| |#1| (-295))) -(((|#1|) . T)) -((((-140 (-177))) |has| |#1| (-926)) (((-140 (-323))) |has| |#1| (-926)) (((-467)) |has| |#1| (-548 (-467))) (((-1070 |#1|)) . T) (((-793 (-478))) |has| |#1| (-548 (-793 (-478)))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323))))) -(-12 (|has| |#1| (-254)) (|has| |#1| (-814))) -(-12 (|has| |#1| (-908)) (|has| |#1| (-1100))) -(|has| |#1| (-1100)) -(|has| |#1| (-1100)) -(|has| |#1| (-1100)) -(|has| |#1| (-1100)) -(|has| |#1| (-1100)) -(|has| |#1| (-1100)) -(((|#1|) . T)) -((((-765)) . T)) -((((-343 (-478))) . T) (($) . T) (((-343 |#1|)) . T) ((|#1|) . T)) -((((-343 (-478))) . T) (($) . T) (((-343 |#1|)) . T) ((|#1|) . T)) -((((-765)) . T)) -((($) . T) (((-343 (-478))) . T) (((-343 |#1|)) . T) ((|#1|) . T)) -((($) . T) (((-343 (-478))) . T) (((-343 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) (((-343 (-478)) (-343 (-478))) . T) (((-343 |#1|) (-343 |#1|)) . T) ((|#1| |#1|) . T)) -((((-343 (-478))) . T) (((-343 |#1|)) . T) ((|#1|) . T) (((-478)) . T) (($) . T)) -((((-343 (-478))) . T) (((-343 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T) (((-343 |#1|)) . T) ((|#1|) . T) (((-478)) . T)) -((((-343 (-478))) . T) (($) . T) (((-343 |#1|)) . T) ((|#1|) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-439)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-578 |#1|)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-910 10)) . T) (((-343 (-478))) . T) (((-765)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((($) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -((((-478) (-478)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-467)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) -((((-343 (-478))) . T) (((-478)) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) +(OR (|has| |#1| (-314)) (|has| |#1| (-295))) +(((|#1|) . T)) +((((-140 (-177))) |has| |#1| (-927)) (((-140 (-324))) |has| |#1| (-927)) (((-468)) |has| |#1| (-549 (-468))) (((-1075 |#1|)) . T) (((-794 (-479))) |has| |#1| (-549 (-794 (-479)))) (((-794 (-324))) |has| |#1| (-549 (-794 (-324))))) +(-12 (|has| |#1| (-254)) (|has| |#1| (-815))) +(-12 (|has| |#1| (-909)) (|has| |#1| (-1105))) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(|has| |#1| (-1105)) +(((|#1|) . T)) +((((-766)) . T)) +((((-344 (-479))) . T) (($) . T) (((-344 |#1|)) . T) ((|#1|) . T)) +((((-344 (-479))) . T) (($) . T) (((-344 |#1|)) . T) ((|#1|) . T)) +((((-766)) . T)) +((($) . T) (((-344 (-479))) . T) (((-344 |#1|)) . T) ((|#1|) . T)) +((($) . T) (((-344 (-479))) . T) (((-344 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) (((-344 (-479)) (-344 (-479))) . T) (((-344 |#1|) (-344 |#1|)) . T) ((|#1| |#1|) . T)) +((((-344 (-479))) . T) (((-344 |#1|)) . T) ((|#1|) . T) (((-479)) . T) (($) . T)) +((((-344 (-479))) . T) (((-344 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T) (((-344 |#1|)) . T) ((|#1|) . T) (((-479)) . T)) +((((-344 (-479))) . T) (($) . T) (((-344 |#1|)) . T) ((|#1|) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-440)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-579 |#1|)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-911 10)) . T) (((-344 (-479))) . T) (((-766)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((($) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +((((-479) (-479)) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-468)) . T) (((-794 (-479))) . T) (((-324)) . T) (((-177)) . T)) +((((-344 (-479))) . T) (((-479)) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-261 |#1|)) . T)) -((((-765)) . T)) -((((-261 |#1|)) . T) (((-478)) . T) (($) . T)) +((((-766)) . T)) +((((-261 |#1|)) . T) (((-479)) . T) (($) . T)) ((((-261 |#1|)) . T) (($) . T)) -((((-261 |#1|)) . T) (((-478)) . T)) +((((-261 |#1|)) . T) (((-479)) . T)) ((((-261 |#1|)) . T)) ((($) . T)) -((((-478)) . T) (((-343 (-478))) . T)) -((((-323)) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-467)) . T) (((-177)) . T) (((-323)) . T) (((-793 (-323))) . T)) -((((-765)) . T)) -((((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T) (((-478)) . T)) -(((|#1| (-1164 |#1|) (-1164 |#1|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(|has| |#1| (-1003)) -(((|#1|) . T)) -(((|#1| (-1164 |#1|) (-1164 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1003))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1003))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) -(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) -(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) -((((-765)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-547 (-765))) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1003))) (((-1164 |#2|)) . T)) -(((|#2|) |has| |#2| (-954))) -((((-1075)) -12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954)))) -((((-1075)) OR (-12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))))) -((($ (-1075)) OR (-12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))))) -(((|#2|) |has| |#2| (-954))) -(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954)))) -((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954))))) -(|has| |#2| (-954)) -(|has| |#2| (-954)) -(|has| |#2| (-954)) -(|has| |#2| (-954)) -((((-478)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954))) (($) |has| |#2| (-954))) -(-12 (|has| |#2| (-188)) (|has| |#2| (-954))) -(|has| |#2| (-313)) -(((|#2|) |has| |#2| (-954))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) (($) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) -(((|#2|) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) -(((|#2|) |has| |#2| (-1003))) -((((-478)) OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (|has| |#2| (-954))) ((|#2|) |has| |#2| (-1003)) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003)))) -(((|#2|) |has| |#2| (-1003)) (((-478)) -12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003)))) -((((-478) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -(((|#2|) . T)) -((((-478) |#2|) . T)) -((((-478) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)))) +((((-479)) . T) (((-344 (-479))) . T)) +((((-324)) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-468)) . T) (((-177)) . T) (((-324)) . T) (((-794 (-324))) . T)) +((((-766)) . T)) +((((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T) (((-479)) . T)) +(((|#1| (-1169 |#1|) (-1169 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1006)) +(((|#1|) . T)) +(((|#1| (-1169 |#1|) (-1169 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-711)) (|has| |#2| (-955))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-314)) (|has| |#2| (-659)) (|has| |#2| (-711)) (|has| |#2| (-750)) (|has| |#2| (-955)) (|has| |#2| (-1006))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-314)) (|has| |#2| (-659)) (|has| |#2| (-711)) (|has| |#2| (-750)) (|has| |#2| (-955)) (|has| |#2| (-1006))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-711)) (|has| |#2| (-955))) +(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-711)) (|has| |#2| (-955))) +(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-659)) (|has| |#2| (-955)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955)))) +((((-766)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-548 (-766))) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-314)) (|has| |#2| (-659)) (|has| |#2| (-711)) (|has| |#2| (-750)) (|has| |#2| (-955)) (|has| |#2| (-1006))) (((-1169 |#2|)) . T)) +(((|#2|) |has| |#2| (-955))) +((((-1080)) -12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955)))) +((((-1080)) OR (-12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955))) (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))))) +((($ (-1080)) OR (-12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955))) (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))))) +(((|#2|) |has| |#2| (-955))) +(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-955))) (-12 (|has| |#2| (-187)) (|has| |#2| (-955)))) +((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-955))) (-12 (|has| |#2| (-187)) (|has| |#2| (-955))))) +(|has| |#2| (-955)) +(|has| |#2| (-955)) +(|has| |#2| (-955)) +(|has| |#2| (-955)) +((((-479)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-659)) (|has| |#2| (-955))) (($) |has| |#2| (-955))) +(-12 (|has| |#2| (-188)) (|has| |#2| (-955))) +(|has| |#2| (-314)) +(((|#2|) |has| |#2| (-955))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955))) (($) |has| |#2| (-955)) (((-479)) -12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955)))) +(((|#2|) |has| |#2| (-955)) (((-479)) -12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955)))) +(((|#2|) |has| |#2| (-1006))) +((((-479)) OR (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (|has| |#2| (-955))) ((|#2|) |has| |#2| (-1006)) (((-344 (-479))) -12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006)))) +(((|#2|) |has| |#2| (-1006)) (((-479)) -12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (((-344 (-479))) -12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006)))) +((((-479) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +(((|#2|) . T)) +((((-479) |#2|) . T)) +((((-479) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-659)))) (((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)))) -(|has| |#2| (-710)) -(|has| |#2| (-710)) -(OR (|has| |#2| (-710)) (|has| |#2| (-749))) -(OR (|has| |#2| (-710)) (|has| |#2| (-749))) -(|has| |#2| (-710)) -(|has| |#2| (-710)) +(|has| |#2| (-711)) +(|has| |#2| (-711)) +(OR (|has| |#2| (-711)) (|has| |#2| (-750))) +(OR (|has| |#2| (-711)) (|has| |#2| (-750))) +(|has| |#2| (-711)) +(|has| |#2| (-711)) (((|#2|) |has| |#2| (-308))) (((|#1| |#2|) . T)) -((((-578 |#1|)) . T)) -((((-578 |#1|)) . T)) +((((-579 |#1|)) . T)) +((((-579 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) -((((-578 |#1|)) . T) (((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) +((((-579 |#1|)) . T) (((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) (((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -((((-478) |#1|) . T)) -((((-1131 (-478)) $) . T) (((-478) |#1|) . T)) -((((-478) |#1|) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +((((-479) |#1|) . T)) +((((-1136 (-479)) $) . T) (((-479) |#1|) . T)) +((((-479) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-467)) |has| |#2| (-548 (-467))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478))))) +((((-468)) |has| |#2| (-549 (-468))) (((-794 (-324))) |has| |#2| (-549 (-794 (-324)))) (((-794 (-479))) |has| |#2| (-549 (-794 (-479))))) ((($) . T)) -(((|#2| (-194 (-3933 |#1|) (-687))) . T)) +(((|#2| (-194 (-3939 |#1|) (-688))) . T)) (((|#2|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T)) (|has| |#2| (-116)) (|has| |#2| (-118)) -(OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -(((|#2| (-194 (-3933 |#1|) (-687))) . T)) -(((|#2|) . T)) -((($) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(OR (|has| |#2| (-385)) (|has| |#2| (-814))) -((($ $) . T) (((-766 |#1|) $) . T) (((-766 |#1|) |#2|) . T)) -((((-766 |#1|)) . T)) -((($ (-766 |#1|)) . T)) -((((-766 |#1|)) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -((((-343 (-478))) |has| |#2| (-943 (-343 (-478)))) (((-478)) |has| |#2| (-943 (-478))) ((|#2|) . T) (((-766 |#1|)) . T)) -((((-478)) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ((|#2|) . T) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-766 |#1|)) . T)) -(((|#2| (-194 (-3933 |#1|) (-687)) (-766 |#1|)) . T)) -((((-765)) . T)) -((((-439)) . T)) -((((-155)) . T) (((-765)) . T)) -((((-687) (-1080)) . T)) -((((-765)) . T)) -(((|#4| |#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-954)))) -(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-658)) (|has| |#4| (-954)))) -(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-954)))) -((((-765)) . T) (((-1164 |#4|)) . T)) -(((|#4|) |has| |#4| (-954))) -((((-1075)) -12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954)))) -((((-1075)) OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954))))) -((($ (-1075)) OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954))))) -(((|#4|) |has| |#4| (-954))) -(OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) -((($) OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954))))) -(|has| |#4| (-954)) -(|has| |#4| (-954)) -(|has| |#4| (-954)) -(|has| |#4| (-954)) -(((|#3|) . T) ((|#2|) . T) (((-478)) . T) ((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-658)) (|has| |#4| (-954))) (($) |has| |#4| (-954))) -(-12 (|has| |#4| (-188)) (|has| |#4| (-954))) -(|has| |#4| (-313)) -(((|#4|) |has| |#4| (-954))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-954))) (($) |has| |#4| (-954)) (((-478)) -12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954)))) -(((|#4|) |has| |#4| (-954)) (((-478)) -12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954)))) -(((|#4|) |has| |#4| (-1003))) -((((-478)) OR (-12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1003))) (|has| |#4| (-954))) ((|#4|) |has| |#4| (-1003)) (((-343 (-478))) -12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1003)))) -(((|#4|) |has| |#4| (-1003)) (((-478)) -12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1003))) (((-343 (-478))) -12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1003)))) -((((-478) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) -(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) +(OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479)) (-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +(OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +(OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +(((|#2| (-194 (-3939 |#1|) (-688))) . T)) +(((|#2|) . T)) +((($) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(OR (|has| |#2| (-386)) (|has| |#2| (-815))) +((($ $) . T) (((-767 |#1|) $) . T) (((-767 |#1|) |#2|) . T)) +((((-767 |#1|)) . T)) +((($ (-767 |#1|)) . T)) +((((-767 |#1|)) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +((((-344 (-479))) |has| |#2| (-944 (-344 (-479)))) (((-479)) |has| |#2| (-944 (-479))) ((|#2|) . T) (((-767 |#1|)) . T)) +((((-479)) . T) (((-344 (-479))) OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479))))) ((|#2|) . T) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) (((-767 |#1|)) . T)) +(((|#2| (-194 (-3939 |#1|) (-688)) (-767 |#1|)) . T)) +((((-766)) . T)) +((((-440)) . T)) +((((-155)) . T) (((-766)) . T)) +((((-688) (-1085)) . T)) +((((-766)) . T)) +(((|#4| |#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-955)))) +(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-659)) (|has| |#4| (-955)))) +(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-955)))) +((((-766)) . T) (((-1169 |#4|)) . T)) +(((|#4|) |has| |#4| (-955))) +((((-1080)) -12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955)))) +((((-1080)) OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955))))) +((($ (-1080)) OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955))))) +(((|#4|) |has| |#4| (-955))) +(OR (-12 (|has| |#4| (-188)) (|has| |#4| (-955))) (-12 (|has| |#4| (-187)) (|has| |#4| (-955)))) +((($) OR (-12 (|has| |#4| (-188)) (|has| |#4| (-955))) (-12 (|has| |#4| (-187)) (|has| |#4| (-955))))) +(|has| |#4| (-955)) +(|has| |#4| (-955)) +(|has| |#4| (-955)) +(|has| |#4| (-955)) +(((|#3|) . T) ((|#2|) . T) (((-479)) . T) ((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-659)) (|has| |#4| (-955))) (($) |has| |#4| (-955))) +(-12 (|has| |#4| (-188)) (|has| |#4| (-955))) +(|has| |#4| (-314)) +(((|#4|) |has| |#4| (-955))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-955))) (($) |has| |#4| (-955)) (((-479)) -12 (|has| |#4| (-576 (-479))) (|has| |#4| (-955)))) +(((|#4|) |has| |#4| (-955)) (((-479)) -12 (|has| |#4| (-576 (-479))) (|has| |#4| (-955)))) +(((|#4|) |has| |#4| (-1006))) +((((-479)) OR (-12 (|has| |#4| (-944 (-479))) (|has| |#4| (-1006))) (|has| |#4| (-955))) ((|#4|) |has| |#4| (-1006)) (((-344 (-479))) -12 (|has| |#4| (-944 (-344 (-479)))) (|has| |#4| (-1006)))) +(((|#4|) |has| |#4| (-1006)) (((-479)) -12 (|has| |#4| (-944 (-479))) (|has| |#4| (-1006))) (((-344 (-479))) -12 (|has| |#4| (-944 (-344 (-479)))) (|has| |#4| (-1006)))) +((((-479) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) (((|#4|) . T)) -((((-478) |#4|) . T)) -((((-478) |#4|) . T)) -(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-658)))) +((((-479) |#4|) . T)) +((((-479) |#4|) . T)) +(((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)) (|has| |#4| (-659)))) (((|#4|) OR (|has| |#4| (-144)) (|has| |#4| (-308)))) -(|has| |#4| (-710)) -(|has| |#4| (-710)) -(OR (|has| |#4| (-710)) (|has| |#4| (-749))) -(OR (|has| |#4| (-710)) (|has| |#4| (-749))) -(|has| |#4| (-710)) -(|has| |#4| (-710)) +(|has| |#4| (-711)) +(|has| |#4| (-711)) +(OR (|has| |#4| (-711)) (|has| |#4| (-750))) +(OR (|has| |#4| (-711)) (|has| |#4| (-750))) +(|has| |#4| (-711)) +(|has| |#4| (-711)) (((|#4|) |has| |#4| (-308))) (((|#1| |#4|) . T)) -(((|#3| |#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)) (|has| |#3| (-954)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954)))) -((((-765)) . T) (((-1164 |#3|)) . T)) -(((|#3|) |has| |#3| (-954))) -((((-1075)) -12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954)))) -((((-1075)) OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))))) -((($ (-1075)) OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))))) -(((|#3|) |has| |#3| (-954))) -(OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) -((($) OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954))))) -(|has| |#3| (-954)) -(|has| |#3| (-954)) -(|has| |#3| (-954)) -(|has| |#3| (-954)) -(((|#2|) . T) (((-478)) . T) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)) (|has| |#3| (-954))) (($) |has| |#3| (-954))) -(-12 (|has| |#3| (-188)) (|has| |#3| (-954))) -(|has| |#3| (-313)) -(((|#3|) |has| |#3| (-954))) -(((|#2|) . T) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954))) (($) |has| |#3| (-954)) (((-478)) -12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954)))) -(((|#3|) |has| |#3| (-954)) (((-478)) -12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954)))) -(((|#3|) |has| |#3| (-1003))) -((((-478)) OR (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) (|has| |#3| (-954))) ((|#3|) |has| |#3| (-1003)) (((-343 (-478))) -12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003)))) -(((|#3|) |has| |#3| (-1003)) (((-478)) -12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) (((-343 (-478))) -12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003)))) -((((-478) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003)))) -(((|#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003)))) +(((|#3| |#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-955)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-659)) (|has| |#3| (-955)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-955)))) +((((-766)) . T) (((-1169 |#3|)) . T)) +(((|#3|) |has| |#3| (-955))) +((((-1080)) -12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955)))) +((((-1080)) OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))))) +((($ (-1080)) OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))))) +(((|#3|) |has| |#3| (-955))) +(OR (-12 (|has| |#3| (-188)) (|has| |#3| (-955))) (-12 (|has| |#3| (-187)) (|has| |#3| (-955)))) +((($) OR (-12 (|has| |#3| (-188)) (|has| |#3| (-955))) (-12 (|has| |#3| (-187)) (|has| |#3| (-955))))) +(|has| |#3| (-955)) +(|has| |#3| (-955)) +(|has| |#3| (-955)) +(|has| |#3| (-955)) +(((|#2|) . T) (((-479)) . T) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-659)) (|has| |#3| (-955))) (($) |has| |#3| (-955))) +(-12 (|has| |#3| (-188)) (|has| |#3| (-955))) +(|has| |#3| (-314)) +(((|#3|) |has| |#3| (-955))) +(((|#2|) . T) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-955))) (($) |has| |#3| (-955)) (((-479)) -12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955)))) +(((|#3|) |has| |#3| (-955)) (((-479)) -12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955)))) +(((|#3|) |has| |#3| (-1006))) +((((-479)) OR (-12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) (|has| |#3| (-955))) ((|#3|) |has| |#3| (-1006)) (((-344 (-479))) -12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006)))) +(((|#3|) |has| |#3| (-1006)) (((-479)) -12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) (((-344 (-479))) -12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006)))) +((((-479) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006)))) +(((|#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006)))) (((|#3|) . T)) -((((-478) |#3|) . T)) -((((-478) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)))) +((((-479) |#3|) . T)) +((((-479) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-659)))) (((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)))) -(|has| |#3| (-710)) -(|has| |#3| (-710)) -(OR (|has| |#3| (-710)) (|has| |#3| (-749))) -(OR (|has| |#3| (-710)) (|has| |#3| (-749))) -(|has| |#3| (-710)) -(|has| |#3| (-710)) +(|has| |#3| (-711)) +(|has| |#3| (-711)) +(OR (|has| |#3| (-711)) (|has| |#3| (-750))) +(OR (|has| |#3| (-711)) (|has| |#3| (-750))) +(|has| |#3| (-711)) +(|has| |#3| (-711)) (((|#3|) |has| |#3| (-308))) (((|#1| |#3|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-188)) (|has| |#1| (-187))) ((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) -((((-765)) . T)) +((((-766)) . T)) (|has| |#1| (-188)) ((($) . T)) -(((|#1| (-463 |#3|) |#3|) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -((((-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) (((-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323))))) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) ((|#3|) . T)) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (($ |#3|) . T)) -((((-1075)) |has| |#1| (-802 (-1075))) ((|#3|) . T)) +(((|#1| (-464 |#3|) |#3|) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +((((-479)) -12 (|has| |#1| (-790 (-479))) (|has| |#3| (-790 (-479)))) (((-324)) -12 (|has| |#1| (-790 (-324))) (|has| |#3| (-790 (-324))))) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) ((|#3|) . T)) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (($ |#3|) . T)) +((((-1080)) |has| |#1| (-803 (-1080))) ((|#3|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-188)) ((|#2| |#1|) |has| |#1| (-188)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(OR (|has| |#1| (-385)) (|has| |#1| (-814))) -((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) +(OR (|has| |#1| (-386)) (|has| |#1| (-815))) +((((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-463 |#3|)) . T)) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(((|#1| (-464 |#3|)) . T)) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T)) -(((|#1| (-463 |#3|)) . T)) -((((-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) (((-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) (((-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467))))) -((((-1025 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#2|) . T)) -((((-1025 |#1| |#2|)) . T) (((-478)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-463 |#3|)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) . T) (((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((((-479)) . T) (($) . T) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T)) +(((|#1| (-464 |#3|)) . T)) +((((-794 (-479))) -12 (|has| |#1| (-549 (-794 (-479)))) (|has| |#3| (-549 (-794 (-479))))) (((-794 (-324))) -12 (|has| |#1| (-549 (-794 (-324)))) (|has| |#3| (-549 (-794 (-324))))) (((-468)) -12 (|has| |#1| (-549 (-468))) (|has| |#3| (-549 (-468))))) +((((-1029 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((|#2|) . T)) +((((-1029 |#1| |#2|)) . T) (((-479)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-464 |#3|)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) -((($) . T) (((-478)) . T)) +((($) . T) (((-479)) . T)) ((($) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1|) |has| |#1| (-308))) -((((-1075)) |has| |#1| (-802 (-1075)))) -((($ (-1075)) |has| |#1| (-802 (-1075)))) -((((-1075)) |has| |#1| (-802 (-1075)))) +((((-1080)) |has| |#1| (-803 (-1080)))) +((($ (-1080)) |has| |#1| (-803 (-1080)))) +((((-1080)) |has| |#1| (-803 (-1080)))) (((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)))) (((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954)))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954)))) -(((|#1| |#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954)))) -((((-478)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-954)))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954))) (($) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-954)))) -(OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-954))) -(OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-954))) -(|has| |#1| (-406)) -(OR (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954))) -(OR (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954)) (|has| |#1| (-1013))) -(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954))) -(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954))) -(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-954))) (($) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-954))) (((-478)) OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954)) (|has| |#1| (-1013)) (|has| |#1| (-1003))) -((((-83)) |has| |#1| (-1003)) (((-765)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954)) (|has| |#1| (-1013)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-406)) (|has| |#1| (-658)) (|has| |#1| (-802 (-1075))) (|has| |#1| (-954)) (|has| |#1| (-1013)) (|has| |#1| (-1003))) -((((-1075) |#1|) |has| |#1| (-447 (-1075) |#1|))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-955)))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-955)))) +(((|#1| |#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-955)))) +((((-479)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-955)))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-955))) (($) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-955)))) +(OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-955))) +(OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-955))) +(|has| |#1| (-407)) +(OR (|has| |#1| (-407)) (|has| |#1| (-659)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955))) +(OR (|has| |#1| (-407)) (|has| |#1| (-659)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955)) (|has| |#1| (-1016))) +(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955))) +(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955))) +(((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-955))) (($) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-955))) (((-479)) OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-407)) (|has| |#1| (-659)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955)) (|has| |#1| (-1016)) (|has| |#1| (-1006))) +((((-83)) |has| |#1| (-1006)) (((-766)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-407)) (|has| |#1| (-659)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955)) (|has| |#1| (-1016)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-407)) (|has| |#1| (-659)) (|has| |#1| (-803 (-1080))) (|has| |#1| (-955)) (|has| |#1| (-1016)) (|has| |#1| (-1006))) +((((-1080) |#1|) |has| |#1| (-448 (-1080) |#1|))) (((|#1| |#2|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T)) -(|has| (-1151 |#1| |#2| |#3| |#4|) (-116)) -(|has| (-1151 |#1| |#2| |#3| |#4|) (-118)) -((((-1151 |#1| |#2| |#3| |#4|)) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-1151 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478))) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T)) -((((-1075) (-1151 |#1| |#2| |#3| |#4|)) |has| (-1151 |#1| |#2| |#3| |#4|) (-447 (-1075) (-1151 |#1| |#2| |#3| |#4|))) (((-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) |has| (-1151 |#1| |#2| |#3| |#4|) (-256 (-1151 |#1| |#2| |#3| |#4|)))) -((((-1151 |#1| |#2| |#3| |#4|)) |has| (-1151 |#1| |#2| |#3| |#4|) (-256 (-1151 |#1| |#2| |#3| |#4|)))) -((((-1151 |#1| |#2| |#3| |#4|) $) |has| (-1151 |#1| |#2| |#3| |#4|) (-238 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)))) -((((-1151 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1151 |#1| |#2| |#3| |#4|)) . T) (((-343 (-478))) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T)) -((((-1145 |#2| |#3| |#4|)) . T) (((-478)) . T) (((-1151 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-1145 |#2| |#3| |#4|)) . T) (((-1151 |#1| |#2| |#3| |#4|)) . T)) -((((-1151 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(((|#1|) |has| |#1| (-489))) -(OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) -((((-765)) . T)) -(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) -(OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) -(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-406)) (|has| |#1| (-489)) (|has| |#1| (-954)) (|has| |#1| (-1013))) -(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-406)) (|has| |#1| (-489)) (|has| |#1| (-954)) (|has| |#1| (-1013))) -(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) -(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T)) +(|has| (-1156 |#1| |#2| |#3| |#4|) (-116)) +(|has| (-1156 |#1| |#2| |#3| |#4|) (-118)) +((((-1156 |#1| |#2| |#3| |#4|)) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-1156 |#1| |#2| |#3| |#4|)) . T) (((-344 (-479))) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|)) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T)) +((((-1080) (-1156 |#1| |#2| |#3| |#4|)) |has| (-1156 |#1| |#2| |#3| |#4|) (-448 (-1080) (-1156 |#1| |#2| |#3| |#4|))) (((-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|)) |has| (-1156 |#1| |#2| |#3| |#4|) (-256 (-1156 |#1| |#2| |#3| |#4|)))) +((((-1156 |#1| |#2| |#3| |#4|)) |has| (-1156 |#1| |#2| |#3| |#4|) (-256 (-1156 |#1| |#2| |#3| |#4|)))) +((((-1156 |#1| |#2| |#3| |#4|) $) |has| (-1156 |#1| |#2| |#3| |#4|) (-238 (-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|)))) +((((-1156 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1156 |#1| |#2| |#3| |#4|)) . T) (((-344 (-479))) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T)) +((((-1150 |#2| |#3| |#4|)) . T) (((-479)) . T) (((-1156 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-1150 |#2| |#3| |#4|)) . T) (((-1156 |#1| |#2| |#3| |#4|)) . T)) +((((-1156 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(((|#1|) |has| |#1| (-490))) +(OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-955))) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-955))) +((((-766)) . T)) +(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-955))) +(OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-955))) +(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-407)) (|has| |#1| (-490)) (|has| |#1| (-955)) (|has| |#1| (-1016))) +(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-407)) (|has| |#1| (-490)) (|has| |#1| (-955)) (|has| |#1| (-1016))) +(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-955))) +(OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-955))) (|has| |#1| (-116)) (|has| |#1| (-118)) -((((-545 $) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489)) (((-343 (-478))) |has| |#1| (-489))) -((((-478)) OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) (($) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) ((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-954))) (((-343 (-478))) |has| |#1| (-489))) -(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489)) (((-343 (-478))) |has| |#1| (-489))) -(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489)) (((-343 (-478))) |has| |#1| (-489))) -(|has| |#1| (-489)) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-489)) (($) |has| |#1| (-489))) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-489)) (($) |has| |#1| (-489))) -(((|#1| |#1|) |has| |#1| (-144)) (((-343 (-478)) (-343 (-478))) |has| |#1| (-489)) (($ $) |has| |#1| (-489))) -(|has| |#1| (-489)) -(((|#1|) |has| |#1| (-954))) -((($) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-954))) ((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-954))) (((-343 (-478))) |has| |#1| (-489)) (((-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) -(((|#1|) |has| |#1| (-954)) (((-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) -(((|#1|) . T)) -((((-478)) |has| |#1| (-789 (-478))) (((-323)) |has| |#1| (-789 (-323)))) -(((|#1|) . T)) -(|has| |#1| (-406)) -((((-1075)) |has| |#1| (-954))) -((($ (-1075)) |has| |#1| (-954))) -((((-1075)) |has| |#1| (-954))) -(((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467))) (((-793 (-478))) |has| |#1| (-548 (-793 (-478)))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323))))) -((((-48)) -12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (((-545 $)) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) OR (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-343 (-850 |#1|))) |has| |#1| (-489)) (((-850 |#1|)) |has| |#1| (-954)) (((-1075)) . T)) -((((-48)) -12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (((-478)) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-489)) (|has| |#1| (-943 (-478))) (|has| |#1| (-954))) ((|#1|) . T) (((-545 $)) . T) (($) |has| |#1| (-489)) (((-343 (-478))) OR (|has| |#1| (-489)) (|has| |#1| (-943 (-343 (-478))))) (((-343 (-850 |#1|))) |has| |#1| (-489)) (((-850 |#1|)) |has| |#1| (-954)) (((-1075)) . T)) +((((-546 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490)) (((-344 (-479))) |has| |#1| (-490))) +((((-479)) OR (|has| |#1| (-21)) (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-955))) (($) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-955))) ((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-955))) (((-344 (-479))) |has| |#1| (-490))) +(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490)) (((-344 (-479))) |has| |#1| (-490))) +(((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490)) (((-344 (-479))) |has| |#1| (-490))) +(|has| |#1| (-490)) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-490)) (($) |has| |#1| (-490))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-490)) (($) |has| |#1| (-490))) +(((|#1| |#1|) |has| |#1| (-144)) (((-344 (-479)) (-344 (-479))) |has| |#1| (-490)) (($ $) |has| |#1| (-490))) +(|has| |#1| (-490)) +(((|#1|) |has| |#1| (-955))) +((($) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-955))) ((|#1|) OR (|has| |#1| (-144)) (|has| |#1| (-955))) (((-344 (-479))) |has| |#1| (-490)) (((-479)) -12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) +(((|#1|) |has| |#1| (-955)) (((-479)) -12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) +(((|#1|) . T)) +((((-479)) |has| |#1| (-790 (-479))) (((-324)) |has| |#1| (-790 (-324)))) +(((|#1|) . T)) +(|has| |#1| (-407)) +((((-1080)) |has| |#1| (-955))) +((($ (-1080)) |has| |#1| (-955))) +((((-1080)) |has| |#1| (-955))) +(((|#1|) . T)) +((((-468)) |has| |#1| (-549 (-468))) (((-794 (-479))) |has| |#1| (-549 (-794 (-479)))) (((-794 (-324))) |has| |#1| (-549 (-794 (-324))))) +((((-48)) -12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479)))) (((-546 $)) . T) ((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) OR (-12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479)))) (|has| |#1| (-944 (-344 (-479))))) (((-344 (-851 |#1|))) |has| |#1| (-490)) (((-851 |#1|)) |has| |#1| (-955)) (((-1080)) . T)) +((((-48)) -12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479)))) (((-479)) OR (|has| |#1| (-116)) (|has| |#1| (-118)) (|has| |#1| (-144)) (|has| |#1| (-490)) (|has| |#1| (-944 (-479))) (|has| |#1| (-955))) ((|#1|) . T) (((-546 $)) . T) (($) |has| |#1| (-490)) (((-344 (-479))) OR (|has| |#1| (-490)) (|has| |#1| (-944 (-344 (-479))))) (((-344 (-851 |#1|))) |has| |#1| (-490)) (((-851 |#1|)) |has| |#1| (-955)) (((-1080)) . T)) (((|#1|) . T)) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) -((((-765)) . T)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +((((-766)) . T)) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(((|#1| (-343 (-478))) . T)) -(((|#1| (-343 (-478))) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(((|#1| (-344 (-479))) . T)) +(((|#1| (-344 (-479))) . T)) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) -((($) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1|) . T)) -((((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) -(((|#1| (-343 (-478)) (-985)) . T)) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((($ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((((-343 (-478)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-478)) . T)) -((((-478) (-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-765)) . T)) -((((-478)) . T)) -((((-765)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-687)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) -(((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -((((-478) |#1|) . T)) -((((-1131 (-478)) $) . T) (((-478) |#1|) . T)) -((((-478) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-478)) . T)) -((((-765)) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-479)) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) ((|#1|) . T)) +((((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +(((|#1| (-344 (-479)) (-987)) . T)) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((($ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((((-344 (-479)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-479)) . T)) +((((-479) (-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-766)) . T)) +((((-479)) . T)) +((((-766)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-688)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) +(((|#1|) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +((((-479) |#1|) . T)) +((((-1136 (-479)) $) . T) (((-479) |#1|) . T)) +((((-479) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-479)) . T)) +((((-766)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-810 |#1|) (-810 |#1|)) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-811 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-811 |#1|) (-811 |#1|)) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| $ (-118)) ((($) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-810 |#1|) (-810 |#1|)) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-811 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-811 |#1|) (-811 |#1|)) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| $ (-118)) ((($) . T)) -((((-810 |#1|)) . T)) +((((-811 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| |#1| (-118)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -((($) |has| |#1| (-313))) -(|has| |#1| (-313)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +((($) |has| |#1| (-314))) +(|has| |#1| (-314)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| |#1| (-118)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -((($) |has| |#1| (-313))) -(|has| |#1| (-313)) -(((|#1|) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T)) -((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-810 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-810 |#1|) (-810 |#1|)) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-810 |#1|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +((($) |has| |#1| (-314))) +(|has| |#1| (-314)) +(((|#1|) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T)) +((((-811 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-811 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-811 |#1|) (-811 |#1|)) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-811 |#1|)) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| $ (-118)) ((($) . T)) -((((-810 |#1|)) . T)) +((((-811 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| |#1| (-118)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -((($) |has| |#1| (-313))) -(|has| |#1| (-313)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +((($) |has| |#1| (-314))) +(|has| |#1| (-314)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| |#1| (-118)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -((($) |has| |#1| (-313))) -(|has| |#1| (-313)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +((($) |has| |#1| (-314))) +(|has| |#1| (-314)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| |#1| (-118)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -((($) |has| |#1| (-313))) -(|has| |#1| (-313)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(OR (|has| |#1| (-116)) (|has| |#1| (-313))) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +((($) |has| |#1| (-314))) +(|has| |#1| (-314)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(OR (|has| |#1| (-116)) (|has| |#1| (-314))) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| |#1| (-118)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -(|has| |#1| (-313)) -((($) |has| |#1| (-313))) -(|has| |#1| (-313)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +(|has| |#1| (-314)) +((($) |has| |#1| (-314))) +(|has| |#1| (-314)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-331) |#1|) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-332) |#1|) . T)) ((((-177)) . T)) ((($) . T)) -((((-478)) . T) (((-343 (-478))) . T)) -((((-323)) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-467)) . T) (((-1059)) . T) (((-177)) . T) (((-323)) . T) (((-793 (-323))) . T)) -((((-177)) . T) (((-765)) . T)) -((((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T) (((-478)) . T)) +((((-479)) . T) (((-344 (-479))) . T)) +((((-324)) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-468)) . T) (((-1063)) . T) (((-177)) . T) (((-324)) . T) (((-794 (-324))) . T)) +((((-177)) . T) (((-766)) . T)) +((((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T) (((-479)) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-478)) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-479)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -((((-478)) . T) ((|#1|) . T)) +((((-766)) . T)) +((((-479)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) +((((-766)) . T)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1059)) . T)) -((((-1059)) . T)) -((((-1059)) . T) (((-765)) . T)) +((((-1063)) . T)) +((((-1063)) . T)) +((((-1063)) . T) (((-766)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-765)) . T)) -(((|#3|) . T) (((-478)) . T)) +((((-766)) . T)) +(((|#3|) . T) (((-479)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-343 |#2|)) . T)) +((((-344 |#2|)) . T)) ((($) . T)) -((((-765)) . T)) -(|has| |#1| (-1119)) -((((-467)) |has| |#1| (-548 (-467))) (((-177)) |has| |#1| (-926)) (((-323)) |has| |#1| (-926))) -(|has| |#1| (-926)) -(OR (|has| |#1| (-385)) (|has| |#1| (-1119))) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) +((((-766)) . T)) +(|has| |#1| (-1124)) +((((-468)) |has| |#1| (-549 (-468))) (((-177)) |has| |#1| (-927)) (((-324)) |has| |#1| (-927))) +(|has| |#1| (-927)) +(OR (|has| |#1| (-386)) (|has| |#1| (-1124))) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) |has| |#1| (-944 (-479))) ((|#1|) . T)) (((|#1|) . T)) ((($ $) |has| |#1| (-238 $ $)) ((|#1| $) |has| |#1| (-238 |#1| |#1|))) ((($) |has| |#1| (-256 $)) ((|#1|) |has| |#1| (-256 |#1|))) -((((-1075) $) |has| |#1| (-447 (-1075) $)) (($ $) |has| |#1| (-256 $)) ((|#1| |#1|) |has| |#1| (-256 |#1|)) (((-1075) |#1|) |has| |#1| (-447 (-1075) |#1|))) +((((-1080) $) |has| |#1| (-448 (-1080) $)) (($ $) |has| |#1| (-256 $)) ((|#1| |#1|) |has| |#1| (-256 |#1|)) (((-1080) |#1|) |has| |#1| (-448 (-1080) |#1|))) (((|#1|) . T)) (|has| |#1| (-188)) ((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) (OR (|has| |#1| (-188)) (|has| |#1| (-187))) (((|#1|) . T)) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075))))) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075))))) -((((-1075)) |has| |#1| (-802 (-1075)))) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080))))) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080))))) +((((-1080)) |has| |#1| (-803 (-1080)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-478)) . T) (($) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-479)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (((-478)) . T) (($) . T)) -((((-765)) . T)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((|#1|) . T) (((-479)) . T) (($) . T)) +((((-766)) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) (((|#1|) . T)) -((((-1075)) |has| |#1| (-802 (-1075)))) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075))))) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075))))) +((((-1080)) |has| |#1| (-803 (-1080)))) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080))))) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080))))) (((|#1|) . T)) (OR (|has| |#1| (-188)) (|has| |#1| (-187))) ((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) (|has| |#1| (-188)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) ((|#1|) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -(((|#1|) . T)) -((((-1075) |#1|) |has| |#1| (-447 (-1075) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) ((|#1|) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +(((|#1|) . T)) +((((-1080) |#1|) |has| |#1| (-448 (-1080) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) (((|#1|) |has| |#1| (-256 |#1|))) (((|#1| $) |has| |#1| (-238 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-343 (-478))) . T) (((-478)) |has| |#1| (-575 (-478)))) -(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +((($) . T) ((|#1|) . T) (((-344 (-479))) . T) (((-479)) |has| |#1| (-576 (-479)))) +(((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) (((|#1|) . T)) -((((-478)) |has| |#1| (-789 (-478))) (((-323)) |has| |#1| (-789 (-323)))) -(|has| |#1| (-733)) -(|has| |#1| (-733)) -(|has| |#1| (-733)) -(OR (|has| |#1| (-733)) (|has| |#1| (-749))) -(OR (|has| |#1| (-733)) (|has| |#1| (-749))) -(|has| |#1| (-733)) -(|has| |#1| (-733)) -(|has| |#1| (-733)) +((((-479)) |has| |#1| (-790 (-479))) (((-324)) |has| |#1| (-790 (-324)))) +(|has| |#1| (-734)) +(|has| |#1| (-734)) +(|has| |#1| (-734)) +(OR (|has| |#1| (-734)) (|has| |#1| (-750))) +(OR (|has| |#1| (-734)) (|has| |#1| (-750))) +(|has| |#1| (-734)) +(|has| |#1| (-734)) +(|has| |#1| (-734)) (((|#1|) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-926)) -((((-467)) |has| |#1| (-548 (-467))) (((-793 (-478))) |has| |#1| (-548 (-793 (-478)))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323)))) (((-323)) |has| |#1| (-926)) (((-177)) |has| |#1| (-926))) -((((-478)) . T) ((|#1|) . T) (($) . T) (((-343 (-478))) . T) (((-1075)) |has| |#1| (-943 (-1075)))) -((((-343 (-478))) |has| |#1| (-943 (-478))) (((-478)) |has| |#1| (-943 (-478))) (((-1075)) |has| |#1| (-943 (-1075))) ((|#1|) . T)) -(|has| |#1| (-1052)) +(|has| |#1| (-815)) +(|has| |#1| (-927)) +((((-468)) |has| |#1| (-549 (-468))) (((-794 (-479))) |has| |#1| (-549 (-794 (-479)))) (((-794 (-324))) |has| |#1| (-549 (-794 (-324)))) (((-324)) |has| |#1| (-927)) (((-177)) |has| |#1| (-927))) +((((-479)) . T) ((|#1|) . T) (($) . T) (((-344 (-479))) . T) (((-1080)) |has| |#1| (-944 (-1080)))) +((((-344 (-479))) |has| |#1| (-944 (-479))) (((-479)) |has| |#1| (-944 (-479))) (((-1080)) |has| |#1| (-944 (-1080))) ((|#1|) . T)) +(|has| |#1| (-1056)) (((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-479)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-478)) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-478) (-343 (-850 |#1|))) . T)) -((((-343 (-850 |#1|))) . T)) -((((-343 (-850 |#1|))) . T)) -((((-343 (-850 |#1|))) . T)) -((((-1042 |#2| (-343 (-850 |#1|)))) . T) (((-343 (-850 |#1|))) . T)) -((((-765)) . T)) -((((-1042 |#2| (-343 (-850 |#1|)))) . T) (((-343 (-850 |#1|))) . T) (((-478)) . T)) -((((-343 (-850 |#1|))) . T)) -((((-343 (-850 |#1|))) . T)) -((((-343 (-850 |#1|)) (-343 (-850 |#1|))) . T)) -((((-343 (-850 |#1|))) . T)) -((((-343 (-850 |#1|))) . T)) -((((-467)) |has| |#2| (-548 (-467))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478))))) +(((|#1|) . T) (((-479)) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-479) (-344 (-851 |#1|))) . T)) +((((-344 (-851 |#1|))) . T)) +((((-344 (-851 |#1|))) . T)) +((((-344 (-851 |#1|))) . T)) +((((-1046 |#2| (-344 (-851 |#1|)))) . T) (((-344 (-851 |#1|))) . T)) +((((-766)) . T)) +((((-1046 |#2| (-344 (-851 |#1|)))) . T) (((-344 (-851 |#1|))) . T) (((-479)) . T)) +((((-344 (-851 |#1|))) . T)) +((((-344 (-851 |#1|))) . T)) +((((-344 (-851 |#1|)) (-344 (-851 |#1|))) . T)) +((((-344 (-851 |#1|))) . T)) +((((-344 (-851 |#1|))) . T)) +((((-468)) |has| |#2| (-549 (-468))) (((-794 (-324))) |has| |#2| (-549 (-794 (-324)))) (((-794 (-479))) |has| |#2| (-549 (-794 (-479))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T)) (|has| |#2| (-116)) (|has| |#2| (-118)) -(OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) +(OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479)) (-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +(OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +(OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(OR (|has| |#2| (-385)) (|has| |#2| (-814))) -((($ $) . T) (((-766 |#1|) $) . T) (((-766 |#1|) |#2|) . T)) -((((-766 |#1|)) . T)) -((($ (-766 |#1|)) . T)) -((((-766 |#1|)) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -((((-343 (-478))) |has| |#2| (-943 (-343 (-478)))) (((-478)) |has| |#2| (-943 (-478))) ((|#2|) . T) (((-766 |#1|)) . T)) -((((-478)) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ((|#2|) . T) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-766 |#1|)) . T)) -(((|#2| |#3| (-766 |#1|)) . T)) +((($) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(OR (|has| |#2| (-386)) (|has| |#2| (-815))) +((($ $) . T) (((-767 |#1|) $) . T) (((-767 |#1|) |#2|) . T)) +((((-767 |#1|)) . T)) +((($ (-767 |#1|)) . T)) +((((-767 |#1|)) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +((((-344 (-479))) |has| |#2| (-944 (-344 (-479)))) (((-479)) |has| |#2| (-944 (-479))) ((|#2|) . T) (((-767 |#1|)) . T)) +((((-479)) . T) (((-344 (-479))) OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479))))) ((|#2|) . T) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) (((-767 |#1|)) . T)) +(((|#2| |#3| (-767 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-765)) . T)) -(((|#2|) . T) (((-478)) . T) ((|#6|) . T)) +((((-766)) . T)) +(((|#2|) . T) (((-479)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-578 |#4|)) . T) (((-765)) . T)) -(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) -(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) +((((-579 |#4|)) . T) (((-766)) . T)) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) (((|#4|) . T)) -((((-467)) |has| |#4| (-548 (-467)))) +((((-468)) |has| |#4| (-549 (-468)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-765)) . T)) +((((-766)) . T)) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) -((((-765)) . T)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +((((-766)) . T)) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(((|#1| (-343 (-478))) . T)) -(((|#1| (-343 (-478))) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(((|#1| (-344 (-479))) . T)) +(((|#1| (-344 (-479))) . T)) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) -((($) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1|) . T)) -((((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) -(((|#1| (-343 (-478)) (-985)) . T)) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((($ (-1161 |#2|)) . T) (($ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((((-343 (-478)) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-479)) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +((($) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) ((|#1|) . T)) +((((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#1|) |has| |#1| (-144))) +(((|#1| (-344 (-479)) (-987)) . T)) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((($ (-1166 |#2|)) . T) (($ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((((-344 (-479)) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-467)) |has| |#4| (-548 (-467)))) +((((-468)) |has| |#4| (-549 (-468)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) -(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) (((|#4|) . T)) -((((-765)) . T) (((-578 |#4|)) . T)) +((((-766)) . T) (((-579 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-467)) . T) (((-343 (-1070 (-478)))) . T) (((-177)) . T) (((-323)) . T)) -((((-343 (-478))) . T) (((-478)) . T)) -((((-323)) . T) (((-177)) . T) (((-765)) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) +((((-468)) . T) (((-344 (-1075 (-479)))) . T) (((-177)) . T) (((-324)) . T)) +((((-344 (-479))) . T) (((-479)) . T)) +((((-324)) . T) (((-177)) . T) (((-766)) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-467)) |has| |#2| (-548 (-467))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478))))) +((((-468)) |has| |#2| (-549 (-468))) (((-794 (-324))) |has| |#2| (-549 (-794 (-324)))) (((-794 (-479))) |has| |#2| (-549 (-794 (-479))))) ((($) . T)) -(((|#2| (-415 (-3933 |#1|) (-687))) . T)) +(((|#2| (-416 (-3939 |#1|) (-688))) . T)) (((|#2|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T)) (|has| |#2| (-116)) (|has| |#2| (-118)) -(OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -(((|#2| (-415 (-3933 |#1|) (-687))) . T)) -(((|#2|) . T)) -((($) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(OR (|has| |#2| (-385)) (|has| |#2| (-814))) -((($ $) . T) (((-766 |#1|) $) . T) (((-766 |#1|) |#2|) . T)) -((((-766 |#1|)) . T)) -((($ (-766 |#1|)) . T)) -((((-766 |#1|)) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -((((-343 (-478))) |has| |#2| (-943 (-343 (-478)))) (((-478)) |has| |#2| (-943 (-478))) ((|#2|) . T) (((-766 |#1|)) . T)) -((((-478)) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ((|#2|) . T) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-766 |#1|)) . T)) -(((|#2| (-415 (-3933 |#1|) (-687)) (-766 |#1|)) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1003))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1003))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) -(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) -(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) -((((-765)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-547 (-765))) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1003))) (((-1164 |#2|)) . T)) -(((|#2|) |has| |#2| (-954))) -((((-1075)) -12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954)))) -((((-1075)) OR (-12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))))) -((($ (-1075)) OR (-12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))))) -(((|#2|) |has| |#2| (-954))) -(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954)))) -((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954))))) -(|has| |#2| (-954)) -(|has| |#2| (-954)) -(|has| |#2| (-954)) -(|has| |#2| (-954)) -((((-478)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954))) (($) |has| |#2| (-954))) -(-12 (|has| |#2| (-188)) (|has| |#2| (-954))) -(|has| |#2| (-313)) -(((|#2|) |has| |#2| (-954))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) (($) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) -(((|#2|) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) -(((|#2|) |has| |#2| (-1003))) -((((-478)) OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (|has| |#2| (-954))) ((|#2|) |has| |#2| (-1003)) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003)))) -(((|#2|) |has| |#2| (-1003)) (((-478)) -12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003)))) -((((-478) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -(((|#2|) . T)) -((((-478) |#2|) . T)) -((((-478) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)))) +(OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479)) (-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +(OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +(OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +(((|#2| (-416 (-3939 |#1|) (-688))) . T)) +(((|#2|) . T)) +((($) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(OR (|has| |#2| (-386)) (|has| |#2| (-815))) +((($ $) . T) (((-767 |#1|) $) . T) (((-767 |#1|) |#2|) . T)) +((((-767 |#1|)) . T)) +((($ (-767 |#1|)) . T)) +((((-767 |#1|)) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +((((-344 (-479))) |has| |#2| (-944 (-344 (-479)))) (((-479)) |has| |#2| (-944 (-479))) ((|#2|) . T) (((-767 |#1|)) . T)) +((((-479)) . T) (((-344 (-479))) OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479))))) ((|#2|) . T) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) (((-767 |#1|)) . T)) +(((|#2| (-416 (-3939 |#1|) (-688)) (-767 |#1|)) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-711)) (|has| |#2| (-955))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-314)) (|has| |#2| (-659)) (|has| |#2| (-711)) (|has| |#2| (-750)) (|has| |#2| (-955)) (|has| |#2| (-1006))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-314)) (|has| |#2| (-659)) (|has| |#2| (-711)) (|has| |#2| (-750)) (|has| |#2| (-955)) (|has| |#2| (-1006))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-711)) (|has| |#2| (-955))) +(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-711)) (|has| |#2| (-955))) +(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-659)) (|has| |#2| (-955)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955)))) +((((-766)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-548 (-766))) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-314)) (|has| |#2| (-659)) (|has| |#2| (-711)) (|has| |#2| (-750)) (|has| |#2| (-955)) (|has| |#2| (-1006))) (((-1169 |#2|)) . T)) +(((|#2|) |has| |#2| (-955))) +((((-1080)) -12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955)))) +((((-1080)) OR (-12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955))) (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))))) +((($ (-1080)) OR (-12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955))) (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))))) +(((|#2|) |has| |#2| (-955))) +(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-955))) (-12 (|has| |#2| (-187)) (|has| |#2| (-955)))) +((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-955))) (-12 (|has| |#2| (-187)) (|has| |#2| (-955))))) +(|has| |#2| (-955)) +(|has| |#2| (-955)) +(|has| |#2| (-955)) +(|has| |#2| (-955)) +((((-479)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-659)) (|has| |#2| (-955))) (($) |has| |#2| (-955))) +(-12 (|has| |#2| (-188)) (|has| |#2| (-955))) +(|has| |#2| (-314)) +(((|#2|) |has| |#2| (-955))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955))) (($) |has| |#2| (-955)) (((-479)) -12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955)))) +(((|#2|) |has| |#2| (-955)) (((-479)) -12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955)))) +(((|#2|) |has| |#2| (-1006))) +((((-479)) OR (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (|has| |#2| (-955))) ((|#2|) |has| |#2| (-1006)) (((-344 (-479))) -12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006)))) +(((|#2|) |has| |#2| (-1006)) (((-479)) -12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (((-344 (-479))) -12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006)))) +((((-479) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +(((|#2|) . T)) +((((-479) |#2|) . T)) +((((-479) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-659)))) (((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)))) -(|has| |#2| (-710)) -(|has| |#2| (-710)) -(OR (|has| |#2| (-710)) (|has| |#2| (-749))) -(OR (|has| |#2| (-710)) (|has| |#2| (-749))) -(|has| |#2| (-710)) -(|has| |#2| (-710)) +(|has| |#2| (-711)) +(|has| |#2| (-711)) +(OR (|has| |#2| (-711)) (|has| |#2| (-750))) +(OR (|has| |#2| (-711)) (|has| |#2| (-750))) +(|has| |#2| (-711)) +(|has| |#2| (-711)) (((|#2|) |has| |#2| (-308))) (((|#1| |#2|) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(|has| |#1| (-1003)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1006)) (((|#1|) . T)) (((|#1|) . T)) -((((-478)) . T)) -((((-765)) . T)) +((((-479)) . T)) +((((-766)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-910 16)) . T) (((-343 (-478))) . T) (((-765)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((($) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -((((-478) (-478)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-467)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) -((((-343 (-478))) . T) (((-478)) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T)) -((((-1059)) . T) (((-765)) . T)) -((($) . T)) -((((-140 (-323))) . T) (((-177)) . T) (((-323)) . T)) -((((-343 (-478))) . T) (((-478)) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-545 $) $) . T)) -((((-343 (-478))) . T) (((-478)) . T) (((-545 $)) . T)) -((((-1025 (-478) (-545 $))) . T) (($) . T) (((-478)) . T) (((-343 (-478))) . T) (((-545 $)) . T)) -((((-765)) . T)) -(((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) -(((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -((((-478) |#1|) . T)) -((((-1131 (-478)) $) . T) (((-478) |#1|) . T)) -((((-478) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -(((|#1| (-429 |#1| |#3|) (-429 |#1| |#2|)) . T)) +((((-911 16)) . T) (((-344 (-479))) . T) (((-766)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((($) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +((((-479) (-479)) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-468)) . T) (((-794 (-479))) . T) (((-324)) . T) (((-177)) . T)) +((((-344 (-479))) . T) (((-479)) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T)) +((((-1063)) . T) (((-766)) . T)) +((($) . T)) +((((-140 (-324))) . T) (((-177)) . T) (((-324)) . T)) +((((-344 (-479))) . T) (((-479)) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-546 $) $) . T)) +((((-344 (-479))) . T) (((-479)) . T) (((-546 $)) . T)) +((((-1029 (-479) (-546 $))) . T) (($) . T) (((-479)) . T) (((-344 (-479))) . T) (((-546 $)) . T)) +((((-766)) . T)) +(((|#1|) . T)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) +(((|#1|) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +((((-479) |#1|) . T)) +((((-1136 (-479)) $) . T) (((-479) |#1|) . T)) +((((-479) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +(((|#1| (-430 |#1| |#3|) (-430 |#1| |#2|)) . T)) ((((-83)) . T)) ((((-83)) . T)) -((((-478) (-83)) . T)) -((((-478) (-83)) . T)) -((((-478) (-83)) . T) (((-1131 (-478)) $) . T)) -((((-467)) . T)) +((((-479) (-83)) . T)) +((((-479) (-83)) . T)) +((((-479) (-83)) . T) (((-1136 (-479)) $) . T)) +((((-468)) . T)) ((((-83)) . T)) -((((-765)) . T)) +((((-766)) . T)) ((((-83)) . T)) ((((-83)) . T)) -((((-1059)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-1063)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) -((((-478)) . T)) +((((-766)) . T)) +((((-479)) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) -(-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) -((((-765)) -12 (|has| |#1| (-1003)) (|has| |#2| (-1003)))) +((((-766)) . T)) +(-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) +((((-766)) -12 (|has| |#1| (-1006)) (|has| |#2| (-1006)))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) -(((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -((((-478) |#1|) . T)) -((((-1131 (-478)) $) . T) (((-478) |#1|) . T)) -((((-478) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-511 |#1|)) . T)) -((((-511 |#1|)) . T)) -((((-511 |#1|)) . T)) -((((-511 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-511 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-511 |#1|) (-511 |#1|)) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-511 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-511 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -((((-511 |#1|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-511 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-511 |#1|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) +(((|#1|) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +((((-479) |#1|) . T)) +((((-1136 (-479)) $) . T) (((-479) |#1|) . T)) +((((-479) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-512 |#1|)) . T)) +((((-512 |#1|)) . T)) +((((-512 |#1|)) . T)) +((((-512 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-512 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-512 |#1|) (-512 |#1|)) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-512 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-512 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +((((-512 |#1|)) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-512 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-512 |#1|)) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (|has| $ (-118)) ((($) . T)) -((((-511 |#1|)) . T)) +((((-512 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) (((|#1| |#4| |#5|) . T)) -(((|#1| (-531 |#1| |#3|) (-531 |#1| |#2|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(|has| |#1| (-1003)) -(((|#1|) . T)) -(((|#1| (-531 |#1| |#3|) (-531 |#1| |#2|)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T)) -((((-687) |#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-509)) . T)) -((((-1005)) . T)) -((((-578 $)) . T) (((-1059)) . T) (((-1075)) . T) (((-478)) . T) (((-177)) . T) (((-765)) . T)) -((((-478) $) . T) (((-578 (-478)) $) . T)) -((((-765)) . T)) -((((-1059) (-1075) (-478) (-177) (-765)) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T)) +(((|#1| (-532 |#1| |#3|) (-532 |#1| |#2|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1006)) +(((|#1|) . T)) +(((|#1| (-532 |#1| |#3|) (-532 |#1| |#2|)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T)) +((((-688) |#1|) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-510)) . T)) +((((-1008)) . T)) +((((-579 $)) . T) (((-1063)) . T) (((-1080)) . T) (((-479)) . T) (((-177)) . T) (((-766)) . T)) +((((-479) $) . T) (((-579 (-479)) $) . T)) +((((-766)) . T)) +((((-1063) (-1080) (-479) (-177) (-766)) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -1625,215 +1625,215 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-478)) . T) (($) . T)) -((((-478)) . T)) -((($) . T) (((-478)) . T)) -((((-478)) . T)) -((((-467)) . T) (((-478)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) -((((-478)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-479)) . T) (($) . T)) +((((-479)) . T)) +((($) . T) (((-479)) . T)) +((((-479)) . T)) +((((-468)) . T) (((-479)) . T) (((-794 (-479))) . T) (((-324)) . T) (((-177)) . T)) +((((-479)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-765)) . T)) -((((-478)) . T) (($) . T)) +((((-766)) . T)) +((((-479)) . T) (($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-478)) . T) (($) . T)) -((((-478)) . T)) +((((-479)) . T) (($) . T)) +((((-479)) . T)) (((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) ((($) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-478)) . T) (($) . T)) +((((-479)) . T) (($) . T)) (((|#1|) . T)) -((((-478)) . T)) +((((-479)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-118)) ((($) . T)) -((((-765)) . T)) -((($) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T)) -((((-343 (-478))) . T)) -((((-765)) . T)) -((((-478)) . T) (((-343 (-478))) . T)) -((((-343 (-478))) . T)) -((((-343 (-478))) . T)) -((((-343 (-478))) . T)) -((((-1080)) . T)) -((((-1080)) . T)) -((((-1080)) . T) (((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -(|has| |#1| (-15 * (|#1| (-478) |#1|))) -((((-765)) . T)) -((($) |has| |#1| (-15 * (|#1| (-478) |#1|)))) -(|has| |#1| (-15 * (|#1| (-478) |#1|))) -((($ $) . T) (((-478) |#1|) . T)) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) -((($ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) -(((|#1| (-478) (-985)) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) -((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +((((-766)) . T)) +((($) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T)) +((((-344 (-479))) . T)) +((((-766)) . T)) +((((-479)) . T) (((-344 (-479))) . T)) +((((-344 (-479))) . T)) +((((-344 (-479))) . T)) +((((-344 (-479))) . T)) +((((-1085)) . T)) +((((-1085)) . T)) +((((-1085)) . T) (((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +(|has| |#1| (-15 * (|#1| (-479) |#1|))) +((((-766)) . T)) +((($) |has| |#1| (-15 * (|#1| (-479) |#1|)))) +(|has| |#1| (-15 * (|#1| (-479) |#1|))) +((($ $) . T) (((-479) |#1|) . T)) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) +((($ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) +(((|#1| (-479) (-987)) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T)) +((($) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) -((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -((((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -(((|#1| (-478)) . T)) -(((|#1| (-478)) . T)) -((($) |has| |#1| (-489))) -((($) |has| |#1| (-489))) -((($) |has| |#1| (-489))) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -((($) |has| |#1| (-489)) ((|#1|) . T)) -((($) |has| |#1| (-489)) ((|#1|) . T)) -((($ $) |has| |#1| (-489)) ((|#1| |#1|) . T)) -((($) |has| |#1| (-489)) (((-478)) . T)) +(OR (|has| |#1| (-144)) (|has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-490)))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-490)))) +((((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-490)))) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +((((-479)) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +(((|#1| (-479)) . T)) +(((|#1| (-479)) . T)) +((($) |has| |#1| (-490))) +((($) |has| |#1| (-490))) +((($) |has| |#1| (-490))) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +((($) |has| |#1| (-490)) ((|#1|) . T)) +((($) |has| |#1| (-490)) ((|#1|) . T)) +((($ $) |has| |#1| (-490)) ((|#1| |#1|) . T)) +((($) |has| |#1| (-490)) (((-479)) . T)) (((|#1|) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (($) . T) (((-478)) . T)) -((((-1080)) . T)) -((((-1080)) . T)) -((((-1080)) . T) (((-765)) . T)) -((((-765)) . T)) +((((-766)) . T)) +(((|#1|) . T) (($) . T) (((-479)) . T)) +((((-1085)) . T)) +((((-1085)) . T)) +((((-1085)) . T) (((-766)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-478) |#1|) . T)) -((((-478) |#1|) . T)) -((((-478) |#1|) . T) (((-1131 (-478)) $) . T)) -((((-467)) |has| |#1| (-548 (-467)))) +((((-479) |#1|) . T)) +((((-479) |#1|) . T)) +((((-479) |#1|) . T) (((-1136 (-479)) $) . T)) +((((-468)) |has| |#1| (-549 (-468)))) (((|#1|) . T)) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) (((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) (((|#1|) . T)) (((|#1|) . T)) -((((-1080)) . T)) -((((-1115)) . T) (((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-478) |#1|) |has| |#2| (-354 |#1|))) -(((|#1|) OR (|has| |#2| (-312 |#1|)) (|has| |#2| (-354 |#1|)))) -(((|#1|) |has| |#2| (-354 |#1|))) +((((-1085)) . T)) +((((-1120)) . T) (((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-479) |#1|) |has| |#2| (-355 |#1|))) +(((|#1|) OR (|has| |#2| (-312 |#1|)) (|has| |#2| (-355 |#1|)))) +(((|#1|) |has| |#2| (-355 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-765)) . T)) -(((|#1|) . T) (((-478)) . T)) +(((|#2|) . T) (((-766)) . T)) +(((|#1|) . T) (((-479)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) ((((-99)) . T)) ((((-99)) . T)) -((((-99)) . T) (((-765)) . T)) -((((-765)) . T)) -((((-99)) . T) (((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-99)) . T) (((-536)) . T)) -((((-99)) . T) (((-536)) . T)) -((((-99)) . T) (((-536)) . T) (((-765)) . T)) -((((-1059) |#1|) . T)) -((((-1059) |#1|) . T)) -((((-1059) |#1|) . T)) -((((-1059) |#1|) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) |has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) |has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))))) -((((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -((((-1059) |#1|) . T)) -((((-765)) . T)) -((((-331) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -((((-467)) |has| |#1| (-548 (-467))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#1| (-548 (-793 (-478))))) -(((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-765)) . T)) +((((-99)) . T) (((-766)) . T)) +((((-766)) . T)) +((((-99)) . T) (((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-99)) . T) (((-537)) . T)) +((((-99)) . T) (((-537)) . T)) +((((-99)) . T) (((-537)) . T) (((-766)) . T)) +((((-1063) |#1|) . T)) +((((-1063) |#1|) . T)) +((((-1063) |#1|) . T)) +((((-1063) |#1|) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) |has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) |has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))))) +((((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +((((-1063) |#1|) . T)) +((((-766)) . T)) +((((-332) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +((((-468)) |has| |#1| (-549 (-468))) (((-794 (-324))) |has| |#1| (-549 (-794 (-324)))) (((-794 (-479))) |has| |#1| (-549 (-794 (-479))))) +(((|#1|) . T)) +((((-766)) . T)) +((((-766)) . T)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-766)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) -(((|#2|) . T) (((-478)) . T) (($) . T)) +(((|#2|) . T) (((-479)) . T) (($) . T)) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-478)) . T)) +(((|#2|) . T) (((-479)) . T)) (((|#2|) . T)) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-116)) (|has| |#1| (-118)) -(((|#2|) . T) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) +(((|#2|) . T) (((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) |has| |#1| (-944 (-479))) ((|#1|) . T)) (((|#1|) . T)) -((((-343 |#2|)) . T)) +((((-344 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) @@ -1841,289 +1841,289 @@ ((($) . T)) ((($) . T)) (|has| |#2| (-188)) -(((|#2|) . T) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (($) . T) (((-478)) . T)) +(((|#2|) . T) (((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((|#1|) . T) (($) . T) (((-479)) . T)) ((($) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T)) ((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) (OR (|has| |#2| (-188)) (|has| |#2| (-187))) (((|#2|) . T)) -((($ (-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075))))) -((((-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075))))) -((((-1075)) |has| |#2| (-802 (-1075)))) -(((|#2|) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T)) -((((-1059) (-51)) . T)) -((((-765)) . T)) -((((-1075) (-51)) . T) (((-1059) (-51)) . T)) -((((-1059) (-51)) . T)) -((((-1059) (-51)) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) |has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))))) -((((-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) |has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))))) -((((-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) . T)) -((((-1059) (-51)) . T)) -((((-478) |#1|) |has| |#2| (-354 |#1|))) -(((|#1|) OR (|has| |#2| (-312 |#1|)) (|has| |#2| (-354 |#1|)))) -(((|#1|) |has| |#2| (-354 |#1|))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-765)) . T)) -(((|#1|) . T) (((-478)) . T)) +((($ (-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080))))) +((((-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080))))) +((((-1080)) |has| |#2| (-803 (-1080)))) +(((|#2|) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T)) +((((-1063) (-51)) . T)) +((((-766)) . T)) +((((-1080) (-51)) . T) (((-1063) (-51)) . T)) +((((-1063) (-51)) . T)) +((((-1063) (-51)) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) |has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))))) +((((-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) |has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))))) +((((-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) . T)) +((((-1063) (-51)) . T)) +((((-479) |#1|) |has| |#2| (-355 |#1|))) +(((|#1|) OR (|has| |#2| (-312 |#1|)) (|has| |#2| (-355 |#1|)))) +(((|#1|) |has| |#2| (-355 |#1|))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-766)) . T)) +(((|#1|) . T) (((-479)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-766 |#1|)) . T)) -((((-765)) . T)) -(((|#1| (-572 |#2|)) . T)) -((((-572 |#2|)) . T)) +((((-767 |#1|)) . T)) +((((-766)) . T)) +(((|#1| (-573 |#2|)) . T)) +((((-573 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-478)) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-479)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-574 |#1| |#2|) |#1|) . T)) +((((-575 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-478)) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-479)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) (((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -((((-478) |#1|) . T)) -((((-1131 (-478)) $) . T) (((-478) |#1|) . T)) -((((-478) |#1|) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +((((-479) |#1|) . T)) +((((-1136 (-479)) $) . T) (((-479) |#1|) . T)) +((((-479) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1080)) . T)) -(((|#1|) . T) (((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) +((((-1085)) . T)) +(((|#1|) . T) (((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) (((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) +((((-468)) |has| |#1| (-549 (-468)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -(|has| |#1| (-707)) -(|has| |#1| (-707)) -(|has| |#1| (-707)) -(|has| |#1| (-707)) -(|has| |#1| (-707)) -(|has| |#1| (-707)) +((((-766)) . T)) +(|has| |#1| (-708)) +(|has| |#1| (-708)) +(|has| |#1| (-708)) +(|has| |#1| (-708)) +(|has| |#1| (-708)) +(|has| |#1| (-708)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-765)) . T)) -((((-478)) . T) ((|#2|) . T)) +((((-766)) . T)) +((((-479)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) |has| |#1| (-944 (-479))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) -((((-765)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-479)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (((-478)) . T)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((|#1|) . T) (((-479)) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) |has| |#1| (-944 (-479))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) -((((-765)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-479)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (((-478)) . T)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((|#1|) . T) (((-479)) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) |has| |#1| (-944 (-479))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) -((((-765)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -(((|#1|) . T) (((-478)) . T) (($) . T)) +(((|#1|) . T) (((-479)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((|#1|) . T) (((-478)) . T)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((|#1|) . T) (((-479)) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) . T)) -((((-609 |#1|)) . T)) -((((-609 |#1|)) . T)) -(((|#2| (-609 |#1|)) . T)) +((((-610 |#1|)) . T)) +((((-610 |#1|)) . T)) +(((|#2| (-610 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-765)) . T)) -((((-478)) . T) ((|#2|) . T)) +((((-766)) . T)) +((((-479)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-478) |#2|) . T)) +((((-479) |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-3973 "*")))) +(((|#2|) |has| |#2| (-6 (-3979 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-625 |#2|)) . T) (((-765)) . T)) -((($) . T) (((-478)) . T) ((|#2|) . T)) +((((-626 |#2|)) . T) (((-766)) . T)) +((($) . T) (((-479)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1075)) |has| |#2| (-802 (-1075)))) -((((-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075))))) -((($ (-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075))))) +((((-1080)) |has| |#2| (-803 (-1080)))) +((((-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080))))) +((($ (-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080))))) (((|#2|) . T)) (OR (|has| |#2| (-188)) (|has| |#2| (-187))) ((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) (|has| |#2| (-188)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +((($) . T) ((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) (((|#2|) . T)) -((((-478)) . T) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) -(((|#2|) . T) (((-478)) |has| |#2| (-943 (-478))) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +((((-479)) . T) ((|#2|) . T) (((-344 (-479))) |has| |#2| (-944 (-344 (-479))))) +(((|#2|) . T) (((-479)) |has| |#2| (-944 (-479))) (((-344 (-479))) |has| |#2| (-944 (-344 (-479))))) (((|#1| |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) (((|#2|) . T)) (((|#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-1115)) . T) (((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -(((|#1| (-1164 |#1|) (-1164 |#1|)) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(|has| |#1| (-1003)) -(((|#1|) . T)) -(((|#1| (-1164 |#1|) (-1164 |#1|)) . T)) -((((-765)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(|has| |#1| (-313)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-765)) . T)) -((((-343 $) (-343 $)) |has| |#1| (-489)) (($ $) . T) ((|#1| |#1|) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-1120)) . T) (((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +(((|#1| (-1169 |#1|) (-1169 |#1|)) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1006)) +(((|#1|) . T)) +(((|#1| (-1169 |#1|) (-1169 |#1|)) . T)) +((((-766)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((((-766)) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(|has| |#1| (-314)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-766)) . T)) +((((-344 $) (-344 $)) |has| |#1| (-490)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-814))) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-815))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (|has| |#1| (-308)) -(((|#1| (-687) (-985)) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (((-985)) . T)) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (($ (-985)) . T)) -((((-1075)) |has| |#1| (-802 (-1075))) (((-985)) . T)) -((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-687)) . T)) +(((|#1| (-688) (-987)) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (((-987)) . T)) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (($ (-987)) . T)) +((((-1080)) |has| |#1| (-803 (-1080))) (((-987)) . T)) +((((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-688)) . T)) (|has| |#1| (-118)) (|has| |#1| (-116)) -(((|#2|) . T) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (((-985)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478)))))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T)) -((((-985)) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) -(((|#1| (-687)) . T)) -((((-985) |#1|) . T) (((-985) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1052)) -(((|#1|) . T)) -((((-2 (|:| -2382 |#1|) (|:| -2383 |#2|))) . T)) -((((-2 (|:| -2382 |#1|) (|:| -2383 |#2|))) . T)) -((((-2 (|:| -2382 |#1|) (|:| -2383 |#2|))) . T) (((-765)) . T)) +(((|#2|) . T) (((-479)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (((-987)) . T) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479)))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) . T) (((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((((-479)) . T) (($) . T) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T)) +((((-987)) . T) ((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) +(((|#1| (-688)) . T)) +((((-987) |#1|) . T) (((-987) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1056)) +(((|#1|) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2388 |#2|))) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2388 |#2|))) . T)) +((((-2 (|:| -2387 |#1|) (|:| -2388 |#2|))) . T) (((-766)) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) @@ -2134,47 +2134,47 @@ (|has| |#1| (-118)) (((|#2| |#2|) . T)) ((((-84)) . T) ((|#1|) . T)) -((((-84)) . T) ((|#1|) . T) (((-478)) . T)) +((((-84)) . T) ((|#1|) . T) (((-479)) . T)) (((|#1|) |has| |#1| (-144)) (($) . T)) -((((-765)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) -((((-478)) . T)) +((((-766)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-479)) . T)) +((((-479)) . T)) ((($) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T)) -((((-765)) . T)) -((((-467)) |has| |#2| (-548 (-467))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478))))) +((((-766)) . T)) +((($) . T) (((-479)) . T)) +((((-766)) . T)) +((((-468)) |has| |#2| (-549 (-468))) (((-794 (-324))) |has| |#2| (-549 (-794 (-324)))) (((-794 (-479))) |has| |#2| (-549 (-794 (-479))))) ((($) . T)) -(((|#2| (-463 (-766 |#1|))) . T)) +(((|#2| (-464 (-767 |#1|))) . T)) (((|#2|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T)) (|has| |#2| (-116)) (|has| |#2| (-118)) -(OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -(OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -((((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814)))) -(((|#2| (-463 (-766 |#1|))) . T)) -(((|#2|) . T)) -((($) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478)))) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(OR (|has| |#2| (-385)) (|has| |#2| (-814))) -((($ $) . T) (((-766 |#1|) $) . T) (((-766 |#1|) |#2|) . T)) -((((-766 |#1|)) . T)) -((($ (-766 |#1|)) . T)) -((((-766 |#1|)) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -((((-343 (-478))) |has| |#2| (-943 (-343 (-478)))) (((-478)) |has| |#2| (-943 (-478))) ((|#2|) . T) (((-766 |#1|)) . T)) -((((-478)) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ((|#2|) . T) (($) OR (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-766 |#1|)) . T)) -(((|#2| (-463 (-766 |#1|)) (-766 |#1|)) . T)) -(-12 (|has| |#1| (-313)) (|has| |#2| (-313))) +(OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (($) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479)) (-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-144)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +(OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +(OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +((((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) |has| |#2| (-144)) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815)))) +(((|#2| (-464 (-767 |#1|))) . T)) +(((|#2|) . T)) +((($) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479)))) ((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(OR (|has| |#2| (-386)) (|has| |#2| (-815))) +((($ $) . T) (((-767 |#1|) $) . T) (((-767 |#1|) |#2|) . T)) +((((-767 |#1|)) . T)) +((($ (-767 |#1|)) . T)) +((((-767 |#1|)) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +((((-344 (-479))) |has| |#2| (-944 (-344 (-479)))) (((-479)) |has| |#2| (-944 (-479))) ((|#2|) . T) (((-767 |#1|)) . T)) +((((-479)) . T) (((-344 (-479))) OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479))))) ((|#2|) . T) (($) OR (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) (((-767 |#1|)) . T)) +(((|#2| (-464 (-767 |#1|)) (-767 |#1|)) . T)) +(-12 (|has| |#1| (-314)) (|has| |#2| (-314))) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) @@ -2184,206 +2184,206 @@ (|has| |#1| (-116)) (|has| |#1| (-118)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) ((|#2|) . T) (((-478)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-479)) . T)) (((|#1|) |has| |#1| (-144)) (($) . T)) -((((-765)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) +((((-766)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-479)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) +((((-766)) . T)) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) (((|#1|) . T)) (((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) +((((-468)) |has| |#1| (-549 (-468)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -(((|#1| (-463 |#2|) |#2|) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -((((-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#2| (-789 (-478)))) (((-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#2| (-789 (-323))))) +((((-766)) . T)) +((((-766)) . T)) +(((|#1| (-464 |#2|) |#2|) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +((((-479)) -12 (|has| |#1| (-790 (-479))) (|has| |#2| (-790 (-479)))) (((-324)) -12 (|has| |#1| (-790 (-324))) (|has| |#2| (-790 (-324))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(OR (|has| |#1| (-385)) (|has| |#1| (-814))) -((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) +(OR (|has| |#1| (-386)) (|has| |#1| (-815))) +((((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-463 |#2|)) . T)) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(((|#1| (-464 |#2|)) . T)) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((((-1025 |#1| |#2|)) . T) (((-850 |#1|)) |has| |#2| (-548 (-1075))) (((-765)) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) -((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) -((((-1025 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-478)) . T)) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T)) -((((-1025 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) -(((|#1| (-463 |#2|)) . T)) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((((-1029 |#1| |#2|)) . T) (((-851 |#1|)) |has| |#2| (-549 (-1080))) (((-766)) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (((-479)) . T) (($) . T)) +((((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (($) . T)) +((((-1029 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) (((-479)) . T)) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T)) +((((-1029 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) +(((|#1| (-464 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-850 |#1|)) |has| |#2| (-548 (-1075))) (((-1059)) -12 (|has| |#1| (-943 (-478))) (|has| |#2| (-548 (-1075)))) (((-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) (((-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) (((-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#2| (-548 (-467))))) -(((|#1| (-463 |#2|) |#2|) . T)) +((((-851 |#1|)) |has| |#2| (-549 (-1080))) (((-1063)) -12 (|has| |#1| (-944 (-479))) (|has| |#2| (-549 (-1080)))) (((-794 (-479))) -12 (|has| |#1| (-549 (-794 (-479)))) (|has| |#2| (-549 (-794 (-479))))) (((-794 (-324))) -12 (|has| |#1| (-549 (-794 (-324)))) (|has| |#2| (-549 (-794 (-324))))) (((-468)) -12 (|has| |#1| (-549 (-468))) (|has| |#2| (-549 (-468))))) +(((|#1| (-464 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1070 |#1|)) . T) (((-765)) . T)) -((((-343 $) (-343 $)) |has| |#1| (-489)) (($ $) . T) ((|#1| |#1|) . T)) +((((-1075 |#1|)) . T) (((-766)) . T)) +((((-344 $) (-344 $)) |has| |#1| (-490)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-814))) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-815))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (|has| |#1| (-308)) -(((|#1| (-687) (-985)) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (((-985)) . T)) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (($ (-985)) . T)) -((((-1075)) |has| |#1| (-802 (-1075))) (((-985)) . T)) -((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-687)) . T)) +(((|#1| (-688) (-987)) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (((-987)) . T)) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (($ (-987)) . T)) +((((-1080)) |has| |#1| (-803 (-1080))) (((-987)) . T)) +((((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-688)) . T)) (|has| |#1| (-118)) (|has| |#1| (-116)) -((((-1070 |#1|)) . T) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (((-985)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478)))))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((((-1075 |#1|)) . T) (((-479)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (((-987)) . T) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479)))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) . T) (((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((((-479)) . T) (($) . T) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) (((|#1|) . T)) -((((-1070 |#1|)) . T) (((-985)) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) -(((|#1| (-687)) . T)) -((((-985) |#1|) . T) (((-985) $) . T) (($ $) . T)) +((((-1075 |#1|)) . T) (((-987)) . T) ((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) +(((|#1| (-688)) . T)) +((((-987) |#1|) . T) (((-987) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1052)) +(|has| |#1| (-1056)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) ((|#1|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) -((((-467)) |has| |#1| (-548 (-467)))) -(|has| |#1| (-313)) +((((-468)) |has| |#1| (-549 (-468)))) +(|has| |#1| (-314)) (((|#1|) . T)) -((((-1075) |#1|) |has| |#1| (-447 (-1075) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) +((((-1080) |#1|) |has| |#1| (-448 (-1080) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) (((|#1|) |has| |#1| (-256 |#1|))) (((|#1| $) |has| |#1| (-238 |#1| |#1|))) -((((-902 |#1|)) . T) ((|#1|) . T)) -((((-902 |#1|)) . T) (((-478)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| (-902 |#1|) (-943 (-343 (-478)))))) -((((-902 |#1|)) . T) ((|#1|) . T) (((-478)) OR (|has| |#1| (-943 (-478))) (|has| (-902 |#1|) (-943 (-478)))) (((-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| (-902 |#1|) (-943 (-343 (-478)))))) -(|has| |#1| (-749)) -(|has| |#1| (-749)) -(((|#1|) . T)) -(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1003))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1003))) -(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) -(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-710)) (|has| |#2| (-954))) -(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954)))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954)))) -((((-765)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-547 (-765))) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-313)) (|has| |#2| (-658)) (|has| |#2| (-710)) (|has| |#2| (-749)) (|has| |#2| (-954)) (|has| |#2| (-1003))) (((-1164 |#2|)) . T)) -(((|#2|) |has| |#2| (-954))) -((((-1075)) -12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954)))) -((((-1075)) OR (-12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))))) -((($ (-1075)) OR (-12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954))) (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))))) -(((|#2|) |has| |#2| (-954))) -(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954)))) -((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-954))) (-12 (|has| |#2| (-187)) (|has| |#2| (-954))))) -(|has| |#2| (-954)) -(|has| |#2| (-954)) -(|has| |#2| (-954)) -(|has| |#2| (-954)) -((((-478)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)) (|has| |#2| (-954))) (($) |has| |#2| (-954))) -(-12 (|has| |#2| (-188)) (|has| |#2| (-954))) -(|has| |#2| (-313)) -(((|#2|) |has| |#2| (-954))) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-954))) (($) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) -(((|#2|) |has| |#2| (-954)) (((-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954)))) -(((|#2|) |has| |#2| (-1003))) -((((-478)) OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (|has| |#2| (-954))) ((|#2|) |has| |#2| (-1003)) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003)))) -(((|#2|) |has| |#2| (-1003)) (((-478)) -12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (((-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003)))) -((((-478) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -(((|#2|) . T)) -((((-478) |#2|) . T)) -((((-478) |#2|) . T)) -(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-658)))) +((((-903 |#1|)) . T) ((|#1|) . T)) +((((-903 |#1|)) . T) (((-479)) . T) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| (-903 |#1|) (-944 (-344 (-479)))))) +((((-903 |#1|)) . T) ((|#1|) . T) (((-479)) OR (|has| |#1| (-944 (-479))) (|has| (-903 |#1|) (-944 (-479)))) (((-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| (-903 |#1|) (-944 (-344 (-479)))))) +(|has| |#1| (-750)) +(|has| |#1| (-750)) +(((|#1|) . T)) +(OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-711)) (|has| |#2| (-955))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-314)) (|has| |#2| (-659)) (|has| |#2| (-711)) (|has| |#2| (-750)) (|has| |#2| (-955)) (|has| |#2| (-1006))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-314)) (|has| |#2| (-659)) (|has| |#2| (-711)) (|has| |#2| (-750)) (|has| |#2| (-955)) (|has| |#2| (-1006))) +(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-711)) (|has| |#2| (-955))) +(OR (|has| |#2| (-21)) (|has| |#2| (-102)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-711)) (|has| |#2| (-955))) +(((|#2| |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-659)) (|has| |#2| (-955)))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955)))) +((((-766)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-548 (-766))) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-314)) (|has| |#2| (-659)) (|has| |#2| (-711)) (|has| |#2| (-750)) (|has| |#2| (-955)) (|has| |#2| (-1006))) (((-1169 |#2|)) . T)) +(((|#2|) |has| |#2| (-955))) +((((-1080)) -12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955)))) +((((-1080)) OR (-12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955))) (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))))) +((($ (-1080)) OR (-12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955))) (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))))) +(((|#2|) |has| |#2| (-955))) +(OR (-12 (|has| |#2| (-188)) (|has| |#2| (-955))) (-12 (|has| |#2| (-187)) (|has| |#2| (-955)))) +((($) OR (-12 (|has| |#2| (-188)) (|has| |#2| (-955))) (-12 (|has| |#2| (-187)) (|has| |#2| (-955))))) +(|has| |#2| (-955)) +(|has| |#2| (-955)) +(|has| |#2| (-955)) +(|has| |#2| (-955)) +((((-479)) OR (|has| |#2| (-21)) (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955))) ((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-659)) (|has| |#2| (-955))) (($) |has| |#2| (-955))) +(-12 (|has| |#2| (-188)) (|has| |#2| (-955))) +(|has| |#2| (-314)) +(((|#2|) |has| |#2| (-955))) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-955))) (($) |has| |#2| (-955)) (((-479)) -12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955)))) +(((|#2|) |has| |#2| (-955)) (((-479)) -12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955)))) +(((|#2|) |has| |#2| (-1006))) +((((-479)) OR (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (|has| |#2| (-955))) ((|#2|) |has| |#2| (-1006)) (((-344 (-479))) -12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006)))) +(((|#2|) |has| |#2| (-1006)) (((-479)) -12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (((-344 (-479))) -12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006)))) +((((-479) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +(((|#2|) . T)) +((((-479) |#2|) . T)) +((((-479) |#2|) . T)) +(((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-659)))) (((|#2|) OR (|has| |#2| (-144)) (|has| |#2| (-308)))) -(|has| |#2| (-710)) -(|has| |#2| (-710)) -(OR (|has| |#2| (-710)) (|has| |#2| (-749))) -(OR (|has| |#2| (-710)) (|has| |#2| (-749))) -(|has| |#2| (-710)) -(|has| |#2| (-710)) +(|has| |#2| (-711)) +(|has| |#2| (-711)) +(OR (|has| |#2| (-711)) (|has| |#2| (-750))) +(OR (|has| |#2| (-711)) (|has| |#2| (-750))) +(|has| |#2| (-711)) +(|has| |#2| (-711)) (((|#2|) |has| |#2| (-308))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-188)) (|has| |#1| (-187))) ((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) -((((-765)) . T)) +((((-766)) . T)) (|has| |#1| (-188)) ((($) . T)) -(((|#1| (-463 (-731 (-1075))) (-731 (-1075))) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (((-731 (-1075))) . T)) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (($ (-731 (-1075))) . T)) -((((-1075)) |has| |#1| (-802 (-1075))) (((-731 (-1075))) . T)) -((($ $) . T) (((-1075) $) |has| |#1| (-188)) (((-1075) |#1|) |has| |#1| (-188)) (((-731 (-1075)) |#1|) . T) (((-731 (-1075)) $) . T)) -(OR (|has| |#1| (-385)) (|has| |#1| (-814))) -((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-463 (-731 (-1075)))) . T)) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(((|#1| (-464 (-732 (-1080))) (-732 (-1080))) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (((-732 (-1080))) . T)) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (($ (-732 (-1080))) . T)) +((((-1080)) |has| |#1| (-803 (-1080))) (((-732 (-1080))) . T)) +((($ $) . T) (((-1080) $) |has| |#1| (-188)) (((-1080) |#1|) |has| |#1| (-188)) (((-732 (-1080)) |#1|) . T) (((-732 (-1080)) $) . T)) +(OR (|has| |#1| (-386)) (|has| |#1| (-815))) +((((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-464 (-732 (-1080)))) . T)) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T)) -(((|#1| (-463 (-731 (-1075)))) . T)) -((((-1025 |#1| (-1075))) . T) (((-731 (-1075))) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-1075)) . T)) -((((-1025 |#1| (-1075))) . T) (((-478)) . T) (((-731 (-1075))) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-1075)) . T)) -(((|#1| (-1075) (-731 (-1075)) (-463 (-731 (-1075)))) . T)) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) . T) (((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((((-479)) . T) (($) . T) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T)) +(((|#1| (-464 (-732 (-1080)))) . T)) +((((-1029 |#1| (-1080))) . T) (((-732 (-1080))) . T) ((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-1080)) . T)) +((((-1029 |#1| (-1080))) . T) (((-479)) . T) (((-732 (-1080))) . T) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) (((-1080)) . T)) +(((|#1| (-1080) (-732 (-1080)) (-464 (-732 (-1080)))) . T)) (|has| |#2| (-308)) (|has| |#2| (-308)) (|has| |#2| (-308)) (|has| |#2| (-308)) -((((-343 (-478))) |has| |#2| (-308)) (($) |has| |#2| (-308))) -((((-343 (-478))) |has| |#2| (-308)) (($) |has| |#2| (-308))) -((((-343 (-478))) |has| |#2| (-308)) (($) |has| |#2| (-308))) +((((-344 (-479))) |has| |#2| (-308)) (($) |has| |#2| (-308))) +((((-344 (-479))) |has| |#2| (-308)) (($) |has| |#2| (-308))) +((((-344 (-479))) |has| |#2| (-308)) (($) |has| |#2| (-308))) (|has| |#2| (-308)) (|has| |#2| (-308)) (|has| |#2| (-308)) @@ -2391,19 +2391,19 @@ (|has| |#2| (-308)) (((|#2|) . T)) ((($) . T)) -((((-343 (-478))) |has| |#2| (-308)) (($) |has| |#2| (-308)) ((|#2|) . T) (((-478)) . T)) -((((-343 (-478))) |has| |#2| (-308)) (($) . T)) -(((|#2|) . T) (((-765)) . T)) -((((-343 (-478))) |has| |#2| (-308)) (($) . T) (((-478)) . T)) -((((-343 (-478))) |has| |#2| (-308)) (($) . T)) -((((-343 (-478))) |has| |#2| (-308)) (($) . T)) -((((-343 (-478)) (-343 (-478))) |has| |#2| (-308)) (($ $) . T)) +((((-344 (-479))) |has| |#2| (-308)) (($) |has| |#2| (-308)) ((|#2|) . T) (((-479)) . T)) +((((-344 (-479))) |has| |#2| (-308)) (($) . T)) +(((|#2|) . T) (((-766)) . T)) +((((-344 (-479))) |has| |#2| (-308)) (($) . T) (((-479)) . T)) +((((-344 (-479))) |has| |#2| (-308)) (($) . T)) +((((-344 (-479))) |has| |#2| (-308)) (($) . T)) +((((-344 (-479)) (-344 (-479))) |has| |#2| (-308)) (($ $) . T)) ((($) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2414,34 +2414,34 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) ((|#2|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-144))) (((|#2|) |has| |#2| (-144))) -((((-478)) . T) ((|#2|) |has| |#2| (-144))) -(((|#2|) . T)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -((($) |has| |#1| (-748))) -(|has| |#1| (-748)) -(OR (|has| |#1| (-21)) (|has| |#1| (-748))) -(OR (|has| |#1| (-21)) (|has| |#1| (-748))) -(OR (|has| |#1| (-21)) (|has| |#1| (-748))) -((($) |has| |#1| (-748)) (((-478)) OR (|has| |#1| (-21)) (|has| |#1| (-748)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-748))) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) OR (|has| |#1| (-748)) (|has| |#1| (-943 (-478)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-765)) . T)) +((((-479)) . T) ((|#2|) |has| |#2| (-144))) +(((|#2|) . T)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +((($) |has| |#1| (-749))) +(|has| |#1| (-749)) +(OR (|has| |#1| (-21)) (|has| |#1| (-749))) +(OR (|has| |#1| (-21)) (|has| |#1| (-749))) +(OR (|has| |#1| (-21)) (|has| |#1| (-749))) +((($) |has| |#1| (-749)) (((-479)) OR (|has| |#1| (-21)) (|has| |#1| (-749)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-749))) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) |has| |#1| (-944 (-479))) ((|#1|) . T)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) OR (|has| |#1| (-749)) (|has| |#1| (-944 (-479)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-766)) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) @@ -2452,449 +2452,449 @@ (|has| |#1| (-118)) (((|#1| |#1|) . T)) ((((-84)) . T) ((|#1|) . T)) -((((-84)) . T) ((|#1|) . T) (((-478)) . T)) +((((-84)) . T) ((|#1|) . T) (((-479)) . T)) (((|#1|) |has| |#1| (-144)) (($) . T)) -((((-765)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) -((((-765)) . T)) -((((-439)) . T)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -(|has| |#1| (-748)) -((($) |has| |#1| (-748))) -(|has| |#1| (-748)) -(OR (|has| |#1| (-21)) (|has| |#1| (-748))) -(OR (|has| |#1| (-21)) (|has| |#1| (-748))) -(OR (|has| |#1| (-21)) (|has| |#1| (-748))) -((($) |has| |#1| (-748)) (((-478)) OR (|has| |#1| (-21)) (|has| |#1| (-748)))) -(OR (|has| |#1| (-21)) (|has| |#1| (-748))) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) OR (|has| |#1| (-748)) (|has| |#1| (-943 (-478)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-765)) . T)) -(((|#1|) . T)) -((((-765)) |has| |#1| (-547 (-765))) ((|#1|) . T)) +((((-766)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-479)) . T)) +((((-766)) . T)) +((((-440)) . T)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +(|has| |#1| (-749)) +((($) |has| |#1| (-749))) +(|has| |#1| (-749)) +(OR (|has| |#1| (-21)) (|has| |#1| (-749))) +(OR (|has| |#1| (-21)) (|has| |#1| (-749))) +(OR (|has| |#1| (-21)) (|has| |#1| (-749))) +((($) |has| |#1| (-749)) (((-479)) OR (|has| |#1| (-21)) (|has| |#1| (-749)))) +(OR (|has| |#1| (-21)) (|has| |#1| (-749))) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) |has| |#1| (-944 (-479))) ((|#1|) . T)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) OR (|has| |#1| (-749)) (|has| |#1| (-944 (-479)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-766)) . T)) +(((|#1|) . T)) +((((-766)) |has| |#1| (-548 (-766))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-144))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) ((|#1|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1|) . T)) -((((-478)) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) -(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +((((-479)) . T) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) +(((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) (((|#1|) . T)) (((|#2|) |has| |#2| (-144))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) ((|#2|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-144))) (((|#2|) |has| |#2| (-144))) (((|#2|) . T)) -((((-1161 |#1|)) . T) (((-478)) . T) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) -(((|#2|) . T) (((-478)) |has| |#2| (-943 (-478))) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +((((-1166 |#1|)) . T) (((-479)) . T) ((|#2|) . T) (((-344 (-479))) |has| |#2| (-944 (-344 (-479))))) +(((|#2|) . T) (((-479)) |has| |#2| (-944 (-479))) (((-344 (-479))) |has| |#2| (-944 (-344 (-479))))) (((|#2|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-793 (-478))) . T) (((-793 (-323))) . T) (((-467)) . T) (((-1075)) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-794 (-479))) . T) (((-794 (-324))) . T) (((-468)) . T) (((-1080)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1| |#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) -((((-850 |#1|)) . T)) -(((|#1|) |has| |#1| (-144)) (((-850 |#1|)) . T) (((-478)) . T)) +((((-851 |#1|)) . T)) +(((|#1|) |has| |#1| (-144)) (((-851 |#1|)) . T) (((-479)) . T)) (((|#1|) |has| |#1| (-144)) (($) . T)) -((((-850 |#1|)) . T) (((-765)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) +((((-851 |#1|)) . T) (((-766)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-479)) . T)) ((($) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-478)) . T) (($) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((((-771 |#1|)) . T)) -((((-771 |#1|)) . T)) -((((-771 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-771 |#1|)) . T) (((-343 (-478))) . T)) -((((-771 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-771 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-771 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-771 |#1|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-771 |#1|) (-771 |#1|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((((-771 |#1|)) . T)) -((((-1075) (-771 |#1|)) |has| (-771 |#1|) (-447 (-1075) (-771 |#1|))) (((-771 |#1|) (-771 |#1|)) |has| (-771 |#1|) (-256 (-771 |#1|)))) -((((-771 |#1|)) |has| (-771 |#1|) (-256 (-771 |#1|)))) -((((-771 |#1|) $) |has| (-771 |#1|) (-238 (-771 |#1|) (-771 |#1|)))) -((((-771 |#1|)) . T)) -((($) . T) (((-771 |#1|)) . T) (((-343 (-478))) . T)) -((((-771 |#1|)) . T)) -((((-771 |#1|)) . T)) -((((-771 |#1|)) . T)) -((((-478)) . T) (((-771 |#1|)) . T) (($) . T) (((-343 (-478))) . T)) -((((-771 |#1|)) . T)) -((((-771 |#1|)) . T)) -((((-765)) . T)) +((((-479)) . T) (($) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((((-772 |#1|)) . T)) +((((-772 |#1|)) . T)) +((((-772 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-772 |#1|)) . T) (((-344 (-479))) . T)) +((((-772 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-772 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-772 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-772 |#1|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-772 |#1|) (-772 |#1|)) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((((-772 |#1|)) . T)) +((((-1080) (-772 |#1|)) |has| (-772 |#1|) (-448 (-1080) (-772 |#1|))) (((-772 |#1|) (-772 |#1|)) |has| (-772 |#1|) (-256 (-772 |#1|)))) +((((-772 |#1|)) |has| (-772 |#1|) (-256 (-772 |#1|)))) +((((-772 |#1|) $) |has| (-772 |#1|) (-238 (-772 |#1|) (-772 |#1|)))) +((((-772 |#1|)) . T)) +((($) . T) (((-772 |#1|)) . T) (((-344 (-479))) . T)) +((((-772 |#1|)) . T)) +((((-772 |#1|)) . T)) +((((-772 |#1|)) . T)) +((((-479)) . T) (((-772 |#1|)) . T) (($) . T) (((-344 (-479))) . T)) +((((-772 |#1|)) . T)) +((((-772 |#1|)) . T)) +((((-766)) . T)) (|has| |#2| (-116)) (|has| |#2| (-118)) (((|#2|) . T)) -((((-1075)) |has| |#2| (-802 (-1075)))) -((((-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075))))) -((($ (-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075))))) +((((-1080)) |has| |#2| (-803 (-1080)))) +((((-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080))))) +((($ (-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080))))) (((|#2|) . T)) (OR (|has| |#2| (-188)) (|has| |#2| (-187))) ((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) (|has| |#2| (-188)) -(((|#2|) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) ((|#2|) . T) (((-343 (-478))) . T)) -(((|#2|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#2|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#2|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#2|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#2| |#2|) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1075) |#2|) |has| |#2| (-447 (-1075) |#2|)) ((|#2| |#2|) |has| |#2| (-256 |#2|))) +(((|#2|) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) ((|#2|) . T) (((-344 (-479))) . T)) +(((|#2|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#2|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#2|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#2|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#2| |#2|) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +(((|#2|) . T)) +((((-1080) |#2|) |has| |#2| (-448 (-1080) |#2|)) ((|#2| |#2|) |has| |#2| (-256 |#2|))) (((|#2|) |has| |#2| (-256 |#2|))) (((|#2| $) |has| |#2| (-238 |#2| |#2|))) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-343 (-478))) . T) (((-478)) |has| |#2| (-575 (-478)))) -(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(((|#2|) . T)) -((((-478)) |has| |#2| (-789 (-478))) (((-323)) |has| |#2| (-789 (-323)))) -(|has| |#2| (-733)) -(|has| |#2| (-733)) -(|has| |#2| (-733)) -(OR (|has| |#2| (-733)) (|has| |#2| (-749))) -(OR (|has| |#2| (-733)) (|has| |#2| (-749))) -(|has| |#2| (-733)) -(|has| |#2| (-733)) -(|has| |#2| (-733)) -(((|#2|) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-926)) -((((-467)) |has| |#2| (-548 (-467))) (((-793 (-478))) |has| |#2| (-548 (-793 (-478)))) (((-793 (-323))) |has| |#2| (-548 (-793 (-323)))) (((-323)) |has| |#2| (-926)) (((-177)) |has| |#2| (-926))) -((((-478)) . T) ((|#2|) . T) (($) . T) (((-343 (-478))) . T) (((-1075)) |has| |#2| (-943 (-1075)))) -((((-343 (-478))) |has| |#2| (-943 (-478))) (((-478)) |has| |#2| (-943 (-478))) (((-1075)) |has| |#2| (-943 (-1075))) ((|#2|) . T)) -(|has| |#2| (-1052)) -(((|#2|) . T)) -(-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) -(-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) -((((-765)) OR (-12 (|has| |#1| (-547 (-765))) (|has| |#2| (-547 (-765)))) (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))))) +((($) . T) ((|#2|) . T) (((-344 (-479))) . T) (((-479)) |has| |#2| (-576 (-479)))) +(((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(((|#2|) . T)) +((((-479)) |has| |#2| (-790 (-479))) (((-324)) |has| |#2| (-790 (-324)))) +(|has| |#2| (-734)) +(|has| |#2| (-734)) +(|has| |#2| (-734)) +(OR (|has| |#2| (-734)) (|has| |#2| (-750))) +(OR (|has| |#2| (-734)) (|has| |#2| (-750))) +(|has| |#2| (-734)) +(|has| |#2| (-734)) +(|has| |#2| (-734)) +(((|#2|) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-927)) +((((-468)) |has| |#2| (-549 (-468))) (((-794 (-479))) |has| |#2| (-549 (-794 (-479)))) (((-794 (-324))) |has| |#2| (-549 (-794 (-324)))) (((-324)) |has| |#2| (-927)) (((-177)) |has| |#2| (-927))) +((((-479)) . T) ((|#2|) . T) (($) . T) (((-344 (-479))) . T) (((-1080)) |has| |#2| (-944 (-1080)))) +((((-344 (-479))) |has| |#2| (-944 (-479))) (((-479)) |has| |#2| (-944 (-479))) (((-1080)) |has| |#2| (-944 (-1080))) ((|#2|) . T)) +(|has| |#2| (-1056)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) +(-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) +((((-766)) OR (-12 (|has| |#1| (-548 (-766))) (|has| |#2| (-548 (-766)))) (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))))) ((((-128)) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-1075)) . T) ((|#1|) . T)) -((((-1075)) . T) ((|#1|) . T)) -((((-765)) . T)) -((((-609 |#1|)) . T)) -((((-609 |#1|)) . T)) -((((-765)) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -((((-1101 |#1|)) . T) (((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(|has| |#1| (-1003)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-1080)) . T) ((|#1|) . T)) +((((-1080)) . T) ((|#1|) . T)) +((((-766)) . T)) +((((-610 |#1|)) . T)) +((((-610 |#1|)) . T)) +((((-766)) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +((((-1106 |#1|)) . T) (((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1006)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-765)) . T)) -(OR (|has| |#1| (-313)) (|has| |#1| (-749))) -(OR (|has| |#1| (-313)) (|has| |#1| (-749))) +((((-766)) . T)) +(OR (|has| |#1| (-314)) (|has| |#1| (-750))) +(OR (|has| |#1| (-314)) (|has| |#1| (-750))) (((|#1|) . T)) -((((-765)) . T)) -((((-478)) . T)) +((((-766)) . T)) +((((-479)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-118)) ((($) . T)) -((((-765)) . T)) -((($) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($) . T) (((-343 (-478))) . T)) -((($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-343 (-478))) . T) (($) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T)) -(((|#1| |#1|) . T) (($ $) . T) (((-343 (-478)) (-343 (-478))) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-578 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) -(((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -((((-478) |#1|) . T)) -((((-1131 (-478)) $) . T) (((-478) |#1|) . T)) -((((-478) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467))) (((-793 (-323))) |has| |#1| (-548 (-793 (-323)))) (((-793 (-478))) |has| |#1| (-548 (-793 (-478))))) -((($) . T)) -(((|#1| (-463 (-1075))) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +((((-766)) . T)) +((($) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($) . T) (((-344 (-479))) . T)) +((($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-344 (-479))) . T) (($) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T)) +(((|#1| |#1|) . T) (($ $) . T) (((-344 (-479)) (-344 (-479))) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-579 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) +(((|#1|) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +((((-479) |#1|) . T)) +((((-1136 (-479)) $) . T) (((-479) |#1|) . T)) +((((-479) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-468)) |has| |#1| (-549 (-468))) (((-794 (-324))) |has| |#1| (-549 (-794 (-324)))) (((-794 (-479))) |has| |#1| (-549 (-794 (-479))))) +((($) . T)) +(((|#1| (-464 (-1080))) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -(((|#1| (-463 (-1075))) . T)) -(((|#1|) . T)) -((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) -(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) -(OR (|has| |#1| (-385)) (|has| |#1| (-814))) -((($ $) . T) (((-1075) $) . T) (((-1075) |#1|) . T)) -((((-1075)) . T)) -((($ (-1075)) . T)) -((((-1075)) . T)) -((((-323)) |has| |#1| (-789 (-323))) (((-478)) |has| |#1| (-789 (-478)))) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T) (((-1075)) . T)) -((((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ((|#1|) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (((-1075)) . T)) -(((|#1| (-463 (-1075)) (-1075)) . T)) -((((-1020)) . T) (((-765)) . T)) +(OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +((((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +(((|#1| (-464 (-1080))) . T)) +(((|#1|) . T)) +((($) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) +(((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) +(OR (|has| |#1| (-386)) (|has| |#1| (-815))) +((($ $) . T) (((-1080) $) . T) (((-1080) |#1|) . T)) +((((-1080)) . T)) +((($ (-1080)) . T)) +((((-1080)) . T)) +((((-324)) |has| |#1| (-790 (-324))) (((-479)) |has| |#1| (-790 (-479)))) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) |has| |#1| (-944 (-479))) ((|#1|) . T) (((-1080)) . T)) +((((-479)) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ((|#1|) . T) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (((-1080)) . T)) +(((|#1| (-464 (-1080)) (-1080)) . T)) +((((-1024)) . T) (((-766)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(OR (|has| |#1| (-144)) (|has| |#1| (-489))) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(OR (|has| |#1| (-144)) (|has| |#1| (-490))) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((((-765)) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) -((($) |has| |#1| (-489)) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-478)) . T)) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T)) -(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((((-766)) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (($) . T)) +((($) |has| |#1| (-490)) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) (((-479)) . T)) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T)) +(((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) +(((|#1|) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +((((-479) |#1|) . T)) +((((-1136 (-479)) $) . T) (((-479) |#1|) . T)) +((((-479) |#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) -(((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -((((-478) |#1|) . T)) -((((-1131 (-478)) $) . T) (((-478) |#1|) . T)) -((((-478) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-710)) (|has| |#2| (-710))) -(-12 (|has| |#1| (-710)) (|has| |#2| (-710))) -(OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) -(OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) -(-12 (|has| |#1| (-710)) (|has| |#2| (-710))) -(-12 (|has| |#1| (-710)) (|has| |#2| (-710))) -((((-478)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +(((|#1|) . T)) +(-12 (|has| |#1| (-711)) (|has| |#2| (-711))) +(-12 (|has| |#1| (-711)) (|has| |#2| (-711))) +(OR (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) (-12 (|has| |#1| (-750)) (|has| |#2| (-750)))) +(OR (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) (-12 (|has| |#1| (-750)) (|has| |#2| (-750)))) +(-12 (|has| |#1| (-711)) (|has| |#2| (-711))) +(-12 (|has| |#1| (-711)) (|has| |#2| (-711))) +((((-479)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-406)) (|has| |#2| (-406))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) -(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) -(OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) -(OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) -(-12 (|has| |#1| (-313)) (|has| |#2| (-313))) -((((-765)) . T)) -((((-765)) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-578 (-823))) . T) (((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) +(-12 (|has| |#1| (-407)) (|has| |#2| (-407))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) +(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) +(OR (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) +(OR (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) +(-12 (|has| |#1| (-314)) (|has| |#2| (-314))) +((((-766)) . T)) +((((-766)) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-579 (-824))) . T) (((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) ((((-194 |#1| |#2|) |#2|) . T)) -((((-765)) . T)) -((((-478)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-479)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) -((((-467)) |has| |#1| (-548 (-467)))) +((((-468)) |has| |#1| (-549 (-468)))) (((|#1|) . T)) -((((-1075)) |has| |#1| (-802 (-1075)))) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075))))) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075))))) +((((-1080)) |has| |#1| (-803 (-1080)))) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080))))) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080))))) (((|#1|) . T)) (OR (|has| |#1| (-188)) (|has| |#1| (-187))) ((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) (|has| |#1| (-188)) (|has| |#1| (-308)) (OR (|has| |#1| (-242)) (|has| |#1| (-308))) -((((-478)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478)))))) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-308))) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-308))) -((($) . T) (((-478)) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-308))) -(((|#1|) . T) (($) OR (|has| |#1| (-242)) (|has| |#1| (-308))) (((-343 (-478))) |has| |#1| (-308))) -(((|#1|) . T) (($) OR (|has| |#1| (-242)) (|has| |#1| (-308))) (((-343 (-478))) |has| |#1| (-308))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-242)) (|has| |#1| (-308))) (((-343 (-478)) (-343 (-478))) |has| |#1| (-308))) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-308))) -(((|#1|) . T)) -((((-1075) |#1|) |has| |#1| (-447 (-1075) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) +((((-479)) . T) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-944 (-344 (-479)))))) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-308))) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-308))) +((($) . T) (((-479)) . T) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-308))) +(((|#1|) . T) (($) OR (|has| |#1| (-242)) (|has| |#1| (-308))) (((-344 (-479))) |has| |#1| (-308))) +(((|#1|) . T) (($) OR (|has| |#1| (-242)) (|has| |#1| (-308))) (((-344 (-479))) |has| |#1| (-308))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-242)) (|has| |#1| (-308))) (((-344 (-479)) (-344 (-479))) |has| |#1| (-308))) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-308))) +(((|#1|) . T)) +((((-1080) |#1|) |has| |#1| (-448 (-1080) |#1|)) ((|#1| |#1|) |has| |#1| (-256 |#1|))) (((|#1|) |has| |#1| (-256 |#1|))) (((|#1| $) |has| |#1| (-238 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-308)) (((-478)) |has| |#1| (-575 (-478)))) -(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) -(((|#1|) . T)) -(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) -(|has| |#1| (-749)) -(|has| |#1| (-749)) -(((|#1|) . T)) -(((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(|has| |#1| (-1003)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-343 |#2|) |#3|) . T)) -((((-343 (-478))) |has| (-343 |#2|) (-943 (-343 (-478)))) (((-478)) |has| (-343 |#2|) (-943 (-478))) (((-343 |#2|)) . T)) -((((-343 |#2|)) . T)) -((((-478)) |has| (-343 |#2|) (-575 (-478))) (((-343 |#2|)) . T)) -((((-343 |#2|)) . T)) -((((-343 |#2|) |#3|) . T)) -(|has| (-343 |#2|) (-118)) -((((-343 |#2|) |#3|) . T)) -(|has| (-343 |#2|) (-116)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -(|has| (-343 |#2|) (-188)) -((($) OR (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-187)))) -(OR (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-187))) -((((-343 |#2|)) . T)) -((($ (-1075)) OR (|has| (-343 |#2|) (-802 (-1075))) (|has| (-343 |#2|) (-804 (-1075))))) -((((-1075)) OR (|has| (-343 |#2|) (-802 (-1075))) (|has| (-343 |#2|) (-804 (-1075))))) -((((-1075)) |has| (-343 |#2|) (-802 (-1075)))) -((((-343 |#2|)) . T)) +((($) . T) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-308)) (((-479)) |has| |#1| (-576 (-479)))) +(((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) +(((|#1|) . T)) +(((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) +(|has| |#1| (-750)) +(|has| |#1| (-750)) +(((|#1|) . T)) +(((|#1|) . T)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1006)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-344 |#2|) |#3|) . T)) +((((-344 (-479))) |has| (-344 |#2|) (-944 (-344 (-479)))) (((-479)) |has| (-344 |#2|) (-944 (-479))) (((-344 |#2|)) . T)) +((((-344 |#2|)) . T)) +((((-479)) |has| (-344 |#2|) (-576 (-479))) (((-344 |#2|)) . T)) +((((-344 |#2|)) . T)) +((((-344 |#2|) |#3|) . T)) +(|has| (-344 |#2|) (-118)) +((((-344 |#2|) |#3|) . T)) +(|has| (-344 |#2|) (-116)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +(|has| (-344 |#2|) (-188)) +((($) OR (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-187)))) +(OR (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-187))) +((((-344 |#2|)) . T)) +((($ (-1080)) OR (|has| (-344 |#2|) (-803 (-1080))) (|has| (-344 |#2|) (-805 (-1080))))) +((((-1080)) OR (|has| (-344 |#2|) (-803 (-1080))) (|has| (-344 |#2|) (-805 (-1080))))) +((((-1080)) |has| (-344 |#2|) (-803 (-1080)))) +((((-344 |#2|)) . T)) (((|#3|) . T)) -((((-343 |#2|) (-343 |#2|)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-765)) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -((((-478)) |has| (-343 |#2|) (-575 (-478))) (((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T)) -((((-343 |#2|)) . T) (((-343 (-478))) . T) (($) . T) (((-478)) . T)) +((((-344 |#2|) (-344 |#2|)) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-766)) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +((((-479)) |has| (-344 |#2|) (-576 (-479))) (((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T)) +((((-344 |#2|)) . T) (((-344 (-479))) . T) (($) . T) (((-479)) . T)) (((|#1| |#2| |#3|) . T)) -((((-343 (-478))) . T) (((-765)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((($) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -((((-478)) . T) (((-343 (-478))) . T) (($) . T)) -((((-478) (-478)) . T) (((-343 (-478)) (-343 (-478))) . T) (($ $) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-478)) . T)) -((((-467)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) -((((-343 (-478))) . T) (((-478)) . T)) -((((-478)) . T) (($) . T) (((-343 (-478))) . T)) -((((-478)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T)) -(((|#1|) . T) (($) . T) (((-478)) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (($) . T) (((-343 (-478))) . T) (((-478)) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) . T) (((-478) (-478)) . T) (($ $) . T)) -(((|#1|) . T) (((-478)) . T) (((-343 (-478))) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) . T)) -(((|#1|) . T) (((-478)) OR (|has| |#1| (-943 (-478))) (|has| (-343 (-478)) (-943 (-478)))) (((-343 (-478))) . T)) -((((-765)) . T)) +((((-344 (-479))) . T) (((-766)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((($) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +((((-479)) . T) (((-344 (-479))) . T) (($) . T)) +((((-479) (-479)) . T) (((-344 (-479)) (-344 (-479))) . T) (($ $) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-479)) . T)) +((((-468)) . T) (((-794 (-479))) . T) (((-324)) . T) (((-177)) . T)) +((((-344 (-479))) . T) (((-479)) . T)) +((((-479)) . T) (($) . T) (((-344 (-479))) . T)) +((((-479)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T)) +(((|#1|) . T) (($) . T) (((-479)) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (($) . T) (((-344 (-479))) . T) (((-479)) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) . T) (((-479) (-479)) . T) (($ $) . T)) +(((|#1|) . T) (((-479)) . T) (((-344 (-479))) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) . T)) +(((|#1|) . T) (((-479)) OR (|has| |#1| (-944 (-479))) (|has| (-344 (-479)) (-944 (-479)))) (((-344 (-479))) . T)) +((((-766)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-578 |#4|)) . T) (((-765)) . T)) -(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) -(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) +((((-579 |#4|)) . T) (((-766)) . T)) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) (((|#4|) . T)) -((((-467)) |has| |#4| (-548 (-467)))) +((((-468)) |has| |#4| (-549 (-468)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) @@ -2903,44 +2903,44 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (((-478)) . T) (($) . T)) +((((-766)) . T)) +(((|#1|) . T) (((-479)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-478)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -(((|#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|))) . T)) -((((-696 |#1| (-766 |#2|))) . T)) -((((-578 (-696 |#1| (-766 |#2|)))) . T) (((-765)) . T)) -((((-696 |#1| (-766 |#2|))) |has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|))))) -((((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) |has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|))))) -((((-696 |#1| (-766 |#2|))) . T)) -((((-467)) |has| (-696 |#1| (-766 |#2|)) (-548 (-467)))) -(((|#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|))) . T)) -(((|#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|))) . T)) -((((-467)) |has| |#3| (-548 (-467)))) +(((|#1|) . T) (((-479)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +(((|#1| (-464 (-767 |#2|)) (-767 |#2|) (-697 |#1| (-767 |#2|))) . T)) +((((-697 |#1| (-767 |#2|))) . T)) +((((-579 (-697 |#1| (-767 |#2|)))) . T) (((-766)) . T)) +((((-697 |#1| (-767 |#2|))) |has| (-697 |#1| (-767 |#2|)) (-256 (-697 |#1| (-767 |#2|))))) +((((-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) |has| (-697 |#1| (-767 |#2|)) (-256 (-697 |#1| (-767 |#2|))))) +((((-697 |#1| (-767 |#2|))) . T)) +((((-468)) |has| (-697 |#1| (-767 |#2|)) (-549 (-468)))) +(((|#1| (-464 (-767 |#2|)) (-767 |#2|) (-697 |#1| (-767 |#2|))) . T)) +(((|#1| (-464 (-767 |#2|)) (-767 |#2|) (-697 |#1| (-767 |#2|))) . T)) +((((-468)) |has| |#3| (-549 (-468)))) (((|#3|) |has| |#3| (-308))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-625 |#3|)) . T) (((-765)) . T)) -((((-478)) . T) ((|#3|) . T)) +((((-626 |#3|)) . T) (((-766)) . T)) +((((-479)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003)))) -(((|#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003)))) +(((|#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006)))) +(((|#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006)))) (((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)))) (((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)))) (((|#1| |#2| |#3| (-194 |#2| |#3|) (-194 |#1| |#3|)) . T)) -(|has| |#1| (-1003)) -((((-765)) |has| |#1| (-1003))) -(|has| |#1| (-1003)) -((((-765)) . T)) +(|has| |#1| (-1006)) +((((-766)) |has| |#1| (-1006))) +(|has| |#1| (-1006)) +((((-766)) . T)) (((|#1| |#2|) . T)) -((((-1075)) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T)) +((((-1080)) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -2948,28 +2948,31 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-478)) . T) (($) . T)) -((((-478)) . T)) -((($) . T) (((-478)) . T)) -((((-478)) . T)) -((((-467)) . T) (((-478)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) -((((-478)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) +((((-479)) . T) (($) . T)) +((((-479)) . T)) +((($) . T) (((-479)) . T)) +((((-479)) . T)) +((((-468)) . T) (((-479)) . T) (((-794 (-479))) . T) (((-324)) . T) (((-177)) . T)) +((((-479)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) ((((-245 |#3|)) . T)) ((((-245 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#3| |#3|) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#2|) . T)) (((|#1|) |has| |#1| (-308))) -((((-1075)) -12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075))))) -((((-1075)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))))) -((($ (-1075)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))))) +((((-1080)) -12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080))))) +((((-1080)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))))) +((($ (-1080)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))))) (((|#1|) |has| |#1| (-308))) (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ((($) OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295)))) @@ -2982,155 +2985,161 @@ (OR (|has| |#1| (-308)) (|has| |#1| (-295))) (OR (|has| |#1| (-308)) (|has| |#1| (-295))) (OR (|has| |#1| (-308)) (|has| |#1| (-295))) -(OR (|has| |#1| (-313)) (|has| |#1| (-295))) +(OR (|has| |#1| (-314)) (|has| |#1| (-295))) (|has| |#1| (-295)) (|has| |#1| (-295)) (OR (|has| |#1| (-116)) (|has| |#1| (-295))) (|has| |#1| (-295)) (((|#1| |#2|) . T)) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($ $) . T) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1| |#1|) . T)) -((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) -((((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-943 (-343 (-478))))) ((|#1|) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($ $) . T) (((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1| |#1|) . T)) +((($) . T) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T)) +((((-479)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-295))) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295)) (|has| |#1| (-944 (-344 (-479))))) ((|#1|) . T)) (|has| |#1| (-118)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) -(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) +((($) . T) (((-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-295))) ((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) +(((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) (((|#1|) . T)) -(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) +(((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) (((|#1| |#2|) . T)) -((((-1075)) . T)) -((((-765)) . T)) -((((-765)) . T)) +((((-1080)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (OR (|has| |#1| (-188)) (|has| |#1| (-187))) ((($) OR (|has| |#1| (-188)) (|has| |#1| (-187)))) -((((-765)) . T)) +((((-766)) . T)) (|has| |#1| (-188)) ((($) . T)) -(((|#1| (-463 (-991 (-1075))) (-991 (-1075))) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (((-991 (-1075))) . T)) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (($ (-991 (-1075))) . T)) -((((-1075)) |has| |#1| (-802 (-1075))) (((-991 (-1075))) . T)) -((($ $) . T) (((-1075) $) |has| |#1| (-188)) (((-1075) |#1|) |has| |#1| (-188)) (((-991 (-1075)) |#1|) . T) (((-991 (-1075)) $) . T)) -(OR (|has| |#1| (-385)) (|has| |#1| (-814))) -((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-463 (-991 (-1075)))) . T)) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(((|#1| (-464 (-993 (-1080))) (-993 (-1080))) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (((-993 (-1080))) . T)) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (($ (-993 (-1080))) . T)) +((((-1080)) |has| |#1| (-803 (-1080))) (((-993 (-1080))) . T)) +((($ $) . T) (((-1080) $) |has| |#1| (-188)) (((-1080) |#1|) |has| |#1| (-188)) (((-993 (-1080)) |#1|) . T) (((-993 (-1080)) $) . T)) +(OR (|has| |#1| (-386)) (|has| |#1| (-815))) +((((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-464 (-993 (-1080)))) . T)) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) . T) (((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((((-479)) . T) (($) . T) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) (((|#1|) . T)) -(((|#1| (-463 (-991 (-1075)))) . T)) -((((-1025 |#1| (-1075))) . T) (((-991 (-1075))) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-1075)) . T)) -((((-1025 |#1| (-1075))) . T) (((-478)) . T) (((-991 (-1075))) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-1075)) . T)) -(((|#1| (-1075) (-991 (-1075)) (-463 (-991 (-1075)))) . T)) +(((|#1| (-464 (-993 (-1080)))) . T)) +((((-1029 |#1| (-1080))) . T) (((-993 (-1080))) . T) ((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-1080)) . T)) +((((-1029 |#1| (-1080))) . T) (((-479)) . T) (((-993 (-1080))) . T) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) (((-1080)) . T)) +(((|#1| (-1080) (-993 (-1080)) (-464 (-993 (-1080)))) . T)) ((($) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-578 |#1|)) |has| |#1| (-748))) -(|has| |#1| (-1003)) -(|has| |#1| (-1003)) -((((-765)) |has| |#1| (-1003))) -(|has| |#1| (-1003)) +(((|#1| (-579 |#1|)) |has| |#1| (-749))) +(|has| |#1| (-1006)) +(|has| |#1| (-1006)) +((((-766)) |has| |#1| (-1006))) +(|has| |#1| (-1006)) (((|#1|) . T)) (((|#1|) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -(|has| (-992 |#1|) (-1003)) -((((-765)) |has| (-992 |#1|) (-1003))) -(|has| (-992 |#1|) (-1003)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +(|has| (-994 |#1|) (-1006)) +((((-766)) |has| (-994 |#1|) (-1006))) +(|has| (-994 |#1|) (-1006)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) +((((-766)) . T)) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) (((|#1|) . T)) (((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) +((((-468)) |has| |#1| (-549 (-468)))) (((|#1|) . T)) -(|has| |#1| (-313)) +(|has| |#1| (-314)) (((|#1|) . T)) (((|#1|) . T)) -((((-765)) . T)) -((((-578 $)) . T) (((-1059)) . T) (((-1075)) . T) (((-478)) . T) (((-177)) . T) (((-765)) . T)) -((((-478) $) . T) (((-578 (-478)) $) . T)) -((((-765)) . T)) -((((-1059) (-1075) (-478) (-177) (-765)) . T)) -((((-578 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-478) $) . T) (((-578 (-478)) $) . T)) -((((-765)) . T)) +((((-766)) . T)) +((((-579 $)) . T) (((-1063)) . T) (((-1080)) . T) (((-479)) . T) (((-177)) . T) (((-766)) . T)) +((((-479) $) . T) (((-579 (-479)) $) . T)) +((((-766)) . T)) +((((-1063) (-1080) (-479) (-177) (-766)) . T)) +((((-579 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-479) $) . T) (((-579 (-479)) $) . T)) +((((-766)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(OR (|has| |#3| (-21)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-710)) (|has| |#3| (-954))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-313)) (|has| |#3| (-658)) (|has| |#3| (-710)) (|has| |#3| (-749)) (|has| |#3| (-954)) (|has| |#3| (-1003))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-313)) (|has| |#3| (-658)) (|has| |#3| (-710)) (|has| |#3| (-749)) (|has| |#3| (-954)) (|has| |#3| (-1003))) -(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-710)) (|has| |#3| (-954))) -(OR (|has| |#3| (-21)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-710)) (|has| |#3| (-954))) -(((|#3| |#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)) (|has| |#3| (-954)))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954)))) -((((-765)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-547 (-765))) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-313)) (|has| |#3| (-658)) (|has| |#3| (-710)) (|has| |#3| (-749)) (|has| |#3| (-954)) (|has| |#3| (-1003))) (((-1164 |#3|)) . T)) -(((|#3|) |has| |#3| (-954))) -((((-1075)) -12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954)))) -((((-1075)) OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))))) -((($ (-1075)) OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))))) -(((|#3|) |has| |#3| (-954))) -(OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) -((($) OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954))))) -(|has| |#3| (-954)) -(|has| |#3| (-954)) -(|has| |#3| (-954)) -(|has| |#3| (-954)) -((((-478)) OR (|has| |#3| (-21)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954))) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)) (|has| |#3| (-954))) (($) |has| |#3| (-954))) -(-12 (|has| |#3| (-188)) (|has| |#3| (-954))) -(|has| |#3| (-313)) -(((|#3|) |has| |#3| (-954))) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-954))) (($) |has| |#3| (-954)) (((-478)) -12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954)))) -(((|#3|) |has| |#3| (-954)) (((-478)) -12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954)))) -(((|#3|) |has| |#3| (-1003))) -((((-478)) OR (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) (|has| |#3| (-954))) ((|#3|) |has| |#3| (-1003)) (((-343 (-478))) -12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003)))) -(((|#3|) |has| |#3| (-1003)) (((-478)) -12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) (((-343 (-478))) -12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003)))) -((((-478) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003)))) -(((|#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003)))) +(OR (|has| |#3| (-21)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-955))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-711)) (|has| |#3| (-955))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-314)) (|has| |#3| (-659)) (|has| |#3| (-711)) (|has| |#3| (-750)) (|has| |#3| (-955)) (|has| |#3| (-1006))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-314)) (|has| |#3| (-659)) (|has| |#3| (-711)) (|has| |#3| (-750)) (|has| |#3| (-955)) (|has| |#3| (-1006))) +(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-711)) (|has| |#3| (-955))) +(OR (|has| |#3| (-21)) (|has| |#3| (-102)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-711)) (|has| |#3| (-955))) +(((|#3| |#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-955)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-659)) (|has| |#3| (-955)))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-955)))) +((((-766)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-548 (-766))) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-314)) (|has| |#3| (-659)) (|has| |#3| (-711)) (|has| |#3| (-750)) (|has| |#3| (-955)) (|has| |#3| (-1006))) (((-1169 |#3|)) . T)) +(((|#3|) |has| |#3| (-955))) +((((-1080)) -12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955)))) +((((-1080)) OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))))) +((($ (-1080)) OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))))) +(((|#3|) |has| |#3| (-955))) +(OR (-12 (|has| |#3| (-188)) (|has| |#3| (-955))) (-12 (|has| |#3| (-187)) (|has| |#3| (-955)))) +((($) OR (-12 (|has| |#3| (-188)) (|has| |#3| (-955))) (-12 (|has| |#3| (-187)) (|has| |#3| (-955))))) +(|has| |#3| (-955)) +(|has| |#3| (-955)) +(|has| |#3| (-955)) +(|has| |#3| (-955)) +((((-479)) OR (|has| |#3| (-21)) (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-955))) ((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-659)) (|has| |#3| (-955))) (($) |has| |#3| (-955))) +(-12 (|has| |#3| (-188)) (|has| |#3| (-955))) +(|has| |#3| (-314)) +(((|#3|) |has| |#3| (-955))) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-955))) (($) |has| |#3| (-955)) (((-479)) -12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955)))) +(((|#3|) |has| |#3| (-955)) (((-479)) -12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955)))) +(((|#3|) |has| |#3| (-1006))) +((((-479)) OR (-12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) (|has| |#3| (-955))) ((|#3|) |has| |#3| (-1006)) (((-344 (-479))) -12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006)))) +(((|#3|) |has| |#3| (-1006)) (((-479)) -12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) (((-344 (-479))) -12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006)))) +((((-479) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006)))) +(((|#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006)))) (((|#3|) . T)) -((((-478) |#3|) . T)) -((((-478) |#3|) . T)) -(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-658)))) +((((-479) |#3|) . T)) +((((-479) |#3|) . T)) +(((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)) (|has| |#3| (-659)))) (((|#3|) OR (|has| |#3| (-144)) (|has| |#3| (-308)))) -(|has| |#3| (-710)) -(|has| |#3| (-710)) -(OR (|has| |#3| (-710)) (|has| |#3| (-749))) -(OR (|has| |#3| (-710)) (|has| |#3| (-749))) -(|has| |#3| (-710)) -(|has| |#3| (-710)) +(|has| |#3| (-711)) +(|has| |#3| (-711)) +(OR (|has| |#3| (-711)) (|has| |#3| (-750))) +(OR (|has| |#3| (-711)) (|has| |#3| (-750))) +(|has| |#3| (-711)) +(|has| |#3| (-711)) (((|#3|) |has| |#3| (-308))) (((|#1| |#3|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) @@ -3138,770 +3147,773 @@ ((($) . T)) ((($) . T)) ((($) . T)) -((((-478)) . T) (($) . T)) -((((-478)) . T)) -((($) . T) (((-478)) . T)) -((((-478)) . T)) -((((-467)) . T) (((-478)) . T) (((-793 (-478))) . T) (((-323)) . T) (((-177)) . T)) -((((-478)) . T)) -((((-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#2| (-548 (-467)))) (((-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) (((-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478)))))) +((((-479)) . T) (($) . T)) +((((-479)) . T)) +((($) . T) (((-479)) . T)) +((((-479)) . T)) +((((-468)) . T) (((-479)) . T) (((-794 (-479))) . T) (((-324)) . T) (((-177)) . T)) +((((-479)) . T)) +((((-468)) -12 (|has| |#1| (-549 (-468))) (|has| |#2| (-549 (-468)))) (((-794 (-324))) -12 (|has| |#1| (-549 (-794 (-324)))) (|has| |#2| (-549 (-794 (-324))))) (((-794 (-479))) -12 (|has| |#1| (-549 (-794 (-479)))) (|has| |#2| (-549 (-794 (-479)))))) ((($) . T)) -(((|#1| (-463 |#2|)) . T)) +(((|#1| (-464 |#2|)) . T)) (((|#1|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814)))) -(((|#1| (-463 |#2|)) . T)) -(((|#1|) . T)) -((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) -(((|#1|) . T) (((-478)) |has| |#1| (-575 (-478)))) -(OR (|has| |#1| (-385)) (|has| |#1| (-814))) +(OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +((((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815)))) +(((|#1| (-464 |#2|)) . T)) +(((|#1|) . T)) +((($) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) +(((|#1|) . T) (((-479)) |has| |#1| (-576 (-479)))) +(OR (|has| |#1| (-386)) (|has| |#1| (-815))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#2| (-789 (-323)))) (((-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#2| (-789 (-478))))) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -((((-343 (-478))) |has| |#1| (-943 (-343 (-478)))) (((-478)) |has| |#1| (-943 (-478))) ((|#1|) . T) ((|#2|) . T)) -((((-478)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ((|#1|) . T) (($) OR (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#2|) . T)) -(((|#1| (-463 |#2|) |#2|) . T)) +((((-324)) -12 (|has| |#1| (-790 (-324))) (|has| |#2| (-790 (-324)))) (((-479)) -12 (|has| |#1| (-790 (-479))) (|has| |#2| (-790 (-479))))) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +((((-344 (-479))) |has| |#1| (-944 (-344 (-479)))) (((-479)) |has| |#1| (-944 (-479))) ((|#1|) . T) ((|#2|) . T)) +((((-479)) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ((|#1|) . T) (($) OR (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#2|) . T)) +(((|#1| (-464 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-765)) . T)) +((((-766)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(((|#1| (-463 |#2|) |#2|) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) -((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) +(((|#1| (-464 |#2|) |#2|) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T)) +((($) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) -((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -((((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -(((|#1| (-463 |#2|)) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) +(OR (|has| |#1| (-144)) (|has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-490)))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-490)))) +((((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-490)))) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +((((-479)) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +(((|#1| (-464 |#2|)) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) (((|#1| |#2|) . T)) -((((-765)) . T)) -(((|#1|) . T)) -((((-1080)) . T)) -((((-1080)) . T)) -((((-1080)) . T) (((-765)) . T)) -((((-765)) . T)) -((((-1040 |#1| |#2|)) . T)) -((((-1040 |#1| |#2|) (-1040 |#1| |#2|)) |has| (-1040 |#1| |#2|) (-256 (-1040 |#1| |#2|)))) -((((-1040 |#1| |#2|)) |has| (-1040 |#1| |#2|) (-256 (-1040 |#1| |#2|)))) -((((-765)) . T)) -((((-1040 |#1| |#2|)) . T)) -((((-467)) |has| |#2| (-548 (-467)))) -(((|#2|) |has| |#2| (-6 (-3973 "*")))) +((((-766)) . T)) +(((|#1|) . T)) +((((-1085)) . T)) +((((-1085)) . T)) +((((-1085)) . T) (((-766)) . T)) +((((-766)) . T)) +((((-1044 |#1| |#2|)) . T)) +((((-1044 |#1| |#2|) (-1044 |#1| |#2|)) |has| (-1044 |#1| |#2|) (-256 (-1044 |#1| |#2|)))) +((((-1044 |#1| |#2|)) |has| (-1044 |#1| |#2|) (-256 (-1044 |#1| |#2|)))) +((((-766)) . T)) +((((-1044 |#1| |#2|)) . T)) +((((-468)) |has| |#2| (-549 (-468)))) +(((|#2|) |has| |#2| (-6 (-3979 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-625 |#2|)) . T) (((-765)) . T)) -((($) . T) (((-478)) . T) ((|#2|) . T)) -(((|#2|) OR (|has| |#2| (-6 (-3973 "*"))) (|has| |#2| (-144)))) -(((|#2|) OR (|has| |#2| (-6 (-3973 "*"))) (|has| |#2| (-144)))) +((((-626 |#2|)) . T) (((-766)) . T)) +((($) . T) (((-479)) . T) ((|#2|) . T)) +(((|#2|) OR (|has| |#2| (-6 (-3979 "*"))) (|has| |#2| (-144)))) +(((|#2|) OR (|has| |#2| (-6 (-3979 "*"))) (|has| |#2| (-144)))) (((|#2|) . T)) -((((-1075)) |has| |#2| (-802 (-1075)))) -((((-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075))))) -((($ (-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075))))) +((((-1080)) |has| |#2| (-803 (-1080)))) +((((-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080))))) +((($ (-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080))))) (((|#2|) . T)) (OR (|has| |#2| (-188)) (|has| |#2| (-187))) ((($) OR (|has| |#2| (-188)) (|has| |#2| (-187)))) (|has| |#2| (-188)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) -(((|#2|) . T) (((-478)) |has| |#2| (-575 (-478)))) +((($) . T) ((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) +(((|#2|) . T) (((-479)) |has| |#2| (-576 (-479)))) (((|#2|) . T)) -((((-478)) . T) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) -(((|#2|) . T) (((-478)) |has| |#2| (-943 (-478))) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) +((((-479)) . T) ((|#2|) . T) (((-344 (-479))) |has| |#2| (-944 (-344 (-479))))) +(((|#2|) . T) (((-479)) |has| |#2| (-944 (-479))) (((-344 (-479))) |has| |#2| (-944 (-344 (-479))))) (((|#1| |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003)))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006)))) (((|#2|) . T)) (((|#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-467)) |has| |#4| (-548 (-467)))) +((((-468)) |has| |#4| (-549 (-468)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) -(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) (((|#4|) . T)) -((((-765)) . T) (((-578 |#4|)) . T)) +((((-766)) . T) (((-579 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(|has| |#1| (-1003)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1006)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-578 |#1|)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-579 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(|has| |#1| (-1003)) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(|has| |#1| (-1006)) (((|#1|) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -((((-478) |#1|) . T)) -((((-1131 (-478)) $) . T) (((-478) |#1|) . T)) -((((-478) |#1|) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +((((-479) |#1|) . T)) +((((-1136 (-479)) $) . T) (((-479) |#1|) . T)) +((((-479) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-115)) . T)) ((((-115)) . T)) -((((-478) (-115)) . T)) -((((-478) (-115)) . T)) -((((-478) (-115)) . T) (((-1131 (-478)) $) . T)) +((((-479) (-115)) . T)) +((((-479) (-115)) . T)) +((((-479) (-115)) . T) (((-1136 (-479)) $) . T)) ((((-115)) . T)) -((((-765)) . T)) +((((-766)) . T)) ((((-115)) . T)) ((((-115)) . T)) -((((-1059) |#1|) . T)) -((((-765)) . T)) -((((-1059) |#1|) . T)) -((((-1059) |#1|) . T)) -((((-1059) |#1|) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) |has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) |has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))))) -((((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -((((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) . T)) -((((-1059) |#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-1074 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1074 |#1| |#2| |#3|)) . T)) -((((-1074 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1074 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1074 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1074 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1074 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-256 (-1074 |#1| |#2| |#3|))))) -((((-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-256 (-1074 |#1| |#2| |#3|)))) (((-1075) (-1074 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-447 (-1075) (-1074 |#1| |#2| |#3|))))) -((((-1074 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1063) |#1|) . T)) +((((-766)) . T)) +((((-1063) |#1|) . T)) +((((-1063) |#1|) . T)) +((((-1063) |#1|) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) |has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) |has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))))) +((((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +((((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) . T)) +((((-1063) |#1|) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-1079 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1079 |#1| |#2| |#3|)) . T)) +((((-1079 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1079 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1079 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1079 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1079 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-256 (-1079 |#1| |#2| |#3|))))) +((((-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-256 (-1079 |#1| |#2| |#3|)))) (((-1080) (-1079 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-448 (-1080) (-1079 |#1| |#2| |#3|))))) +((((-1079 |#1| |#2| |#3|)) |has| |#1| (-308))) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(OR (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-188))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) -((($) OR (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) -(OR (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) -((((-1074 |#1| |#2| |#3|)) |has| |#1| (-308))) -((($ (-1161 |#2|)) . T) (($ (-1075)) OR (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075)))) (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075)))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) -((((-1075)) OR (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075)))) (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075)))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) -((((-1075)) OR (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075)))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) -((((-1074 |#1| |#2| |#3|)) |has| |#1| (-308))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-118)))) -(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-116)))) -((((-765)) . T)) -(((|#1|) . T)) -((((-1074 |#1| |#2| |#3|) $) -12 (|has| |#1| (-308)) (|has| (-1074 |#1| |#2| |#3|) (-238 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)))) (($ $) . T) (((-478) |#1|) . T)) -(((|#1| (-478) (-985)) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-308)) (((-478)) . T) (($) . T) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-308)) (($) . T) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1074 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) -((((-1074 |#1| |#2| |#3|)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) ((|#1|) |has| |#1| (-144))) -(((|#1| (-478)) . T)) -(((|#1| (-478)) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(((|#1| (-1074 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-765)) . T)) -((((-343 $) (-343 $)) |has| |#1| (-489)) (($ $) . T) ((|#1| |#1|) . T)) +(OR (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-188))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) +((($) OR (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) +(OR (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) +((((-1079 |#1| |#2| |#3|)) |has| |#1| (-308))) +((($ (-1166 |#2|)) . T) (($ (-1080)) OR (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080)))) (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080)))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))))) +((((-1080)) OR (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080)))) (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080)))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))))) +((((-1080)) OR (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080)))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))))) +((((-1079 |#1| |#2| |#3|)) |has| |#1| (-308))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-118)))) +(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-116)))) +((((-766)) . T)) +(((|#1|) . T)) +((((-1079 |#1| |#2| |#3|) $) -12 (|has| |#1| (-308)) (|has| (-1079 |#1| |#2| |#3|) (-238 (-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|)))) (($ $) . T) (((-479) |#1|) . T)) +(((|#1| (-479) (-987)) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-1079 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1079 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1079 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1079 |#1| |#2| |#3|)) |has| |#1| (-308)) (((-479)) . T) (($) . T) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1079 |#1| |#2| |#3|)) |has| |#1| (-308)) (($) . T) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-1079 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-1079 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-1079 |#1| |#2| |#3|)) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-479)) . T) ((|#1|) |has| |#1| (-144))) +(((|#1| (-479)) . T)) +(((|#1| (-479)) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(((|#1| (-1079 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-766)) . T)) +((((-344 $) (-344 $)) |has| |#1| (-490)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-814))) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) -(OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) +(OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-815))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) +(OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (|has| |#1| (-308)) -(((|#1| (-687) (-985)) . T)) -(|has| |#1| (-814)) -(|has| |#1| (-814)) -((((-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (((-985)) . T)) -((($ (-1075)) OR (|has| |#1| (-802 (-1075))) (|has| |#1| (-804 (-1075)))) (($ (-985)) . T)) -((((-1075)) |has| |#1| (-802 (-1075))) (((-985)) . T)) -((((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-687)) . T)) +(((|#1| (-688) (-987)) . T)) +(|has| |#1| (-815)) +(|has| |#1| (-815)) +((((-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (((-987)) . T)) +((($ (-1080)) OR (|has| |#1| (-803 (-1080))) (|has| |#1| (-805 (-1080)))) (($ (-987)) . T)) +((((-1080)) |has| |#1| (-803 (-1080))) (((-987)) . T)) +((((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-688)) . T)) (|has| |#1| (-118)) (|has| |#1| (-116)) -((((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) (((-985)) . T) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478)))))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) . T) (((-478)) |has| |#1| (-575 (-478))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((((-478)) . T) (($) . T) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-308)) (|has| |#1| (-385)) (|has| |#1| (-489)) (|has| |#1| (-814))) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T)) -((((-985)) . T) ((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) -(((|#1| (-687)) . T)) -((((-985) |#1|) . T) (((-985) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-1052)) -(((|#1|) . T)) -((((-1074 |#1| |#2| |#3|)) . T) (((-1067 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) -((($ $) . T) (((-343 (-478)) |#1|) . T)) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((($ (-1161 |#2|)) . T) (($ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -(((|#1| (-343 (-478)) (-985)) . T)) +((((-479)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) (((-987)) . T) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479)))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) . T) (((-479)) |has| |#1| (-576 (-479))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((((-479)) . T) (($) . T) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-308)) (|has| |#1| (-386)) (|has| |#1| (-490)) (|has| |#1| (-815))) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T)) +((((-987)) . T) ((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) +(((|#1| (-688)) . T)) +((((-987) |#1|) . T) (((-987) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-1056)) +(((|#1|) . T)) +((((-1079 |#1| |#2| |#3|)) . T) (((-1072 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) +((($ $) . T) (((-344 (-479)) |#1|) . T)) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((($ (-1166 |#2|)) . T) (($ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +(((|#1| (-344 (-479)) (-987)) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) -(((|#1| (-343 (-478))) . T)) -(((|#1| (-343 (-478))) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-344 (-479))) . T)) +(((|#1| (-344 (-479))) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) -((((-765)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) -(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) . T)) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) +((((-766)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)))) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)))) +(((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) . T)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -((((-1161 |#2|)) . T) (((-1074 |#1| |#2| |#3|)) . T) (((-1067 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +((((-1166 |#2|)) . T) (((-1079 |#1| |#2| |#3|)) . T) (((-1072 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-479)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(((|#1| (-1067 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(((|#1| (-687)) . T)) -(((|#1| (-687)) . T)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(OR (|has| |#1| (-144)) (|has| |#1| (-489))) +(((|#1| (-1072 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(((|#1| (-688)) . T)) +(((|#1| (-688)) . T)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(OR (|has| |#1| (-144)) (|has| |#1| (-490))) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1| (-687) (-985)) . T)) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) -((($ (-1161 |#2|)) . T) (($ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) -((((-687) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-687) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-687) |#1|)))) -((((-765)) . T)) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T)) -(|has| |#1| (-15 * (|#1| (-687) |#1|))) -(((|#1|) . T)) -((((-323)) . T) (((-478)) . T)) -((((-439)) . T)) -((((-439)) . T) (((-1059)) . T)) -((((-793 (-323))) . T) (((-793 (-478))) . T) (((-1075)) . T) (((-467)) . T)) -((((-765)) . T)) -(((|#1| (-877)) . T)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(OR (|has| |#1| (-144)) (|has| |#1| (-489))) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1| (-688) (-987)) . T)) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|))))) +((($ (-1166 |#2|)) . T) (($ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|))))) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|))))) +((((-688) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-688) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-688) |#1|)))) +((((-766)) . T)) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (($) . T)) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (((-479)) . T)) +(|has| |#1| (-15 * (|#1| (-688) |#1|))) +(((|#1|) . T)) +((((-324)) . T) (((-479)) . T)) +((((-440)) . T)) +((((-440)) . T) (((-1063)) . T)) +((((-794 (-324))) . T) (((-794 (-479))) . T) (((-1080)) . T) (((-468)) . T)) +((((-766)) . T)) +(((|#1| (-878)) . T)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(OR (|has| |#1| (-144)) (|has| |#1| (-490))) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((((-765)) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) -((($) |has| |#1| (-489)) ((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) (((-478)) . T)) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1|) . T)) -(((|#1|) . T) (((-478)) |has| |#1| (-943 (-478))) (((-343 (-478))) |has| |#1| (-943 (-343 (-478))))) -(((|#1| (-877)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-1059)) . T) (((-439)) . T) (((-177)) . T) (((-478)) . T)) -((((-1059)) . T) (((-439)) . T) (((-177)) . T) (((-478)) . T)) -((((-467)) . T) (((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((((-766)) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (($) . T)) +((($) |has| |#1| (-490)) ((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) (((-479)) . T)) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1|) . T)) +(((|#1|) . T) (((-479)) |has| |#1| (-944 (-479))) (((-344 (-479))) |has| |#1| (-944 (-344 (-479))))) +(((|#1| (-878)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-1063)) . T) (((-440)) . T) (((-177)) . T) (((-479)) . T)) +((((-1063)) . T) (((-440)) . T) (((-177)) . T) (((-479)) . T)) +((((-468)) . T) (((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) +((((-766)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((((-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +(((|#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((((-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) (((|#1| |#2|) . T)) -((((-765)) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-331) (-1059)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1003)) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-1003))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1075) $) . T)) -((((-1075)) . T)) -((((-765)) . T)) -((($ (-1075)) . T)) -((((-1075)) . T)) -(((|#1| (-463 (-1075)) (-1075)) . T)) -((($) . T) (((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) -((($) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T)) -(|has| |#1| (-116)) -(|has| |#1| (-118)) -(OR (|has| |#1| (-144)) (|has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) -((((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489)))) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -((((-478)) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -((((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-489))) -(((|#1| (-463 (-1075))) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(((|#1| (-1075)) . T)) -(|has| |#1| (-1003)) -(|has| |#1| (-1003)) -(|has| |#1| (-1003)) -((((-862 |#1|)) . T)) -((((-765)) |has| |#1| (-547 (-765))) (((-862 |#1|)) . T)) -((((-862 |#1|)) . T)) +((((-766)) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-332) (-1063)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1006)) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-1006))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1080) $) . T)) ((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) +((((-766)) . T)) +((($ (-1080)) . T)) ((((-1080)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-1154 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1154 |#1| |#2| |#3|)) . T)) -((((-1154 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1154 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1154 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1154 |#1| |#2| |#3|)) |has| |#1| (-308))) -((((-1154 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-256 (-1154 |#1| |#2| |#3|))))) -((((-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-256 (-1154 |#1| |#2| |#3|)))) (((-1075) (-1154 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-447 (-1075) (-1154 |#1| |#2| |#3|))))) -((((-1154 |#1| |#2| |#3|)) |has| |#1| (-308))) +(((|#1| (-464 (-1080)) (-1080)) . T)) +((($) . T) (((-479)) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T)) +((($) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T)) +(|has| |#1| (-116)) +(|has| |#1| (-118)) +(OR (|has| |#1| (-144)) (|has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-490)))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-490)))) +((((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-490)))) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +((((-479)) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +((((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((|#1|) |has| |#1| (-144)) (($) |has| |#1| (-490))) +(((|#1| (-464 (-1080))) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(((|#1| (-1080)) . T)) +(|has| |#1| (-1006)) +(|has| |#1| (-1006)) +(|has| |#1| (-1006)) +((((-863 |#1|)) . T)) +((((-766)) |has| |#1| (-548 (-766))) (((-863 |#1|)) . T)) +((((-863 |#1|)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1159 |#1| |#2| |#3|)) . T)) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-308))) +((((-1159 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-256 (-1159 |#1| |#2| |#3|))))) +((((-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-256 (-1159 |#1| |#2| |#3|)))) (((-1080) (-1159 |#1| |#2| |#3|)) -12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-448 (-1080) (-1159 |#1| |#2| |#3|))))) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-308))) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(OR (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-188))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) -((($) OR (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) -(OR (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) -((((-1154 |#1| |#2| |#3|)) |has| |#1| (-308))) -((($ (-1161 |#2|)) . T) (($ (-1075)) OR (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075)))) (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075)))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) -((((-1075)) OR (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075)))) (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075)))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) -((((-1075)) OR (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075)))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) -((((-1154 |#1| |#2| |#3|)) |has| |#1| (-308))) -(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-118)))) -(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-116)))) -((((-765)) . T)) -(((|#1|) . T)) -((((-1154 |#1| |#2| |#3|) $) -12 (|has| |#1| (-308)) (|has| (-1154 |#1| |#2| |#3|) (-238 (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|)))) (($ $) . T) (((-478) |#1|) . T)) -(((|#1| (-478) (-985)) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1154 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1154 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1154 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1154 |#1| |#2| |#3|)) |has| |#1| (-308)) (((-478)) . T) (($) . T) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-1154 |#1| |#2| |#3|)) |has| |#1| (-308)) (($) . T) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1154 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-1154 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) -((((-1154 |#1| |#2| |#3|)) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) ((|#1|) |has| |#1| (-144))) -(((|#1| (-478)) . T)) -(((|#1| (-478)) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(((|#1| (-1154 |#1| |#2| |#3|)) . T)) +(OR (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-188))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) +((($) OR (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) +(OR (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-188))) (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-308))) +((($ (-1166 |#2|)) . T) (($ (-1080)) OR (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080)))) (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080)))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))))) +((((-1080)) OR (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080)))) (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080)))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))))) +((((-1080)) OR (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080)))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))))) +((((-1159 |#1| |#2| |#3|)) |has| |#1| (-308))) +(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-118)))) +(OR (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-116)))) +((((-766)) . T)) +(((|#1|) . T)) +((((-1159 |#1| |#2| |#3|) $) -12 (|has| |#1| (-308)) (|has| (-1159 |#1| |#2| |#3|) (-238 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)))) (($ $) . T) (((-479) |#1|) . T)) +(((|#1| (-479) (-987)) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-308)) (((-479)) . T) (($) . T) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-308)) (($) . T) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-1159 |#1| |#2| |#3|)) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-1159 |#1| |#2| |#3|)) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-479)) . T) ((|#1|) |has| |#1| (-144))) +(((|#1| (-479)) . T)) +(((|#1| (-479)) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(((|#1| (-1159 |#1| |#2| |#3|)) . T)) (((|#2|) |has| |#1| (-308))) -(-12 (|has| |#1| (-308)) (|has| |#2| (-1052))) -(((|#2|) . T) (((-1075)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1075)))) (((-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) (((-343 (-478))) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478))))) -(-12 (|has| |#1| (-308)) (|has| |#2| (-926))) -(-12 (|has| |#1| (-308)) (|has| |#2| (-814))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-1056))) +(((|#2|) . T) (((-1080)) -12 (|has| |#1| (-308)) (|has| |#2| (-944 (-1080)))) (((-479)) -12 (|has| |#1| (-308)) (|has| |#2| (-944 (-479)))) (((-344 (-479))) -12 (|has| |#1| (-308)) (|has| |#2| (-944 (-479))))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-927))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-815))) (((|#2|) |has| |#1| (-308))) -(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) -(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) -(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) -(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) (-12 (|has| |#1| (-308)) (|has| |#2| (-749)))) -(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) (-12 (|has| |#1| (-308)) (|has| |#2| (-749)))) -(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) -(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) -(-12 (|has| |#1| (-308)) (|has| |#2| (-733))) -((((-323)) -12 (|has| |#1| (-308)) (|has| |#2| (-789 (-323)))) (((-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-789 (-478))))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-734))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-734))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-734))) +(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-734))) (-12 (|has| |#1| (-308)) (|has| |#2| (-750)))) +(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-734))) (-12 (|has| |#1| (-308)) (|has| |#2| (-750)))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-734))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-734))) +(-12 (|has| |#1| (-308)) (|has| |#2| (-734))) +((((-324)) -12 (|has| |#1| (-308)) (|has| |#2| (-790 (-324)))) (((-479)) -12 (|has| |#1| (-308)) (|has| |#2| (-790 (-479))))) (((|#2|) |has| |#1| (-308))) -((((-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ((|#2|) |has| |#1| (-308))) +((((-479)) -12 (|has| |#1| (-308)) (|has| |#2| (-576 (-479)))) ((|#2|) |has| |#1| (-308))) (((|#2|) |has| |#1| (-308))) (((|#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) (((-1075) |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-447 (-1075) |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) (((-1080) |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-448 (-1080) |#2|)))) (((|#2|) |has| |#1| (-308))) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-188))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) -((($) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-188))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) -(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-188))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) +(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-188))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) +((($) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-188))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) +(OR (-12 (|has| |#1| (-308)) (|has| |#2| (-188))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (((|#2|) |has| |#1| (-308))) -((($ (-1075)) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1075)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075)))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) -((((-1075)) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1075)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075)))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) -((((-1075)) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1075)))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))))) +((($ (-1080)) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-803 (-1080)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080)))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))))) +((((-1080)) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-803 (-1080)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080)))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))))) +((((-1080)) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-803 (-1080)))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))))) (((|#2|) |has| |#1| (-308))) -((((-177)) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) (((-323)) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) (((-793 (-323))) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-323))))) (((-793 (-478))) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-478))))) (((-467)) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-467))))) +((((-177)) -12 (|has| |#1| (-308)) (|has| |#2| (-927))) (((-324)) -12 (|has| |#1| (-308)) (|has| |#2| (-927))) (((-794 (-324))) -12 (|has| |#1| (-308)) (|has| |#2| (-549 (-794 (-324))))) (((-794 (-479))) -12 (|has| |#1| (-308)) (|has| |#2| (-549 (-794 (-479))))) (((-468)) -12 (|has| |#1| (-308)) (|has| |#2| (-549 (-468))))) (OR (|has| |#1| (-118)) (-12 (|has| |#1| (-308)) (|has| |#2| (-118)))) (OR (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| |#2| (-116)))) -((((-765)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-308)) (|has| |#2| (-238 |#2| |#2|))) (($ $) . T) (((-478) |#1|) . T)) -(((|#1| (-478) (-985)) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#2|) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2| |#2|) |has| |#1| (-308)) ((|#1| |#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) ((|#1|) . T)) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) (((-478)) . T) (($) . T) ((|#1|) . T)) -((((-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) (($) . T) ((|#1|) . T)) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#2|) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) -((((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) ((|#2|) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) -(((|#2|) . T) (((-1075)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1075)))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489))) (((-478)) . T) ((|#1|) |has| |#1| (-144))) -(((|#1| (-478)) . T)) -(((|#1| (-478)) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) +((((-766)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-308)) (|has| |#2| (-238 |#2| |#2|))) (($ $) . T) (((-479) |#1|) . T)) +(((|#1| (-479) (-987)) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) ((|#2|) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#2| |#2|) |has| |#1| (-308)) ((|#1| |#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) ((|#1|) . T)) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) (((-479)) . T) (($) . T) ((|#1|) . T)) +((((-479)) -12 (|has| |#1| (-308)) (|has| |#2| (-576 (-479)))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) ((|#2|) |has| |#1| (-308)) (($) . T) ((|#1|) . T)) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) ((|#2|) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +((((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) ((|#2|) |has| |#1| (-308)) ((|#1|) |has| |#1| (-144))) +(((|#2|) . T) (((-1080)) -12 (|has| |#1| (-308)) (|has| |#2| (-944 (-1080)))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490))) (((-479)) . T) ((|#1|) |has| |#1| (-144))) +(((|#1| (-479)) . T)) +(((|#1| (-479)) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) (((|#1| |#2|) . T)) -(((|#1| (-1055 |#1|)) |has| |#1| (-748))) -(|has| |#1| (-1003)) -(|has| |#1| (-1003)) -((((-765)) |has| |#1| (-1003))) -(|has| |#1| (-1003)) +(((|#1| (-1059 |#1|)) |has| |#1| (-749))) +(|has| |#1| (-1006)) +(|has| |#1| (-1006)) +((((-766)) |has| |#1| (-1006))) +(|has| |#1| (-1006)) (((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((($) . T)) -((((-765)) . T)) -((((-343 $) (-343 $)) |has| |#2| (-489)) (($ $) . T) ((|#2| |#2|) . T)) +((((-766)) . T)) +((((-344 $) (-344 $)) |has| |#2| (-490)) (($ $) . T) ((|#2| |#2|) . T)) (|has| |#2| (-308)) -(OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-814))) -(OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -(OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) -(OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) +(OR (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-815))) +(OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +(OR (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) +(OR (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) (|has| |#2| (-308)) -(((|#2| (-687) (-985)) . T)) -(|has| |#2| (-814)) -(|has| |#2| (-814)) -((((-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075)))) (((-985)) . T)) -((($ (-1075)) OR (|has| |#2| (-802 (-1075))) (|has| |#2| (-804 (-1075)))) (($ (-985)) . T)) -((((-1075)) |has| |#2| (-802 (-1075))) (((-985)) . T)) -((((-478)) |has| |#2| (-575 (-478))) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2| (-687)) . T)) +(((|#2| (-688) (-987)) . T)) +(|has| |#2| (-815)) +(|has| |#2| (-815)) +((((-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080)))) (((-987)) . T)) +((($ (-1080)) OR (|has| |#2| (-803 (-1080))) (|has| |#2| (-805 (-1080)))) (($ (-987)) . T)) +((((-1080)) |has| |#2| (-803 (-1080))) (((-987)) . T)) +((((-479)) |has| |#2| (-576 (-479))) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2| (-688)) . T)) (|has| |#2| (-118)) (|has| |#2| (-116)) -((((-1161 |#1|)) . T) (((-478)) . T) (($) OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) (((-985)) . T) ((|#2|) . T) (((-343 (-478))) OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478)))))) -((($) OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) |has| |#2| (-144)) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) -((($) OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) |has| |#2| (-144)) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) -((($) . T) (((-478)) |has| |#2| (-575 (-478))) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) -((((-478)) . T) (($) . T) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) -((($) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) -((($) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) . T) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) -((($ $) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2| |#2|) . T) (((-343 (-478)) (-343 (-478))) |has| |#2| (-38 (-343 (-478))))) -((($) OR (|has| |#2| (-308)) (|has| |#2| (-385)) (|has| |#2| (-489)) (|has| |#2| (-814))) ((|#2|) |has| |#2| (-144)) (((-343 (-478))) |has| |#2| (-38 (-343 (-478))))) -(((|#2|) . T)) -((((-985)) . T) ((|#2|) . T) (((-478)) |has| |#2| (-943 (-478))) (((-343 (-478))) |has| |#2| (-943 (-343 (-478))))) -(((|#2| (-687)) . T)) -((((-985) |#2|) . T) (((-985) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#2| (-1052)) -(((|#2|) . T)) -((((-1154 |#1| |#2| |#3|)) . T) (((-1124 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) -((($ $) . T) (((-343 (-478)) |#1|) . T)) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((($ (-1161 |#2|)) . T) (($ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -(((|#1| (-343 (-478)) (-985)) . T)) +((((-1166 |#1|)) . T) (((-479)) . T) (($) OR (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) (((-987)) . T) ((|#2|) . T) (((-344 (-479))) OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479)))))) +((($) OR (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) ((|#2|) |has| |#2| (-144)) (((-344 (-479))) |has| |#2| (-38 (-344 (-479))))) +((($) OR (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) ((|#2|) |has| |#2| (-144)) (((-344 (-479))) |has| |#2| (-38 (-344 (-479))))) +((($) . T) (((-479)) |has| |#2| (-576 (-479))) ((|#2|) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479))))) +((((-479)) . T) (($) . T) ((|#2|) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479))))) +((($) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) ((|#2|) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479))))) +((($) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) ((|#2|) . T) (((-344 (-479))) |has| |#2| (-38 (-344 (-479))))) +((($ $) OR (|has| |#2| (-144)) (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) ((|#2| |#2|) . T) (((-344 (-479)) (-344 (-479))) |has| |#2| (-38 (-344 (-479))))) +((($) OR (|has| |#2| (-308)) (|has| |#2| (-386)) (|has| |#2| (-490)) (|has| |#2| (-815))) ((|#2|) |has| |#2| (-144)) (((-344 (-479))) |has| |#2| (-38 (-344 (-479))))) +(((|#2|) . T)) +((((-987)) . T) ((|#2|) . T) (((-479)) |has| |#2| (-944 (-479))) (((-344 (-479))) |has| |#2| (-944 (-344 (-479))))) +(((|#2| (-688)) . T)) +((((-987) |#2|) . T) (((-987) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#2| (-1056)) +(((|#2|) . T)) +((((-1159 |#1| |#2| |#3|)) . T) (((-1129 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) +((($ $) . T) (((-344 (-479)) |#1|) . T)) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((($ (-1166 |#2|)) . T) (($ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +(((|#1| (-344 (-479)) (-987)) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) -(((|#1| (-343 (-478))) . T)) -(((|#1| (-343 (-478))) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-344 (-479))) . T)) +(((|#1| (-344 (-479))) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) -((((-765)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) -(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) . T)) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) +((((-766)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)))) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)))) +(((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) . T)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -((((-1161 |#2|)) . T) (((-1154 |#1| |#2| |#3|)) . T) (((-1124 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +((((-1166 |#2|)) . T) (((-1159 |#1| |#2| |#3|)) . T) (((-1129 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-479)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(((|#1| (-1124 |#1| |#2| |#3|)) . T)) +(((|#1| (-1129 |#1| |#2| |#3|)) . T)) (((|#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) -(|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) -((($ $) . T) (((-343 (-478)) |#1|) . T)) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((($ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))))) -(((|#1| (-343 (-478)) (-985)) . T)) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) +(|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) +((($ $) . T) (((-344 (-479)) |#1|) . T)) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((($ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))))) +(((|#1| (-344 (-479)) (-987)) . T)) (|has| |#1| (-116)) (|has| |#1| (-118)) -(((|#1| (-343 (-478))) . T)) -(((|#1| (-343 (-478))) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) +(((|#1| (-344 (-479))) . T)) +(((|#1| (-344 (-479))) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) -((((-765)) . T)) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) -(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) -(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) (((-343 (-478)) (-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308)))) -(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) . T)) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) +((((-766)) . T)) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)))) +(((|#1|) . T) (($) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)))) +(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) (((-344 (-479)) (-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308)))) +(((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) . T)) (|has| |#1| (-308)) (|has| |#1| (-308)) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-308))) (((-478)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-489)))) -(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-489))) -(OR (|has| |#1| (-308)) (|has| |#1| (-489))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-308))) (((-479)) . T) (($) OR (|has| |#1| (-308)) (|has| |#1| (-490)))) +(OR (|has| |#1| (-144)) (|has| |#1| (-308)) (|has| |#1| (-490))) +(OR (|has| |#1| (-308)) (|has| |#1| (-490))) (|has| |#1| (-308)) (|has| |#1| (-308)) (|has| |#1| (-308)) (((|#1| |#2|) . T)) -((((-1145 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) . T)) -(|has| (-1145 |#2| |#3| |#4|) (-118)) -(|has| (-1145 |#2| |#3| |#4|) (-116)) -((($) . T) (((-1145 |#2| |#3| |#4|)) |has| (-1145 |#2| |#3| |#4|) (-144)) (((-343 (-478))) |has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478))))) -((($) . T) (((-1145 |#2| |#3| |#4|)) |has| (-1145 |#2| |#3| |#4|) (-144)) (((-343 (-478))) |has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478))))) -((((-765)) . T)) -((($) . T) (((-1145 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478))))) -((($) . T) (((-1145 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478))))) -((($ $) . T) (((-1145 |#2| |#3| |#4|) (-1145 |#2| |#3| |#4|)) . T) (((-343 (-478)) (-343 (-478))) |has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478))))) -((((-1145 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) -((((-1145 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478)))) (($) . T)) -((($) . T) (((-1145 |#2| |#3| |#4|)) . T) (((-343 (-478))) |has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478)))) (((-478)) . T)) -((($) . T) (((-1145 |#2| |#3| |#4|)) |has| (-1145 |#2| |#3| |#4|) (-144)) (((-343 (-478))) |has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478))))) -((((-1145 |#2| |#3| |#4|)) . T)) -((((-1145 |#2| |#3| |#4|)) . T)) -((((-1145 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(|has| |#1| (-38 (-343 (-478)))) -(((|#1| (-687)) . T)) -(((|#1| (-687)) . T)) -(|has| |#1| (-489)) -(|has| |#1| (-489)) -(OR (|has| |#1| (-144)) (|has| |#1| (-489))) +((((-1150 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) . T)) +(|has| (-1150 |#2| |#3| |#4|) (-118)) +(|has| (-1150 |#2| |#3| |#4|) (-116)) +((($) . T) (((-1150 |#2| |#3| |#4|)) |has| (-1150 |#2| |#3| |#4|) (-144)) (((-344 (-479))) |has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479))))) +((($) . T) (((-1150 |#2| |#3| |#4|)) |has| (-1150 |#2| |#3| |#4|) (-144)) (((-344 (-479))) |has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479))))) +((((-766)) . T)) +((($) . T) (((-1150 |#2| |#3| |#4|)) . T) (((-344 (-479))) |has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479))))) +((($) . T) (((-1150 |#2| |#3| |#4|)) . T) (((-344 (-479))) |has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479))))) +((($ $) . T) (((-1150 |#2| |#3| |#4|) (-1150 |#2| |#3| |#4|)) . T) (((-344 (-479)) (-344 (-479))) |has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479))))) +((((-1150 |#2| |#3| |#4|)) . T) (((-344 (-479))) |has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479)))) (((-479)) . T) (($) . T)) +((((-1150 |#2| |#3| |#4|)) . T) (((-344 (-479))) |has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479)))) (($) . T)) +((($) . T) (((-1150 |#2| |#3| |#4|)) . T) (((-344 (-479))) |has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479)))) (((-479)) . T)) +((($) . T) (((-1150 |#2| |#3| |#4|)) |has| (-1150 |#2| |#3| |#4|) (-144)) (((-344 (-479))) |has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479))))) +((((-1150 |#2| |#3| |#4|)) . T)) +((((-1150 |#2| |#3| |#4|)) . T)) +((((-1150 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(|has| |#1| (-38 (-344 (-479)))) +(((|#1| (-688)) . T)) +(((|#1| (-688)) . T)) +(|has| |#1| (-490)) +(|has| |#1| (-490)) +(OR (|has| |#1| (-144)) (|has| |#1| (-490))) (|has| |#1| (-118)) (|has| |#1| (-116)) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-489))) ((|#1| |#1|) . T) (((-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478))))) -(((|#1| (-687) (-985)) . T)) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) -((($ (-1161 |#2|)) . T) (($ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) -((((-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|))))) -((((-687) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-687) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-687) |#1|)))) -((((-765)) . T)) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T) (($) . T)) -(((|#1|) . T) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (($) . T)) -((($) |has| |#1| (-489)) ((|#1|) |has| |#1| (-144)) (((-343 (-478))) |has| |#1| (-38 (-343 (-478)))) (((-478)) . T)) -(|has| |#1| (-15 * (|#1| (-687) |#1|))) -(((|#1|) . T)) -((((-1075)) . T) (((-765)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-478) |#1|) . T)) -((((-478) |#1|) . T)) -((((-478) |#1|) . T) (((-1131 (-478)) $) . T)) -((((-467)) |has| |#1| (-548 (-467)))) -(((|#1|) . T)) -(OR (|has| |#1| (-749)) (|has| |#1| (-1003))) -(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003)))) -((((-765)) OR (|has| |#1| (-547 (-765))) (|has| |#1| (-749)) (|has| |#1| (-1003)))) -(OR (|has| |#1| (-72)) (|has| |#1| (-749)) (|has| |#1| (-1003))) -(((|#1|) . T)) -(|has| |#1| (-749)) -(|has| |#1| (-749)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-765)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) -((((-1080)) . T)) -((((-765)) . T) (((-1080)) . T)) -((((-1080)) . T)) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($ $) OR (|has| |#1| (-144)) (|has| |#1| (-490))) ((|#1| |#1|) . T) (((-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479))))) +(((|#1| (-688) (-987)) . T)) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|))))) +((($ (-1166 |#2|)) . T) (($ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|))))) +((((-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|))))) +((((-688) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-688) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-688) |#1|)))) +((((-766)) . T)) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (((-479)) . T) (($) . T)) +(((|#1|) . T) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (($) . T)) +((($) |has| |#1| (-490)) ((|#1|) |has| |#1| (-144)) (((-344 (-479))) |has| |#1| (-38 (-344 (-479)))) (((-479)) . T)) +(|has| |#1| (-15 * (|#1| (-688) |#1|))) +(((|#1|) . T)) +((((-1080)) . T) (((-766)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-479) |#1|) . T)) +((((-479) |#1|) . T)) +((((-479) |#1|) . T) (((-1136 (-479)) $) . T)) +((((-468)) |has| |#1| (-549 (-468)))) +(((|#1|) . T)) +(OR (|has| |#1| (-750)) (|has| |#1| (-1006))) +(((|#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +(((|#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006)))) +((((-766)) OR (|has| |#1| (-548 (-766))) (|has| |#1| (-750)) (|has| |#1| (-1006)))) +(OR (|has| |#1| (-72)) (|has| |#1| (-750)) (|has| |#1| (-1006))) +(((|#1|) . T)) +(|has| |#1| (-750)) +(|has| |#1| (-750)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-766)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) +((((-1085)) . T)) +((((-766)) . T) (((-1085)) . T)) +((((-1085)) . T)) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) @@ -3909,17 +3921,17 @@ (((|#1| |#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#4|) . T)) -(((|#1|) |has| |#1| (-144)) ((|#4|) . T) (((-478)) . T)) +(((|#1|) |has| |#1| (-144)) ((|#4|) . T) (((-479)) . T)) (((|#1|) |has| |#1| (-144)) (($) . T)) -(((|#4|) . T) (((-765)) . T)) -(((|#1|) |has| |#1| (-144)) (($) . T) (((-478)) . T)) +(((|#4|) . T) (((-766)) . T)) +(((|#1|) |has| |#1| (-144)) (($) . T) (((-479)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-467)) |has| |#4| (-548 (-467)))) +((((-468)) |has| |#4| (-549 (-468)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) -(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003)))) +(((|#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) +(((|#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006)))) (((|#4|) . T)) -((((-765)) . T) (((-578 |#4|)) . T)) +((((-766)) . T) (((-579 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-144))) @@ -3928,15 +3940,15 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-765)) . T)) -((($) . T) (((-478)) . T) ((|#2|) . T)) +((((-766)) . T)) +((($) . T) (((-479)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-144))) (((|#2|) |has| |#2| (-144))) -((((-732 |#1|)) . T)) -(((|#2|) . T) (((-478)) . T) (((-732 |#1|)) . T)) -(((|#2| (-732 |#1|)) . T)) -(((|#2| (-796 |#1|)) . T)) +((((-733 |#1|)) . T)) +(((|#2|) . T) (((-479)) . T) (((-733 |#1|)) . T)) +(((|#2| (-733 |#1|)) . T)) +(((|#2| (-797 |#1|)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-144))) (((|#2| |#2|) . T)) @@ -3946,12 +3958,12 @@ (((|#2|) |has| |#2| (-144))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-765)) . T)) -(((|#2|) . T) (($) . T) (((-478)) . T)) -((((-796 |#1|)) . T) ((|#2|) . T) (((-478)) . T) (((-732 |#1|)) . T)) -((((-796 |#1|)) . T) (((-732 |#1|)) . T)) +((((-766)) . T)) +(((|#2|) . T) (($) . T) (((-479)) . T)) +((((-797 |#1|)) . T) ((|#2|) . T) (((-479)) . T) (((-733 |#1|)) . T)) +((((-797 |#1|)) . T) (((-733 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1075) |#1|) . T)) +((((-1080) |#1|) . T)) (((|#1|) |has| |#1| (-144))) (((|#1| |#1|) . T)) (((|#1|) . T)) @@ -3960,11 +3972,11 @@ (((|#1|) |has| |#1| (-144))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (($) . T) (((-478)) . T)) -(((|#1|) . T) (((-478)) . T) (((-732 (-1075))) . T)) -((((-732 (-1075))) . T)) -((((-1075) |#1|) . T)) +((((-766)) . T)) +(((|#1|) . T) (($) . T) (((-479)) . T)) +(((|#1|) . T) (((-479)) . T) (((-733 (-1080))) . T)) +((((-733 (-1080))) . T)) +((((-1080) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-144))) @@ -3974,10 +3986,10 @@ (((|#1|) |has| |#1| (-144))) (((|#1|) |has| |#1| (-144))) (((|#1|) . T)) -(((|#2|) . T) ((|#1|) . T) (((-478)) . T)) +(((|#2|) . T) ((|#1|) . T) (((-479)) . T)) (((|#1|) . T) (($) . T)) -((((-765)) . T)) -(((|#1|) . T) (($) . T) (((-478)) . T)) +((((-766)) . T)) +(((|#1|) . T) (($) . T) (((-479)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-144))) (((|#2| |#2|) . T)) @@ -3987,20 +3999,20 @@ (((|#2|) |has| |#2| (-144))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-765)) . T)) -(((|#2|) . T) (($) . T) (((-478)) . T)) -(((|#2|) . T) (((-478)) . T) (((-732 |#1|)) . T)) -((((-732 |#1|)) . T)) +((((-766)) . T)) +(((|#2|) . T) (($) . T) (((-479)) . T)) +(((|#2|) . T) (((-479)) . T) (((-733 |#1|)) . T)) +((((-733 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T) (((-765)) . T)) -((((-478)) . T)) +((((-878)) . T)) +((((-878)) . T)) +((((-878)) . T) (((-766)) . T)) +((((-479)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-765)) . T)) -((((-478)) . T) (($) . T)) +((((-766)) . T)) +((((-479)) . T) (($) . T)) ((($) . T)) -((((-478)) . T)) -(((-1194 . -144) T) ((-1194 . -550) 198312) ((-1194 . -658) T) ((-1194 . -1013) T) ((-1194 . -962) T) ((-1194 . -954) T) ((-1194 . -585) 198299) ((-1194 . -583) 198271) ((-1194 . -102) T) ((-1194 . -25) T) ((-1194 . -72) T) ((-1194 . -1114) T) ((-1194 . -547) 198253) ((-1194 . -1003) T) ((-1194 . -23) T) ((-1194 . -21) T) ((-1194 . -961) 198240) ((-1194 . -956) 198227) ((-1194 . -80) 198212) ((-1194 . -313) T) ((-1194 . -548) 198194) ((-1194 . -1052) T) ((-1190 . -1003) T) ((-1190 . -547) 198161) ((-1190 . -1114) T) ((-1190 . -72) T) ((-1190 . -423) 198143) ((-1190 . -550) 198125) ((-1189 . -1187) 198104) ((-1189 . -943) 198081) ((-1189 . -550) 198030) ((-1189 . -954) T) ((-1189 . -962) T) ((-1189 . -1013) T) ((-1189 . -658) T) ((-1189 . -21) T) ((-1189 . -583) 197989) ((-1189 . -23) T) ((-1189 . -1003) T) ((-1189 . -547) 197971) ((-1189 . -1114) T) ((-1189 . -72) T) ((-1189 . -25) T) ((-1189 . -102) T) ((-1189 . -585) 197945) ((-1189 . -1179) 197929) ((-1189 . -649) 197899) ((-1189 . -577) 197869) ((-1189 . -961) 197853) ((-1189 . -956) 197837) ((-1189 . -80) 197816) ((-1189 . -38) 197786) ((-1189 . -1184) 197765) ((-1188 . -954) T) ((-1188 . -962) T) ((-1188 . -1013) T) ((-1188 . -658) T) ((-1188 . -21) T) ((-1188 . -583) 197724) ((-1188 . -23) T) ((-1188 . -1003) T) ((-1188 . -547) 197706) ((-1188 . -1114) T) ((-1188 . -72) T) ((-1188 . -25) T) ((-1188 . -102) T) ((-1188 . -585) 197680) ((-1188 . -550) 197636) ((-1188 . -1179) 197620) ((-1188 . -649) 197590) ((-1188 . -577) 197560) ((-1188 . -961) 197544) ((-1188 . -956) 197528) ((-1188 . -80) 197507) ((-1188 . -38) 197477) ((-1188 . -328) 197456) ((-1188 . -943) 197440) ((-1186 . -1187) 197416) ((-1186 . -943) 197390) ((-1186 . -550) 197336) ((-1186 . -954) T) ((-1186 . -962) T) ((-1186 . -1013) T) ((-1186 . -658) T) ((-1186 . -21) T) ((-1186 . -583) 197295) ((-1186 . -23) T) ((-1186 . -1003) T) ((-1186 . -547) 197277) ((-1186 . -1114) T) ((-1186 . -72) T) ((-1186 . -25) T) ((-1186 . -102) T) ((-1186 . -585) 197251) ((-1186 . -1179) 197235) ((-1186 . -649) 197205) ((-1186 . -577) 197175) ((-1186 . -961) 197159) ((-1186 . -956) 197143) ((-1186 . -80) 197122) ((-1186 . -38) 197092) ((-1186 . -1184) 197068) ((-1185 . -1187) 197047) ((-1185 . -943) 197004) ((-1185 . -550) 196933) ((-1185 . -954) T) ((-1185 . -962) T) ((-1185 . -1013) T) ((-1185 . -658) T) ((-1185 . -21) T) ((-1185 . -583) 196892) ((-1185 . -23) T) ((-1185 . -1003) T) ((-1185 . -547) 196874) ((-1185 . -1114) T) ((-1185 . -72) T) ((-1185 . -25) T) ((-1185 . -102) T) ((-1185 . -585) 196848) ((-1185 . -1179) 196832) ((-1185 . -649) 196802) ((-1185 . -577) 196772) ((-1185 . -961) 196756) ((-1185 . -956) 196740) ((-1185 . -80) 196719) ((-1185 . -38) 196689) ((-1185 . -1184) 196668) ((-1185 . -328) 196640) ((-1180 . -328) 196612) ((-1180 . -550) 196561) ((-1180 . -943) 196538) ((-1180 . -577) 196508) ((-1180 . -649) 196478) ((-1180 . -585) 196452) ((-1180 . -583) 196411) ((-1180 . -102) T) ((-1180 . -25) T) ((-1180 . -72) T) ((-1180 . -1114) T) ((-1180 . -547) 196393) ((-1180 . -1003) T) ((-1180 . -23) T) ((-1180 . -21) T) ((-1180 . -961) 196377) ((-1180 . -956) 196361) ((-1180 . -80) 196340) ((-1180 . -1187) 196319) ((-1180 . -954) T) ((-1180 . -962) T) ((-1180 . -1013) T) ((-1180 . -658) T) ((-1180 . -1179) 196303) ((-1180 . -38) 196273) ((-1180 . -1184) 196252) ((-1178 . -1109) 196221) ((-1178 . -547) 196183) ((-1178 . -122) 196167) ((-1178 . -34) T) ((-1178 . -1114) T) ((-1178 . -72) T) ((-1178 . -256) 196105) ((-1178 . -447) 196038) ((-1178 . -1003) T) ((-1178 . -422) 196022) ((-1178 . -548) 195983) ((-1178 . -882) 195952) ((-1177 . -954) T) ((-1177 . -962) T) ((-1177 . -1013) T) ((-1177 . -658) T) ((-1177 . -21) T) ((-1177 . -583) 195897) ((-1177 . -23) T) ((-1177 . -1003) T) ((-1177 . -547) 195866) ((-1177 . -1114) T) ((-1177 . -72) T) ((-1177 . -25) T) ((-1177 . -102) T) ((-1177 . -585) 195826) ((-1177 . -550) 195768) ((-1177 . -423) 195752) ((-1177 . -38) 195722) ((-1177 . -80) 195687) ((-1177 . -956) 195657) ((-1177 . -961) 195627) ((-1177 . -577) 195597) ((-1177 . -649) 195567) ((-1176 . -986) T) ((-1176 . -423) 195548) ((-1176 . -547) 195514) ((-1176 . -550) 195495) ((-1176 . -1003) T) ((-1176 . -1114) T) ((-1176 . -72) T) ((-1176 . -64) T) ((-1175 . -986) T) ((-1175 . -423) 195476) ((-1175 . -547) 195442) ((-1175 . -550) 195423) ((-1175 . -1003) T) ((-1175 . -1114) T) ((-1175 . -72) T) ((-1175 . -64) T) ((-1170 . -547) 195405) ((-1168 . -1003) T) ((-1168 . -547) 195387) ((-1168 . -1114) T) ((-1168 . -72) T) ((-1167 . -1003) T) ((-1167 . -547) 195369) ((-1167 . -1114) T) ((-1167 . -72) T) ((-1164 . -1163) 195353) ((-1164 . -317) 195337) ((-1164 . -752) 195316) ((-1164 . -749) 195295) ((-1164 . -122) 195279) ((-1164 . -34) T) ((-1164 . -1114) T) ((-1164 . -72) 195213) ((-1164 . -547) 195128) ((-1164 . -256) 195066) ((-1164 . -447) 194999) ((-1164 . -1003) 194952) ((-1164 . -422) 194936) ((-1164 . -548) 194897) ((-1164 . -238) 194849) ((-1164 . -533) 194826) ((-1164 . -240) 194803) ((-1164 . -588) 194787) ((-1164 . -19) 194771) ((-1161 . -1003) T) ((-1161 . -547) 194737) ((-1161 . -1114) T) ((-1161 . -72) T) ((-1154 . -1157) 194721) ((-1154 . -188) 194680) ((-1154 . -550) 194562) ((-1154 . -585) 194487) ((-1154 . -583) 194397) ((-1154 . -102) T) ((-1154 . -25) T) ((-1154 . -72) T) ((-1154 . -547) 194379) ((-1154 . -1003) T) ((-1154 . -23) T) ((-1154 . -21) T) ((-1154 . -658) T) ((-1154 . -1013) T) ((-1154 . -962) T) ((-1154 . -954) T) ((-1154 . -184) 194332) ((-1154 . -1114) T) ((-1154 . -187) 194291) ((-1154 . -238) 194256) ((-1154 . -802) 194169) ((-1154 . -799) 194057) ((-1154 . -804) 193970) ((-1154 . -879) 193940) ((-1154 . -38) 193837) ((-1154 . -80) 193702) ((-1154 . -956) 193588) ((-1154 . -961) 193474) ((-1154 . -577) 193371) ((-1154 . -649) 193268) ((-1154 . -116) 193247) ((-1154 . -118) 193226) ((-1154 . -144) 193180) ((-1154 . -489) 193159) ((-1154 . -242) 193138) ((-1154 . -47) 193115) ((-1154 . -1143) 193092) ((-1154 . -35) 193058) ((-1154 . -66) 193024) ((-1154 . -236) 192990) ((-1154 . -426) 192956) ((-1154 . -1103) 192922) ((-1154 . -1100) 192888) ((-1154 . -908) 192854) ((-1151 . -273) 192798) ((-1151 . -943) 192764) ((-1151 . -348) 192730) ((-1151 . -38) 192587) ((-1151 . -550) 192461) ((-1151 . -585) 192350) ((-1151 . -583) 192224) ((-1151 . -658) T) ((-1151 . -1013) T) ((-1151 . -962) T) ((-1151 . -954) T) ((-1151 . -80) 192074) ((-1151 . -956) 191963) ((-1151 . -961) 191852) ((-1151 . -21) T) ((-1151 . -23) T) ((-1151 . -1003) T) ((-1151 . -547) 191834) ((-1151 . -1114) T) ((-1151 . -72) T) ((-1151 . -25) T) ((-1151 . -102) T) ((-1151 . -577) 191691) ((-1151 . -649) 191548) ((-1151 . -116) 191509) ((-1151 . -118) 191470) ((-1151 . -144) T) ((-1151 . -489) T) ((-1151 . -242) T) ((-1151 . -47) 191414) ((-1150 . -1149) 191393) ((-1150 . -308) 191372) ((-1150 . -1119) 191351) ((-1150 . -825) 191330) ((-1150 . -489) 191284) ((-1150 . -144) 191218) ((-1150 . -550) 191037) ((-1150 . -649) 190884) ((-1150 . -577) 190731) ((-1150 . -38) 190578) ((-1150 . -385) 190557) ((-1150 . -254) 190536) ((-1150 . -585) 190436) ((-1150 . -583) 190321) ((-1150 . -658) T) ((-1150 . -1013) T) ((-1150 . -962) T) ((-1150 . -954) T) ((-1150 . -80) 190141) ((-1150 . -956) 189982) ((-1150 . -961) 189823) ((-1150 . -21) T) ((-1150 . -23) T) ((-1150 . -1003) T) ((-1150 . -547) 189805) ((-1150 . -1114) T) ((-1150 . -72) T) ((-1150 . -25) T) ((-1150 . -102) T) ((-1150 . -242) 189759) ((-1150 . -198) 189738) ((-1150 . -908) 189704) ((-1150 . -1100) 189670) ((-1150 . -1103) 189636) ((-1150 . -426) 189602) ((-1150 . -236) 189568) ((-1150 . -66) 189534) ((-1150 . -35) 189500) ((-1150 . -1143) 189470) ((-1150 . -47) 189440) ((-1150 . -118) 189419) ((-1150 . -116) 189398) ((-1150 . -879) 189361) ((-1150 . -804) 189267) ((-1150 . -799) 189171) ((-1150 . -802) 189077) ((-1150 . -238) 189035) ((-1150 . -187) 188987) ((-1150 . -184) 188933) ((-1150 . -188) 188885) ((-1150 . -1147) 188869) ((-1150 . -943) 188853) ((-1145 . -1149) 188814) ((-1145 . -308) 188793) ((-1145 . -1119) 188772) ((-1145 . -825) 188751) ((-1145 . -489) 188705) ((-1145 . -144) 188639) ((-1145 . -550) 188388) ((-1145 . -649) 188235) ((-1145 . -577) 188082) ((-1145 . -38) 187929) ((-1145 . -385) 187908) ((-1145 . -254) 187887) ((-1145 . -585) 187787) ((-1145 . -583) 187672) ((-1145 . -658) T) ((-1145 . -1013) T) ((-1145 . -962) T) ((-1145 . -954) T) ((-1145 . -80) 187492) ((-1145 . -956) 187333) ((-1145 . -961) 187174) ((-1145 . -21) T) ((-1145 . -23) T) ((-1145 . -1003) T) ((-1145 . -547) 187156) ((-1145 . -1114) T) ((-1145 . -72) T) ((-1145 . -25) T) ((-1145 . -102) T) ((-1145 . -242) 187110) ((-1145 . -198) 187089) ((-1145 . -908) 187055) ((-1145 . -1100) 187021) ((-1145 . -1103) 186987) ((-1145 . -426) 186953) ((-1145 . -236) 186919) ((-1145 . -66) 186885) ((-1145 . -35) 186851) ((-1145 . -1143) 186821) ((-1145 . -47) 186791) ((-1145 . -118) 186770) ((-1145 . -116) 186749) ((-1145 . -879) 186712) ((-1145 . -804) 186618) ((-1145 . -799) 186499) ((-1145 . -802) 186405) ((-1145 . -238) 186363) ((-1145 . -187) 186315) ((-1145 . -184) 186261) ((-1145 . -188) 186213) ((-1145 . -1147) 186197) ((-1145 . -943) 186132) ((-1133 . -1140) 186116) ((-1133 . -1052) 186094) ((-1133 . -548) NIL) ((-1133 . -256) 186081) ((-1133 . -447) 186029) ((-1133 . -273) 186006) ((-1133 . -943) 185889) ((-1133 . -348) 185873) ((-1133 . -38) 185705) ((-1133 . -80) 185510) ((-1133 . -956) 185336) ((-1133 . -961) 185162) ((-1133 . -583) 185072) ((-1133 . -585) 184961) ((-1133 . -577) 184793) ((-1133 . -649) 184625) ((-1133 . -550) 184381) ((-1133 . -116) 184360) ((-1133 . -118) 184339) ((-1133 . -47) 184316) ((-1133 . -322) 184300) ((-1133 . -575) 184248) ((-1133 . -802) 184192) ((-1133 . -799) 184099) ((-1133 . -804) 184010) ((-1133 . -789) NIL) ((-1133 . -814) 183989) ((-1133 . -1119) 183968) ((-1133 . -854) 183938) ((-1133 . -825) 183917) ((-1133 . -489) 183831) ((-1133 . -242) 183745) ((-1133 . -144) 183639) ((-1133 . -385) 183573) ((-1133 . -254) 183552) ((-1133 . -238) 183479) ((-1133 . -188) T) ((-1133 . -102) T) ((-1133 . -25) T) ((-1133 . -72) T) ((-1133 . -547) 183461) ((-1133 . -1003) T) ((-1133 . -23) T) ((-1133 . -21) T) ((-1133 . -658) T) ((-1133 . -1013) T) ((-1133 . -962) T) ((-1133 . -954) T) ((-1133 . -184) 183448) ((-1133 . -1114) T) ((-1133 . -187) T) ((-1133 . -222) 183432) ((-1133 . -182) 183416) ((-1131 . -997) 183400) ((-1131 . -552) 183384) ((-1131 . -1003) 183362) ((-1131 . -547) 183329) ((-1131 . -1114) 183307) ((-1131 . -72) 183285) ((-1131 . -998) 183242) ((-1129 . -1128) 183221) ((-1129 . -908) 183187) ((-1129 . -1100) 183153) ((-1129 . -1103) 183119) ((-1129 . -426) 183085) ((-1129 . -236) 183051) ((-1129 . -66) 183017) ((-1129 . -35) 182983) ((-1129 . -1143) 182960) ((-1129 . -47) 182937) ((-1129 . -550) 182692) ((-1129 . -649) 182512) ((-1129 . -577) 182332) ((-1129 . -585) 182143) ((-1129 . -583) 182001) ((-1129 . -961) 181815) ((-1129 . -956) 181629) ((-1129 . -80) 181417) ((-1129 . -38) 181237) ((-1129 . -879) 181207) ((-1129 . -238) 181107) ((-1129 . -1126) 181091) ((-1129 . -658) T) ((-1129 . -1013) T) ((-1129 . -962) T) ((-1129 . -954) T) ((-1129 . -21) T) ((-1129 . -23) T) ((-1129 . -1003) T) ((-1129 . -547) 181073) ((-1129 . -1114) T) ((-1129 . -72) T) ((-1129 . -25) T) ((-1129 . -102) T) ((-1129 . -116) 181001) ((-1129 . -118) 180929) ((-1129 . -548) 180602) ((-1129 . -182) 180572) ((-1129 . -802) 180426) ((-1129 . -804) 180226) ((-1129 . -799) 180024) ((-1129 . -222) 179994) ((-1129 . -187) 179856) ((-1129 . -184) 179712) ((-1129 . -188) 179620) ((-1129 . -308) 179599) ((-1129 . -1119) 179578) ((-1129 . -825) 179557) ((-1129 . -489) 179511) ((-1129 . -144) 179445) ((-1129 . -385) 179424) ((-1129 . -254) 179403) ((-1129 . -242) 179357) ((-1129 . -198) 179336) ((-1129 . -284) 179306) ((-1129 . -447) 179166) ((-1129 . -256) 179105) ((-1129 . -322) 179075) ((-1129 . -575) 178983) ((-1129 . -336) 178953) ((-1129 . -789) 178826) ((-1129 . -733) 178779) ((-1129 . -707) 178732) ((-1129 . -709) 178685) ((-1129 . -749) 178587) ((-1129 . -752) 178489) ((-1129 . -711) 178442) ((-1129 . -714) 178395) ((-1129 . -748) 178348) ((-1129 . -787) 178318) ((-1129 . -814) 178271) ((-1129 . -926) 178224) ((-1129 . -943) 178013) ((-1129 . -1052) 177965) ((-1129 . -897) 177935) ((-1124 . -1128) 177896) ((-1124 . -908) 177862) ((-1124 . -1100) 177828) ((-1124 . -1103) 177794) ((-1124 . -426) 177760) ((-1124 . -236) 177726) ((-1124 . -66) 177692) ((-1124 . -35) 177658) ((-1124 . -1143) 177635) ((-1124 . -47) 177612) ((-1124 . -550) 177413) ((-1124 . -649) 177215) ((-1124 . -577) 177017) ((-1124 . -585) 176872) ((-1124 . -583) 176712) ((-1124 . -961) 176508) ((-1124 . -956) 176304) ((-1124 . -80) 176056) ((-1124 . -38) 175858) ((-1124 . -879) 175828) ((-1124 . -238) 175656) ((-1124 . -1126) 175640) ((-1124 . -658) T) ((-1124 . -1013) T) ((-1124 . -962) T) ((-1124 . -954) T) ((-1124 . -21) T) ((-1124 . -23) T) ((-1124 . -1003) T) ((-1124 . -547) 175622) ((-1124 . -1114) T) ((-1124 . -72) T) ((-1124 . -25) T) ((-1124 . -102) T) ((-1124 . -116) 175532) ((-1124 . -118) 175442) ((-1124 . -548) NIL) ((-1124 . -182) 175394) ((-1124 . -802) 175230) ((-1124 . -804) 174994) ((-1124 . -799) 174733) ((-1124 . -222) 174685) ((-1124 . -187) 174511) ((-1124 . -184) 174331) ((-1124 . -188) 174221) ((-1124 . -308) 174200) ((-1124 . -1119) 174179) ((-1124 . -825) 174158) ((-1124 . -489) 174112) ((-1124 . -144) 174046) ((-1124 . -385) 174025) ((-1124 . -254) 174004) ((-1124 . -242) 173958) ((-1124 . -198) 173937) ((-1124 . -284) 173889) ((-1124 . -447) 173623) ((-1124 . -256) 173508) ((-1124 . -322) 173460) ((-1124 . -575) 173412) ((-1124 . -336) 173364) ((-1124 . -789) NIL) ((-1124 . -733) NIL) ((-1124 . -707) NIL) ((-1124 . -709) NIL) ((-1124 . -749) NIL) ((-1124 . -752) NIL) ((-1124 . -711) NIL) ((-1124 . -714) NIL) ((-1124 . -748) NIL) ((-1124 . -787) 173316) ((-1124 . -814) NIL) ((-1124 . -926) NIL) ((-1124 . -943) 173282) ((-1124 . -1052) NIL) ((-1124 . -897) 173234) ((-1123 . -745) T) ((-1123 . -752) T) ((-1123 . -749) T) ((-1123 . -1003) T) ((-1123 . -547) 173216) ((-1123 . -1114) T) ((-1123 . -72) T) ((-1123 . -313) T) ((-1123 . -599) T) ((-1122 . -745) T) ((-1122 . -752) T) ((-1122 . -749) T) ((-1122 . -1003) T) ((-1122 . -547) 173198) ((-1122 . -1114) T) ((-1122 . -72) T) ((-1122 . -313) T) ((-1122 . -599) T) ((-1121 . -745) T) ((-1121 . -752) T) ((-1121 . -749) T) ((-1121 . -1003) T) ((-1121 . -547) 173180) ((-1121 . -1114) T) ((-1121 . -72) T) ((-1121 . -313) T) ((-1121 . -599) T) ((-1120 . -745) T) ((-1120 . -752) T) ((-1120 . -749) T) ((-1120 . -1003) T) ((-1120 . -547) 173162) ((-1120 . -1114) T) ((-1120 . -72) T) ((-1120 . -313) T) ((-1120 . -599) T) ((-1115 . -986) T) ((-1115 . -423) 173143) ((-1115 . -547) 173109) ((-1115 . -550) 173090) ((-1115 . -1003) T) ((-1115 . -1114) T) ((-1115 . -72) T) ((-1115 . -64) T) ((-1112 . -423) 173067) ((-1112 . -547) 173008) ((-1112 . -550) 172985) ((-1112 . -1003) 172963) ((-1112 . -1114) 172941) ((-1112 . -72) 172919) ((-1107 . -672) 172895) ((-1107 . -35) 172861) ((-1107 . -66) 172827) ((-1107 . -236) 172793) ((-1107 . -426) 172759) ((-1107 . -1103) 172725) ((-1107 . -1100) 172691) ((-1107 . -908) 172657) ((-1107 . -47) 172626) ((-1107 . -38) 172523) ((-1107 . -577) 172420) ((-1107 . -649) 172317) ((-1107 . -550) 172199) ((-1107 . -242) 172178) ((-1107 . -489) 172157) ((-1107 . -80) 172022) ((-1107 . -956) 171908) ((-1107 . -961) 171794) ((-1107 . -144) 171748) ((-1107 . -118) 171727) ((-1107 . -116) 171706) ((-1107 . -585) 171631) ((-1107 . -583) 171541) ((-1107 . -879) 171502) ((-1107 . -804) 171483) ((-1107 . -1114) T) ((-1107 . -799) 171462) ((-1107 . -954) T) ((-1107 . -962) T) ((-1107 . -1013) T) ((-1107 . -658) T) ((-1107 . -21) T) ((-1107 . -23) T) ((-1107 . -1003) T) ((-1107 . -547) 171444) ((-1107 . -72) T) ((-1107 . -25) T) ((-1107 . -102) T) ((-1107 . -802) 171425) ((-1107 . -447) 171392) ((-1107 . -256) 171379) ((-1101 . -916) 171363) ((-1101 . -34) T) ((-1101 . -1114) T) ((-1101 . -72) 171317) ((-1101 . -547) 171252) ((-1101 . -256) 171190) ((-1101 . -447) 171123) ((-1101 . -1003) 171101) ((-1101 . -422) 171085) ((-1096 . -310) 171059) ((-1096 . -72) T) ((-1096 . -1114) T) ((-1096 . -547) 171041) ((-1096 . -1003) T) ((-1094 . -1003) T) ((-1094 . -547) 171023) ((-1094 . -1114) T) ((-1094 . -72) T) ((-1094 . -550) 171005) ((-1089 . -740) 170989) ((-1089 . -72) T) ((-1089 . -1114) T) ((-1089 . -547) 170971) ((-1089 . -1003) T) ((-1087 . -1092) 170950) ((-1087 . -181) 170898) ((-1087 . -76) 170846) ((-1087 . -256) 170644) ((-1087 . -447) 170396) ((-1087 . -422) 170331) ((-1087 . -122) 170279) ((-1087 . -548) NIL) ((-1087 . -190) 170227) ((-1087 . -544) 170206) ((-1087 . -240) 170185) ((-1087 . -1114) T) ((-1087 . -238) 170164) ((-1087 . -1003) T) ((-1087 . -547) 170146) ((-1087 . -72) T) ((-1087 . -34) T) ((-1087 . -533) 170125) ((-1083 . -1003) T) ((-1083 . -547) 170107) ((-1083 . -1114) T) ((-1083 . -72) T) ((-1082 . -745) T) ((-1082 . -752) T) ((-1082 . -749) T) ((-1082 . -1003) T) ((-1082 . -547) 170089) ((-1082 . -1114) T) ((-1082 . -72) T) ((-1082 . -313) T) ((-1082 . -599) T) ((-1081 . -745) T) ((-1081 . -752) T) ((-1081 . -749) T) ((-1081 . -1003) T) ((-1081 . -547) 170071) ((-1081 . -1114) T) ((-1081 . -72) T) ((-1081 . -313) T) ((-1080 . -1160) T) ((-1080 . -1003) T) ((-1080 . -547) 170038) ((-1080 . -1114) T) ((-1080 . -72) T) ((-1080 . -943) 169974) ((-1080 . -550) 169910) ((-1079 . -547) 169892) ((-1078 . -547) 169874) ((-1077 . -273) 169851) ((-1077 . -943) 169749) ((-1077 . -348) 169733) ((-1077 . -38) 169630) ((-1077 . -550) 169487) ((-1077 . -585) 169412) ((-1077 . -583) 169322) ((-1077 . -658) T) ((-1077 . -1013) T) ((-1077 . -962) T) ((-1077 . -954) T) ((-1077 . -80) 169187) ((-1077 . -956) 169073) ((-1077 . -961) 168959) ((-1077 . -21) T) ((-1077 . -23) T) ((-1077 . -1003) T) ((-1077 . -547) 168941) ((-1077 . -1114) T) ((-1077 . -72) T) ((-1077 . -25) T) ((-1077 . -102) T) ((-1077 . -577) 168838) ((-1077 . -649) 168735) ((-1077 . -116) 168714) ((-1077 . -118) 168693) ((-1077 . -144) 168647) ((-1077 . -489) 168626) ((-1077 . -242) 168605) ((-1077 . -47) 168582) ((-1075 . -749) T) ((-1075 . -547) 168564) ((-1075 . -1003) T) ((-1075 . -72) T) ((-1075 . -1114) T) ((-1075 . -752) T) ((-1075 . -548) 168486) ((-1075 . -550) 168452) ((-1075 . -943) 168434) ((-1075 . -789) 168401) ((-1074 . -1157) 168385) ((-1074 . -188) 168344) ((-1074 . -550) 168226) ((-1074 . -585) 168151) ((-1074 . -583) 168061) ((-1074 . -102) T) ((-1074 . -25) T) ((-1074 . -72) T) ((-1074 . -547) 168043) ((-1074 . -1003) T) ((-1074 . -23) T) ((-1074 . -21) T) ((-1074 . -658) T) ((-1074 . -1013) T) ((-1074 . -962) T) ((-1074 . -954) T) ((-1074 . -184) 167996) ((-1074 . -1114) T) ((-1074 . -187) 167955) ((-1074 . -238) 167920) ((-1074 . -802) 167833) ((-1074 . -799) 167721) ((-1074 . -804) 167634) ((-1074 . -879) 167604) ((-1074 . -38) 167501) ((-1074 . -80) 167366) ((-1074 . -956) 167252) ((-1074 . -961) 167138) ((-1074 . -577) 167035) ((-1074 . -649) 166932) ((-1074 . -116) 166911) ((-1074 . -118) 166890) ((-1074 . -144) 166844) ((-1074 . -489) 166823) ((-1074 . -242) 166802) ((-1074 . -47) 166779) ((-1074 . -1143) 166756) ((-1074 . -35) 166722) ((-1074 . -66) 166688) ((-1074 . -236) 166654) ((-1074 . -426) 166620) ((-1074 . -1103) 166586) ((-1074 . -1100) 166552) ((-1074 . -908) 166518) ((-1073 . -1149) 166479) ((-1073 . -308) 166458) ((-1073 . -1119) 166437) ((-1073 . -825) 166416) ((-1073 . -489) 166370) ((-1073 . -144) 166304) ((-1073 . -550) 166053) ((-1073 . -649) 165900) ((-1073 . -577) 165747) ((-1073 . -38) 165594) ((-1073 . -385) 165573) ((-1073 . -254) 165552) ((-1073 . -585) 165452) ((-1073 . -583) 165337) ((-1073 . -658) T) ((-1073 . -1013) T) ((-1073 . -962) T) ((-1073 . -954) T) ((-1073 . -80) 165157) ((-1073 . -956) 164998) ((-1073 . -961) 164839) ((-1073 . -21) T) ((-1073 . -23) T) ((-1073 . -1003) T) ((-1073 . -547) 164821) ((-1073 . -1114) T) ((-1073 . -72) T) ((-1073 . -25) T) ((-1073 . -102) T) ((-1073 . -242) 164775) ((-1073 . -198) 164754) ((-1073 . -908) 164720) ((-1073 . -1100) 164686) ((-1073 . -1103) 164652) ((-1073 . -426) 164618) ((-1073 . -236) 164584) ((-1073 . -66) 164550) ((-1073 . -35) 164516) ((-1073 . -1143) 164486) ((-1073 . -47) 164456) ((-1073 . -118) 164435) ((-1073 . -116) 164414) ((-1073 . -879) 164377) ((-1073 . -804) 164283) ((-1073 . -799) 164164) ((-1073 . -802) 164070) ((-1073 . -238) 164028) ((-1073 . -187) 163980) ((-1073 . -184) 163926) ((-1073 . -188) 163878) ((-1073 . -1147) 163862) ((-1073 . -943) 163797) ((-1070 . -1140) 163781) ((-1070 . -1052) 163759) ((-1070 . -548) NIL) ((-1070 . -256) 163746) ((-1070 . -447) 163694) ((-1070 . -273) 163671) ((-1070 . -943) 163554) ((-1070 . -348) 163538) ((-1070 . -38) 163370) ((-1070 . -80) 163175) ((-1070 . -956) 163001) ((-1070 . -961) 162827) ((-1070 . -583) 162737) ((-1070 . -585) 162626) ((-1070 . -577) 162458) ((-1070 . -649) 162290) ((-1070 . -550) 162067) ((-1070 . -116) 162046) ((-1070 . -118) 162025) ((-1070 . -47) 162002) ((-1070 . -322) 161986) ((-1070 . -575) 161934) ((-1070 . -802) 161878) ((-1070 . -799) 161785) ((-1070 . -804) 161696) ((-1070 . -789) NIL) ((-1070 . -814) 161675) ((-1070 . -1119) 161654) ((-1070 . -854) 161624) ((-1070 . -825) 161603) ((-1070 . -489) 161517) ((-1070 . -242) 161431) ((-1070 . -144) 161325) ((-1070 . -385) 161259) ((-1070 . -254) 161238) ((-1070 . -238) 161165) ((-1070 . -188) T) ((-1070 . -102) T) ((-1070 . -25) T) ((-1070 . -72) T) ((-1070 . -547) 161147) ((-1070 . -1003) T) ((-1070 . -23) T) ((-1070 . -21) T) ((-1070 . -658) T) ((-1070 . -1013) T) ((-1070 . -962) T) ((-1070 . -954) T) ((-1070 . -184) 161134) ((-1070 . -1114) T) ((-1070 . -187) T) ((-1070 . -222) 161118) ((-1070 . -182) 161102) ((-1067 . -1128) 161063) ((-1067 . -908) 161029) ((-1067 . -1100) 160995) ((-1067 . -1103) 160961) ((-1067 . -426) 160927) ((-1067 . -236) 160893) ((-1067 . -66) 160859) ((-1067 . -35) 160825) ((-1067 . -1143) 160802) ((-1067 . -47) 160779) ((-1067 . -550) 160580) ((-1067 . -649) 160382) ((-1067 . -577) 160184) ((-1067 . -585) 160039) ((-1067 . -583) 159879) ((-1067 . -961) 159675) ((-1067 . -956) 159471) ((-1067 . -80) 159223) ((-1067 . -38) 159025) ((-1067 . -879) 158995) ((-1067 . -238) 158823) ((-1067 . -1126) 158807) ((-1067 . -658) T) ((-1067 . -1013) T) ((-1067 . -962) T) ((-1067 . -954) T) ((-1067 . -21) T) ((-1067 . -23) T) ((-1067 . -1003) T) ((-1067 . -547) 158789) ((-1067 . -1114) T) ((-1067 . -72) T) ((-1067 . -25) T) ((-1067 . -102) T) ((-1067 . -116) 158699) ((-1067 . -118) 158609) ((-1067 . -548) NIL) ((-1067 . -182) 158561) ((-1067 . -802) 158397) ((-1067 . -804) 158161) ((-1067 . -799) 157900) ((-1067 . -222) 157852) ((-1067 . -187) 157678) ((-1067 . -184) 157498) ((-1067 . -188) 157388) ((-1067 . -308) 157367) ((-1067 . -1119) 157346) ((-1067 . -825) 157325) ((-1067 . -489) 157279) ((-1067 . -144) 157213) ((-1067 . -385) 157192) ((-1067 . -254) 157171) ((-1067 . -242) 157125) ((-1067 . -198) 157104) ((-1067 . -284) 157056) ((-1067 . -447) 156790) ((-1067 . -256) 156675) ((-1067 . -322) 156627) ((-1067 . -575) 156579) ((-1067 . -336) 156531) ((-1067 . -789) NIL) ((-1067 . -733) NIL) ((-1067 . -707) NIL) ((-1067 . -709) NIL) ((-1067 . -749) NIL) ((-1067 . -752) NIL) ((-1067 . -711) NIL) ((-1067 . -714) NIL) ((-1067 . -748) NIL) ((-1067 . -787) 156483) ((-1067 . -814) NIL) ((-1067 . -926) NIL) ((-1067 . -943) 156449) ((-1067 . -1052) NIL) ((-1067 . -897) 156401) ((-1066 . -1003) T) ((-1066 . -547) 156383) ((-1066 . -1114) T) ((-1066 . -72) T) ((-1065 . -1003) T) ((-1065 . -547) 156365) ((-1065 . -1114) T) ((-1065 . -72) T) ((-1060 . -1092) 156341) ((-1060 . -181) 156286) ((-1060 . -76) 156231) ((-1060 . -256) 156020) ((-1060 . -447) 155760) ((-1060 . -422) 155692) ((-1060 . -122) 155637) ((-1060 . -548) NIL) ((-1060 . -190) 155582) ((-1060 . -544) 155558) ((-1060 . -240) 155534) ((-1060 . -1114) T) ((-1060 . -238) 155510) ((-1060 . -1003) T) ((-1060 . -547) 155492) ((-1060 . -72) T) ((-1060 . -34) T) ((-1060 . -533) 155468) ((-1059 . -1044) T) ((-1059 . -317) 155450) ((-1059 . -752) T) ((-1059 . -749) T) ((-1059 . -122) 155432) ((-1059 . -34) T) ((-1059 . -1114) T) ((-1059 . -72) T) ((-1059 . -547) 155414) ((-1059 . -256) NIL) ((-1059 . -447) NIL) ((-1059 . -1003) T) ((-1059 . -422) 155396) ((-1059 . -548) NIL) ((-1059 . -238) 155346) ((-1059 . -533) 155321) ((-1059 . -240) 155296) ((-1059 . -588) 155278) ((-1059 . -19) 155260) ((-1055 . -611) 155244) ((-1055 . -588) 155228) ((-1055 . -240) 155205) ((-1055 . -238) 155157) ((-1055 . -533) 155134) ((-1055 . -548) 155095) ((-1055 . -422) 155079) ((-1055 . -1003) 155057) ((-1055 . -447) 154990) ((-1055 . -256) 154928) ((-1055 . -547) 154863) ((-1055 . -72) 154817) ((-1055 . -1114) T) ((-1055 . -34) T) ((-1055 . -122) 154801) ((-1055 . -1153) 154785) ((-1055 . -916) 154769) ((-1055 . -1050) 154753) ((-1055 . -550) 154730) ((-1053 . -986) T) ((-1053 . -423) 154711) ((-1053 . -547) 154677) ((-1053 . -550) 154658) ((-1053 . -1003) T) ((-1053 . -1114) T) ((-1053 . -72) T) ((-1053 . -64) T) ((-1051 . -1092) 154637) ((-1051 . -181) 154585) ((-1051 . -76) 154533) ((-1051 . -256) 154331) ((-1051 . -447) 154083) ((-1051 . -422) 154018) ((-1051 . -122) 153966) ((-1051 . -548) NIL) ((-1051 . -190) 153914) ((-1051 . -544) 153893) ((-1051 . -240) 153872) ((-1051 . -1114) T) ((-1051 . -238) 153851) ((-1051 . -1003) T) ((-1051 . -547) 153833) ((-1051 . -72) T) ((-1051 . -34) T) ((-1051 . -533) 153812) ((-1048 . -1021) 153796) ((-1048 . -422) 153780) ((-1048 . -1003) 153758) ((-1048 . -447) 153691) ((-1048 . -256) 153629) ((-1048 . -547) 153564) ((-1048 . -72) 153518) ((-1048 . -1114) T) ((-1048 . -34) T) ((-1048 . -76) 153502) ((-1046 . -1010) 153471) ((-1046 . -1109) 153440) ((-1046 . -547) 153402) ((-1046 . -122) 153386) ((-1046 . -34) T) ((-1046 . -1114) T) ((-1046 . -72) T) ((-1046 . -256) 153324) ((-1046 . -447) 153257) ((-1046 . -1003) T) ((-1046 . -422) 153241) ((-1046 . -548) 153202) ((-1046 . -882) 153171) ((-1046 . -975) 153140) ((-1042 . -1023) 153085) ((-1042 . -422) 153069) ((-1042 . -447) 153002) ((-1042 . -256) 152940) ((-1042 . -34) T) ((-1042 . -958) 152880) ((-1042 . -943) 152778) ((-1042 . -550) 152697) ((-1042 . -348) 152681) ((-1042 . -575) 152629) ((-1042 . -585) 152567) ((-1042 . -322) 152551) ((-1042 . -188) 152530) ((-1042 . -184) 152478) ((-1042 . -187) 152432) ((-1042 . -222) 152416) ((-1042 . -799) 152340) ((-1042 . -804) 152266) ((-1042 . -802) 152225) ((-1042 . -182) 152209) ((-1042 . -649) 152144) ((-1042 . -577) 152079) ((-1042 . -583) 152038) ((-1042 . -102) T) ((-1042 . -25) T) ((-1042 . -72) T) ((-1042 . -1114) T) ((-1042 . -547) 152000) ((-1042 . -1003) T) ((-1042 . -23) T) ((-1042 . -21) T) ((-1042 . -961) 151984) ((-1042 . -956) 151968) ((-1042 . -80) 151947) ((-1042 . -954) T) ((-1042 . -962) T) ((-1042 . -1013) T) ((-1042 . -658) T) ((-1042 . -38) 151907) ((-1042 . -548) 151868) ((-1041 . -916) 151839) ((-1041 . -34) T) ((-1041 . -1114) T) ((-1041 . -72) T) ((-1041 . -547) 151821) ((-1041 . -256) 151747) ((-1041 . -447) 151655) ((-1041 . -1003) T) ((-1041 . -422) 151626) ((-1040 . -1003) T) ((-1040 . -547) 151608) ((-1040 . -1114) T) ((-1040 . -72) T) ((-1035 . -1037) T) ((-1035 . -1160) T) ((-1035 . -64) T) ((-1035 . -72) T) ((-1035 . -1114) T) ((-1035 . -547) 151574) ((-1035 . -1003) T) ((-1035 . -550) 151555) ((-1035 . -423) 151536) ((-1035 . -986) T) ((-1033 . -1034) 151520) ((-1033 . -72) T) ((-1033 . -1114) T) ((-1033 . -547) 151502) ((-1033 . -1003) T) ((-1026 . -672) 151481) ((-1026 . -35) 151447) ((-1026 . -66) 151413) ((-1026 . -236) 151379) ((-1026 . -426) 151345) ((-1026 . -1103) 151311) ((-1026 . -1100) 151277) ((-1026 . -908) 151243) ((-1026 . -47) 151215) ((-1026 . -38) 151112) ((-1026 . -577) 151009) ((-1026 . -649) 150906) ((-1026 . -550) 150788) ((-1026 . -242) 150767) ((-1026 . -489) 150746) ((-1026 . -80) 150611) ((-1026 . -956) 150497) ((-1026 . -961) 150383) ((-1026 . -144) 150337) ((-1026 . -118) 150316) ((-1026 . -116) 150295) ((-1026 . -585) 150220) ((-1026 . -583) 150130) ((-1026 . -879) 150097) ((-1026 . -804) 150081) ((-1026 . -1114) T) ((-1026 . -799) 150063) ((-1026 . -954) T) ((-1026 . -962) T) ((-1026 . -1013) T) ((-1026 . -658) T) ((-1026 . -21) T) ((-1026 . -23) T) ((-1026 . -1003) T) ((-1026 . -547) 150045) ((-1026 . -72) T) ((-1026 . -25) T) ((-1026 . -102) T) ((-1026 . -802) 150029) ((-1026 . -447) 149999) ((-1026 . -256) 149986) ((-1025 . -854) 149953) ((-1025 . -550) 149752) ((-1025 . -943) 149637) ((-1025 . -1119) 149616) ((-1025 . -814) 149595) ((-1025 . -789) 149454) ((-1025 . -804) 149438) ((-1025 . -799) 149420) ((-1025 . -802) 149404) ((-1025 . -447) 149356) ((-1025 . -385) 149310) ((-1025 . -575) 149258) ((-1025 . -585) 149147) ((-1025 . -322) 149131) ((-1025 . -47) 149103) ((-1025 . -38) 148955) ((-1025 . -577) 148807) ((-1025 . -649) 148659) ((-1025 . -242) 148593) ((-1025 . -489) 148527) ((-1025 . -80) 148352) ((-1025 . -956) 148198) ((-1025 . -961) 148044) ((-1025 . -144) 147958) ((-1025 . -118) 147937) ((-1025 . -116) 147916) ((-1025 . -583) 147826) ((-1025 . -102) T) ((-1025 . -25) T) ((-1025 . -72) T) ((-1025 . -1114) T) ((-1025 . -547) 147808) ((-1025 . -1003) T) ((-1025 . -23) T) ((-1025 . -21) T) ((-1025 . -954) T) ((-1025 . -962) T) ((-1025 . -1013) T) ((-1025 . -658) T) ((-1025 . -348) 147792) ((-1025 . -273) 147764) ((-1025 . -256) 147751) ((-1025 . -548) 147499) ((-1020 . -477) T) ((-1020 . -1119) T) ((-1020 . -1052) T) ((-1020 . -943) 147481) ((-1020 . -548) 147396) ((-1020 . -926) T) ((-1020 . -789) 147378) ((-1020 . -748) T) ((-1020 . -714) T) ((-1020 . -711) T) ((-1020 . -752) T) ((-1020 . -749) T) ((-1020 . -709) T) ((-1020 . -707) T) ((-1020 . -733) T) ((-1020 . -585) 147350) ((-1020 . -575) 147332) ((-1020 . -825) T) ((-1020 . -489) T) ((-1020 . -242) T) ((-1020 . -144) T) ((-1020 . -550) 147304) ((-1020 . -649) 147291) ((-1020 . -577) 147278) ((-1020 . -961) 147265) ((-1020 . -956) 147252) ((-1020 . -80) 147237) ((-1020 . -38) 147224) ((-1020 . -385) T) ((-1020 . -254) T) ((-1020 . -187) T) ((-1020 . -184) 147211) ((-1020 . -188) T) ((-1020 . -114) T) ((-1020 . -954) T) ((-1020 . -962) T) ((-1020 . -1013) T) ((-1020 . -658) T) ((-1020 . -21) T) ((-1020 . -583) 147183) ((-1020 . -23) T) ((-1020 . -1003) T) ((-1020 . -547) 147165) ((-1020 . -1114) T) ((-1020 . -72) T) ((-1020 . -25) T) ((-1020 . -102) T) ((-1020 . -118) T) ((-1020 . -745) T) ((-1020 . -313) T) ((-1020 . -82) T) ((-1020 . -599) T) ((-1016 . -1003) T) ((-1016 . -547) 147147) ((-1016 . -1114) T) ((-1016 . -72) T) ((-1014 . -193) 147126) ((-1014 . -1172) 147096) ((-1014 . -714) 147075) ((-1014 . -711) 147054) ((-1014 . -752) 147008) ((-1014 . -749) 146962) ((-1014 . -709) 146941) ((-1014 . -710) 146920) ((-1014 . -649) 146865) ((-1014 . -577) 146790) ((-1014 . -240) 146767) ((-1014 . -238) 146744) ((-1014 . -422) 146728) ((-1014 . -447) 146661) ((-1014 . -256) 146599) ((-1014 . -34) T) ((-1014 . -533) 146576) ((-1014 . -943) 146405) ((-1014 . -550) 146209) ((-1014 . -348) 146178) ((-1014 . -575) 146086) ((-1014 . -585) 145925) ((-1014 . -322) 145895) ((-1014 . -313) 145874) ((-1014 . -188) 145827) ((-1014 . -583) 145615) ((-1014 . -658) 145594) ((-1014 . -1013) 145573) ((-1014 . -962) 145552) ((-1014 . -954) 145531) ((-1014 . -184) 145427) ((-1014 . -187) 145329) ((-1014 . -222) 145299) ((-1014 . -799) 145171) ((-1014 . -804) 145045) ((-1014 . -802) 144978) ((-1014 . -182) 144948) ((-1014 . -547) 144645) ((-1014 . -961) 144570) ((-1014 . -956) 144475) ((-1014 . -80) 144395) ((-1014 . -102) 144270) ((-1014 . -25) 144107) ((-1014 . -72) 143844) ((-1014 . -1114) T) ((-1014 . -1003) 143600) ((-1014 . -23) 143456) ((-1014 . -21) 143371) ((-1007 . -1006) 143335) ((-1007 . -72) T) ((-1007 . -547) 143317) ((-1007 . -1003) T) ((-1007 . -238) 143273) ((-1007 . -1114) T) ((-1007 . -552) 143188) ((-1005 . -1006) 143140) ((-1005 . -72) T) ((-1005 . -547) 143122) ((-1005 . -1003) T) ((-1005 . -238) 143078) ((-1005 . -1114) T) ((-1005 . -552) 142981) ((-1004 . -313) T) ((-1004 . -72) T) ((-1004 . -1114) T) ((-1004 . -547) 142963) ((-1004 . -1003) T) ((-999 . -362) 142947) ((-999 . -1001) 142931) ((-999 . -313) 142910) ((-999 . -190) 142894) ((-999 . -548) 142855) ((-999 . -122) 142839) ((-999 . -422) 142823) ((-999 . -1003) T) ((-999 . -447) 142756) ((-999 . -256) 142694) ((-999 . -547) 142676) ((-999 . -72) T) ((-999 . -1114) T) ((-999 . -34) T) ((-999 . -76) 142660) ((-999 . -181) 142644) ((-995 . -1114) T) ((-995 . -1003) 142615) ((-995 . -547) 142575) ((-995 . -72) 142546) ((-994 . -986) T) ((-994 . -423) 142527) ((-994 . -547) 142493) ((-994 . -550) 142474) ((-994 . -1003) T) ((-994 . -1114) T) ((-994 . -72) T) ((-994 . -64) T) ((-992 . -997) 142458) ((-992 . -552) 142442) ((-992 . -1003) 142420) ((-992 . -547) 142387) ((-992 . -1114) 142365) ((-992 . -72) 142343) ((-992 . -998) 142301) ((-991 . -225) 142285) ((-991 . -550) 142269) ((-991 . -943) 142253) ((-991 . -752) T) ((-991 . -72) T) ((-991 . -1003) T) ((-991 . -547) 142235) ((-991 . -749) T) ((-991 . -184) 142222) ((-991 . -1114) T) ((-991 . -187) T) ((-990 . -210) 142161) ((-990 . -550) 141905) ((-990 . -943) 141735) ((-990 . -548) NIL) ((-990 . -273) 141697) ((-990 . -348) 141681) ((-990 . -38) 141533) ((-990 . -80) 141358) ((-990 . -956) 141204) ((-990 . -961) 141050) ((-990 . -583) 140960) ((-990 . -585) 140849) ((-990 . -577) 140701) ((-990 . -649) 140553) ((-990 . -116) 140532) ((-990 . -118) 140511) ((-990 . -144) 140425) ((-990 . -489) 140359) ((-990 . -242) 140293) ((-990 . -47) 140255) ((-990 . -322) 140239) ((-990 . -575) 140187) ((-990 . -385) 140141) ((-990 . -447) 140006) ((-990 . -802) 139942) ((-990 . -799) 139841) ((-990 . -804) 139744) ((-990 . -789) NIL) ((-990 . -814) 139723) ((-990 . -1119) 139702) ((-990 . -854) 139649) ((-990 . -256) 139636) ((-990 . -188) 139615) ((-990 . -102) T) ((-990 . -25) T) ((-990 . -72) T) ((-990 . -547) 139597) ((-990 . -1003) T) ((-990 . -23) T) ((-990 . -21) T) ((-990 . -658) T) ((-990 . -1013) T) ((-990 . -962) T) ((-990 . -954) T) ((-990 . -184) 139545) ((-990 . -1114) T) ((-990 . -187) 139499) ((-990 . -222) 139483) ((-990 . -182) 139467) ((-988 . -547) 139449) ((-985 . -749) T) ((-985 . -547) 139431) ((-985 . -1003) T) ((-985 . -72) T) ((-985 . -1114) T) ((-985 . -752) T) ((-985 . -548) 139412) ((-982 . -656) 139391) ((-982 . -943) 139289) ((-982 . -348) 139273) ((-982 . -575) 139221) ((-982 . -585) 139098) ((-982 . -322) 139082) ((-982 . -315) 139061) ((-982 . -118) 139040) ((-982 . -550) 138865) ((-982 . -649) 138739) ((-982 . -577) 138613) ((-982 . -583) 138511) ((-982 . -961) 138424) ((-982 . -956) 138337) ((-982 . -80) 138229) ((-982 . -38) 138103) ((-982 . -346) 138082) ((-982 . -338) 138061) ((-982 . -116) 138015) ((-982 . -1052) 137994) ((-982 . -295) 137973) ((-982 . -313) 137927) ((-982 . -198) 137881) ((-982 . -242) 137835) ((-982 . -254) 137789) ((-982 . -385) 137743) ((-982 . -489) 137697) ((-982 . -825) 137651) ((-982 . -1119) 137605) ((-982 . -308) 137559) ((-982 . -188) 137487) ((-982 . -184) 137363) ((-982 . -187) 137245) ((-982 . -222) 137215) ((-982 . -799) 137087) ((-982 . -804) 136961) ((-982 . -802) 136894) ((-982 . -182) 136864) ((-982 . -548) 136848) ((-982 . -21) T) ((-982 . -23) T) ((-982 . -1003) T) ((-982 . -547) 136830) ((-982 . -1114) T) ((-982 . -72) T) ((-982 . -25) T) ((-982 . -102) T) ((-982 . -954) T) ((-982 . -962) T) ((-982 . -1013) T) ((-982 . -658) T) ((-982 . -144) T) ((-980 . -1003) T) ((-980 . -547) 136812) ((-980 . -1114) T) ((-980 . -72) T) ((-980 . -238) 136791) ((-979 . -1003) T) ((-979 . -547) 136773) ((-979 . -1114) T) ((-979 . -72) T) ((-978 . -1003) T) ((-978 . -547) 136755) ((-978 . -1114) T) ((-978 . -72) T) ((-978 . -238) 136734) ((-978 . -943) 136711) ((-978 . -550) 136688) ((-977 . -1114) T) ((-970 . -986) T) ((-970 . -423) 136669) ((-970 . -547) 136635) ((-970 . -550) 136616) ((-970 . -1003) T) ((-970 . -1114) T) ((-970 . -72) T) ((-970 . -64) T) ((-967 . -477) T) ((-967 . -1119) T) ((-967 . -1052) T) ((-967 . -943) 136598) ((-967 . -548) 136513) ((-967 . -926) T) ((-967 . -789) 136495) ((-967 . -748) T) ((-967 . -714) T) ((-967 . -711) T) ((-967 . -752) T) ((-967 . -749) T) ((-967 . -709) T) ((-967 . -707) T) ((-967 . -733) T) ((-967 . -585) 136467) ((-967 . -575) 136449) ((-967 . -825) T) ((-967 . -489) T) ((-967 . -242) T) ((-967 . -144) T) ((-967 . -550) 136421) ((-967 . -649) 136408) ((-967 . -577) 136395) ((-967 . -961) 136382) ((-967 . -956) 136369) ((-967 . -80) 136354) ((-967 . -38) 136341) ((-967 . -385) T) ((-967 . -254) T) ((-967 . -187) T) ((-967 . -184) 136328) ((-967 . -188) T) ((-967 . -114) T) ((-967 . -954) T) ((-967 . -962) T) ((-967 . -1013) T) ((-967 . -658) T) ((-967 . -21) T) ((-967 . -583) 136300) ((-967 . -23) T) ((-967 . -1003) T) ((-967 . -547) 136282) ((-967 . -1114) T) ((-967 . -72) T) ((-967 . -25) T) ((-967 . -102) T) ((-967 . -118) T) ((-967 . -552) 136263) ((-966 . -972) 136242) ((-966 . -72) T) ((-966 . -1114) T) ((-966 . -547) 136224) ((-966 . -1003) T) ((-963 . -1114) T) ((-963 . -1003) 136202) ((-963 . -547) 136169) ((-963 . -72) 136147) ((-959 . -958) 136087) ((-959 . -577) 136032) ((-959 . -649) 135977) ((-959 . -34) T) ((-959 . -256) 135915) ((-959 . -447) 135848) ((-959 . -422) 135832) ((-959 . -585) 135816) ((-959 . -583) 135785) ((-959 . -102) T) ((-959 . -25) T) ((-959 . -72) T) ((-959 . -1114) T) ((-959 . -547) 135747) ((-959 . -1003) T) ((-959 . -23) T) ((-959 . -21) T) ((-959 . -961) 135731) ((-959 . -956) 135715) ((-959 . -80) 135694) ((-959 . -1172) 135664) ((-959 . -548) 135625) ((-951 . -975) 135554) ((-951 . -882) 135483) ((-951 . -548) 135425) ((-951 . -422) 135390) ((-951 . -1003) T) ((-951 . -447) 135274) ((-951 . -256) 135182) ((-951 . -547) 135125) ((-951 . -72) T) ((-951 . -1114) T) ((-951 . -34) T) ((-951 . -122) 135090) ((-951 . -1109) 135019) ((-941 . -986) T) ((-941 . -423) 135000) ((-941 . -547) 134966) ((-941 . -550) 134947) ((-941 . -1003) T) ((-941 . -1114) T) ((-941 . -72) T) ((-941 . -64) T) ((-940 . -144) T) ((-940 . -550) 134916) ((-940 . -658) T) ((-940 . -1013) T) ((-940 . -962) T) ((-940 . -954) T) ((-940 . -585) 134890) ((-940 . -583) 134849) ((-940 . -102) T) ((-940 . -25) T) ((-940 . -72) T) ((-940 . -1114) T) ((-940 . -547) 134831) ((-940 . -1003) T) ((-940 . -23) T) ((-940 . -21) T) ((-940 . -961) 134805) ((-940 . -956) 134779) ((-940 . -80) 134746) ((-940 . -38) 134730) ((-940 . -577) 134714) ((-940 . -649) 134698) ((-933 . -975) 134667) ((-933 . -882) 134636) ((-933 . -548) 134597) ((-933 . -422) 134581) ((-933 . -1003) T) ((-933 . -447) 134514) ((-933 . -256) 134452) ((-933 . -547) 134414) ((-933 . -72) T) ((-933 . -1114) T) ((-933 . -34) T) ((-933 . -122) 134398) ((-933 . -1109) 134367) ((-932 . -1003) T) ((-932 . -547) 134349) ((-932 . -1114) T) ((-932 . -72) T) ((-930 . -918) T) ((-930 . -908) T) ((-930 . -707) T) ((-930 . -709) T) ((-930 . -749) T) ((-930 . -752) T) ((-930 . -711) T) ((-930 . -714) T) ((-930 . -748) T) ((-930 . -943) 134234) ((-930 . -348) 134196) ((-930 . -198) T) ((-930 . -242) T) ((-930 . -254) T) ((-930 . -385) T) ((-930 . -38) 134133) ((-930 . -577) 134070) ((-930 . -649) 134007) ((-930 . -550) 133944) ((-930 . -489) T) ((-930 . -825) T) ((-930 . -1119) T) ((-930 . -308) T) ((-930 . -80) 133853) ((-930 . -956) 133790) ((-930 . -961) 133727) ((-930 . -144) T) ((-930 . -118) T) ((-930 . -585) 133664) ((-930 . -583) 133601) ((-930 . -102) T) ((-930 . -25) T) ((-930 . -72) T) ((-930 . -1114) T) ((-930 . -547) 133583) ((-930 . -1003) T) ((-930 . -23) T) ((-930 . -21) T) ((-930 . -954) T) ((-930 . -962) T) ((-930 . -1013) T) ((-930 . -658) T) ((-925 . -986) T) ((-925 . -423) 133564) ((-925 . -547) 133530) ((-925 . -550) 133511) ((-925 . -1003) T) ((-925 . -1114) T) ((-925 . -72) T) ((-925 . -64) T) ((-910 . -897) 133493) ((-910 . -1052) T) ((-910 . -550) 133443) ((-910 . -943) 133403) ((-910 . -548) 133333) ((-910 . -926) T) ((-910 . -814) NIL) ((-910 . -787) 133315) ((-910 . -748) T) ((-910 . -714) T) ((-910 . -711) T) ((-910 . -752) T) ((-910 . -749) T) ((-910 . -709) T) ((-910 . -707) T) ((-910 . -733) T) ((-910 . -789) 133297) ((-910 . -336) 133279) ((-910 . -575) 133261) ((-910 . -322) 133243) ((-910 . -238) NIL) ((-910 . -256) NIL) ((-910 . -447) NIL) ((-910 . -284) 133225) ((-910 . -198) T) ((-910 . -80) 133152) ((-910 . -956) 133102) ((-910 . -961) 133052) ((-910 . -242) T) ((-910 . -649) 133002) ((-910 . -577) 132952) ((-910 . -585) 132902) ((-910 . -583) 132852) ((-910 . -38) 132802) ((-910 . -254) T) ((-910 . -385) T) ((-910 . -144) T) ((-910 . -489) T) ((-910 . -825) T) ((-910 . -1119) T) ((-910 . -308) T) ((-910 . -188) T) ((-910 . -184) 132789) ((-910 . -187) T) ((-910 . -222) 132771) ((-910 . -799) NIL) ((-910 . -804) NIL) ((-910 . -802) NIL) ((-910 . -182) 132753) ((-910 . -118) T) ((-910 . -116) NIL) ((-910 . -102) T) ((-910 . -25) T) ((-910 . -72) T) ((-910 . -1114) T) ((-910 . -547) 132713) ((-910 . -1003) T) ((-910 . -23) T) ((-910 . -21) T) ((-910 . -954) T) ((-910 . -962) T) ((-910 . -1013) T) ((-910 . -658) T) ((-909 . -287) 132687) ((-909 . -144) T) ((-909 . -550) 132617) ((-909 . -658) T) ((-909 . -1013) T) ((-909 . -962) T) ((-909 . -954) T) ((-909 . -585) 132519) ((-909 . -583) 132449) ((-909 . -102) T) ((-909 . -25) T) ((-909 . -72) T) ((-909 . -1114) T) ((-909 . -547) 132431) ((-909 . -1003) T) ((-909 . -23) T) ((-909 . -21) T) ((-909 . -961) 132376) ((-909 . -956) 132321) ((-909 . -80) 132238) ((-909 . -548) 132222) ((-909 . -182) 132199) ((-909 . -802) 132151) ((-909 . -804) 132063) ((-909 . -799) 131973) ((-909 . -222) 131950) ((-909 . -187) 131890) ((-909 . -184) 131824) ((-909 . -188) 131796) ((-909 . -308) T) ((-909 . -1119) T) ((-909 . -825) T) ((-909 . -489) T) ((-909 . -649) 131741) ((-909 . -577) 131686) ((-909 . -38) 131631) ((-909 . -385) T) ((-909 . -254) T) ((-909 . -242) T) ((-909 . -198) T) ((-909 . -313) NIL) ((-909 . -295) NIL) ((-909 . -1052) NIL) ((-909 . -116) 131603) ((-909 . -338) NIL) ((-909 . -346) 131575) ((-909 . -118) 131547) ((-909 . -315) 131519) ((-909 . -322) 131496) ((-909 . -575) 131430) ((-909 . -348) 131407) ((-909 . -943) 131284) ((-909 . -656) 131256) ((-906 . -901) 131240) ((-906 . -422) 131224) ((-906 . -1003) 131202) ((-906 . -447) 131135) ((-906 . -256) 131073) ((-906 . -547) 131008) ((-906 . -72) 130962) ((-906 . -1114) T) ((-906 . -34) T) ((-906 . -76) 130946) ((-902 . -904) 130930) ((-902 . -752) 130909) ((-902 . -749) 130888) ((-902 . -943) 130786) ((-902 . -348) 130770) ((-902 . -575) 130718) ((-902 . -585) 130620) ((-902 . -322) 130604) ((-902 . -238) 130562) ((-902 . -256) 130527) ((-902 . -447) 130439) ((-902 . -284) 130423) ((-902 . -38) 130371) ((-902 . -80) 130249) ((-902 . -956) 130148) ((-902 . -961) 130047) ((-902 . -583) 129970) ((-902 . -577) 129918) ((-902 . -649) 129866) ((-902 . -550) 129760) ((-902 . -242) 129714) ((-902 . -198) 129693) ((-902 . -188) 129672) ((-902 . -184) 129620) ((-902 . -187) 129574) ((-902 . -222) 129558) ((-902 . -799) 129482) ((-902 . -804) 129408) ((-902 . -802) 129367) ((-902 . -182) 129351) ((-902 . -548) 129312) ((-902 . -118) 129291) ((-902 . -116) 129270) ((-902 . -102) T) ((-902 . -25) T) ((-902 . -72) T) ((-902 . -1114) T) ((-902 . -547) 129252) ((-902 . -1003) T) ((-902 . -23) T) ((-902 . -21) T) ((-902 . -954) T) ((-902 . -962) T) ((-902 . -1013) T) ((-902 . -658) T) ((-900 . -986) T) ((-900 . -423) 129233) ((-900 . -547) 129199) ((-900 . -550) 129180) ((-900 . -1003) T) ((-900 . -1114) T) ((-900 . -72) T) ((-900 . -64) T) ((-899 . -21) T) ((-899 . -583) 129162) ((-899 . -23) T) ((-899 . -1003) T) ((-899 . -547) 129144) ((-899 . -1114) T) ((-899 . -72) T) ((-899 . -25) T) ((-899 . -102) T) ((-899 . -238) 129111) ((-895 . -547) 129093) ((-892 . -1003) T) ((-892 . -547) 129075) ((-892 . -1114) T) ((-892 . -72) T) ((-877 . -714) T) ((-877 . -711) T) ((-877 . -752) T) ((-877 . -749) T) ((-877 . -709) T) ((-877 . -23) T) ((-877 . -1003) T) ((-877 . -547) 129035) ((-877 . -1114) T) ((-877 . -72) T) ((-877 . -25) T) ((-877 . -102) T) ((-876 . -986) T) ((-876 . -423) 129016) ((-876 . -547) 128982) ((-876 . -550) 128963) ((-876 . -1003) T) ((-876 . -1114) T) ((-876 . -72) T) ((-876 . -64) T) ((-870 . -873) T) ((-870 . -72) T) ((-870 . -547) 128945) ((-870 . -1003) T) ((-870 . -599) T) ((-870 . -1114) T) ((-870 . -82) T) ((-870 . -550) 128929) ((-869 . -547) 128911) ((-868 . -1003) T) ((-868 . -547) 128893) ((-868 . -1114) T) ((-868 . -72) T) ((-868 . -313) 128846) ((-868 . -658) 128748) ((-868 . -1013) 128650) ((-868 . -23) 128464) ((-868 . -25) 128278) ((-868 . -102) 128136) ((-868 . -406) 128089) ((-868 . -21) 128044) ((-868 . -583) 127988) ((-868 . -710) 127941) ((-868 . -709) 127894) ((-868 . -749) 127796) ((-868 . -752) 127698) ((-868 . -711) 127651) ((-868 . -714) 127604) ((-862 . -19) 127588) ((-862 . -588) 127572) ((-862 . -240) 127549) ((-862 . -238) 127501) ((-862 . -533) 127478) ((-862 . -548) 127439) ((-862 . -422) 127423) ((-862 . -1003) 127376) ((-862 . -447) 127309) ((-862 . -256) 127247) ((-862 . -547) 127162) ((-862 . -72) 127096) ((-862 . -1114) T) ((-862 . -34) T) ((-862 . -122) 127080) ((-862 . -749) 127059) ((-862 . -752) 127038) ((-862 . -317) 127022) ((-860 . -273) 127001) ((-860 . -943) 126899) ((-860 . -348) 126883) ((-860 . -38) 126780) ((-860 . -550) 126637) ((-860 . -585) 126562) ((-860 . -583) 126472) ((-860 . -658) T) ((-860 . -1013) T) ((-860 . -962) T) ((-860 . -954) T) ((-860 . -80) 126337) ((-860 . -956) 126223) ((-860 . -961) 126109) ((-860 . -21) T) ((-860 . -23) T) ((-860 . -1003) T) ((-860 . -547) 126091) ((-860 . -1114) T) ((-860 . -72) T) ((-860 . -25) T) ((-860 . -102) T) ((-860 . -577) 125988) ((-860 . -649) 125885) ((-860 . -116) 125864) ((-860 . -118) 125843) ((-860 . -144) 125797) ((-860 . -489) 125776) ((-860 . -242) 125755) ((-860 . -47) 125734) ((-858 . -1003) T) ((-858 . -547) 125700) ((-858 . -1114) T) ((-858 . -72) T) ((-850 . -854) 125661) ((-850 . -550) 125457) ((-850 . -943) 125339) ((-850 . -1119) 125318) ((-850 . -814) 125297) ((-850 . -789) 125222) ((-850 . -804) 125203) ((-850 . -799) 125182) ((-850 . -802) 125163) ((-850 . -447) 125109) ((-850 . -385) 125063) ((-850 . -575) 125011) ((-850 . -585) 124900) ((-850 . -322) 124884) ((-850 . -47) 124853) ((-850 . -38) 124705) ((-850 . -577) 124557) ((-850 . -649) 124409) ((-850 . -242) 124343) ((-850 . -489) 124277) ((-850 . -80) 124102) ((-850 . -956) 123948) ((-850 . -961) 123794) ((-850 . -144) 123708) ((-850 . -118) 123687) ((-850 . -116) 123666) ((-850 . -583) 123576) ((-850 . -102) T) ((-850 . -25) T) ((-850 . -72) T) ((-850 . -1114) T) ((-850 . -547) 123558) ((-850 . -1003) T) ((-850 . -23) T) ((-850 . -21) T) ((-850 . -954) T) ((-850 . -962) T) ((-850 . -1013) T) ((-850 . -658) T) ((-850 . -348) 123542) ((-850 . -273) 123511) ((-850 . -256) 123498) ((-850 . -548) 123359) ((-847 . -886) 123343) ((-847 . -19) 123327) ((-847 . -588) 123311) ((-847 . -240) 123288) ((-847 . -238) 123240) ((-847 . -533) 123217) ((-847 . -548) 123178) ((-847 . -422) 123162) ((-847 . -1003) 123115) ((-847 . -447) 123048) ((-847 . -256) 122986) ((-847 . -547) 122901) ((-847 . -72) 122835) ((-847 . -1114) T) ((-847 . -34) T) ((-847 . -122) 122819) ((-847 . -749) 122798) ((-847 . -752) 122777) ((-847 . -317) 122761) ((-847 . -1163) 122745) ((-847 . -552) 122722) ((-831 . -880) T) ((-831 . -547) 122704) ((-829 . -859) T) ((-829 . -547) 122686) ((-823 . -711) T) ((-823 . -752) T) ((-823 . -749) T) ((-823 . -1003) T) ((-823 . -547) 122668) ((-823 . -1114) T) ((-823 . -72) T) ((-823 . -25) T) ((-823 . -658) T) ((-823 . -1013) T) ((-818 . -308) T) ((-818 . -1119) T) ((-818 . -825) T) ((-818 . -489) T) ((-818 . -144) T) ((-818 . -550) 122605) ((-818 . -649) 122557) ((-818 . -577) 122509) ((-818 . -38) 122461) ((-818 . -385) T) ((-818 . -254) T) ((-818 . -585) 122413) ((-818 . -583) 122350) ((-818 . -658) T) ((-818 . -1013) T) ((-818 . -962) T) ((-818 . -954) T) ((-818 . -80) 122281) ((-818 . -956) 122233) ((-818 . -961) 122185) ((-818 . -21) T) ((-818 . -23) T) ((-818 . -1003) T) ((-818 . -547) 122167) ((-818 . -1114) T) ((-818 . -72) T) ((-818 . -25) T) ((-818 . -102) T) ((-818 . -242) T) ((-818 . -198) T) ((-810 . -295) T) ((-810 . -1052) T) ((-810 . -313) T) ((-810 . -116) T) ((-810 . -308) T) ((-810 . -1119) T) ((-810 . -825) T) ((-810 . -489) T) ((-810 . -144) T) ((-810 . -550) 122117) ((-810 . -649) 122082) ((-810 . -577) 122047) ((-810 . -38) 122012) ((-810 . -385) T) ((-810 . -254) T) ((-810 . -80) 121961) ((-810 . -956) 121926) ((-810 . -961) 121891) ((-810 . -583) 121841) ((-810 . -585) 121806) ((-810 . -242) T) ((-810 . -198) T) ((-810 . -338) T) ((-810 . -187) T) ((-810 . -1114) T) ((-810 . -184) 121793) ((-810 . -954) T) ((-810 . -962) T) ((-810 . -1013) T) ((-810 . -658) T) ((-810 . -21) T) ((-810 . -23) T) ((-810 . -1003) T) ((-810 . -547) 121775) ((-810 . -72) T) ((-810 . -25) T) ((-810 . -102) T) ((-810 . -188) T) ((-810 . -276) 121762) ((-810 . -118) 121744) ((-810 . -943) 121731) ((-810 . -1172) 121718) ((-810 . -1183) 121705) ((-810 . -548) 121687) ((-809 . -1003) T) ((-809 . -547) 121669) ((-809 . -1114) T) ((-809 . -72) T) ((-806 . -808) 121653) ((-806 . -752) 121607) ((-806 . -749) 121561) ((-806 . -658) T) ((-806 . -1003) T) ((-806 . -547) 121543) ((-806 . -72) T) ((-806 . -1013) T) ((-806 . -406) T) ((-806 . -1114) T) ((-806 . -238) 121522) ((-805 . -90) 121506) ((-805 . -422) 121490) ((-805 . -1003) 121468) ((-805 . -447) 121401) ((-805 . -256) 121339) ((-805 . -547) 121253) ((-805 . -72) 121207) ((-805 . -1114) T) ((-805 . -34) T) ((-805 . -916) 121191) ((-796 . -749) T) ((-796 . -547) 121173) ((-796 . -1003) T) ((-796 . -72) T) ((-796 . -1114) T) ((-796 . -752) T) ((-796 . -943) 121150) ((-796 . -550) 121127) ((-793 . -1003) T) ((-793 . -547) 121109) ((-793 . -1114) T) ((-793 . -72) T) ((-793 . -943) 121077) ((-793 . -550) 121045) ((-791 . -1003) T) ((-791 . -547) 121027) ((-791 . -1114) T) ((-791 . -72) T) ((-788 . -1003) T) ((-788 . -547) 121009) ((-788 . -1114) T) ((-788 . -72) T) ((-778 . -986) T) ((-778 . -423) 120990) ((-778 . -547) 120956) ((-778 . -550) 120937) ((-778 . -1003) T) ((-778 . -1114) T) ((-778 . -72) T) ((-778 . -64) T) ((-778 . -1160) T) ((-776 . -1003) T) ((-776 . -547) 120919) ((-776 . -1114) T) ((-776 . -72) T) ((-776 . -550) 120901) ((-775 . -1114) T) ((-775 . -547) 120776) ((-775 . -1003) 120727) ((-775 . -72) 120678) ((-774 . -897) 120662) ((-774 . -1052) 120640) ((-774 . -943) 120507) ((-774 . -550) 120406) ((-774 . -548) 120209) ((-774 . -926) 120188) ((-774 . -814) 120167) ((-774 . -787) 120151) ((-774 . -748) 120130) ((-774 . -714) 120109) ((-774 . -711) 120088) ((-774 . -752) 120042) ((-774 . -749) 119996) ((-774 . -709) 119975) ((-774 . -707) 119954) ((-774 . -733) 119933) ((-774 . -789) 119858) ((-774 . -336) 119842) ((-774 . -575) 119790) ((-774 . -585) 119706) ((-774 . -322) 119690) ((-774 . -238) 119648) ((-774 . -256) 119613) ((-774 . -447) 119525) ((-774 . -284) 119509) ((-774 . -198) T) ((-774 . -80) 119440) ((-774 . -956) 119392) ((-774 . -961) 119344) ((-774 . -242) T) ((-774 . -649) 119296) ((-774 . -577) 119248) ((-774 . -583) 119185) ((-774 . -38) 119137) ((-774 . -254) T) ((-774 . -385) T) ((-774 . -144) T) ((-774 . -489) T) ((-774 . -825) T) ((-774 . -1119) T) ((-774 . -308) T) ((-774 . -188) 119116) ((-774 . -184) 119064) ((-774 . -187) 119018) ((-774 . -222) 119002) ((-774 . -799) 118926) ((-774 . -804) 118852) ((-774 . -802) 118811) ((-774 . -182) 118795) ((-774 . -118) 118774) ((-774 . -116) 118753) ((-774 . -102) T) ((-774 . -25) T) ((-774 . -72) T) ((-774 . -1114) T) ((-774 . -547) 118735) ((-774 . -1003) T) ((-774 . -23) T) ((-774 . -21) T) ((-774 . -954) T) ((-774 . -962) T) ((-774 . -1013) T) ((-774 . -658) T) ((-773 . -897) 118712) ((-773 . -1052) NIL) ((-773 . -943) 118689) ((-773 . -550) 118619) ((-773 . -548) NIL) ((-773 . -926) NIL) ((-773 . -814) NIL) ((-773 . -787) 118596) ((-773 . -748) NIL) ((-773 . -714) NIL) ((-773 . -711) NIL) ((-773 . -752) NIL) ((-773 . -749) NIL) ((-773 . -709) NIL) ((-773 . -707) NIL) ((-773 . -733) NIL) ((-773 . -789) NIL) ((-773 . -336) 118573) ((-773 . -575) 118550) ((-773 . -585) 118495) ((-773 . -322) 118472) ((-773 . -238) 118402) ((-773 . -256) 118346) ((-773 . -447) 118209) ((-773 . -284) 118186) ((-773 . -198) T) ((-773 . -80) 118103) ((-773 . -956) 118048) ((-773 . -961) 117993) ((-773 . -242) T) ((-773 . -649) 117938) ((-773 . -577) 117883) ((-773 . -583) 117813) ((-773 . -38) 117758) ((-773 . -254) T) ((-773 . -385) T) ((-773 . -144) T) ((-773 . -489) T) ((-773 . -825) T) ((-773 . -1119) T) ((-773 . -308) T) ((-773 . -188) NIL) ((-773 . -184) NIL) ((-773 . -187) NIL) ((-773 . -222) 117735) ((-773 . -799) NIL) ((-773 . -804) NIL) ((-773 . -802) NIL) ((-773 . -182) 117712) ((-773 . -118) T) ((-773 . -116) NIL) ((-773 . -102) T) ((-773 . -25) T) ((-773 . -72) T) ((-773 . -1114) T) ((-773 . -547) 117694) ((-773 . -1003) T) ((-773 . -23) T) ((-773 . -21) T) ((-773 . -954) T) ((-773 . -962) T) ((-773 . -1013) T) ((-773 . -658) T) ((-771 . -772) 117678) ((-771 . -825) T) ((-771 . -489) T) ((-771 . -242) T) ((-771 . -144) T) ((-771 . -550) 117650) ((-771 . -649) 117637) ((-771 . -577) 117624) ((-771 . -961) 117611) ((-771 . -956) 117598) ((-771 . -80) 117583) ((-771 . -38) 117570) ((-771 . -385) T) ((-771 . -254) T) ((-771 . -954) T) ((-771 . -962) T) ((-771 . -1013) T) ((-771 . -658) T) ((-771 . -21) T) ((-771 . -583) 117542) ((-771 . -23) T) ((-771 . -1003) T) ((-771 . -547) 117524) ((-771 . -1114) T) ((-771 . -72) T) ((-771 . -25) T) ((-771 . -102) T) ((-771 . -585) 117511) ((-771 . -118) T) ((-768 . -954) T) ((-768 . -962) T) ((-768 . -1013) T) ((-768 . -658) T) ((-768 . -21) T) ((-768 . -583) 117456) ((-768 . -23) T) ((-768 . -1003) T) ((-768 . -547) 117418) ((-768 . -1114) T) ((-768 . -72) T) ((-768 . -25) T) ((-768 . -102) T) ((-768 . -585) 117378) ((-768 . -550) 117313) ((-768 . -423) 117290) ((-768 . -38) 117260) ((-768 . -80) 117225) ((-768 . -956) 117195) ((-768 . -961) 117165) ((-768 . -577) 117135) ((-768 . -649) 117105) ((-767 . -1003) T) ((-767 . -547) 117087) ((-767 . -1114) T) ((-767 . -72) T) ((-766 . -745) T) ((-766 . -752) T) ((-766 . -749) T) ((-766 . -1003) T) ((-766 . -547) 117069) ((-766 . -1114) T) ((-766 . -72) T) ((-766 . -313) T) ((-766 . -548) 116991) ((-765 . -1003) T) ((-765 . -547) 116973) ((-765 . -1114) T) ((-765 . -72) T) ((-764 . -763) T) ((-764 . -145) T) ((-764 . -547) 116955) ((-760 . -749) T) ((-760 . -547) 116937) ((-760 . -1003) T) ((-760 . -72) T) ((-760 . -1114) T) ((-760 . -752) T) ((-757 . -754) 116921) ((-757 . -943) 116819) ((-757 . -550) 116717) ((-757 . -348) 116701) ((-757 . -649) 116671) ((-757 . -577) 116641) ((-757 . -585) 116615) ((-757 . -583) 116574) ((-757 . -102) T) ((-757 . -25) T) ((-757 . -72) T) ((-757 . -1114) T) ((-757 . -547) 116556) ((-757 . -1003) T) ((-757 . -23) T) ((-757 . -21) T) ((-757 . -961) 116540) ((-757 . -956) 116524) ((-757 . -80) 116503) ((-757 . -954) T) ((-757 . -962) T) ((-757 . -1013) T) ((-757 . -658) T) ((-757 . -38) 116473) ((-756 . -754) 116457) ((-756 . -943) 116355) ((-756 . -550) 116274) ((-756 . -348) 116258) ((-756 . -649) 116228) ((-756 . -577) 116198) ((-756 . -585) 116172) ((-756 . -583) 116131) ((-756 . -102) T) ((-756 . -25) T) ((-756 . -72) T) ((-756 . -1114) T) ((-756 . -547) 116113) ((-756 . -1003) T) ((-756 . -23) T) ((-756 . -21) T) ((-756 . -961) 116097) ((-756 . -956) 116081) ((-756 . -80) 116060) ((-756 . -954) T) ((-756 . -962) T) ((-756 . -1013) T) ((-756 . -658) T) ((-756 . -38) 116030) ((-750 . -752) T) ((-750 . -1114) T) ((-750 . -72) T) ((-750 . -423) 116014) ((-750 . -547) 115962) ((-750 . -550) 115946) ((-743 . -1003) T) ((-743 . -547) 115928) ((-743 . -1114) T) ((-743 . -72) T) ((-743 . -348) 115912) ((-743 . -550) 115785) ((-743 . -943) 115683) ((-743 . -21) 115638) ((-743 . -583) 115558) ((-743 . -23) 115513) ((-743 . -25) 115468) ((-743 . -102) 115423) ((-743 . -748) 115402) ((-743 . -585) 115375) ((-743 . -962) 115354) ((-743 . -954) 115333) ((-743 . -714) 115312) ((-743 . -711) 115291) ((-743 . -752) 115270) ((-743 . -749) 115249) ((-743 . -709) 115228) ((-743 . -707) 115207) ((-743 . -1013) 115186) ((-743 . -658) 115165) ((-742 . -740) 115147) ((-742 . -72) T) ((-742 . -1114) T) ((-742 . -547) 115129) ((-742 . -1003) T) ((-738 . -954) T) ((-738 . -962) T) ((-738 . -1013) T) ((-738 . -658) T) ((-738 . -21) T) ((-738 . -583) 115074) ((-738 . -23) T) ((-738 . -1003) T) ((-738 . -547) 115056) ((-738 . -1114) T) ((-738 . -72) T) ((-738 . -25) T) ((-738 . -102) T) ((-738 . -585) 115016) ((-738 . -550) 114971) ((-738 . -943) 114941) ((-738 . -238) 114920) ((-738 . -118) 114899) ((-738 . -116) 114878) ((-738 . -38) 114848) ((-738 . -80) 114813) ((-738 . -956) 114783) ((-738 . -961) 114753) ((-738 . -577) 114723) ((-738 . -649) 114693) ((-736 . -1003) T) ((-736 . -547) 114675) ((-736 . -1114) T) ((-736 . -72) T) ((-736 . -348) 114659) ((-736 . -550) 114532) ((-736 . -943) 114430) ((-736 . -21) 114385) ((-736 . -583) 114305) ((-736 . -23) 114260) ((-736 . -25) 114215) ((-736 . -102) 114170) ((-736 . -748) 114149) ((-736 . -585) 114122) ((-736 . -962) 114101) ((-736 . -954) 114080) ((-736 . -714) 114059) ((-736 . -711) 114038) ((-736 . -752) 114017) ((-736 . -749) 113996) ((-736 . -709) 113975) ((-736 . -707) 113954) ((-736 . -1013) 113933) ((-736 . -658) 113912) ((-734 . -640) 113896) ((-734 . -550) 113851) ((-734 . -649) 113821) ((-734 . -577) 113791) ((-734 . -585) 113765) ((-734 . -583) 113724) ((-734 . -102) T) ((-734 . -25) T) ((-734 . -72) T) ((-734 . -1114) T) ((-734 . -547) 113706) ((-734 . -1003) T) ((-734 . -23) T) ((-734 . -21) T) ((-734 . -961) 113690) ((-734 . -956) 113674) ((-734 . -80) 113653) ((-734 . -954) T) ((-734 . -962) T) ((-734 . -1013) T) ((-734 . -658) T) ((-734 . -38) 113623) ((-734 . -188) 113602) ((-734 . -184) 113575) ((-734 . -187) 113554) ((-732 . -329) 113538) ((-732 . -550) 113522) ((-732 . -943) 113506) ((-732 . -752) T) ((-732 . -749) T) ((-732 . -1013) T) ((-732 . -72) T) ((-732 . -1114) T) ((-732 . -547) 113488) ((-732 . -1003) T) ((-732 . -658) T) ((-732 . -747) T) ((-732 . -759) T) ((-731 . -225) 113472) ((-731 . -550) 113456) ((-731 . -943) 113440) ((-731 . -752) T) ((-731 . -72) T) ((-731 . -1003) T) ((-731 . -547) 113422) ((-731 . -749) T) ((-731 . -184) 113409) ((-731 . -1114) T) ((-731 . -187) T) ((-730 . -80) 113344) ((-730 . -956) 113295) ((-730 . -961) 113246) ((-730 . -21) T) ((-730 . -583) 113182) ((-730 . -23) T) ((-730 . -1003) T) ((-730 . -547) 113151) ((-730 . -1114) T) ((-730 . -72) T) ((-730 . -25) T) ((-730 . -102) T) ((-730 . -585) 113102) ((-730 . -188) T) ((-730 . -550) 113011) ((-730 . -658) T) ((-730 . -1013) T) ((-730 . -962) T) ((-730 . -954) T) ((-730 . -184) 112998) ((-730 . -187) T) ((-730 . -423) 112982) ((-730 . -308) 112961) ((-730 . -1119) 112940) ((-730 . -825) 112919) ((-730 . -489) 112898) ((-730 . -144) 112877) ((-730 . -649) 112814) ((-730 . -577) 112751) ((-730 . -38) 112688) ((-730 . -385) 112667) ((-730 . -254) 112646) ((-730 . -242) 112625) ((-730 . -198) 112604) ((-729 . -210) 112543) ((-729 . -550) 112287) ((-729 . -943) 112117) ((-729 . -548) NIL) ((-729 . -273) 112079) ((-729 . -348) 112063) ((-729 . -38) 111915) ((-729 . -80) 111740) ((-729 . -956) 111586) ((-729 . -961) 111432) ((-729 . -583) 111342) ((-729 . -585) 111231) ((-729 . -577) 111083) ((-729 . -649) 110935) ((-729 . -116) 110914) ((-729 . -118) 110893) ((-729 . -144) 110807) ((-729 . -489) 110741) ((-729 . -242) 110675) ((-729 . -47) 110637) ((-729 . -322) 110621) ((-729 . -575) 110569) ((-729 . -385) 110523) ((-729 . -447) 110388) ((-729 . -802) 110324) ((-729 . -799) 110223) ((-729 . -804) 110126) ((-729 . -789) NIL) ((-729 . -814) 110105) ((-729 . -1119) 110084) ((-729 . -854) 110031) ((-729 . -256) 110018) ((-729 . -188) 109997) ((-729 . -102) T) ((-729 . -25) T) ((-729 . -72) T) ((-729 . -547) 109979) ((-729 . -1003) T) ((-729 . -23) T) ((-729 . -21) T) ((-729 . -658) T) ((-729 . -1013) T) ((-729 . -962) T) ((-729 . -954) T) ((-729 . -184) 109927) ((-729 . -1114) T) ((-729 . -187) 109881) ((-729 . -222) 109865) ((-729 . -182) 109849) ((-728 . -193) 109828) ((-728 . -1172) 109798) ((-728 . -714) 109777) ((-728 . -711) 109756) ((-728 . -752) 109710) ((-728 . -749) 109664) ((-728 . -709) 109643) ((-728 . -710) 109622) ((-728 . -649) 109567) ((-728 . -577) 109492) ((-728 . -240) 109469) ((-728 . -238) 109446) ((-728 . -422) 109430) ((-728 . -447) 109363) ((-728 . -256) 109301) ((-728 . -34) T) ((-728 . -533) 109278) ((-728 . -943) 109107) ((-728 . -550) 108911) ((-728 . -348) 108880) ((-728 . -575) 108788) ((-728 . -585) 108627) ((-728 . -322) 108597) ((-728 . -313) 108576) ((-728 . -188) 108529) ((-728 . -583) 108317) ((-728 . -658) 108296) ((-728 . -1013) 108275) ((-728 . -962) 108254) ((-728 . -954) 108233) ((-728 . -184) 108129) ((-728 . -187) 108031) ((-728 . -222) 108001) ((-728 . -799) 107873) ((-728 . -804) 107747) ((-728 . -802) 107680) ((-728 . -182) 107650) ((-728 . -547) 107347) ((-728 . -961) 107272) ((-728 . -956) 107177) ((-728 . -80) 107097) ((-728 . -102) 106972) ((-728 . -25) 106809) ((-728 . -72) 106546) ((-728 . -1114) T) ((-728 . -1003) 106302) ((-728 . -23) 106158) ((-728 . -21) 106073) ((-715 . -713) 106057) ((-715 . -752) 106036) ((-715 . -749) 106015) ((-715 . -943) 105808) ((-715 . -550) 105661) ((-715 . -348) 105625) ((-715 . -238) 105583) ((-715 . -256) 105548) ((-715 . -447) 105460) ((-715 . -284) 105444) ((-715 . -313) 105423) ((-715 . -548) 105384) ((-715 . -118) 105363) ((-715 . -116) 105342) ((-715 . -649) 105326) ((-715 . -577) 105310) ((-715 . -585) 105284) ((-715 . -583) 105243) ((-715 . -102) T) ((-715 . -25) T) ((-715 . -72) T) ((-715 . -1114) T) ((-715 . -547) 105225) ((-715 . -1003) T) ((-715 . -23) T) ((-715 . -21) T) ((-715 . -961) 105209) ((-715 . -956) 105193) ((-715 . -80) 105172) ((-715 . -954) T) ((-715 . -962) T) ((-715 . -1013) T) ((-715 . -658) T) ((-715 . -38) 105156) ((-697 . -1140) 105140) ((-697 . -1052) 105118) ((-697 . -548) NIL) ((-697 . -256) 105105) ((-697 . -447) 105053) ((-697 . -273) 105030) ((-697 . -943) 104892) ((-697 . -348) 104876) ((-697 . -38) 104708) ((-697 . -80) 104513) ((-697 . -956) 104339) ((-697 . -961) 104165) ((-697 . -583) 104075) ((-697 . -585) 103964) ((-697 . -577) 103796) ((-697 . -649) 103628) ((-697 . -550) 103384) ((-697 . -116) 103363) ((-697 . -118) 103342) ((-697 . -47) 103319) ((-697 . -322) 103303) ((-697 . -575) 103251) ((-697 . -802) 103195) ((-697 . -799) 103102) ((-697 . -804) 103013) ((-697 . -789) NIL) ((-697 . -814) 102992) ((-697 . -1119) 102971) ((-697 . -854) 102941) ((-697 . -825) 102920) ((-697 . -489) 102834) ((-697 . -242) 102748) ((-697 . -144) 102642) ((-697 . -385) 102576) ((-697 . -254) 102555) ((-697 . -238) 102482) ((-697 . -188) T) ((-697 . -102) T) ((-697 . -25) T) ((-697 . -72) T) ((-697 . -547) 102443) ((-697 . -1003) T) ((-697 . -23) T) ((-697 . -21) T) ((-697 . -658) T) ((-697 . -1013) T) ((-697 . -962) T) ((-697 . -954) T) ((-697 . -184) 102430) ((-697 . -1114) T) ((-697 . -187) T) ((-697 . -222) 102414) ((-697 . -182) 102398) ((-696 . -969) 102365) ((-696 . -548) 102000) ((-696 . -256) 101987) ((-696 . -447) 101939) ((-696 . -273) 101911) ((-696 . -943) 101770) ((-696 . -348) 101754) ((-696 . -38) 101606) ((-696 . -550) 101379) ((-696 . -585) 101268) ((-696 . -583) 101178) ((-696 . -658) T) ((-696 . -1013) T) ((-696 . -962) T) ((-696 . -954) T) ((-696 . -80) 101003) ((-696 . -956) 100849) ((-696 . -961) 100695) ((-696 . -21) T) ((-696 . -23) T) ((-696 . -1003) T) ((-696 . -547) 100609) ((-696 . -1114) T) ((-696 . -72) T) ((-696 . -25) T) ((-696 . -102) T) ((-696 . -577) 100461) ((-696 . -649) 100313) ((-696 . -116) 100292) ((-696 . -118) 100271) ((-696 . -144) 100185) ((-696 . -489) 100119) ((-696 . -242) 100053) ((-696 . -47) 100025) ((-696 . -322) 100009) ((-696 . -575) 99957) ((-696 . -385) 99911) ((-696 . -802) 99895) ((-696 . -799) 99877) ((-696 . -804) 99861) ((-696 . -789) 99720) ((-696 . -814) 99699) ((-696 . -1119) 99678) ((-696 . -854) 99645) ((-689 . -1003) T) ((-689 . -547) 99627) ((-689 . -1114) T) ((-689 . -72) T) ((-687 . -710) T) ((-687 . -102) T) ((-687 . -25) T) ((-687 . -72) T) ((-687 . -1114) T) ((-687 . -547) 99609) ((-687 . -1003) T) ((-687 . -23) T) ((-687 . -709) T) ((-687 . -749) T) ((-687 . -752) T) ((-687 . -711) T) ((-687 . -714) T) ((-687 . -658) T) ((-687 . -1013) T) ((-668 . -669) 99593) ((-668 . -1001) 99577) ((-668 . -190) 99561) ((-668 . -548) 99522) ((-668 . -122) 99506) ((-668 . -422) 99490) ((-668 . -1003) T) ((-668 . -447) 99423) ((-668 . -256) 99361) ((-668 . -547) 99343) ((-668 . -72) T) ((-668 . -1114) T) ((-668 . -34) T) ((-668 . -76) 99327) ((-668 . -629) 99311) ((-667 . -954) T) ((-667 . -962) T) ((-667 . -1013) T) ((-667 . -658) T) ((-667 . -21) T) ((-667 . -583) 99256) ((-667 . -23) T) ((-667 . -1003) T) ((-667 . -547) 99238) ((-667 . -1114) T) ((-667 . -72) T) ((-667 . -25) T) ((-667 . -102) T) ((-667 . -585) 99198) ((-667 . -550) 99154) ((-667 . -943) 99125) ((-667 . -118) 99104) ((-667 . -116) 99083) ((-667 . -38) 99053) ((-667 . -80) 99018) ((-667 . -956) 98988) ((-667 . -961) 98958) ((-667 . -577) 98928) ((-667 . -649) 98898) ((-667 . -313) 98851) ((-663 . -854) 98804) ((-663 . -550) 98596) ((-663 . -943) 98474) ((-663 . -1119) 98453) ((-663 . -814) 98432) ((-663 . -789) NIL) ((-663 . -804) 98409) ((-663 . -799) 98384) ((-663 . -802) 98361) ((-663 . -447) 98299) ((-663 . -385) 98253) ((-663 . -575) 98201) ((-663 . -585) 98090) ((-663 . -322) 98074) ((-663 . -47) 98039) ((-663 . -38) 97891) ((-663 . -577) 97743) ((-663 . -649) 97595) ((-663 . -242) 97529) ((-663 . -489) 97463) ((-663 . -80) 97288) ((-663 . -956) 97134) ((-663 . -961) 96980) ((-663 . -144) 96894) ((-663 . -118) 96873) ((-663 . -116) 96852) ((-663 . -583) 96762) ((-663 . -102) T) ((-663 . -25) T) ((-663 . -72) T) ((-663 . -1114) T) ((-663 . -547) 96744) ((-663 . -1003) T) ((-663 . -23) T) ((-663 . -21) T) ((-663 . -954) T) ((-663 . -962) T) ((-663 . -1013) T) ((-663 . -658) T) ((-663 . -348) 96728) ((-663 . -273) 96693) ((-663 . -256) 96680) ((-663 . -548) 96541) ((-650 . -406) T) ((-650 . -1013) T) ((-650 . -72) T) ((-650 . -1114) T) ((-650 . -547) 96523) ((-650 . -1003) T) ((-650 . -658) T) ((-647 . -954) T) ((-647 . -962) T) ((-647 . -1013) T) ((-647 . -658) T) ((-647 . -21) T) ((-647 . -583) 96495) ((-647 . -23) T) ((-647 . -1003) T) ((-647 . -547) 96477) ((-647 . -1114) T) ((-647 . -72) T) ((-647 . -25) T) ((-647 . -102) T) ((-647 . -585) 96464) ((-647 . -550) 96446) ((-646 . -954) T) ((-646 . -962) T) ((-646 . -1013) T) ((-646 . -658) T) ((-646 . -21) T) ((-646 . -583) 96391) ((-646 . -23) T) ((-646 . -1003) T) ((-646 . -547) 96373) ((-646 . -1114) T) ((-646 . -72) T) ((-646 . -25) T) ((-646 . -102) T) ((-646 . -585) 96333) ((-646 . -550) 96288) ((-646 . -943) 96258) ((-646 . -238) 96237) ((-646 . -118) 96216) ((-646 . -116) 96195) ((-646 . -38) 96165) ((-646 . -80) 96130) ((-646 . -956) 96100) ((-646 . -961) 96070) ((-646 . -577) 96040) ((-646 . -649) 96010) ((-645 . -749) T) ((-645 . -547) 95945) ((-645 . -1003) T) ((-645 . -72) T) ((-645 . -1114) T) ((-645 . -752) T) ((-645 . -423) 95895) ((-645 . -550) 95845) ((-644 . -1140) 95829) ((-644 . -1052) 95807) ((-644 . -548) NIL) ((-644 . -256) 95794) ((-644 . -447) 95742) ((-644 . -273) 95719) ((-644 . -943) 95602) ((-644 . -348) 95586) ((-644 . -38) 95418) ((-644 . -80) 95223) ((-644 . -956) 95049) ((-644 . -961) 94875) ((-644 . -583) 94785) ((-644 . -585) 94674) ((-644 . -577) 94506) ((-644 . -649) 94338) ((-644 . -550) 94102) ((-644 . -116) 94081) ((-644 . -118) 94060) ((-644 . -47) 94037) ((-644 . -322) 94021) ((-644 . -575) 93969) ((-644 . -802) 93913) ((-644 . -799) 93820) ((-644 . -804) 93731) ((-644 . -789) NIL) ((-644 . -814) 93710) ((-644 . -1119) 93689) ((-644 . -854) 93659) ((-644 . -825) 93638) ((-644 . -489) 93552) ((-644 . -242) 93466) ((-644 . -144) 93360) ((-644 . -385) 93294) ((-644 . -254) 93273) ((-644 . -238) 93200) ((-644 . -188) T) ((-644 . -102) T) ((-644 . -25) T) ((-644 . -72) T) ((-644 . -547) 93182) ((-644 . -1003) T) ((-644 . -23) T) ((-644 . -21) T) ((-644 . -658) T) ((-644 . -1013) T) ((-644 . -962) T) ((-644 . -954) T) ((-644 . -184) 93169) ((-644 . -1114) T) ((-644 . -187) T) ((-644 . -222) 93153) ((-644 . -182) 93137) ((-644 . -313) 93116) ((-643 . -308) T) ((-643 . -1119) T) ((-643 . -825) T) ((-643 . -489) T) ((-643 . -144) T) ((-643 . -550) 93066) ((-643 . -649) 93031) ((-643 . -577) 92996) ((-643 . -38) 92961) ((-643 . -385) T) ((-643 . -254) T) ((-643 . -585) 92926) ((-643 . -583) 92876) ((-643 . -658) T) ((-643 . -1013) T) ((-643 . -962) T) ((-643 . -954) T) ((-643 . -80) 92825) ((-643 . -956) 92790) ((-643 . -961) 92755) ((-643 . -21) T) ((-643 . -23) T) ((-643 . -1003) T) ((-643 . -547) 92737) ((-643 . -1114) T) ((-643 . -72) T) ((-643 . -25) T) ((-643 . -102) T) ((-643 . -242) T) ((-643 . -198) T) ((-642 . -1003) T) ((-642 . -547) 92719) ((-642 . -1114) T) ((-642 . -72) T) ((-627 . -1160) T) ((-627 . -943) 92703) ((-627 . -550) 92687) ((-627 . -547) 92669) ((-625 . -622) 92627) ((-625 . -422) 92611) ((-625 . -1003) 92589) ((-625 . -447) 92522) ((-625 . -256) 92460) ((-625 . -547) 92395) ((-625 . -72) 92349) ((-625 . -1114) T) ((-625 . -34) T) ((-625 . -57) 92307) ((-625 . -548) 92268) ((-617 . -986) T) ((-617 . -423) 92249) ((-617 . -547) 92199) ((-617 . -550) 92180) ((-617 . -1003) T) ((-617 . -1114) T) ((-617 . -72) T) ((-617 . -64) T) ((-613 . -749) T) ((-613 . -547) 92162) ((-613 . -1003) T) ((-613 . -72) T) ((-613 . -1114) T) ((-613 . -752) T) ((-613 . -943) 92146) ((-613 . -550) 92130) ((-612 . -986) T) ((-612 . -423) 92111) ((-612 . -547) 92077) ((-612 . -550) 92058) ((-612 . -1003) T) ((-612 . -1114) T) ((-612 . -72) T) ((-612 . -64) T) ((-609 . -749) T) ((-609 . -547) 92040) ((-609 . -1003) T) ((-609 . -72) T) ((-609 . -1114) T) ((-609 . -752) T) ((-609 . -943) 92024) ((-609 . -550) 92008) ((-608 . -986) T) ((-608 . -423) 91989) ((-608 . -547) 91955) ((-608 . -550) 91936) ((-608 . -1003) T) ((-608 . -1114) T) ((-608 . -72) T) ((-608 . -64) T) ((-607 . -1023) 91881) ((-607 . -422) 91865) ((-607 . -447) 91798) ((-607 . -256) 91736) ((-607 . -34) T) ((-607 . -958) 91676) ((-607 . -943) 91574) ((-607 . -550) 91493) ((-607 . -348) 91477) ((-607 . -575) 91425) ((-607 . -585) 91363) ((-607 . -322) 91347) ((-607 . -188) 91326) ((-607 . -184) 91274) ((-607 . -187) 91228) ((-607 . -222) 91212) ((-607 . -799) 91136) ((-607 . -804) 91062) ((-607 . -802) 91021) ((-607 . -182) 91005) ((-607 . -649) 90989) ((-607 . -577) 90973) ((-607 . -583) 90932) ((-607 . -102) T) ((-607 . -25) T) ((-607 . -72) T) ((-607 . -1114) T) ((-607 . -547) 90894) ((-607 . -1003) T) ((-607 . -23) T) ((-607 . -21) T) ((-607 . -961) 90878) ((-607 . -956) 90862) ((-607 . -80) 90841) ((-607 . -954) T) ((-607 . -962) T) ((-607 . -1013) T) ((-607 . -658) T) ((-607 . -38) 90801) ((-607 . -354) 90785) ((-607 . -676) 90769) ((-607 . -652) T) ((-607 . -678) T) ((-607 . -312) 90753) ((-607 . -238) 90730) ((-601 . -319) 90709) ((-601 . -649) 90693) ((-601 . -577) 90677) ((-601 . -585) 90661) ((-601 . -583) 90630) ((-601 . -102) T) ((-601 . -25) T) ((-601 . -72) T) ((-601 . -1114) T) ((-601 . -547) 90612) ((-601 . -1003) T) ((-601 . -23) T) ((-601 . -21) T) ((-601 . -961) 90596) ((-601 . -956) 90580) ((-601 . -80) 90559) ((-601 . -569) 90543) ((-601 . -328) 90515) ((-601 . -550) 90492) ((-601 . -943) 90469) ((-593 . -595) 90453) ((-593 . -38) 90423) ((-593 . -550) 90342) ((-593 . -585) 90316) ((-593 . -583) 90275) ((-593 . -658) T) ((-593 . -1013) T) ((-593 . -962) T) ((-593 . -954) T) ((-593 . -80) 90254) ((-593 . -956) 90238) ((-593 . -961) 90222) ((-593 . -21) T) ((-593 . -23) T) ((-593 . -1003) T) ((-593 . -547) 90204) ((-593 . -72) T) ((-593 . -25) T) ((-593 . -102) T) ((-593 . -577) 90174) ((-593 . -649) 90144) ((-593 . -348) 90128) ((-593 . -943) 90026) ((-593 . -754) 90010) ((-593 . -1114) T) ((-593 . -238) 89971) ((-592 . -595) 89955) ((-592 . -38) 89925) ((-592 . -550) 89844) ((-592 . -585) 89818) ((-592 . -583) 89777) ((-592 . -658) T) ((-592 . -1013) T) ((-592 . -962) T) ((-592 . -954) T) ((-592 . -80) 89756) ((-592 . -956) 89740) ((-592 . -961) 89724) ((-592 . -21) T) ((-592 . -23) T) ((-592 . -1003) T) ((-592 . -547) 89706) ((-592 . -72) T) ((-592 . -25) T) ((-592 . -102) T) ((-592 . -577) 89676) ((-592 . -649) 89646) ((-592 . -348) 89630) ((-592 . -943) 89528) ((-592 . -754) 89512) ((-592 . -1114) T) ((-592 . -238) 89491) ((-591 . -595) 89475) ((-591 . -38) 89445) ((-591 . -550) 89364) ((-591 . -585) 89338) ((-591 . -583) 89297) ((-591 . -658) T) ((-591 . -1013) T) ((-591 . -962) T) ((-591 . -954) T) ((-591 . -80) 89276) ((-591 . -956) 89260) ((-591 . -961) 89244) ((-591 . -21) T) ((-591 . -23) T) ((-591 . -1003) T) ((-591 . -547) 89226) ((-591 . -72) T) ((-591 . -25) T) ((-591 . -102) T) ((-591 . -577) 89196) ((-591 . -649) 89166) ((-591 . -348) 89150) ((-591 . -943) 89048) ((-591 . -754) 89032) ((-591 . -1114) T) ((-591 . -238) 89011) ((-589 . -649) 88995) ((-589 . -577) 88979) ((-589 . -585) 88963) ((-589 . -583) 88932) ((-589 . -102) T) ((-589 . -25) T) ((-589 . -72) T) ((-589 . -1114) T) ((-589 . -547) 88914) ((-589 . -1003) T) ((-589 . -23) T) ((-589 . -21) T) ((-589 . -961) 88898) ((-589 . -956) 88882) ((-589 . -80) 88861) ((-589 . -707) 88840) ((-589 . -709) 88819) ((-589 . -749) 88798) ((-589 . -752) 88777) ((-589 . -711) 88756) ((-589 . -714) 88735) ((-586 . -1003) T) ((-586 . -547) 88717) ((-586 . -1114) T) ((-586 . -72) T) ((-586 . -943) 88701) ((-586 . -550) 88685) ((-584 . -629) 88669) ((-584 . -76) 88653) ((-584 . -34) T) ((-584 . -1114) T) ((-584 . -72) 88607) ((-584 . -547) 88542) ((-584 . -256) 88480) ((-584 . -447) 88413) ((-584 . -1003) 88391) ((-584 . -422) 88375) ((-584 . -122) 88359) ((-584 . -548) 88320) ((-584 . -190) 88304) ((-582 . -986) T) ((-582 . -423) 88285) ((-582 . -547) 88238) ((-582 . -550) 88219) ((-582 . -1003) T) ((-582 . -1114) T) ((-582 . -72) T) ((-582 . -64) T) ((-578 . -603) 88203) ((-578 . -1153) 88187) ((-578 . -916) 88171) ((-578 . -1050) 88155) ((-578 . -749) 88134) ((-578 . -752) 88113) ((-578 . -317) 88097) ((-578 . -588) 88081) ((-578 . -240) 88058) ((-578 . -238) 88010) ((-578 . -533) 87987) ((-578 . -548) 87948) ((-578 . -422) 87932) ((-578 . -1003) 87885) ((-578 . -447) 87818) ((-578 . -256) 87756) ((-578 . -547) 87671) ((-578 . -72) 87605) ((-578 . -1114) T) ((-578 . -34) T) ((-578 . -122) 87589) ((-578 . -234) 87573) ((-576 . -1172) 87557) ((-576 . -80) 87536) ((-576 . -956) 87520) ((-576 . -961) 87504) ((-576 . -21) T) ((-576 . -583) 87473) ((-576 . -23) T) ((-576 . -1003) T) ((-576 . -547) 87455) ((-576 . -1114) T) ((-576 . -72) T) ((-576 . -25) T) ((-576 . -102) T) ((-576 . -585) 87439) ((-576 . -577) 87423) ((-576 . -649) 87407) ((-576 . -238) 87374) ((-574 . -1172) 87358) ((-574 . -80) 87337) ((-574 . -956) 87321) ((-574 . -961) 87305) ((-574 . -21) T) ((-574 . -583) 87274) ((-574 . -23) T) ((-574 . -1003) T) ((-574 . -547) 87256) ((-574 . -1114) T) ((-574 . -72) T) ((-574 . -25) T) ((-574 . -102) T) ((-574 . -585) 87240) ((-574 . -577) 87224) ((-574 . -649) 87208) ((-574 . -550) 87185) ((-574 . -442) 87157) ((-572 . -745) T) ((-572 . -752) T) ((-572 . -749) T) ((-572 . -1003) T) ((-572 . -547) 87139) ((-572 . -1114) T) ((-572 . -72) T) ((-572 . -313) T) ((-572 . -550) 87116) ((-567 . -676) 87100) ((-567 . -652) T) ((-567 . -678) T) ((-567 . -80) 87079) ((-567 . -956) 87063) ((-567 . -961) 87047) ((-567 . -21) T) ((-567 . -583) 87016) ((-567 . -23) T) ((-567 . -1003) T) ((-567 . -547) 86985) ((-567 . -1114) T) ((-567 . -72) T) ((-567 . -25) T) ((-567 . -102) T) ((-567 . -585) 86969) ((-567 . -577) 86953) ((-567 . -649) 86937) ((-567 . -354) 86902) ((-567 . -312) 86837) ((-567 . -238) 86795) ((-566 . -1092) 86770) ((-566 . -181) 86714) ((-566 . -76) 86658) ((-566 . -256) 86503) ((-566 . -447) 86303) ((-566 . -422) 86233) ((-566 . -122) 86177) ((-566 . -548) NIL) ((-566 . -190) 86121) ((-566 . -544) 86096) ((-566 . -240) 86071) ((-566 . -1114) T) ((-566 . -238) 86024) ((-566 . -1003) T) ((-566 . -547) 86006) ((-566 . -72) T) ((-566 . -34) T) ((-566 . -533) 85981) ((-561 . -406) T) ((-561 . -1013) T) ((-561 . -72) T) ((-561 . -1114) T) ((-561 . -547) 85963) ((-561 . -1003) T) ((-561 . -658) T) ((-560 . -986) T) ((-560 . -423) 85944) ((-560 . -547) 85910) ((-560 . -550) 85891) ((-560 . -1003) T) ((-560 . -1114) T) ((-560 . -72) T) ((-560 . -64) T) ((-557 . -182) 85875) ((-557 . -802) 85834) ((-557 . -804) 85760) ((-557 . -799) 85684) ((-557 . -222) 85668) ((-557 . -187) 85622) ((-557 . -1114) T) ((-557 . -184) 85570) ((-557 . -954) T) ((-557 . -962) T) ((-557 . -1013) T) ((-557 . -658) T) ((-557 . -21) T) ((-557 . -583) 85542) ((-557 . -23) T) ((-557 . -1003) T) ((-557 . -547) 85524) ((-557 . -72) T) ((-557 . -25) T) ((-557 . -102) T) ((-557 . -585) 85511) ((-557 . -550) 85407) ((-557 . -188) 85386) ((-557 . -489) T) ((-557 . -242) T) ((-557 . -144) T) ((-557 . -649) 85373) ((-557 . -577) 85360) ((-557 . -961) 85347) ((-557 . -956) 85334) ((-557 . -80) 85319) ((-557 . -38) 85306) ((-557 . -548) 85283) ((-557 . -348) 85267) ((-557 . -943) 85152) ((-557 . -118) 85131) ((-557 . -116) 85110) ((-557 . -254) 85089) ((-557 . -385) 85068) ((-557 . -825) 85047) ((-553 . -38) 85031) ((-553 . -550) 85000) ((-553 . -585) 84974) ((-553 . -583) 84933) ((-553 . -658) T) ((-553 . -1013) T) ((-553 . -962) T) ((-553 . -954) T) ((-553 . -80) 84912) ((-553 . -956) 84896) ((-553 . -961) 84880) ((-553 . -21) T) ((-553 . -23) T) ((-553 . -1003) T) ((-553 . -547) 84862) ((-553 . -1114) T) ((-553 . -72) T) ((-553 . -25) T) ((-553 . -102) T) ((-553 . -577) 84846) ((-553 . -649) 84830) ((-553 . -748) 84809) ((-553 . -714) 84788) ((-553 . -711) 84767) ((-553 . -752) 84746) ((-553 . -749) 84725) ((-553 . -709) 84704) ((-553 . -707) 84683) ((-551 . -873) T) ((-551 . -72) T) ((-551 . -547) 84665) ((-551 . -1003) T) ((-551 . -599) T) ((-551 . -1114) T) ((-551 . -82) T) ((-545 . -103) T) ((-545 . -72) T) ((-545 . -1114) T) ((-545 . -547) 84647) ((-545 . -1003) T) ((-545 . -749) T) ((-545 . -752) T) ((-545 . -787) 84631) ((-545 . -548) 84492) ((-542 . -310) 84430) ((-542 . -72) T) ((-542 . -1114) T) ((-542 . -547) 84412) ((-542 . -1003) T) ((-542 . -1092) 84388) ((-542 . -181) 84333) ((-542 . -76) 84278) ((-542 . -256) 84067) ((-542 . -447) 83807) ((-542 . -422) 83739) ((-542 . -122) 83684) ((-542 . -548) NIL) ((-542 . -190) 83629) ((-542 . -544) 83605) ((-542 . -240) 83581) ((-542 . -238) 83557) ((-542 . -34) T) ((-542 . -533) 83533) ((-541 . -1003) T) ((-541 . -547) 83486) ((-541 . -1114) T) ((-541 . -72) T) ((-541 . -423) 83454) ((-541 . -550) 83422) ((-540 . -1003) T) ((-540 . -547) 83404) ((-540 . -1114) T) ((-540 . -72) T) ((-540 . -599) T) ((-539 . -1003) T) ((-539 . -547) 83386) ((-539 . -1114) T) ((-539 . -72) T) ((-539 . -599) T) ((-538 . -1003) T) ((-538 . -547) 83354) ((-538 . -1114) T) ((-538 . -72) T) ((-537 . -1003) T) ((-537 . -547) 83336) ((-537 . -1114) T) ((-537 . -72) T) ((-537 . -599) T) ((-536 . -1003) T) ((-536 . -547) 83304) ((-536 . -1114) T) ((-536 . -72) T) ((-536 . -423) 83287) ((-536 . -550) 83270) ((-535 . -676) 83254) ((-535 . -652) T) ((-535 . -678) T) ((-535 . -80) 83233) ((-535 . -956) 83217) ((-535 . -961) 83201) ((-535 . -21) T) ((-535 . -583) 83170) ((-535 . -23) T) ((-535 . -1003) T) ((-535 . -547) 83139) ((-535 . -1114) T) ((-535 . -72) T) ((-535 . -25) T) ((-535 . -102) T) ((-535 . -585) 83123) ((-535 . -577) 83107) ((-535 . -649) 83091) ((-535 . -354) 83056) ((-535 . -312) 82991) ((-535 . -238) 82949) ((-534 . -986) T) ((-534 . -423) 82930) ((-534 . -547) 82880) ((-534 . -550) 82861) ((-534 . -1003) T) ((-534 . -1114) T) ((-534 . -72) T) ((-534 . -64) T) ((-531 . -1163) 82845) ((-531 . -317) 82829) ((-531 . -752) 82808) ((-531 . -749) 82787) ((-531 . -122) 82771) ((-531 . -34) T) ((-531 . -1114) T) ((-531 . -72) 82705) ((-531 . -547) 82620) ((-531 . -256) 82558) ((-531 . -447) 82491) ((-531 . -1003) 82444) ((-531 . -422) 82428) ((-531 . -548) 82389) ((-531 . -238) 82341) ((-531 . -533) 82318) ((-531 . -240) 82295) ((-531 . -588) 82279) ((-531 . -19) 82263) ((-530 . -547) 82245) ((-526 . -1003) T) ((-526 . -547) 82211) ((-526 . -1114) T) ((-526 . -72) T) ((-526 . -423) 82192) ((-526 . -550) 82173) ((-525 . -954) T) ((-525 . -962) T) ((-525 . -1013) T) ((-525 . -658) T) ((-525 . -21) T) ((-525 . -583) 82132) ((-525 . -23) T) ((-525 . -1003) T) ((-525 . -547) 82114) ((-525 . -1114) T) ((-525 . -72) T) ((-525 . -25) T) ((-525 . -102) T) ((-525 . -585) 82088) ((-525 . -550) 82046) ((-525 . -80) 81999) ((-525 . -956) 81959) ((-525 . -961) 81919) ((-525 . -489) 81898) ((-525 . -242) 81877) ((-525 . -144) 81856) ((-525 . -649) 81829) ((-525 . -577) 81802) ((-525 . -38) 81775) ((-524 . -1143) 81752) ((-524 . -47) 81729) ((-524 . -38) 81626) ((-524 . -577) 81523) ((-524 . -649) 81420) ((-524 . -550) 81302) ((-524 . -242) 81281) ((-524 . -489) 81260) ((-524 . -80) 81125) ((-524 . -956) 81011) ((-524 . -961) 80897) ((-524 . -144) 80851) ((-524 . -118) 80830) ((-524 . -116) 80809) ((-524 . -585) 80734) ((-524 . -583) 80644) ((-524 . -879) 80614) ((-524 . -804) 80527) ((-524 . -799) 80438) ((-524 . -802) 80351) ((-524 . -238) 80316) ((-524 . -187) 80275) ((-524 . -1114) T) ((-524 . -184) 80228) ((-524 . -954) T) ((-524 . -962) T) ((-524 . -1013) T) ((-524 . -658) T) ((-524 . -21) T) ((-524 . -23) T) ((-524 . -1003) T) ((-524 . -547) 80210) ((-524 . -72) T) ((-524 . -25) T) ((-524 . -102) T) ((-524 . -188) 80169) ((-522 . -986) T) ((-522 . -423) 80150) ((-522 . -547) 80116) ((-522 . -550) 80097) ((-522 . -1003) T) ((-522 . -1114) T) ((-522 . -72) T) ((-522 . -64) T) ((-516 . -1003) T) ((-516 . -547) 80063) ((-516 . -1114) T) ((-516 . -72) T) ((-516 . -423) 80044) ((-516 . -550) 80025) ((-513 . -649) 80000) ((-513 . -577) 79975) ((-513 . -585) 79950) ((-513 . -583) 79910) ((-513 . -102) T) ((-513 . -25) T) ((-513 . -72) T) ((-513 . -1114) T) ((-513 . -547) 79892) ((-513 . -1003) T) ((-513 . -23) T) ((-513 . -21) T) ((-513 . -961) 79867) ((-513 . -956) 79842) ((-513 . -80) 79803) ((-513 . -943) 79787) ((-513 . -550) 79771) ((-511 . -295) T) ((-511 . -1052) T) ((-511 . -313) T) ((-511 . -116) T) ((-511 . -308) T) ((-511 . -1119) T) ((-511 . -825) T) ((-511 . -489) T) ((-511 . -144) T) ((-511 . -550) 79721) ((-511 . -649) 79686) ((-511 . -577) 79651) ((-511 . -38) 79616) ((-511 . -385) T) ((-511 . -254) T) ((-511 . -80) 79565) ((-511 . -956) 79530) ((-511 . -961) 79495) ((-511 . -583) 79445) ((-511 . -585) 79410) ((-511 . -242) T) ((-511 . -198) T) ((-511 . -338) T) ((-511 . -187) T) ((-511 . -1114) T) ((-511 . -184) 79397) ((-511 . -954) T) ((-511 . -962) T) ((-511 . -1013) T) ((-511 . -658) T) ((-511 . -21) T) ((-511 . -23) T) ((-511 . -1003) T) ((-511 . -547) 79379) ((-511 . -72) T) ((-511 . -25) T) ((-511 . -102) T) ((-511 . -188) T) ((-511 . -276) 79366) ((-511 . -118) 79348) ((-511 . -943) 79335) ((-511 . -1172) 79322) ((-511 . -1183) 79309) ((-511 . -548) 79291) ((-510 . -772) 79275) ((-510 . -825) T) ((-510 . -489) T) ((-510 . -242) T) ((-510 . -144) T) ((-510 . -550) 79247) ((-510 . -649) 79234) ((-510 . -577) 79221) ((-510 . -961) 79208) ((-510 . -956) 79195) ((-510 . -80) 79180) ((-510 . -38) 79167) ((-510 . -385) T) ((-510 . -254) T) ((-510 . -954) T) ((-510 . -962) T) ((-510 . -1013) T) ((-510 . -658) T) ((-510 . -21) T) ((-510 . -583) 79139) ((-510 . -23) T) ((-510 . -1003) T) ((-510 . -547) 79121) ((-510 . -1114) T) ((-510 . -72) T) ((-510 . -25) T) ((-510 . -102) T) ((-510 . -585) 79108) ((-510 . -118) T) ((-509 . -1003) T) ((-509 . -547) 79090) ((-509 . -1114) T) ((-509 . -72) T) ((-508 . -1003) T) ((-508 . -547) 79072) ((-508 . -1114) T) ((-508 . -72) T) ((-507 . -506) T) ((-507 . -763) T) ((-507 . -145) T) ((-507 . -459) T) ((-507 . -547) 79054) ((-501 . -487) 79038) ((-501 . -35) T) ((-501 . -66) T) ((-501 . -236) T) ((-501 . -426) T) ((-501 . -1103) T) ((-501 . -1100) T) ((-501 . -943) 79020) ((-501 . -908) T) ((-501 . -752) T) ((-501 . -749) T) ((-501 . -489) T) ((-501 . -242) T) ((-501 . -144) T) ((-501 . -550) 78992) ((-501 . -649) 78979) ((-501 . -577) 78966) ((-501 . -585) 78953) ((-501 . -583) 78925) ((-501 . -102) T) ((-501 . -25) T) ((-501 . -72) T) ((-501 . -1114) T) ((-501 . -547) 78907) ((-501 . -1003) T) ((-501 . -23) T) ((-501 . -21) T) ((-501 . -961) 78894) ((-501 . -956) 78881) ((-501 . -80) 78866) ((-501 . -954) T) ((-501 . -962) T) ((-501 . -1013) T) ((-501 . -658) T) ((-501 . -38) 78853) ((-501 . -385) T) ((-483 . -1092) 78832) ((-483 . -181) 78780) ((-483 . -76) 78728) ((-483 . -256) 78526) ((-483 . -447) 78278) ((-483 . -422) 78213) ((-483 . -122) 78161) ((-483 . -548) NIL) ((-483 . -190) 78109) ((-483 . -544) 78088) ((-483 . -240) 78067) ((-483 . -1114) T) ((-483 . -238) 78046) ((-483 . -1003) T) ((-483 . -547) 78028) ((-483 . -72) T) ((-483 . -34) T) ((-483 . -533) 78007) ((-482 . -745) T) ((-482 . -752) T) ((-482 . -749) T) ((-482 . -1003) T) ((-482 . -547) 77989) ((-482 . -1114) T) ((-482 . -72) T) ((-482 . -313) T) ((-481 . -745) T) ((-481 . -752) T) ((-481 . -749) T) ((-481 . -1003) T) ((-481 . -547) 77971) ((-481 . -1114) T) ((-481 . -72) T) ((-481 . -313) T) ((-480 . -745) T) ((-480 . -752) T) ((-480 . -749) T) ((-480 . -1003) T) ((-480 . -547) 77953) ((-480 . -1114) T) ((-480 . -72) T) ((-480 . -313) T) ((-479 . -745) T) ((-479 . -752) T) ((-479 . -749) T) ((-479 . -1003) T) ((-479 . -547) 77935) ((-479 . -1114) T) ((-479 . -72) T) ((-479 . -313) T) ((-478 . -477) T) ((-478 . -1119) T) ((-478 . -1052) T) ((-478 . -943) 77917) ((-478 . -548) 77832) ((-478 . -926) T) ((-478 . -789) 77814) ((-478 . -748) T) ((-478 . -714) T) ((-478 . -711) T) ((-478 . -752) T) ((-478 . -749) T) ((-478 . -709) T) ((-478 . -707) T) ((-478 . -733) T) ((-478 . -585) 77786) ((-478 . -575) 77768) ((-478 . -825) T) ((-478 . -489) T) ((-478 . -242) T) ((-478 . -144) T) ((-478 . -550) 77740) ((-478 . -649) 77727) ((-478 . -577) 77714) ((-478 . -961) 77701) ((-478 . -956) 77688) ((-478 . -80) 77673) ((-478 . -38) 77660) ((-478 . -385) T) ((-478 . -254) T) ((-478 . -187) T) ((-478 . -184) 77647) ((-478 . -188) T) ((-478 . -114) T) ((-478 . -954) T) ((-478 . -962) T) ((-478 . -1013) T) ((-478 . -658) T) ((-478 . -21) T) ((-478 . -583) 77619) ((-478 . -23) T) ((-478 . -1003) T) ((-478 . -547) 77601) ((-478 . -1114) T) ((-478 . -72) T) ((-478 . -25) T) ((-478 . -102) T) ((-478 . -118) T) ((-467 . -1006) 77553) ((-467 . -72) T) ((-467 . -547) 77535) ((-467 . -1003) T) ((-467 . -238) 77491) ((-467 . -1114) T) ((-467 . -552) 77394) ((-467 . -548) 77375) ((-465 . -684) 77357) ((-465 . -459) T) ((-465 . -145) T) ((-465 . -763) T) ((-465 . -506) T) ((-465 . -547) 77339) ((-463 . -710) T) ((-463 . -102) T) ((-463 . -25) T) ((-463 . -72) T) ((-463 . -1114) T) ((-463 . -547) 77321) ((-463 . -1003) T) ((-463 . -23) T) ((-463 . -709) T) ((-463 . -749) T) ((-463 . -752) T) ((-463 . -711) T) ((-463 . -714) T) ((-463 . -442) 77298) ((-461 . -459) T) ((-461 . -145) T) ((-461 . -547) 77280) ((-457 . -986) T) ((-457 . -423) 77261) ((-457 . -547) 77227) ((-457 . -550) 77208) ((-457 . -1003) T) ((-457 . -1114) T) ((-457 . -72) T) ((-457 . -64) T) ((-456 . -986) T) ((-456 . -423) 77189) ((-456 . -547) 77155) ((-456 . -550) 77136) ((-456 . -1003) T) ((-456 . -1114) T) ((-456 . -72) T) ((-456 . -64) T) ((-455 . -622) 77086) ((-455 . -422) 77070) ((-455 . -1003) 77048) ((-455 . -447) 76981) ((-455 . -256) 76919) ((-455 . -547) 76854) ((-455 . -72) 76808) ((-455 . -1114) T) ((-455 . -34) T) ((-455 . -57) 76758) ((-452 . -57) 76732) ((-452 . -34) T) ((-452 . -1114) T) ((-452 . -72) 76686) ((-452 . -547) 76621) ((-452 . -256) 76559) ((-452 . -447) 76492) ((-452 . -1003) 76470) ((-452 . -422) 76454) ((-451 . -276) 76431) ((-451 . -188) T) ((-451 . -184) 76418) ((-451 . -187) T) ((-451 . -313) T) ((-451 . -1052) T) ((-451 . -295) T) ((-451 . -118) 76400) ((-451 . -550) 76330) ((-451 . -585) 76275) ((-451 . -583) 76205) ((-451 . -102) T) ((-451 . -25) T) ((-451 . -72) T) ((-451 . -1114) T) ((-451 . -547) 76187) ((-451 . -1003) T) ((-451 . -23) T) ((-451 . -21) T) ((-451 . -658) T) ((-451 . -1013) T) ((-451 . -962) T) ((-451 . -954) T) ((-451 . -308) T) ((-451 . -1119) T) ((-451 . -825) T) ((-451 . -489) T) ((-451 . -144) T) ((-451 . -649) 76132) ((-451 . -577) 76077) ((-451 . -38) 76042) ((-451 . -385) T) ((-451 . -254) T) ((-451 . -80) 75959) ((-451 . -956) 75904) ((-451 . -961) 75849) ((-451 . -242) T) ((-451 . -198) T) ((-451 . -338) T) ((-451 . -116) T) ((-451 . -943) 75826) ((-451 . -1172) 75803) ((-451 . -1183) 75780) ((-450 . -986) T) ((-450 . -423) 75761) ((-450 . -547) 75727) ((-450 . -550) 75708) ((-450 . -1003) T) ((-450 . -1114) T) ((-450 . -72) T) ((-450 . -64) T) ((-449 . -19) 75692) ((-449 . -588) 75676) ((-449 . -240) 75653) ((-449 . -238) 75605) ((-449 . -533) 75582) ((-449 . -548) 75543) ((-449 . -422) 75527) ((-449 . -1003) 75480) ((-449 . -447) 75413) ((-449 . -256) 75351) ((-449 . -547) 75266) ((-449 . -72) 75200) ((-449 . -1114) T) ((-449 . -34) T) ((-449 . -122) 75184) ((-449 . -749) 75163) ((-449 . -752) 75142) ((-449 . -317) 75126) ((-449 . -234) 75110) ((-448 . -270) 75089) ((-448 . -550) 75073) ((-448 . -943) 75057) ((-448 . -23) T) ((-448 . -1003) T) ((-448 . -547) 75039) ((-448 . -1114) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -102) T) ((-445 . -710) T) ((-445 . -102) T) ((-445 . -25) T) ((-445 . -72) T) ((-445 . -1114) T) ((-445 . -547) 75021) ((-445 . -1003) T) ((-445 . -23) T) ((-445 . -709) T) ((-445 . -749) T) ((-445 . -752) T) ((-445 . -711) T) ((-445 . -714) T) ((-445 . -442) 75000) ((-444 . -709) T) ((-444 . -749) T) ((-444 . -752) T) ((-444 . -711) T) ((-444 . -25) T) ((-444 . -72) T) ((-444 . -1114) T) ((-444 . -547) 74982) ((-444 . -1003) T) ((-444 . -23) T) ((-444 . -442) 74961) ((-443 . -442) 74940) ((-443 . -547) 74880) ((-443 . -1003) 74831) ((-443 . -1114) T) ((-443 . -72) T) ((-441 . -23) T) ((-441 . -1003) T) ((-441 . -547) 74813) ((-441 . -1114) T) ((-441 . -72) T) ((-441 . -25) T) ((-441 . -442) 74792) ((-440 . -21) T) ((-440 . -583) 74774) ((-440 . -23) T) ((-440 . -1003) T) ((-440 . -547) 74756) ((-440 . -1114) T) ((-440 . -72) T) ((-440 . -25) T) ((-440 . -102) T) ((-440 . -442) 74735) ((-439 . -1003) T) ((-439 . -547) 74717) ((-439 . -1114) T) ((-439 . -72) T) ((-437 . -1003) T) ((-437 . -547) 74699) ((-437 . -1114) T) ((-437 . -72) T) ((-435 . -749) T) ((-435 . -547) 74681) ((-435 . -1003) T) ((-435 . -72) T) ((-435 . -1114) T) ((-435 . -752) T) ((-435 . -550) 74662) ((-433 . -94) T) ((-433 . -317) 74645) ((-433 . -752) T) ((-433 . -749) T) ((-433 . -122) 74628) ((-433 . -34) T) ((-433 . -72) T) ((-433 . -547) 74610) ((-433 . -256) NIL) ((-433 . -447) NIL) ((-433 . -1003) T) ((-433 . -422) 74593) ((-433 . -548) 74575) ((-433 . -238) 74526) ((-433 . -533) 74502) ((-433 . -240) 74478) ((-433 . -588) 74461) ((-433 . -19) 74444) ((-433 . -599) T) ((-433 . -1114) T) ((-433 . -82) T) ((-430 . -57) 74394) ((-430 . -34) T) ((-430 . -1114) T) ((-430 . -72) 74348) ((-430 . -547) 74283) ((-430 . -256) 74221) ((-430 . -447) 74154) ((-430 . -1003) 74132) ((-430 . -422) 74116) ((-429 . -19) 74100) ((-429 . -588) 74084) ((-429 . -240) 74061) ((-429 . -238) 74013) ((-429 . -533) 73990) ((-429 . -548) 73951) ((-429 . -422) 73935) ((-429 . -1003) 73888) ((-429 . -447) 73821) ((-429 . -256) 73759) ((-429 . -547) 73674) ((-429 . -72) 73608) ((-429 . -1114) T) ((-429 . -34) T) ((-429 . -122) 73592) ((-429 . -749) 73571) ((-429 . -752) 73550) ((-429 . -317) 73534) ((-428 . -250) T) ((-428 . -72) T) ((-428 . -1114) T) ((-428 . -547) 73516) ((-428 . -1003) T) ((-428 . -550) 73417) ((-428 . -943) 73360) ((-428 . -447) 73326) ((-428 . -256) 73313) ((-428 . -27) T) ((-428 . -908) T) ((-428 . -198) T) ((-428 . -80) 73262) ((-428 . -956) 73227) ((-428 . -961) 73192) ((-428 . -242) T) ((-428 . -649) 73157) ((-428 . -577) 73122) ((-428 . -585) 73072) ((-428 . -583) 73022) ((-428 . -102) T) ((-428 . -25) T) ((-428 . -23) T) ((-428 . -21) T) ((-428 . -954) T) ((-428 . -962) T) ((-428 . -1013) T) ((-428 . -658) T) ((-428 . -38) 72987) ((-428 . -254) T) ((-428 . -385) T) ((-428 . -144) T) ((-428 . -489) T) ((-428 . -825) T) ((-428 . -1119) T) ((-428 . -308) T) ((-428 . -575) 72947) ((-428 . -926) T) ((-428 . -548) 72892) ((-428 . -118) T) ((-428 . -188) T) ((-428 . -184) 72879) ((-428 . -187) T) ((-424 . -1003) T) ((-424 . -547) 72845) ((-424 . -1114) T) ((-424 . -72) T) ((-420 . -897) 72827) ((-420 . -1052) T) ((-420 . -550) 72777) ((-420 . -943) 72737) ((-420 . -548) 72667) ((-420 . -926) T) ((-420 . -814) NIL) ((-420 . -787) 72649) ((-420 . -748) T) ((-420 . -714) T) ((-420 . -711) T) ((-420 . -752) T) ((-420 . -749) T) ((-420 . -709) T) ((-420 . -707) T) ((-420 . -733) T) ((-420 . -789) 72631) ((-420 . -336) 72613) ((-420 . -575) 72595) ((-420 . -322) 72577) ((-420 . -238) NIL) ((-420 . -256) NIL) ((-420 . -447) NIL) ((-420 . -284) 72559) ((-420 . -198) T) ((-420 . -80) 72486) ((-420 . -956) 72436) ((-420 . -961) 72386) ((-420 . -242) T) ((-420 . -649) 72336) ((-420 . -577) 72286) ((-420 . -585) 72236) ((-420 . -583) 72186) ((-420 . -38) 72136) ((-420 . -254) T) ((-420 . -385) T) ((-420 . -144) T) ((-420 . -489) T) ((-420 . -825) T) ((-420 . -1119) T) ((-420 . -308) T) ((-420 . -188) T) ((-420 . -184) 72123) ((-420 . -187) T) ((-420 . -222) 72105) ((-420 . -799) NIL) ((-420 . -804) NIL) ((-420 . -802) NIL) ((-420 . -182) 72087) ((-420 . -118) T) ((-420 . -116) NIL) ((-420 . -102) T) ((-420 . -25) T) ((-420 . -72) T) ((-420 . -1114) T) ((-420 . -547) 72029) ((-420 . -1003) T) ((-420 . -23) T) ((-420 . -21) T) ((-420 . -954) T) ((-420 . -962) T) ((-420 . -1013) T) ((-420 . -658) T) ((-418 . -282) 71998) ((-418 . -102) T) ((-418 . -25) T) ((-418 . -72) T) ((-418 . -1114) T) ((-418 . -547) 71980) ((-418 . -1003) T) ((-418 . -23) T) ((-418 . -583) 71962) ((-418 . -21) T) ((-417 . -874) 71946) ((-417 . -422) 71930) ((-417 . -1003) 71908) ((-417 . -447) 71841) ((-417 . -256) 71779) ((-417 . -547) 71714) ((-417 . -72) 71668) ((-417 . -1114) T) ((-417 . -34) T) ((-417 . -76) 71652) ((-416 . -986) T) ((-416 . -423) 71633) ((-416 . -547) 71599) ((-416 . -550) 71580) ((-416 . -1003) T) ((-416 . -1114) T) ((-416 . -72) T) ((-416 . -64) T) ((-415 . -193) 71559) ((-415 . -1172) 71529) ((-415 . -714) 71508) ((-415 . -711) 71487) ((-415 . -752) 71441) ((-415 . -749) 71395) ((-415 . -709) 71374) ((-415 . -710) 71353) ((-415 . -649) 71298) ((-415 . -577) 71223) ((-415 . -240) 71200) ((-415 . -238) 71177) ((-415 . -422) 71161) ((-415 . -447) 71094) ((-415 . -256) 71032) ((-415 . -34) T) ((-415 . -533) 71009) ((-415 . -943) 70838) ((-415 . -550) 70642) ((-415 . -348) 70611) ((-415 . -575) 70519) ((-415 . -585) 70358) ((-415 . -322) 70328) ((-415 . -313) 70307) ((-415 . -188) 70260) ((-415 . -583) 70048) ((-415 . -658) 70027) ((-415 . -1013) 70006) ((-415 . -962) 69985) ((-415 . -954) 69964) ((-415 . -184) 69860) ((-415 . -187) 69762) ((-415 . -222) 69732) ((-415 . -799) 69604) ((-415 . -804) 69478) ((-415 . -802) 69411) ((-415 . -182) 69381) ((-415 . -547) 69078) ((-415 . -961) 69003) ((-415 . -956) 68908) ((-415 . -80) 68828) ((-415 . -102) 68703) ((-415 . -25) 68540) ((-415 . -72) 68277) ((-415 . -1114) T) ((-415 . -1003) 68033) ((-415 . -23) 67889) ((-415 . -21) 67804) ((-414 . -854) 67749) ((-414 . -550) 67541) ((-414 . -943) 67419) ((-414 . -1119) 67398) ((-414 . -814) 67377) ((-414 . -789) NIL) ((-414 . -804) 67354) ((-414 . -799) 67329) ((-414 . -802) 67306) ((-414 . -447) 67244) ((-414 . -385) 67198) ((-414 . -575) 67146) ((-414 . -585) 67035) ((-414 . -322) 67019) ((-414 . -47) 66976) ((-414 . -38) 66828) ((-414 . -577) 66680) ((-414 . -649) 66532) ((-414 . -242) 66466) ((-414 . -489) 66400) ((-414 . -80) 66225) ((-414 . -956) 66071) ((-414 . -961) 65917) ((-414 . -144) 65831) ((-414 . -118) 65810) ((-414 . -116) 65789) ((-414 . -583) 65699) ((-414 . -102) T) ((-414 . -25) T) ((-414 . -72) T) ((-414 . -1114) T) ((-414 . -547) 65681) ((-414 . -1003) T) ((-414 . -23) T) ((-414 . -21) T) ((-414 . -954) T) ((-414 . -962) T) ((-414 . -1013) T) ((-414 . -658) T) ((-414 . -348) 65665) ((-414 . -273) 65622) ((-414 . -256) 65609) ((-414 . -548) 65470) ((-412 . -1092) 65449) ((-412 . -181) 65397) ((-412 . -76) 65345) ((-412 . -256) 65143) ((-412 . -447) 64895) ((-412 . -422) 64830) ((-412 . -122) 64778) ((-412 . -548) NIL) ((-412 . -190) 64726) ((-412 . -544) 64705) ((-412 . -240) 64684) ((-412 . -1114) T) ((-412 . -238) 64663) ((-412 . -1003) T) ((-412 . -547) 64645) ((-412 . -72) T) ((-412 . -34) T) ((-412 . -533) 64624) ((-411 . -986) T) ((-411 . -423) 64605) ((-411 . -547) 64571) ((-411 . -550) 64552) ((-411 . -1003) T) ((-411 . -1114) T) ((-411 . -72) T) ((-411 . -64) T) ((-410 . -308) T) ((-410 . -1119) T) ((-410 . -825) T) ((-410 . -489) T) ((-410 . -144) T) ((-410 . -550) 64502) ((-410 . -649) 64467) ((-410 . -577) 64432) ((-410 . -38) 64397) ((-410 . -385) T) ((-410 . -254) T) ((-410 . -585) 64362) ((-410 . -583) 64312) ((-410 . -658) T) ((-410 . -1013) T) ((-410 . -962) T) ((-410 . -954) T) ((-410 . -80) 64261) ((-410 . -956) 64226) ((-410 . -961) 64191) ((-410 . -21) T) ((-410 . -23) T) ((-410 . -1003) T) ((-410 . -547) 64143) ((-410 . -1114) T) ((-410 . -72) T) ((-410 . -25) T) ((-410 . -102) T) ((-410 . -242) T) ((-410 . -198) T) ((-410 . -118) T) ((-410 . -943) 64103) ((-410 . -926) T) ((-410 . -548) 64025) ((-409 . -1109) 63994) ((-409 . -547) 63956) ((-409 . -122) 63940) ((-409 . -34) T) ((-409 . -1114) T) ((-409 . -72) T) ((-409 . -256) 63878) ((-409 . -447) 63811) ((-409 . -1003) T) ((-409 . -422) 63795) ((-409 . -548) 63756) ((-409 . -882) 63725) ((-408 . -1092) 63704) ((-408 . -181) 63652) ((-408 . -76) 63600) ((-408 . -256) 63398) ((-408 . -447) 63150) ((-408 . -422) 63085) ((-408 . -122) 63033) ((-408 . -548) NIL) ((-408 . -190) 62981) ((-408 . -544) 62960) ((-408 . -240) 62939) ((-408 . -1114) T) ((-408 . -238) 62918) ((-408 . -1003) T) ((-408 . -547) 62900) ((-408 . -72) T) ((-408 . -34) T) ((-408 . -533) 62879) ((-407 . -1147) 62863) ((-407 . -188) 62815) ((-407 . -184) 62761) ((-407 . -187) 62713) ((-407 . -238) 62671) ((-407 . -802) 62577) ((-407 . -799) 62458) ((-407 . -804) 62364) ((-407 . -879) 62327) ((-407 . -38) 62174) ((-407 . -80) 61994) ((-407 . -956) 61835) ((-407 . -961) 61676) ((-407 . -583) 61561) ((-407 . -585) 61461) ((-407 . -577) 61308) ((-407 . -649) 61155) ((-407 . -550) 60987) ((-407 . -116) 60966) ((-407 . -118) 60945) ((-407 . -47) 60915) ((-407 . -1143) 60885) ((-407 . -35) 60851) ((-407 . -66) 60817) ((-407 . -236) 60783) ((-407 . -426) 60749) ((-407 . -1103) 60715) ((-407 . -1100) 60681) ((-407 . -908) 60647) ((-407 . -198) 60626) ((-407 . -242) 60580) ((-407 . -102) T) ((-407 . -25) T) ((-407 . -72) T) ((-407 . -1114) T) ((-407 . -547) 60562) ((-407 . -1003) T) ((-407 . -23) T) ((-407 . -21) T) ((-407 . -954) T) ((-407 . -962) T) ((-407 . -1013) T) ((-407 . -658) T) ((-407 . -254) 60541) ((-407 . -385) 60520) ((-407 . -144) 60454) ((-407 . -489) 60408) ((-407 . -825) 60387) ((-407 . -1119) 60366) ((-407 . -308) 60345) ((-401 . -1003) T) ((-401 . -547) 60327) ((-401 . -1114) T) ((-401 . -72) T) ((-396 . -882) 60296) ((-396 . -548) 60257) ((-396 . -422) 60241) ((-396 . -1003) T) ((-396 . -447) 60174) ((-396 . -256) 60112) ((-396 . -547) 60074) ((-396 . -72) T) ((-396 . -1114) T) ((-396 . -34) T) ((-396 . -122) 60058) ((-394 . -649) 60029) ((-394 . -577) 60000) ((-394 . -585) 59971) ((-394 . -583) 59927) ((-394 . -102) T) ((-394 . -25) T) ((-394 . -72) T) ((-394 . -1114) T) ((-394 . -547) 59909) ((-394 . -1003) T) ((-394 . -23) T) ((-394 . -21) T) ((-394 . -961) 59880) ((-394 . -956) 59851) ((-394 . -80) 59812) ((-387 . -854) 59779) ((-387 . -550) 59571) ((-387 . -943) 59449) ((-387 . -1119) 59428) ((-387 . -814) 59407) ((-387 . -789) NIL) ((-387 . -804) 59384) ((-387 . -799) 59359) ((-387 . -802) 59336) ((-387 . -447) 59274) ((-387 . -385) 59228) ((-387 . -575) 59176) ((-387 . -585) 59065) ((-387 . -322) 59049) ((-387 . -47) 59028) ((-387 . -38) 58880) ((-387 . -577) 58732) ((-387 . -649) 58584) ((-387 . -242) 58518) ((-387 . -489) 58452) ((-387 . -80) 58277) ((-387 . -956) 58123) ((-387 . -961) 57969) ((-387 . -144) 57883) ((-387 . -118) 57862) ((-387 . -116) 57841) ((-387 . -583) 57751) ((-387 . -102) T) ((-387 . -25) T) ((-387 . -72) T) ((-387 . -1114) T) ((-387 . -547) 57733) ((-387 . -1003) T) ((-387 . -23) T) ((-387 . -21) T) ((-387 . -954) T) ((-387 . -962) T) ((-387 . -1013) T) ((-387 . -658) T) ((-387 . -348) 57717) ((-387 . -273) 57696) ((-387 . -256) 57683) ((-387 . -548) 57544) ((-386 . -354) 57514) ((-386 . -676) 57484) ((-386 . -652) T) ((-386 . -678) T) ((-386 . -80) 57435) ((-386 . -956) 57405) ((-386 . -961) 57375) ((-386 . -21) T) ((-386 . -583) 57290) ((-386 . -23) T) ((-386 . -1003) T) ((-386 . -547) 57272) ((-386 . -72) T) ((-386 . -25) T) ((-386 . -102) T) ((-386 . -585) 57202) ((-386 . -577) 57172) ((-386 . -649) 57142) ((-386 . -312) 57112) ((-386 . -1114) T) ((-386 . -238) 57075) ((-374 . -1003) T) ((-374 . -547) 57057) ((-374 . -1114) T) ((-374 . -72) T) ((-373 . -1003) T) ((-373 . -547) 57039) ((-373 . -1114) T) ((-373 . -72) T) ((-372 . -1003) T) ((-372 . -547) 57021) ((-372 . -1114) T) ((-372 . -72) T) ((-370 . -547) 57003) ((-365 . -38) 56987) ((-365 . -550) 56956) ((-365 . -585) 56930) ((-365 . -583) 56889) ((-365 . -658) T) ((-365 . -1013) T) ((-365 . -962) T) ((-365 . -954) T) ((-365 . -80) 56868) ((-365 . -956) 56852) ((-365 . -961) 56836) ((-365 . -21) T) ((-365 . -23) T) ((-365 . -1003) T) ((-365 . -547) 56818) ((-365 . -1114) T) ((-365 . -72) T) ((-365 . -25) T) ((-365 . -102) T) ((-365 . -577) 56802) ((-365 . -649) 56786) ((-351 . -658) T) ((-351 . -1003) T) ((-351 . -547) 56768) ((-351 . -1114) T) ((-351 . -72) T) ((-351 . -1013) T) ((-349 . -406) T) ((-349 . -1013) T) ((-349 . -72) T) ((-349 . -1114) T) ((-349 . -547) 56750) ((-349 . -1003) T) ((-349 . -658) T) ((-343 . -897) 56734) ((-343 . -1052) 56712) ((-343 . -943) 56579) ((-343 . -550) 56478) ((-343 . -548) 56281) ((-343 . -926) 56260) ((-343 . -814) 56239) ((-343 . -787) 56223) ((-343 . -748) 56202) ((-343 . -714) 56181) ((-343 . -711) 56160) ((-343 . -752) 56114) ((-343 . -749) 56068) ((-343 . -709) 56047) ((-343 . -707) 56026) ((-343 . -733) 56005) ((-343 . -789) 55930) ((-343 . -336) 55914) ((-343 . -575) 55862) ((-343 . -585) 55778) ((-343 . -322) 55762) ((-343 . -238) 55720) ((-343 . -256) 55685) ((-343 . -447) 55597) ((-343 . -284) 55581) ((-343 . -198) T) ((-343 . -80) 55512) ((-343 . -956) 55464) ((-343 . -961) 55416) ((-343 . -242) T) ((-343 . -649) 55368) ((-343 . -577) 55320) ((-343 . -583) 55257) ((-343 . -38) 55209) ((-343 . -254) T) ((-343 . -385) T) ((-343 . -144) T) ((-343 . -489) T) ((-343 . -825) T) ((-343 . -1119) T) ((-343 . -308) T) ((-343 . -188) 55188) ((-343 . -184) 55136) ((-343 . -187) 55090) ((-343 . -222) 55074) ((-343 . -799) 54998) ((-343 . -804) 54924) ((-343 . -802) 54883) ((-343 . -182) 54867) ((-343 . -118) 54846) ((-343 . -116) 54825) ((-343 . -102) T) ((-343 . -25) T) ((-343 . -72) T) ((-343 . -1114) T) ((-343 . -547) 54807) ((-343 . -1003) T) ((-343 . -23) T) ((-343 . -21) T) ((-343 . -954) T) ((-343 . -962) T) ((-343 . -1013) T) ((-343 . -658) T) ((-341 . -489) T) ((-341 . -242) T) ((-341 . -144) T) ((-341 . -550) 54716) ((-341 . -649) 54690) ((-341 . -577) 54664) ((-341 . -585) 54638) ((-341 . -583) 54597) ((-341 . -102) T) ((-341 . -25) T) ((-341 . -72) T) ((-341 . -1114) T) ((-341 . -547) 54579) ((-341 . -1003) T) ((-341 . -23) T) ((-341 . -21) T) ((-341 . -961) 54553) ((-341 . -956) 54527) ((-341 . -80) 54494) ((-341 . -954) T) ((-341 . -962) T) ((-341 . -1013) T) ((-341 . -658) T) ((-341 . -38) 54468) ((-341 . -182) 54452) ((-341 . -802) 54411) ((-341 . -804) 54337) ((-341 . -799) 54261) ((-341 . -222) 54245) ((-341 . -187) 54199) ((-341 . -184) 54147) ((-341 . -188) 54126) ((-341 . -284) 54110) ((-341 . -447) 53952) ((-341 . -256) 53891) ((-341 . -238) 53819) ((-341 . -348) 53803) ((-341 . -943) 53701) ((-341 . -385) 53654) ((-341 . -926) 53633) ((-341 . -548) 53536) ((-341 . -1119) 53514) ((-335 . -1003) T) ((-335 . -547) 53496) ((-335 . -1114) T) ((-335 . -72) T) ((-335 . -187) T) ((-335 . -184) 53483) ((-335 . -548) 53460) ((-333 . -676) 53444) ((-333 . -652) T) ((-333 . -678) T) ((-333 . -80) 53423) ((-333 . -956) 53407) ((-333 . -961) 53391) ((-333 . -21) T) ((-333 . -583) 53360) ((-333 . -23) T) ((-333 . -1003) T) ((-333 . -547) 53342) ((-333 . -1114) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -102) T) ((-333 . -585) 53326) ((-333 . -577) 53310) ((-333 . -649) 53294) ((-331 . -332) T) ((-331 . -72) T) ((-331 . -1114) T) ((-331 . -547) 53260) ((-331 . -1003) T) ((-331 . -550) 53241) ((-331 . -423) 53222) ((-330 . -329) 53206) ((-330 . -550) 53190) ((-330 . -943) 53174) ((-330 . -752) 53153) ((-330 . -749) 53132) ((-330 . -1013) T) ((-330 . -72) T) ((-330 . -1114) T) ((-330 . -547) 53114) ((-330 . -1003) T) ((-330 . -658) T) ((-327 . -328) 53093) ((-327 . -550) 53077) ((-327 . -943) 53061) ((-327 . -577) 53031) ((-327 . -649) 53001) ((-327 . -585) 52985) ((-327 . -583) 52954) ((-327 . -102) T) ((-327 . -25) T) ((-327 . -72) T) ((-327 . -1114) T) ((-327 . -547) 52936) ((-327 . -1003) T) ((-327 . -23) T) ((-327 . -21) T) ((-327 . -961) 52920) ((-327 . -956) 52904) ((-327 . -80) 52883) ((-326 . -80) 52862) ((-326 . -956) 52846) ((-326 . -961) 52830) ((-326 . -21) T) ((-326 . -583) 52799) ((-326 . -23) T) ((-326 . -1003) T) ((-326 . -547) 52781) ((-326 . -1114) T) ((-326 . -72) T) ((-326 . -25) T) ((-326 . -102) T) ((-326 . -585) 52765) ((-326 . -442) 52744) ((-326 . -649) 52714) ((-326 . -577) 52684) ((-323 . -340) T) ((-323 . -118) T) ((-323 . -550) 52634) ((-323 . -585) 52599) ((-323 . -583) 52549) ((-323 . -102) T) ((-323 . -25) T) ((-323 . -72) T) ((-323 . -1114) T) ((-323 . -547) 52516) ((-323 . -1003) T) ((-323 . -23) T) ((-323 . -21) T) ((-323 . -658) T) ((-323 . -1013) T) ((-323 . -962) T) ((-323 . -954) T) ((-323 . -548) 52430) ((-323 . -308) T) ((-323 . -1119) T) ((-323 . -825) T) ((-323 . -489) T) ((-323 . -144) T) ((-323 . -649) 52395) ((-323 . -577) 52360) ((-323 . -38) 52325) ((-323 . -385) T) ((-323 . -254) T) ((-323 . -80) 52274) ((-323 . -956) 52239) ((-323 . -961) 52204) ((-323 . -242) T) ((-323 . -198) T) ((-323 . -748) T) ((-323 . -714) T) ((-323 . -711) T) ((-323 . -752) T) ((-323 . -749) T) ((-323 . -709) T) ((-323 . -707) T) ((-323 . -789) 52186) ((-323 . -908) T) ((-323 . -926) T) ((-323 . -943) 52146) ((-323 . -965) T) ((-323 . -188) T) ((-323 . -184) 52133) ((-323 . -187) T) ((-323 . -1100) T) ((-323 . -1103) T) ((-323 . -426) T) ((-323 . -236) T) ((-323 . -66) T) ((-323 . -35) T) ((-323 . -552) 52115) ((-309 . -310) 52092) ((-309 . -72) T) ((-309 . -1114) T) ((-309 . -547) 52074) ((-309 . -1003) T) ((-306 . -406) T) ((-306 . -1013) T) ((-306 . -72) T) ((-306 . -1114) T) ((-306 . -547) 52056) ((-306 . -1003) T) ((-306 . -658) T) ((-306 . -943) 52040) ((-306 . -550) 52024) ((-304 . -276) 52008) ((-304 . -188) 51987) ((-304 . -184) 51960) ((-304 . -187) 51939) ((-304 . -313) 51918) ((-304 . -1052) 51897) ((-304 . -295) 51876) ((-304 . -118) 51855) ((-304 . -550) 51792) ((-304 . -585) 51744) ((-304 . -583) 51681) ((-304 . -102) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -1114) T) ((-304 . -547) 51663) ((-304 . -1003) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -658) T) ((-304 . -1013) T) ((-304 . -962) T) ((-304 . -954) T) ((-304 . -308) T) ((-304 . -1119) T) ((-304 . -825) T) ((-304 . -489) T) ((-304 . -144) T) ((-304 . -649) 51615) ((-304 . -577) 51567) ((-304 . -38) 51532) ((-304 . -385) T) ((-304 . -254) T) ((-304 . -80) 51463) ((-304 . -956) 51415) ((-304 . -961) 51367) ((-304 . -242) T) ((-304 . -198) T) ((-304 . -338) 51321) ((-304 . -116) 51275) ((-304 . -943) 51259) ((-304 . -1172) 51243) ((-304 . -1183) 51227) ((-300 . -276) 51211) ((-300 . -188) 51190) ((-300 . -184) 51163) ((-300 . -187) 51142) ((-300 . -313) 51121) ((-300 . -1052) 51100) ((-300 . -295) 51079) ((-300 . -118) 51058) ((-300 . -550) 50995) ((-300 . -585) 50947) ((-300 . -583) 50884) ((-300 . -102) T) ((-300 . -25) T) ((-300 . -72) T) ((-300 . -1114) T) ((-300 . -547) 50866) ((-300 . -1003) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -658) T) ((-300 . -1013) T) ((-300 . -962) T) ((-300 . -954) T) ((-300 . -308) T) ((-300 . -1119) T) ((-300 . -825) T) ((-300 . -489) T) ((-300 . -144) T) ((-300 . -649) 50818) ((-300 . -577) 50770) ((-300 . -38) 50735) ((-300 . -385) T) ((-300 . -254) T) ((-300 . -80) 50666) ((-300 . -956) 50618) ((-300 . -961) 50570) ((-300 . -242) T) ((-300 . -198) T) ((-300 . -338) 50524) ((-300 . -116) 50478) ((-300 . -943) 50462) ((-300 . -1172) 50446) ((-300 . -1183) 50430) ((-299 . -276) 50414) ((-299 . -188) 50393) ((-299 . -184) 50366) ((-299 . -187) 50345) ((-299 . -313) 50324) ((-299 . -1052) 50303) ((-299 . -295) 50282) ((-299 . -118) 50261) ((-299 . -550) 50198) ((-299 . -585) 50150) ((-299 . -583) 50087) ((-299 . -102) T) ((-299 . -25) T) ((-299 . -72) T) ((-299 . -1114) T) ((-299 . -547) 50069) ((-299 . -1003) T) ((-299 . -23) T) ((-299 . -21) T) ((-299 . -658) T) ((-299 . -1013) T) ((-299 . -962) T) ((-299 . -954) T) ((-299 . -308) T) ((-299 . -1119) T) ((-299 . -825) T) ((-299 . -489) T) ((-299 . -144) T) ((-299 . -649) 50021) ((-299 . -577) 49973) ((-299 . -38) 49938) ((-299 . -385) T) ((-299 . -254) T) ((-299 . -80) 49869) ((-299 . -956) 49821) ((-299 . -961) 49773) ((-299 . -242) T) ((-299 . -198) T) ((-299 . -338) 49727) ((-299 . -116) 49681) ((-299 . -943) 49665) ((-299 . -1172) 49649) ((-299 . -1183) 49633) ((-298 . -276) 49617) ((-298 . -188) 49596) ((-298 . -184) 49569) ((-298 . -187) 49548) ((-298 . -313) 49527) ((-298 . -1052) 49506) ((-298 . -295) 49485) ((-298 . -118) 49464) ((-298 . -550) 49401) ((-298 . -585) 49353) ((-298 . -583) 49290) ((-298 . -102) T) ((-298 . -25) T) ((-298 . -72) T) ((-298 . -1114) T) ((-298 . -547) 49272) ((-298 . -1003) T) ((-298 . -23) T) ((-298 . -21) T) ((-298 . -658) T) ((-298 . -1013) T) ((-298 . -962) T) ((-298 . -954) T) ((-298 . -308) T) ((-298 . -1119) T) ((-298 . -825) T) ((-298 . -489) T) ((-298 . -144) T) ((-298 . -649) 49224) ((-298 . -577) 49176) ((-298 . -38) 49141) ((-298 . -385) T) ((-298 . -254) T) ((-298 . -80) 49072) ((-298 . -956) 49024) ((-298 . -961) 48976) ((-298 . -242) T) ((-298 . -198) T) ((-298 . -338) 48930) ((-298 . -116) 48884) ((-298 . -943) 48868) ((-298 . -1172) 48852) ((-298 . -1183) 48836) ((-297 . -276) 48813) ((-297 . -188) T) ((-297 . -184) 48800) ((-297 . -187) T) ((-297 . -313) T) ((-297 . -1052) T) ((-297 . -295) T) ((-297 . -118) 48782) ((-297 . -550) 48712) ((-297 . -585) 48657) ((-297 . -583) 48587) ((-297 . -102) T) ((-297 . -25) T) ((-297 . -72) T) ((-297 . -1114) T) ((-297 . -547) 48569) ((-297 . -1003) T) ((-297 . -23) T) ((-297 . -21) T) ((-297 . -658) T) ((-297 . -1013) T) ((-297 . -962) T) ((-297 . -954) T) ((-297 . -308) T) ((-297 . -1119) T) ((-297 . -825) T) ((-297 . -489) T) ((-297 . -144) T) ((-297 . -649) 48514) ((-297 . -577) 48459) ((-297 . -38) 48424) ((-297 . -385) T) ((-297 . -254) T) ((-297 . -80) 48341) ((-297 . -956) 48286) ((-297 . -961) 48231) ((-297 . -242) T) ((-297 . -198) T) ((-297 . -338) T) ((-297 . -116) T) ((-297 . -943) 48208) ((-297 . -1172) 48185) ((-297 . -1183) 48162) ((-291 . -276) 48146) ((-291 . -188) 48125) ((-291 . -184) 48098) ((-291 . -187) 48077) ((-291 . -313) 48056) ((-291 . -1052) 48035) ((-291 . -295) 48014) ((-291 . -118) 47993) ((-291 . -550) 47930) ((-291 . -585) 47882) ((-291 . -583) 47819) ((-291 . -102) T) ((-291 . -25) T) ((-291 . -72) T) ((-291 . -1114) T) ((-291 . -547) 47801) ((-291 . -1003) T) ((-291 . -23) T) ((-291 . -21) T) ((-291 . -658) T) ((-291 . -1013) T) ((-291 . -962) T) ((-291 . -954) T) ((-291 . -308) T) ((-291 . -1119) T) ((-291 . -825) T) ((-291 . -489) T) ((-291 . -144) T) ((-291 . -649) 47753) ((-291 . -577) 47705) ((-291 . -38) 47670) ((-291 . -385) T) ((-291 . -254) T) ((-291 . -80) 47601) ((-291 . -956) 47553) ((-291 . -961) 47505) ((-291 . -242) T) ((-291 . -198) T) ((-291 . -338) 47459) ((-291 . -116) 47413) ((-291 . -943) 47397) ((-291 . -1172) 47381) ((-291 . -1183) 47365) ((-290 . -276) 47349) ((-290 . -188) 47328) ((-290 . -184) 47301) ((-290 . -187) 47280) ((-290 . -313) 47259) ((-290 . -1052) 47238) ((-290 . -295) 47217) ((-290 . -118) 47196) ((-290 . -550) 47133) ((-290 . -585) 47085) ((-290 . -583) 47022) ((-290 . -102) T) ((-290 . -25) T) ((-290 . -72) T) ((-290 . -1114) T) ((-290 . -547) 47004) ((-290 . -1003) T) ((-290 . -23) T) ((-290 . -21) T) ((-290 . -658) T) ((-290 . -1013) T) ((-290 . -962) T) ((-290 . -954) T) ((-290 . -308) T) ((-290 . -1119) T) ((-290 . -825) T) ((-290 . -489) T) ((-290 . -144) T) ((-290 . -649) 46956) ((-290 . -577) 46908) ((-290 . -38) 46873) ((-290 . -385) T) ((-290 . -254) T) ((-290 . -80) 46804) ((-290 . -956) 46756) ((-290 . -961) 46708) ((-290 . -242) T) ((-290 . -198) T) ((-290 . -338) 46662) ((-290 . -116) 46616) ((-290 . -943) 46600) ((-290 . -1172) 46584) ((-290 . -1183) 46568) ((-289 . -276) 46545) ((-289 . -188) T) ((-289 . -184) 46532) ((-289 . -187) T) ((-289 . -313) T) ((-289 . -1052) T) ((-289 . -295) T) ((-289 . -118) 46514) ((-289 . -550) 46444) ((-289 . -585) 46389) ((-289 . -583) 46319) ((-289 . -102) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -1114) T) ((-289 . -547) 46301) ((-289 . -1003) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -658) T) ((-289 . -1013) T) ((-289 . -962) T) ((-289 . -954) T) ((-289 . -308) T) ((-289 . -1119) T) ((-289 . -825) T) ((-289 . -489) T) ((-289 . -144) T) ((-289 . -649) 46246) ((-289 . -577) 46191) ((-289 . -38) 46156) ((-289 . -385) T) ((-289 . -254) T) ((-289 . -80) 46073) ((-289 . -956) 46018) ((-289 . -961) 45963) ((-289 . -242) T) ((-289 . -198) T) ((-289 . -338) T) ((-289 . -116) T) ((-289 . -943) 45940) ((-289 . -1172) 45917) ((-289 . -1183) 45894) ((-285 . -276) 45871) ((-285 . -188) T) ((-285 . -184) 45858) ((-285 . -187) T) ((-285 . -313) T) ((-285 . -1052) T) ((-285 . -295) T) ((-285 . -118) 45840) ((-285 . -550) 45770) ((-285 . -585) 45715) ((-285 . -583) 45645) ((-285 . -102) T) ((-285 . -25) T) ((-285 . -72) T) ((-285 . -1114) T) ((-285 . -547) 45627) ((-285 . -1003) T) ((-285 . -23) T) ((-285 . -21) T) ((-285 . -658) T) ((-285 . -1013) T) ((-285 . -962) T) ((-285 . -954) T) ((-285 . -308) T) ((-285 . -1119) T) ((-285 . -825) T) ((-285 . -489) T) ((-285 . -144) T) ((-285 . -649) 45572) ((-285 . -577) 45517) ((-285 . -38) 45482) ((-285 . -385) T) ((-285 . -254) T) ((-285 . -80) 45399) ((-285 . -956) 45344) ((-285 . -961) 45289) ((-285 . -242) T) ((-285 . -198) T) ((-285 . -338) T) ((-285 . -116) T) ((-285 . -943) 45266) ((-285 . -1172) 45243) ((-285 . -1183) 45220) ((-279 . -282) 45189) ((-279 . -102) T) ((-279 . -25) T) ((-279 . -72) T) ((-279 . -1114) T) ((-279 . -547) 45171) ((-279 . -1003) T) ((-279 . -23) T) ((-279 . -583) 45153) ((-279 . -21) T) ((-278 . -1003) T) ((-278 . -547) 45135) ((-278 . -1114) T) ((-278 . -72) T) ((-277 . -749) T) ((-277 . -547) 45117) ((-277 . -1003) T) ((-277 . -72) T) ((-277 . -1114) T) ((-277 . -752) T) ((-274 . -19) 45101) ((-274 . -588) 45085) ((-274 . -240) 45062) ((-274 . -238) 45014) ((-274 . -533) 44991) ((-274 . -548) 44952) ((-274 . -422) 44936) ((-274 . -1003) 44889) ((-274 . -447) 44822) ((-274 . -256) 44760) ((-274 . -547) 44675) ((-274 . -72) 44609) ((-274 . -1114) T) ((-274 . -34) T) ((-274 . -122) 44593) ((-274 . -749) 44572) ((-274 . -752) 44551) ((-274 . -317) 44535) ((-274 . -234) 44519) ((-271 . -270) 44496) ((-271 . -550) 44480) ((-271 . -943) 44464) ((-271 . -23) T) ((-271 . -1003) T) ((-271 . -547) 44446) ((-271 . -1114) T) ((-271 . -72) T) ((-271 . -25) T) ((-271 . -102) T) ((-269 . -21) T) ((-269 . -583) 44428) ((-269 . -23) T) ((-269 . -1003) T) ((-269 . -547) 44410) ((-269 . -1114) T) ((-269 . -72) T) ((-269 . -25) T) ((-269 . -102) T) ((-269 . -649) 44392) ((-269 . -577) 44374) ((-269 . -585) 44356) ((-269 . -961) 44338) ((-269 . -956) 44320) ((-269 . -80) 44295) ((-269 . -270) 44272) ((-269 . -550) 44256) ((-269 . -943) 44240) ((-269 . -749) 44219) ((-269 . -752) 44198) ((-266 . -1147) 44182) ((-266 . -188) 44134) ((-266 . -184) 44080) ((-266 . -187) 44032) ((-266 . -238) 43990) ((-266 . -802) 43896) ((-266 . -799) 43800) ((-266 . -804) 43706) ((-266 . -879) 43669) ((-266 . -38) 43516) ((-266 . -80) 43336) ((-266 . -956) 43177) ((-266 . -961) 43018) ((-266 . -583) 42903) ((-266 . -585) 42803) ((-266 . -577) 42650) ((-266 . -649) 42497) ((-266 . -550) 42329) ((-266 . -116) 42308) ((-266 . -118) 42287) ((-266 . -47) 42257) ((-266 . -1143) 42227) ((-266 . -35) 42193) ((-266 . -66) 42159) ((-266 . -236) 42125) ((-266 . -426) 42091) ((-266 . -1103) 42057) ((-266 . -1100) 42023) ((-266 . -908) 41989) ((-266 . -198) 41968) ((-266 . -242) 41922) ((-266 . -102) T) ((-266 . -25) T) ((-266 . -72) T) ((-266 . -1114) T) ((-266 . -547) 41904) ((-266 . -1003) T) ((-266 . -23) T) ((-266 . -21) T) ((-266 . -954) T) ((-266 . -962) T) ((-266 . -1013) T) ((-266 . -658) T) ((-266 . -254) 41883) ((-266 . -385) 41862) ((-266 . -144) 41796) ((-266 . -489) 41750) ((-266 . -825) 41729) ((-266 . -1119) 41708) ((-266 . -308) 41687) ((-266 . -709) T) ((-266 . -749) T) ((-266 . -752) T) ((-266 . -711) T) ((-261 . -357) 41671) ((-261 . -550) 41246) ((-261 . -943) 40917) ((-261 . -548) 40778) ((-261 . -787) 40762) ((-261 . -804) 40729) ((-261 . -799) 40694) ((-261 . -802) 40661) ((-261 . -406) 40640) ((-261 . -348) 40624) ((-261 . -789) 40549) ((-261 . -336) 40533) ((-261 . -575) 40441) ((-261 . -585) 40179) ((-261 . -322) 40149) ((-261 . -198) 40128) ((-261 . -80) 40017) ((-261 . -956) 39927) ((-261 . -961) 39837) ((-261 . -242) 39816) ((-261 . -649) 39726) ((-261 . -577) 39636) ((-261 . -583) 39303) ((-261 . -38) 39213) ((-261 . -254) 39192) ((-261 . -385) 39171) ((-261 . -144) 39150) ((-261 . -489) 39129) ((-261 . -825) 39108) ((-261 . -1119) 39087) ((-261 . -308) 39066) ((-261 . -256) 39053) ((-261 . -447) 39019) ((-261 . -250) T) ((-261 . -118) 38998) ((-261 . -116) 38977) ((-261 . -954) 38871) ((-261 . -962) 38765) ((-261 . -1013) 38618) ((-261 . -658) 38471) ((-261 . -102) 38346) ((-261 . -25) 38202) ((-261 . -72) T) ((-261 . -1114) T) ((-261 . -547) 38184) ((-261 . -1003) T) ((-261 . -23) 38040) ((-261 . -21) 37915) ((-261 . -29) 37885) ((-261 . -908) 37864) ((-261 . -27) 37843) ((-261 . -1100) 37822) ((-261 . -1103) 37801) ((-261 . -426) 37780) ((-261 . -236) 37759) ((-261 . -66) 37738) ((-261 . -35) 37717) ((-261 . -131) 37696) ((-261 . -114) 37675) ((-261 . -564) 37654) ((-261 . -864) 37633) ((-261 . -1039) 37612) ((-260 . -897) 37573) ((-260 . -1052) NIL) ((-260 . -943) 37503) ((-260 . -550) 37386) ((-260 . -548) NIL) ((-260 . -926) NIL) ((-260 . -814) NIL) ((-260 . -787) 37347) ((-260 . -748) NIL) ((-260 . -714) NIL) ((-260 . -711) NIL) ((-260 . -752) NIL) ((-260 . -749) NIL) ((-260 . -709) NIL) ((-260 . -707) NIL) ((-260 . -733) NIL) ((-260 . -789) NIL) ((-260 . -336) 37308) ((-260 . -575) 37269) ((-260 . -585) 37198) ((-260 . -322) 37159) ((-260 . -238) 37025) ((-260 . -256) 36921) ((-260 . -447) 36672) ((-260 . -284) 36633) ((-260 . -198) T) ((-260 . -80) 36518) ((-260 . -956) 36447) ((-260 . -961) 36376) ((-260 . -242) T) ((-260 . -649) 36305) ((-260 . -577) 36234) ((-260 . -583) 36148) ((-260 . -38) 36077) ((-260 . -254) T) ((-260 . -385) T) ((-260 . -144) T) ((-260 . -489) T) ((-260 . -825) T) ((-260 . -1119) T) ((-260 . -308) T) ((-260 . -188) NIL) ((-260 . -184) NIL) ((-260 . -187) NIL) ((-260 . -222) 36038) ((-260 . -799) NIL) ((-260 . -804) NIL) ((-260 . -802) NIL) ((-260 . -182) 35999) ((-260 . -118) 35955) ((-260 . -116) 35911) ((-260 . -102) T) ((-260 . -25) T) ((-260 . -72) T) ((-260 . -1114) T) ((-260 . -547) 35893) ((-260 . -1003) T) ((-260 . -23) T) ((-260 . -21) T) ((-260 . -954) T) ((-260 . -962) T) ((-260 . -1013) T) ((-260 . -658) T) ((-259 . -986) T) ((-259 . -423) 35874) ((-259 . -547) 35840) ((-259 . -550) 35821) ((-259 . -1003) T) ((-259 . -1114) T) ((-259 . -72) T) ((-259 . -64) T) ((-258 . -1003) T) ((-258 . -547) 35803) ((-258 . -1114) T) ((-258 . -72) T) ((-247 . -1092) 35782) ((-247 . -181) 35730) ((-247 . -76) 35678) ((-247 . -256) 35476) ((-247 . -447) 35228) ((-247 . -422) 35163) ((-247 . -122) 35111) ((-247 . -548) NIL) ((-247 . -190) 35059) ((-247 . -544) 35038) ((-247 . -240) 35017) ((-247 . -1114) T) ((-247 . -238) 34996) ((-247 . -1003) T) ((-247 . -547) 34978) ((-247 . -72) T) ((-247 . -34) T) ((-247 . -533) 34957) ((-245 . -1114) T) ((-245 . -447) 34906) ((-245 . -1003) 34692) ((-245 . -547) 34438) ((-245 . -72) 34224) ((-245 . -25) 34092) ((-245 . -21) 33979) ((-245 . -583) 33726) ((-245 . -23) 33613) ((-245 . -102) 33500) ((-245 . -1013) 33385) ((-245 . -658) 33291) ((-245 . -406) 33270) ((-245 . -954) 33216) ((-245 . -962) 33162) ((-245 . -585) 33030) ((-245 . -550) 32965) ((-245 . -80) 32885) ((-245 . -956) 32810) ((-245 . -961) 32735) ((-245 . -649) 32680) ((-245 . -577) 32625) ((-245 . -802) 32584) ((-245 . -799) 32541) ((-245 . -804) 32500) ((-245 . -1172) 32470) ((-243 . -547) 32452) ((-241 . -254) T) ((-241 . -385) T) ((-241 . -38) 32439) ((-241 . -550) 32411) ((-241 . -658) T) ((-241 . -1013) T) ((-241 . -962) T) ((-241 . -954) T) ((-241 . -80) 32396) ((-241 . -956) 32383) ((-241 . -961) 32370) ((-241 . -21) T) ((-241 . -583) 32342) ((-241 . -23) T) ((-241 . -1003) T) ((-241 . -547) 32324) ((-241 . -1114) T) ((-241 . -72) T) ((-241 . -25) T) ((-241 . -102) T) ((-241 . -585) 32311) ((-241 . -577) 32298) ((-241 . -649) 32285) ((-241 . -144) T) ((-241 . -242) T) ((-241 . -489) T) ((-241 . -825) T) ((-241 . -238) 32264) ((-232 . -547) 32246) ((-231 . -547) 32228) ((-226 . -749) T) ((-226 . -547) 32210) ((-226 . -1003) T) ((-226 . -72) T) ((-226 . -1114) T) ((-226 . -752) T) ((-223 . -210) 32172) ((-223 . -550) 31932) ((-223 . -943) 31778) ((-223 . -548) 31526) ((-223 . -273) 31498) ((-223 . -348) 31482) ((-223 . -38) 31334) ((-223 . -80) 31159) ((-223 . -956) 31005) ((-223 . -961) 30851) ((-223 . -583) 30761) ((-223 . -585) 30650) ((-223 . -577) 30502) ((-223 . -649) 30354) ((-223 . -116) 30333) ((-223 . -118) 30312) ((-223 . -144) 30226) ((-223 . -489) 30160) ((-223 . -242) 30094) ((-223 . -47) 30066) ((-223 . -322) 30050) ((-223 . -575) 29998) ((-223 . -385) 29952) ((-223 . -447) 29843) ((-223 . -802) 29789) ((-223 . -799) 29698) ((-223 . -804) 29611) ((-223 . -789) 29470) ((-223 . -814) 29449) ((-223 . -1119) 29428) ((-223 . -854) 29395) ((-223 . -256) 29382) ((-223 . -188) 29361) ((-223 . -102) T) ((-223 . -25) T) ((-223 . -72) T) ((-223 . -547) 29343) ((-223 . -1003) T) ((-223 . -23) T) ((-223 . -21) T) ((-223 . -658) T) ((-223 . -1013) T) ((-223 . -962) T) ((-223 . -954) T) ((-223 . -184) 29291) ((-223 . -1114) T) ((-223 . -187) 29245) ((-223 . -222) 29229) ((-223 . -182) 29213) ((-218 . -1003) T) ((-218 . -547) 29195) ((-218 . -1114) T) ((-218 . -72) T) ((-208 . -193) 29174) ((-208 . -1172) 29144) ((-208 . -714) 29123) ((-208 . -711) 29102) ((-208 . -752) 29056) ((-208 . -749) 29010) ((-208 . -709) 28989) ((-208 . -710) 28968) ((-208 . -649) 28913) ((-208 . -577) 28838) ((-208 . -240) 28815) ((-208 . -238) 28792) ((-208 . -422) 28776) ((-208 . -447) 28709) ((-208 . -256) 28647) ((-208 . -34) T) ((-208 . -533) 28624) ((-208 . -943) 28453) ((-208 . -550) 28257) ((-208 . -348) 28226) ((-208 . -575) 28134) ((-208 . -585) 27960) ((-208 . -322) 27930) ((-208 . -313) 27909) ((-208 . -188) 27862) ((-208 . -583) 27715) ((-208 . -658) 27694) ((-208 . -1013) 27673) ((-208 . -962) 27652) ((-208 . -954) 27631) ((-208 . -184) 27527) ((-208 . -187) 27429) ((-208 . -222) 27399) ((-208 . -799) 27271) ((-208 . -804) 27145) ((-208 . -802) 27078) ((-208 . -182) 27048) ((-208 . -547) 27009) ((-208 . -961) 26934) ((-208 . -956) 26839) ((-208 . -80) 26759) ((-208 . -102) T) ((-208 . -25) T) ((-208 . -72) T) ((-208 . -1114) T) ((-208 . -1003) T) ((-208 . -23) T) ((-208 . -21) T) ((-207 . -193) 26738) ((-207 . -1172) 26708) ((-207 . -714) 26687) ((-207 . -711) 26666) ((-207 . -752) 26620) ((-207 . -749) 26574) ((-207 . -709) 26553) ((-207 . -710) 26532) ((-207 . -649) 26477) ((-207 . -577) 26402) ((-207 . -240) 26379) ((-207 . -238) 26356) ((-207 . -422) 26340) ((-207 . -447) 26273) ((-207 . -256) 26211) ((-207 . -34) T) ((-207 . -533) 26188) ((-207 . -943) 26017) ((-207 . -550) 25821) ((-207 . -348) 25790) ((-207 . -575) 25698) ((-207 . -585) 25511) ((-207 . -322) 25481) ((-207 . -313) 25460) ((-207 . -188) 25413) ((-207 . -583) 25253) ((-207 . -658) 25232) ((-207 . -1013) 25211) ((-207 . -962) 25190) ((-207 . -954) 25169) ((-207 . -184) 25065) ((-207 . -187) 24967) ((-207 . -222) 24937) ((-207 . -799) 24809) ((-207 . -804) 24683) ((-207 . -802) 24616) ((-207 . -182) 24586) ((-207 . -547) 24547) ((-207 . -961) 24472) ((-207 . -956) 24377) ((-207 . -80) 24297) ((-207 . -102) T) ((-207 . -25) T) ((-207 . -72) T) ((-207 . -1114) T) ((-207 . -1003) T) ((-207 . -23) T) ((-207 . -21) T) ((-206 . -1003) T) ((-206 . -547) 24279) ((-206 . -1114) T) ((-206 . -72) T) ((-206 . -238) 24253) ((-205 . -158) T) ((-205 . -1003) T) ((-205 . -547) 24220) ((-205 . -1114) T) ((-205 . -72) T) ((-205 . -740) 24202) ((-204 . -1003) T) ((-204 . -547) 24184) ((-204 . -1114) T) ((-204 . -72) T) ((-203 . -854) 24129) ((-203 . -550) 23921) ((-203 . -943) 23799) ((-203 . -1119) 23778) ((-203 . -814) 23757) ((-203 . -789) NIL) ((-203 . -804) 23734) ((-203 . -799) 23709) ((-203 . -802) 23686) ((-203 . -447) 23624) ((-203 . -385) 23578) ((-203 . -575) 23526) ((-203 . -585) 23415) ((-203 . -322) 23399) ((-203 . -47) 23356) ((-203 . -38) 23208) ((-203 . -577) 23060) ((-203 . -649) 22912) ((-203 . -242) 22846) ((-203 . -489) 22780) ((-203 . -80) 22605) ((-203 . -956) 22451) ((-203 . -961) 22297) ((-203 . -144) 22211) ((-203 . -118) 22190) ((-203 . -116) 22169) ((-203 . -583) 22079) ((-203 . -102) T) ((-203 . -25) T) ((-203 . -72) T) ((-203 . -1114) T) ((-203 . -547) 22061) ((-203 . -1003) T) ((-203 . -23) T) ((-203 . -21) T) ((-203 . -954) T) ((-203 . -962) T) ((-203 . -1013) T) ((-203 . -658) T) ((-203 . -348) 22045) ((-203 . -273) 22002) ((-203 . -256) 21989) ((-203 . -548) 21850) ((-200 . -603) 21834) ((-200 . -1153) 21818) ((-200 . -916) 21802) ((-200 . -1050) 21786) ((-200 . -749) 21765) ((-200 . -752) 21744) ((-200 . -317) 21728) ((-200 . -588) 21712) ((-200 . -240) 21689) ((-200 . -238) 21641) ((-200 . -533) 21618) ((-200 . -548) 21579) ((-200 . -422) 21563) ((-200 . -1003) 21516) ((-200 . -447) 21449) ((-200 . -256) 21387) ((-200 . -547) 21282) ((-200 . -72) 21216) ((-200 . -1114) T) ((-200 . -34) T) ((-200 . -122) 21200) ((-200 . -234) 21184) ((-200 . -423) 21161) ((-200 . -550) 21138) ((-194 . -193) 21117) ((-194 . -1172) 21087) ((-194 . -714) 21066) ((-194 . -711) 21045) ((-194 . -752) 20999) ((-194 . -749) 20953) ((-194 . -709) 20932) ((-194 . -710) 20911) ((-194 . -649) 20856) ((-194 . -577) 20781) ((-194 . -240) 20758) ((-194 . -238) 20735) ((-194 . -422) 20719) ((-194 . -447) 20652) ((-194 . -256) 20590) ((-194 . -34) T) ((-194 . -533) 20567) ((-194 . -943) 20396) ((-194 . -550) 20200) ((-194 . -348) 20169) ((-194 . -575) 20077) ((-194 . -585) 19916) ((-194 . -322) 19886) ((-194 . -313) 19865) ((-194 . -188) 19818) ((-194 . -583) 19606) ((-194 . -658) 19585) ((-194 . -1013) 19564) ((-194 . -962) 19543) ((-194 . -954) 19522) ((-194 . -184) 19418) ((-194 . -187) 19320) ((-194 . -222) 19290) ((-194 . -799) 19162) ((-194 . -804) 19036) ((-194 . -802) 18969) ((-194 . -182) 18939) ((-194 . -547) 18636) ((-194 . -961) 18561) ((-194 . -956) 18466) ((-194 . -80) 18386) ((-194 . -102) 18261) ((-194 . -25) 18098) ((-194 . -72) 17835) ((-194 . -1114) T) ((-194 . -1003) 17591) ((-194 . -23) 17447) ((-194 . -21) 17362) ((-179 . -622) 17320) ((-179 . -422) 17304) ((-179 . -1003) 17282) ((-179 . -447) 17215) ((-179 . -256) 17153) ((-179 . -547) 17088) ((-179 . -72) 17042) ((-179 . -1114) T) ((-179 . -34) T) ((-179 . -57) 17000) ((-177 . -340) T) ((-177 . -118) T) ((-177 . -550) 16950) ((-177 . -585) 16915) ((-177 . -583) 16865) ((-177 . -102) T) ((-177 . -25) T) ((-177 . -72) T) ((-177 . -1114) T) ((-177 . -547) 16847) ((-177 . -1003) T) ((-177 . -23) T) ((-177 . -21) T) ((-177 . -658) T) ((-177 . -1013) T) ((-177 . -962) T) ((-177 . -954) T) ((-177 . -548) 16777) ((-177 . -308) T) ((-177 . -1119) T) ((-177 . -825) T) ((-177 . -489) T) ((-177 . -144) T) ((-177 . -649) 16742) ((-177 . -577) 16707) ((-177 . -38) 16672) ((-177 . -385) T) ((-177 . -254) T) ((-177 . -80) 16621) ((-177 . -956) 16586) ((-177 . -961) 16551) ((-177 . -242) T) ((-177 . -198) T) ((-177 . -748) T) ((-177 . -714) T) ((-177 . -711) T) ((-177 . -752) T) ((-177 . -749) T) ((-177 . -709) T) ((-177 . -707) T) ((-177 . -789) 16533) ((-177 . -908) T) ((-177 . -926) T) ((-177 . -943) 16493) ((-177 . -965) T) ((-177 . -188) T) ((-177 . -184) 16480) ((-177 . -187) T) ((-177 . -1100) T) ((-177 . -1103) T) ((-177 . -426) T) ((-177 . -236) T) ((-177 . -66) T) ((-177 . -35) T) ((-175 . -555) 16457) ((-175 . -550) 16419) ((-175 . -585) 16386) ((-175 . -583) 16338) ((-175 . -658) T) ((-175 . -1013) T) ((-175 . -962) T) ((-175 . -954) T) ((-175 . -21) T) ((-175 . -23) T) ((-175 . -1003) T) ((-175 . -547) 16320) ((-175 . -1114) T) ((-175 . -72) T) ((-175 . -25) T) ((-175 . -102) T) ((-175 . -943) 16297) ((-174 . -211) 16281) ((-174 . -1021) 16265) ((-174 . -76) 16249) ((-174 . -34) T) ((-174 . -1114) T) ((-174 . -72) 16203) ((-174 . -547) 16138) ((-174 . -256) 16076) ((-174 . -447) 16009) ((-174 . -1003) 15987) ((-174 . -422) 15971) ((-174 . -901) 15955) ((-170 . -986) T) ((-170 . -423) 15936) ((-170 . -547) 15902) ((-170 . -550) 15883) ((-170 . -1003) T) ((-170 . -1114) T) ((-170 . -72) T) ((-170 . -64) T) ((-169 . -897) 15865) ((-169 . -1052) T) ((-169 . -550) 15815) ((-169 . -943) 15775) ((-169 . -548) 15705) ((-169 . -926) T) ((-169 . -814) NIL) ((-169 . -787) 15687) ((-169 . -748) T) ((-169 . -714) T) ((-169 . -711) T) ((-169 . -752) T) ((-169 . -749) T) ((-169 . -709) T) ((-169 . -707) T) ((-169 . -733) T) ((-169 . -789) 15669) ((-169 . -336) 15651) ((-169 . -575) 15633) ((-169 . -322) 15615) ((-169 . -238) NIL) ((-169 . -256) NIL) ((-169 . -447) NIL) ((-169 . -284) 15597) ((-169 . -198) T) ((-169 . -80) 15524) ((-169 . -956) 15474) ((-169 . -961) 15424) ((-169 . -242) T) ((-169 . -649) 15374) ((-169 . -577) 15324) ((-169 . -585) 15274) ((-169 . -583) 15224) ((-169 . -38) 15174) ((-169 . -254) T) ((-169 . -385) T) ((-169 . -144) T) ((-169 . -489) T) ((-169 . -825) T) ((-169 . -1119) T) ((-169 . -308) T) ((-169 . -188) T) ((-169 . -184) 15161) ((-169 . -187) T) ((-169 . -222) 15143) ((-169 . -799) NIL) ((-169 . -804) NIL) ((-169 . -802) NIL) ((-169 . -182) 15125) ((-169 . -118) T) ((-169 . -116) NIL) ((-169 . -102) T) ((-169 . -25) T) ((-169 . -72) T) ((-169 . -1114) T) ((-169 . -547) 15067) ((-169 . -1003) T) ((-169 . -23) T) ((-169 . -21) T) ((-169 . -954) T) ((-169 . -962) T) ((-169 . -1013) T) ((-169 . -658) T) ((-166 . -745) T) ((-166 . -752) T) ((-166 . -749) T) ((-166 . -1003) T) ((-166 . -547) 15049) ((-166 . -1114) T) ((-166 . -72) T) ((-166 . -313) T) ((-165 . -1003) T) ((-165 . -547) 15031) ((-165 . -1114) T) ((-165 . -72) T) ((-165 . -550) 15008) ((-164 . -1003) T) ((-164 . -547) 14990) ((-164 . -1114) T) ((-164 . -72) T) ((-159 . -1003) T) ((-159 . -547) 14972) ((-159 . -1114) T) ((-159 . -72) T) ((-156 . -1003) T) ((-156 . -547) 14954) ((-156 . -1114) T) ((-156 . -72) T) ((-155 . -158) T) ((-155 . -1003) T) ((-155 . -547) 14936) ((-155 . -1114) T) ((-155 . -72) T) ((-155 . -740) 14918) ((-152 . -986) T) ((-152 . -423) 14899) ((-152 . -547) 14865) ((-152 . -550) 14846) ((-152 . -1003) T) ((-152 . -1114) T) ((-152 . -72) T) ((-152 . -64) T) ((-147 . -547) 14828) ((-146 . -38) 14760) ((-146 . -550) 14677) ((-146 . -585) 14609) ((-146 . -583) 14526) ((-146 . -658) T) ((-146 . -1013) T) ((-146 . -962) T) ((-146 . -954) T) ((-146 . -80) 14425) ((-146 . -956) 14357) ((-146 . -961) 14289) ((-146 . -21) T) ((-146 . -23) T) ((-146 . -1003) T) ((-146 . -547) 14271) ((-146 . -1114) T) ((-146 . -72) T) ((-146 . -25) T) ((-146 . -102) T) ((-146 . -577) 14203) ((-146 . -649) 14135) ((-146 . -308) T) ((-146 . -1119) T) ((-146 . -825) T) ((-146 . -489) T) ((-146 . -144) T) ((-146 . -385) T) ((-146 . -254) T) ((-146 . -242) T) ((-146 . -198) T) ((-143 . -1003) T) ((-143 . -547) 14117) ((-143 . -1114) T) ((-143 . -72) T) ((-140 . -137) 14101) ((-140 . -35) 14079) ((-140 . -66) 14057) ((-140 . -236) 14035) ((-140 . -426) 14013) ((-140 . -1103) 13991) ((-140 . -1100) 13969) ((-140 . -908) 13921) ((-140 . -814) 13874) ((-140 . -548) 13642) ((-140 . -787) 13626) ((-140 . -313) 13580) ((-140 . -295) 13559) ((-140 . -1052) 13538) ((-140 . -338) 13517) ((-140 . -346) 13488) ((-140 . -38) 13322) ((-140 . -80) 13214) ((-140 . -956) 13127) ((-140 . -961) 13040) ((-140 . -577) 12874) ((-140 . -649) 12708) ((-140 . -315) 12679) ((-140 . -656) 12650) ((-140 . -943) 12548) ((-140 . -550) 12333) ((-140 . -348) 12317) ((-140 . -789) 12242) ((-140 . -336) 12226) ((-140 . -575) 12174) ((-140 . -585) 12051) ((-140 . -583) 11949) ((-140 . -322) 11933) ((-140 . -238) 11891) ((-140 . -256) 11856) ((-140 . -447) 11768) ((-140 . -284) 11752) ((-140 . -198) 11706) ((-140 . -1119) 11614) ((-140 . -308) 11568) ((-140 . -825) 11502) ((-140 . -489) 11416) ((-140 . -242) 11330) ((-140 . -385) 11264) ((-140 . -254) 11198) ((-140 . -188) 11152) ((-140 . -184) 11080) ((-140 . -187) 11014) ((-140 . -222) 10998) ((-140 . -799) 10922) ((-140 . -804) 10848) ((-140 . -802) 10807) ((-140 . -182) 10791) ((-140 . -144) T) ((-140 . -118) 10770) ((-140 . -954) T) ((-140 . -962) T) ((-140 . -1013) T) ((-140 . -658) T) ((-140 . -21) T) ((-140 . -23) T) ((-140 . -1003) T) ((-140 . -547) 10752) ((-140 . -1114) T) ((-140 . -72) T) ((-140 . -25) T) ((-140 . -102) T) ((-140 . -116) 10706) ((-133 . -986) T) ((-133 . -423) 10687) ((-133 . -547) 10653) ((-133 . -550) 10634) ((-133 . -1003) T) ((-133 . -1114) T) ((-133 . -72) T) ((-133 . -64) T) ((-132 . -1003) T) ((-132 . -547) 10616) ((-132 . -1114) T) ((-132 . -72) T) ((-128 . -25) T) ((-128 . -72) T) ((-128 . -1114) T) ((-128 . -547) 10598) ((-128 . -1003) T) ((-127 . -986) T) ((-127 . -423) 10579) ((-127 . -547) 10545) ((-127 . -550) 10526) ((-127 . -1003) T) ((-127 . -1114) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -986) T) ((-125 . -423) 10507) ((-125 . -547) 10473) ((-125 . -550) 10454) ((-125 . -1003) T) ((-125 . -1114) T) ((-125 . -72) T) ((-125 . -64) T) ((-123 . -954) T) ((-123 . -962) T) ((-123 . -1013) T) ((-123 . -658) T) ((-123 . -21) T) ((-123 . -583) 10413) ((-123 . -23) T) ((-123 . -1003) T) ((-123 . -547) 10395) ((-123 . -1114) T) ((-123 . -72) T) ((-123 . -25) T) ((-123 . -102) T) ((-123 . -585) 10369) ((-123 . -550) 10338) ((-123 . -38) 10322) ((-123 . -80) 10301) ((-123 . -956) 10285) ((-123 . -961) 10269) ((-123 . -577) 10253) ((-123 . -649) 10237) ((-123 . -1172) 10221) ((-115 . -745) T) ((-115 . -752) T) ((-115 . -749) T) ((-115 . -1003) T) ((-115 . -547) 10203) ((-115 . -1114) T) ((-115 . -72) T) ((-115 . -313) T) ((-112 . -1003) T) ((-112 . -547) 10185) ((-112 . -1114) T) ((-112 . -72) T) ((-112 . -548) 10144) ((-112 . -362) 10126) ((-112 . -1001) 10108) ((-112 . -313) T) ((-112 . -190) 10090) ((-112 . -122) 10072) ((-112 . -422) 10054) ((-112 . -447) NIL) ((-112 . -256) NIL) ((-112 . -34) T) ((-112 . -76) 10036) ((-112 . -181) 10018) ((-111 . -547) 10000) ((-110 . -158) T) ((-110 . -1003) T) ((-110 . -547) 9967) ((-110 . -1114) T) ((-110 . -72) T) ((-110 . -740) 9949) ((-109 . -986) T) ((-109 . -423) 9930) ((-109 . -547) 9896) ((-109 . -550) 9877) ((-109 . -1003) T) ((-109 . -1114) T) ((-109 . -72) T) ((-109 . -64) T) ((-108 . -986) T) ((-108 . -423) 9858) ((-108 . -547) 9824) ((-108 . -550) 9805) ((-108 . -1003) T) ((-108 . -1114) T) ((-108 . -72) T) ((-108 . -64) T) ((-106 . -398) 9782) ((-106 . -550) 9678) ((-106 . -943) 9662) ((-106 . -1003) T) ((-106 . -547) 9644) ((-106 . -1114) T) ((-106 . -72) T) ((-106 . -403) 9599) ((-106 . -238) 9576) ((-105 . -749) T) ((-105 . -547) 9558) ((-105 . -1003) T) ((-105 . -72) T) ((-105 . -1114) T) ((-105 . -752) T) ((-105 . -23) T) ((-105 . -25) T) ((-105 . -658) T) ((-105 . -1013) T) ((-105 . -943) 9540) ((-105 . -550) 9522) ((-104 . -986) T) ((-104 . -423) 9503) ((-104 . -547) 9469) ((-104 . -550) 9450) ((-104 . -1003) T) ((-104 . -1114) T) ((-104 . -72) T) ((-104 . -64) T) ((-101 . -1003) T) ((-101 . -547) 9432) ((-101 . -1114) T) ((-101 . -72) T) ((-100 . -19) 9415) ((-100 . -588) 9398) ((-100 . -240) 9374) ((-100 . -238) 9325) ((-100 . -533) 9301) ((-100 . -548) NIL) ((-100 . -422) 9284) ((-100 . -1003) T) ((-100 . -447) NIL) ((-100 . -256) NIL) ((-100 . -547) 9229) ((-100 . -72) T) ((-100 . -1114) T) ((-100 . -34) T) ((-100 . -122) 9212) ((-100 . -749) T) ((-100 . -752) T) ((-100 . -317) 9195) ((-99 . -745) T) ((-99 . -752) T) ((-99 . -749) T) ((-99 . -1003) T) ((-99 . -547) 9177) ((-99 . -1114) T) ((-99 . -72) T) ((-99 . -313) T) ((-99 . -599) T) ((-98 . -96) 9161) ((-98 . -916) 9145) ((-98 . -34) T) ((-98 . -1114) T) ((-98 . -72) 9099) ((-98 . -547) 9034) ((-98 . -256) 8972) ((-98 . -447) 8905) ((-98 . -1003) 8883) ((-98 . -422) 8867) ((-98 . -90) 8851) ((-97 . -96) 8835) ((-97 . -916) 8819) ((-97 . -34) T) ((-97 . -1114) T) ((-97 . -72) 8773) ((-97 . -547) 8708) ((-97 . -256) 8646) ((-97 . -447) 8579) ((-97 . -1003) 8557) ((-97 . -422) 8541) ((-97 . -90) 8525) ((-92 . -96) 8509) ((-92 . -916) 8493) ((-92 . -34) T) ((-92 . -1114) T) ((-92 . -72) 8447) ((-92 . -547) 8382) ((-92 . -256) 8320) ((-92 . -447) 8253) ((-92 . -1003) 8231) ((-92 . -422) 8215) ((-92 . -90) 8199) ((-88 . -897) 8177) ((-88 . -1052) NIL) ((-88 . -943) 8155) ((-88 . -550) 8086) ((-88 . -548) NIL) ((-88 . -926) NIL) ((-88 . -814) NIL) ((-88 . -787) 8064) ((-88 . -748) NIL) ((-88 . -714) NIL) ((-88 . -711) NIL) ((-88 . -752) NIL) ((-88 . -749) NIL) ((-88 . -709) NIL) ((-88 . -707) NIL) ((-88 . -733) NIL) ((-88 . -789) NIL) ((-88 . -336) 8042) ((-88 . -575) 8020) ((-88 . -585) 7966) ((-88 . -322) 7944) ((-88 . -238) 7878) ((-88 . -256) 7825) ((-88 . -447) 7695) ((-88 . -284) 7673) ((-88 . -198) T) ((-88 . -80) 7592) ((-88 . -956) 7538) ((-88 . -961) 7484) ((-88 . -242) T) ((-88 . -649) 7430) ((-88 . -577) 7376) ((-88 . -583) 7307) ((-88 . -38) 7253) ((-88 . -254) T) ((-88 . -385) T) ((-88 . -144) T) ((-88 . -489) T) ((-88 . -825) T) ((-88 . -1119) T) ((-88 . -308) T) ((-88 . -188) NIL) ((-88 . -184) NIL) ((-88 . -187) NIL) ((-88 . -222) 7231) ((-88 . -799) NIL) ((-88 . -804) NIL) ((-88 . -802) NIL) ((-88 . -182) 7209) ((-88 . -118) T) ((-88 . -116) NIL) ((-88 . -102) T) ((-88 . -25) T) ((-88 . -72) T) ((-88 . -1114) T) ((-88 . -547) 7191) ((-88 . -1003) T) ((-88 . -23) T) ((-88 . -21) T) ((-88 . -954) T) ((-88 . -962) T) ((-88 . -1013) T) ((-88 . -658) T) ((-87 . -772) 7175) ((-87 . -825) T) ((-87 . -489) T) ((-87 . -242) T) ((-87 . -144) T) ((-87 . -550) 7147) ((-87 . -649) 7134) ((-87 . -577) 7121) ((-87 . -961) 7108) ((-87 . -956) 7095) ((-87 . -80) 7080) ((-87 . -38) 7067) ((-87 . -385) T) ((-87 . -254) T) ((-87 . -954) T) ((-87 . -962) T) ((-87 . -1013) T) ((-87 . -658) T) ((-87 . -21) T) ((-87 . -583) 7039) ((-87 . -23) T) ((-87 . -1003) T) ((-87 . -547) 7021) ((-87 . -1114) T) ((-87 . -72) T) ((-87 . -25) T) ((-87 . -102) T) ((-87 . -585) 7008) ((-87 . -118) T) ((-84 . -749) T) ((-84 . -547) 6990) ((-84 . -1003) T) ((-84 . -72) T) ((-84 . -1114) T) ((-84 . -752) T) ((-84 . -740) 6971) ((-83 . -745) T) ((-83 . -752) T) ((-83 . -749) T) ((-83 . -1003) T) ((-83 . -547) 6953) ((-83 . -1114) T) ((-83 . -72) T) ((-83 . -313) T) ((-83 . -873) T) ((-83 . -599) T) ((-83 . -82) T) ((-83 . -548) 6935) ((-79 . -94) T) ((-79 . -317) 6918) ((-79 . -752) T) ((-79 . -749) T) ((-79 . -122) 6901) ((-79 . -34) T) ((-79 . -72) T) ((-79 . -547) 6883) ((-79 . -256) NIL) ((-79 . -447) NIL) ((-79 . -1003) T) ((-79 . -422) 6866) ((-79 . -548) 6848) ((-79 . -238) 6799) ((-79 . -533) 6775) ((-79 . -240) 6751) ((-79 . -588) 6734) ((-79 . -19) 6717) ((-79 . -599) T) ((-79 . -1114) T) ((-79 . -82) T) ((-78 . -547) 6699) ((-77 . -897) 6681) ((-77 . -1052) T) ((-77 . -550) 6631) ((-77 . -943) 6591) ((-77 . -548) 6521) ((-77 . -926) T) ((-77 . -814) NIL) ((-77 . -787) 6503) ((-77 . -748) T) ((-77 . -714) T) ((-77 . -711) T) ((-77 . -752) T) ((-77 . -749) T) ((-77 . -709) T) ((-77 . -707) T) ((-77 . -733) T) ((-77 . -789) 6485) ((-77 . -336) 6467) ((-77 . -575) 6449) ((-77 . -322) 6431) ((-77 . -238) NIL) ((-77 . -256) NIL) ((-77 . -447) NIL) ((-77 . -284) 6413) ((-77 . -198) T) ((-77 . -80) 6340) ((-77 . -956) 6290) ((-77 . -961) 6240) ((-77 . -242) T) ((-77 . -649) 6190) ((-77 . -577) 6140) ((-77 . -585) 6090) ((-77 . -583) 6040) ((-77 . -38) 5990) ((-77 . -254) T) ((-77 . -385) T) ((-77 . -144) T) ((-77 . -489) T) ((-77 . -825) T) ((-77 . -1119) T) ((-77 . -308) T) ((-77 . -188) T) ((-77 . -184) 5977) ((-77 . -187) T) ((-77 . -222) 5959) ((-77 . -799) NIL) ((-77 . -804) NIL) ((-77 . -802) NIL) ((-77 . -182) 5941) ((-77 . -118) T) ((-77 . -116) NIL) ((-77 . -102) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -1114) T) ((-77 . -547) 5884) ((-77 . -1003) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -954) T) ((-77 . -962) T) ((-77 . -1013) T) ((-77 . -658) T) ((-73 . -96) 5868) ((-73 . -916) 5852) ((-73 . -34) T) ((-73 . -1114) T) ((-73 . -72) 5806) ((-73 . -547) 5741) ((-73 . -256) 5679) ((-73 . -447) 5612) ((-73 . -1003) 5590) ((-73 . -422) 5574) ((-73 . -90) 5558) ((-69 . -406) T) ((-69 . -1013) T) ((-69 . -72) T) ((-69 . -1114) T) ((-69 . -547) 5540) ((-69 . -1003) T) ((-69 . -658) T) ((-69 . -238) 5519) ((-67 . -986) T) ((-67 . -423) 5500) ((-67 . -547) 5466) ((-67 . -550) 5447) ((-67 . -1003) T) ((-67 . -1114) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1021) 5431) ((-62 . -422) 5415) ((-62 . -1003) 5393) ((-62 . -447) 5326) ((-62 . -256) 5264) ((-62 . -547) 5199) ((-62 . -72) 5153) ((-62 . -1114) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -1114) T) ((-60 . -72) 5053) ((-60 . -547) 4988) ((-60 . -256) 4926) ((-60 . -447) 4859) ((-60 . -1003) 4837) ((-60 . -422) 4821) ((-58 . -19) 4805) ((-58 . -588) 4789) ((-58 . -240) 4766) ((-58 . -238) 4718) ((-58 . -533) 4695) ((-58 . -548) 4656) ((-58 . -422) 4640) ((-58 . -1003) 4593) ((-58 . -447) 4526) ((-58 . -256) 4464) ((-58 . -547) 4379) ((-58 . -72) 4313) ((-58 . -1114) T) ((-58 . -34) T) ((-58 . -122) 4297) ((-58 . -749) 4276) ((-58 . -752) 4255) ((-58 . -317) 4239) ((-55 . -1003) T) ((-55 . -547) 4221) ((-55 . -1114) T) ((-55 . -72) T) ((-55 . -943) 4203) ((-55 . -550) 4185) ((-51 . -1003) T) ((-51 . -547) 4167) ((-51 . -1114) T) ((-51 . -72) T) ((-50 . -555) 4151) ((-50 . -550) 4120) ((-50 . -585) 4094) ((-50 . -583) 4053) ((-50 . -658) T) ((-50 . -1013) T) ((-50 . -962) T) ((-50 . -954) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1003) T) ((-50 . -547) 4035) ((-50 . -1114) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -102) T) ((-50 . -943) 4019) ((-49 . -1003) T) ((-49 . -547) 4001) ((-49 . -1114) T) ((-49 . -72) T) ((-48 . -250) T) ((-48 . -72) T) ((-48 . -1114) T) ((-48 . -547) 3983) ((-48 . -1003) T) ((-48 . -550) 3884) ((-48 . -943) 3827) ((-48 . -447) 3793) ((-48 . -256) 3780) ((-48 . -27) T) ((-48 . -908) T) ((-48 . -198) T) ((-48 . -80) 3729) ((-48 . -956) 3694) ((-48 . -961) 3659) ((-48 . -242) T) ((-48 . -649) 3624) ((-48 . -577) 3589) ((-48 . -585) 3539) ((-48 . -583) 3489) ((-48 . -102) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -954) T) ((-48 . -962) T) ((-48 . -1013) T) ((-48 . -658) T) ((-48 . -38) 3454) ((-48 . -254) T) ((-48 . -385) T) ((-48 . -144) T) ((-48 . -489) T) ((-48 . -825) T) ((-48 . -1119) T) ((-48 . -308) T) ((-48 . -575) 3414) ((-48 . -926) T) ((-48 . -548) 3359) ((-48 . -118) T) ((-48 . -188) T) ((-48 . -184) 3346) ((-48 . -187) T) ((-45 . -36) 3325) ((-45 . -533) 3248) ((-45 . -256) 3046) ((-45 . -447) 2798) ((-45 . -422) 2733) ((-45 . -238) 2631) ((-45 . -240) 2554) ((-45 . -544) 2533) ((-45 . -190) 2481) ((-45 . -76) 2429) ((-45 . -181) 2377) ((-45 . -1092) 2356) ((-45 . -234) 2304) ((-45 . -122) 2252) ((-45 . -34) T) ((-45 . -1114) T) ((-45 . -72) T) ((-45 . -547) 2234) ((-45 . -1003) T) ((-45 . -548) NIL) ((-45 . -588) 2182) ((-45 . -317) 2130) ((-45 . -752) NIL) ((-45 . -749) NIL) ((-45 . -1050) 2078) ((-45 . -916) 2026) ((-45 . -1153) 1974) ((-45 . -603) 1922) ((-44 . -354) 1906) ((-44 . -676) 1890) ((-44 . -652) T) ((-44 . -678) T) ((-44 . -80) 1869) ((-44 . -956) 1853) ((-44 . -961) 1837) ((-44 . -21) T) ((-44 . -583) 1780) ((-44 . -23) T) ((-44 . -1003) T) ((-44 . -547) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -102) T) ((-44 . -585) 1720) ((-44 . -577) 1704) ((-44 . -649) 1688) ((-44 . -312) 1672) ((-44 . -1114) T) ((-44 . -238) 1649) ((-40 . -287) 1623) ((-40 . -144) T) ((-40 . -550) 1553) ((-40 . -658) T) ((-40 . -1013) T) ((-40 . -962) T) ((-40 . -954) T) ((-40 . -585) 1455) ((-40 . -583) 1385) ((-40 . -102) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -1114) T) ((-40 . -547) 1367) ((-40 . -1003) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -961) 1312) ((-40 . -956) 1257) ((-40 . -80) 1174) ((-40 . -548) 1158) ((-40 . -182) 1135) ((-40 . -802) 1087) ((-40 . -804) 999) ((-40 . -799) 909) ((-40 . -222) 886) ((-40 . -187) 826) ((-40 . -184) 760) ((-40 . -188) 732) ((-40 . -308) T) ((-40 . -1119) T) ((-40 . -825) T) ((-40 . -489) T) ((-40 . -649) 677) ((-40 . -577) 622) ((-40 . -38) 567) ((-40 . -385) T) ((-40 . -254) T) ((-40 . -242) T) ((-40 . -198) T) ((-40 . -313) NIL) ((-40 . -295) NIL) ((-40 . -1052) NIL) ((-40 . -116) 539) ((-40 . -338) NIL) ((-40 . -346) 511) ((-40 . -118) 483) ((-40 . -315) 455) ((-40 . -322) 432) ((-40 . -575) 366) ((-40 . -348) 343) ((-40 . -943) 220) ((-40 . -656) 192) ((-31 . -986) T) ((-31 . -423) 173) ((-31 . -547) 139) ((-31 . -550) 120) ((-31 . -1003) T) ((-31 . -1114) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -859) T) ((-30 . -547) 102) ((0 . |EnumerationCategory|) T) ((0 . -547) 84) ((0 . -1003) T) ((0 . -72) T) ((0 . -1114) T) ((-2 . |RecordCategory|) T) ((-2 . -547) 66) ((-2 . -1003) T) ((-2 . -72) T) ((-2 . -1114) T) ((-3 . |UnionCategory|) T) ((-3 . -547) 48) ((-3 . -1003) T) ((-3 . -72) T) ((-3 . -1114) T) ((-1 . -1003) T) ((-1 . -547) 30) ((-1 . -1114) T) ((-1 . -72) T))
\ No newline at end of file +((((-479)) . T)) +(((-1199 . -144) T) ((-1199 . -551) 198600) ((-1199 . -659) T) ((-1199 . -1016) T) ((-1199 . -963) T) ((-1199 . -955) T) ((-1199 . -586) 198587) ((-1199 . -584) 198559) ((-1199 . -102) T) ((-1199 . -25) T) ((-1199 . -72) T) ((-1199 . -1119) T) ((-1199 . -548) 198541) ((-1199 . -1006) T) ((-1199 . -23) T) ((-1199 . -21) T) ((-1199 . -962) 198528) ((-1199 . -957) 198515) ((-1199 . -80) 198500) ((-1199 . -314) T) ((-1199 . -549) 198482) ((-1199 . -1056) T) ((-1195 . -1006) T) ((-1195 . -548) 198449) ((-1195 . -1119) T) ((-1195 . -72) T) ((-1195 . -424) 198431) ((-1195 . -551) 198413) ((-1194 . -1192) 198392) ((-1194 . -944) 198369) ((-1194 . -551) 198318) ((-1194 . -955) T) ((-1194 . -963) T) ((-1194 . -1016) T) ((-1194 . -659) T) ((-1194 . -21) T) ((-1194 . -584) 198277) ((-1194 . -23) T) ((-1194 . -1006) T) ((-1194 . -548) 198259) ((-1194 . -1119) T) ((-1194 . -72) T) ((-1194 . -25) T) ((-1194 . -102) T) ((-1194 . -586) 198233) ((-1194 . -1184) 198217) ((-1194 . -650) 198187) ((-1194 . -578) 198157) ((-1194 . -962) 198141) ((-1194 . -957) 198125) ((-1194 . -80) 198104) ((-1194 . -38) 198074) ((-1194 . -1189) 198053) ((-1193 . -955) T) ((-1193 . -963) T) ((-1193 . -1016) T) ((-1193 . -659) T) ((-1193 . -21) T) ((-1193 . -584) 198012) ((-1193 . -23) T) ((-1193 . -1006) T) ((-1193 . -548) 197994) ((-1193 . -1119) T) ((-1193 . -72) T) ((-1193 . -25) T) ((-1193 . -102) T) ((-1193 . -586) 197968) ((-1193 . -551) 197924) ((-1193 . -1184) 197908) ((-1193 . -650) 197878) ((-1193 . -578) 197848) ((-1193 . -962) 197832) ((-1193 . -957) 197816) ((-1193 . -80) 197795) ((-1193 . -38) 197765) ((-1193 . -329) 197744) ((-1193 . -944) 197728) ((-1191 . -1192) 197704) ((-1191 . -944) 197678) ((-1191 . -551) 197624) ((-1191 . -955) T) ((-1191 . -963) T) ((-1191 . -1016) T) ((-1191 . -659) T) ((-1191 . -21) T) ((-1191 . -584) 197583) ((-1191 . -23) T) ((-1191 . -1006) T) ((-1191 . -548) 197565) ((-1191 . -1119) T) ((-1191 . -72) T) ((-1191 . -25) T) ((-1191 . -102) T) ((-1191 . -586) 197539) ((-1191 . -1184) 197523) ((-1191 . -650) 197493) ((-1191 . -578) 197463) ((-1191 . -962) 197447) ((-1191 . -957) 197431) ((-1191 . -80) 197410) ((-1191 . -38) 197380) ((-1191 . -1189) 197356) ((-1190 . -1192) 197335) ((-1190 . -944) 197292) ((-1190 . -551) 197221) ((-1190 . -955) T) ((-1190 . -963) T) ((-1190 . -1016) T) ((-1190 . -659) T) ((-1190 . -21) T) ((-1190 . -584) 197180) ((-1190 . -23) T) ((-1190 . -1006) T) ((-1190 . -548) 197162) ((-1190 . -1119) T) ((-1190 . -72) T) ((-1190 . -25) T) ((-1190 . -102) T) ((-1190 . -586) 197136) ((-1190 . -1184) 197120) ((-1190 . -650) 197090) ((-1190 . -578) 197060) ((-1190 . -962) 197044) ((-1190 . -957) 197028) ((-1190 . -80) 197007) ((-1190 . -38) 196977) ((-1190 . -1189) 196956) ((-1190 . -329) 196928) ((-1185 . -329) 196900) ((-1185 . -551) 196849) ((-1185 . -944) 196826) ((-1185 . -578) 196796) ((-1185 . -650) 196766) ((-1185 . -586) 196740) ((-1185 . -584) 196699) ((-1185 . -102) T) ((-1185 . -25) T) ((-1185 . -72) T) ((-1185 . -1119) T) ((-1185 . -548) 196681) ((-1185 . -1006) T) ((-1185 . -23) T) ((-1185 . -21) T) ((-1185 . -962) 196665) ((-1185 . -957) 196649) ((-1185 . -80) 196628) ((-1185 . -1192) 196607) ((-1185 . -955) T) ((-1185 . -963) T) ((-1185 . -1016) T) ((-1185 . -659) T) ((-1185 . -1184) 196591) ((-1185 . -38) 196561) ((-1185 . -1189) 196540) ((-1183 . -1114) 196509) ((-1183 . -548) 196471) ((-1183 . -122) 196455) ((-1183 . -34) T) ((-1183 . -1119) T) ((-1183 . -72) T) ((-1183 . -256) 196393) ((-1183 . -448) 196326) ((-1183 . -1006) T) ((-1183 . -423) 196310) ((-1183 . -549) 196271) ((-1183 . -883) 196240) ((-1182 . -955) T) ((-1182 . -963) T) ((-1182 . -1016) T) ((-1182 . -659) T) ((-1182 . -21) T) ((-1182 . -584) 196185) ((-1182 . -23) T) ((-1182 . -1006) T) ((-1182 . -548) 196154) ((-1182 . -1119) T) ((-1182 . -72) T) ((-1182 . -25) T) ((-1182 . -102) T) ((-1182 . -586) 196114) ((-1182 . -551) 196056) ((-1182 . -424) 196040) ((-1182 . -38) 196010) ((-1182 . -80) 195975) ((-1182 . -957) 195945) ((-1182 . -962) 195915) ((-1182 . -578) 195885) ((-1182 . -650) 195855) ((-1181 . -988) T) ((-1181 . -424) 195836) ((-1181 . -548) 195802) ((-1181 . -551) 195783) ((-1181 . -1006) T) ((-1181 . -1119) T) ((-1181 . -72) T) ((-1181 . -64) T) ((-1180 . -988) T) ((-1180 . -424) 195764) ((-1180 . -548) 195730) ((-1180 . -551) 195711) ((-1180 . -1006) T) ((-1180 . -1119) T) ((-1180 . -72) T) ((-1180 . -64) T) ((-1175 . -548) 195693) ((-1173 . -1006) T) ((-1173 . -548) 195675) ((-1173 . -1119) T) ((-1173 . -72) T) ((-1172 . -1006) T) ((-1172 . -548) 195657) ((-1172 . -1119) T) ((-1172 . -72) T) ((-1169 . -1168) 195641) ((-1169 . -318) 195625) ((-1169 . -753) 195604) ((-1169 . -750) 195583) ((-1169 . -122) 195567) ((-1169 . -34) T) ((-1169 . -1119) T) ((-1169 . -72) 195501) ((-1169 . -548) 195416) ((-1169 . -256) 195354) ((-1169 . -448) 195287) ((-1169 . -1006) 195240) ((-1169 . -423) 195224) ((-1169 . -549) 195185) ((-1169 . -238) 195137) ((-1169 . -534) 195114) ((-1169 . -240) 195091) ((-1169 . -589) 195075) ((-1169 . -19) 195059) ((-1166 . -1006) T) ((-1166 . -548) 195025) ((-1166 . -1119) T) ((-1166 . -72) T) ((-1159 . -1162) 195009) ((-1159 . -188) 194968) ((-1159 . -551) 194850) ((-1159 . -586) 194775) ((-1159 . -584) 194685) ((-1159 . -102) T) ((-1159 . -25) T) ((-1159 . -72) T) ((-1159 . -548) 194667) ((-1159 . -1006) T) ((-1159 . -23) T) ((-1159 . -21) T) ((-1159 . -659) T) ((-1159 . -1016) T) ((-1159 . -963) T) ((-1159 . -955) T) ((-1159 . -184) 194620) ((-1159 . -1119) T) ((-1159 . -187) 194579) ((-1159 . -238) 194544) ((-1159 . -803) 194457) ((-1159 . -800) 194345) ((-1159 . -805) 194258) ((-1159 . -880) 194228) ((-1159 . -38) 194125) ((-1159 . -80) 193990) ((-1159 . -957) 193876) ((-1159 . -962) 193762) ((-1159 . -578) 193659) ((-1159 . -650) 193556) ((-1159 . -116) 193535) ((-1159 . -118) 193514) ((-1159 . -144) 193468) ((-1159 . -490) 193447) ((-1159 . -242) 193426) ((-1159 . -47) 193403) ((-1159 . -1148) 193380) ((-1159 . -35) 193346) ((-1159 . -66) 193312) ((-1159 . -236) 193278) ((-1159 . -427) 193244) ((-1159 . -1108) 193210) ((-1159 . -1105) 193176) ((-1159 . -909) 193142) ((-1156 . -273) 193086) ((-1156 . -944) 193052) ((-1156 . -349) 193018) ((-1156 . -38) 192875) ((-1156 . -551) 192749) ((-1156 . -586) 192638) ((-1156 . -584) 192512) ((-1156 . -659) T) ((-1156 . -1016) T) ((-1156 . -963) T) ((-1156 . -955) T) ((-1156 . -80) 192362) ((-1156 . -957) 192251) ((-1156 . -962) 192140) ((-1156 . -21) T) ((-1156 . -23) T) ((-1156 . -1006) T) ((-1156 . -548) 192122) ((-1156 . -1119) T) ((-1156 . -72) T) ((-1156 . -25) T) ((-1156 . -102) T) ((-1156 . -578) 191979) ((-1156 . -650) 191836) ((-1156 . -116) 191797) ((-1156 . -118) 191758) ((-1156 . -144) T) ((-1156 . -490) T) ((-1156 . -242) T) ((-1156 . -47) 191702) ((-1155 . -1154) 191681) ((-1155 . -308) 191660) ((-1155 . -1124) 191639) ((-1155 . -826) 191618) ((-1155 . -490) 191572) ((-1155 . -144) 191506) ((-1155 . -551) 191325) ((-1155 . -650) 191172) ((-1155 . -578) 191019) ((-1155 . -38) 190866) ((-1155 . -386) 190845) ((-1155 . -254) 190824) ((-1155 . -586) 190724) ((-1155 . -584) 190609) ((-1155 . -659) T) ((-1155 . -1016) T) ((-1155 . -963) T) ((-1155 . -955) T) ((-1155 . -80) 190429) ((-1155 . -957) 190270) ((-1155 . -962) 190111) ((-1155 . -21) T) ((-1155 . -23) T) ((-1155 . -1006) T) ((-1155 . -548) 190093) ((-1155 . -1119) T) ((-1155 . -72) T) ((-1155 . -25) T) ((-1155 . -102) T) ((-1155 . -242) 190047) ((-1155 . -198) 190026) ((-1155 . -909) 189992) ((-1155 . -1105) 189958) ((-1155 . -1108) 189924) ((-1155 . -427) 189890) ((-1155 . -236) 189856) ((-1155 . -66) 189822) ((-1155 . -35) 189788) ((-1155 . -1148) 189758) ((-1155 . -47) 189728) ((-1155 . -118) 189707) ((-1155 . -116) 189686) ((-1155 . -880) 189649) ((-1155 . -805) 189555) ((-1155 . -800) 189459) ((-1155 . -803) 189365) ((-1155 . -238) 189323) ((-1155 . -187) 189275) ((-1155 . -184) 189221) ((-1155 . -188) 189173) ((-1155 . -1152) 189157) ((-1155 . -944) 189141) ((-1150 . -1154) 189102) ((-1150 . -308) 189081) ((-1150 . -1124) 189060) ((-1150 . -826) 189039) ((-1150 . -490) 188993) ((-1150 . -144) 188927) ((-1150 . -551) 188676) ((-1150 . -650) 188523) ((-1150 . -578) 188370) ((-1150 . -38) 188217) ((-1150 . -386) 188196) ((-1150 . -254) 188175) ((-1150 . -586) 188075) ((-1150 . -584) 187960) ((-1150 . -659) T) ((-1150 . -1016) T) ((-1150 . -963) T) ((-1150 . -955) T) ((-1150 . -80) 187780) ((-1150 . -957) 187621) ((-1150 . -962) 187462) ((-1150 . -21) T) ((-1150 . -23) T) ((-1150 . -1006) T) ((-1150 . -548) 187444) ((-1150 . -1119) T) ((-1150 . -72) T) ((-1150 . -25) T) ((-1150 . -102) T) ((-1150 . -242) 187398) ((-1150 . -198) 187377) ((-1150 . -909) 187343) ((-1150 . -1105) 187309) ((-1150 . -1108) 187275) ((-1150 . -427) 187241) ((-1150 . -236) 187207) ((-1150 . -66) 187173) ((-1150 . -35) 187139) ((-1150 . -1148) 187109) ((-1150 . -47) 187079) ((-1150 . -118) 187058) ((-1150 . -116) 187037) ((-1150 . -880) 187000) ((-1150 . -805) 186906) ((-1150 . -800) 186787) ((-1150 . -803) 186693) ((-1150 . -238) 186651) ((-1150 . -187) 186603) ((-1150 . -184) 186549) ((-1150 . -188) 186501) ((-1150 . -1152) 186485) ((-1150 . -944) 186420) ((-1138 . -1145) 186404) ((-1138 . -1056) 186382) ((-1138 . -549) NIL) ((-1138 . -256) 186369) ((-1138 . -448) 186317) ((-1138 . -273) 186294) ((-1138 . -944) 186177) ((-1138 . -349) 186161) ((-1138 . -38) 185993) ((-1138 . -80) 185798) ((-1138 . -957) 185624) ((-1138 . -962) 185450) ((-1138 . -584) 185360) ((-1138 . -586) 185249) ((-1138 . -578) 185081) ((-1138 . -650) 184913) ((-1138 . -551) 184669) ((-1138 . -116) 184648) ((-1138 . -118) 184627) ((-1138 . -47) 184604) ((-1138 . -323) 184588) ((-1138 . -576) 184536) ((-1138 . -803) 184480) ((-1138 . -800) 184387) ((-1138 . -805) 184298) ((-1138 . -790) NIL) ((-1138 . -815) 184277) ((-1138 . -1124) 184256) ((-1138 . -855) 184226) ((-1138 . -826) 184205) ((-1138 . -490) 184119) ((-1138 . -242) 184033) ((-1138 . -144) 183927) ((-1138 . -386) 183861) ((-1138 . -254) 183840) ((-1138 . -238) 183767) ((-1138 . -188) T) ((-1138 . -102) T) ((-1138 . -25) T) ((-1138 . -72) T) ((-1138 . -548) 183749) ((-1138 . -1006) T) ((-1138 . -23) T) ((-1138 . -21) T) ((-1138 . -659) T) ((-1138 . -1016) T) ((-1138 . -963) T) ((-1138 . -955) T) ((-1138 . -184) 183736) ((-1138 . -1119) T) ((-1138 . -187) T) ((-1138 . -222) 183720) ((-1138 . -182) 183704) ((-1136 . -999) 183688) ((-1136 . -553) 183672) ((-1136 . -1006) 183650) ((-1136 . -548) 183617) ((-1136 . -1119) 183595) ((-1136 . -72) 183573) ((-1136 . -1000) 183530) ((-1134 . -1133) 183509) ((-1134 . -909) 183475) ((-1134 . -1105) 183441) ((-1134 . -1108) 183407) ((-1134 . -427) 183373) ((-1134 . -236) 183339) ((-1134 . -66) 183305) ((-1134 . -35) 183271) ((-1134 . -1148) 183248) ((-1134 . -47) 183225) ((-1134 . -551) 182980) ((-1134 . -650) 182800) ((-1134 . -578) 182620) ((-1134 . -586) 182431) ((-1134 . -584) 182289) ((-1134 . -962) 182103) ((-1134 . -957) 181917) ((-1134 . -80) 181705) ((-1134 . -38) 181525) ((-1134 . -880) 181495) ((-1134 . -238) 181395) ((-1134 . -1131) 181379) ((-1134 . -659) T) ((-1134 . -1016) T) ((-1134 . -963) T) ((-1134 . -955) T) ((-1134 . -21) T) ((-1134 . -23) T) ((-1134 . -1006) T) ((-1134 . -548) 181361) ((-1134 . -1119) T) ((-1134 . -72) T) ((-1134 . -25) T) ((-1134 . -102) T) ((-1134 . -116) 181289) ((-1134 . -118) 181217) ((-1134 . -549) 180890) ((-1134 . -182) 180860) ((-1134 . -803) 180714) ((-1134 . -805) 180514) ((-1134 . -800) 180312) ((-1134 . -222) 180282) ((-1134 . -187) 180144) ((-1134 . -184) 180000) ((-1134 . -188) 179908) ((-1134 . -308) 179887) ((-1134 . -1124) 179866) ((-1134 . -826) 179845) ((-1134 . -490) 179799) ((-1134 . -144) 179733) ((-1134 . -386) 179712) ((-1134 . -254) 179691) ((-1134 . -242) 179645) ((-1134 . -198) 179624) ((-1134 . -284) 179594) ((-1134 . -448) 179454) ((-1134 . -256) 179393) ((-1134 . -323) 179363) ((-1134 . -576) 179271) ((-1134 . -337) 179241) ((-1134 . -790) 179114) ((-1134 . -734) 179067) ((-1134 . -708) 179020) ((-1134 . -710) 178973) ((-1134 . -750) 178875) ((-1134 . -753) 178777) ((-1134 . -712) 178730) ((-1134 . -715) 178683) ((-1134 . -749) 178636) ((-1134 . -788) 178606) ((-1134 . -815) 178559) ((-1134 . -927) 178512) ((-1134 . -944) 178301) ((-1134 . -1056) 178253) ((-1134 . -898) 178223) ((-1129 . -1133) 178184) ((-1129 . -909) 178150) ((-1129 . -1105) 178116) ((-1129 . -1108) 178082) ((-1129 . -427) 178048) ((-1129 . -236) 178014) ((-1129 . -66) 177980) ((-1129 . -35) 177946) ((-1129 . -1148) 177923) ((-1129 . -47) 177900) ((-1129 . -551) 177701) ((-1129 . -650) 177503) ((-1129 . -578) 177305) ((-1129 . -586) 177160) ((-1129 . -584) 177000) ((-1129 . -962) 176796) ((-1129 . -957) 176592) ((-1129 . -80) 176344) ((-1129 . -38) 176146) ((-1129 . -880) 176116) ((-1129 . -238) 175944) ((-1129 . -1131) 175928) ((-1129 . -659) T) ((-1129 . -1016) T) ((-1129 . -963) T) ((-1129 . -955) T) ((-1129 . -21) T) ((-1129 . -23) T) ((-1129 . -1006) T) ((-1129 . -548) 175910) ((-1129 . -1119) T) ((-1129 . -72) T) ((-1129 . -25) T) ((-1129 . -102) T) ((-1129 . -116) 175820) ((-1129 . -118) 175730) ((-1129 . -549) NIL) ((-1129 . -182) 175682) ((-1129 . -803) 175518) ((-1129 . -805) 175282) ((-1129 . -800) 175021) ((-1129 . -222) 174973) ((-1129 . -187) 174799) ((-1129 . -184) 174619) ((-1129 . -188) 174509) ((-1129 . -308) 174488) ((-1129 . -1124) 174467) ((-1129 . -826) 174446) ((-1129 . -490) 174400) ((-1129 . -144) 174334) ((-1129 . -386) 174313) ((-1129 . -254) 174292) ((-1129 . -242) 174246) ((-1129 . -198) 174225) ((-1129 . -284) 174177) ((-1129 . -448) 173911) ((-1129 . -256) 173796) ((-1129 . -323) 173748) ((-1129 . -576) 173700) ((-1129 . -337) 173652) ((-1129 . -790) NIL) ((-1129 . -734) NIL) ((-1129 . -708) NIL) ((-1129 . -710) NIL) ((-1129 . -750) NIL) ((-1129 . -753) NIL) ((-1129 . -712) NIL) ((-1129 . -715) NIL) ((-1129 . -749) NIL) ((-1129 . -788) 173604) ((-1129 . -815) NIL) ((-1129 . -927) NIL) ((-1129 . -944) 173570) ((-1129 . -1056) NIL) ((-1129 . -898) 173522) ((-1128 . -746) T) ((-1128 . -753) T) ((-1128 . -750) T) ((-1128 . -1006) T) ((-1128 . -548) 173504) ((-1128 . -1119) T) ((-1128 . -72) T) ((-1128 . -314) T) ((-1128 . -600) T) ((-1127 . -746) T) ((-1127 . -753) T) ((-1127 . -750) T) ((-1127 . -1006) T) ((-1127 . -548) 173486) ((-1127 . -1119) T) ((-1127 . -72) T) ((-1127 . -314) T) ((-1127 . -600) T) ((-1126 . -746) T) ((-1126 . -753) T) ((-1126 . -750) T) ((-1126 . -1006) T) ((-1126 . -548) 173468) ((-1126 . -1119) T) ((-1126 . -72) T) ((-1126 . -314) T) ((-1126 . -600) T) ((-1125 . -746) T) ((-1125 . -753) T) ((-1125 . -750) T) ((-1125 . -1006) T) ((-1125 . -548) 173450) ((-1125 . -1119) T) ((-1125 . -72) T) ((-1125 . -314) T) ((-1125 . -600) T) ((-1120 . -988) T) ((-1120 . -424) 173431) ((-1120 . -548) 173397) ((-1120 . -551) 173378) ((-1120 . -1006) T) ((-1120 . -1119) T) ((-1120 . -72) T) ((-1120 . -64) T) ((-1117 . -424) 173355) ((-1117 . -548) 173296) ((-1117 . -551) 173273) ((-1117 . -1006) 173251) ((-1117 . -1119) 173229) ((-1117 . -72) 173207) ((-1112 . -673) 173183) ((-1112 . -35) 173149) ((-1112 . -66) 173115) ((-1112 . -236) 173081) ((-1112 . -427) 173047) ((-1112 . -1108) 173013) ((-1112 . -1105) 172979) ((-1112 . -909) 172945) ((-1112 . -47) 172914) ((-1112 . -38) 172811) ((-1112 . -578) 172708) ((-1112 . -650) 172605) ((-1112 . -551) 172487) ((-1112 . -242) 172466) ((-1112 . -490) 172445) ((-1112 . -80) 172310) ((-1112 . -957) 172196) ((-1112 . -962) 172082) ((-1112 . -144) 172036) ((-1112 . -118) 172015) ((-1112 . -116) 171994) ((-1112 . -586) 171919) ((-1112 . -584) 171829) ((-1112 . -880) 171790) ((-1112 . -805) 171771) ((-1112 . -1119) T) ((-1112 . -800) 171750) ((-1112 . -955) T) ((-1112 . -963) T) ((-1112 . -1016) T) ((-1112 . -659) T) ((-1112 . -21) T) ((-1112 . -23) T) ((-1112 . -1006) T) ((-1112 . -548) 171732) ((-1112 . -72) T) ((-1112 . -25) T) ((-1112 . -102) T) ((-1112 . -803) 171713) ((-1112 . -448) 171680) ((-1112 . -256) 171667) ((-1106 . -917) 171651) ((-1106 . -34) T) ((-1106 . -1119) T) ((-1106 . -72) 171605) ((-1106 . -548) 171540) ((-1106 . -256) 171478) ((-1106 . -448) 171411) ((-1106 . -1006) 171389) ((-1106 . -423) 171373) ((-1101 . -310) 171347) ((-1101 . -72) T) ((-1101 . -1119) T) ((-1101 . -548) 171329) ((-1101 . -1006) T) ((-1099 . -1006) T) ((-1099 . -548) 171311) ((-1099 . -1119) T) ((-1099 . -72) T) ((-1099 . -551) 171293) ((-1094 . -741) 171277) ((-1094 . -72) T) ((-1094 . -1119) T) ((-1094 . -548) 171259) ((-1094 . -1006) T) ((-1092 . -1097) 171238) ((-1092 . -181) 171186) ((-1092 . -76) 171134) ((-1092 . -256) 170932) ((-1092 . -448) 170684) ((-1092 . -423) 170619) ((-1092 . -122) 170567) ((-1092 . -549) NIL) ((-1092 . -190) 170515) ((-1092 . -545) 170494) ((-1092 . -240) 170473) ((-1092 . -1119) T) ((-1092 . -238) 170452) ((-1092 . -1006) T) ((-1092 . -548) 170434) ((-1092 . -72) T) ((-1092 . -34) T) ((-1092 . -534) 170413) ((-1088 . -1006) T) ((-1088 . -548) 170395) ((-1088 . -1119) T) ((-1088 . -72) T) ((-1087 . -746) T) ((-1087 . -753) T) ((-1087 . -750) T) ((-1087 . -1006) T) ((-1087 . -548) 170377) ((-1087 . -1119) T) ((-1087 . -72) T) ((-1087 . -314) T) ((-1087 . -600) T) ((-1086 . -746) T) ((-1086 . -753) T) ((-1086 . -750) T) ((-1086 . -1006) T) ((-1086 . -548) 170359) ((-1086 . -1119) T) ((-1086 . -72) T) ((-1086 . -314) T) ((-1085 . -1165) T) ((-1085 . -1006) T) ((-1085 . -548) 170326) ((-1085 . -1119) T) ((-1085 . -72) T) ((-1085 . -944) 170262) ((-1085 . -551) 170198) ((-1084 . -548) 170180) ((-1083 . -548) 170162) ((-1082 . -273) 170139) ((-1082 . -944) 170037) ((-1082 . -349) 170021) ((-1082 . -38) 169918) ((-1082 . -551) 169775) ((-1082 . -586) 169700) ((-1082 . -584) 169610) ((-1082 . -659) T) ((-1082 . -1016) T) ((-1082 . -963) T) ((-1082 . -955) T) ((-1082 . -80) 169475) ((-1082 . -957) 169361) ((-1082 . -962) 169247) ((-1082 . -21) T) ((-1082 . -23) T) ((-1082 . -1006) T) ((-1082 . -548) 169229) ((-1082 . -1119) T) ((-1082 . -72) T) ((-1082 . -25) T) ((-1082 . -102) T) ((-1082 . -578) 169126) ((-1082 . -650) 169023) ((-1082 . -116) 169002) ((-1082 . -118) 168981) ((-1082 . -144) 168935) ((-1082 . -490) 168914) ((-1082 . -242) 168893) ((-1082 . -47) 168870) ((-1080 . -750) T) ((-1080 . -548) 168852) ((-1080 . -1006) T) ((-1080 . -72) T) ((-1080 . -1119) T) ((-1080 . -753) T) ((-1080 . -549) 168774) ((-1080 . -551) 168740) ((-1080 . -944) 168722) ((-1080 . -790) 168689) ((-1079 . -1162) 168673) ((-1079 . -188) 168632) ((-1079 . -551) 168514) ((-1079 . -586) 168439) ((-1079 . -584) 168349) ((-1079 . -102) T) ((-1079 . -25) T) ((-1079 . -72) T) ((-1079 . -548) 168331) ((-1079 . -1006) T) ((-1079 . -23) T) ((-1079 . -21) T) ((-1079 . -659) T) ((-1079 . -1016) T) ((-1079 . -963) T) ((-1079 . -955) T) ((-1079 . -184) 168284) ((-1079 . -1119) T) ((-1079 . -187) 168243) ((-1079 . -238) 168208) ((-1079 . -803) 168121) ((-1079 . -800) 168009) ((-1079 . -805) 167922) ((-1079 . -880) 167892) ((-1079 . -38) 167789) ((-1079 . -80) 167654) ((-1079 . -957) 167540) ((-1079 . -962) 167426) ((-1079 . -578) 167323) ((-1079 . -650) 167220) ((-1079 . -116) 167199) ((-1079 . -118) 167178) ((-1079 . -144) 167132) ((-1079 . -490) 167111) ((-1079 . -242) 167090) ((-1079 . -47) 167067) ((-1079 . -1148) 167044) ((-1079 . -35) 167010) ((-1079 . -66) 166976) ((-1079 . -236) 166942) ((-1079 . -427) 166908) ((-1079 . -1108) 166874) ((-1079 . -1105) 166840) ((-1079 . -909) 166806) ((-1078 . -1154) 166767) ((-1078 . -308) 166746) ((-1078 . -1124) 166725) ((-1078 . -826) 166704) ((-1078 . -490) 166658) ((-1078 . -144) 166592) ((-1078 . -551) 166341) ((-1078 . -650) 166188) ((-1078 . -578) 166035) ((-1078 . -38) 165882) ((-1078 . -386) 165861) ((-1078 . -254) 165840) ((-1078 . -586) 165740) ((-1078 . -584) 165625) ((-1078 . -659) T) ((-1078 . -1016) T) ((-1078 . -963) T) ((-1078 . -955) T) ((-1078 . -80) 165445) ((-1078 . -957) 165286) ((-1078 . -962) 165127) ((-1078 . -21) T) ((-1078 . -23) T) ((-1078 . -1006) T) ((-1078 . -548) 165109) ((-1078 . -1119) T) ((-1078 . -72) T) ((-1078 . -25) T) ((-1078 . -102) T) ((-1078 . -242) 165063) ((-1078 . -198) 165042) ((-1078 . -909) 165008) ((-1078 . -1105) 164974) ((-1078 . -1108) 164940) ((-1078 . -427) 164906) ((-1078 . -236) 164872) ((-1078 . -66) 164838) ((-1078 . -35) 164804) ((-1078 . -1148) 164774) ((-1078 . -47) 164744) ((-1078 . -118) 164723) ((-1078 . -116) 164702) ((-1078 . -880) 164665) ((-1078 . -805) 164571) ((-1078 . -800) 164452) ((-1078 . -803) 164358) ((-1078 . -238) 164316) ((-1078 . -187) 164268) ((-1078 . -184) 164214) ((-1078 . -188) 164166) ((-1078 . -1152) 164150) ((-1078 . -944) 164085) ((-1075 . -1145) 164069) ((-1075 . -1056) 164047) ((-1075 . -549) NIL) ((-1075 . -256) 164034) ((-1075 . -448) 163982) ((-1075 . -273) 163959) ((-1075 . -944) 163842) ((-1075 . -349) 163826) ((-1075 . -38) 163658) ((-1075 . -80) 163463) ((-1075 . -957) 163289) ((-1075 . -962) 163115) ((-1075 . -584) 163025) ((-1075 . -586) 162914) ((-1075 . -578) 162746) ((-1075 . -650) 162578) ((-1075 . -551) 162355) ((-1075 . -116) 162334) ((-1075 . -118) 162313) ((-1075 . -47) 162290) ((-1075 . -323) 162274) ((-1075 . -576) 162222) ((-1075 . -803) 162166) ((-1075 . -800) 162073) ((-1075 . -805) 161984) ((-1075 . -790) NIL) ((-1075 . -815) 161963) ((-1075 . -1124) 161942) ((-1075 . -855) 161912) ((-1075 . -826) 161891) ((-1075 . -490) 161805) ((-1075 . -242) 161719) ((-1075 . -144) 161613) ((-1075 . -386) 161547) ((-1075 . -254) 161526) ((-1075 . -238) 161453) ((-1075 . -188) T) ((-1075 . -102) T) ((-1075 . -25) T) ((-1075 . -72) T) ((-1075 . -548) 161435) ((-1075 . -1006) T) ((-1075 . -23) T) ((-1075 . -21) T) ((-1075 . -659) T) ((-1075 . -1016) T) ((-1075 . -963) T) ((-1075 . -955) T) ((-1075 . -184) 161422) ((-1075 . -1119) T) ((-1075 . -187) T) ((-1075 . -222) 161406) ((-1075 . -182) 161390) ((-1072 . -1133) 161351) ((-1072 . -909) 161317) ((-1072 . -1105) 161283) ((-1072 . -1108) 161249) ((-1072 . -427) 161215) ((-1072 . -236) 161181) ((-1072 . -66) 161147) ((-1072 . -35) 161113) ((-1072 . -1148) 161090) ((-1072 . -47) 161067) ((-1072 . -551) 160868) ((-1072 . -650) 160670) ((-1072 . -578) 160472) ((-1072 . -586) 160327) ((-1072 . -584) 160167) ((-1072 . -962) 159963) ((-1072 . -957) 159759) ((-1072 . -80) 159511) ((-1072 . -38) 159313) ((-1072 . -880) 159283) ((-1072 . -238) 159111) ((-1072 . -1131) 159095) ((-1072 . -659) T) ((-1072 . -1016) T) ((-1072 . -963) T) ((-1072 . -955) T) ((-1072 . -21) T) ((-1072 . -23) T) ((-1072 . -1006) T) ((-1072 . -548) 159077) ((-1072 . -1119) T) ((-1072 . -72) T) ((-1072 . -25) T) ((-1072 . -102) T) ((-1072 . -116) 158987) ((-1072 . -118) 158897) ((-1072 . -549) NIL) ((-1072 . -182) 158849) ((-1072 . -803) 158685) ((-1072 . -805) 158449) ((-1072 . -800) 158188) ((-1072 . -222) 158140) ((-1072 . -187) 157966) ((-1072 . -184) 157786) ((-1072 . -188) 157676) ((-1072 . -308) 157655) ((-1072 . -1124) 157634) ((-1072 . -826) 157613) ((-1072 . -490) 157567) ((-1072 . -144) 157501) ((-1072 . -386) 157480) ((-1072 . -254) 157459) ((-1072 . -242) 157413) ((-1072 . -198) 157392) ((-1072 . -284) 157344) ((-1072 . -448) 157078) ((-1072 . -256) 156963) ((-1072 . -323) 156915) ((-1072 . -576) 156867) ((-1072 . -337) 156819) ((-1072 . -790) NIL) ((-1072 . -734) NIL) ((-1072 . -708) NIL) ((-1072 . -710) NIL) ((-1072 . -750) NIL) ((-1072 . -753) NIL) ((-1072 . -712) NIL) ((-1072 . -715) NIL) ((-1072 . -749) NIL) ((-1072 . -788) 156771) ((-1072 . -815) NIL) ((-1072 . -927) NIL) ((-1072 . -944) 156737) ((-1072 . -1056) NIL) ((-1072 . -898) 156689) ((-1071 . -988) T) ((-1071 . -424) 156670) ((-1071 . -548) 156636) ((-1071 . -551) 156617) ((-1071 . -1006) T) ((-1071 . -1119) T) ((-1071 . -72) T) ((-1071 . -64) T) ((-1070 . -1006) T) ((-1070 . -548) 156599) ((-1070 . -1119) T) ((-1070 . -72) T) ((-1069 . -1006) T) ((-1069 . -548) 156581) ((-1069 . -1119) T) ((-1069 . -72) T) ((-1064 . -1097) 156557) ((-1064 . -181) 156502) ((-1064 . -76) 156447) ((-1064 . -256) 156236) ((-1064 . -448) 155976) ((-1064 . -423) 155908) ((-1064 . -122) 155853) ((-1064 . -549) NIL) ((-1064 . -190) 155798) ((-1064 . -545) 155774) ((-1064 . -240) 155750) ((-1064 . -1119) T) ((-1064 . -238) 155726) ((-1064 . -1006) T) ((-1064 . -548) 155708) ((-1064 . -72) T) ((-1064 . -34) T) ((-1064 . -534) 155684) ((-1063 . -1048) T) ((-1063 . -318) 155666) ((-1063 . -753) T) ((-1063 . -750) T) ((-1063 . -122) 155648) ((-1063 . -34) T) ((-1063 . -1119) T) ((-1063 . -72) T) ((-1063 . -548) 155630) ((-1063 . -256) NIL) ((-1063 . -448) NIL) ((-1063 . -1006) T) ((-1063 . -423) 155612) ((-1063 . -549) NIL) ((-1063 . -238) 155562) ((-1063 . -534) 155537) ((-1063 . -240) 155512) ((-1063 . -589) 155494) ((-1063 . -19) 155476) ((-1059 . -612) 155460) ((-1059 . -589) 155444) ((-1059 . -240) 155421) ((-1059 . -238) 155373) ((-1059 . -534) 155350) ((-1059 . -549) 155311) ((-1059 . -423) 155295) ((-1059 . -1006) 155273) ((-1059 . -448) 155206) ((-1059 . -256) 155144) ((-1059 . -548) 155079) ((-1059 . -72) 155033) ((-1059 . -1119) T) ((-1059 . -34) T) ((-1059 . -122) 155017) ((-1059 . -1158) 155001) ((-1059 . -917) 154985) ((-1059 . -1054) 154969) ((-1059 . -551) 154946) ((-1057 . -988) T) ((-1057 . -424) 154927) ((-1057 . -548) 154893) ((-1057 . -551) 154874) ((-1057 . -1006) T) ((-1057 . -1119) T) ((-1057 . -72) T) ((-1057 . -64) T) ((-1055 . -1097) 154853) ((-1055 . -181) 154801) ((-1055 . -76) 154749) ((-1055 . -256) 154547) ((-1055 . -448) 154299) ((-1055 . -423) 154234) ((-1055 . -122) 154182) ((-1055 . -549) NIL) ((-1055 . -190) 154130) ((-1055 . -545) 154109) ((-1055 . -240) 154088) ((-1055 . -1119) T) ((-1055 . -238) 154067) ((-1055 . -1006) T) ((-1055 . -548) 154049) ((-1055 . -72) T) ((-1055 . -34) T) ((-1055 . -534) 154028) ((-1052 . -1025) 154012) ((-1052 . -423) 153996) ((-1052 . -1006) 153974) ((-1052 . -448) 153907) ((-1052 . -256) 153845) ((-1052 . -548) 153780) ((-1052 . -72) 153734) ((-1052 . -1119) T) ((-1052 . -34) T) ((-1052 . -76) 153718) ((-1050 . -1013) 153687) ((-1050 . -1114) 153656) ((-1050 . -548) 153618) ((-1050 . -122) 153602) ((-1050 . -34) T) ((-1050 . -1119) T) ((-1050 . -72) T) ((-1050 . -256) 153540) ((-1050 . -448) 153473) ((-1050 . -1006) T) ((-1050 . -423) 153457) ((-1050 . -549) 153418) ((-1050 . -883) 153387) ((-1050 . -976) 153356) ((-1046 . -1027) 153301) ((-1046 . -423) 153285) ((-1046 . -448) 153218) ((-1046 . -256) 153156) ((-1046 . -34) T) ((-1046 . -959) 153096) ((-1046 . -944) 152994) ((-1046 . -551) 152913) ((-1046 . -349) 152897) ((-1046 . -576) 152845) ((-1046 . -586) 152783) ((-1046 . -323) 152767) ((-1046 . -188) 152746) ((-1046 . -184) 152694) ((-1046 . -187) 152648) ((-1046 . -222) 152632) ((-1046 . -800) 152556) ((-1046 . -805) 152482) ((-1046 . -803) 152441) ((-1046 . -182) 152425) ((-1046 . -650) 152360) ((-1046 . -578) 152295) ((-1046 . -584) 152254) ((-1046 . -102) T) ((-1046 . -25) T) ((-1046 . -72) T) ((-1046 . -1119) T) ((-1046 . -548) 152216) ((-1046 . -1006) T) ((-1046 . -23) T) ((-1046 . -21) T) ((-1046 . -962) 152200) ((-1046 . -957) 152184) ((-1046 . -80) 152163) ((-1046 . -955) T) ((-1046 . -963) T) ((-1046 . -1016) T) ((-1046 . -659) T) ((-1046 . -38) 152123) ((-1046 . -549) 152084) ((-1045 . -917) 152055) ((-1045 . -34) T) ((-1045 . -1119) T) ((-1045 . -72) T) ((-1045 . -548) 152037) ((-1045 . -256) 151963) ((-1045 . -448) 151871) ((-1045 . -1006) T) ((-1045 . -423) 151842) ((-1044 . -1006) T) ((-1044 . -548) 151824) ((-1044 . -1119) T) ((-1044 . -72) T) ((-1039 . -1041) T) ((-1039 . -1165) T) ((-1039 . -64) T) ((-1039 . -72) T) ((-1039 . -1119) T) ((-1039 . -548) 151790) ((-1039 . -1006) T) ((-1039 . -551) 151771) ((-1039 . -424) 151752) ((-1039 . -988) T) ((-1037 . -1038) 151736) ((-1037 . -72) T) ((-1037 . -1119) T) ((-1037 . -548) 151718) ((-1037 . -1006) T) ((-1030 . -673) 151697) ((-1030 . -35) 151663) ((-1030 . -66) 151629) ((-1030 . -236) 151595) ((-1030 . -427) 151561) ((-1030 . -1108) 151527) ((-1030 . -1105) 151493) ((-1030 . -909) 151459) ((-1030 . -47) 151431) ((-1030 . -38) 151328) ((-1030 . -578) 151225) ((-1030 . -650) 151122) ((-1030 . -551) 151004) ((-1030 . -242) 150983) ((-1030 . -490) 150962) ((-1030 . -80) 150827) ((-1030 . -957) 150713) ((-1030 . -962) 150599) ((-1030 . -144) 150553) ((-1030 . -118) 150532) ((-1030 . -116) 150511) ((-1030 . -586) 150436) ((-1030 . -584) 150346) ((-1030 . -880) 150313) ((-1030 . -805) 150297) ((-1030 . -1119) T) ((-1030 . -800) 150279) ((-1030 . -955) T) ((-1030 . -963) T) ((-1030 . -1016) T) ((-1030 . -659) T) ((-1030 . -21) T) ((-1030 . -23) T) ((-1030 . -1006) T) ((-1030 . -548) 150261) ((-1030 . -72) T) ((-1030 . -25) T) ((-1030 . -102) T) ((-1030 . -803) 150245) ((-1030 . -448) 150215) ((-1030 . -256) 150202) ((-1029 . -855) 150169) ((-1029 . -551) 149968) ((-1029 . -944) 149853) ((-1029 . -1124) 149832) ((-1029 . -815) 149811) ((-1029 . -790) 149670) ((-1029 . -805) 149654) ((-1029 . -800) 149636) ((-1029 . -803) 149620) ((-1029 . -448) 149572) ((-1029 . -386) 149526) ((-1029 . -576) 149474) ((-1029 . -586) 149363) ((-1029 . -323) 149347) ((-1029 . -47) 149319) ((-1029 . -38) 149171) ((-1029 . -578) 149023) ((-1029 . -650) 148875) ((-1029 . -242) 148809) ((-1029 . -490) 148743) ((-1029 . -80) 148568) ((-1029 . -957) 148414) ((-1029 . -962) 148260) ((-1029 . -144) 148174) ((-1029 . -118) 148153) ((-1029 . -116) 148132) ((-1029 . -584) 148042) ((-1029 . -102) T) ((-1029 . -25) T) ((-1029 . -72) T) ((-1029 . -1119) T) ((-1029 . -548) 148024) ((-1029 . -1006) T) ((-1029 . -23) T) ((-1029 . -21) T) ((-1029 . -955) T) ((-1029 . -963) T) ((-1029 . -1016) T) ((-1029 . -659) T) ((-1029 . -349) 148008) ((-1029 . -273) 147980) ((-1029 . -256) 147967) ((-1029 . -549) 147715) ((-1024 . -478) T) ((-1024 . -1124) T) ((-1024 . -1056) T) ((-1024 . -944) 147697) ((-1024 . -549) 147612) ((-1024 . -927) T) ((-1024 . -790) 147594) ((-1024 . -749) T) ((-1024 . -715) T) ((-1024 . -712) T) ((-1024 . -753) T) ((-1024 . -750) T) ((-1024 . -710) T) ((-1024 . -708) T) ((-1024 . -734) T) ((-1024 . -586) 147566) ((-1024 . -576) 147548) ((-1024 . -826) T) ((-1024 . -490) T) ((-1024 . -242) T) ((-1024 . -144) T) ((-1024 . -551) 147520) ((-1024 . -650) 147507) ((-1024 . -578) 147494) ((-1024 . -962) 147481) ((-1024 . -957) 147468) ((-1024 . -80) 147453) ((-1024 . -38) 147440) ((-1024 . -386) T) ((-1024 . -254) T) ((-1024 . -187) T) ((-1024 . -184) 147427) ((-1024 . -188) T) ((-1024 . -114) T) ((-1024 . -955) T) ((-1024 . -963) T) ((-1024 . -1016) T) ((-1024 . -659) T) ((-1024 . -21) T) ((-1024 . -584) 147399) ((-1024 . -23) T) ((-1024 . -1006) T) ((-1024 . -548) 147381) ((-1024 . -1119) T) ((-1024 . -72) T) ((-1024 . -25) T) ((-1024 . -102) T) ((-1024 . -118) T) ((-1024 . -746) T) ((-1024 . -314) T) ((-1024 . -82) T) ((-1024 . -600) T) ((-1020 . -988) T) ((-1020 . -424) 147362) ((-1020 . -548) 147328) ((-1020 . -551) 147309) ((-1020 . -1006) T) ((-1020 . -1119) T) ((-1020 . -72) T) ((-1020 . -64) T) ((-1019 . -1006) T) ((-1019 . -548) 147291) ((-1019 . -1119) T) ((-1019 . -72) T) ((-1017 . -193) 147270) ((-1017 . -1177) 147240) ((-1017 . -715) 147219) ((-1017 . -712) 147198) ((-1017 . -753) 147152) ((-1017 . -750) 147106) ((-1017 . -710) 147085) ((-1017 . -711) 147064) ((-1017 . -650) 147009) ((-1017 . -578) 146934) ((-1017 . -240) 146911) ((-1017 . -238) 146888) ((-1017 . -423) 146872) ((-1017 . -448) 146805) ((-1017 . -256) 146743) ((-1017 . -34) T) ((-1017 . -534) 146720) ((-1017 . -944) 146549) ((-1017 . -551) 146353) ((-1017 . -349) 146322) ((-1017 . -576) 146230) ((-1017 . -586) 146069) ((-1017 . -323) 146039) ((-1017 . -314) 146018) ((-1017 . -188) 145971) ((-1017 . -584) 145759) ((-1017 . -659) 145738) ((-1017 . -1016) 145717) ((-1017 . -963) 145696) ((-1017 . -955) 145675) ((-1017 . -184) 145571) ((-1017 . -187) 145473) ((-1017 . -222) 145443) ((-1017 . -800) 145315) ((-1017 . -805) 145189) ((-1017 . -803) 145122) ((-1017 . -182) 145092) ((-1017 . -548) 144789) ((-1017 . -962) 144714) ((-1017 . -957) 144619) ((-1017 . -80) 144539) ((-1017 . -102) 144414) ((-1017 . -25) 144251) ((-1017 . -72) 143988) ((-1017 . -1119) T) ((-1017 . -1006) 143744) ((-1017 . -23) 143600) ((-1017 . -21) 143515) ((-1010 . -1009) 143479) ((-1010 . -72) T) ((-1010 . -548) 143461) ((-1010 . -1006) T) ((-1010 . -238) 143417) ((-1010 . -1119) T) ((-1010 . -553) 143332) ((-1008 . -1009) 143284) ((-1008 . -72) T) ((-1008 . -548) 143266) ((-1008 . -1006) T) ((-1008 . -238) 143222) ((-1008 . -1119) T) ((-1008 . -553) 143125) ((-1007 . -314) T) ((-1007 . -72) T) ((-1007 . -1119) T) ((-1007 . -548) 143107) ((-1007 . -1006) T) ((-1002 . -363) 143091) ((-1002 . -1004) 143075) ((-1002 . -314) 143054) ((-1002 . -190) 143038) ((-1002 . -549) 142999) ((-1002 . -122) 142983) ((-1002 . -423) 142967) ((-1002 . -1006) T) ((-1002 . -448) 142900) ((-1002 . -256) 142838) ((-1002 . -548) 142820) ((-1002 . -72) T) ((-1002 . -1119) T) ((-1002 . -34) T) ((-1002 . -76) 142804) ((-1002 . -181) 142788) ((-1001 . -988) T) ((-1001 . -424) 142769) ((-1001 . -548) 142735) ((-1001 . -551) 142716) ((-1001 . -1006) T) ((-1001 . -1119) T) ((-1001 . -72) T) ((-1001 . -64) T) ((-997 . -1119) T) ((-997 . -1006) 142687) ((-997 . -548) 142647) ((-997 . -72) 142618) ((-996 . -988) T) ((-996 . -424) 142599) ((-996 . -548) 142565) ((-996 . -551) 142546) ((-996 . -1006) T) ((-996 . -1119) T) ((-996 . -72) T) ((-996 . -64) T) ((-994 . -999) 142530) ((-994 . -553) 142514) ((-994 . -1006) 142492) ((-994 . -548) 142459) ((-994 . -1119) 142437) ((-994 . -72) 142415) ((-994 . -1000) 142373) ((-993 . -225) 142357) ((-993 . -551) 142341) ((-993 . -944) 142325) ((-993 . -753) T) ((-993 . -72) T) ((-993 . -1006) T) ((-993 . -548) 142307) ((-993 . -750) T) ((-993 . -184) 142294) ((-993 . -1119) T) ((-993 . -187) T) ((-992 . -210) 142233) ((-992 . -551) 141977) ((-992 . -944) 141807) ((-992 . -549) NIL) ((-992 . -273) 141769) ((-992 . -349) 141753) ((-992 . -38) 141605) ((-992 . -80) 141430) ((-992 . -957) 141276) ((-992 . -962) 141122) ((-992 . -584) 141032) ((-992 . -586) 140921) ((-992 . -578) 140773) ((-992 . -650) 140625) ((-992 . -116) 140604) ((-992 . -118) 140583) ((-992 . -144) 140497) ((-992 . -490) 140431) ((-992 . -242) 140365) ((-992 . -47) 140327) ((-992 . -323) 140311) ((-992 . -576) 140259) ((-992 . -386) 140213) ((-992 . -448) 140078) ((-992 . -803) 140014) ((-992 . -800) 139913) ((-992 . -805) 139816) ((-992 . -790) NIL) ((-992 . -815) 139795) ((-992 . -1124) 139774) ((-992 . -855) 139721) ((-992 . -256) 139708) ((-992 . -188) 139687) ((-992 . -102) T) ((-992 . -25) T) ((-992 . -72) T) ((-992 . -548) 139669) ((-992 . -1006) T) ((-992 . -23) T) ((-992 . -21) T) ((-992 . -659) T) ((-992 . -1016) T) ((-992 . -963) T) ((-992 . -955) T) ((-992 . -184) 139617) ((-992 . -1119) T) ((-992 . -187) 139571) ((-992 . -222) 139555) ((-992 . -182) 139539) ((-990 . -548) 139521) ((-987 . -750) T) ((-987 . -548) 139503) ((-987 . -1006) T) ((-987 . -72) T) ((-987 . -1119) T) ((-987 . -753) T) ((-987 . -549) 139484) ((-984 . -657) 139463) ((-984 . -944) 139361) ((-984 . -349) 139345) ((-984 . -576) 139293) ((-984 . -586) 139170) ((-984 . -323) 139154) ((-984 . -316) 139133) ((-984 . -118) 139112) ((-984 . -551) 138937) ((-984 . -650) 138811) ((-984 . -578) 138685) ((-984 . -584) 138583) ((-984 . -962) 138496) ((-984 . -957) 138409) ((-984 . -80) 138301) ((-984 . -38) 138175) ((-984 . -347) 138154) ((-984 . -339) 138133) ((-984 . -116) 138087) ((-984 . -1056) 138066) ((-984 . -295) 138045) ((-984 . -314) 137999) ((-984 . -198) 137953) ((-984 . -242) 137907) ((-984 . -254) 137861) ((-984 . -386) 137815) ((-984 . -490) 137769) ((-984 . -826) 137723) ((-984 . -1124) 137677) ((-984 . -308) 137631) ((-984 . -188) 137559) ((-984 . -184) 137435) ((-984 . -187) 137317) ((-984 . -222) 137287) ((-984 . -800) 137159) ((-984 . -805) 137033) ((-984 . -803) 136966) ((-984 . -182) 136936) ((-984 . -549) 136920) ((-984 . -21) T) ((-984 . -23) T) ((-984 . -1006) T) ((-984 . -548) 136902) ((-984 . -1119) T) ((-984 . -72) T) ((-984 . -25) T) ((-984 . -102) T) ((-984 . -955) T) ((-984 . -963) T) ((-984 . -1016) T) ((-984 . -659) T) ((-984 . -144) T) ((-982 . -1006) T) ((-982 . -548) 136884) ((-982 . -1119) T) ((-982 . -72) T) ((-982 . -238) 136863) ((-981 . -1006) T) ((-981 . -548) 136845) ((-981 . -1119) T) ((-981 . -72) T) ((-980 . -1006) T) ((-980 . -548) 136827) ((-980 . -1119) T) ((-980 . -72) T) ((-980 . -238) 136806) ((-980 . -944) 136783) ((-980 . -551) 136760) ((-979 . -1119) T) ((-978 . -988) T) ((-978 . -424) 136741) ((-978 . -548) 136707) ((-978 . -551) 136688) ((-978 . -1006) T) ((-978 . -1119) T) ((-978 . -72) T) ((-978 . -64) T) ((-971 . -988) T) ((-971 . -424) 136669) ((-971 . -548) 136635) ((-971 . -551) 136616) ((-971 . -1006) T) ((-971 . -1119) T) ((-971 . -72) T) ((-971 . -64) T) ((-968 . -478) T) ((-968 . -1124) T) ((-968 . -1056) T) ((-968 . -944) 136598) ((-968 . -549) 136513) ((-968 . -927) T) ((-968 . -790) 136495) ((-968 . -749) T) ((-968 . -715) T) ((-968 . -712) T) ((-968 . -753) T) ((-968 . -750) T) ((-968 . -710) T) ((-968 . -708) T) ((-968 . -734) T) ((-968 . -586) 136467) ((-968 . -576) 136449) ((-968 . -826) T) ((-968 . -490) T) ((-968 . -242) T) ((-968 . -144) T) ((-968 . -551) 136421) ((-968 . -650) 136408) ((-968 . -578) 136395) ((-968 . -962) 136382) ((-968 . -957) 136369) ((-968 . -80) 136354) ((-968 . -38) 136341) ((-968 . -386) T) ((-968 . -254) T) ((-968 . -187) T) ((-968 . -184) 136328) ((-968 . -188) T) ((-968 . -114) T) ((-968 . -955) T) ((-968 . -963) T) ((-968 . -1016) T) ((-968 . -659) T) ((-968 . -21) T) ((-968 . -584) 136300) ((-968 . -23) T) ((-968 . -1006) T) ((-968 . -548) 136282) ((-968 . -1119) T) ((-968 . -72) T) ((-968 . -25) T) ((-968 . -102) T) ((-968 . -118) T) ((-968 . -553) 136263) ((-967 . -973) 136242) ((-967 . -72) T) ((-967 . -1119) T) ((-967 . -548) 136224) ((-967 . -1006) T) ((-964 . -1119) T) ((-964 . -1006) 136202) ((-964 . -548) 136169) ((-964 . -72) 136147) ((-960 . -959) 136087) ((-960 . -578) 136032) ((-960 . -650) 135977) ((-960 . -34) T) ((-960 . -256) 135915) ((-960 . -448) 135848) ((-960 . -423) 135832) ((-960 . -586) 135816) ((-960 . -584) 135785) ((-960 . -102) T) ((-960 . -25) T) ((-960 . -72) T) ((-960 . -1119) T) ((-960 . -548) 135747) ((-960 . -1006) T) ((-960 . -23) T) ((-960 . -21) T) ((-960 . -962) 135731) ((-960 . -957) 135715) ((-960 . -80) 135694) ((-960 . -1177) 135664) ((-960 . -549) 135625) ((-952 . -976) 135554) ((-952 . -883) 135483) ((-952 . -549) 135425) ((-952 . -423) 135390) ((-952 . -1006) T) ((-952 . -448) 135274) ((-952 . -256) 135182) ((-952 . -548) 135125) ((-952 . -72) T) ((-952 . -1119) T) ((-952 . -34) T) ((-952 . -122) 135090) ((-952 . -1114) 135019) ((-942 . -988) T) ((-942 . -424) 135000) ((-942 . -548) 134966) ((-942 . -551) 134947) ((-942 . -1006) T) ((-942 . -1119) T) ((-942 . -72) T) ((-942 . -64) T) ((-941 . -144) T) ((-941 . -551) 134916) ((-941 . -659) T) ((-941 . -1016) T) ((-941 . -963) T) ((-941 . -955) T) ((-941 . -586) 134890) ((-941 . -584) 134849) ((-941 . -102) T) ((-941 . -25) T) ((-941 . -72) T) ((-941 . -1119) T) ((-941 . -548) 134831) ((-941 . -1006) T) ((-941 . -23) T) ((-941 . -21) T) ((-941 . -962) 134805) ((-941 . -957) 134779) ((-941 . -80) 134746) ((-941 . -38) 134730) ((-941 . -578) 134714) ((-941 . -650) 134698) ((-934 . -976) 134667) ((-934 . -883) 134636) ((-934 . -549) 134597) ((-934 . -423) 134581) ((-934 . -1006) T) ((-934 . -448) 134514) ((-934 . -256) 134452) ((-934 . -548) 134414) ((-934 . -72) T) ((-934 . -1119) T) ((-934 . -34) T) ((-934 . -122) 134398) ((-934 . -1114) 134367) ((-933 . -1006) T) ((-933 . -548) 134349) ((-933 . -1119) T) ((-933 . -72) T) ((-931 . -919) T) ((-931 . -909) T) ((-931 . -708) T) ((-931 . -710) T) ((-931 . -750) T) ((-931 . -753) T) ((-931 . -712) T) ((-931 . -715) T) ((-931 . -749) T) ((-931 . -944) 134234) ((-931 . -349) 134196) ((-931 . -198) T) ((-931 . -242) T) ((-931 . -254) T) ((-931 . -386) T) ((-931 . -38) 134133) ((-931 . -578) 134070) ((-931 . -650) 134007) ((-931 . -551) 133944) ((-931 . -490) T) ((-931 . -826) T) ((-931 . -1124) T) ((-931 . -308) T) ((-931 . -80) 133853) ((-931 . -957) 133790) ((-931 . -962) 133727) ((-931 . -144) T) ((-931 . -118) T) ((-931 . -586) 133664) ((-931 . -584) 133601) ((-931 . -102) T) ((-931 . -25) T) ((-931 . -72) T) ((-931 . -1119) T) ((-931 . -548) 133583) ((-931 . -1006) T) ((-931 . -23) T) ((-931 . -21) T) ((-931 . -955) T) ((-931 . -963) T) ((-931 . -1016) T) ((-931 . -659) T) ((-926 . -988) T) ((-926 . -424) 133564) ((-926 . -548) 133530) ((-926 . -551) 133511) ((-926 . -1006) T) ((-926 . -1119) T) ((-926 . -72) T) ((-926 . -64) T) ((-911 . -898) 133493) ((-911 . -1056) T) ((-911 . -551) 133443) ((-911 . -944) 133403) ((-911 . -549) 133333) ((-911 . -927) T) ((-911 . -815) NIL) ((-911 . -788) 133315) ((-911 . -749) T) ((-911 . -715) T) ((-911 . -712) T) ((-911 . -753) T) ((-911 . -750) T) ((-911 . -710) T) ((-911 . -708) T) ((-911 . -734) T) ((-911 . -790) 133297) ((-911 . -337) 133279) ((-911 . -576) 133261) ((-911 . -323) 133243) ((-911 . -238) NIL) ((-911 . -256) NIL) ((-911 . -448) NIL) ((-911 . -284) 133225) ((-911 . -198) T) ((-911 . -80) 133152) ((-911 . -957) 133102) ((-911 . -962) 133052) ((-911 . -242) T) ((-911 . -650) 133002) ((-911 . -578) 132952) ((-911 . -586) 132902) ((-911 . -584) 132852) ((-911 . -38) 132802) ((-911 . -254) T) ((-911 . -386) T) ((-911 . -144) T) ((-911 . -490) T) ((-911 . -826) T) ((-911 . -1124) T) ((-911 . -308) T) ((-911 . -188) T) ((-911 . -184) 132789) ((-911 . -187) T) ((-911 . -222) 132771) ((-911 . -800) NIL) ((-911 . -805) NIL) ((-911 . -803) NIL) ((-911 . -182) 132753) ((-911 . -118) T) ((-911 . -116) NIL) ((-911 . -102) T) ((-911 . -25) T) ((-911 . -72) T) ((-911 . -1119) T) ((-911 . -548) 132713) ((-911 . -1006) T) ((-911 . -23) T) ((-911 . -21) T) ((-911 . -955) T) ((-911 . -963) T) ((-911 . -1016) T) ((-911 . -659) T) ((-910 . -287) 132687) ((-910 . -144) T) ((-910 . -551) 132617) ((-910 . -659) T) ((-910 . -1016) T) ((-910 . -963) T) ((-910 . -955) T) ((-910 . -586) 132519) ((-910 . -584) 132449) ((-910 . -102) T) ((-910 . -25) T) ((-910 . -72) T) ((-910 . -1119) T) ((-910 . -548) 132431) ((-910 . -1006) T) ((-910 . -23) T) ((-910 . -21) T) ((-910 . -962) 132376) ((-910 . -957) 132321) ((-910 . -80) 132238) ((-910 . -549) 132222) ((-910 . -182) 132199) ((-910 . -803) 132151) ((-910 . -805) 132063) ((-910 . -800) 131973) ((-910 . -222) 131950) ((-910 . -187) 131890) ((-910 . -184) 131824) ((-910 . -188) 131796) ((-910 . -308) T) ((-910 . -1124) T) ((-910 . -826) T) ((-910 . -490) T) ((-910 . -650) 131741) ((-910 . -578) 131686) ((-910 . -38) 131631) ((-910 . -386) T) ((-910 . -254) T) ((-910 . -242) T) ((-910 . -198) T) ((-910 . -314) NIL) ((-910 . -295) NIL) ((-910 . -1056) NIL) ((-910 . -116) 131603) ((-910 . -339) NIL) ((-910 . -347) 131575) ((-910 . -118) 131547) ((-910 . -316) 131519) ((-910 . -323) 131496) ((-910 . -576) 131430) ((-910 . -349) 131407) ((-910 . -944) 131284) ((-910 . -657) 131256) ((-907 . -902) 131240) ((-907 . -423) 131224) ((-907 . -1006) 131202) ((-907 . -448) 131135) ((-907 . -256) 131073) ((-907 . -548) 131008) ((-907 . -72) 130962) ((-907 . -1119) T) ((-907 . -34) T) ((-907 . -76) 130946) ((-903 . -905) 130930) ((-903 . -753) 130909) ((-903 . -750) 130888) ((-903 . -944) 130786) ((-903 . -349) 130770) ((-903 . -576) 130718) ((-903 . -586) 130620) ((-903 . -323) 130604) ((-903 . -238) 130562) ((-903 . -256) 130527) ((-903 . -448) 130439) ((-903 . -284) 130423) ((-903 . -38) 130371) ((-903 . -80) 130249) ((-903 . -957) 130148) ((-903 . -962) 130047) ((-903 . -584) 129970) ((-903 . -578) 129918) ((-903 . -650) 129866) ((-903 . -551) 129760) ((-903 . -242) 129714) ((-903 . -198) 129693) ((-903 . -188) 129672) ((-903 . -184) 129620) ((-903 . -187) 129574) ((-903 . -222) 129558) ((-903 . -800) 129482) ((-903 . -805) 129408) ((-903 . -803) 129367) ((-903 . -182) 129351) ((-903 . -549) 129312) ((-903 . -118) 129291) ((-903 . -116) 129270) ((-903 . -102) T) ((-903 . -25) T) ((-903 . -72) T) ((-903 . -1119) T) ((-903 . -548) 129252) ((-903 . -1006) T) ((-903 . -23) T) ((-903 . -21) T) ((-903 . -955) T) ((-903 . -963) T) ((-903 . -1016) T) ((-903 . -659) T) ((-901 . -988) T) ((-901 . -424) 129233) ((-901 . -548) 129199) ((-901 . -551) 129180) ((-901 . -1006) T) ((-901 . -1119) T) ((-901 . -72) T) ((-901 . -64) T) ((-900 . -21) T) ((-900 . -584) 129162) ((-900 . -23) T) ((-900 . -1006) T) ((-900 . -548) 129144) ((-900 . -1119) T) ((-900 . -72) T) ((-900 . -25) T) ((-900 . -102) T) ((-900 . -238) 129111) ((-896 . -548) 129093) ((-893 . -1006) T) ((-893 . -548) 129075) ((-893 . -1119) T) ((-893 . -72) T) ((-878 . -715) T) ((-878 . -712) T) ((-878 . -753) T) ((-878 . -750) T) ((-878 . -710) T) ((-878 . -23) T) ((-878 . -1006) T) ((-878 . -548) 129035) ((-878 . -1119) T) ((-878 . -72) T) ((-878 . -25) T) ((-878 . -102) T) ((-877 . -988) T) ((-877 . -424) 129016) ((-877 . -548) 128982) ((-877 . -551) 128963) ((-877 . -1006) T) ((-877 . -1119) T) ((-877 . -72) T) ((-877 . -64) T) ((-871 . -874) T) ((-871 . -72) T) ((-871 . -548) 128945) ((-871 . -1006) T) ((-871 . -600) T) ((-871 . -1119) T) ((-871 . -82) T) ((-871 . -551) 128929) ((-870 . -548) 128911) ((-869 . -1006) T) ((-869 . -548) 128893) ((-869 . -1119) T) ((-869 . -72) T) ((-869 . -314) 128846) ((-869 . -659) 128748) ((-869 . -1016) 128650) ((-869 . -23) 128464) ((-869 . -25) 128278) ((-869 . -102) 128136) ((-869 . -407) 128089) ((-869 . -21) 128044) ((-869 . -584) 127988) ((-869 . -711) 127941) ((-869 . -710) 127894) ((-869 . -750) 127796) ((-869 . -753) 127698) ((-869 . -712) 127651) ((-869 . -715) 127604) ((-863 . -19) 127588) ((-863 . -589) 127572) ((-863 . -240) 127549) ((-863 . -238) 127501) ((-863 . -534) 127478) ((-863 . -549) 127439) ((-863 . -423) 127423) ((-863 . -1006) 127376) ((-863 . -448) 127309) ((-863 . -256) 127247) ((-863 . -548) 127162) ((-863 . -72) 127096) ((-863 . -1119) T) ((-863 . -34) T) ((-863 . -122) 127080) ((-863 . -750) 127059) ((-863 . -753) 127038) ((-863 . -318) 127022) ((-861 . -273) 127001) ((-861 . -944) 126899) ((-861 . -349) 126883) ((-861 . -38) 126780) ((-861 . -551) 126637) ((-861 . -586) 126562) ((-861 . -584) 126472) ((-861 . -659) T) ((-861 . -1016) T) ((-861 . -963) T) ((-861 . -955) T) ((-861 . -80) 126337) ((-861 . -957) 126223) ((-861 . -962) 126109) ((-861 . -21) T) ((-861 . -23) T) ((-861 . -1006) T) ((-861 . -548) 126091) ((-861 . -1119) T) ((-861 . -72) T) ((-861 . -25) T) ((-861 . -102) T) ((-861 . -578) 125988) ((-861 . -650) 125885) ((-861 . -116) 125864) ((-861 . -118) 125843) ((-861 . -144) 125797) ((-861 . -490) 125776) ((-861 . -242) 125755) ((-861 . -47) 125734) ((-859 . -1006) T) ((-859 . -548) 125700) ((-859 . -1119) T) ((-859 . -72) T) ((-851 . -855) 125661) ((-851 . -551) 125457) ((-851 . -944) 125339) ((-851 . -1124) 125318) ((-851 . -815) 125297) ((-851 . -790) 125222) ((-851 . -805) 125203) ((-851 . -800) 125182) ((-851 . -803) 125163) ((-851 . -448) 125109) ((-851 . -386) 125063) ((-851 . -576) 125011) ((-851 . -586) 124900) ((-851 . -323) 124884) ((-851 . -47) 124853) ((-851 . -38) 124705) ((-851 . -578) 124557) ((-851 . -650) 124409) ((-851 . -242) 124343) ((-851 . -490) 124277) ((-851 . -80) 124102) ((-851 . -957) 123948) ((-851 . -962) 123794) ((-851 . -144) 123708) ((-851 . -118) 123687) ((-851 . -116) 123666) ((-851 . -584) 123576) ((-851 . -102) T) ((-851 . -25) T) ((-851 . -72) T) ((-851 . -1119) T) ((-851 . -548) 123558) ((-851 . -1006) T) ((-851 . -23) T) ((-851 . -21) T) ((-851 . -955) T) ((-851 . -963) T) ((-851 . -1016) T) ((-851 . -659) T) ((-851 . -349) 123542) ((-851 . -273) 123511) ((-851 . -256) 123498) ((-851 . -549) 123359) ((-848 . -887) 123343) ((-848 . -19) 123327) ((-848 . -589) 123311) ((-848 . -240) 123288) ((-848 . -238) 123240) ((-848 . -534) 123217) ((-848 . -549) 123178) ((-848 . -423) 123162) ((-848 . -1006) 123115) ((-848 . -448) 123048) ((-848 . -256) 122986) ((-848 . -548) 122901) ((-848 . -72) 122835) ((-848 . -1119) T) ((-848 . -34) T) ((-848 . -122) 122819) ((-848 . -750) 122798) ((-848 . -753) 122777) ((-848 . -318) 122761) ((-848 . -1168) 122745) ((-848 . -553) 122722) ((-832 . -881) T) ((-832 . -548) 122704) ((-830 . -860) T) ((-830 . -548) 122686) ((-824 . -712) T) ((-824 . -753) T) ((-824 . -750) T) ((-824 . -1006) T) ((-824 . -548) 122668) ((-824 . -1119) T) ((-824 . -72) T) ((-824 . -25) T) ((-824 . -659) T) ((-824 . -1016) T) ((-819 . -308) T) ((-819 . -1124) T) ((-819 . -826) T) ((-819 . -490) T) ((-819 . -144) T) ((-819 . -551) 122605) ((-819 . -650) 122557) ((-819 . -578) 122509) ((-819 . -38) 122461) ((-819 . -386) T) ((-819 . -254) T) ((-819 . -586) 122413) ((-819 . -584) 122350) ((-819 . -659) T) ((-819 . -1016) T) ((-819 . -963) T) ((-819 . -955) T) ((-819 . -80) 122281) ((-819 . -957) 122233) ((-819 . -962) 122185) ((-819 . -21) T) ((-819 . -23) T) ((-819 . -1006) T) ((-819 . -548) 122167) ((-819 . -1119) T) ((-819 . -72) T) ((-819 . -25) T) ((-819 . -102) T) ((-819 . -242) T) ((-819 . -198) T) ((-811 . -295) T) ((-811 . -1056) T) ((-811 . -314) T) ((-811 . -116) T) ((-811 . -308) T) ((-811 . -1124) T) ((-811 . -826) T) ((-811 . -490) T) ((-811 . -144) T) ((-811 . -551) 122117) ((-811 . -650) 122082) ((-811 . -578) 122047) ((-811 . -38) 122012) ((-811 . -386) T) ((-811 . -254) T) ((-811 . -80) 121961) ((-811 . -957) 121926) ((-811 . -962) 121891) ((-811 . -584) 121841) ((-811 . -586) 121806) ((-811 . -242) T) ((-811 . -198) T) ((-811 . -339) T) ((-811 . -187) T) ((-811 . -1119) T) ((-811 . -184) 121793) ((-811 . -955) T) ((-811 . -963) T) ((-811 . -1016) T) ((-811 . -659) T) ((-811 . -21) T) ((-811 . -23) T) ((-811 . -1006) T) ((-811 . -548) 121775) ((-811 . -72) T) ((-811 . -25) T) ((-811 . -102) T) ((-811 . -188) T) ((-811 . -276) 121762) ((-811 . -118) 121744) ((-811 . -944) 121731) ((-811 . -1177) 121718) ((-811 . -1188) 121705) ((-811 . -549) 121687) ((-810 . -1006) T) ((-810 . -548) 121669) ((-810 . -1119) T) ((-810 . -72) T) ((-807 . -809) 121653) ((-807 . -753) 121607) ((-807 . -750) 121561) ((-807 . -659) T) ((-807 . -1006) T) ((-807 . -548) 121543) ((-807 . -72) T) ((-807 . -1016) T) ((-807 . -407) T) ((-807 . -1119) T) ((-807 . -238) 121522) ((-806 . -90) 121506) ((-806 . -423) 121490) ((-806 . -1006) 121468) ((-806 . -448) 121401) ((-806 . -256) 121339) ((-806 . -548) 121253) ((-806 . -72) 121207) ((-806 . -1119) T) ((-806 . -34) T) ((-806 . -917) 121191) ((-797 . -750) T) ((-797 . -548) 121173) ((-797 . -1006) T) ((-797 . -72) T) ((-797 . -1119) T) ((-797 . -753) T) ((-797 . -944) 121150) ((-797 . -551) 121127) ((-794 . -1006) T) ((-794 . -548) 121109) ((-794 . -1119) T) ((-794 . -72) T) ((-794 . -944) 121077) ((-794 . -551) 121045) ((-792 . -1006) T) ((-792 . -548) 121027) ((-792 . -1119) T) ((-792 . -72) T) ((-789 . -1006) T) ((-789 . -548) 121009) ((-789 . -1119) T) ((-789 . -72) T) ((-779 . -988) T) ((-779 . -424) 120990) ((-779 . -548) 120956) ((-779 . -551) 120937) ((-779 . -1006) T) ((-779 . -1119) T) ((-779 . -72) T) ((-779 . -64) T) ((-779 . -1165) T) ((-777 . -1006) T) ((-777 . -548) 120919) ((-777 . -1119) T) ((-777 . -72) T) ((-777 . -551) 120901) ((-776 . -1119) T) ((-776 . -548) 120776) ((-776 . -1006) 120727) ((-776 . -72) 120678) ((-775 . -898) 120662) ((-775 . -1056) 120640) ((-775 . -944) 120507) ((-775 . -551) 120406) ((-775 . -549) 120209) ((-775 . -927) 120188) ((-775 . -815) 120167) ((-775 . -788) 120151) ((-775 . -749) 120130) ((-775 . -715) 120109) ((-775 . -712) 120088) ((-775 . -753) 120042) ((-775 . -750) 119996) ((-775 . -710) 119975) ((-775 . -708) 119954) ((-775 . -734) 119933) ((-775 . -790) 119858) ((-775 . -337) 119842) ((-775 . -576) 119790) ((-775 . -586) 119706) ((-775 . -323) 119690) ((-775 . -238) 119648) ((-775 . -256) 119613) ((-775 . -448) 119525) ((-775 . -284) 119509) ((-775 . -198) T) ((-775 . -80) 119440) ((-775 . -957) 119392) ((-775 . -962) 119344) ((-775 . -242) T) ((-775 . -650) 119296) ((-775 . -578) 119248) ((-775 . -584) 119185) ((-775 . -38) 119137) ((-775 . -254) T) ((-775 . -386) T) ((-775 . -144) T) ((-775 . -490) T) ((-775 . -826) T) ((-775 . -1124) T) ((-775 . -308) T) ((-775 . -188) 119116) ((-775 . -184) 119064) ((-775 . -187) 119018) ((-775 . -222) 119002) ((-775 . -800) 118926) ((-775 . -805) 118852) ((-775 . -803) 118811) ((-775 . -182) 118795) ((-775 . -118) 118774) ((-775 . -116) 118753) ((-775 . -102) T) ((-775 . -25) T) ((-775 . -72) T) ((-775 . -1119) T) ((-775 . -548) 118735) ((-775 . -1006) T) ((-775 . -23) T) ((-775 . -21) T) ((-775 . -955) T) ((-775 . -963) T) ((-775 . -1016) T) ((-775 . -659) T) ((-774 . -898) 118712) ((-774 . -1056) NIL) ((-774 . -944) 118689) ((-774 . -551) 118619) ((-774 . -549) NIL) ((-774 . -927) NIL) ((-774 . -815) NIL) ((-774 . -788) 118596) ((-774 . -749) NIL) ((-774 . -715) NIL) ((-774 . -712) NIL) ((-774 . -753) NIL) ((-774 . -750) NIL) ((-774 . -710) NIL) ((-774 . -708) NIL) ((-774 . -734) NIL) ((-774 . -790) NIL) ((-774 . -337) 118573) ((-774 . -576) 118550) ((-774 . -586) 118495) ((-774 . -323) 118472) ((-774 . -238) 118402) ((-774 . -256) 118346) ((-774 . -448) 118209) ((-774 . -284) 118186) ((-774 . -198) T) ((-774 . -80) 118103) ((-774 . -957) 118048) ((-774 . -962) 117993) ((-774 . -242) T) ((-774 . -650) 117938) ((-774 . -578) 117883) ((-774 . -584) 117813) ((-774 . -38) 117758) ((-774 . -254) T) ((-774 . -386) T) ((-774 . -144) T) ((-774 . -490) T) ((-774 . -826) T) ((-774 . -1124) T) ((-774 . -308) T) ((-774 . -188) NIL) ((-774 . -184) NIL) ((-774 . -187) NIL) ((-774 . -222) 117735) ((-774 . -800) NIL) ((-774 . -805) NIL) ((-774 . -803) NIL) ((-774 . -182) 117712) ((-774 . -118) T) ((-774 . -116) NIL) ((-774 . -102) T) ((-774 . -25) T) ((-774 . -72) T) ((-774 . -1119) T) ((-774 . -548) 117694) ((-774 . -1006) T) ((-774 . -23) T) ((-774 . -21) T) ((-774 . -955) T) ((-774 . -963) T) ((-774 . -1016) T) ((-774 . -659) T) ((-772 . -773) 117678) ((-772 . -826) T) ((-772 . -490) T) ((-772 . -242) T) ((-772 . -144) T) ((-772 . -551) 117650) ((-772 . -650) 117637) ((-772 . -578) 117624) ((-772 . -962) 117611) ((-772 . -957) 117598) ((-772 . -80) 117583) ((-772 . -38) 117570) ((-772 . -386) T) ((-772 . -254) T) ((-772 . -955) T) ((-772 . -963) T) ((-772 . -1016) T) ((-772 . -659) T) ((-772 . -21) T) ((-772 . -584) 117542) ((-772 . -23) T) ((-772 . -1006) T) ((-772 . -548) 117524) ((-772 . -1119) T) ((-772 . -72) T) ((-772 . -25) T) ((-772 . -102) T) ((-772 . -586) 117511) ((-772 . -118) T) ((-769 . -955) T) ((-769 . -963) T) ((-769 . -1016) T) ((-769 . -659) T) ((-769 . -21) T) ((-769 . -584) 117456) ((-769 . -23) T) ((-769 . -1006) T) ((-769 . -548) 117418) ((-769 . -1119) T) ((-769 . -72) T) ((-769 . -25) T) ((-769 . -102) T) ((-769 . -586) 117378) ((-769 . -551) 117313) ((-769 . -424) 117290) ((-769 . -38) 117260) ((-769 . -80) 117225) ((-769 . -957) 117195) ((-769 . -962) 117165) ((-769 . -578) 117135) ((-769 . -650) 117105) ((-768 . -1006) T) ((-768 . -548) 117087) ((-768 . -1119) T) ((-768 . -72) T) ((-767 . -746) T) ((-767 . -753) T) ((-767 . -750) T) ((-767 . -1006) T) ((-767 . -548) 117069) ((-767 . -1119) T) ((-767 . -72) T) ((-767 . -314) T) ((-767 . -549) 116991) ((-766 . -1006) T) ((-766 . -548) 116973) ((-766 . -1119) T) ((-766 . -72) T) ((-765 . -764) T) ((-765 . -145) T) ((-765 . -548) 116955) ((-761 . -750) T) ((-761 . -548) 116937) ((-761 . -1006) T) ((-761 . -72) T) ((-761 . -1119) T) ((-761 . -753) T) ((-758 . -755) 116921) ((-758 . -944) 116819) ((-758 . -551) 116717) ((-758 . -349) 116701) ((-758 . -650) 116671) ((-758 . -578) 116641) ((-758 . -586) 116615) ((-758 . -584) 116574) ((-758 . -102) T) ((-758 . -25) T) ((-758 . -72) T) ((-758 . -1119) T) ((-758 . -548) 116556) ((-758 . -1006) T) ((-758 . -23) T) ((-758 . -21) T) ((-758 . -962) 116540) ((-758 . -957) 116524) ((-758 . -80) 116503) ((-758 . -955) T) ((-758 . -963) T) ((-758 . -1016) T) ((-758 . -659) T) ((-758 . -38) 116473) ((-757 . -755) 116457) ((-757 . -944) 116355) ((-757 . -551) 116274) ((-757 . -349) 116258) ((-757 . -650) 116228) ((-757 . -578) 116198) ((-757 . -586) 116172) ((-757 . -584) 116131) ((-757 . -102) T) ((-757 . -25) T) ((-757 . -72) T) ((-757 . -1119) T) ((-757 . -548) 116113) ((-757 . -1006) T) ((-757 . -23) T) ((-757 . -21) T) ((-757 . -962) 116097) ((-757 . -957) 116081) ((-757 . -80) 116060) ((-757 . -955) T) ((-757 . -963) T) ((-757 . -1016) T) ((-757 . -659) T) ((-757 . -38) 116030) ((-751 . -753) T) ((-751 . -1119) T) ((-751 . -72) T) ((-751 . -424) 116014) ((-751 . -548) 115962) ((-751 . -551) 115946) ((-744 . -1006) T) ((-744 . -548) 115928) ((-744 . -1119) T) ((-744 . -72) T) ((-744 . -349) 115912) ((-744 . -551) 115785) ((-744 . -944) 115683) ((-744 . -21) 115638) ((-744 . -584) 115558) ((-744 . -23) 115513) ((-744 . -25) 115468) ((-744 . -102) 115423) ((-744 . -749) 115402) ((-744 . -586) 115375) ((-744 . -963) 115354) ((-744 . -955) 115333) ((-744 . -715) 115312) ((-744 . -712) 115291) ((-744 . -753) 115270) ((-744 . -750) 115249) ((-744 . -710) 115228) ((-744 . -708) 115207) ((-744 . -1016) 115186) ((-744 . -659) 115165) ((-743 . -741) 115147) ((-743 . -72) T) ((-743 . -1119) T) ((-743 . -548) 115129) ((-743 . -1006) T) ((-739 . -955) T) ((-739 . -963) T) ((-739 . -1016) T) ((-739 . -659) T) ((-739 . -21) T) ((-739 . -584) 115074) ((-739 . -23) T) ((-739 . -1006) T) ((-739 . -548) 115056) ((-739 . -1119) T) ((-739 . -72) T) ((-739 . -25) T) ((-739 . -102) T) ((-739 . -586) 115016) ((-739 . -551) 114971) ((-739 . -944) 114941) ((-739 . -238) 114920) ((-739 . -118) 114899) ((-739 . -116) 114878) ((-739 . -38) 114848) ((-739 . -80) 114813) ((-739 . -957) 114783) ((-739 . -962) 114753) ((-739 . -578) 114723) ((-739 . -650) 114693) ((-737 . -1006) T) ((-737 . -548) 114675) ((-737 . -1119) T) ((-737 . -72) T) ((-737 . -349) 114659) ((-737 . -551) 114532) ((-737 . -944) 114430) ((-737 . -21) 114385) ((-737 . -584) 114305) ((-737 . -23) 114260) ((-737 . -25) 114215) ((-737 . -102) 114170) ((-737 . -749) 114149) ((-737 . -586) 114122) ((-737 . -963) 114101) ((-737 . -955) 114080) ((-737 . -715) 114059) ((-737 . -712) 114038) ((-737 . -753) 114017) ((-737 . -750) 113996) ((-737 . -710) 113975) ((-737 . -708) 113954) ((-737 . -1016) 113933) ((-737 . -659) 113912) ((-735 . -641) 113896) ((-735 . -551) 113851) ((-735 . -650) 113821) ((-735 . -578) 113791) ((-735 . -586) 113765) ((-735 . -584) 113724) ((-735 . -102) T) ((-735 . -25) T) ((-735 . -72) T) ((-735 . -1119) T) ((-735 . -548) 113706) ((-735 . -1006) T) ((-735 . -23) T) ((-735 . -21) T) ((-735 . -962) 113690) ((-735 . -957) 113674) ((-735 . -80) 113653) ((-735 . -955) T) ((-735 . -963) T) ((-735 . -1016) T) ((-735 . -659) T) ((-735 . -38) 113623) ((-735 . -188) 113602) ((-735 . -184) 113575) ((-735 . -187) 113554) ((-733 . -330) 113538) ((-733 . -551) 113522) ((-733 . -944) 113506) ((-733 . -753) T) ((-733 . -750) T) ((-733 . -1016) T) ((-733 . -72) T) ((-733 . -1119) T) ((-733 . -548) 113488) ((-733 . -1006) T) ((-733 . -659) T) ((-733 . -748) T) ((-733 . -760) T) ((-732 . -225) 113472) ((-732 . -551) 113456) ((-732 . -944) 113440) ((-732 . -753) T) ((-732 . -72) T) ((-732 . -1006) T) ((-732 . -548) 113422) ((-732 . -750) T) ((-732 . -184) 113409) ((-732 . -1119) T) ((-732 . -187) T) ((-731 . -80) 113344) ((-731 . -957) 113295) ((-731 . -962) 113246) ((-731 . -21) T) ((-731 . -584) 113182) ((-731 . -23) T) ((-731 . -1006) T) ((-731 . -548) 113151) ((-731 . -1119) T) ((-731 . -72) T) ((-731 . -25) T) ((-731 . -102) T) ((-731 . -586) 113102) ((-731 . -188) T) ((-731 . -551) 113011) ((-731 . -659) T) ((-731 . -1016) T) ((-731 . -963) T) ((-731 . -955) T) ((-731 . -184) 112998) ((-731 . -187) T) ((-731 . -424) 112982) ((-731 . -308) 112961) ((-731 . -1124) 112940) ((-731 . -826) 112919) ((-731 . -490) 112898) ((-731 . -144) 112877) ((-731 . -650) 112814) ((-731 . -578) 112751) ((-731 . -38) 112688) ((-731 . -386) 112667) ((-731 . -254) 112646) ((-731 . -242) 112625) ((-731 . -198) 112604) ((-730 . -210) 112543) ((-730 . -551) 112287) ((-730 . -944) 112117) ((-730 . -549) NIL) ((-730 . -273) 112079) ((-730 . -349) 112063) ((-730 . -38) 111915) ((-730 . -80) 111740) ((-730 . -957) 111586) ((-730 . -962) 111432) ((-730 . -584) 111342) ((-730 . -586) 111231) ((-730 . -578) 111083) ((-730 . -650) 110935) ((-730 . -116) 110914) ((-730 . -118) 110893) ((-730 . -144) 110807) ((-730 . -490) 110741) ((-730 . -242) 110675) ((-730 . -47) 110637) ((-730 . -323) 110621) ((-730 . -576) 110569) ((-730 . -386) 110523) ((-730 . -448) 110388) ((-730 . -803) 110324) ((-730 . -800) 110223) ((-730 . -805) 110126) ((-730 . -790) NIL) ((-730 . -815) 110105) ((-730 . -1124) 110084) ((-730 . -855) 110031) ((-730 . -256) 110018) ((-730 . -188) 109997) ((-730 . -102) T) ((-730 . -25) T) ((-730 . -72) T) ((-730 . -548) 109979) ((-730 . -1006) T) ((-730 . -23) T) ((-730 . -21) T) ((-730 . -659) T) ((-730 . -1016) T) ((-730 . -963) T) ((-730 . -955) T) ((-730 . -184) 109927) ((-730 . -1119) T) ((-730 . -187) 109881) ((-730 . -222) 109865) ((-730 . -182) 109849) ((-729 . -193) 109828) ((-729 . -1177) 109798) ((-729 . -715) 109777) ((-729 . -712) 109756) ((-729 . -753) 109710) ((-729 . -750) 109664) ((-729 . -710) 109643) ((-729 . -711) 109622) ((-729 . -650) 109567) ((-729 . -578) 109492) ((-729 . -240) 109469) ((-729 . -238) 109446) ((-729 . -423) 109430) ((-729 . -448) 109363) ((-729 . -256) 109301) ((-729 . -34) T) ((-729 . -534) 109278) ((-729 . -944) 109107) ((-729 . -551) 108911) ((-729 . -349) 108880) ((-729 . -576) 108788) ((-729 . -586) 108627) ((-729 . -323) 108597) ((-729 . -314) 108576) ((-729 . -188) 108529) ((-729 . -584) 108317) ((-729 . -659) 108296) ((-729 . -1016) 108275) ((-729 . -963) 108254) ((-729 . -955) 108233) ((-729 . -184) 108129) ((-729 . -187) 108031) ((-729 . -222) 108001) ((-729 . -800) 107873) ((-729 . -805) 107747) ((-729 . -803) 107680) ((-729 . -182) 107650) ((-729 . -548) 107347) ((-729 . -962) 107272) ((-729 . -957) 107177) ((-729 . -80) 107097) ((-729 . -102) 106972) ((-729 . -25) 106809) ((-729 . -72) 106546) ((-729 . -1119) T) ((-729 . -1006) 106302) ((-729 . -23) 106158) ((-729 . -21) 106073) ((-716 . -714) 106057) ((-716 . -753) 106036) ((-716 . -750) 106015) ((-716 . -944) 105808) ((-716 . -551) 105661) ((-716 . -349) 105625) ((-716 . -238) 105583) ((-716 . -256) 105548) ((-716 . -448) 105460) ((-716 . -284) 105444) ((-716 . -314) 105423) ((-716 . -549) 105384) ((-716 . -118) 105363) ((-716 . -116) 105342) ((-716 . -650) 105326) ((-716 . -578) 105310) ((-716 . -586) 105284) ((-716 . -584) 105243) ((-716 . -102) T) ((-716 . -25) T) ((-716 . -72) T) ((-716 . -1119) T) ((-716 . -548) 105225) ((-716 . -1006) T) ((-716 . -23) T) ((-716 . -21) T) ((-716 . -962) 105209) ((-716 . -957) 105193) ((-716 . -80) 105172) ((-716 . -955) T) ((-716 . -963) T) ((-716 . -1016) T) ((-716 . -659) T) ((-716 . -38) 105156) ((-698 . -1145) 105140) ((-698 . -1056) 105118) ((-698 . -549) NIL) ((-698 . -256) 105105) ((-698 . -448) 105053) ((-698 . -273) 105030) ((-698 . -944) 104892) ((-698 . -349) 104876) ((-698 . -38) 104708) ((-698 . -80) 104513) ((-698 . -957) 104339) ((-698 . -962) 104165) ((-698 . -584) 104075) ((-698 . -586) 103964) ((-698 . -578) 103796) ((-698 . -650) 103628) ((-698 . -551) 103384) ((-698 . -116) 103363) ((-698 . -118) 103342) ((-698 . -47) 103319) ((-698 . -323) 103303) ((-698 . -576) 103251) ((-698 . -803) 103195) ((-698 . -800) 103102) ((-698 . -805) 103013) ((-698 . -790) NIL) ((-698 . -815) 102992) ((-698 . -1124) 102971) ((-698 . -855) 102941) ((-698 . -826) 102920) ((-698 . -490) 102834) ((-698 . -242) 102748) ((-698 . -144) 102642) ((-698 . -386) 102576) ((-698 . -254) 102555) ((-698 . -238) 102482) ((-698 . -188) T) ((-698 . -102) T) ((-698 . -25) T) ((-698 . -72) T) ((-698 . -548) 102443) ((-698 . -1006) T) ((-698 . -23) T) ((-698 . -21) T) ((-698 . -659) T) ((-698 . -1016) T) ((-698 . -963) T) ((-698 . -955) T) ((-698 . -184) 102430) ((-698 . -1119) T) ((-698 . -187) T) ((-698 . -222) 102414) ((-698 . -182) 102398) ((-697 . -970) 102365) ((-697 . -549) 102000) ((-697 . -256) 101987) ((-697 . -448) 101939) ((-697 . -273) 101911) ((-697 . -944) 101770) ((-697 . -349) 101754) ((-697 . -38) 101606) ((-697 . -551) 101379) ((-697 . -586) 101268) ((-697 . -584) 101178) ((-697 . -659) T) ((-697 . -1016) T) ((-697 . -963) T) ((-697 . -955) T) ((-697 . -80) 101003) ((-697 . -957) 100849) ((-697 . -962) 100695) ((-697 . -21) T) ((-697 . -23) T) ((-697 . -1006) T) ((-697 . -548) 100609) ((-697 . -1119) T) ((-697 . -72) T) ((-697 . -25) T) ((-697 . -102) T) ((-697 . -578) 100461) ((-697 . -650) 100313) ((-697 . -116) 100292) ((-697 . -118) 100271) ((-697 . -144) 100185) ((-697 . -490) 100119) ((-697 . -242) 100053) ((-697 . -47) 100025) ((-697 . -323) 100009) ((-697 . -576) 99957) ((-697 . -386) 99911) ((-697 . -803) 99895) ((-697 . -800) 99877) ((-697 . -805) 99861) ((-697 . -790) 99720) ((-697 . -815) 99699) ((-697 . -1124) 99678) ((-697 . -855) 99645) ((-690 . -1006) T) ((-690 . -548) 99627) ((-690 . -1119) T) ((-690 . -72) T) ((-688 . -711) T) ((-688 . -102) T) ((-688 . -25) T) ((-688 . -72) T) ((-688 . -1119) T) ((-688 . -548) 99609) ((-688 . -1006) T) ((-688 . -23) T) ((-688 . -710) T) ((-688 . -750) T) ((-688 . -753) T) ((-688 . -712) T) ((-688 . -715) T) ((-688 . -659) T) ((-688 . -1016) T) ((-669 . -670) 99593) ((-669 . -1004) 99577) ((-669 . -190) 99561) ((-669 . -549) 99522) ((-669 . -122) 99506) ((-669 . -423) 99490) ((-669 . -1006) T) ((-669 . -448) 99423) ((-669 . -256) 99361) ((-669 . -548) 99343) ((-669 . -72) T) ((-669 . -1119) T) ((-669 . -34) T) ((-669 . -76) 99327) ((-669 . -630) 99311) ((-668 . -955) T) ((-668 . -963) T) ((-668 . -1016) T) ((-668 . -659) T) ((-668 . -21) T) ((-668 . -584) 99256) ((-668 . -23) T) ((-668 . -1006) T) ((-668 . -548) 99238) ((-668 . -1119) T) ((-668 . -72) T) ((-668 . -25) T) ((-668 . -102) T) ((-668 . -586) 99198) ((-668 . -551) 99154) ((-668 . -944) 99125) ((-668 . -118) 99104) ((-668 . -116) 99083) ((-668 . -38) 99053) ((-668 . -80) 99018) ((-668 . -957) 98988) ((-668 . -962) 98958) ((-668 . -578) 98928) ((-668 . -650) 98898) ((-668 . -314) 98851) ((-664 . -855) 98804) ((-664 . -551) 98596) ((-664 . -944) 98474) ((-664 . -1124) 98453) ((-664 . -815) 98432) ((-664 . -790) NIL) ((-664 . -805) 98409) ((-664 . -800) 98384) ((-664 . -803) 98361) ((-664 . -448) 98299) ((-664 . -386) 98253) ((-664 . -576) 98201) ((-664 . -586) 98090) ((-664 . -323) 98074) ((-664 . -47) 98039) ((-664 . -38) 97891) ((-664 . -578) 97743) ((-664 . -650) 97595) ((-664 . -242) 97529) ((-664 . -490) 97463) ((-664 . -80) 97288) ((-664 . -957) 97134) ((-664 . -962) 96980) ((-664 . -144) 96894) ((-664 . -118) 96873) ((-664 . -116) 96852) ((-664 . -584) 96762) ((-664 . -102) T) ((-664 . -25) T) ((-664 . -72) T) ((-664 . -1119) T) ((-664 . -548) 96744) ((-664 . -1006) T) ((-664 . -23) T) ((-664 . -21) T) ((-664 . -955) T) ((-664 . -963) T) ((-664 . -1016) T) ((-664 . -659) T) ((-664 . -349) 96728) ((-664 . -273) 96693) ((-664 . -256) 96680) ((-664 . -549) 96541) ((-651 . -407) T) ((-651 . -1016) T) ((-651 . -72) T) ((-651 . -1119) T) ((-651 . -548) 96523) ((-651 . -1006) T) ((-651 . -659) T) ((-648 . -955) T) ((-648 . -963) T) ((-648 . -1016) T) ((-648 . -659) T) ((-648 . -21) T) ((-648 . -584) 96495) ((-648 . -23) T) ((-648 . -1006) T) ((-648 . -548) 96477) ((-648 . -1119) T) ((-648 . -72) T) ((-648 . -25) T) ((-648 . -102) T) ((-648 . -586) 96464) ((-648 . -551) 96446) ((-647 . -955) T) ((-647 . -963) T) ((-647 . -1016) T) ((-647 . -659) T) ((-647 . -21) T) ((-647 . -584) 96391) ((-647 . -23) T) ((-647 . -1006) T) ((-647 . -548) 96373) ((-647 . -1119) T) ((-647 . -72) T) ((-647 . -25) T) ((-647 . -102) T) ((-647 . -586) 96333) ((-647 . -551) 96288) ((-647 . -944) 96258) ((-647 . -238) 96237) ((-647 . -118) 96216) ((-647 . -116) 96195) ((-647 . -38) 96165) ((-647 . -80) 96130) ((-647 . -957) 96100) ((-647 . -962) 96070) ((-647 . -578) 96040) ((-647 . -650) 96010) ((-646 . -750) T) ((-646 . -548) 95945) ((-646 . -1006) T) ((-646 . -72) T) ((-646 . -1119) T) ((-646 . -753) T) ((-646 . -424) 95895) ((-646 . -551) 95845) ((-645 . -1145) 95829) ((-645 . -1056) 95807) ((-645 . -549) NIL) ((-645 . -256) 95794) ((-645 . -448) 95742) ((-645 . -273) 95719) ((-645 . -944) 95602) ((-645 . -349) 95586) ((-645 . -38) 95418) ((-645 . -80) 95223) ((-645 . -957) 95049) ((-645 . -962) 94875) ((-645 . -584) 94785) ((-645 . -586) 94674) ((-645 . -578) 94506) ((-645 . -650) 94338) ((-645 . -551) 94102) ((-645 . -116) 94081) ((-645 . -118) 94060) ((-645 . -47) 94037) ((-645 . -323) 94021) ((-645 . -576) 93969) ((-645 . -803) 93913) ((-645 . -800) 93820) ((-645 . -805) 93731) ((-645 . -790) NIL) ((-645 . -815) 93710) ((-645 . -1124) 93689) ((-645 . -855) 93659) ((-645 . -826) 93638) ((-645 . -490) 93552) ((-645 . -242) 93466) ((-645 . -144) 93360) ((-645 . -386) 93294) ((-645 . -254) 93273) ((-645 . -238) 93200) ((-645 . -188) T) ((-645 . -102) T) ((-645 . -25) T) ((-645 . -72) T) ((-645 . -548) 93182) ((-645 . -1006) T) ((-645 . -23) T) ((-645 . -21) T) ((-645 . -659) T) ((-645 . -1016) T) ((-645 . -963) T) ((-645 . -955) T) ((-645 . -184) 93169) ((-645 . -1119) T) ((-645 . -187) T) ((-645 . -222) 93153) ((-645 . -182) 93137) ((-645 . -314) 93116) ((-644 . -308) T) ((-644 . -1124) T) ((-644 . -826) T) ((-644 . -490) T) ((-644 . -144) T) ((-644 . -551) 93066) ((-644 . -650) 93031) ((-644 . -578) 92996) ((-644 . -38) 92961) ((-644 . -386) T) ((-644 . -254) T) ((-644 . -586) 92926) ((-644 . -584) 92876) ((-644 . -659) T) ((-644 . -1016) T) ((-644 . -963) T) ((-644 . -955) T) ((-644 . -80) 92825) ((-644 . -957) 92790) ((-644 . -962) 92755) ((-644 . -21) T) ((-644 . -23) T) ((-644 . -1006) T) ((-644 . -548) 92737) ((-644 . -1119) T) ((-644 . -72) T) ((-644 . -25) T) ((-644 . -102) T) ((-644 . -242) T) ((-644 . -198) T) ((-643 . -1006) T) ((-643 . -548) 92719) ((-643 . -1119) T) ((-643 . -72) T) ((-628 . -1165) T) ((-628 . -944) 92703) ((-628 . -551) 92687) ((-628 . -548) 92669) ((-626 . -623) 92627) ((-626 . -423) 92611) ((-626 . -1006) 92589) ((-626 . -448) 92522) ((-626 . -256) 92460) ((-626 . -548) 92395) ((-626 . -72) 92349) ((-626 . -1119) T) ((-626 . -34) T) ((-626 . -57) 92307) ((-626 . -549) 92268) ((-618 . -988) T) ((-618 . -424) 92249) ((-618 . -548) 92199) ((-618 . -551) 92180) ((-618 . -1006) T) ((-618 . -1119) T) ((-618 . -72) T) ((-618 . -64) T) ((-614 . -750) T) ((-614 . -548) 92162) ((-614 . -1006) T) ((-614 . -72) T) ((-614 . -1119) T) ((-614 . -753) T) ((-614 . -944) 92146) ((-614 . -551) 92130) ((-613 . -988) T) ((-613 . -424) 92111) ((-613 . -548) 92077) ((-613 . -551) 92058) ((-613 . -1006) T) ((-613 . -1119) T) ((-613 . -72) T) ((-613 . -64) T) ((-610 . -750) T) ((-610 . -548) 92040) ((-610 . -1006) T) ((-610 . -72) T) ((-610 . -1119) T) ((-610 . -753) T) ((-610 . -944) 92024) ((-610 . -551) 92008) ((-609 . -988) T) ((-609 . -424) 91989) ((-609 . -548) 91955) ((-609 . -551) 91936) ((-609 . -1006) T) ((-609 . -1119) T) ((-609 . -72) T) ((-609 . -64) T) ((-608 . -1027) 91881) ((-608 . -423) 91865) ((-608 . -448) 91798) ((-608 . -256) 91736) ((-608 . -34) T) ((-608 . -959) 91676) ((-608 . -944) 91574) ((-608 . -551) 91493) ((-608 . -349) 91477) ((-608 . -576) 91425) ((-608 . -586) 91363) ((-608 . -323) 91347) ((-608 . -188) 91326) ((-608 . -184) 91274) ((-608 . -187) 91228) ((-608 . -222) 91212) ((-608 . -800) 91136) ((-608 . -805) 91062) ((-608 . -803) 91021) ((-608 . -182) 91005) ((-608 . -650) 90989) ((-608 . -578) 90973) ((-608 . -584) 90932) ((-608 . -102) T) ((-608 . -25) T) ((-608 . -72) T) ((-608 . -1119) T) ((-608 . -548) 90894) ((-608 . -1006) T) ((-608 . -23) T) ((-608 . -21) T) ((-608 . -962) 90878) ((-608 . -957) 90862) ((-608 . -80) 90841) ((-608 . -955) T) ((-608 . -963) T) ((-608 . -1016) T) ((-608 . -659) T) ((-608 . -38) 90801) ((-608 . -355) 90785) ((-608 . -677) 90769) ((-608 . -653) T) ((-608 . -679) T) ((-608 . -312) 90753) ((-608 . -238) 90730) ((-602 . -320) 90709) ((-602 . -650) 90693) ((-602 . -578) 90677) ((-602 . -586) 90661) ((-602 . -584) 90630) ((-602 . -102) T) ((-602 . -25) T) ((-602 . -72) T) ((-602 . -1119) T) ((-602 . -548) 90612) ((-602 . -1006) T) ((-602 . -23) T) ((-602 . -21) T) ((-602 . -962) 90596) ((-602 . -957) 90580) ((-602 . -80) 90559) ((-602 . -570) 90543) ((-602 . -329) 90515) ((-602 . -551) 90492) ((-602 . -944) 90469) ((-594 . -596) 90453) ((-594 . -38) 90423) ((-594 . -551) 90342) ((-594 . -586) 90316) ((-594 . -584) 90275) ((-594 . -659) T) ((-594 . -1016) T) ((-594 . -963) T) ((-594 . -955) T) ((-594 . -80) 90254) ((-594 . -957) 90238) ((-594 . -962) 90222) ((-594 . -21) T) ((-594 . -23) T) ((-594 . -1006) T) ((-594 . -548) 90204) ((-594 . -72) T) ((-594 . -25) T) ((-594 . -102) T) ((-594 . -578) 90174) ((-594 . -650) 90144) ((-594 . -349) 90128) ((-594 . -944) 90026) ((-594 . -755) 90010) ((-594 . -1119) T) ((-594 . -238) 89971) ((-593 . -596) 89955) ((-593 . -38) 89925) ((-593 . -551) 89844) ((-593 . -586) 89818) ((-593 . -584) 89777) ((-593 . -659) T) ((-593 . -1016) T) ((-593 . -963) T) ((-593 . -955) T) ((-593 . -80) 89756) ((-593 . -957) 89740) ((-593 . -962) 89724) ((-593 . -21) T) ((-593 . -23) T) ((-593 . -1006) T) ((-593 . -548) 89706) ((-593 . -72) T) ((-593 . -25) T) ((-593 . -102) T) ((-593 . -578) 89676) ((-593 . -650) 89646) ((-593 . -349) 89630) ((-593 . -944) 89528) ((-593 . -755) 89512) ((-593 . -1119) T) ((-593 . -238) 89491) ((-592 . -596) 89475) ((-592 . -38) 89445) ((-592 . -551) 89364) ((-592 . -586) 89338) ((-592 . -584) 89297) ((-592 . -659) T) ((-592 . -1016) T) ((-592 . -963) T) ((-592 . -955) T) ((-592 . -80) 89276) ((-592 . -957) 89260) ((-592 . -962) 89244) ((-592 . -21) T) ((-592 . -23) T) ((-592 . -1006) T) ((-592 . -548) 89226) ((-592 . -72) T) ((-592 . -25) T) ((-592 . -102) T) ((-592 . -578) 89196) ((-592 . -650) 89166) ((-592 . -349) 89150) ((-592 . -944) 89048) ((-592 . -755) 89032) ((-592 . -1119) T) ((-592 . -238) 89011) ((-590 . -650) 88995) ((-590 . -578) 88979) ((-590 . -586) 88963) ((-590 . -584) 88932) ((-590 . -102) T) ((-590 . -25) T) ((-590 . -72) T) ((-590 . -1119) T) ((-590 . -548) 88914) ((-590 . -1006) T) ((-590 . -23) T) ((-590 . -21) T) ((-590 . -962) 88898) ((-590 . -957) 88882) ((-590 . -80) 88861) ((-590 . -708) 88840) ((-590 . -710) 88819) ((-590 . -750) 88798) ((-590 . -753) 88777) ((-590 . -712) 88756) ((-590 . -715) 88735) ((-587 . -1006) T) ((-587 . -548) 88717) ((-587 . -1119) T) ((-587 . -72) T) ((-587 . -944) 88701) ((-587 . -551) 88685) ((-585 . -630) 88669) ((-585 . -76) 88653) ((-585 . -34) T) ((-585 . -1119) T) ((-585 . -72) 88607) ((-585 . -548) 88542) ((-585 . -256) 88480) ((-585 . -448) 88413) ((-585 . -1006) 88391) ((-585 . -423) 88375) ((-585 . -122) 88359) ((-585 . -549) 88320) ((-585 . -190) 88304) ((-583 . -988) T) ((-583 . -424) 88285) ((-583 . -548) 88238) ((-583 . -551) 88219) ((-583 . -1006) T) ((-583 . -1119) T) ((-583 . -72) T) ((-583 . -64) T) ((-579 . -604) 88203) ((-579 . -1158) 88187) ((-579 . -917) 88171) ((-579 . -1054) 88155) ((-579 . -750) 88134) ((-579 . -753) 88113) ((-579 . -318) 88097) ((-579 . -589) 88081) ((-579 . -240) 88058) ((-579 . -238) 88010) ((-579 . -534) 87987) ((-579 . -549) 87948) ((-579 . -423) 87932) ((-579 . -1006) 87885) ((-579 . -448) 87818) ((-579 . -256) 87756) ((-579 . -548) 87671) ((-579 . -72) 87605) ((-579 . -1119) T) ((-579 . -34) T) ((-579 . -122) 87589) ((-579 . -234) 87573) ((-577 . -1177) 87557) ((-577 . -80) 87536) ((-577 . -957) 87520) ((-577 . -962) 87504) ((-577 . -21) T) ((-577 . -584) 87473) ((-577 . -23) T) ((-577 . -1006) T) ((-577 . -548) 87455) ((-577 . -1119) T) ((-577 . -72) T) ((-577 . -25) T) ((-577 . -102) T) ((-577 . -586) 87439) ((-577 . -578) 87423) ((-577 . -650) 87407) ((-577 . -238) 87374) ((-575 . -1177) 87358) ((-575 . -80) 87337) ((-575 . -957) 87321) ((-575 . -962) 87305) ((-575 . -21) T) ((-575 . -584) 87274) ((-575 . -23) T) ((-575 . -1006) T) ((-575 . -548) 87256) ((-575 . -1119) T) ((-575 . -72) T) ((-575 . -25) T) ((-575 . -102) T) ((-575 . -586) 87240) ((-575 . -578) 87224) ((-575 . -650) 87208) ((-575 . -551) 87185) ((-575 . -443) 87157) ((-573 . -746) T) ((-573 . -753) T) ((-573 . -750) T) ((-573 . -1006) T) ((-573 . -548) 87139) ((-573 . -1119) T) ((-573 . -72) T) ((-573 . -314) T) ((-573 . -551) 87116) ((-568 . -677) 87100) ((-568 . -653) T) ((-568 . -679) T) ((-568 . -80) 87079) ((-568 . -957) 87063) ((-568 . -962) 87047) ((-568 . -21) T) ((-568 . -584) 87016) ((-568 . -23) T) ((-568 . -1006) T) ((-568 . -548) 86985) ((-568 . -1119) T) ((-568 . -72) T) ((-568 . -25) T) ((-568 . -102) T) ((-568 . -586) 86969) ((-568 . -578) 86953) ((-568 . -650) 86937) ((-568 . -355) 86902) ((-568 . -312) 86837) ((-568 . -238) 86795) ((-567 . -1097) 86770) ((-567 . -181) 86714) ((-567 . -76) 86658) ((-567 . -256) 86503) ((-567 . -448) 86303) ((-567 . -423) 86233) ((-567 . -122) 86177) ((-567 . -549) NIL) ((-567 . -190) 86121) ((-567 . -545) 86096) ((-567 . -240) 86071) ((-567 . -1119) T) ((-567 . -238) 86024) ((-567 . -1006) T) ((-567 . -548) 86006) ((-567 . -72) T) ((-567 . -34) T) ((-567 . -534) 85981) ((-562 . -407) T) ((-562 . -1016) T) ((-562 . -72) T) ((-562 . -1119) T) ((-562 . -548) 85963) ((-562 . -1006) T) ((-562 . -659) T) ((-561 . -988) T) ((-561 . -424) 85944) ((-561 . -548) 85910) ((-561 . -551) 85891) ((-561 . -1006) T) ((-561 . -1119) T) ((-561 . -72) T) ((-561 . -64) T) ((-558 . -182) 85875) ((-558 . -803) 85834) ((-558 . -805) 85760) ((-558 . -800) 85684) ((-558 . -222) 85668) ((-558 . -187) 85622) ((-558 . -1119) T) ((-558 . -184) 85570) ((-558 . -955) T) ((-558 . -963) T) ((-558 . -1016) T) ((-558 . -659) T) ((-558 . -21) T) ((-558 . -584) 85542) ((-558 . -23) T) ((-558 . -1006) T) ((-558 . -548) 85524) ((-558 . -72) T) ((-558 . -25) T) ((-558 . -102) T) ((-558 . -586) 85511) ((-558 . -551) 85407) ((-558 . -188) 85386) ((-558 . -490) T) ((-558 . -242) T) ((-558 . -144) T) ((-558 . -650) 85373) ((-558 . -578) 85360) ((-558 . -962) 85347) ((-558 . -957) 85334) ((-558 . -80) 85319) ((-558 . -38) 85306) ((-558 . -549) 85283) ((-558 . -349) 85267) ((-558 . -944) 85152) ((-558 . -118) 85131) ((-558 . -116) 85110) ((-558 . -254) 85089) ((-558 . -386) 85068) ((-558 . -826) 85047) ((-554 . -38) 85031) ((-554 . -551) 85000) ((-554 . -586) 84974) ((-554 . -584) 84933) ((-554 . -659) T) ((-554 . -1016) T) ((-554 . -963) T) ((-554 . -955) T) ((-554 . -80) 84912) ((-554 . -957) 84896) ((-554 . -962) 84880) ((-554 . -21) T) ((-554 . -23) T) ((-554 . -1006) T) ((-554 . -548) 84862) ((-554 . -1119) T) ((-554 . -72) T) ((-554 . -25) T) ((-554 . -102) T) ((-554 . -578) 84846) ((-554 . -650) 84830) ((-554 . -749) 84809) ((-554 . -715) 84788) ((-554 . -712) 84767) ((-554 . -753) 84746) ((-554 . -750) 84725) ((-554 . -710) 84704) ((-554 . -708) 84683) ((-552 . -874) T) ((-552 . -72) T) ((-552 . -548) 84665) ((-552 . -1006) T) ((-552 . -600) T) ((-552 . -1119) T) ((-552 . -82) T) ((-552 . -314) T) ((-546 . -103) T) ((-546 . -72) T) ((-546 . -1119) T) ((-546 . -548) 84647) ((-546 . -1006) T) ((-546 . -750) T) ((-546 . -753) T) ((-546 . -788) 84631) ((-546 . -549) 84492) ((-543 . -310) 84430) ((-543 . -72) T) ((-543 . -1119) T) ((-543 . -548) 84412) ((-543 . -1006) T) ((-543 . -1097) 84388) ((-543 . -181) 84333) ((-543 . -76) 84278) ((-543 . -256) 84067) ((-543 . -448) 83807) ((-543 . -423) 83739) ((-543 . -122) 83684) ((-543 . -549) NIL) ((-543 . -190) 83629) ((-543 . -545) 83605) ((-543 . -240) 83581) ((-543 . -238) 83557) ((-543 . -34) T) ((-543 . -534) 83533) ((-542 . -1006) T) ((-542 . -548) 83486) ((-542 . -1119) T) ((-542 . -72) T) ((-542 . -424) 83454) ((-542 . -551) 83422) ((-541 . -1006) T) ((-541 . -548) 83404) ((-541 . -1119) T) ((-541 . -72) T) ((-541 . -600) T) ((-540 . -1006) T) ((-540 . -548) 83386) ((-540 . -1119) T) ((-540 . -72) T) ((-540 . -600) T) ((-539 . -1006) T) ((-539 . -548) 83354) ((-539 . -1119) T) ((-539 . -72) T) ((-538 . -1006) T) ((-538 . -548) 83336) ((-538 . -1119) T) ((-538 . -72) T) ((-538 . -600) T) ((-537 . -1006) T) ((-537 . -548) 83304) ((-537 . -1119) T) ((-537 . -72) T) ((-537 . -424) 83287) ((-537 . -551) 83270) ((-536 . -677) 83254) ((-536 . -653) T) ((-536 . -679) T) ((-536 . -80) 83233) ((-536 . -957) 83217) ((-536 . -962) 83201) ((-536 . -21) T) ((-536 . -584) 83170) ((-536 . -23) T) ((-536 . -1006) T) ((-536 . -548) 83139) ((-536 . -1119) T) ((-536 . -72) T) ((-536 . -25) T) ((-536 . -102) T) ((-536 . -586) 83123) ((-536 . -578) 83107) ((-536 . -650) 83091) ((-536 . -355) 83056) ((-536 . -312) 82991) ((-536 . -238) 82949) ((-535 . -988) T) ((-535 . -424) 82930) ((-535 . -548) 82880) ((-535 . -551) 82861) ((-535 . -1006) T) ((-535 . -1119) T) ((-535 . -72) T) ((-535 . -64) T) ((-532 . -1168) 82845) ((-532 . -318) 82829) ((-532 . -753) 82808) ((-532 . -750) 82787) ((-532 . -122) 82771) ((-532 . -34) T) ((-532 . -1119) T) ((-532 . -72) 82705) ((-532 . -548) 82620) ((-532 . -256) 82558) ((-532 . -448) 82491) ((-532 . -1006) 82444) ((-532 . -423) 82428) ((-532 . -549) 82389) ((-532 . -238) 82341) ((-532 . -534) 82318) ((-532 . -240) 82295) ((-532 . -589) 82279) ((-532 . -19) 82263) ((-531 . -548) 82245) ((-527 . -1006) T) ((-527 . -548) 82211) ((-527 . -1119) T) ((-527 . -72) T) ((-527 . -424) 82192) ((-527 . -551) 82173) ((-526 . -955) T) ((-526 . -963) T) ((-526 . -1016) T) ((-526 . -659) T) ((-526 . -21) T) ((-526 . -584) 82132) ((-526 . -23) T) ((-526 . -1006) T) ((-526 . -548) 82114) ((-526 . -1119) T) ((-526 . -72) T) ((-526 . -25) T) ((-526 . -102) T) ((-526 . -586) 82088) ((-526 . -551) 82046) ((-526 . -80) 81999) ((-526 . -957) 81959) ((-526 . -962) 81919) ((-526 . -490) 81898) ((-526 . -242) 81877) ((-526 . -144) 81856) ((-526 . -650) 81829) ((-526 . -578) 81802) ((-526 . -38) 81775) ((-525 . -1148) 81752) ((-525 . -47) 81729) ((-525 . -38) 81626) ((-525 . -578) 81523) ((-525 . -650) 81420) ((-525 . -551) 81302) ((-525 . -242) 81281) ((-525 . -490) 81260) ((-525 . -80) 81125) ((-525 . -957) 81011) ((-525 . -962) 80897) ((-525 . -144) 80851) ((-525 . -118) 80830) ((-525 . -116) 80809) ((-525 . -586) 80734) ((-525 . -584) 80644) ((-525 . -880) 80614) ((-525 . -805) 80527) ((-525 . -800) 80438) ((-525 . -803) 80351) ((-525 . -238) 80316) ((-525 . -187) 80275) ((-525 . -1119) T) ((-525 . -184) 80228) ((-525 . -955) T) ((-525 . -963) T) ((-525 . -1016) T) ((-525 . -659) T) ((-525 . -21) T) ((-525 . -23) T) ((-525 . -1006) T) ((-525 . -548) 80210) ((-525 . -72) T) ((-525 . -25) T) ((-525 . -102) T) ((-525 . -188) 80169) ((-523 . -988) T) ((-523 . -424) 80150) ((-523 . -548) 80116) ((-523 . -551) 80097) ((-523 . -1006) T) ((-523 . -1119) T) ((-523 . -72) T) ((-523 . -64) T) ((-517 . -1006) T) ((-517 . -548) 80063) ((-517 . -1119) T) ((-517 . -72) T) ((-517 . -424) 80044) ((-517 . -551) 80025) ((-514 . -650) 80000) ((-514 . -578) 79975) ((-514 . -586) 79950) ((-514 . -584) 79910) ((-514 . -102) T) ((-514 . -25) T) ((-514 . -72) T) ((-514 . -1119) T) ((-514 . -548) 79892) ((-514 . -1006) T) ((-514 . -23) T) ((-514 . -21) T) ((-514 . -962) 79867) ((-514 . -957) 79842) ((-514 . -80) 79803) ((-514 . -944) 79787) ((-514 . -551) 79771) ((-512 . -295) T) ((-512 . -1056) T) ((-512 . -314) T) ((-512 . -116) T) ((-512 . -308) T) ((-512 . -1124) T) ((-512 . -826) T) ((-512 . -490) T) ((-512 . -144) T) ((-512 . -551) 79721) ((-512 . -650) 79686) ((-512 . -578) 79651) ((-512 . -38) 79616) ((-512 . -386) T) ((-512 . -254) T) ((-512 . -80) 79565) ((-512 . -957) 79530) ((-512 . -962) 79495) ((-512 . -584) 79445) ((-512 . -586) 79410) ((-512 . -242) T) ((-512 . -198) T) ((-512 . -339) T) ((-512 . -187) T) ((-512 . -1119) T) ((-512 . -184) 79397) ((-512 . -955) T) ((-512 . -963) T) ((-512 . -1016) T) ((-512 . -659) T) ((-512 . -21) T) ((-512 . -23) T) ((-512 . -1006) T) ((-512 . -548) 79379) ((-512 . -72) T) ((-512 . -25) T) ((-512 . -102) T) ((-512 . -188) T) ((-512 . -276) 79366) ((-512 . -118) 79348) ((-512 . -944) 79335) ((-512 . -1177) 79322) ((-512 . -1188) 79309) ((-512 . -549) 79291) ((-511 . -773) 79275) ((-511 . -826) T) ((-511 . -490) T) ((-511 . -242) T) ((-511 . -144) T) ((-511 . -551) 79247) ((-511 . -650) 79234) ((-511 . -578) 79221) ((-511 . -962) 79208) ((-511 . -957) 79195) ((-511 . -80) 79180) ((-511 . -38) 79167) ((-511 . -386) T) ((-511 . -254) T) ((-511 . -955) T) ((-511 . -963) T) ((-511 . -1016) T) ((-511 . -659) T) ((-511 . -21) T) ((-511 . -584) 79139) ((-511 . -23) T) ((-511 . -1006) T) ((-511 . -548) 79121) ((-511 . -1119) T) ((-511 . -72) T) ((-511 . -25) T) ((-511 . -102) T) ((-511 . -586) 79108) ((-511 . -118) T) ((-510 . -1006) T) ((-510 . -548) 79090) ((-510 . -1119) T) ((-510 . -72) T) ((-509 . -1006) T) ((-509 . -548) 79072) ((-509 . -1119) T) ((-509 . -72) T) ((-508 . -507) T) ((-508 . -764) T) ((-508 . -145) T) ((-508 . -460) T) ((-508 . -548) 79054) ((-502 . -488) 79038) ((-502 . -35) T) ((-502 . -66) T) ((-502 . -236) T) ((-502 . -427) T) ((-502 . -1108) T) ((-502 . -1105) T) ((-502 . -944) 79020) ((-502 . -909) T) ((-502 . -753) T) ((-502 . -750) T) ((-502 . -490) T) ((-502 . -242) T) ((-502 . -144) T) ((-502 . -551) 78992) ((-502 . -650) 78979) ((-502 . -578) 78966) ((-502 . -586) 78953) ((-502 . -584) 78925) ((-502 . -102) T) ((-502 . -25) T) ((-502 . -72) T) ((-502 . -1119) T) ((-502 . -548) 78907) ((-502 . -1006) T) ((-502 . -23) T) ((-502 . -21) T) ((-502 . -962) 78894) ((-502 . -957) 78881) ((-502 . -80) 78866) ((-502 . -955) T) ((-502 . -963) T) ((-502 . -1016) T) ((-502 . -659) T) ((-502 . -38) 78853) ((-502 . -386) T) ((-484 . -1097) 78832) ((-484 . -181) 78780) ((-484 . -76) 78728) ((-484 . -256) 78526) ((-484 . -448) 78278) ((-484 . -423) 78213) ((-484 . -122) 78161) ((-484 . -549) NIL) ((-484 . -190) 78109) ((-484 . -545) 78088) ((-484 . -240) 78067) ((-484 . -1119) T) ((-484 . -238) 78046) ((-484 . -1006) T) ((-484 . -548) 78028) ((-484 . -72) T) ((-484 . -34) T) ((-484 . -534) 78007) ((-483 . -746) T) ((-483 . -753) T) ((-483 . -750) T) ((-483 . -1006) T) ((-483 . -548) 77989) ((-483 . -1119) T) ((-483 . -72) T) ((-483 . -314) T) ((-482 . -746) T) ((-482 . -753) T) ((-482 . -750) T) ((-482 . -1006) T) ((-482 . -548) 77971) ((-482 . -1119) T) ((-482 . -72) T) ((-482 . -314) T) ((-481 . -746) T) ((-481 . -753) T) ((-481 . -750) T) ((-481 . -1006) T) ((-481 . -548) 77953) ((-481 . -1119) T) ((-481 . -72) T) ((-481 . -314) T) ((-480 . -746) T) ((-480 . -753) T) ((-480 . -750) T) ((-480 . -1006) T) ((-480 . -548) 77935) ((-480 . -1119) T) ((-480 . -72) T) ((-480 . -314) T) ((-479 . -478) T) ((-479 . -1124) T) ((-479 . -1056) T) ((-479 . -944) 77917) ((-479 . -549) 77832) ((-479 . -927) T) ((-479 . -790) 77814) ((-479 . -749) T) ((-479 . -715) T) ((-479 . -712) T) ((-479 . -753) T) ((-479 . -750) T) ((-479 . -710) T) ((-479 . -708) T) ((-479 . -734) T) ((-479 . -586) 77786) ((-479 . -576) 77768) ((-479 . -826) T) ((-479 . -490) T) ((-479 . -242) T) ((-479 . -144) T) ((-479 . -551) 77740) ((-479 . -650) 77727) ((-479 . -578) 77714) ((-479 . -962) 77701) ((-479 . -957) 77688) ((-479 . -80) 77673) ((-479 . -38) 77660) ((-479 . -386) T) ((-479 . -254) T) ((-479 . -187) T) ((-479 . -184) 77647) ((-479 . -188) T) ((-479 . -114) T) ((-479 . -955) T) ((-479 . -963) T) ((-479 . -1016) T) ((-479 . -659) T) ((-479 . -21) T) ((-479 . -584) 77619) ((-479 . -23) T) ((-479 . -1006) T) ((-479 . -548) 77601) ((-479 . -1119) T) ((-479 . -72) T) ((-479 . -25) T) ((-479 . -102) T) ((-479 . -118) T) ((-468 . -1009) 77553) ((-468 . -72) T) ((-468 . -548) 77535) ((-468 . -1006) T) ((-468 . -238) 77491) ((-468 . -1119) T) ((-468 . -553) 77394) ((-468 . -549) 77375) ((-466 . -685) 77357) ((-466 . -460) T) ((-466 . -145) T) ((-466 . -764) T) ((-466 . -507) T) ((-466 . -548) 77339) ((-464 . -711) T) ((-464 . -102) T) ((-464 . -25) T) ((-464 . -72) T) ((-464 . -1119) T) ((-464 . -548) 77321) ((-464 . -1006) T) ((-464 . -23) T) ((-464 . -710) T) ((-464 . -750) T) ((-464 . -753) T) ((-464 . -712) T) ((-464 . -715) T) ((-464 . -443) 77298) ((-462 . -460) T) ((-462 . -145) T) ((-462 . -548) 77280) ((-458 . -988) T) ((-458 . -424) 77261) ((-458 . -548) 77227) ((-458 . -551) 77208) ((-458 . -1006) T) ((-458 . -1119) T) ((-458 . -72) T) ((-458 . -64) T) ((-457 . -988) T) ((-457 . -424) 77189) ((-457 . -548) 77155) ((-457 . -551) 77136) ((-457 . -1006) T) ((-457 . -1119) T) ((-457 . -72) T) ((-457 . -64) T) ((-456 . -623) 77086) ((-456 . -423) 77070) ((-456 . -1006) 77048) ((-456 . -448) 76981) ((-456 . -256) 76919) ((-456 . -548) 76854) ((-456 . -72) 76808) ((-456 . -1119) T) ((-456 . -34) T) ((-456 . -57) 76758) ((-453 . -57) 76732) ((-453 . -34) T) ((-453 . -1119) T) ((-453 . -72) 76686) ((-453 . -548) 76621) ((-453 . -256) 76559) ((-453 . -448) 76492) ((-453 . -1006) 76470) ((-453 . -423) 76454) ((-452 . -276) 76431) ((-452 . -188) T) ((-452 . -184) 76418) ((-452 . -187) T) ((-452 . -314) T) ((-452 . -1056) T) ((-452 . -295) T) ((-452 . -118) 76400) ((-452 . -551) 76330) ((-452 . -586) 76275) ((-452 . -584) 76205) ((-452 . -102) T) ((-452 . -25) T) ((-452 . -72) T) ((-452 . -1119) T) ((-452 . -548) 76187) ((-452 . -1006) T) ((-452 . -23) T) ((-452 . -21) T) ((-452 . -659) T) ((-452 . -1016) T) ((-452 . -963) T) ((-452 . -955) T) ((-452 . -308) T) ((-452 . -1124) T) ((-452 . -826) T) ((-452 . -490) T) ((-452 . -144) T) ((-452 . -650) 76132) ((-452 . -578) 76077) ((-452 . -38) 76042) ((-452 . -386) T) ((-452 . -254) T) ((-452 . -80) 75959) ((-452 . -957) 75904) ((-452 . -962) 75849) ((-452 . -242) T) ((-452 . -198) T) ((-452 . -339) T) ((-452 . -116) T) ((-452 . -944) 75826) ((-452 . -1177) 75803) ((-452 . -1188) 75780) ((-451 . -988) T) ((-451 . -424) 75761) ((-451 . -548) 75727) ((-451 . -551) 75708) ((-451 . -1006) T) ((-451 . -1119) T) ((-451 . -72) T) ((-451 . -64) T) ((-450 . -19) 75692) ((-450 . -589) 75676) ((-450 . -240) 75653) ((-450 . -238) 75605) ((-450 . -534) 75582) ((-450 . -549) 75543) ((-450 . -423) 75527) ((-450 . -1006) 75480) ((-450 . -448) 75413) ((-450 . -256) 75351) ((-450 . -548) 75266) ((-450 . -72) 75200) ((-450 . -1119) T) ((-450 . -34) T) ((-450 . -122) 75184) ((-450 . -750) 75163) ((-450 . -753) 75142) ((-450 . -318) 75126) ((-450 . -234) 75110) ((-449 . -270) 75089) ((-449 . -551) 75073) ((-449 . -944) 75057) ((-449 . -23) T) ((-449 . -1006) T) ((-449 . -548) 75039) ((-449 . -1119) T) ((-449 . -72) T) ((-449 . -25) T) ((-449 . -102) T) ((-446 . -711) T) ((-446 . -102) T) ((-446 . -25) T) ((-446 . -72) T) ((-446 . -1119) T) ((-446 . -548) 75021) ((-446 . -1006) T) ((-446 . -23) T) ((-446 . -710) T) ((-446 . -750) T) ((-446 . -753) T) ((-446 . -712) T) ((-446 . -715) T) ((-446 . -443) 75000) ((-445 . -710) T) ((-445 . -750) T) ((-445 . -753) T) ((-445 . -712) T) ((-445 . -25) T) ((-445 . -72) T) ((-445 . -1119) T) ((-445 . -548) 74982) ((-445 . -1006) T) ((-445 . -23) T) ((-445 . -443) 74961) ((-444 . -443) 74940) ((-444 . -548) 74880) ((-444 . -1006) 74831) ((-444 . -1119) T) ((-444 . -72) T) ((-442 . -23) T) ((-442 . -1006) T) ((-442 . -548) 74813) ((-442 . -1119) T) ((-442 . -72) T) ((-442 . -25) T) ((-442 . -443) 74792) ((-441 . -21) T) ((-441 . -584) 74774) ((-441 . -23) T) ((-441 . -1006) T) ((-441 . -548) 74756) ((-441 . -1119) T) ((-441 . -72) T) ((-441 . -25) T) ((-441 . -102) T) ((-441 . -443) 74735) ((-440 . -1006) T) ((-440 . -548) 74717) ((-440 . -1119) T) ((-440 . -72) T) ((-438 . -1006) T) ((-438 . -548) 74699) ((-438 . -1119) T) ((-438 . -72) T) ((-436 . -750) T) ((-436 . -548) 74681) ((-436 . -1006) T) ((-436 . -72) T) ((-436 . -1119) T) ((-436 . -753) T) ((-436 . -551) 74662) ((-434 . -94) T) ((-434 . -318) 74645) ((-434 . -753) T) ((-434 . -750) T) ((-434 . -122) 74628) ((-434 . -34) T) ((-434 . -72) T) ((-434 . -548) 74610) ((-434 . -256) NIL) ((-434 . -448) NIL) ((-434 . -1006) T) ((-434 . -423) 74593) ((-434 . -549) 74575) ((-434 . -238) 74526) ((-434 . -534) 74502) ((-434 . -240) 74478) ((-434 . -589) 74461) ((-434 . -19) 74444) ((-434 . -600) T) ((-434 . -1119) T) ((-434 . -82) T) ((-431 . -57) 74394) ((-431 . -34) T) ((-431 . -1119) T) ((-431 . -72) 74348) ((-431 . -548) 74283) ((-431 . -256) 74221) ((-431 . -448) 74154) ((-431 . -1006) 74132) ((-431 . -423) 74116) ((-430 . -19) 74100) ((-430 . -589) 74084) ((-430 . -240) 74061) ((-430 . -238) 74013) ((-430 . -534) 73990) ((-430 . -549) 73951) ((-430 . -423) 73935) ((-430 . -1006) 73888) ((-430 . -448) 73821) ((-430 . -256) 73759) ((-430 . -548) 73674) ((-430 . -72) 73608) ((-430 . -1119) T) ((-430 . -34) T) ((-430 . -122) 73592) ((-430 . -750) 73571) ((-430 . -753) 73550) ((-430 . -318) 73534) ((-429 . -250) T) ((-429 . -72) T) ((-429 . -1119) T) ((-429 . -548) 73516) ((-429 . -1006) T) ((-429 . -551) 73417) ((-429 . -944) 73360) ((-429 . -448) 73326) ((-429 . -256) 73313) ((-429 . -27) T) ((-429 . -909) T) ((-429 . -198) T) ((-429 . -80) 73262) ((-429 . -957) 73227) ((-429 . -962) 73192) ((-429 . -242) T) ((-429 . -650) 73157) ((-429 . -578) 73122) ((-429 . -586) 73072) ((-429 . -584) 73022) ((-429 . -102) T) ((-429 . -25) T) ((-429 . -23) T) ((-429 . -21) T) ((-429 . -955) T) ((-429 . -963) T) ((-429 . -1016) T) ((-429 . -659) T) ((-429 . -38) 72987) ((-429 . -254) T) ((-429 . -386) T) ((-429 . -144) T) ((-429 . -490) T) ((-429 . -826) T) ((-429 . -1124) T) ((-429 . -308) T) ((-429 . -576) 72947) ((-429 . -927) T) ((-429 . -549) 72892) ((-429 . -118) T) ((-429 . -188) T) ((-429 . -184) 72879) ((-429 . -187) T) ((-425 . -1006) T) ((-425 . -548) 72845) ((-425 . -1119) T) ((-425 . -72) T) ((-421 . -898) 72827) ((-421 . -1056) T) ((-421 . -551) 72777) ((-421 . -944) 72737) ((-421 . -549) 72667) ((-421 . -927) T) ((-421 . -815) NIL) ((-421 . -788) 72649) ((-421 . -749) T) ((-421 . -715) T) ((-421 . -712) T) ((-421 . -753) T) ((-421 . -750) T) ((-421 . -710) T) ((-421 . -708) T) ((-421 . -734) T) ((-421 . -790) 72631) ((-421 . -337) 72613) ((-421 . -576) 72595) ((-421 . -323) 72577) ((-421 . -238) NIL) ((-421 . -256) NIL) ((-421 . -448) NIL) ((-421 . -284) 72559) ((-421 . -198) T) ((-421 . -80) 72486) ((-421 . -957) 72436) ((-421 . -962) 72386) ((-421 . -242) T) ((-421 . -650) 72336) ((-421 . -578) 72286) ((-421 . -586) 72236) ((-421 . -584) 72186) ((-421 . -38) 72136) ((-421 . -254) T) ((-421 . -386) T) ((-421 . -144) T) ((-421 . -490) T) ((-421 . -826) T) ((-421 . -1124) T) ((-421 . -308) T) ((-421 . -188) T) ((-421 . -184) 72123) ((-421 . -187) T) ((-421 . -222) 72105) ((-421 . -800) NIL) ((-421 . -805) NIL) ((-421 . -803) NIL) ((-421 . -182) 72087) ((-421 . -118) T) ((-421 . -116) NIL) ((-421 . -102) T) ((-421 . -25) T) ((-421 . -72) T) ((-421 . -1119) T) ((-421 . -548) 72029) ((-421 . -1006) T) ((-421 . -23) T) ((-421 . -21) T) ((-421 . -955) T) ((-421 . -963) T) ((-421 . -1016) T) ((-421 . -659) T) ((-419 . -282) 71998) ((-419 . -102) T) ((-419 . -25) T) ((-419 . -72) T) ((-419 . -1119) T) ((-419 . -548) 71980) ((-419 . -1006) T) ((-419 . -23) T) ((-419 . -584) 71962) ((-419 . -21) T) ((-418 . -875) 71946) ((-418 . -423) 71930) ((-418 . -1006) 71908) ((-418 . -448) 71841) ((-418 . -256) 71779) ((-418 . -548) 71714) ((-418 . -72) 71668) ((-418 . -1119) T) ((-418 . -34) T) ((-418 . -76) 71652) ((-417 . -988) T) ((-417 . -424) 71633) ((-417 . -548) 71599) ((-417 . -551) 71580) ((-417 . -1006) T) ((-417 . -1119) T) ((-417 . -72) T) ((-417 . -64) T) ((-416 . -193) 71559) ((-416 . -1177) 71529) ((-416 . -715) 71508) ((-416 . -712) 71487) ((-416 . -753) 71441) ((-416 . -750) 71395) ((-416 . -710) 71374) ((-416 . -711) 71353) ((-416 . -650) 71298) ((-416 . -578) 71223) ((-416 . -240) 71200) ((-416 . -238) 71177) ((-416 . -423) 71161) ((-416 . -448) 71094) ((-416 . -256) 71032) ((-416 . -34) T) ((-416 . -534) 71009) ((-416 . -944) 70838) ((-416 . -551) 70642) ((-416 . -349) 70611) ((-416 . -576) 70519) ((-416 . -586) 70358) ((-416 . -323) 70328) ((-416 . -314) 70307) ((-416 . -188) 70260) ((-416 . -584) 70048) ((-416 . -659) 70027) ((-416 . -1016) 70006) ((-416 . -963) 69985) ((-416 . -955) 69964) ((-416 . -184) 69860) ((-416 . -187) 69762) ((-416 . -222) 69732) ((-416 . -800) 69604) ((-416 . -805) 69478) ((-416 . -803) 69411) ((-416 . -182) 69381) ((-416 . -548) 69078) ((-416 . -962) 69003) ((-416 . -957) 68908) ((-416 . -80) 68828) ((-416 . -102) 68703) ((-416 . -25) 68540) ((-416 . -72) 68277) ((-416 . -1119) T) ((-416 . -1006) 68033) ((-416 . -23) 67889) ((-416 . -21) 67804) ((-415 . -855) 67749) ((-415 . -551) 67541) ((-415 . -944) 67419) ((-415 . -1124) 67398) ((-415 . -815) 67377) ((-415 . -790) NIL) ((-415 . -805) 67354) ((-415 . -800) 67329) ((-415 . -803) 67306) ((-415 . -448) 67244) ((-415 . -386) 67198) ((-415 . -576) 67146) ((-415 . -586) 67035) ((-415 . -323) 67019) ((-415 . -47) 66976) ((-415 . -38) 66828) ((-415 . -578) 66680) ((-415 . -650) 66532) ((-415 . -242) 66466) ((-415 . -490) 66400) ((-415 . -80) 66225) ((-415 . -957) 66071) ((-415 . -962) 65917) ((-415 . -144) 65831) ((-415 . -118) 65810) ((-415 . -116) 65789) ((-415 . -584) 65699) ((-415 . -102) T) ((-415 . -25) T) ((-415 . -72) T) ((-415 . -1119) T) ((-415 . -548) 65681) ((-415 . -1006) T) ((-415 . -23) T) ((-415 . -21) T) ((-415 . -955) T) ((-415 . -963) T) ((-415 . -1016) T) ((-415 . -659) T) ((-415 . -349) 65665) ((-415 . -273) 65622) ((-415 . -256) 65609) ((-415 . -549) 65470) ((-413 . -1097) 65449) ((-413 . -181) 65397) ((-413 . -76) 65345) ((-413 . -256) 65143) ((-413 . -448) 64895) ((-413 . -423) 64830) ((-413 . -122) 64778) ((-413 . -549) NIL) ((-413 . -190) 64726) ((-413 . -545) 64705) ((-413 . -240) 64684) ((-413 . -1119) T) ((-413 . -238) 64663) ((-413 . -1006) T) ((-413 . -548) 64645) ((-413 . -72) T) ((-413 . -34) T) ((-413 . -534) 64624) ((-412 . -988) T) ((-412 . -424) 64605) ((-412 . -548) 64571) ((-412 . -551) 64552) ((-412 . -1006) T) ((-412 . -1119) T) ((-412 . -72) T) ((-412 . -64) T) ((-411 . -308) T) ((-411 . -1124) T) ((-411 . -826) T) ((-411 . -490) T) ((-411 . -144) T) ((-411 . -551) 64502) ((-411 . -650) 64467) ((-411 . -578) 64432) ((-411 . -38) 64397) ((-411 . -386) T) ((-411 . -254) T) ((-411 . -586) 64362) ((-411 . -584) 64312) ((-411 . -659) T) ((-411 . -1016) T) ((-411 . -963) T) ((-411 . -955) T) ((-411 . -80) 64261) ((-411 . -957) 64226) ((-411 . -962) 64191) ((-411 . -21) T) ((-411 . -23) T) ((-411 . -1006) T) ((-411 . -548) 64143) ((-411 . -1119) T) ((-411 . -72) T) ((-411 . -25) T) ((-411 . -102) T) ((-411 . -242) T) ((-411 . -198) T) ((-411 . -118) T) ((-411 . -944) 64103) ((-411 . -927) T) ((-411 . -549) 64025) ((-410 . -1114) 63994) ((-410 . -548) 63956) ((-410 . -122) 63940) ((-410 . -34) T) ((-410 . -1119) T) ((-410 . -72) T) ((-410 . -256) 63878) ((-410 . -448) 63811) ((-410 . -1006) T) ((-410 . -423) 63795) ((-410 . -549) 63756) ((-410 . -883) 63725) ((-409 . -1097) 63704) ((-409 . -181) 63652) ((-409 . -76) 63600) ((-409 . -256) 63398) ((-409 . -448) 63150) ((-409 . -423) 63085) ((-409 . -122) 63033) ((-409 . -549) NIL) ((-409 . -190) 62981) ((-409 . -545) 62960) ((-409 . -240) 62939) ((-409 . -1119) T) ((-409 . -238) 62918) ((-409 . -1006) T) ((-409 . -548) 62900) ((-409 . -72) T) ((-409 . -34) T) ((-409 . -534) 62879) ((-408 . -1152) 62863) ((-408 . -188) 62815) ((-408 . -184) 62761) ((-408 . -187) 62713) ((-408 . -238) 62671) ((-408 . -803) 62577) ((-408 . -800) 62458) ((-408 . -805) 62364) ((-408 . -880) 62327) ((-408 . -38) 62174) ((-408 . -80) 61994) ((-408 . -957) 61835) ((-408 . -962) 61676) ((-408 . -584) 61561) ((-408 . -586) 61461) ((-408 . -578) 61308) ((-408 . -650) 61155) ((-408 . -551) 60987) ((-408 . -116) 60966) ((-408 . -118) 60945) ((-408 . -47) 60915) ((-408 . -1148) 60885) ((-408 . -35) 60851) ((-408 . -66) 60817) ((-408 . -236) 60783) ((-408 . -427) 60749) ((-408 . -1108) 60715) ((-408 . -1105) 60681) ((-408 . -909) 60647) ((-408 . -198) 60626) ((-408 . -242) 60580) ((-408 . -102) T) ((-408 . -25) T) ((-408 . -72) T) ((-408 . -1119) T) ((-408 . -548) 60562) ((-408 . -1006) T) ((-408 . -23) T) ((-408 . -21) T) ((-408 . -955) T) ((-408 . -963) T) ((-408 . -1016) T) ((-408 . -659) T) ((-408 . -254) 60541) ((-408 . -386) 60520) ((-408 . -144) 60454) ((-408 . -490) 60408) ((-408 . -826) 60387) ((-408 . -1124) 60366) ((-408 . -308) 60345) ((-402 . -1006) T) ((-402 . -548) 60327) ((-402 . -1119) T) ((-402 . -72) T) ((-397 . -883) 60296) ((-397 . -549) 60257) ((-397 . -423) 60241) ((-397 . -1006) T) ((-397 . -448) 60174) ((-397 . -256) 60112) ((-397 . -548) 60074) ((-397 . -72) T) ((-397 . -1119) T) ((-397 . -34) T) ((-397 . -122) 60058) ((-395 . -650) 60029) ((-395 . -578) 60000) ((-395 . -586) 59971) ((-395 . -584) 59927) ((-395 . -102) T) ((-395 . -25) T) ((-395 . -72) T) ((-395 . -1119) T) ((-395 . -548) 59909) ((-395 . -1006) T) ((-395 . -23) T) ((-395 . -21) T) ((-395 . -962) 59880) ((-395 . -957) 59851) ((-395 . -80) 59812) ((-388 . -855) 59779) ((-388 . -551) 59571) ((-388 . -944) 59449) ((-388 . -1124) 59428) ((-388 . -815) 59407) ((-388 . -790) NIL) ((-388 . -805) 59384) ((-388 . -800) 59359) ((-388 . -803) 59336) ((-388 . -448) 59274) ((-388 . -386) 59228) ((-388 . -576) 59176) ((-388 . -586) 59065) ((-388 . -323) 59049) ((-388 . -47) 59028) ((-388 . -38) 58880) ((-388 . -578) 58732) ((-388 . -650) 58584) ((-388 . -242) 58518) ((-388 . -490) 58452) ((-388 . -80) 58277) ((-388 . -957) 58123) ((-388 . -962) 57969) ((-388 . -144) 57883) ((-388 . -118) 57862) ((-388 . -116) 57841) ((-388 . -584) 57751) ((-388 . -102) T) ((-388 . -25) T) ((-388 . -72) T) ((-388 . -1119) T) ((-388 . -548) 57733) ((-388 . -1006) T) ((-388 . -23) T) ((-388 . -21) T) ((-388 . -955) T) ((-388 . -963) T) ((-388 . -1016) T) ((-388 . -659) T) ((-388 . -349) 57717) ((-388 . -273) 57696) ((-388 . -256) 57683) ((-388 . -549) 57544) ((-387 . -355) 57514) ((-387 . -677) 57484) ((-387 . -653) T) ((-387 . -679) T) ((-387 . -80) 57435) ((-387 . -957) 57405) ((-387 . -962) 57375) ((-387 . -21) T) ((-387 . -584) 57290) ((-387 . -23) T) ((-387 . -1006) T) ((-387 . -548) 57272) ((-387 . -72) T) ((-387 . -25) T) ((-387 . -102) T) ((-387 . -586) 57202) ((-387 . -578) 57172) ((-387 . -650) 57142) ((-387 . -312) 57112) ((-387 . -1119) T) ((-387 . -238) 57075) ((-375 . -1006) T) ((-375 . -548) 57057) ((-375 . -1119) T) ((-375 . -72) T) ((-374 . -1006) T) ((-374 . -548) 57039) ((-374 . -1119) T) ((-374 . -72) T) ((-373 . -1006) T) ((-373 . -548) 57021) ((-373 . -1119) T) ((-373 . -72) T) ((-371 . -548) 57003) ((-366 . -38) 56987) ((-366 . -551) 56956) ((-366 . -586) 56930) ((-366 . -584) 56889) ((-366 . -659) T) ((-366 . -1016) T) ((-366 . -963) T) ((-366 . -955) T) ((-366 . -80) 56868) ((-366 . -957) 56852) ((-366 . -962) 56836) ((-366 . -21) T) ((-366 . -23) T) ((-366 . -1006) T) ((-366 . -548) 56818) ((-366 . -1119) T) ((-366 . -72) T) ((-366 . -25) T) ((-366 . -102) T) ((-366 . -578) 56802) ((-366 . -650) 56786) ((-352 . -659) T) ((-352 . -1006) T) ((-352 . -548) 56768) ((-352 . -1119) T) ((-352 . -72) T) ((-352 . -1016) T) ((-350 . -407) T) ((-350 . -1016) T) ((-350 . -72) T) ((-350 . -1119) T) ((-350 . -548) 56750) ((-350 . -1006) T) ((-350 . -659) T) ((-344 . -898) 56734) ((-344 . -1056) 56712) ((-344 . -944) 56579) ((-344 . -551) 56478) ((-344 . -549) 56281) ((-344 . -927) 56260) ((-344 . -815) 56239) ((-344 . -788) 56223) ((-344 . -749) 56202) ((-344 . -715) 56181) ((-344 . -712) 56160) ((-344 . -753) 56114) ((-344 . -750) 56068) ((-344 . -710) 56047) ((-344 . -708) 56026) ((-344 . -734) 56005) ((-344 . -790) 55930) ((-344 . -337) 55914) ((-344 . -576) 55862) ((-344 . -586) 55778) ((-344 . -323) 55762) ((-344 . -238) 55720) ((-344 . -256) 55685) ((-344 . -448) 55597) ((-344 . -284) 55581) ((-344 . -198) T) ((-344 . -80) 55512) ((-344 . -957) 55464) ((-344 . -962) 55416) ((-344 . -242) T) ((-344 . -650) 55368) ((-344 . -578) 55320) ((-344 . -584) 55257) ((-344 . -38) 55209) ((-344 . -254) T) ((-344 . -386) T) ((-344 . -144) T) ((-344 . -490) T) ((-344 . -826) T) ((-344 . -1124) T) ((-344 . -308) T) ((-344 . -188) 55188) ((-344 . -184) 55136) ((-344 . -187) 55090) ((-344 . -222) 55074) ((-344 . -800) 54998) ((-344 . -805) 54924) ((-344 . -803) 54883) ((-344 . -182) 54867) ((-344 . -118) 54846) ((-344 . -116) 54825) ((-344 . -102) T) ((-344 . -25) T) ((-344 . -72) T) ((-344 . -1119) T) ((-344 . -548) 54807) ((-344 . -1006) T) ((-344 . -23) T) ((-344 . -21) T) ((-344 . -955) T) ((-344 . -963) T) ((-344 . -1016) T) ((-344 . -659) T) ((-342 . -490) T) ((-342 . -242) T) ((-342 . -144) T) ((-342 . -551) 54716) ((-342 . -650) 54690) ((-342 . -578) 54664) ((-342 . -586) 54638) ((-342 . -584) 54597) ((-342 . -102) T) ((-342 . -25) T) ((-342 . -72) T) ((-342 . -1119) T) ((-342 . -548) 54579) ((-342 . -1006) T) ((-342 . -23) T) ((-342 . -21) T) ((-342 . -962) 54553) ((-342 . -957) 54527) ((-342 . -80) 54494) ((-342 . -955) T) ((-342 . -963) T) ((-342 . -1016) T) ((-342 . -659) T) ((-342 . -38) 54468) ((-342 . -182) 54452) ((-342 . -803) 54411) ((-342 . -805) 54337) ((-342 . -800) 54261) ((-342 . -222) 54245) ((-342 . -187) 54199) ((-342 . -184) 54147) ((-342 . -188) 54126) ((-342 . -284) 54110) ((-342 . -448) 53952) ((-342 . -256) 53891) ((-342 . -238) 53819) ((-342 . -349) 53803) ((-342 . -944) 53701) ((-342 . -386) 53654) ((-342 . -927) 53633) ((-342 . -549) 53536) ((-342 . -1124) 53514) ((-336 . -1006) T) ((-336 . -548) 53496) ((-336 . -1119) T) ((-336 . -72) T) ((-336 . -187) T) ((-336 . -184) 53483) ((-336 . -549) 53460) ((-334 . -677) 53444) ((-334 . -653) T) ((-334 . -679) T) ((-334 . -80) 53423) ((-334 . -957) 53407) ((-334 . -962) 53391) ((-334 . -21) T) ((-334 . -584) 53360) ((-334 . -23) T) ((-334 . -1006) T) ((-334 . -548) 53342) ((-334 . -1119) T) ((-334 . -72) T) ((-334 . -25) T) ((-334 . -102) T) ((-334 . -586) 53326) ((-334 . -578) 53310) ((-334 . -650) 53294) ((-332 . -333) T) ((-332 . -72) T) ((-332 . -1119) T) ((-332 . -548) 53260) ((-332 . -1006) T) ((-332 . -551) 53241) ((-332 . -424) 53222) ((-331 . -330) 53206) ((-331 . -551) 53190) ((-331 . -944) 53174) ((-331 . -753) 53153) ((-331 . -750) 53132) ((-331 . -1016) T) ((-331 . -72) T) ((-331 . -1119) T) ((-331 . -548) 53114) ((-331 . -1006) T) ((-331 . -659) T) ((-328 . -329) 53093) ((-328 . -551) 53077) ((-328 . -944) 53061) ((-328 . -578) 53031) ((-328 . -650) 53001) ((-328 . -586) 52985) ((-328 . -584) 52954) ((-328 . -102) T) ((-328 . -25) T) ((-328 . -72) T) ((-328 . -1119) T) ((-328 . -548) 52936) ((-328 . -1006) T) ((-328 . -23) T) ((-328 . -21) T) ((-328 . -962) 52920) ((-328 . -957) 52904) ((-328 . -80) 52883) ((-327 . -80) 52862) ((-327 . -957) 52846) ((-327 . -962) 52830) ((-327 . -21) T) ((-327 . -584) 52799) ((-327 . -23) T) ((-327 . -1006) T) ((-327 . -548) 52781) ((-327 . -1119) T) ((-327 . -72) T) ((-327 . -25) T) ((-327 . -102) T) ((-327 . -586) 52765) ((-327 . -443) 52744) ((-327 . -650) 52714) ((-327 . -578) 52684) ((-324 . -341) T) ((-324 . -118) T) ((-324 . -551) 52634) ((-324 . -586) 52599) ((-324 . -584) 52549) ((-324 . -102) T) ((-324 . -25) T) ((-324 . -72) T) ((-324 . -1119) T) ((-324 . -548) 52516) ((-324 . -1006) T) ((-324 . -23) T) ((-324 . -21) T) ((-324 . -659) T) ((-324 . -1016) T) ((-324 . -963) T) ((-324 . -955) T) ((-324 . -549) 52430) ((-324 . -308) T) ((-324 . -1124) T) ((-324 . -826) T) ((-324 . -490) T) ((-324 . -144) T) ((-324 . -650) 52395) ((-324 . -578) 52360) ((-324 . -38) 52325) ((-324 . -386) T) ((-324 . -254) T) ((-324 . -80) 52274) ((-324 . -957) 52239) ((-324 . -962) 52204) ((-324 . -242) T) ((-324 . -198) T) ((-324 . -749) T) ((-324 . -715) T) ((-324 . -712) T) ((-324 . -753) T) ((-324 . -750) T) ((-324 . -710) T) ((-324 . -708) T) ((-324 . -790) 52186) ((-324 . -909) T) ((-324 . -927) T) ((-324 . -944) 52146) ((-324 . -966) T) ((-324 . -188) T) ((-324 . -184) 52133) ((-324 . -187) T) ((-324 . -1105) T) ((-324 . -1108) T) ((-324 . -427) T) ((-324 . -236) T) ((-324 . -66) T) ((-324 . -35) T) ((-324 . -553) 52115) ((-309 . -310) 52092) ((-309 . -72) T) ((-309 . -1119) T) ((-309 . -548) 52074) ((-309 . -1006) T) ((-306 . -407) T) ((-306 . -1016) T) ((-306 . -72) T) ((-306 . -1119) T) ((-306 . -548) 52056) ((-306 . -1006) T) ((-306 . -659) T) ((-306 . -944) 52040) ((-306 . -551) 52024) ((-304 . -276) 52008) ((-304 . -188) 51987) ((-304 . -184) 51960) ((-304 . -187) 51939) ((-304 . -314) 51918) ((-304 . -1056) 51897) ((-304 . -295) 51876) ((-304 . -118) 51855) ((-304 . -551) 51792) ((-304 . -586) 51744) ((-304 . -584) 51681) ((-304 . -102) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -1119) T) ((-304 . -548) 51663) ((-304 . -1006) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -659) T) ((-304 . -1016) T) ((-304 . -963) T) ((-304 . -955) T) ((-304 . -308) T) ((-304 . -1124) T) ((-304 . -826) T) ((-304 . -490) T) ((-304 . -144) T) ((-304 . -650) 51615) ((-304 . -578) 51567) ((-304 . -38) 51532) ((-304 . -386) T) ((-304 . -254) T) ((-304 . -80) 51463) ((-304 . -957) 51415) ((-304 . -962) 51367) ((-304 . -242) T) ((-304 . -198) T) ((-304 . -339) 51321) ((-304 . -116) 51275) ((-304 . -944) 51259) ((-304 . -1177) 51243) ((-304 . -1188) 51227) ((-300 . -276) 51211) ((-300 . -188) 51190) ((-300 . -184) 51163) ((-300 . -187) 51142) ((-300 . -314) 51121) ((-300 . -1056) 51100) ((-300 . -295) 51079) ((-300 . -118) 51058) ((-300 . -551) 50995) ((-300 . -586) 50947) ((-300 . -584) 50884) ((-300 . -102) T) ((-300 . -25) T) ((-300 . -72) T) ((-300 . -1119) T) ((-300 . -548) 50866) ((-300 . -1006) T) ((-300 . -23) T) ((-300 . -21) T) ((-300 . -659) T) ((-300 . -1016) T) ((-300 . -963) T) ((-300 . -955) T) ((-300 . -308) T) ((-300 . -1124) T) ((-300 . -826) T) ((-300 . -490) T) ((-300 . -144) T) ((-300 . -650) 50818) ((-300 . -578) 50770) ((-300 . -38) 50735) ((-300 . -386) T) ((-300 . -254) T) ((-300 . -80) 50666) ((-300 . -957) 50618) ((-300 . -962) 50570) ((-300 . -242) T) ((-300 . -198) T) ((-300 . -339) 50524) ((-300 . -116) 50478) ((-300 . -944) 50462) ((-300 . -1177) 50446) ((-300 . -1188) 50430) ((-299 . -276) 50414) ((-299 . -188) 50393) ((-299 . -184) 50366) ((-299 . -187) 50345) ((-299 . -314) 50324) ((-299 . -1056) 50303) ((-299 . -295) 50282) ((-299 . -118) 50261) ((-299 . -551) 50198) ((-299 . -586) 50150) ((-299 . -584) 50087) ((-299 . -102) T) ((-299 . -25) T) ((-299 . -72) T) ((-299 . -1119) T) ((-299 . -548) 50069) ((-299 . -1006) T) ((-299 . -23) T) ((-299 . -21) T) ((-299 . -659) T) ((-299 . -1016) T) ((-299 . -963) T) ((-299 . -955) T) ((-299 . -308) T) ((-299 . -1124) T) ((-299 . -826) T) ((-299 . -490) T) ((-299 . -144) T) ((-299 . -650) 50021) ((-299 . -578) 49973) ((-299 . -38) 49938) ((-299 . -386) T) ((-299 . -254) T) ((-299 . -80) 49869) ((-299 . -957) 49821) ((-299 . -962) 49773) ((-299 . -242) T) ((-299 . -198) T) ((-299 . -339) 49727) ((-299 . -116) 49681) ((-299 . -944) 49665) ((-299 . -1177) 49649) ((-299 . -1188) 49633) ((-298 . -276) 49617) ((-298 . -188) 49596) ((-298 . -184) 49569) ((-298 . -187) 49548) ((-298 . -314) 49527) ((-298 . -1056) 49506) ((-298 . -295) 49485) ((-298 . -118) 49464) ((-298 . -551) 49401) ((-298 . -586) 49353) ((-298 . -584) 49290) ((-298 . -102) T) ((-298 . -25) T) ((-298 . -72) T) ((-298 . -1119) T) ((-298 . -548) 49272) ((-298 . -1006) T) ((-298 . -23) T) ((-298 . -21) T) ((-298 . -659) T) ((-298 . -1016) T) ((-298 . -963) T) ((-298 . -955) T) ((-298 . -308) T) ((-298 . -1124) T) ((-298 . -826) T) ((-298 . -490) T) ((-298 . -144) T) ((-298 . -650) 49224) ((-298 . -578) 49176) ((-298 . -38) 49141) ((-298 . -386) T) ((-298 . -254) T) ((-298 . -80) 49072) ((-298 . -957) 49024) ((-298 . -962) 48976) ((-298 . -242) T) ((-298 . -198) T) ((-298 . -339) 48930) ((-298 . -116) 48884) ((-298 . -944) 48868) ((-298 . -1177) 48852) ((-298 . -1188) 48836) ((-297 . -276) 48813) ((-297 . -188) T) ((-297 . -184) 48800) ((-297 . -187) T) ((-297 . -314) T) ((-297 . -1056) T) ((-297 . -295) T) ((-297 . -118) 48782) ((-297 . -551) 48712) ((-297 . -586) 48657) ((-297 . -584) 48587) ((-297 . -102) T) ((-297 . -25) T) ((-297 . -72) T) ((-297 . -1119) T) ((-297 . -548) 48569) ((-297 . -1006) T) ((-297 . -23) T) ((-297 . -21) T) ((-297 . -659) T) ((-297 . -1016) T) ((-297 . -963) T) ((-297 . -955) T) ((-297 . -308) T) ((-297 . -1124) T) ((-297 . -826) T) ((-297 . -490) T) ((-297 . -144) T) ((-297 . -650) 48514) ((-297 . -578) 48459) ((-297 . -38) 48424) ((-297 . -386) T) ((-297 . -254) T) ((-297 . -80) 48341) ((-297 . -957) 48286) ((-297 . -962) 48231) ((-297 . -242) T) ((-297 . -198) T) ((-297 . -339) T) ((-297 . -116) T) ((-297 . -944) 48208) ((-297 . -1177) 48185) ((-297 . -1188) 48162) ((-291 . -276) 48146) ((-291 . -188) 48125) ((-291 . -184) 48098) ((-291 . -187) 48077) ((-291 . -314) 48056) ((-291 . -1056) 48035) ((-291 . -295) 48014) ((-291 . -118) 47993) ((-291 . -551) 47930) ((-291 . -586) 47882) ((-291 . -584) 47819) ((-291 . -102) T) ((-291 . -25) T) ((-291 . -72) T) ((-291 . -1119) T) ((-291 . -548) 47801) ((-291 . -1006) T) ((-291 . -23) T) ((-291 . -21) T) ((-291 . -659) T) ((-291 . -1016) T) ((-291 . -963) T) ((-291 . -955) T) ((-291 . -308) T) ((-291 . -1124) T) ((-291 . -826) T) ((-291 . -490) T) ((-291 . -144) T) ((-291 . -650) 47753) ((-291 . -578) 47705) ((-291 . -38) 47670) ((-291 . -386) T) ((-291 . -254) T) ((-291 . -80) 47601) ((-291 . -957) 47553) ((-291 . -962) 47505) ((-291 . -242) T) ((-291 . -198) T) ((-291 . -339) 47459) ((-291 . -116) 47413) ((-291 . -944) 47397) ((-291 . -1177) 47381) ((-291 . -1188) 47365) ((-290 . -276) 47349) ((-290 . -188) 47328) ((-290 . -184) 47301) ((-290 . -187) 47280) ((-290 . -314) 47259) ((-290 . -1056) 47238) ((-290 . -295) 47217) ((-290 . -118) 47196) ((-290 . -551) 47133) ((-290 . -586) 47085) ((-290 . -584) 47022) ((-290 . -102) T) ((-290 . -25) T) ((-290 . -72) T) ((-290 . -1119) T) ((-290 . -548) 47004) ((-290 . -1006) T) ((-290 . -23) T) ((-290 . -21) T) ((-290 . -659) T) ((-290 . -1016) T) ((-290 . -963) T) ((-290 . -955) T) ((-290 . -308) T) ((-290 . -1124) T) ((-290 . -826) T) ((-290 . -490) T) ((-290 . -144) T) ((-290 . -650) 46956) ((-290 . -578) 46908) ((-290 . -38) 46873) ((-290 . -386) T) ((-290 . -254) T) ((-290 . -80) 46804) ((-290 . -957) 46756) ((-290 . -962) 46708) ((-290 . -242) T) ((-290 . -198) T) ((-290 . -339) 46662) ((-290 . -116) 46616) ((-290 . -944) 46600) ((-290 . -1177) 46584) ((-290 . -1188) 46568) ((-289 . -276) 46545) ((-289 . -188) T) ((-289 . -184) 46532) ((-289 . -187) T) ((-289 . -314) T) ((-289 . -1056) T) ((-289 . -295) T) ((-289 . -118) 46514) ((-289 . -551) 46444) ((-289 . -586) 46389) ((-289 . -584) 46319) ((-289 . -102) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -1119) T) ((-289 . -548) 46301) ((-289 . -1006) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -659) T) ((-289 . -1016) T) ((-289 . -963) T) ((-289 . -955) T) ((-289 . -308) T) ((-289 . -1124) T) ((-289 . -826) T) ((-289 . -490) T) ((-289 . -144) T) ((-289 . -650) 46246) ((-289 . -578) 46191) ((-289 . -38) 46156) ((-289 . -386) T) ((-289 . -254) T) ((-289 . -80) 46073) ((-289 . -957) 46018) ((-289 . -962) 45963) ((-289 . -242) T) ((-289 . -198) T) ((-289 . -339) T) ((-289 . -116) T) ((-289 . -944) 45940) ((-289 . -1177) 45917) ((-289 . -1188) 45894) ((-285 . -276) 45871) ((-285 . -188) T) ((-285 . -184) 45858) ((-285 . -187) T) ((-285 . -314) T) ((-285 . -1056) T) ((-285 . -295) T) ((-285 . -118) 45840) ((-285 . -551) 45770) ((-285 . -586) 45715) ((-285 . -584) 45645) ((-285 . -102) T) ((-285 . -25) T) ((-285 . -72) T) ((-285 . -1119) T) ((-285 . -548) 45627) ((-285 . -1006) T) ((-285 . -23) T) ((-285 . -21) T) ((-285 . -659) T) ((-285 . -1016) T) ((-285 . -963) T) ((-285 . -955) T) ((-285 . -308) T) ((-285 . -1124) T) ((-285 . -826) T) ((-285 . -490) T) ((-285 . -144) T) ((-285 . -650) 45572) ((-285 . -578) 45517) ((-285 . -38) 45482) ((-285 . -386) T) ((-285 . -254) T) ((-285 . -80) 45399) ((-285 . -957) 45344) ((-285 . -962) 45289) ((-285 . -242) T) ((-285 . -198) T) ((-285 . -339) T) ((-285 . -116) T) ((-285 . -944) 45266) ((-285 . -1177) 45243) ((-285 . -1188) 45220) ((-279 . -282) 45189) ((-279 . -102) T) ((-279 . -25) T) ((-279 . -72) T) ((-279 . -1119) T) ((-279 . -548) 45171) ((-279 . -1006) T) ((-279 . -23) T) ((-279 . -584) 45153) ((-279 . -21) T) ((-278 . -1006) T) ((-278 . -548) 45135) ((-278 . -1119) T) ((-278 . -72) T) ((-277 . -750) T) ((-277 . -548) 45117) ((-277 . -1006) T) ((-277 . -72) T) ((-277 . -1119) T) ((-277 . -753) T) ((-274 . -19) 45101) ((-274 . -589) 45085) ((-274 . -240) 45062) ((-274 . -238) 45014) ((-274 . -534) 44991) ((-274 . -549) 44952) ((-274 . -423) 44936) ((-274 . -1006) 44889) ((-274 . -448) 44822) ((-274 . -256) 44760) ((-274 . -548) 44675) ((-274 . -72) 44609) ((-274 . -1119) T) ((-274 . -34) T) ((-274 . -122) 44593) ((-274 . -750) 44572) ((-274 . -753) 44551) ((-274 . -318) 44535) ((-274 . -234) 44519) ((-271 . -270) 44496) ((-271 . -551) 44480) ((-271 . -944) 44464) ((-271 . -23) T) ((-271 . -1006) T) ((-271 . -548) 44446) ((-271 . -1119) T) ((-271 . -72) T) ((-271 . -25) T) ((-271 . -102) T) ((-269 . -21) T) ((-269 . -584) 44428) ((-269 . -23) T) ((-269 . -1006) T) ((-269 . -548) 44410) ((-269 . -1119) T) ((-269 . -72) T) ((-269 . -25) T) ((-269 . -102) T) ((-269 . -650) 44392) ((-269 . -578) 44374) ((-269 . -586) 44356) ((-269 . -962) 44338) ((-269 . -957) 44320) ((-269 . -80) 44295) ((-269 . -270) 44272) ((-269 . -551) 44256) ((-269 . -944) 44240) ((-269 . -750) 44219) ((-269 . -753) 44198) ((-266 . -1152) 44182) ((-266 . -188) 44134) ((-266 . -184) 44080) ((-266 . -187) 44032) ((-266 . -238) 43990) ((-266 . -803) 43896) ((-266 . -800) 43800) ((-266 . -805) 43706) ((-266 . -880) 43669) ((-266 . -38) 43516) ((-266 . -80) 43336) ((-266 . -957) 43177) ((-266 . -962) 43018) ((-266 . -584) 42903) ((-266 . -586) 42803) ((-266 . -578) 42650) ((-266 . -650) 42497) ((-266 . -551) 42329) ((-266 . -116) 42308) ((-266 . -118) 42287) ((-266 . -47) 42257) ((-266 . -1148) 42227) ((-266 . -35) 42193) ((-266 . -66) 42159) ((-266 . -236) 42125) ((-266 . -427) 42091) ((-266 . -1108) 42057) ((-266 . -1105) 42023) ((-266 . -909) 41989) ((-266 . -198) 41968) ((-266 . -242) 41922) ((-266 . -102) T) ((-266 . -25) T) ((-266 . -72) T) ((-266 . -1119) T) ((-266 . -548) 41904) ((-266 . -1006) T) ((-266 . -23) T) ((-266 . -21) T) ((-266 . -955) T) ((-266 . -963) T) ((-266 . -1016) T) ((-266 . -659) T) ((-266 . -254) 41883) ((-266 . -386) 41862) ((-266 . -144) 41796) ((-266 . -490) 41750) ((-266 . -826) 41729) ((-266 . -1124) 41708) ((-266 . -308) 41687) ((-266 . -710) T) ((-266 . -750) T) ((-266 . -753) T) ((-266 . -712) T) ((-261 . -358) 41671) ((-261 . -551) 41246) ((-261 . -944) 40917) ((-261 . -549) 40778) ((-261 . -788) 40762) ((-261 . -805) 40729) ((-261 . -800) 40694) ((-261 . -803) 40661) ((-261 . -407) 40640) ((-261 . -349) 40624) ((-261 . -790) 40549) ((-261 . -337) 40533) ((-261 . -576) 40441) ((-261 . -586) 40179) ((-261 . -323) 40149) ((-261 . -198) 40128) ((-261 . -80) 40017) ((-261 . -957) 39927) ((-261 . -962) 39837) ((-261 . -242) 39816) ((-261 . -650) 39726) ((-261 . -578) 39636) ((-261 . -584) 39303) ((-261 . -38) 39213) ((-261 . -254) 39192) ((-261 . -386) 39171) ((-261 . -144) 39150) ((-261 . -490) 39129) ((-261 . -826) 39108) ((-261 . -1124) 39087) ((-261 . -308) 39066) ((-261 . -256) 39053) ((-261 . -448) 39019) ((-261 . -250) T) ((-261 . -118) 38998) ((-261 . -116) 38977) ((-261 . -955) 38871) ((-261 . -963) 38765) ((-261 . -1016) 38618) ((-261 . -659) 38471) ((-261 . -102) 38346) ((-261 . -25) 38202) ((-261 . -72) T) ((-261 . -1119) T) ((-261 . -548) 38184) ((-261 . -1006) T) ((-261 . -23) 38040) ((-261 . -21) 37915) ((-261 . -29) 37885) ((-261 . -909) 37864) ((-261 . -27) 37843) ((-261 . -1105) 37822) ((-261 . -1108) 37801) ((-261 . -427) 37780) ((-261 . -236) 37759) ((-261 . -66) 37738) ((-261 . -35) 37717) ((-261 . -131) 37696) ((-261 . -114) 37675) ((-261 . -565) 37654) ((-261 . -865) 37633) ((-261 . -1043) 37612) ((-260 . -898) 37573) ((-260 . -1056) NIL) ((-260 . -944) 37503) ((-260 . -551) 37386) ((-260 . -549) NIL) ((-260 . -927) NIL) ((-260 . -815) NIL) ((-260 . -788) 37347) ((-260 . -749) NIL) ((-260 . -715) NIL) ((-260 . -712) NIL) ((-260 . -753) NIL) ((-260 . -750) NIL) ((-260 . -710) NIL) ((-260 . -708) NIL) ((-260 . -734) NIL) ((-260 . -790) NIL) ((-260 . -337) 37308) ((-260 . -576) 37269) ((-260 . -586) 37198) ((-260 . -323) 37159) ((-260 . -238) 37025) ((-260 . -256) 36921) ((-260 . -448) 36672) ((-260 . -284) 36633) ((-260 . -198) T) ((-260 . -80) 36518) ((-260 . -957) 36447) ((-260 . -962) 36376) ((-260 . -242) T) ((-260 . -650) 36305) ((-260 . -578) 36234) ((-260 . -584) 36148) ((-260 . -38) 36077) ((-260 . -254) T) ((-260 . -386) T) ((-260 . -144) T) ((-260 . -490) T) ((-260 . -826) T) ((-260 . -1124) T) ((-260 . -308) T) ((-260 . -188) NIL) ((-260 . -184) NIL) ((-260 . -187) NIL) ((-260 . -222) 36038) ((-260 . -800) NIL) ((-260 . -805) NIL) ((-260 . -803) NIL) ((-260 . -182) 35999) ((-260 . -118) 35955) ((-260 . -116) 35911) ((-260 . -102) T) ((-260 . -25) T) ((-260 . -72) T) ((-260 . -1119) T) ((-260 . -548) 35893) ((-260 . -1006) T) ((-260 . -23) T) ((-260 . -21) T) ((-260 . -955) T) ((-260 . -963) T) ((-260 . -1016) T) ((-260 . -659) T) ((-259 . -988) T) ((-259 . -424) 35874) ((-259 . -548) 35840) ((-259 . -551) 35821) ((-259 . -1006) T) ((-259 . -1119) T) ((-259 . -72) T) ((-259 . -64) T) ((-258 . -1006) T) ((-258 . -548) 35803) ((-258 . -1119) T) ((-258 . -72) T) ((-247 . -1097) 35782) ((-247 . -181) 35730) ((-247 . -76) 35678) ((-247 . -256) 35476) ((-247 . -448) 35228) ((-247 . -423) 35163) ((-247 . -122) 35111) ((-247 . -549) NIL) ((-247 . -190) 35059) ((-247 . -545) 35038) ((-247 . -240) 35017) ((-247 . -1119) T) ((-247 . -238) 34996) ((-247 . -1006) T) ((-247 . -548) 34978) ((-247 . -72) T) ((-247 . -34) T) ((-247 . -534) 34957) ((-245 . -1119) T) ((-245 . -448) 34906) ((-245 . -1006) 34692) ((-245 . -548) 34438) ((-245 . -72) 34224) ((-245 . -25) 34092) ((-245 . -21) 33979) ((-245 . -584) 33726) ((-245 . -23) 33613) ((-245 . -102) 33500) ((-245 . -1016) 33385) ((-245 . -659) 33291) ((-245 . -407) 33270) ((-245 . -955) 33216) ((-245 . -963) 33162) ((-245 . -586) 33030) ((-245 . -551) 32965) ((-245 . -80) 32885) ((-245 . -957) 32810) ((-245 . -962) 32735) ((-245 . -650) 32680) ((-245 . -578) 32625) ((-245 . -803) 32584) ((-245 . -800) 32541) ((-245 . -805) 32500) ((-245 . -1177) 32470) ((-243 . -548) 32452) ((-241 . -254) T) ((-241 . -386) T) ((-241 . -38) 32439) ((-241 . -551) 32411) ((-241 . -659) T) ((-241 . -1016) T) ((-241 . -963) T) ((-241 . -955) T) ((-241 . -80) 32396) ((-241 . -957) 32383) ((-241 . -962) 32370) ((-241 . -21) T) ((-241 . -584) 32342) ((-241 . -23) T) ((-241 . -1006) T) ((-241 . -548) 32324) ((-241 . -1119) T) ((-241 . -72) T) ((-241 . -25) T) ((-241 . -102) T) ((-241 . -586) 32311) ((-241 . -578) 32298) ((-241 . -650) 32285) ((-241 . -144) T) ((-241 . -242) T) ((-241 . -490) T) ((-241 . -826) T) ((-241 . -238) 32264) ((-232 . -548) 32246) ((-231 . -548) 32228) ((-226 . -750) T) ((-226 . -548) 32210) ((-226 . -1006) T) ((-226 . -72) T) ((-226 . -1119) T) ((-226 . -753) T) ((-223 . -210) 32172) ((-223 . -551) 31932) ((-223 . -944) 31778) ((-223 . -549) 31526) ((-223 . -273) 31498) ((-223 . -349) 31482) ((-223 . -38) 31334) ((-223 . -80) 31159) ((-223 . -957) 31005) ((-223 . -962) 30851) ((-223 . -584) 30761) ((-223 . -586) 30650) ((-223 . -578) 30502) ((-223 . -650) 30354) ((-223 . -116) 30333) ((-223 . -118) 30312) ((-223 . -144) 30226) ((-223 . -490) 30160) ((-223 . -242) 30094) ((-223 . -47) 30066) ((-223 . -323) 30050) ((-223 . -576) 29998) ((-223 . -386) 29952) ((-223 . -448) 29843) ((-223 . -803) 29789) ((-223 . -800) 29698) ((-223 . -805) 29611) ((-223 . -790) 29470) ((-223 . -815) 29449) ((-223 . -1124) 29428) ((-223 . -855) 29395) ((-223 . -256) 29382) ((-223 . -188) 29361) ((-223 . -102) T) ((-223 . -25) T) ((-223 . -72) T) ((-223 . -548) 29343) ((-223 . -1006) T) ((-223 . -23) T) ((-223 . -21) T) ((-223 . -659) T) ((-223 . -1016) T) ((-223 . -963) T) ((-223 . -955) T) ((-223 . -184) 29291) ((-223 . -1119) T) ((-223 . -187) 29245) ((-223 . -222) 29229) ((-223 . -182) 29213) ((-218 . -1006) T) ((-218 . -548) 29195) ((-218 . -1119) T) ((-218 . -72) T) ((-208 . -193) 29174) ((-208 . -1177) 29144) ((-208 . -715) 29123) ((-208 . -712) 29102) ((-208 . -753) 29056) ((-208 . -750) 29010) ((-208 . -710) 28989) ((-208 . -711) 28968) ((-208 . -650) 28913) ((-208 . -578) 28838) ((-208 . -240) 28815) ((-208 . -238) 28792) ((-208 . -423) 28776) ((-208 . -448) 28709) ((-208 . -256) 28647) ((-208 . -34) T) ((-208 . -534) 28624) ((-208 . -944) 28453) ((-208 . -551) 28257) ((-208 . -349) 28226) ((-208 . -576) 28134) ((-208 . -586) 27960) ((-208 . -323) 27930) ((-208 . -314) 27909) ((-208 . -188) 27862) ((-208 . -584) 27715) ((-208 . -659) 27694) ((-208 . -1016) 27673) ((-208 . -963) 27652) ((-208 . -955) 27631) ((-208 . -184) 27527) ((-208 . -187) 27429) ((-208 . -222) 27399) ((-208 . -800) 27271) ((-208 . -805) 27145) ((-208 . -803) 27078) ((-208 . -182) 27048) ((-208 . -548) 27009) ((-208 . -962) 26934) ((-208 . -957) 26839) ((-208 . -80) 26759) ((-208 . -102) T) ((-208 . -25) T) ((-208 . -72) T) ((-208 . -1119) T) ((-208 . -1006) T) ((-208 . -23) T) ((-208 . -21) T) ((-207 . -193) 26738) ((-207 . -1177) 26708) ((-207 . -715) 26687) ((-207 . -712) 26666) ((-207 . -753) 26620) ((-207 . -750) 26574) ((-207 . -710) 26553) ((-207 . -711) 26532) ((-207 . -650) 26477) ((-207 . -578) 26402) ((-207 . -240) 26379) ((-207 . -238) 26356) ((-207 . -423) 26340) ((-207 . -448) 26273) ((-207 . -256) 26211) ((-207 . -34) T) ((-207 . -534) 26188) ((-207 . -944) 26017) ((-207 . -551) 25821) ((-207 . -349) 25790) ((-207 . -576) 25698) ((-207 . -586) 25511) ((-207 . -323) 25481) ((-207 . -314) 25460) ((-207 . -188) 25413) ((-207 . -584) 25253) ((-207 . -659) 25232) ((-207 . -1016) 25211) ((-207 . -963) 25190) ((-207 . -955) 25169) ((-207 . -184) 25065) ((-207 . -187) 24967) ((-207 . -222) 24937) ((-207 . -800) 24809) ((-207 . -805) 24683) ((-207 . -803) 24616) ((-207 . -182) 24586) ((-207 . -548) 24547) ((-207 . -962) 24472) ((-207 . -957) 24377) ((-207 . -80) 24297) ((-207 . -102) T) ((-207 . -25) T) ((-207 . -72) T) ((-207 . -1119) T) ((-207 . -1006) T) ((-207 . -23) T) ((-207 . -21) T) ((-206 . -1006) T) ((-206 . -548) 24279) ((-206 . -1119) T) ((-206 . -72) T) ((-206 . -238) 24253) ((-205 . -158) T) ((-205 . -1006) T) ((-205 . -548) 24220) ((-205 . -1119) T) ((-205 . -72) T) ((-205 . -741) 24202) ((-204 . -1006) T) ((-204 . -548) 24184) ((-204 . -1119) T) ((-204 . -72) T) ((-203 . -855) 24129) ((-203 . -551) 23921) ((-203 . -944) 23799) ((-203 . -1124) 23778) ((-203 . -815) 23757) ((-203 . -790) NIL) ((-203 . -805) 23734) ((-203 . -800) 23709) ((-203 . -803) 23686) ((-203 . -448) 23624) ((-203 . -386) 23578) ((-203 . -576) 23526) ((-203 . -586) 23415) ((-203 . -323) 23399) ((-203 . -47) 23356) ((-203 . -38) 23208) ((-203 . -578) 23060) ((-203 . -650) 22912) ((-203 . -242) 22846) ((-203 . -490) 22780) ((-203 . -80) 22605) ((-203 . -957) 22451) ((-203 . -962) 22297) ((-203 . -144) 22211) ((-203 . -118) 22190) ((-203 . -116) 22169) ((-203 . -584) 22079) ((-203 . -102) T) ((-203 . -25) T) ((-203 . -72) T) ((-203 . -1119) T) ((-203 . -548) 22061) ((-203 . -1006) T) ((-203 . -23) T) ((-203 . -21) T) ((-203 . -955) T) ((-203 . -963) T) ((-203 . -1016) T) ((-203 . -659) T) ((-203 . -349) 22045) ((-203 . -273) 22002) ((-203 . -256) 21989) ((-203 . -549) 21850) ((-200 . -604) 21834) ((-200 . -1158) 21818) ((-200 . -917) 21802) ((-200 . -1054) 21786) ((-200 . -750) 21765) ((-200 . -753) 21744) ((-200 . -318) 21728) ((-200 . -589) 21712) ((-200 . -240) 21689) ((-200 . -238) 21641) ((-200 . -534) 21618) ((-200 . -549) 21579) ((-200 . -423) 21563) ((-200 . -1006) 21516) ((-200 . -448) 21449) ((-200 . -256) 21387) ((-200 . -548) 21282) ((-200 . -72) 21216) ((-200 . -1119) T) ((-200 . -34) T) ((-200 . -122) 21200) ((-200 . -234) 21184) ((-200 . -424) 21161) ((-200 . -551) 21138) ((-194 . -193) 21117) ((-194 . -1177) 21087) ((-194 . -715) 21066) ((-194 . -712) 21045) ((-194 . -753) 20999) ((-194 . -750) 20953) ((-194 . -710) 20932) ((-194 . -711) 20911) ((-194 . -650) 20856) ((-194 . -578) 20781) ((-194 . -240) 20758) ((-194 . -238) 20735) ((-194 . -423) 20719) ((-194 . -448) 20652) ((-194 . -256) 20590) ((-194 . -34) T) ((-194 . -534) 20567) ((-194 . -944) 20396) ((-194 . -551) 20200) ((-194 . -349) 20169) ((-194 . -576) 20077) ((-194 . -586) 19916) ((-194 . -323) 19886) ((-194 . -314) 19865) ((-194 . -188) 19818) ((-194 . -584) 19606) ((-194 . -659) 19585) ((-194 . -1016) 19564) ((-194 . -963) 19543) ((-194 . -955) 19522) ((-194 . -184) 19418) ((-194 . -187) 19320) ((-194 . -222) 19290) ((-194 . -800) 19162) ((-194 . -805) 19036) ((-194 . -803) 18969) ((-194 . -182) 18939) ((-194 . -548) 18636) ((-194 . -962) 18561) ((-194 . -957) 18466) ((-194 . -80) 18386) ((-194 . -102) 18261) ((-194 . -25) 18098) ((-194 . -72) 17835) ((-194 . -1119) T) ((-194 . -1006) 17591) ((-194 . -23) 17447) ((-194 . -21) 17362) ((-179 . -623) 17320) ((-179 . -423) 17304) ((-179 . -1006) 17282) ((-179 . -448) 17215) ((-179 . -256) 17153) ((-179 . -548) 17088) ((-179 . -72) 17042) ((-179 . -1119) T) ((-179 . -34) T) ((-179 . -57) 17000) ((-177 . -341) T) ((-177 . -118) T) ((-177 . -551) 16950) ((-177 . -586) 16915) ((-177 . -584) 16865) ((-177 . -102) T) ((-177 . -25) T) ((-177 . -72) T) ((-177 . -1119) T) ((-177 . -548) 16847) ((-177 . -1006) T) ((-177 . -23) T) ((-177 . -21) T) ((-177 . -659) T) ((-177 . -1016) T) ((-177 . -963) T) ((-177 . -955) T) ((-177 . -549) 16777) ((-177 . -308) T) ((-177 . -1124) T) ((-177 . -826) T) ((-177 . -490) T) ((-177 . -144) T) ((-177 . -650) 16742) ((-177 . -578) 16707) ((-177 . -38) 16672) ((-177 . -386) T) ((-177 . -254) T) ((-177 . -80) 16621) ((-177 . -957) 16586) ((-177 . -962) 16551) ((-177 . -242) T) ((-177 . -198) T) ((-177 . -749) T) ((-177 . -715) T) ((-177 . -712) T) ((-177 . -753) T) ((-177 . -750) T) ((-177 . -710) T) ((-177 . -708) T) ((-177 . -790) 16533) ((-177 . -909) T) ((-177 . -927) T) ((-177 . -944) 16493) ((-177 . -966) T) ((-177 . -188) T) ((-177 . -184) 16480) ((-177 . -187) T) ((-177 . -1105) T) ((-177 . -1108) T) ((-177 . -427) T) ((-177 . -236) T) ((-177 . -66) T) ((-177 . -35) T) ((-175 . -556) 16457) ((-175 . -551) 16419) ((-175 . -586) 16386) ((-175 . -584) 16338) ((-175 . -659) T) ((-175 . -1016) T) ((-175 . -963) T) ((-175 . -955) T) ((-175 . -21) T) ((-175 . -23) T) ((-175 . -1006) T) ((-175 . -548) 16320) ((-175 . -1119) T) ((-175 . -72) T) ((-175 . -25) T) ((-175 . -102) T) ((-175 . -944) 16297) ((-174 . -211) 16281) ((-174 . -1025) 16265) ((-174 . -76) 16249) ((-174 . -34) T) ((-174 . -1119) T) ((-174 . -72) 16203) ((-174 . -548) 16138) ((-174 . -256) 16076) ((-174 . -448) 16009) ((-174 . -1006) 15987) ((-174 . -423) 15971) ((-174 . -902) 15955) ((-170 . -988) T) ((-170 . -424) 15936) ((-170 . -548) 15902) ((-170 . -551) 15883) ((-170 . -1006) T) ((-170 . -1119) T) ((-170 . -72) T) ((-170 . -64) T) ((-169 . -898) 15865) ((-169 . -1056) T) ((-169 . -551) 15815) ((-169 . -944) 15775) ((-169 . -549) 15705) ((-169 . -927) T) ((-169 . -815) NIL) ((-169 . -788) 15687) ((-169 . -749) T) ((-169 . -715) T) ((-169 . -712) T) ((-169 . -753) T) ((-169 . -750) T) ((-169 . -710) T) ((-169 . -708) T) ((-169 . -734) T) ((-169 . -790) 15669) ((-169 . -337) 15651) ((-169 . -576) 15633) ((-169 . -323) 15615) ((-169 . -238) NIL) ((-169 . -256) NIL) ((-169 . -448) NIL) ((-169 . -284) 15597) ((-169 . -198) T) ((-169 . -80) 15524) ((-169 . -957) 15474) ((-169 . -962) 15424) ((-169 . -242) T) ((-169 . -650) 15374) ((-169 . -578) 15324) ((-169 . -586) 15274) ((-169 . -584) 15224) ((-169 . -38) 15174) ((-169 . -254) T) ((-169 . -386) T) ((-169 . -144) T) ((-169 . -490) T) ((-169 . -826) T) ((-169 . -1124) T) ((-169 . -308) T) ((-169 . -188) T) ((-169 . -184) 15161) ((-169 . -187) T) ((-169 . -222) 15143) ((-169 . -800) NIL) ((-169 . -805) NIL) ((-169 . -803) NIL) ((-169 . -182) 15125) ((-169 . -118) T) ((-169 . -116) NIL) ((-169 . -102) T) ((-169 . -25) T) ((-169 . -72) T) ((-169 . -1119) T) ((-169 . -548) 15067) ((-169 . -1006) T) ((-169 . -23) T) ((-169 . -21) T) ((-169 . -955) T) ((-169 . -963) T) ((-169 . -1016) T) ((-169 . -659) T) ((-166 . -746) T) ((-166 . -753) T) ((-166 . -750) T) ((-166 . -1006) T) ((-166 . -548) 15049) ((-166 . -1119) T) ((-166 . -72) T) ((-166 . -314) T) ((-165 . -1006) T) ((-165 . -548) 15031) ((-165 . -1119) T) ((-165 . -72) T) ((-165 . -551) 15008) ((-164 . -1006) T) ((-164 . -548) 14990) ((-164 . -1119) T) ((-164 . -72) T) ((-159 . -1006) T) ((-159 . -548) 14972) ((-159 . -1119) T) ((-159 . -72) T) ((-156 . -1006) T) ((-156 . -548) 14954) ((-156 . -1119) T) ((-156 . -72) T) ((-155 . -158) T) ((-155 . -1006) T) ((-155 . -548) 14936) ((-155 . -1119) T) ((-155 . -72) T) ((-155 . -741) 14918) ((-152 . -988) T) ((-152 . -424) 14899) ((-152 . -548) 14865) ((-152 . -551) 14846) ((-152 . -1006) T) ((-152 . -1119) T) ((-152 . -72) T) ((-152 . -64) T) ((-147 . -548) 14828) ((-146 . -38) 14760) ((-146 . -551) 14677) ((-146 . -586) 14609) ((-146 . -584) 14526) ((-146 . -659) T) ((-146 . -1016) T) ((-146 . -963) T) ((-146 . -955) T) ((-146 . -80) 14425) ((-146 . -957) 14357) ((-146 . -962) 14289) ((-146 . -21) T) ((-146 . -23) T) ((-146 . -1006) T) ((-146 . -548) 14271) ((-146 . -1119) T) ((-146 . -72) T) ((-146 . -25) T) ((-146 . -102) T) ((-146 . -578) 14203) ((-146 . -650) 14135) ((-146 . -308) T) ((-146 . -1124) T) ((-146 . -826) T) ((-146 . -490) T) ((-146 . -144) T) ((-146 . -386) T) ((-146 . -254) T) ((-146 . -242) T) ((-146 . -198) T) ((-143 . -1006) T) ((-143 . -548) 14117) ((-143 . -1119) T) ((-143 . -72) T) ((-140 . -137) 14101) ((-140 . -35) 14079) ((-140 . -66) 14057) ((-140 . -236) 14035) ((-140 . -427) 14013) ((-140 . -1108) 13991) ((-140 . -1105) 13969) ((-140 . -909) 13921) ((-140 . -815) 13874) ((-140 . -549) 13642) ((-140 . -788) 13626) ((-140 . -314) 13580) ((-140 . -295) 13559) ((-140 . -1056) 13538) ((-140 . -339) 13517) ((-140 . -347) 13488) ((-140 . -38) 13322) ((-140 . -80) 13214) ((-140 . -957) 13127) ((-140 . -962) 13040) ((-140 . -578) 12874) ((-140 . -650) 12708) ((-140 . -316) 12679) ((-140 . -657) 12650) ((-140 . -944) 12548) ((-140 . -551) 12333) ((-140 . -349) 12317) ((-140 . -790) 12242) ((-140 . -337) 12226) ((-140 . -576) 12174) ((-140 . -586) 12051) ((-140 . -584) 11949) ((-140 . -323) 11933) ((-140 . -238) 11891) ((-140 . -256) 11856) ((-140 . -448) 11768) ((-140 . -284) 11752) ((-140 . -198) 11706) ((-140 . -1124) 11614) ((-140 . -308) 11568) ((-140 . -826) 11502) ((-140 . -490) 11416) ((-140 . -242) 11330) ((-140 . -386) 11264) ((-140 . -254) 11198) ((-140 . -188) 11152) ((-140 . -184) 11080) ((-140 . -187) 11014) ((-140 . -222) 10998) ((-140 . -800) 10922) ((-140 . -805) 10848) ((-140 . -803) 10807) ((-140 . -182) 10791) ((-140 . -144) T) ((-140 . -118) 10770) ((-140 . -955) T) ((-140 . -963) T) ((-140 . -1016) T) ((-140 . -659) T) ((-140 . -21) T) ((-140 . -23) T) ((-140 . -1006) T) ((-140 . -548) 10752) ((-140 . -1119) T) ((-140 . -72) T) ((-140 . -25) T) ((-140 . -102) T) ((-140 . -116) 10706) ((-133 . -988) T) ((-133 . -424) 10687) ((-133 . -548) 10653) ((-133 . -551) 10634) ((-133 . -1006) T) ((-133 . -1119) T) ((-133 . -72) T) ((-133 . -64) T) ((-132 . -1006) T) ((-132 . -548) 10616) ((-132 . -1119) T) ((-132 . -72) T) ((-128 . -25) T) ((-128 . -72) T) ((-128 . -1119) T) ((-128 . -548) 10598) ((-128 . -1006) T) ((-127 . -988) T) ((-127 . -424) 10579) ((-127 . -548) 10545) ((-127 . -551) 10526) ((-127 . -1006) T) ((-127 . -1119) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -988) T) ((-125 . -424) 10507) ((-125 . -548) 10473) ((-125 . -551) 10454) ((-125 . -1006) T) ((-125 . -1119) T) ((-125 . -72) T) ((-125 . -64) T) ((-123 . -955) T) ((-123 . -963) T) ((-123 . -1016) T) ((-123 . -659) T) ((-123 . -21) T) ((-123 . -584) 10413) ((-123 . -23) T) ((-123 . -1006) T) ((-123 . -548) 10395) ((-123 . -1119) T) ((-123 . -72) T) ((-123 . -25) T) ((-123 . -102) T) ((-123 . -586) 10369) ((-123 . -551) 10338) ((-123 . -38) 10322) ((-123 . -80) 10301) ((-123 . -957) 10285) ((-123 . -962) 10269) ((-123 . -578) 10253) ((-123 . -650) 10237) ((-123 . -1177) 10221) ((-115 . -746) T) ((-115 . -753) T) ((-115 . -750) T) ((-115 . -1006) T) ((-115 . -548) 10203) ((-115 . -1119) T) ((-115 . -72) T) ((-115 . -314) T) ((-112 . -1006) T) ((-112 . -548) 10185) ((-112 . -1119) T) ((-112 . -72) T) ((-112 . -549) 10144) ((-112 . -363) 10126) ((-112 . -1004) 10108) ((-112 . -314) T) ((-112 . -190) 10090) ((-112 . -122) 10072) ((-112 . -423) 10054) ((-112 . -448) NIL) ((-112 . -256) NIL) ((-112 . -34) T) ((-112 . -76) 10036) ((-112 . -181) 10018) ((-111 . -548) 10000) ((-110 . -158) T) ((-110 . -1006) T) ((-110 . -548) 9967) ((-110 . -1119) T) ((-110 . -72) T) ((-110 . -741) 9949) ((-109 . -988) T) ((-109 . -424) 9930) ((-109 . -548) 9896) ((-109 . -551) 9877) ((-109 . -1006) T) ((-109 . -1119) T) ((-109 . -72) T) ((-109 . -64) T) ((-108 . -988) T) ((-108 . -424) 9858) ((-108 . -548) 9824) ((-108 . -551) 9805) ((-108 . -1006) T) ((-108 . -1119) T) ((-108 . -72) T) ((-108 . -64) T) ((-106 . -399) 9782) ((-106 . -551) 9678) ((-106 . -944) 9662) ((-106 . -1006) T) ((-106 . -548) 9644) ((-106 . -1119) T) ((-106 . -72) T) ((-106 . -404) 9599) ((-106 . -238) 9576) ((-105 . -750) T) ((-105 . -548) 9558) ((-105 . -1006) T) ((-105 . -72) T) ((-105 . -1119) T) ((-105 . -753) T) ((-105 . -23) T) ((-105 . -25) T) ((-105 . -659) T) ((-105 . -1016) T) ((-105 . -944) 9540) ((-105 . -551) 9522) ((-104 . -988) T) ((-104 . -424) 9503) ((-104 . -548) 9469) ((-104 . -551) 9450) ((-104 . -1006) T) ((-104 . -1119) T) ((-104 . -72) T) ((-104 . -64) T) ((-101 . -1006) T) ((-101 . -548) 9432) ((-101 . -1119) T) ((-101 . -72) T) ((-100 . -19) 9415) ((-100 . -589) 9398) ((-100 . -240) 9374) ((-100 . -238) 9325) ((-100 . -534) 9301) ((-100 . -549) NIL) ((-100 . -423) 9284) ((-100 . -1006) T) ((-100 . -448) NIL) ((-100 . -256) NIL) ((-100 . -548) 9229) ((-100 . -72) T) ((-100 . -1119) T) ((-100 . -34) T) ((-100 . -122) 9212) ((-100 . -750) T) ((-100 . -753) T) ((-100 . -318) 9195) ((-99 . -746) T) ((-99 . -753) T) ((-99 . -750) T) ((-99 . -1006) T) ((-99 . -548) 9177) ((-99 . -1119) T) ((-99 . -72) T) ((-99 . -314) T) ((-99 . -600) T) ((-98 . -96) 9161) ((-98 . -917) 9145) ((-98 . -34) T) ((-98 . -1119) T) ((-98 . -72) 9099) ((-98 . -548) 9034) ((-98 . -256) 8972) ((-98 . -448) 8905) ((-98 . -1006) 8883) ((-98 . -423) 8867) ((-98 . -90) 8851) ((-97 . -96) 8835) ((-97 . -917) 8819) ((-97 . -34) T) ((-97 . -1119) T) ((-97 . -72) 8773) ((-97 . -548) 8708) ((-97 . -256) 8646) ((-97 . -448) 8579) ((-97 . -1006) 8557) ((-97 . -423) 8541) ((-97 . -90) 8525) ((-92 . -96) 8509) ((-92 . -917) 8493) ((-92 . -34) T) ((-92 . -1119) T) ((-92 . -72) 8447) ((-92 . -548) 8382) ((-92 . -256) 8320) ((-92 . -448) 8253) ((-92 . -1006) 8231) ((-92 . -423) 8215) ((-92 . -90) 8199) ((-88 . -898) 8177) ((-88 . -1056) NIL) ((-88 . -944) 8155) ((-88 . -551) 8086) ((-88 . -549) NIL) ((-88 . -927) NIL) ((-88 . -815) NIL) ((-88 . -788) 8064) ((-88 . -749) NIL) ((-88 . -715) NIL) ((-88 . -712) NIL) ((-88 . -753) NIL) ((-88 . -750) NIL) ((-88 . -710) NIL) ((-88 . -708) NIL) ((-88 . -734) NIL) ((-88 . -790) NIL) ((-88 . -337) 8042) ((-88 . -576) 8020) ((-88 . -586) 7966) ((-88 . -323) 7944) ((-88 . -238) 7878) ((-88 . -256) 7825) ((-88 . -448) 7695) ((-88 . -284) 7673) ((-88 . -198) T) ((-88 . -80) 7592) ((-88 . -957) 7538) ((-88 . -962) 7484) ((-88 . -242) T) ((-88 . -650) 7430) ((-88 . -578) 7376) ((-88 . -584) 7307) ((-88 . -38) 7253) ((-88 . -254) T) ((-88 . -386) T) ((-88 . -144) T) ((-88 . -490) T) ((-88 . -826) T) ((-88 . -1124) T) ((-88 . -308) T) ((-88 . -188) NIL) ((-88 . -184) NIL) ((-88 . -187) NIL) ((-88 . -222) 7231) ((-88 . -800) NIL) ((-88 . -805) NIL) ((-88 . -803) NIL) ((-88 . -182) 7209) ((-88 . -118) T) ((-88 . -116) NIL) ((-88 . -102) T) ((-88 . -25) T) ((-88 . -72) T) ((-88 . -1119) T) ((-88 . -548) 7191) ((-88 . -1006) T) ((-88 . -23) T) ((-88 . -21) T) ((-88 . -955) T) ((-88 . -963) T) ((-88 . -1016) T) ((-88 . -659) T) ((-87 . -773) 7175) ((-87 . -826) T) ((-87 . -490) T) ((-87 . -242) T) ((-87 . -144) T) ((-87 . -551) 7147) ((-87 . -650) 7134) ((-87 . -578) 7121) ((-87 . -962) 7108) ((-87 . -957) 7095) ((-87 . -80) 7080) ((-87 . -38) 7067) ((-87 . -386) T) ((-87 . -254) T) ((-87 . -955) T) ((-87 . -963) T) ((-87 . -1016) T) ((-87 . -659) T) ((-87 . -21) T) ((-87 . -584) 7039) ((-87 . -23) T) ((-87 . -1006) T) ((-87 . -548) 7021) ((-87 . -1119) T) ((-87 . -72) T) ((-87 . -25) T) ((-87 . -102) T) ((-87 . -586) 7008) ((-87 . -118) T) ((-84 . -750) T) ((-84 . -548) 6990) ((-84 . -1006) T) ((-84 . -72) T) ((-84 . -1119) T) ((-84 . -753) T) ((-84 . -741) 6971) ((-83 . -746) T) ((-83 . -753) T) ((-83 . -750) T) ((-83 . -1006) T) ((-83 . -548) 6953) ((-83 . -1119) T) ((-83 . -72) T) ((-83 . -314) T) ((-83 . -874) T) ((-83 . -600) T) ((-83 . -82) T) ((-83 . -549) 6935) ((-79 . -94) T) ((-79 . -318) 6918) ((-79 . -753) T) ((-79 . -750) T) ((-79 . -122) 6901) ((-79 . -34) T) ((-79 . -72) T) ((-79 . -548) 6883) ((-79 . -256) NIL) ((-79 . -448) NIL) ((-79 . -1006) T) ((-79 . -423) 6866) ((-79 . -549) 6848) ((-79 . -238) 6799) ((-79 . -534) 6775) ((-79 . -240) 6751) ((-79 . -589) 6734) ((-79 . -19) 6717) ((-79 . -600) T) ((-79 . -1119) T) ((-79 . -82) T) ((-78 . -548) 6699) ((-77 . -898) 6681) ((-77 . -1056) T) ((-77 . -551) 6631) ((-77 . -944) 6591) ((-77 . -549) 6521) ((-77 . -927) T) ((-77 . -815) NIL) ((-77 . -788) 6503) ((-77 . -749) T) ((-77 . -715) T) ((-77 . -712) T) ((-77 . -753) T) ((-77 . -750) T) ((-77 . -710) T) ((-77 . -708) T) ((-77 . -734) T) ((-77 . -790) 6485) ((-77 . -337) 6467) ((-77 . -576) 6449) ((-77 . -323) 6431) ((-77 . -238) NIL) ((-77 . -256) NIL) ((-77 . -448) NIL) ((-77 . -284) 6413) ((-77 . -198) T) ((-77 . -80) 6340) ((-77 . -957) 6290) ((-77 . -962) 6240) ((-77 . -242) T) ((-77 . -650) 6190) ((-77 . -578) 6140) ((-77 . -586) 6090) ((-77 . -584) 6040) ((-77 . -38) 5990) ((-77 . -254) T) ((-77 . -386) T) ((-77 . -144) T) ((-77 . -490) T) ((-77 . -826) T) ((-77 . -1124) T) ((-77 . -308) T) ((-77 . -188) T) ((-77 . -184) 5977) ((-77 . -187) T) ((-77 . -222) 5959) ((-77 . -800) NIL) ((-77 . -805) NIL) ((-77 . -803) NIL) ((-77 . -182) 5941) ((-77 . -118) T) ((-77 . -116) NIL) ((-77 . -102) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -1119) T) ((-77 . -548) 5884) ((-77 . -1006) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -955) T) ((-77 . -963) T) ((-77 . -1016) T) ((-77 . -659) T) ((-73 . -96) 5868) ((-73 . -917) 5852) ((-73 . -34) T) ((-73 . -1119) T) ((-73 . -72) 5806) ((-73 . -548) 5741) ((-73 . -256) 5679) ((-73 . -448) 5612) ((-73 . -1006) 5590) ((-73 . -423) 5574) ((-73 . -90) 5558) ((-69 . -407) T) ((-69 . -1016) T) ((-69 . -72) T) ((-69 . -1119) T) ((-69 . -548) 5540) ((-69 . -1006) T) ((-69 . -659) T) ((-69 . -238) 5519) ((-67 . -988) T) ((-67 . -424) 5500) ((-67 . -548) 5466) ((-67 . -551) 5447) ((-67 . -1006) T) ((-67 . -1119) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1025) 5431) ((-62 . -423) 5415) ((-62 . -1006) 5393) ((-62 . -448) 5326) ((-62 . -256) 5264) ((-62 . -548) 5199) ((-62 . -72) 5153) ((-62 . -1119) T) ((-62 . -34) T) ((-62 . -76) 5137) ((-60 . -57) 5099) ((-60 . -34) T) ((-60 . -1119) T) ((-60 . -72) 5053) ((-60 . -548) 4988) ((-60 . -256) 4926) ((-60 . -448) 4859) ((-60 . -1006) 4837) ((-60 . -423) 4821) ((-58 . -19) 4805) ((-58 . -589) 4789) ((-58 . -240) 4766) ((-58 . -238) 4718) ((-58 . -534) 4695) ((-58 . -549) 4656) ((-58 . -423) 4640) ((-58 . -1006) 4593) ((-58 . -448) 4526) ((-58 . -256) 4464) ((-58 . -548) 4379) ((-58 . -72) 4313) ((-58 . -1119) T) ((-58 . -34) T) ((-58 . -122) 4297) ((-58 . -750) 4276) ((-58 . -753) 4255) ((-58 . -318) 4239) ((-55 . -1006) T) ((-55 . -548) 4221) ((-55 . -1119) T) ((-55 . -72) T) ((-55 . -944) 4203) ((-55 . -551) 4185) ((-51 . -1006) T) ((-51 . -548) 4167) ((-51 . -1119) T) ((-51 . -72) T) ((-50 . -556) 4151) ((-50 . -551) 4120) ((-50 . -586) 4094) ((-50 . -584) 4053) ((-50 . -659) T) ((-50 . -1016) T) ((-50 . -963) T) ((-50 . -955) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1006) T) ((-50 . -548) 4035) ((-50 . -1119) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -102) T) ((-50 . -944) 4019) ((-49 . -1006) T) ((-49 . -548) 4001) ((-49 . -1119) T) ((-49 . -72) T) ((-48 . -250) T) ((-48 . -72) T) ((-48 . -1119) T) ((-48 . -548) 3983) ((-48 . -1006) T) ((-48 . -551) 3884) ((-48 . -944) 3827) ((-48 . -448) 3793) ((-48 . -256) 3780) ((-48 . -27) T) ((-48 . -909) T) ((-48 . -198) T) ((-48 . -80) 3729) ((-48 . -957) 3694) ((-48 . -962) 3659) ((-48 . -242) T) ((-48 . -650) 3624) ((-48 . -578) 3589) ((-48 . -586) 3539) ((-48 . -584) 3489) ((-48 . -102) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -955) T) ((-48 . -963) T) ((-48 . -1016) T) ((-48 . -659) T) ((-48 . -38) 3454) ((-48 . -254) T) ((-48 . -386) T) ((-48 . -144) T) ((-48 . -490) T) ((-48 . -826) T) ((-48 . -1124) T) ((-48 . -308) T) ((-48 . -576) 3414) ((-48 . -927) T) ((-48 . -549) 3359) ((-48 . -118) T) ((-48 . -188) T) ((-48 . -184) 3346) ((-48 . -187) T) ((-45 . -36) 3325) ((-45 . -534) 3248) ((-45 . -256) 3046) ((-45 . -448) 2798) ((-45 . -423) 2733) ((-45 . -238) 2631) ((-45 . -240) 2554) ((-45 . -545) 2533) ((-45 . -190) 2481) ((-45 . -76) 2429) ((-45 . -181) 2377) ((-45 . -1097) 2356) ((-45 . -234) 2304) ((-45 . -122) 2252) ((-45 . -34) T) ((-45 . -1119) T) ((-45 . -72) T) ((-45 . -548) 2234) ((-45 . -1006) T) ((-45 . -549) NIL) ((-45 . -589) 2182) ((-45 . -318) 2130) ((-45 . -753) NIL) ((-45 . -750) NIL) ((-45 . -1054) 2078) ((-45 . -917) 2026) ((-45 . -1158) 1974) ((-45 . -604) 1922) ((-44 . -355) 1906) ((-44 . -677) 1890) ((-44 . -653) T) ((-44 . -679) T) ((-44 . -80) 1869) ((-44 . -957) 1853) ((-44 . -962) 1837) ((-44 . -21) T) ((-44 . -584) 1780) ((-44 . -23) T) ((-44 . -1006) T) ((-44 . -548) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -102) T) ((-44 . -586) 1720) ((-44 . -578) 1704) ((-44 . -650) 1688) ((-44 . -312) 1672) ((-44 . -1119) T) ((-44 . -238) 1649) ((-40 . -287) 1623) ((-40 . -144) T) ((-40 . -551) 1553) ((-40 . -659) T) ((-40 . -1016) T) ((-40 . -963) T) ((-40 . -955) T) ((-40 . -586) 1455) ((-40 . -584) 1385) ((-40 . -102) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -1119) T) ((-40 . -548) 1367) ((-40 . -1006) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -962) 1312) ((-40 . -957) 1257) ((-40 . -80) 1174) ((-40 . -549) 1158) ((-40 . -182) 1135) ((-40 . -803) 1087) ((-40 . -805) 999) ((-40 . -800) 909) ((-40 . -222) 886) ((-40 . -187) 826) ((-40 . -184) 760) ((-40 . -188) 732) ((-40 . -308) T) ((-40 . -1124) T) ((-40 . -826) T) ((-40 . -490) T) ((-40 . -650) 677) ((-40 . -578) 622) ((-40 . -38) 567) ((-40 . -386) T) ((-40 . -254) T) ((-40 . -242) T) ((-40 . -198) T) ((-40 . -314) NIL) ((-40 . -295) NIL) ((-40 . -1056) NIL) ((-40 . -116) 539) ((-40 . -339) NIL) ((-40 . -347) 511) ((-40 . -118) 483) ((-40 . -316) 455) ((-40 . -323) 432) ((-40 . -576) 366) ((-40 . -349) 343) ((-40 . -944) 220) ((-40 . -657) 192) ((-31 . -988) T) ((-31 . -424) 173) ((-31 . -548) 139) ((-31 . -551) 120) ((-31 . -1006) T) ((-31 . -1119) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -860) T) ((-30 . -548) 102) ((0 . |EnumerationCategory|) T) ((0 . -548) 84) ((0 . -1006) T) ((0 . -72) T) ((0 . -1119) T) ((-2 . |RecordCategory|) T) ((-2 . -548) 66) ((-2 . -1006) T) ((-2 . -72) T) ((-2 . -1119) T) ((-3 . |UnionCategory|) T) ((-3 . -548) 48) ((-3 . -1006) T) ((-3 . -72) T) ((-3 . -1119) T) ((-1 . -1006) T) ((-1 . -548) 30) ((-1 . -1119) T) ((-1 . -72) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 24dff09a..85eec457 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3537001163) -(3974 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3537569209) +(3980 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -98,8 +98,8 @@ |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| - |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| - |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| + |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite&| + |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| @@ -317,20 +317,21 @@ |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RepeatAst| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| - |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RuntimeValue| - |RewriteRule| |RuleCalled| |Ruleset| |RationalUnivariateRepresentationPackage| - |SimpleAlgebraicExtension| |SimpleAlgebraicExtensionAlgFactor| - |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SpadSyntaxCategory| - |SortedCache| |Scope| |StructuralConstantsPackage| - |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Segment| - |SegmentFunctions2| |SegmentAst| |SegmentBinding| |SegmentBindingFunctions2| - |SegmentCategory| |SegmentExpansionCategory| |Set| |SetAggregate&| - |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| - |SExpression| |SExpressionCategory| |SExpressionOf| - |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| + |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RestrictAst| + |RuntimeValue| |RewriteRule| |RuleCalled| |Ruleset| + |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension| + |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor| + |SingletonAsOrderedSet| |SpadSyntaxCategory| |SortedCache| |Scope| + |StructuralConstantsPackage| |SequentialDifferentialPolynomial| + |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentAst| + |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory| + |SegmentExpansionCategory| |SequenceAst| |Set| |SetAggregate&| |SetAggregate| + |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression| + |SExpressionCategory| |SExpressionOf| |SquareFreeQuasiComponentPackage| + |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| - |Signature| |ElementaryFunctionSign| |RationalFunctionSign| + |Signature| |SignatureAst| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| @@ -345,24 +346,24 @@ |StreamInfiniteProduct| |Stream| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| - |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| - |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomial| - |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| - |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Symbol| - |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| - |Syntax| |SystemInteger| |SystemNonNegativeInteger| |SystemPointer| - |SystemSolvePackage| |System| |TableauxBumpers| |Table| |Tableau| - |TermAlgebraOperator| |TangentExpansions| |TableAggregate&| |TableAggregate| - |TabulatedComputationPackage| |TexFormat| |TexFormat1| |TextFile| - |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| - |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| - |TrigonometricFunctionCategory| |TrigonometricManipulations| - |TriangularMatrixOperations| |TranscendentalManipulations| |TaylorSeries| - |TriangularSetCategory&| |TriangularSetCategory| |TubePlot| |TubePlotTools| - |Tuple| |TwoFactorize| |Type| |TypeAst| |UserDefinedPartialOrdering| - |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| - |UniqueFactorizationDomain| |UInt16| |UInt32| |UInt64| |UInt8| - |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| + |SubResultantPackage| |SubSpace| |SuchThat| |SuchThatAst| + |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| + |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2| + |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries| + |SparseUnivariateTaylorSeries| |Symbol| |SymmetricFunctions| + |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemInteger| + |SystemNonNegativeInteger| |SystemPointer| |SystemSolvePackage| |System| + |TableauxBumpers| |Table| |Tableau| |TermAlgebraOperator| |TangentExpansions| + |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TexFormat| + |TexFormat1| |TextFile| |ToolsForSign| |TopLevelThreeSpace| + |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| + |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| + |TrigonometricManipulations| |TriangularMatrixOperations| + |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| + |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| + |Type| |TypeAst| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| + |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UInt16| |UInt32| + |UInt64| |UInt8| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| @@ -667,8 +668,8 @@ |optpair| |getBadValues| |resetBadValues| |hasTopPredicate?| |topPredicate| |setTopPredicate| |patternVariable| |withPredicates| |setPredicates| |predicates| |hasPredicate?| |optional?| |multiple?| |generic?| |quoted?| - |inR?| |isList| |isQuotient| |isOp| |Zero| |predicate| |satisfy?| - |addBadValue| |badValues| |retractable?| |ListOfTerms| |One| |leftFactor| + |inR?| |isList| |isQuotient| |isOp| |Zero| |satisfy?| |addBadValue| + |badValues| |retractable?| |ListOfTerms| |One| |leftFactor| |rightFactorCandidate| D |ptree| |coerceImages| |fixedPoints| |odd?| |even?| |numberOfCycles| |cyclePartition| |coerceListOfPairs| |coercePreimagesImages| |listRepresentation| |permanent| |cycles| |cycle| @@ -758,13 +759,13 @@ |symmetricTensors| |tensorProduct| |permutationRepresentation| |completeEchelonBasis| |createRandomElement| |cyclicSubmodule| |standardBasisOfCyclicSubmodule| |areEquivalent?| |isAbsolutelyIrreducible?| - |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |expression| - |solveRetract| |variables| |mainVariable| |univariate| |multivariate| - |uniform01| |normal01| |exponential1| |chiSquare1| |normal| |exponential| - |chiSquare| F |t| |factorFraction| |componentUpperBound| |blue| |green| |red| - |whitePoint| |uniform| |binomial| |poisson| |geometric| |ridHack1| - |interpolate| |nullSpace| |nullity| |rank| |rowEchelon| |column| |row| |qelt| - |ncols| |nrows| |maxColIndex| |minColIndex| |maxRowIndex| |minRowIndex| + |meatAxe| |scanOneDimSubspaces| |double| |expt| |lift| |solveRetract| + |variables| |mainVariable| |univariate| |multivariate| |uniform01| |normal01| + |exponential1| |chiSquare1| |normal| |exponential| |chiSquare| F |t| + |factorFraction| |componentUpperBound| |blue| |green| |red| |whitePoint| + |uniform| |binomial| |poisson| |geometric| |ridHack1| |interpolate| + |nullSpace| |nullity| |rank| |rowEchelon| |column| |row| |qelt| |ncols| + |nrows| |maxColIndex| |minColIndex| |maxRowIndex| |minRowIndex| |antisymmetric?| |symmetric?| |diagonal?| |square?| |matrix| |rectangularMatrix| |characteristic| |round| |fractionPart| |wholePart| |floor| |ceiling| |norm| |mightHaveRoots| |refine| |middle| |size| |right| @@ -777,18 +778,18 @@ |lazyPremWithDefault| |lazyPquo| |lazyPrem| |pquo| |prem| |supRittWu?| |RittWuCompare| |mainMonomials| |mainCoefficients| |leastMonomial| |mainMonomial| |quasiMonic?| |monic?| |leadingCoefficient| |deepestInitial| - |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |body| |iterators| + |iteratedInitials| |deepestTail| |head| |mdeg| |mvar| |iterators| |relativeApprox| |rootOf| |allRootsOf| |definingPolynomial| |positive?| |negative?| |zero?| |augment| |lastSubResultant| |lastSubResultantElseSplit| |invertibleSet| |invertible?| |invertibleElseSplit?| |purelyAlgebraicLeadingMonomial?| |algebraicCoefficients?| |purelyTranscendental?| |purelyAlgebraic?| |prepareSubResAlgo| |internalLastSubResultant| |integralLastSubResultant| |toseLastSubResultant| - |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |quotedOperators| - |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create| |clearCache| - |cache| |enterInCache| |currentCategoryFrame| |currentScope| |pushNewContour| - |findBinding| |contours| |structuralConstants| |coordinates| |bounds| - |equation| |incr| |high| |low| |hi| |lo| BY |union| |subset?| + |toseInvertible?| |toseInvertibleSet| |toseSquareFreePart| |expression| + |quotedOperators| |pattern| |suchThat| |rule| |rules| |ruleset| |rur| |create| + |clearCache| |cache| |enterInCache| |currentCategoryFrame| |currentScope| + |pushNewContour| |findBinding| |contours| |structuralConstants| |coordinates| + |bounds| |equation| |incr| |high| |low| |hi| |lo| BY |body| |union| |subset?| |symmetricDifference| |difference| |intersect| |set| |brace| |part?| |latex| |hash| |delta| |member?| |enumerate| |setOfMinN| |elements| |replaceKthElement| |incrementKthElement| |cdr| |car| |expr| |float| |integer| @@ -809,20 +810,20 @@ |unrankImproperPartitions1| |subresultantSequence| |SturmHabichtSequence| |SturmHabichtCoefficients| |SturmHabicht| |countRealRoots| |SturmHabichtMultiple| |countRealRootsMultiple| |source| |target| |signature| - |xor| |depth| |top| |pop!| |push!| |minordet| |determinant| |diagonalProduct| - |trace| |diagonal| |diagonalMatrix| |scalarMatrix| |hermite| |completeHermite| - |smith| |completeSmith| |diophantineSystem| |csubst| |particularSolution| - |mapSolve| |linear| |quadratic| |cubic| |quartic| |aLinear| |aQuadratic| - |aCubic| |aQuartic| |radicalSolve| |radicalRoots| |contractSolve| - |decomposeFunc| |unvectorise| |bubbleSort!| |insertionSort!| |check| |objects| - |lprop| |llprop| |lllp| |lllip| |lp| |mesh?| |mesh| |polygon?| |polygon| - |closedCurve?| |closedCurve| |curve?| |curve| |point?| |enterPointData| - |composites| |components| |numberOfComposites| |numberOfComponents| - |create3Space| |parse| |outputAsFortran| |outputAsScript| |outputAsTex| |abs| - |Beta| |digamma| |polygamma| |Gamma| |besselJ| |besselY| |besselI| |besselK| - |airyAi| |airyBi| |subNode?| |infLex?| |setEmpty!| |setStatus!| - |setCondition!| |setValue!| |copy| |status| |value| |empty?| |splitNodeOf!| - |remove!| |remove| |subNodeOf?| |nodeOf?| |result| |conditions| + |signatureAst| |xor| |depth| |top| |pop!| |push!| |minordet| |determinant| + |diagonalProduct| |trace| |diagonal| |diagonalMatrix| |scalarMatrix| |hermite| + |completeHermite| |smith| |completeSmith| |diophantineSystem| |csubst| + |particularSolution| |mapSolve| |linear| |quadratic| |cubic| |quartic| + |aLinear| |aQuadratic| |aCubic| |aQuartic| |radicalSolve| |radicalRoots| + |contractSolve| |decomposeFunc| |unvectorise| |bubbleSort!| |insertionSort!| + |check| |objects| |lprop| |llprop| |lllp| |lllip| |lp| |mesh?| |mesh| + |polygon?| |polygon| |closedCurve?| |closedCurve| |curve?| |curve| |point?| + |enterPointData| |composites| |components| |numberOfComposites| + |numberOfComponents| |create3Space| |parse| |outputAsFortran| |outputAsScript| + |outputAsTex| |abs| |Beta| |digamma| |polygamma| |Gamma| |besselJ| |besselY| + |besselI| |besselK| |airyAi| |airyBi| |subNode?| |infLex?| |setEmpty!| + |setStatus!| |setCondition!| |setValue!| |copy| |status| |value| |empty?| + |splitNodeOf!| |remove!| |remove| |subNodeOf?| |nodeOf?| |result| |conditions| |updateStatus!| |extractSplittingLeaf| |squareMatrix| |transpose| |rightTrim| |leftTrim| |trim| |split| |position| |replace| |match?| |match| |substring?| |suffix?| |prefix?| |upperCase!| |upperCase| |lowerCase!| |lowerCase| @@ -842,23 +843,23 @@ |extractProperty| |extractClosed| |extractIndex| |extractPoint| |traverse| |defineProperty| |closeComponent| |modifyPoint| |addPointLast| |addPoint2| |addPoint| |merge| |deepCopy| |shallowCopy| |numberOfChildren| |children| - |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct| |sum| - |outputForm| |list| |string| |argscript| |superscript| |subscript| |script| - |scripts| |scripted?| |name| |resetNew| |symFunc| |symbolTableOf| - |argumentListOf| |returnTypeOf| |printHeader| |returnType!| |argumentList!| - |endSubProgram| |currentSubProgram| |newSubProgram| |clearTheSymbolTable| - |showTheSymbolTable| |symbolTable| |printTypes| |newTypeLists| |typeLists| - |externalList| |typeList| |parametersOf| |fortranTypeOf| |declare!| |empty| - |case| |compound?| |getOperands| |getOperator| |nil?| |buildSyntax| - |autoCoerce| |solve| |triangularSystems| |loadNativeModule| - |nativeModuleExtension| |hostByteOrder| |hostPlatform| |rootDirectory| - |bumprow| |bumptab| |bumptab1| |untab| |bat1| |bat| |tab1| |tab| |lex| |slex| - |inverse| |maxrow| |mr| |tableau| |listOfLists| |operator| |tanSum| |tanAn| - |tanNa| |table| |initTable!| |printInfo!| |startStats!| |printStats!| - |clearTable!| |usingTable?| |printingInfo?| |makingStats?| |extractIfCan| - |insert!| |setPrologue!| |setTex!| |setEpilogue!| |prologue| |new| |tex| - |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!| |readLine!| - |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi| + |child| |birth| |internal?| |root?| |leaf?| |rhs| |lhs| |construct| + |predicate| |sum| |outputForm| |list| |string| |argscript| |superscript| + |subscript| |script| |scripts| |scripted?| |name| |resetNew| |symFunc| + |symbolTableOf| |argumentListOf| |returnTypeOf| |printHeader| |returnType!| + |argumentList!| |endSubProgram| |currentSubProgram| |newSubProgram| + |clearTheSymbolTable| |showTheSymbolTable| |symbolTable| |printTypes| + |newTypeLists| |typeLists| |externalList| |typeList| |parametersOf| + |fortranTypeOf| |declare!| |empty| |case| |compound?| |getOperands| + |getOperator| |nil?| |buildSyntax| |autoCoerce| |solve| |triangularSystems| + |loadNativeModule| |nativeModuleExtension| |hostByteOrder| |hostPlatform| + |rootDirectory| |bumprow| |bumptab| |bumptab1| |untab| |bat1| |bat| |tab1| + |tab| |lex| |slex| |inverse| |maxrow| |mr| |tableau| |listOfLists| |operator| + |tanSum| |tanAn| |tanNa| |table| |initTable!| |printInfo!| |startStats!| + |printStats!| |clearTable!| |usingTable?| |printingInfo?| |makingStats?| + |extractIfCan| |insert!| |setPrologue!| |setTex!| |setEpilogue!| |prologue| + |new| |tex| |epilogue| |display| |endOfFile?| |readIfCan!| |readLineIfCan!| + |readLine!| |writeLine!| |sign| |nonQsign| |direction| |createThreeSpace| |pi| |cyclicParents| |cyclicEqual?| |cyclicEntries| |cyclicCopy| |tree| |cyclic?| |cos| |cot| |csc| |sec| |sin| |tan| |complexNormalize| |complexElementary| |trigs| |real| |imag| |real?| |complexForm| |UpTriBddDenomInv| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index c9799a30..13dcc6b6 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,3989 +1,4004 @@ -(2795030 . 3537001175) -((-1715 (((-83) (-1 (-83) |#2| |#2|) $) 86 T ELT) (((-83) $) NIL T ELT)) (-1713 (($ (-1 (-83) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3764 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-1131 (-478)) |#2|) 44 T ELT)) (-2279 (($ $) 80 T ELT)) (-3818 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3396 (((-478) (-1 (-83) |#2|) $) 27 T ELT) (((-478) |#2| $) NIL T ELT) (((-478) |#2| $ (-478)) 96 T ELT)) (-2870 (((-578 |#2|) $) 13 T ELT)) (-3495 (($ (-1 (-83) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1932 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2286 (($ |#2| $ (-478)) NIL T ELT) (($ $ $ (-478)) 67 T ELT)) (-1337 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 29 T ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) 23 T ELT)) (-3776 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) 66 T ELT)) (-2287 (($ $ (-478)) 76 T ELT) (($ $ (-1131 (-478))) 75 T ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) 34 T ELT) (((-687) |#2| $) NIL T ELT)) (-1714 (($ $ $ (-478)) 69 T ELT)) (-3377 (($ $) 68 T ELT)) (-3507 (($ (-578 |#2|)) 73 T ELT)) (-3778 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-578 $)) 85 T ELT)) (-3922 (((-765) $) 92 T ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) 22 T ELT)) (-3037 (((-83) $ $) 95 T ELT)) (-2666 (((-83) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -2666 ((-83) |#1| |#1|)) (-15 -1713 (|#1| |#1|)) (-15 -1713 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -1714 (|#1| |#1| |#1| (-478))) (-15 -1715 ((-83) |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3396 ((-478) |#2| |#1| (-478))) (-15 -3396 ((-478) |#2| |#1|)) (-15 -3396 ((-478) (-1 (-83) |#2|) |#1|)) (-15 -1715 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -3495 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -3764 (|#2| |#1| (-1131 (-478)) |#2|)) (-15 -2286 (|#1| |#1| |#1| (-478))) (-15 -2286 (|#1| |#2| |#1| (-478))) (-15 -2287 (|#1| |#1| (-1131 (-478)))) (-15 -2287 (|#1| |#1| (-478))) (-15 -3934 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3778 (|#1| (-578 |#1|))) (-15 -3778 (|#1| |#1| |#1|)) (-15 -3778 (|#1| |#2| |#1|)) (-15 -3778 (|#1| |#1| |#2|)) (-15 -3776 (|#1| |#1| (-1131 (-478)))) (-15 -3507 (|#1| (-578 |#2|))) (-15 -1337 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3776 (|#2| |#1| (-478))) (-15 -3776 (|#2| |#1| (-478) |#2|)) (-15 -3764 (|#2| |#1| (-478) |#2|)) (-15 -1929 ((-687) |#2| |#1|)) (-15 -2870 ((-578 |#2|) |#1|)) (-15 -1929 ((-687) (-1 (-83) |#2|) |#1|)) (-15 -1930 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1931 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1932 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3934 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3377 (|#1| |#1|))) (-19 |#2|) (-1114)) (T -18)) +(2797120 . 3537569222) +((-1720 (((-83) (-1 (-83) |#2| |#2|) $) 86 T ELT) (((-83) $) NIL T ELT)) (-1718 (($ (-1 (-83) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3770 ((|#2| $ (-479) |#2|) NIL T ELT) ((|#2| $ (-1136 (-479)) |#2|) 44 T ELT)) (-2284 (($ $) 80 T ELT)) (-3824 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3401 (((-479) (-1 (-83) |#2|) $) 27 T ELT) (((-479) |#2| $) NIL T ELT) (((-479) |#2| $ (-479)) 96 T ELT)) (-2874 (((-579 |#2|) $) 13 T ELT)) (-3500 (($ (-1 (-83) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-1937 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2291 (($ |#2| $ (-479)) NIL T ELT) (($ $ $ (-479)) 67 T ELT)) (-1342 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 29 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 23 T ELT)) (-3782 ((|#2| $ (-479) |#2|) NIL T ELT) ((|#2| $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) 66 T ELT)) (-2292 (($ $ (-479)) 76 T ELT) (($ $ (-1136 (-479))) 75 T ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) 34 T ELT) (((-688) |#2| $) NIL T ELT)) (-1719 (($ $ $ (-479)) 69 T ELT)) (-3382 (($ $) 68 T ELT)) (-3512 (($ (-579 |#2|)) 73 T ELT)) (-3784 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-579 $)) 85 T ELT)) (-3928 (((-766) $) 92 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 22 T ELT)) (-3041 (((-83) $ $) 95 T ELT)) (-2670 (((-83) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3041 ((-83) |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -2670 ((-83) |#1| |#1|)) (-15 -1718 (|#1| |#1|)) (-15 -1718 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -2284 (|#1| |#1|)) (-15 -1719 (|#1| |#1| |#1| (-479))) (-15 -1720 ((-83) |#1|)) (-15 -3500 (|#1| |#1| |#1|)) (-15 -3401 ((-479) |#2| |#1| (-479))) (-15 -3401 ((-479) |#2| |#1|)) (-15 -3401 ((-479) (-1 (-83) |#2|) |#1|)) (-15 -1720 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -3500 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -3770 (|#2| |#1| (-1136 (-479)) |#2|)) (-15 -2291 (|#1| |#1| |#1| (-479))) (-15 -2291 (|#1| |#2| |#1| (-479))) (-15 -2292 (|#1| |#1| (-1136 (-479)))) (-15 -2292 (|#1| |#1| (-479))) (-15 -3940 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3784 (|#1| (-579 |#1|))) (-15 -3784 (|#1| |#1| |#1|)) (-15 -3784 (|#1| |#2| |#1|)) (-15 -3784 (|#1| |#1| |#2|)) (-15 -3782 (|#1| |#1| (-1136 (-479)))) (-15 -3512 (|#1| (-579 |#2|))) (-15 -1342 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3782 (|#2| |#1| (-479))) (-15 -3782 (|#2| |#1| (-479) |#2|)) (-15 -3770 (|#2| |#1| (-479) |#2|)) (-15 -1934 ((-688) |#2| |#1|)) (-15 -2874 ((-579 |#2|) |#1|)) (-15 -1934 ((-688) (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1937 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3940 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3382 (|#1| |#1|))) (-19 |#2|) (-1119)) (T -18)) NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) 44 (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3972)) ELT) (($ $) 97 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3972))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-2279 (($ $) 99 (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) 109 T ELT)) (-1336 (($ $) 84 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#1| $) 83 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 55 T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) 106 T ELT) (((-478) |#1| $) 105 (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) 104 (|has| |#1| (-1003)) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) |#1|) 74 T ELT)) (-2182 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2185 (((-578 (-478)) $) 50 T ELT)) (-2186 (((-83) (-478) $) 51 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2181 (($ $ |#1|) 45 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1131 (-478))) 75 T ELT)) (-2287 (($ $ (-478)) 68 T ELT) (($ $ (-1131 (-478))) 67 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1714 (($ $ $ (-478)) 100 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 76 T ELT)) (-3778 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) 93 (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-19 |#1|) (-111) (-1114)) (T -19)) +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) 44 (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3978)) ELT) (($ $) 97 (-12 (|has| |#1| (-750)) (|has| $ (-6 -3978))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) 56 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-2284 (($ $) 99 (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) 109 T ELT)) (-1341 (($ $) 84 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#1| $) 83 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) 57 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 55 T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) 106 T ELT) (((-479) |#1| $) 105 (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) 104 (|has| |#1| (-1006)) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) |#1|) 74 T ELT)) (-2187 (((-479) $) 47 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) 91 (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 48 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) 92 (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) 66 T ELT) (($ $ $ (-479)) 65 T ELT)) (-2190 (((-579 (-479)) $) 50 T ELT)) (-2191 (((-83) (-479) $) 51 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 46 (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2186 (($ $ |#1|) 45 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ (-479) |#1|) 54 T ELT) ((|#1| $ (-479)) 53 T ELT) (($ $ (-1136 (-479))) 75 T ELT)) (-2292 (($ $ (-479)) 68 T ELT) (($ $ (-1136 (-479))) 67 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1719 (($ $ $ (-479)) 100 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 85 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 76 T ELT)) (-3784 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-579 $)) 70 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) 93 (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) 95 (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) 94 (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 96 (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-19 |#1|) (-111) (-1119)) (T -19)) NIL -(-13 (-317 |t#1|) (-10 -7 (-6 -3972))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-317 |#1|) . T) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-1003) OR (|has| |#1| (-1003)) (|has| |#1| (-749))) ((-1114) . T)) -((-1295 (((-3 $ "failed") $ $) 12 T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 16 T ELT) (($ (-478) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -3813 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 -1295 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-21)) (T -20)) +(-13 (-318 |t#1|) (-10 -7 (-6 -3978))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 (-479) |#1|) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-318 |#1|) . T) ((-423 |#1|) . T) ((-534 (-479) |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-589 |#1|) . T) ((-750) |has| |#1| (-750)) ((-753) |has| |#1| (-750)) ((-1006) OR (|has| |#1| (-1006)) (|has| |#1| (-750))) ((-1119) . T)) +((-1300 (((-3 $ "failed") $ $) 12 T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) 16 T ELT) (($ (-479) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -3819 (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 -1300 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 * (|#1| (-824) |#1|))) (-21)) (T -20)) NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT))) (((-21) (-111)) (T -21)) -((-3813 (*1 *1 *1) (-4 *1 (-21))) (-3813 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-102) (-583 (-478)) (-10 -8 (-15 -3813 ($ $)) (-15 -3813 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-1003) . T) ((-1114) . T)) -((-3170 (((-83) $) 10 T ELT)) (-3700 (($) 15 T CONST)) (* (($ (-823) $) 14 T ELT) (($ (-687) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 * (|#1| (-687) |#1|)) (-15 -3170 ((-83) |#1|)) (-15 -3700 (|#1|) -3928) (-15 * (|#1| (-823) |#1|))) (-23)) (T -22)) +((-3819 (*1 *1 *1) (-4 *1 (-21))) (-3819 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-102) (-584 (-479)) (-10 -8 (-15 -3819 ($ $)) (-15 -3819 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-1006) . T) ((-1119) . T)) +((-3172 (((-83) $) 10 T ELT)) (-3706 (($) 15 T CONST)) (* (($ (-824) $) 14 T ELT) (($ (-688) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 * (|#1| (-688) |#1|)) (-15 -3172 ((-83) |#1|)) (-15 -3706 (|#1|) -3934) (-15 * (|#1| (-824) |#1|))) (-23)) (T -22)) NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT))) (((-23) (-111)) (T -23)) -((-2640 (*1 *1) (-4 *1 (-23))) (-3700 (*1 *1) (-4 *1 (-23))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-83)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-687))))) -(-13 (-25) (-10 -8 (-15 -2640 ($) -3928) (-15 -3700 ($) -3928) (-15 -3170 ((-83) $)) (-15 * ($ (-687) $)))) -(((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((* (($ (-823) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-823) |#1|))) (-25)) (T -24)) +((-2645 (*1 *1) (-4 *1 (-23))) (-3706 (*1 *1) (-4 *1 (-23))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-83)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-688))))) +(-13 (-25) (-10 -8 (-15 -2645 ($) -3934) (-15 -3706 ($) -3934) (-15 -3172 ((-83) $)) (-15 * ($ (-688) $)))) +(((-25) . T) ((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((* (($ (-824) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-824) |#1|))) (-25)) (T -24)) NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT))) +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT))) (((-25) (-111)) (T -25)) -((-3815 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-823))))) -(-13 (-1003) (-10 -8 (-15 -3815 ($ $ $)) (-15 * ($ (-823) $)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-1199 (((-578 $) (-850 $)) 32 T ELT) (((-578 $) (-1070 $)) 16 T ELT) (((-578 $) (-1070 $) (-1075)) 20 T ELT)) (-1200 (($ (-850 $)) 30 T ELT) (($ (-1070 $)) 11 T ELT) (($ (-1070 $) (-1075)) 60 T ELT)) (-1201 (((-578 $) (-850 $)) 33 T ELT) (((-578 $) (-1070 $)) 18 T ELT) (((-578 $) (-1070 $) (-1075)) 19 T ELT)) (-3165 (($ (-850 $)) 31 T ELT) (($ (-1070 $)) 13 T ELT) (($ (-1070 $) (-1075)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1199 ((-578 |#1|) (-1070 |#1|) (-1075))) (-15 -1199 ((-578 |#1|) (-1070 |#1|))) (-15 -1199 ((-578 |#1|) (-850 |#1|))) (-15 -1200 (|#1| (-1070 |#1|) (-1075))) (-15 -1200 (|#1| (-1070 |#1|))) (-15 -1200 (|#1| (-850 |#1|))) (-15 -1201 ((-578 |#1|) (-1070 |#1|) (-1075))) (-15 -1201 ((-578 |#1|) (-1070 |#1|))) (-15 -1201 ((-578 |#1|) (-850 |#1|))) (-15 -3165 (|#1| (-1070 |#1|) (-1075))) (-15 -3165 (|#1| (-1070 |#1|))) (-15 -3165 (|#1| (-850 |#1|)))) (-27)) (T -26)) +((-3821 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-824))))) +(-13 (-1006) (-10 -8 (-15 -3821 ($ $ $)) (-15 * ($ (-824) $)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-1204 (((-579 $) (-851 $)) 32 T ELT) (((-579 $) (-1075 $)) 16 T ELT) (((-579 $) (-1075 $) (-1080)) 20 T ELT)) (-1205 (($ (-851 $)) 30 T ELT) (($ (-1075 $)) 11 T ELT) (($ (-1075 $) (-1080)) 60 T ELT)) (-1206 (((-579 $) (-851 $)) 33 T ELT) (((-579 $) (-1075 $)) 18 T ELT) (((-579 $) (-1075 $) (-1080)) 19 T ELT)) (-3167 (($ (-851 $)) 31 T ELT) (($ (-1075 $)) 13 T ELT) (($ (-1075 $) (-1080)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1204 ((-579 |#1|) (-1075 |#1|) (-1080))) (-15 -1204 ((-579 |#1|) (-1075 |#1|))) (-15 -1204 ((-579 |#1|) (-851 |#1|))) (-15 -1205 (|#1| (-1075 |#1|) (-1080))) (-15 -1205 (|#1| (-1075 |#1|))) (-15 -1205 (|#1| (-851 |#1|))) (-15 -1206 ((-579 |#1|) (-1075 |#1|) (-1080))) (-15 -1206 ((-579 |#1|) (-1075 |#1|))) (-15 -1206 ((-579 |#1|) (-851 |#1|))) (-15 -3167 (|#1| (-1075 |#1|) (-1080))) (-15 -3167 (|#1| (-1075 |#1|))) (-15 -3167 (|#1| (-851 |#1|)))) (-27)) (T -26)) NIL -((-2548 (((-83) $ $) 7 T ELT)) (-1199 (((-578 $) (-850 $)) 95 T ELT) (((-578 $) (-1070 $)) 94 T ELT) (((-578 $) (-1070 $) (-1075)) 93 T ELT)) (-1200 (($ (-850 $)) 98 T ELT) (($ (-1070 $)) 97 T ELT) (($ (-1070 $) (-1075)) 96 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-3018 (($ $) 107 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3700 (($) 22 T CONST)) (-1201 (((-578 $) (-850 $)) 101 T ELT) (((-578 $) (-1070 $)) 100 T ELT) (((-578 $) (-1070 $) (-1075)) 99 T ELT)) (-3165 (($ (-850 $)) 104 T ELT) (($ (-1070 $)) 103 T ELT) (($ (-1070 $) (-1075)) 102 T ELT)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-3699 (((-83) $) 86 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 106 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 85 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 80 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT) (($ $ (-343 (-478))) 105 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) +((-2553 (((-83) $ $) 7 T ELT)) (-1204 (((-579 $) (-851 $)) 95 T ELT) (((-579 $) (-1075 $)) 94 T ELT) (((-579 $) (-1075 $) (-1080)) 93 T ELT)) (-1205 (($ (-851 $)) 98 T ELT) (($ (-1075 $)) 97 T ELT) (($ (-1075 $) (-1080)) 96 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-3022 (($ $) 107 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3706 (($) 22 T CONST)) (-1206 (((-579 $) (-851 $)) 101 T ELT) (((-579 $) (-1075 $)) 100 T ELT) (((-579 $) (-1075 $) (-1080)) 99 T ELT)) (-3167 (($ (-851 $)) 104 T ELT) (($ (-1075 $)) 103 T ELT) (($ (-1075 $) (-1080)) 102 T ELT)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-3705 (((-83) $) 86 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 106 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 65 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 85 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 80 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT) (($ $ (-344 (-479))) 105 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT))) (((-27) (-111)) (T -27)) -((-3165 (*1 *1 *2) (-12 (-5 *2 (-850 *1)) (-4 *1 (-27)))) (-3165 (*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) (-3165 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1075)) (-4 *1 (-27)))) (-1201 (*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1201 (*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1201 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1075)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1200 (*1 *1 *2) (-12 (-5 *2 (-850 *1)) (-4 *1 (-27)))) (-1200 (*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) (-1200 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1075)) (-4 *1 (-27)))) (-1199 (*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1199 (*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1199 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1075)) (-4 *1 (-27)) (-5 *2 (-578 *1))))) -(-13 (-308) (-908) (-10 -8 (-15 -3165 ($ (-850 $))) (-15 -3165 ($ (-1070 $))) (-15 -3165 ($ (-1070 $) (-1075))) (-15 -1201 ((-578 $) (-850 $))) (-15 -1201 ((-578 $) (-1070 $))) (-15 -1201 ((-578 $) (-1070 $) (-1075))) (-15 -1200 ($ (-850 $))) (-15 -1200 ($ (-1070 $))) (-15 -1200 ($ (-1070 $) (-1075))) (-15 -1199 ((-578 $) (-850 $))) (-15 -1199 ((-578 $) (-1070 $))) (-15 -1199 ((-578 $) (-1070 $) (-1075))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-908) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) . T)) -((-1199 (((-578 $) (-850 $)) NIL T ELT) (((-578 $) (-1070 $)) NIL T ELT) (((-578 $) (-1070 $) (-1075)) 54 T ELT) (((-578 $) $) 22 T ELT) (((-578 $) $ (-1075)) 45 T ELT)) (-1200 (($ (-850 $)) NIL T ELT) (($ (-1070 $)) NIL T ELT) (($ (-1070 $) (-1075)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1075)) 39 T ELT)) (-1201 (((-578 $) (-850 $)) NIL T ELT) (((-578 $) (-1070 $)) NIL T ELT) (((-578 $) (-1070 $) (-1075)) 52 T ELT) (((-578 $) $) 18 T ELT) (((-578 $) $ (-1075)) 47 T ELT)) (-3165 (($ (-850 $)) NIL T ELT) (($ (-1070 $)) NIL T ELT) (($ (-1070 $) (-1075)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1075)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1199 ((-578 |#1|) |#1| (-1075))) (-15 -1200 (|#1| |#1| (-1075))) (-15 -1199 ((-578 |#1|) |#1|)) (-15 -1200 (|#1| |#1|)) (-15 -1201 ((-578 |#1|) |#1| (-1075))) (-15 -3165 (|#1| |#1| (-1075))) (-15 -1201 ((-578 |#1|) |#1|)) (-15 -3165 (|#1| |#1|)) (-15 -1199 ((-578 |#1|) (-1070 |#1|) (-1075))) (-15 -1199 ((-578 |#1|) (-1070 |#1|))) (-15 -1199 ((-578 |#1|) (-850 |#1|))) (-15 -1200 (|#1| (-1070 |#1|) (-1075))) (-15 -1200 (|#1| (-1070 |#1|))) (-15 -1200 (|#1| (-850 |#1|))) (-15 -1201 ((-578 |#1|) (-1070 |#1|) (-1075))) (-15 -1201 ((-578 |#1|) (-1070 |#1|))) (-15 -1201 ((-578 |#1|) (-850 |#1|))) (-15 -3165 (|#1| (-1070 |#1|) (-1075))) (-15 -3165 (|#1| (-1070 |#1|))) (-15 -3165 (|#1| (-850 |#1|)))) (-29 |#2|) (-489)) (T -28)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-1199 (((-578 $) (-850 $)) 95 T ELT) (((-578 $) (-1070 $)) 94 T ELT) (((-578 $) (-1070 $) (-1075)) 93 T ELT) (((-578 $) $) 145 T ELT) (((-578 $) $ (-1075)) 143 T ELT)) (-1200 (($ (-850 $)) 98 T ELT) (($ (-1070 $)) 97 T ELT) (($ (-1070 $) (-1075)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1075)) 144 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 (-1075)) $) 214 T ELT)) (-3065 (((-343 (-1070 $)) $ (-545 $)) 246 (|has| |#1| (-489)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1583 (((-578 (-545 $)) $) 177 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-1587 (($ $ (-578 (-545 $)) (-578 $)) 167 T ELT) (($ $ (-578 (-245 $))) 166 T ELT) (($ $ (-245 $)) 165 T ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-3018 (($ $) 107 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3700 (($) 22 T CONST)) (-1201 (((-578 $) (-850 $)) 101 T ELT) (((-578 $) (-1070 $)) 100 T ELT) (((-578 $) (-1070 $) (-1075)) 99 T ELT) (((-578 $) $) 149 T ELT) (((-578 $) $ (-1075)) 147 T ELT)) (-3165 (($ (-850 $)) 104 T ELT) (($ (-1070 $)) 103 T ELT) (($ (-1070 $) (-1075)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1075)) 148 T ELT)) (-3138 (((-3 (-850 |#1|) #1="failed") $) 265 (|has| |#1| (-954)) ELT) (((-3 (-343 (-850 |#1|)) #1#) $) 248 (|has| |#1| (-489)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-478) #1#) $) 207 (|has| |#1| (-943 (-478))) ELT) (((-3 (-1075) #1#) $) 201 T ELT) (((-3 (-545 $) #1#) $) 152 T ELT) (((-3 (-343 (-478)) #1#) $) 140 (OR (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3137 (((-850 |#1|) $) 264 (|has| |#1| (-954)) ELT) (((-343 (-850 |#1|)) $) 247 (|has| |#1| (-489)) ELT) ((|#1| $) 209 T ELT) (((-478) $) 208 (|has| |#1| (-943 (-478))) ELT) (((-1075) $) 200 T ELT) (((-545 $) $) 151 T ELT) (((-343 (-478)) $) 141 (OR (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2544 (($ $ $) 68 T ELT)) (-2261 (((-625 |#1|) (-625 $)) 253 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 252 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 139 (OR (-2542 (|has| |#1| (-954)) (|has| |#1| (-575 (-478)))) (-2542 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (((-625 (-478)) (-625 $)) 138 (OR (-2542 (|has| |#1| (-954)) (|has| |#1| (-575 (-478)))) (-2542 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-3699 (((-83) $) 86 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 206 (|has| |#1| (-789 (-323))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 205 (|has| |#1| (-789 (-478))) ELT)) (-2553 (($ (-578 $)) 171 T ELT) (($ $) 170 T ELT)) (-1582 (((-578 (-84)) $) 178 T ELT)) (-3571 (((-84) (-84)) 179 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2654 (((-83) $) 199 (|has| $ (-943 (-478))) ELT)) (-2977 (($ $) 231 (|has| |#1| (-954)) ELT)) (-2979 (((-1025 |#1| (-545 $)) $) 230 (|has| |#1| (-954)) ELT)) (-2992 (($ $ (-478)) 106 T ELT)) (-1588 (((-3 (-578 $) #2="failed") (-578 $) $) 65 T ELT)) (-1580 (((-1070 $) (-545 $)) 196 (|has| $ (-954)) ELT)) (-3934 (($ (-1 $ $) (-545 $)) 185 T ELT)) (-1585 (((-3 (-545 $) "failed") $) 175 T ELT)) (-2262 (((-625 |#1|) (-1164 $)) 255 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 254 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 137 (OR (-2542 (|has| |#1| (-954)) (|has| |#1| (-575 (-478)))) (-2542 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (((-625 (-478)) (-1164 $)) 136 (OR (-2542 (|has| |#1| (-954)) (|has| |#1| (-575 (-478)))) (-2542 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1584 (((-578 (-545 $)) $) 176 T ELT)) (-2217 (($ (-84) (-578 $)) 184 T ELT) (($ (-84) $) 183 T ELT)) (-2804 (((-3 (-578 $) #3="failed") $) 225 (|has| |#1| (-1013)) ELT)) (-2806 (((-3 (-2 (|:| |val| $) (|:| -2383 (-478))) #3#) $) 234 (|has| |#1| (-954)) ELT)) (-2803 (((-3 (-578 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-1777 (((-3 (-2 (|:| -3930 (-478)) (|:| |var| (-545 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-2805 (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) #3#) $ (-1075)) 233 (|has| |#1| (-954)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) #3#) $ (-84)) 232 (|has| |#1| (-954)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) #3#) $) 226 (|has| |#1| (-1013)) ELT)) (-2613 (((-83) $ (-1075)) 182 T ELT) (((-83) $ (-84)) 181 T ELT)) (-2464 (($ $) 85 T ELT)) (-2583 (((-687) $) 174 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1780 (((-83) $) 212 T ELT)) (-1779 ((|#1| $) 213 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1581 (((-83) $ (-1075)) 187 T ELT) (((-83) $ $) 186 T ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-2655 (((-83) $) 198 (|has| $ (-943 (-478))) ELT)) (-3744 (($ $ (-1075) (-687) (-1 $ $)) 238 (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687) (-1 $ (-578 $))) 237 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ (-578 $)))) 236 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ $))) 235 (|has| |#1| (-954)) ELT) (($ $ (-578 (-84)) (-578 $) (-1075)) 224 (|has| |#1| (-548 (-467))) ELT) (($ $ (-84) $ (-1075)) 223 (|has| |#1| (-548 (-467))) ELT) (($ $) 222 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1075))) 221 (|has| |#1| (-548 (-467))) ELT) (($ $ (-1075)) 220 (|has| |#1| (-548 (-467))) ELT) (($ $ (-84) (-1 $ $)) 195 T ELT) (($ $ (-84) (-1 $ (-578 $))) 194 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) 193 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 192 T ELT) (($ $ (-1075) (-1 $ $)) 191 T ELT) (($ $ (-1075) (-1 $ (-578 $))) 190 T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ (-578 $)))) 189 T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ $))) 188 T ELT) (($ $ (-578 $) (-578 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-245 $)) 157 T ELT) (($ $ (-578 (-245 $))) 156 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 155 T ELT) (($ $ (-545 $) $) 154 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-3776 (($ (-84) (-578 $)) 164 T ELT) (($ (-84) $ $ $ $) 163 T ELT) (($ (-84) $ $ $) 162 T ELT) (($ (-84) $ $) 161 T ELT) (($ (-84) $) 160 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-1586 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-3734 (($ $ (-578 (-1075)) (-578 (-687))) 260 (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687)) 259 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075))) 258 (|has| |#1| (-954)) ELT) (($ $ (-1075)) 256 (|has| |#1| (-954)) ELT)) (-2976 (($ $) 241 (|has| |#1| (-489)) ELT)) (-2978 (((-1025 |#1| (-545 $)) $) 240 (|has| |#1| (-489)) ELT)) (-3167 (($ $) 197 (|has| $ (-954)) ELT)) (-3948 (((-467) $) 269 (|has| |#1| (-548 (-467))) ELT) (($ (-341 $)) 239 (|has| |#1| (-489)) ELT) (((-793 (-323)) $) 204 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-793 (-478)) $) 203 (|has| |#1| (-548 (-793 (-478)))) ELT)) (-2990 (($ $ $) 268 (|has| |#1| (-406)) ELT)) (-2415 (($ $ $) 267 (|has| |#1| (-406)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ (-850 |#1|)) 266 (|has| |#1| (-954)) ELT) (($ (-343 (-850 |#1|))) 249 (|has| |#1| (-489)) ELT) (($ (-343 (-850 (-343 |#1|)))) 245 (|has| |#1| (-489)) ELT) (($ (-850 (-343 |#1|))) 244 (|has| |#1| (-489)) ELT) (($ (-343 |#1|)) 243 (|has| |#1| (-489)) ELT) (($ (-1025 |#1| (-545 $))) 229 (|has| |#1| (-954)) ELT) (($ |#1|) 211 T ELT) (($ (-1075)) 202 T ELT) (($ (-545 $)) 153 T ELT)) (-2683 (((-627 $) $) 251 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-2570 (($ (-578 $)) 169 T ELT) (($ $) 168 T ELT)) (-2236 (((-83) (-84)) 180 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-1778 (($ (-1075) (-578 $)) 219 T ELT) (($ (-1075) $ $ $ $) 218 T ELT) (($ (-1075) $ $ $) 217 T ELT) (($ (-1075) $ $) 216 T ELT) (($ (-1075) $) 215 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-578 (-1075)) (-578 (-687))) 263 (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687)) 262 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075))) 261 (|has| |#1| (-954)) ELT) (($ $ (-1075)) 257 (|has| |#1| (-954)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 80 T ELT) (($ (-1025 |#1| (-545 $)) (-1025 |#1| (-545 $))) 242 (|has| |#1| (-489)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT) (($ $ (-343 (-478))) 105 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-144)) ELT) (($ |#1| $) 142 (|has| |#1| (-954)) ELT))) -(((-29 |#1|) (-111) (-489)) (T -29)) -((-3165 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-489)))) (-1201 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) (-3165 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-29 *3)) (-4 *3 (-489)))) (-1201 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) (-1200 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-489)))) (-1199 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) (-1200 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-29 *3)) (-4 *3 (-489)))) (-1199 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-357 |t#1|) (-10 -8 (-15 -3165 ($ $)) (-15 -1201 ((-578 $) $)) (-15 -3165 ($ $ (-1075))) (-15 -1201 ((-578 $) $ (-1075))) (-15 -1200 ($ $)) (-15 -1199 ((-578 $) $)) (-15 -1200 ($ $ (-1075))) (-15 -1199 ((-578 $) $ (-1075))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 |#1| |#1|) |has| |#1| (-144)) ((-80 $ $) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) . T) ((-550 (-343 (-850 |#1|))) |has| |#1| (-489)) ((-550 (-478)) . T) ((-550 (-545 $)) . T) ((-550 (-850 |#1|)) |has| |#1| (-954)) ((-550 (-1075)) . T) ((-550 |#1|) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478)))) ((-198) . T) ((-242) . T) ((-254) . T) ((-256 $) . T) ((-250) . T) ((-308) . T) ((-322 |#1|) |has| |#1| (-954)) ((-336 |#1|) . T) ((-348 |#1|) . T) ((-357 |#1|) . T) ((-385) . T) ((-406) |has| |#1| (-406)) ((-447 (-545 $) $) . T) ((-447 $ $) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 |#1|) OR (|has| |#1| (-954)) (|has| |#1| (-144))) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 (-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ((-585 |#1|) OR (|has| |#1| (-954)) (|has| |#1| (-144))) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) . T) ((-575 (-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ((-575 |#1|) |has| |#1| (-954)) ((-649 (-343 (-478))) . T) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) . T) ((-658) . T) ((-799 $ (-1075)) |has| |#1| (-954)) ((-802 (-1075)) |has| |#1| (-954)) ((-804 (-1075)) |has| |#1| (-954)) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-787 |#1|) . T) ((-825) . T) ((-908) . T) ((-943 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478))))) ((-943 (-343 (-850 |#1|))) |has| |#1| (-489)) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 (-545 $)) . T) ((-943 (-850 |#1|)) |has| |#1| (-954)) ((-943 (-1075)) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) . T) ((-956 |#1|) |has| |#1| (-144)) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 |#1|) |has| |#1| (-144)) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) . T)) -((-2877 (((-992 (-177)) $) NIL T ELT)) (-2878 (((-992 (-177)) $) NIL T ELT)) (-3115 (($ $ (-177)) 164 T ELT)) (-1202 (($ (-850 (-478)) (-1075) (-1075) (-992 (-343 (-478))) (-992 (-343 (-478)))) 103 T ELT)) (-2879 (((-578 (-578 (-847 (-177)))) $) 181 T ELT)) (-3922 (((-765) $) 195 T ELT))) -(((-30) (-13 (-859) (-10 -8 (-15 -1202 ($ (-850 (-478)) (-1075) (-1075) (-992 (-343 (-478))) (-992 (-343 (-478))))) (-15 -3115 ($ $ (-177)))))) (T -30)) -((-1202 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-850 (-478))) (-5 *3 (-1075)) (-5 *4 (-992 (-343 (-478)))) (-5 *1 (-30)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-30))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3162 (((-1035) $) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2675 (((-1035) $) 10 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-31) (-13 (-986) (-10 -8 (-15 -2675 ((-1035) $)) (-15 -3162 ((-1035) $))))) (T -31)) -((-2675 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-31)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-31))))) -((-3165 ((|#2| (-1070 |#2|) (-1075)) 39 T ELT)) (-3571 (((-84) (-84)) 53 T ELT)) (-1580 (((-1070 |#2|) (-545 |#2|)) 148 (|has| |#1| (-943 (-478))) ELT)) (-1205 ((|#2| |#1| (-478)) 120 (|has| |#1| (-943 (-478))) ELT)) (-1203 ((|#2| (-1070 |#2|) |#2|) 29 T ELT)) (-1204 (((-765) (-578 |#2|)) 87 T ELT)) (-3167 ((|#2| |#2|) 143 (|has| |#1| (-943 (-478))) ELT)) (-2236 (((-83) (-84)) 17 T ELT)) (** ((|#2| |#2| (-343 (-478))) 96 (|has| |#1| (-943 (-478))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3165 (|#2| (-1070 |#2|) (-1075))) (-15 -3571 ((-84) (-84))) (-15 -2236 ((-83) (-84))) (-15 -1203 (|#2| (-1070 |#2|) |#2|)) (-15 -1204 ((-765) (-578 |#2|))) (IF (|has| |#1| (-943 (-478))) (PROGN (-15 ** (|#2| |#2| (-343 (-478)))) (-15 -1580 ((-1070 |#2|) (-545 |#2|))) (-15 -3167 (|#2| |#2|)) (-15 -1205 (|#2| |#1| (-478)))) |%noBranch|)) (-489) (-357 |#1|)) (T -32)) -((-1205 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-4 *2 (-357 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-943 *4)) (-4 *3 (-489)))) (-3167 (*1 *2 *2) (-12 (-4 *3 (-943 (-478))) (-4 *3 (-489)) (-5 *1 (-32 *3 *2)) (-4 *2 (-357 *3)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-545 *5)) (-4 *5 (-357 *4)) (-4 *4 (-943 (-478))) (-4 *4 (-489)) (-5 *2 (-1070 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-343 (-478))) (-4 *4 (-943 (-478))) (-4 *4 (-489)) (-5 *1 (-32 *4 *2)) (-4 *2 (-357 *4)))) (-1204 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-357 *4)) (-4 *4 (-489)) (-5 *2 (-765)) (-5 *1 (-32 *4 *5)))) (-1203 (*1 *2 *3 *2) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) (-5 *1 (-32 *4 *2)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-32 *4 *5)) (-4 *5 (-357 *4)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-32 *3 *4)) (-4 *4 (-357 *3)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-5 *4 (-1075)) (-4 *2 (-357 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-489))))) -((-3700 (($) 10 T CONST)) (-1206 (((-83) $ $) 8 T ELT)) (-3380 (((-83) $) 15 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -3700 (|#1|) -3928) (-15 -3380 ((-83) |#1|)) (-15 -1206 ((-83) |#1| |#1|))) (-34)) (T -33)) -NIL -((-3700 (($) 7 T CONST)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3377 (($ $) 10 T ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) +((-3167 (*1 *1 *2) (-12 (-5 *2 (-851 *1)) (-4 *1 (-27)))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-1075 *1)) (-4 *1 (-27)))) (-3167 (*1 *1 *2 *3) (-12 (-5 *2 (-1075 *1)) (-5 *3 (-1080)) (-4 *1 (-27)))) (-1206 (*1 *2 *3) (-12 (-5 *3 (-851 *1)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) (-1206 (*1 *2 *3) (-12 (-5 *3 (-1075 *1)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) (-1206 (*1 *2 *3 *4) (-12 (-5 *3 (-1075 *1)) (-5 *4 (-1080)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) (-1205 (*1 *1 *2) (-12 (-5 *2 (-851 *1)) (-4 *1 (-27)))) (-1205 (*1 *1 *2) (-12 (-5 *2 (-1075 *1)) (-4 *1 (-27)))) (-1205 (*1 *1 *2 *3) (-12 (-5 *2 (-1075 *1)) (-5 *3 (-1080)) (-4 *1 (-27)))) (-1204 (*1 *2 *3) (-12 (-5 *3 (-851 *1)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) (-1204 (*1 *2 *3) (-12 (-5 *3 (-1075 *1)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) (-1204 (*1 *2 *3 *4) (-12 (-5 *3 (-1075 *1)) (-5 *4 (-1080)) (-4 *1 (-27)) (-5 *2 (-579 *1))))) +(-13 (-308) (-909) (-10 -8 (-15 -3167 ($ (-851 $))) (-15 -3167 ($ (-1075 $))) (-15 -3167 ($ (-1075 $) (-1080))) (-15 -1206 ((-579 $) (-851 $))) (-15 -1206 ((-579 $) (-1075 $))) (-15 -1206 ((-579 $) (-1075 $) (-1080))) (-15 -1205 ($ (-851 $))) (-15 -1205 ($ (-1075 $))) (-15 -1205 ($ (-1075 $) (-1080))) (-15 -1204 ((-579 $) (-851 $))) (-15 -1204 ((-579 $) (-1075 $))) (-15 -1204 ((-579 $) (-1075 $) (-1080))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-386) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 $) . T) ((-650 (-344 (-479))) . T) ((-650 $) . T) ((-659) . T) ((-826) . T) ((-909) . T) ((-957 (-344 (-479))) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) . T)) +((-1204 (((-579 $) (-851 $)) NIL T ELT) (((-579 $) (-1075 $)) NIL T ELT) (((-579 $) (-1075 $) (-1080)) 54 T ELT) (((-579 $) $) 22 T ELT) (((-579 $) $ (-1080)) 45 T ELT)) (-1205 (($ (-851 $)) NIL T ELT) (($ (-1075 $)) NIL T ELT) (($ (-1075 $) (-1080)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1080)) 39 T ELT)) (-1206 (((-579 $) (-851 $)) NIL T ELT) (((-579 $) (-1075 $)) NIL T ELT) (((-579 $) (-1075 $) (-1080)) 52 T ELT) (((-579 $) $) 18 T ELT) (((-579 $) $ (-1080)) 47 T ELT)) (-3167 (($ (-851 $)) NIL T ELT) (($ (-1075 $)) NIL T ELT) (($ (-1075 $) (-1080)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1080)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1204 ((-579 |#1|) |#1| (-1080))) (-15 -1205 (|#1| |#1| (-1080))) (-15 -1204 ((-579 |#1|) |#1|)) (-15 -1205 (|#1| |#1|)) (-15 -1206 ((-579 |#1|) |#1| (-1080))) (-15 -3167 (|#1| |#1| (-1080))) (-15 -1206 ((-579 |#1|) |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -1204 ((-579 |#1|) (-1075 |#1|) (-1080))) (-15 -1204 ((-579 |#1|) (-1075 |#1|))) (-15 -1204 ((-579 |#1|) (-851 |#1|))) (-15 -1205 (|#1| (-1075 |#1|) (-1080))) (-15 -1205 (|#1| (-1075 |#1|))) (-15 -1205 (|#1| (-851 |#1|))) (-15 -1206 ((-579 |#1|) (-1075 |#1|) (-1080))) (-15 -1206 ((-579 |#1|) (-1075 |#1|))) (-15 -1206 ((-579 |#1|) (-851 |#1|))) (-15 -3167 (|#1| (-1075 |#1|) (-1080))) (-15 -3167 (|#1| (-1075 |#1|))) (-15 -3167 (|#1| (-851 |#1|)))) (-29 |#2|) (-490)) (T -28)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-1204 (((-579 $) (-851 $)) 95 T ELT) (((-579 $) (-1075 $)) 94 T ELT) (((-579 $) (-1075 $) (-1080)) 93 T ELT) (((-579 $) $) 145 T ELT) (((-579 $) $ (-1080)) 143 T ELT)) (-1205 (($ (-851 $)) 98 T ELT) (($ (-1075 $)) 97 T ELT) (($ (-1075 $) (-1080)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1080)) 144 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 (-1080)) $) 214 T ELT)) (-3068 (((-344 (-1075 $)) $ (-546 $)) 246 (|has| |#1| (-490)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1588 (((-579 (-546 $)) $) 177 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-1592 (($ $ (-579 (-546 $)) (-579 $)) 167 T ELT) (($ $ (-579 (-245 $))) 166 T ELT) (($ $ (-245 $)) 165 T ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-3022 (($ $) 107 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3706 (($) 22 T CONST)) (-1206 (((-579 $) (-851 $)) 101 T ELT) (((-579 $) (-1075 $)) 100 T ELT) (((-579 $) (-1075 $) (-1080)) 99 T ELT) (((-579 $) $) 149 T ELT) (((-579 $) $ (-1080)) 147 T ELT)) (-3167 (($ (-851 $)) 104 T ELT) (($ (-1075 $)) 103 T ELT) (($ (-1075 $) (-1080)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1080)) 148 T ELT)) (-3141 (((-3 (-851 |#1|) #1="failed") $) 265 (|has| |#1| (-955)) ELT) (((-3 (-344 (-851 |#1|)) #1#) $) 248 (|has| |#1| (-490)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-479) #1#) $) 207 (|has| |#1| (-944 (-479))) ELT) (((-3 (-1080) #1#) $) 201 T ELT) (((-3 (-546 $) #1#) $) 152 T ELT) (((-3 (-344 (-479)) #1#) $) 140 (OR (-12 (|has| |#1| (-944 (-479))) (|has| |#1| (-490))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-3140 (((-851 |#1|) $) 264 (|has| |#1| (-955)) ELT) (((-344 (-851 |#1|)) $) 247 (|has| |#1| (-490)) ELT) ((|#1| $) 209 T ELT) (((-479) $) 208 (|has| |#1| (-944 (-479))) ELT) (((-1080) $) 200 T ELT) (((-546 $) $) 151 T ELT) (((-344 (-479)) $) 141 (OR (-12 (|has| |#1| (-944 (-479))) (|has| |#1| (-490))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-2549 (($ $ $) 68 T ELT)) (-2266 (((-626 |#1|) (-626 $)) 253 (|has| |#1| (-955)) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 252 (|has| |#1| (-955)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 139 (OR (-2547 (|has| |#1| (-955)) (|has| |#1| (-576 (-479)))) (-2547 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT) (((-626 (-479)) (-626 $)) 138 (OR (-2547 (|has| |#1| (-955)) (|has| |#1| (-576 (-479)))) (-2547 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-3705 (((-83) $) 86 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 206 (|has| |#1| (-790 (-324))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 205 (|has| |#1| (-790 (-479))) ELT)) (-2558 (($ (-579 $)) 171 T ELT) (($ $) 170 T ELT)) (-1587 (((-579 (-84)) $) 178 T ELT)) (-3577 (((-84) (-84)) 179 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2658 (((-83) $) 199 (|has| $ (-944 (-479))) ELT)) (-2981 (($ $) 231 (|has| |#1| (-955)) ELT)) (-2983 (((-1029 |#1| (-546 $)) $) 230 (|has| |#1| (-955)) ELT)) (-2996 (($ $ (-479)) 106 T ELT)) (-1593 (((-3 (-579 $) #2="failed") (-579 $) $) 65 T ELT)) (-1585 (((-1075 $) (-546 $)) 196 (|has| $ (-955)) ELT)) (-3940 (($ (-1 $ $) (-546 $)) 185 T ELT)) (-1590 (((-3 (-546 $) "failed") $) 175 T ELT)) (-2267 (((-626 |#1|) (-1169 $)) 255 (|has| |#1| (-955)) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 254 (|has| |#1| (-955)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 137 (OR (-2547 (|has| |#1| (-955)) (|has| |#1| (-576 (-479)))) (-2547 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT) (((-626 (-479)) (-1169 $)) 136 (OR (-2547 (|has| |#1| (-955)) (|has| |#1| (-576 (-479)))) (-2547 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1589 (((-579 (-546 $)) $) 176 T ELT)) (-2222 (($ (-84) (-579 $)) 184 T ELT) (($ (-84) $) 183 T ELT)) (-2808 (((-3 (-579 $) #3="failed") $) 225 (|has| |#1| (-1016)) ELT)) (-2810 (((-3 (-2 (|:| |val| $) (|:| -2388 (-479))) #3#) $) 234 (|has| |#1| (-955)) ELT)) (-2807 (((-3 (-579 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-1782 (((-3 (-2 (|:| -3936 (-479)) (|:| |var| (-546 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-2809 (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) #3#) $ (-1080)) 233 (|has| |#1| (-955)) ELT) (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) #3#) $ (-84)) 232 (|has| |#1| (-955)) ELT) (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) #3#) $) 226 (|has| |#1| (-1016)) ELT)) (-2618 (((-83) $ (-1080)) 182 T ELT) (((-83) $ (-84)) 181 T ELT)) (-2469 (($ $) 85 T ELT)) (-2588 (((-688) $) 174 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1785 (((-83) $) 212 T ELT)) (-1784 ((|#1| $) 213 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-1586 (((-83) $ (-1080)) 187 T ELT) (((-83) $ $) 186 T ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-2659 (((-83) $) 198 (|has| $ (-944 (-479))) ELT)) (-3750 (($ $ (-1080) (-688) (-1 $ $)) 238 (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688) (-1 $ (-579 $))) 237 (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ (-579 $)))) 236 (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ $))) 235 (|has| |#1| (-955)) ELT) (($ $ (-579 (-84)) (-579 $) (-1080)) 224 (|has| |#1| (-549 (-468))) ELT) (($ $ (-84) $ (-1080)) 223 (|has| |#1| (-549 (-468))) ELT) (($ $) 222 (|has| |#1| (-549 (-468))) ELT) (($ $ (-579 (-1080))) 221 (|has| |#1| (-549 (-468))) ELT) (($ $ (-1080)) 220 (|has| |#1| (-549 (-468))) ELT) (($ $ (-84) (-1 $ $)) 195 T ELT) (($ $ (-84) (-1 $ (-579 $))) 194 T ELT) (($ $ (-579 (-84)) (-579 (-1 $ (-579 $)))) 193 T ELT) (($ $ (-579 (-84)) (-579 (-1 $ $))) 192 T ELT) (($ $ (-1080) (-1 $ $)) 191 T ELT) (($ $ (-1080) (-1 $ (-579 $))) 190 T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ (-579 $)))) 189 T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ $))) 188 T ELT) (($ $ (-579 $) (-579 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-245 $)) 157 T ELT) (($ $ (-579 (-245 $))) 156 T ELT) (($ $ (-579 (-546 $)) (-579 $)) 155 T ELT) (($ $ (-546 $) $) 154 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-3782 (($ (-84) (-579 $)) 164 T ELT) (($ (-84) $ $ $ $) 163 T ELT) (($ (-84) $ $ $) 162 T ELT) (($ (-84) $ $) 161 T ELT) (($ (-84) $) 160 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-1591 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-3740 (($ $ (-579 (-1080)) (-579 (-688))) 260 (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688)) 259 (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080))) 258 (|has| |#1| (-955)) ELT) (($ $ (-1080)) 256 (|has| |#1| (-955)) ELT)) (-2980 (($ $) 241 (|has| |#1| (-490)) ELT)) (-2982 (((-1029 |#1| (-546 $)) $) 240 (|has| |#1| (-490)) ELT)) (-3169 (($ $) 197 (|has| $ (-955)) ELT)) (-3954 (((-468) $) 269 (|has| |#1| (-549 (-468))) ELT) (($ (-342 $)) 239 (|has| |#1| (-490)) ELT) (((-794 (-324)) $) 204 (|has| |#1| (-549 (-794 (-324)))) ELT) (((-794 (-479)) $) 203 (|has| |#1| (-549 (-794 (-479)))) ELT)) (-2994 (($ $ $) 268 (|has| |#1| (-407)) ELT)) (-2420 (($ $ $) 267 (|has| |#1| (-407)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT) (($ (-851 |#1|)) 266 (|has| |#1| (-955)) ELT) (($ (-344 (-851 |#1|))) 249 (|has| |#1| (-490)) ELT) (($ (-344 (-851 (-344 |#1|)))) 245 (|has| |#1| (-490)) ELT) (($ (-851 (-344 |#1|))) 244 (|has| |#1| (-490)) ELT) (($ (-344 |#1|)) 243 (|has| |#1| (-490)) ELT) (($ (-1029 |#1| (-546 $))) 229 (|has| |#1| (-955)) ELT) (($ |#1|) 211 T ELT) (($ (-1080)) 202 T ELT) (($ (-546 $)) 153 T ELT)) (-2687 (((-628 $) $) 251 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-2575 (($ (-579 $)) 169 T ELT) (($ $) 168 T ELT)) (-2241 (((-83) (-84)) 180 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-1783 (($ (-1080) (-579 $)) 219 T ELT) (($ (-1080) $ $ $ $) 218 T ELT) (($ (-1080) $ $ $) 217 T ELT) (($ (-1080) $ $) 216 T ELT) (($ (-1080) $) 215 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-579 (-1080)) (-579 (-688))) 263 (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688)) 262 (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080))) 261 (|has| |#1| (-955)) ELT) (($ $ (-1080)) 257 (|has| |#1| (-955)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 80 T ELT) (($ (-1029 |#1| (-546 $)) (-1029 |#1| (-546 $))) 242 (|has| |#1| (-490)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT) (($ $ (-344 (-479))) 105 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-144)) ELT) (($ |#1| $) 142 (|has| |#1| (-955)) ELT))) +(((-29 |#1|) (-111) (-490)) (T -29)) +((-3167 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-490)))) (-1206 (*1 *2 *1) (-12 (-4 *3 (-490)) (-5 *2 (-579 *1)) (-4 *1 (-29 *3)))) (-3167 (*1 *1 *1 *2) (-12 (-5 *2 (-1080)) (-4 *1 (-29 *3)) (-4 *3 (-490)))) (-1206 (*1 *2 *1 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *2 (-579 *1)) (-4 *1 (-29 *4)))) (-1205 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-490)))) (-1204 (*1 *2 *1) (-12 (-4 *3 (-490)) (-5 *2 (-579 *1)) (-4 *1 (-29 *3)))) (-1205 (*1 *1 *1 *2) (-12 (-5 *2 (-1080)) (-4 *1 (-29 *3)) (-4 *3 (-490)))) (-1204 (*1 *2 *1 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *2 (-579 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-358 |t#1|) (-10 -8 (-15 -3167 ($ $)) (-15 -1206 ((-579 $) $)) (-15 -3167 ($ $ (-1080))) (-15 -1206 ((-579 $) $ (-1080))) (-15 -1205 ($ $)) (-15 -1204 ((-579 $) $)) (-15 -1205 ($ $ (-1080))) (-15 -1204 ((-579 $) $ (-1080))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 |#1| |#1|) |has| |#1| (-144)) ((-80 $ $) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) . T) ((-551 (-344 (-851 |#1|))) |has| |#1| (-490)) ((-551 (-479)) . T) ((-551 (-546 $)) . T) ((-551 (-851 |#1|)) |has| |#1| (-955)) ((-551 (-1080)) . T) ((-551 |#1|) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-549 (-794 (-324))) |has| |#1| (-549 (-794 (-324)))) ((-549 (-794 (-479))) |has| |#1| (-549 (-794 (-479)))) ((-198) . T) ((-242) . T) ((-254) . T) ((-256 $) . T) ((-250) . T) ((-308) . T) ((-323 |#1|) |has| |#1| (-955)) ((-337 |#1|) . T) ((-349 |#1|) . T) ((-358 |#1|) . T) ((-386) . T) ((-407) |has| |#1| (-407)) ((-448 (-546 $) $) . T) ((-448 $ $) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 |#1|) OR (|has| |#1| (-955)) (|has| |#1| (-144))) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 (-479)) -12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ((-586 |#1|) OR (|has| |#1| (-955)) (|has| |#1| (-144))) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) . T) ((-576 (-479)) -12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ((-576 |#1|) |has| |#1| (-955)) ((-650 (-344 (-479))) . T) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) . T) ((-659) . T) ((-800 $ (-1080)) |has| |#1| (-955)) ((-803 (-1080)) |has| |#1| (-955)) ((-805 (-1080)) |has| |#1| (-955)) ((-790 (-324)) |has| |#1| (-790 (-324))) ((-790 (-479)) |has| |#1| (-790 (-479))) ((-788 |#1|) . T) ((-826) . T) ((-909) . T) ((-944 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (-12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479))))) ((-944 (-344 (-851 |#1|))) |has| |#1| (-490)) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 (-546 $)) . T) ((-944 (-851 |#1|)) |has| |#1| (-955)) ((-944 (-1080)) . T) ((-944 |#1|) . T) ((-957 (-344 (-479))) . T) ((-957 |#1|) |has| |#1| (-144)) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 |#1|) |has| |#1| (-144)) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) . T)) +((-2881 (((-994 (-177)) $) NIL T ELT)) (-2882 (((-994 (-177)) $) NIL T ELT)) (-3118 (($ $ (-177)) 164 T ELT)) (-1207 (($ (-851 (-479)) (-1080) (-1080) (-994 (-344 (-479))) (-994 (-344 (-479)))) 103 T ELT)) (-2883 (((-579 (-579 (-848 (-177)))) $) 181 T ELT)) (-3928 (((-766) $) 195 T ELT))) +(((-30) (-13 (-860) (-10 -8 (-15 -1207 ($ (-851 (-479)) (-1080) (-1080) (-994 (-344 (-479))) (-994 (-344 (-479))))) (-15 -3118 ($ $ (-177)))))) (T -30)) +((-1207 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-851 (-479))) (-5 *3 (-1080)) (-5 *4 (-994 (-344 (-479)))) (-5 *1 (-30)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-30))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-1039) $) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2679 (((-1039) $) 10 T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-31) (-13 (-988) (-10 -8 (-15 -2679 ((-1039) $)) (-15 -3217 ((-1039) $))))) (T -31)) +((-2679 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-31)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-31))))) +((-3167 ((|#2| (-1075 |#2|) (-1080)) 39 T ELT)) (-3577 (((-84) (-84)) 53 T ELT)) (-1585 (((-1075 |#2|) (-546 |#2|)) 148 (|has| |#1| (-944 (-479))) ELT)) (-1210 ((|#2| |#1| (-479)) 120 (|has| |#1| (-944 (-479))) ELT)) (-1208 ((|#2| (-1075 |#2|) |#2|) 29 T ELT)) (-1209 (((-766) (-579 |#2|)) 87 T ELT)) (-3169 ((|#2| |#2|) 143 (|has| |#1| (-944 (-479))) ELT)) (-2241 (((-83) (-84)) 17 T ELT)) (** ((|#2| |#2| (-344 (-479))) 96 (|has| |#1| (-944 (-479))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3167 (|#2| (-1075 |#2|) (-1080))) (-15 -3577 ((-84) (-84))) (-15 -2241 ((-83) (-84))) (-15 -1208 (|#2| (-1075 |#2|) |#2|)) (-15 -1209 ((-766) (-579 |#2|))) (IF (|has| |#1| (-944 (-479))) (PROGN (-15 ** (|#2| |#2| (-344 (-479)))) (-15 -1585 ((-1075 |#2|) (-546 |#2|))) (-15 -3169 (|#2| |#2|)) (-15 -1210 (|#2| |#1| (-479)))) |%noBranch|)) (-490) (-358 |#1|)) (T -32)) +((-1210 (*1 *2 *3 *4) (-12 (-5 *4 (-479)) (-4 *2 (-358 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-944 *4)) (-4 *3 (-490)))) (-3169 (*1 *2 *2) (-12 (-4 *3 (-944 (-479))) (-4 *3 (-490)) (-5 *1 (-32 *3 *2)) (-4 *2 (-358 *3)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-546 *5)) (-4 *5 (-358 *4)) (-4 *4 (-944 (-479))) (-4 *4 (-490)) (-5 *2 (-1075 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-344 (-479))) (-4 *4 (-944 (-479))) (-4 *4 (-490)) (-5 *1 (-32 *4 *2)) (-4 *2 (-358 *4)))) (-1209 (*1 *2 *3) (-12 (-5 *3 (-579 *5)) (-4 *5 (-358 *4)) (-4 *4 (-490)) (-5 *2 (-766)) (-5 *1 (-32 *4 *5)))) (-1208 (*1 *2 *3 *2) (-12 (-5 *3 (-1075 *2)) (-4 *2 (-358 *4)) (-4 *4 (-490)) (-5 *1 (-32 *4 *2)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-32 *4 *5)) (-4 *5 (-358 *4)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-32 *3 *4)) (-4 *4 (-358 *3)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-1075 *2)) (-5 *4 (-1080)) (-4 *2 (-358 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-490))))) +((-3706 (($) 10 T CONST)) (-1211 (((-83) $ $) 8 T ELT)) (-3385 (((-83) $) 15 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -3706 (|#1|) -3934) (-15 -3385 ((-83) |#1|)) (-15 -1211 ((-83) |#1| |#1|))) (-34)) (T -33)) +NIL +((-3706 (($) 7 T CONST)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3382 (($ $) 10 T ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) (((-34) (-111)) (T -34)) -((-1206 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) (-3377 (*1 *1 *1) (-4 *1 (-34))) (-3541 (*1 *1) (-4 *1 (-34))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) (-3700 (*1 *1) (-4 *1 (-34))) (-3933 (*1 *2 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-34)) (-5 *2 (-687))))) -(-13 (-1114) (-10 -8 (-15 -1206 ((-83) $ $)) (-15 -3377 ($ $)) (-15 -3541 ($)) (-15 -3380 ((-83) $)) (-15 -3700 ($) -3928) (IF (|has| $ (-6 -3971)) (-15 -3933 ((-687) $)) |%noBranch|))) -(((-1114) . T)) -((-3475 (($ $) 11 T ELT)) (-3473 (($ $) 10 T ELT)) (-3477 (($ $) 9 T ELT)) (-3478 (($ $) 8 T ELT)) (-3476 (($ $) 7 T ELT)) (-3474 (($ $) 6 T ELT))) +((-1211 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) (-3382 (*1 *1 *1) (-4 *1 (-34))) (-3547 (*1 *1) (-4 *1 (-34))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) (-3706 (*1 *1) (-4 *1 (-34))) (-3939 (*1 *2 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-34)) (-5 *2 (-688))))) +(-13 (-1119) (-10 -8 (-15 -1211 ((-83) $ $)) (-15 -3382 ($ $)) (-15 -3547 ($)) (-15 -3385 ((-83) $)) (-15 -3706 ($) -3934) (IF (|has| $ (-6 -3977)) (-15 -3939 ((-688) $)) |%noBranch|))) +(((-1119) . T)) +((-3480 (($ $) 11 T ELT)) (-3478 (($ $) 10 T ELT)) (-3482 (($ $) 9 T ELT)) (-3483 (($ $) 8 T ELT)) (-3481 (($ $) 7 T ELT)) (-3479 (($ $) 6 T ELT))) (((-35) (-111)) (T -35)) -((-3475 (*1 *1 *1) (-4 *1 (-35))) (-3473 (*1 *1 *1) (-4 *1 (-35))) (-3477 (*1 *1 *1) (-4 *1 (-35))) (-3478 (*1 *1 *1) (-4 *1 (-35))) (-3476 (*1 *1 *1) (-4 *1 (-35))) (-3474 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3474 ($ $)) (-15 -3476 ($ $)) (-15 -3478 ($ $)) (-15 -3477 ($ $)) (-15 -3473 ($ $)) (-15 -3475 ($ $)))) -((-2548 (((-83) $ $) 19 (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3379 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3771 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3773 (($ $) 154 T ELT)) (-3575 (($) 77 T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2180 (((-1170) $ |#1| |#1|) 104 (|has| $ (-6 -3972)) ELT) (((-1170) $ (-478) (-478)) 186 (|has| $ (-6 -3972)) ELT)) (-3761 (($ $ (-478)) 167 (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-83) $) 214 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-1713 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3972)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) (|has| $ (-6 -3972))) ELT)) (-2890 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3419 (((-83) $ (-687)) 203 T ELT)) (-3006 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3972)) ELT)) (-3763 (($ $ $) 163 (|has| $ (-6 -3972)) ELT)) (-3762 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3972)) ELT)) (-3765 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-1131 (-478)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3972)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 140 (|has| $ (-6 -3972)) ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3971)) ELT)) (-3772 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2213 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3700 (($) 7 T CONST)) (-2279 (($ $) 212 (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) 222 T ELT)) (-3775 (($ $ (-687)) 150 T ELT) (($ $) 148 T ELT)) (-2350 (($ $) 225 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-1336 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971)))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3971)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3971)) ELT) (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3971)) ELT)) (-1559 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) 196 T ELT)) (-3420 (((-83) $) 200 T ELT)) (-3396 (((-478) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT) (((-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) 217 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) 84 (|has| $ (-6 -3971)) ELT) (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 131 T ELT)) (-3008 (((-83) $ $) 139 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-3590 (($ (-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3695 (((-83) $ (-687)) 202 T ELT)) (-2182 ((|#1| $) 101 (|has| |#1| (-749)) ELT) (((-478) $) 188 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) 204 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2837 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3495 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) 85 (|has| $ (-6 -3971)) ELT) (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (((-83) |#2| $) 87 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT) (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 ((|#1| $) 100 (|has| |#1| (-749)) ELT) (((-478) $) 189 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) 205 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3972)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3972)) ELT) (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3510 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3692 (((-83) $ (-687)) 201 T ELT)) (-3011 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3504 (((-83) $) 132 T ELT)) (-3222 (((-1059) $) 22 (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3774 (($ $ (-687)) 153 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2214 (((-578 |#1|) $) 67 T ELT)) (-2215 (((-83) |#1| $) 68 T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) 230 T ELT) (($ $ $ (-478)) 229 T ELT)) (-2286 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) 170 T ELT) (($ $ $ (-478)) 169 T ELT)) (-2185 (((-578 |#1|) $) 98 T ELT) (((-578 (-478)) $) 191 T ELT)) (-2186 (((-83) |#1| $) 97 T ELT) (((-83) (-478) $) 192 T ELT)) (-3223 (((-1020) $) 21 (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3777 ((|#2| $) 102 (|has| |#1| (-749)) ELT) (($ $ (-687)) 147 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2181 (($ $ |#2|) 103 (|has| $ (-6 -3972)) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3421 (((-83) $) 199 T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) 82 (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 91 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) 89 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-245 |#2|))) 88 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#2| $) 99 (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-2187 (((-578 |#2|) $) 96 T ELT) (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) 194 T ELT) (($ $ (-1131 (-478))) 177 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3010 (((-478) $ $) 137 T ELT)) (-1449 (($) 53 T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1554 (($ $ (-478)) 233 T ELT) (($ $ (-1131 (-478))) 232 T ELT)) (-2287 (($ $ (-478)) 172 T ELT) (($ $ (-1131 (-478))) 171 T ELT)) (-3609 (((-83) $) 135 T ELT)) (-3768 (($ $) 159 T ELT)) (-3766 (($ $) 160 (|has| $ (-6 -3972)) ELT)) (-3769 (((-687) $) 158 T ELT)) (-3770 (($ $) 157 T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) |#2| $) 86 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#2|) $) 83 (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3971)) ELT)) (-1714 (($ $ $ (-478)) 213 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 63 (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467)))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3767 (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3778 (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-578 $)) 174 T ELT) (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3922 (((-765) $) 17 (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765)))) ELT)) (-3499 (((-578 $) $) 130 T ELT)) (-3009 (((-83) $ $) 138 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-1249 (((-83) $ $) 20 (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1207 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) 81 (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) 206 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2547 (((-83) $ $) 208 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3037 (((-83) $ $) 18 (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2665 (((-83) $ $) 207 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2666 (((-83) $ $) 209 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-36 |#1| |#2|) (-111) (-1003) (-1003)) (T -36)) -((-1207 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3836 *3) (|:| |entry| *4)))))) -(-13 (-1092 |t#1| |t#2|) (-603 (-2 (|:| -3836 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1207 ((-3 (-2 (|:| -3836 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1003)) (|has| |#2| (-72))) ((-547 (-765)) OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-1003)) (|has| |#2| (-547 (-765)))) ((-122 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-548 (-467)) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ((-181 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-190 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-238 (-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-238 (-1131 (-478)) $) . T) ((-238 |#1| |#2|) . T) ((-240 (-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-240 |#1| |#2|) . T) ((-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-234 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-317 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-422 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-422 |#2|) . T) ((-533 (-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-533 |#1| |#2|) . T) ((-447 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-544 |#1| |#2|) . T) ((-588 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-603 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-749) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ((-752) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ((-916 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-1003) OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) (|has| |#2| (-1003))) ((-1050 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-1092 |#1| |#2|) . T) ((-1114) . T) ((-1153 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T)) -((-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -3922 (|#1| |#2|)) (-15 -3922 (|#1| (-478))) (-15 -3922 ((-765) |#1|))) (-38 |#2|) (-144)) (T -37)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +((-3480 (*1 *1 *1) (-4 *1 (-35))) (-3478 (*1 *1 *1) (-4 *1 (-35))) (-3482 (*1 *1 *1) (-4 *1 (-35))) (-3483 (*1 *1 *1) (-4 *1 (-35))) (-3481 (*1 *1 *1) (-4 *1 (-35))) (-3479 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3479 ($ $)) (-15 -3481 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3478 ($ $)) (-15 -3480 ($ $)))) +((-2553 (((-83) $ $) 19 (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3384 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 133 T ELT)) (-3777 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 156 T ELT)) (-3779 (($ $) 154 T ELT)) (-3581 (($) 77 T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2185 (((-1175) $ |#1| |#1|) 104 (|has| $ (-6 -3978)) ELT) (((-1175) $ (-479) (-479)) 186 (|has| $ (-6 -3978)) ELT)) (-3767 (($ $ (-479)) 167 (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 220 T ELT) (((-83) $) 214 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-1718 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 211 (|has| $ (-6 -3978)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) (|has| $ (-6 -3978))) ELT)) (-2894 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-3424 (((-83) $ (-688)) 203 T ELT)) (-3010 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 142 (|has| $ (-6 -3978)) ELT)) (-3769 (($ $ $) 163 (|has| $ (-6 -3978)) ELT)) (-3768 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 165 (|has| $ (-6 -3978)) ELT)) (-3771 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 161 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 197 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-1136 (-479)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 168 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3978)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 162 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 141 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 140 (|has| $ (-6 -3978)) ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 227 T ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 183 (|has| $ (-6 -3977)) ELT)) (-3778 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 155 T ELT)) (-2218 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-3706 (($) 7 T CONST)) (-2284 (($ $) 212 (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) 222 T ELT)) (-3781 (($ $ (-688)) 150 T ELT) (($ $) 148 T ELT)) (-2355 (($ $) 225 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-1341 (($ $) 62 (OR (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977)))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3977)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 231 T ELT) (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3977)) ELT) (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 182 (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 184 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 181 (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 180 (|has| $ (-6 -3977)) ELT)) (-1564 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 198 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) 196 T ELT)) (-3425 (((-83) $) 200 T ELT)) (-3401 (((-479) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 219 T ELT) (((-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 218 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT) (((-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) 217 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) 84 (|has| $ (-6 -3977)) ELT) (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 122 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 131 T ELT)) (-3012 (((-83) $ $) 139 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-3596 (($ (-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 176 T ELT)) (-3701 (((-83) $ (-688)) 202 T ELT)) (-2187 ((|#1| $) 101 (|has| |#1| (-750)) ELT) (((-479) $) 188 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) 204 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-2841 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-3500 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) 85 (|has| $ (-6 -3977)) ELT) (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 123 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (((-83) |#2| $) 87 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT) (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 125 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 ((|#1| $) 100 (|has| |#1| (-750)) ELT) (((-479) $) 189 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) 205 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3978)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3978)) ELT) (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 118 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 117 T ELT)) (-3516 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 236 T ELT)) (-3698 (((-83) $ (-688)) 201 T ELT)) (-3015 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 136 T ELT)) (-3509 (((-83) $) 132 T ELT)) (-3226 (((-1063) $) 22 (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3780 (($ $ (-688)) 153 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 151 T ELT)) (-2219 (((-579 |#1|) $) 67 T ELT)) (-2220 (((-83) |#1| $) 68 T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 44 T ELT) (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) 230 T ELT) (($ $ $ (-479)) 229 T ELT)) (-2291 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) 170 T ELT) (($ $ $ (-479)) 169 T ELT)) (-2190 (((-579 |#1|) $) 98 T ELT) (((-579 (-479)) $) 191 T ELT)) (-2191 (((-83) |#1| $) 97 T ELT) (((-83) (-479) $) 192 T ELT)) (-3227 (((-1024) $) 21 (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3783 ((|#2| $) 102 (|has| |#1| (-750)) ELT) (($ $ (-688)) 147 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 145 T ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 179 T ELT)) (-2186 (($ $ |#2|) 103 (|has| $ (-6 -3978)) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 187 (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-3426 (((-83) $) 199 T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) 82 (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 120 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) 91 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) 89 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-245 |#2|))) 88 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 129 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 128 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) 126 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#2| $) 99 (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 190 (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-2192 (((-579 |#2|) $) 96 T ELT) (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 193 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 195 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) 194 T ELT) (($ $ (-1136 (-479))) 177 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #4#) 134 T ELT)) (-3014 (((-479) $ $) 137 T ELT)) (-1454 (($) 53 T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1559 (($ $ (-479)) 233 T ELT) (($ $ (-1136 (-479))) 232 T ELT)) (-2292 (($ $ (-479)) 172 T ELT) (($ $ (-1136 (-479))) 171 T ELT)) (-3615 (((-83) $) 135 T ELT)) (-3774 (($ $) 159 T ELT)) (-3772 (($ $) 160 (|has| $ (-6 -3978)) ELT)) (-3775 (((-688) $) 158 T ELT)) (-3776 (($ $) 157 T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) |#2| $) 86 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#2|) $) 83 (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 124 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 121 (|has| $ (-6 -3977)) ELT)) (-1719 (($ $ $ (-479)) 213 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 63 (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468)))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 54 T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 178 T ELT)) (-3773 (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-3784 (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 175 T ELT) (($ (-579 $)) 174 T ELT) (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-3928 (((-766) $) 17 (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-548 (-766))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766)))) ELT)) (-3504 (((-579 $) $) 130 T ELT)) (-3013 (((-83) $ $) 138 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-1254 (((-83) $ $) 20 (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1212 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) "failed") |#1| $) 116 T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) 81 (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 119 (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) 206 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-2552 (((-83) $ $) 208 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-3041 (((-83) $ $) 18 (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2669 (((-83) $ $) 207 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-2670 (((-83) $ $) 209 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-36 |#1| |#2|) (-111) (-1006) (-1006)) (T -36)) +((-1212 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-2 (|:| -3842 *3) (|:| |entry| *4)))))) +(-13 (-1097 |t#1| |t#2|) (-604 (-2 (|:| -3842 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1212 ((-3 (-2 (|:| -3842 |t#1|) (|:| |entry| |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1006)) (|has| |#2| (-72))) ((-548 (-766)) OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-1006)) (|has| |#2| (-548 (-766)))) ((-122 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-549 (-468)) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ((-181 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-190 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-238 (-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-238 (-1136 (-479)) $) . T) ((-238 |#1| |#2|) . T) ((-240 (-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-240 |#1| |#2|) . T) ((-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-234 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-318 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-423 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-423 |#2|) . T) ((-534 (-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-534 |#1| |#2|) . T) ((-448 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ((-448 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-545 |#1| |#2|) . T) ((-589 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-604 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-750) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ((-753) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ((-917 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-1006) OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) (|has| |#2| (-1006))) ((-1054 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-1097 |#1| |#2|) . T) ((-1119) . T) ((-1158 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T)) +((-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -3928 (|#1| |#2|)) (-15 -3928 (|#1| (-479))) (-15 -3928 ((-766) |#1|))) (-38 |#2|) (-144)) (T -37)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) (((-38 |#1|) (-111) (-144)) (T -38)) NIL -(-13 (-954) (-649 |t#1|) (-550 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3395 (((-341 |#1|) |#1|) 41 T ELT)) (-3708 (((-341 |#1|) |#1|) 30 T ELT) (((-341 |#1|) |#1| (-578 (-48))) 33 T ELT)) (-1208 (((-83) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -3708 ((-341 |#1|) |#1| (-578 (-48)))) (-15 -3708 ((-341 |#1|) |#1|)) (-15 -3395 ((-341 |#1|) |#1|)) (-15 -1208 ((-83) |#1|))) (-1140 (-48))) (T -39)) -((-1208 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-39 *3)) (-4 *3 (-1140 (-48))))) (-3395 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1140 (-48))))) (-3708 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1140 (-48))))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-48))) (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1140 (-48)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1630 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2045 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2043 (((-83) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1765 (((-625 (-343 |#2|)) (-1164 $)) NIL T ELT) (((-625 (-343 |#2|))) NIL T ELT)) (-3307 (((-343 |#2|) $) NIL T ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1591 (((-83) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3117 (((-687)) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1644 (((-83)) NIL T ELT)) (-1643 (((-83) |#1|) NIL T ELT) (((-83) |#2|) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| (-343 |#2|) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-3 (-343 |#2|) #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| (-343 |#2|) (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-343 |#2|) $) NIL T ELT)) (-1775 (($ (-1164 (-343 |#2|)) (-1164 $)) NIL T ELT) (($ (-1164 (-343 |#2|))) 60 T ELT) (($ (-1164 |#2|) |#2|) 130 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-343 |#2|) (-295)) ELT)) (-2544 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1764 (((-625 (-343 |#2|)) $ (-1164 $)) NIL T ELT) (((-625 (-343 |#2|)) $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1164 (-343 |#2|)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-343 |#2|)) (-625 $)) NIL T ELT)) (-1635 (((-1164 $) (-1164 $)) NIL T ELT)) (-3818 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-343 |#3|)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-1622 (((-578 (-578 |#1|))) NIL (|has| |#1| (-313)) ELT)) (-1647 (((-83) |#1| |#1|) NIL T ELT)) (-3090 (((-823)) NIL T ELT)) (-2975 (($) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1642 (((-83)) NIL T ELT)) (-1641 (((-83) |#1|) NIL T ELT) (((-83) |#2|) NIL T ELT)) (-2543 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3480 (($ $) NIL T ELT)) (-2814 (($) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1663 (((-83) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1747 (($ $ (-687)) NIL (|has| (-343 |#2|) (-295)) ELT) (($ $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3699 (((-83) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3748 (((-823) $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-736 (-823)) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-3354 (((-687)) NIL T ELT)) (-1636 (((-1164 $) (-1164 $)) 105 T ELT)) (-3113 (((-343 |#2|) $) NIL T ELT)) (-1623 (((-578 (-850 |#1|)) (-1075)) NIL (|has| |#1| (-308)) ELT)) (-3422 (((-627 $) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1996 ((|#3| $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1992 (((-823) $) NIL (|has| (-343 |#2|) (-313)) ELT)) (-3060 ((|#3| $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1164 (-343 |#2|)))) (-1164 $) $) NIL T ELT) (((-625 (-343 |#2|)) (-1164 $)) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1209 (((-1170) (-687)) 83 T ELT)) (-1631 (((-625 (-343 |#2|))) 55 T ELT)) (-1633 (((-625 (-343 |#2|))) 48 T ELT)) (-2464 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1628 (($ (-1164 |#2|) |#2|) 131 T ELT)) (-1632 (((-625 (-343 |#2|))) 49 T ELT)) (-1634 (((-625 (-343 |#2|))) 47 T ELT)) (-1627 (((-2 (|:| |num| (-625 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1629 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1640 (((-1164 $)) 46 T ELT)) (-3894 (((-1164 $)) 45 T ELT)) (-1639 (((-83) $) NIL T ELT)) (-1638 (((-83) $) NIL T ELT) (((-83) $ |#1|) NIL T ELT) (((-83) $ |#2|) NIL T ELT)) (-3423 (($) NIL (|has| (-343 |#2|) (-295)) CONST)) (-2382 (($ (-823)) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1625 (((-3 |#2| #1#)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1649 (((-687)) NIL T ELT)) (-2391 (($) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3708 (((-341 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-343 |#2|) (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1590 (((-687) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3776 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1626 (((-3 |#2| #1#)) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3733 (((-343 |#2|) (-1164 $)) NIL T ELT) (((-343 |#2|)) 43 T ELT)) (-1748 (((-687) $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-3 (-687) #1#) $ $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3734 (($ $ (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-2390 (((-625 (-343 |#2|)) (-1164 $) (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3167 ((|#3|) 54 T ELT)) (-1657 (($) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3205 (((-1164 (-343 |#2|)) $ (-1164 $)) NIL T ELT) (((-625 (-343 |#2|)) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 (-343 |#2|)) $) 61 T ELT) (((-625 (-343 |#2|)) (-1164 $)) 106 T ELT)) (-3948 (((-1164 (-343 |#2|)) $) NIL T ELT) (($ (-1164 (-343 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1637 (((-1164 $) (-1164 $)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 |#2|)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2683 (($ $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-627 $) $) NIL (|has| (-343 |#2|) (-116)) ELT)) (-2429 ((|#3| $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1646 (((-83)) 41 T ELT)) (-1645 (((-83) |#1|) 53 T ELT) (((-83) |#2|) 137 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1624 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1648 (((-83)) NIL T ELT)) (-2640 (($) 17 T CONST)) (-2647 (($) 27 T CONST)) (-2650 (($ $ (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| (-343 |#2|) (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 |#2|)) NIL T ELT) (($ (-343 |#2|) $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| (-343 |#2|) (-308)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-287 |#1| |#2| |#3|) (-10 -7 (-15 -1209 ((-1170) (-687))))) (-308) (-1140 |#1|) (-1140 (-343 |#2|)) |#3|) (T -40)) -((-1209 (*1 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-308)) (-4 *5 (-1140 *4)) (-5 *2 (-1170)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1140 (-343 *5))) (-14 *7 *6)))) -((-1210 ((|#2| |#2|) 47 T ELT)) (-1215 ((|#2| |#2|) 136 (-12 (|has| |#2| (-357 |#1|)) (|has| |#1| (-13 (-385) (-943 (-478))))) ELT)) (-1214 ((|#2| |#2|) 100 (-12 (|has| |#2| (-357 |#1|)) (|has| |#1| (-13 (-385) (-943 (-478))))) ELT)) (-1213 ((|#2| |#2|) 101 (-12 (|has| |#2| (-357 |#1|)) (|has| |#1| (-13 (-385) (-943 (-478))))) ELT)) (-1216 ((|#2| (-84) |#2| (-687)) 80 (-12 (|has| |#2| (-357 |#1|)) (|has| |#1| (-13 (-385) (-943 (-478))))) ELT)) (-1212 (((-1070 |#2|) |#2|) 44 T ELT)) (-1211 ((|#2| |#2| (-578 (-545 |#2|))) 18 T ELT) ((|#2| |#2| (-578 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1210 (|#2| |#2|)) (-15 -1211 (|#2| |#2|)) (-15 -1211 (|#2| |#2| |#2|)) (-15 -1211 (|#2| |#2| (-578 |#2|))) (-15 -1211 (|#2| |#2| (-578 (-545 |#2|)))) (-15 -1212 ((-1070 |#2|) |#2|)) (IF (|has| |#1| (-13 (-385) (-943 (-478)))) (IF (|has| |#2| (-357 |#1|)) (PROGN (-15 -1213 (|#2| |#2|)) (-15 -1214 (|#2| |#2|)) (-15 -1215 (|#2| |#2|)) (-15 -1216 (|#2| (-84) |#2| (-687)))) |%noBranch|) |%noBranch|)) (-489) (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 |#1| (-545 $)) $)) (-15 -2978 ((-1025 |#1| (-545 $)) $)) (-15 -3922 ($ (-1025 |#1| (-545 $))))))) (T -41)) -((-1216 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-84)) (-5 *4 (-687)) (-4 *5 (-13 (-385) (-943 (-478)))) (-4 *5 (-489)) (-5 *1 (-41 *5 *2)) (-4 *2 (-357 *5)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *5 (-545 $)) $)) (-15 -2978 ((-1025 *5 (-545 $)) $)) (-15 -3922 ($ (-1025 *5 (-545 $))))))))) (-1215 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-357 *3)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) (-15 -2978 ((-1025 *3 (-545 $)) $)) (-15 -3922 ($ (-1025 *3 (-545 $))))))))) (-1214 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-357 *3)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) (-15 -2978 ((-1025 *3 (-545 $)) $)) (-15 -3922 ($ (-1025 *3 (-545 $))))))))) (-1213 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-357 *3)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) (-15 -2978 ((-1025 *3 (-545 $)) $)) (-15 -3922 ($ (-1025 *3 (-545 $))))))))) (-1212 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-1070 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *4 (-545 $)) $)) (-15 -2978 ((-1025 *4 (-545 $)) $)) (-15 -3922 ($ (-1025 *4 (-545 $))))))))) (-1211 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-545 *2))) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *4 (-545 $)) $)) (-15 -2978 ((-1025 *4 (-545 $)) $)) (-15 -3922 ($ (-1025 *4 (-545 $))))))) (-4 *4 (-489)) (-5 *1 (-41 *4 *2)))) (-1211 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *4 (-545 $)) $)) (-15 -2978 ((-1025 *4 (-545 $)) $)) (-15 -3922 ($ (-1025 *4 (-545 $))))))) (-4 *4 (-489)) (-5 *1 (-41 *4 *2)))) (-1211 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) (-15 -2978 ((-1025 *3 (-545 $)) $)) (-15 -3922 ($ (-1025 *3 (-545 $))))))))) (-1211 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) (-15 -2978 ((-1025 *3 (-545 $)) $)) (-15 -3922 ($ (-1025 *3 (-545 $))))))))) (-1210 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) (-15 -2978 ((-1025 *3 (-545 $)) $)) (-15 -3922 ($ (-1025 *3 (-545 $)))))))))) -((-3708 (((-341 (-1070 |#3|)) (-1070 |#3|) (-578 (-48))) 23 T ELT) (((-341 |#3|) |#3| (-578 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3708 ((-341 |#3|) |#3| (-578 (-48)))) (-15 -3708 ((-341 (-1070 |#3|)) (-1070 |#3|) (-578 (-48))))) (-749) (-710) (-854 (-48) |#2| |#1|)) (T -42)) -((-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-48))) (-4 *5 (-749)) (-4 *6 (-710)) (-4 *7 (-854 (-48) *6 *5)) (-5 *2 (-341 (-1070 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-48))) (-4 *5 (-749)) (-4 *6 (-710)) (-5 *2 (-341 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-854 (-48) *6 *5))))) -((-1220 (((-687) |#2|) 70 T ELT)) (-1218 (((-687) |#2|) 74 T ELT)) (-1233 (((-578 |#2|)) 37 T ELT)) (-1217 (((-687) |#2|) 73 T ELT)) (-1219 (((-687) |#2|) 69 T ELT)) (-1221 (((-687) |#2|) 72 T ELT)) (-1231 (((-578 (-625 |#1|))) 65 T ELT)) (-1226 (((-578 |#2|)) 60 T ELT)) (-1224 (((-578 |#2|) |#2|) 48 T ELT)) (-1228 (((-578 |#2|)) 62 T ELT)) (-1227 (((-578 |#2|)) 61 T ELT)) (-1230 (((-578 (-625 |#1|))) 53 T ELT)) (-1225 (((-578 |#2|)) 59 T ELT)) (-1223 (((-578 |#2|) |#2|) 47 T ELT)) (-1222 (((-578 |#2|)) 55 T ELT)) (-1232 (((-578 (-625 |#1|))) 66 T ELT)) (-1229 (((-578 |#2|)) 64 T ELT)) (-1994 (((-1164 |#2|) (-1164 |#2|)) 99 (|has| |#1| (-254)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1217 ((-687) |#2|)) (-15 -1218 ((-687) |#2|)) (-15 -1219 ((-687) |#2|)) (-15 -1220 ((-687) |#2|)) (-15 -1221 ((-687) |#2|)) (-15 -1222 ((-578 |#2|))) (-15 -1223 ((-578 |#2|) |#2|)) (-15 -1224 ((-578 |#2|) |#2|)) (-15 -1225 ((-578 |#2|))) (-15 -1226 ((-578 |#2|))) (-15 -1227 ((-578 |#2|))) (-15 -1228 ((-578 |#2|))) (-15 -1229 ((-578 |#2|))) (-15 -1230 ((-578 (-625 |#1|)))) (-15 -1231 ((-578 (-625 |#1|)))) (-15 -1232 ((-578 (-625 |#1|)))) (-15 -1233 ((-578 |#2|))) (IF (|has| |#1| (-254)) (-15 -1994 ((-1164 |#2|) (-1164 |#2|))) |%noBranch|)) (-489) (-354 |#1|)) (T -43)) -((-1994 (*1 *2 *2) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-354 *3)) (-4 *3 (-254)) (-4 *3 (-489)) (-5 *1 (-43 *3 *4)))) (-1233 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1232 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1231 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1230 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1229 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1228 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1227 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1226 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1225 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1224 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1223 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1222 (*1 *2) (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3)))) (-1221 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1220 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1219 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1218 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4)))) (-1217 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1755 (((-3 $ #1="failed")) NIL (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ #1#) $ $) NIL T ELT)) (-3204 (((-1164 (-625 |#1|)) (-1164 $)) NIL T ELT) (((-1164 (-625 |#1|))) 24 T ELT)) (-1712 (((-1164 $)) 52 T ELT)) (-3700 (($) NIL T CONST)) (-1889 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL (|has| |#1| (-489)) ELT)) (-1686 (((-3 $ #1#)) NIL (|has| |#1| (-489)) ELT)) (-1771 (((-625 |#1|) (-1164 $)) NIL T ELT) (((-625 |#1|)) NIL T ELT)) (-1710 ((|#1| $) NIL T ELT)) (-1769 (((-625 |#1|) $ (-1164 $)) NIL T ELT) (((-625 |#1|) $) NIL T ELT)) (-2386 (((-3 $ #1#) $) NIL (|has| |#1| (-489)) ELT)) (-1883 (((-1070 (-850 |#1|))) NIL (|has| |#1| (-308)) ELT)) (-2389 (($ $ (-823)) NIL T ELT)) (-1708 ((|#1| $) NIL T ELT)) (-1688 (((-1070 |#1|) $) NIL (|has| |#1| (-489)) ELT)) (-1773 ((|#1| (-1164 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1706 (((-1070 |#1|) $) NIL T ELT)) (-1700 (((-83)) 99 T ELT)) (-1775 (($ (-1164 |#1|) (-1164 $)) NIL T ELT) (($ (-1164 |#1|)) NIL T ELT)) (-3444 (((-3 $ #1#) $) 14 (|has| |#1| (-489)) ELT)) (-3090 (((-823)) 53 T ELT)) (-1697 (((-83)) NIL T ELT)) (-2413 (($ $ (-823)) NIL T ELT)) (-1693 (((-83)) NIL T ELT)) (-1691 (((-83)) NIL T ELT)) (-1695 (((-83)) 101 T ELT)) (-1890 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL (|has| |#1| (-489)) ELT)) (-1687 (((-3 $ #1#)) NIL (|has| |#1| (-489)) ELT)) (-1772 (((-625 |#1|) (-1164 $)) NIL T ELT) (((-625 |#1|)) NIL T ELT)) (-1711 ((|#1| $) NIL T ELT)) (-1770 (((-625 |#1|) $ (-1164 $)) NIL T ELT) (((-625 |#1|) $) NIL T ELT)) (-2387 (((-3 $ #1#) $) NIL (|has| |#1| (-489)) ELT)) (-1887 (((-1070 (-850 |#1|))) NIL (|has| |#1| (-308)) ELT)) (-2388 (($ $ (-823)) NIL T ELT)) (-1709 ((|#1| $) NIL T ELT)) (-1689 (((-1070 |#1|) $) NIL (|has| |#1| (-489)) ELT)) (-1774 ((|#1| (-1164 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1707 (((-1070 |#1|) $) NIL T ELT)) (-1701 (((-83)) 98 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1692 (((-83)) 106 T ELT)) (-1694 (((-83)) 105 T ELT)) (-1696 (((-83)) 107 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1699 (((-83)) 100 T ELT)) (-3776 ((|#1| $ (-478)) 55 T ELT)) (-3205 (((-1164 |#1|) $ (-1164 $)) 48 T ELT) (((-625 |#1|) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 |#1|) $) 28 T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-3948 (((-1164 |#1|) $) NIL T ELT) (($ (-1164 |#1|)) NIL T ELT)) (-1875 (((-578 (-850 |#1|)) (-1164 $)) NIL T ELT) (((-578 (-850 |#1|))) NIL T ELT)) (-2415 (($ $ $) NIL T ELT)) (-1705 (((-83)) 95 T ELT)) (-3922 (((-765) $) 71 T ELT) (($ (-1164 |#1|)) 22 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) 51 T ELT)) (-1690 (((-578 (-1164 |#1|))) NIL (|has| |#1| (-489)) ELT)) (-2416 (($ $ $ $) NIL T ELT)) (-1703 (((-83)) 91 T ELT)) (-2525 (($ (-625 |#1|) $) 18 T ELT)) (-2414 (($ $ $) NIL T ELT)) (-1704 (((-83)) 97 T ELT)) (-1702 (((-83)) 92 T ELT)) (-1698 (((-83)) 90 T ELT)) (-2640 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1042 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-354 |#1|) (-585 (-1042 |#2| |#1|)) (-10 -8 (-15 -3922 ($ (-1164 |#1|))))) (-308) (-823) (-578 (-1075)) (-1164 (-625 |#1|))) (T -44)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-308)) (-14 *6 (-1164 (-625 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-823)) (-14 *5 (-578 (-1075)))))) -((-2548 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3379 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3771 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3575 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2180 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -3972)) ELT) (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3761 (($ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-83) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-1713 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749))) ELT)) (-2890 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3419 (((-83) $ (-687)) NIL T ELT)) (-3006 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3972)) ELT)) (-3763 (($ $ $) 34 (|has| $ (-6 -3972)) ELT)) (-3762 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3972)) ELT)) (-3765 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-1131 (-478)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3972)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) NIL (|has| $ (-6 -3972)) ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3772 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2213 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-3775 (($ $ (-687)) NIL T ELT) (($ $) 30 T ELT)) (-2350 (($ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3972)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL T ELT)) (-3420 (((-83) $) NIL T ELT)) (-3396 (((-478) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT) (((-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) NIL T ELT)) (-3008 (((-83) $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-3590 (($ (-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3695 (((-83) $ (-687)) NIL T ELT)) (-2182 ((|#1| $) NIL (|has| |#1| (-749)) ELT) (((-478) $) 39 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2837 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3495 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-2183 ((|#1| $) NIL (|has| |#1| (-749)) ELT) (((-478) $) 41 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3510 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3692 (((-83) $ (-687)) NIL T ELT)) (-3011 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3504 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) 50 (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-3774 (($ $ (-687)) NIL T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2214 (((-578 |#1|) $) 23 T ELT)) (-2215 (((-83) |#1| $) NIL T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2286 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 |#1|) $) NIL T ELT) (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) |#1| $) NIL T ELT) (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-3777 ((|#2| $) NIL (|has| |#1| (-749)) ELT) (($ $ (-687)) NIL T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3421 (((-83) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT) (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3380 (((-83) $) 19 T ELT)) (-3541 (($) 15 T ELT)) (-3776 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3010 (((-478) $ $) NIL T ELT)) (-1449 (($) 14 T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1554 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-3609 (((-83) $) NIL T ELT)) (-3768 (($ $) NIL T ELT)) (-3766 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-3769 (((-687) $) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3767 (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3778 (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-578 $)) NIL T ELT) (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3922 (((-765) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-3499 (((-578 $) $) NIL T ELT)) (-3009 (((-83) $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-1249 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1207 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2665 (((-83) $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-749)) ELT)) (-3933 (((-687) $) 26 (|has| $ (-6 -3971)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1003) (-1003)) (T -45)) -NIL -((-3913 (((-83) $) 12 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-343 (-478)) $) 25 T ELT) (($ $ (-343 (-478))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 -3913 ((-83) |#1|)) (-15 -3934 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-47 |#2| |#3|) (-954) (-709)) (T -46)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3935 (($ $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3913 (((-83) $) 79 T ELT)) (-2874 (($ |#1| |#2|) 78 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2875 (($ $) 82 T ELT)) (-3155 ((|#1| $) 83 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3443 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-3924 ((|#2| $) 81 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3653 ((|#1| $ |#2|) 76 T ELT)) (-2683 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-47 |#1| |#2|) (-111) (-954) (-709)) (T -47)) -((-3155 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) (-2875 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-83)))) (-2874 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) (-3653 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) (-3925 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-308))))) -(-13 (-954) (-80 |t#1| |t#1|) (-10 -8 (-15 -3155 (|t#1| $)) (-15 -2875 ($ $)) (-15 -3924 (|t#2| $)) (-15 -3934 ($ (-1 |t#1| |t#1|) $)) (-15 -3913 ((-83) $)) (-15 -2874 ($ |t#1| |t#2|)) (-15 -3935 ($ $)) (-15 -3653 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-308)) (-15 -3925 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-6 (-144)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-489)) (-6 (-489)) |%noBranch|) (IF (|has| |t#1| (-38 (-343 (-478)))) (-6 (-38 (-343 (-478)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-242) |has| |#1| (-489)) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-1199 (((-578 $) (-1070 $) (-1075)) NIL T ELT) (((-578 $) (-1070 $)) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT)) (-1200 (($ (-1070 $) (-1075)) NIL T ELT) (($ (-1070 $)) NIL T ELT) (($ (-850 $)) NIL T ELT)) (-3170 (((-83) $) 9 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1583 (((-578 (-545 $)) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1587 (($ $ (-245 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-3018 (($ $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-1201 (((-578 $) (-1070 $) (-1075)) NIL T ELT) (((-578 $) (-1070 $)) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT)) (-3165 (($ (-1070 $) (-1075)) NIL T ELT) (($ (-1070 $)) NIL T ELT) (($ (-850 $)) NIL T ELT)) (-3138 (((-3 (-545 $) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3137 (((-545 $) $) NIL T ELT) (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-343 (-478)))) (|:| |vec| (-1164 (-343 (-478))))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-343 (-478))) (-625 $)) NIL T ELT)) (-3818 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-2553 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1582 (((-578 (-84)) $) NIL T ELT)) (-3571 (((-84) (-84)) NIL T ELT)) (-2392 (((-83) $) 11 T ELT)) (-2654 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-2979 (((-1025 (-478) (-545 $)) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL T ELT)) (-3113 (((-1070 $) (-1070 $) (-545 $)) NIL T ELT) (((-1070 $) (-1070 $) (-578 (-545 $))) NIL T ELT) (($ $ (-545 $)) NIL T ELT) (($ $ (-578 (-545 $))) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1580 (((-1070 $) (-545 $)) NIL (|has| $ (-954)) ELT)) (-3934 (($ (-1 $ $) (-545 $)) NIL T ELT)) (-1585 (((-3 (-545 $) #1#) $) NIL T ELT)) (-2262 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL T ELT) (((-625 (-478)) (-1164 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-343 (-478)))) (|:| |vec| (-1164 (-343 (-478))))) (-1164 $) $) NIL T ELT) (((-625 (-343 (-478))) (-1164 $)) NIL T ELT)) (-1874 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1584 (((-578 (-545 $)) $) NIL T ELT)) (-2217 (($ (-84) $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2613 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1075)) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-2583 (((-687) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1581 (((-83) $ $) NIL T ELT) (((-83) $ (-1075)) NIL T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2655 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-3744 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-1075) (-1 $ (-578 $))) NIL T ELT) (($ $ (-1075) (-1 $ $)) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-578 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1586 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3734 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2978 (((-1025 (-478) (-545 $)) $) NIL T ELT)) (-3167 (($ $) NIL (|has| $ (-954)) ELT)) (-3948 (((-323) $) NIL T ELT) (((-177) $) NIL T ELT) (((-140 (-323)) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-545 $)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-1025 (-478) (-545 $))) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-2570 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-2236 (((-83) (-84)) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2640 (($) 6 T CONST)) (-2647 (($) 10 T CONST)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) 13 T ELT)) (-3925 (($ $ $) NIL T ELT)) (-3813 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-343 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT))) -(((-48) (-13 (-250) (-27) (-943 (-478)) (-943 (-343 (-478))) (-575 (-478)) (-926) (-575 (-343 (-478))) (-118) (-548 (-140 (-323))) (-188) (-550 (-1025 (-478) (-545 $))) (-10 -8 (-15 -2979 ((-1025 (-478) (-545 $)) $)) (-15 -2978 ((-1025 (-478) (-545 $)) $)) (-15 -3818 ($ $)) (-15 -3113 ((-1070 $) (-1070 $) (-545 $))) (-15 -3113 ((-1070 $) (-1070 $) (-578 (-545 $)))) (-15 -3113 ($ $ (-545 $))) (-15 -3113 ($ $ (-578 (-545 $))))))) (T -48)) -((-2979 (*1 *2 *1) (-12 (-5 *2 (-1025 (-478) (-545 (-48)))) (-5 *1 (-48)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1025 (-478) (-545 (-48)))) (-5 *1 (-48)))) (-3818 (*1 *1 *1) (-5 *1 (-48))) (-3113 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-48))) (-5 *3 (-545 (-48))) (-5 *1 (-48)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-48))) (-5 *3 (-578 (-545 (-48)))) (-5 *1 (-48)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-545 (-48))) (-5 *1 (-48)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-545 (-48)))) (-5 *1 (-48))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1921 (((-578 (-439)) $) 17 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 7 T ELT)) (-3162 (((-1080) $) 18 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-49) (-13 (-1003) (-10 -8 (-15 -1921 ((-578 (-439)) $)) (-15 -3162 ((-1080) $))))) (T -49)) -((-1921 (*1 *2 *1) (-12 (-5 *2 (-578 (-439))) (-5 *1 (-49)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-49))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 86 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2645 (((-83) $) 31 T ELT)) (-3138 (((-3 |#1| #1#) $) 34 T ELT)) (-3137 ((|#1| $) 35 T ELT)) (-3935 (($ $) 41 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3155 ((|#1| $) 32 T ELT)) (-1438 (($ $) 75 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1437 (((-83) $) 44 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($ (-687)) 73 T ELT)) (-3919 (($ (-578 (-478))) 74 T ELT)) (-3924 (((-687) $) 45 T ELT)) (-3922 (((-765) $) 92 T ELT) (($ (-478)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3653 ((|#1| $ $) 29 T ELT)) (-3107 (((-687)) 72 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 46 T CONST)) (-2647 (($) 17 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 65 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) -(((-50 |#1| |#2|) (-13 (-555 |#1|) (-943 |#1|) (-10 -8 (-15 -3155 (|#1| $)) (-15 -1438 ($ $)) (-15 -3935 ($ $)) (-15 -3653 (|#1| $ $)) (-15 -2391 ($ (-687))) (-15 -3919 ($ (-578 (-478)))) (-15 -1437 ((-83) $)) (-15 -2645 ((-83) $)) (-15 -3924 ((-687) $)) (-15 -3934 ($ (-1 |#1| |#1|) $)))) (-954) (-578 (-1075))) (T -50)) -((-3155 (*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-50 *2 *3)) (-14 *3 (-578 (-1075))))) (-1438 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-954)) (-14 *3 (-578 (-1075))))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-954)) (-14 *3 (-578 (-1075))))) (-3653 (*1 *2 *1 *1) (-12 (-4 *2 (-954)) (-5 *1 (-50 *2 *3)) (-14 *3 (-578 (-1075))))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1075))))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1075))))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1075))))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1075))))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) (-14 *4 (-578 (-1075))))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-50 *3 *4)) (-14 *4 (-578 (-1075)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1234 (((-689) $) 8 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1235 (((-1005) $) 10 T ELT)) (-3922 (((-765) $) 15 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1236 (($ (-1005) (-689)) 16 T ELT)) (-3037 (((-83) $ $) 12 T ELT))) -(((-51) (-13 (-1003) (-10 -8 (-15 -1236 ($ (-1005) (-689))) (-15 -1235 ((-1005) $)) (-15 -1234 ((-689) $))))) (T -51)) -((-1236 (*1 *1 *2 *3) (-12 (-5 *2 (-1005)) (-5 *3 (-689)) (-5 *1 (-51)))) (-1235 (*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-51)))) (-1234 (*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-51))))) -((-2645 (((-83) (-51)) 18 T ELT)) (-3138 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3137 ((|#1| (-51)) 21 T ELT)) (-3922 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -3922 ((-51) |#1|)) (-15 -3138 ((-3 |#1| "failed") (-51))) (-15 -2645 ((-83) (-51))) (-15 -3137 (|#1| (-51)))) (-1114)) (T -52)) -((-3137 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1114)))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-83)) (-5 *1 (-52 *4)) (-4 *4 (-1114)))) (-3138 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1114)))) (-3922 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1114))))) -((-2525 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2525 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-954) (-585 |#1|) (-754 |#1|)) (T -53)) -((-2525 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-954)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-754 *5))))) -((-1238 ((|#3| |#3| (-578 (-1075))) 44 T ELT)) (-1237 ((|#3| (-578 (-978 |#1| |#2| |#3|)) |#3| (-823)) 32 T ELT) ((|#3| (-578 (-978 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1237 (|#3| (-578 (-978 |#1| |#2| |#3|)) |#3|)) (-15 -1237 (|#3| (-578 (-978 |#1| |#2| |#3|)) |#3| (-823))) (-15 -1238 (|#3| |#3| (-578 (-1075))))) (-1003) (-13 (-954) (-789 |#1|) (-548 (-793 |#1|))) (-13 (-357 |#2|) (-789 |#1|) (-548 (-793 |#1|)))) (T -54)) -((-1238 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1075))) (-4 *4 (-1003)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) (-1237 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 (-978 *5 *6 *2))) (-5 *4 (-823)) (-4 *5 (-1003)) (-4 *6 (-13 (-954) (-789 *5) (-548 (-793 *5)))) (-4 *2 (-13 (-357 *6) (-789 *5) (-548 (-793 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1237 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-978 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 13 T ELT)) (-3138 (((-3 (-687) "failed") $) 31 T ELT)) (-3137 (((-687) $) NIL T ELT)) (-2392 (((-83) $) 15 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) 17 T ELT)) (-3922 (((-765) $) 22 T ELT) (($ (-687)) 28 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1239 (($) 10 T CONST)) (-3037 (((-83) $ $) 19 T ELT))) -(((-55) (-13 (-1003) (-943 (-687)) (-10 -8 (-15 -1239 ($) -3928) (-15 -3170 ((-83) $)) (-15 -2392 ((-83) $))))) (T -55)) -((-1239 (*1 *1) (-5 *1 (-55))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55))))) -((-1241 (($ $ (-478) |#3|) 60 T ELT)) (-1240 (($ $ (-478) |#4|) 64 T ELT)) (-3093 ((|#3| $ (-478)) 73 T ELT)) (-2870 (((-578 |#2|) $) 41 T ELT)) (-3225 (((-83) |#2| $) 68 T ELT)) (-1932 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2181 (($ $ |#2|) 46 T ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) 21 T ELT)) (-3776 ((|#2| $ (-478) (-478)) NIL T ELT) ((|#2| $ (-478) (-478) |#2|) 29 T ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) 35 T ELT) (((-687) |#2| $) 70 T ELT)) (-3377 (($ $) 45 T ELT)) (-3092 ((|#4| $ (-478)) 76 T ELT)) (-3922 (((-765) $) 82 T ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) 20 T ELT)) (-3037 (((-83) $ $) 67 T ELT)) (-3933 (((-687) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -3934 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3934 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1932 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1240 (|#1| |#1| (-478) |#4|)) (-15 -1241 (|#1| |#1| (-478) |#3|)) (-15 -2870 ((-578 |#2|) |#1|)) (-15 -3092 (|#4| |#1| (-478))) (-15 -3093 (|#3| |#1| (-478))) (-15 -3776 (|#2| |#1| (-478) (-478) |#2|)) (-15 -3776 (|#2| |#1| (-478) (-478))) (-15 -2181 (|#1| |#1| |#2|)) (-15 -3225 ((-83) |#2| |#1|)) (-15 -1929 ((-687) |#2| |#1|)) (-15 -1929 ((-687) (-1 (-83) |#2|) |#1|)) (-15 -1930 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1931 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3934 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3933 ((-687) |#1|)) (-15 -3377 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1114) (-317 |#2|) (-317 |#2|)) (T -56)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3764 ((|#1| $ (-478) (-478) |#1|) 48 T ELT)) (-1241 (($ $ (-478) |#2|) 46 T ELT)) (-1240 (($ $ (-478) |#3|) 45 T ELT)) (-3700 (($) 7 T CONST)) (-3093 ((|#2| $ (-478)) 50 T ELT)) (-1559 ((|#1| $ (-478) (-478) |#1|) 47 T ELT)) (-3094 ((|#1| $ (-478) (-478)) 52 T ELT)) (-2870 (((-578 |#1|) $) 30 T ELT)) (-3096 (((-687) $) 55 T ELT)) (-3590 (($ (-687) (-687) |#1|) 61 T ELT)) (-3095 (((-687) $) 54 T ELT)) (-3100 (((-478) $) 59 T ELT)) (-3098 (((-478) $) 57 T ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3099 (((-478) $) 58 T ELT)) (-3097 (((-478) $) 56 T ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-2181 (($ $ |#1|) 60 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ (-478) (-478)) 53 T ELT) ((|#1| $ (-478) (-478) |#1|) 51 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3092 ((|#3| $ (-478)) 49 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-57 |#1| |#2| |#3|) (-111) (-1114) (-317 |t#1|) (-317 |t#1|)) (T -57)) -((-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3590 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-687)) (-4 *3 (-1114)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2181 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1114)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-478)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-478)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-478)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-478)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-687)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-687)))) (-3776 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-1114)))) (-3094 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-1114)))) (-3776 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1114)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)))) (-3093 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1114)) (-4 *5 (-317 *4)) (-4 *2 (-317 *4)))) (-3092 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1114)) (-4 *5 (-317 *4)) (-4 *2 (-317 *4)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-578 *3)))) (-3764 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1114)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)))) (-1559 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1114)) (-4 *4 (-317 *2)) (-4 *5 (-317 *2)))) (-1241 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-478)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-317 *4)) (-4 *5 (-317 *4)))) (-1240 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-478)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1114)) (-4 *5 (-317 *4)) (-4 *3 (-317 *4)))) (-1932 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3934 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3934 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3))))) -(-13 (-422 |t#1|) (-10 -8 (-6 -3972) (-6 -3971) (-15 -3590 ($ (-687) (-687) |t#1|)) (-15 -2181 ($ $ |t#1|)) (-15 -3100 ((-478) $)) (-15 -3099 ((-478) $)) (-15 -3098 ((-478) $)) (-15 -3097 ((-478) $)) (-15 -3096 ((-687) $)) (-15 -3095 ((-687) $)) (-15 -3776 (|t#1| $ (-478) (-478))) (-15 -3094 (|t#1| $ (-478) (-478))) (-15 -3776 (|t#1| $ (-478) (-478) |t#1|)) (-15 -3093 (|t#2| $ (-478))) (-15 -3092 (|t#3| $ (-478))) (-15 -2870 ((-578 |t#1|) $)) (-15 -3764 (|t#1| $ (-478) (-478) |t#1|)) (-15 -1559 (|t#1| $ (-478) (-478) |t#1|)) (-15 -1241 ($ $ (-478) |t#2|)) (-15 -1240 ($ $ (-478) |t#3|)) (-15 -3934 ($ (-1 |t#1| |t#1|) $)) (-15 -1932 ($ (-1 |t#1| |t#1|) $)) (-15 -3934 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3934 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) NIL T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-1242 (($ (-578 |#1|)) 11 T ELT) (($ (-687) |#1|) 14 T ELT)) (-3590 (($ (-687) |#1|) 13 T ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 10 T ELT)) (-3778 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1242 ($ (-578 |#1|))) (-15 -1242 ($ (-687) |#1|)))) (-1114)) (T -58)) -((-1242 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-58 *3)))) (-1242 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *1 (-58 *3)) (-4 *3 (-1114))))) -((-3817 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3818 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3934 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -3817 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3818 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3934 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1114) (-1114)) (T -59)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3818 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) (-5 *1 (-59 *5 *2)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1114)) (-4 *5 (-1114)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3764 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1241 (($ $ (-478) (-58 |#1|)) NIL T ELT)) (-1240 (($ $ (-478) (-58 |#1|)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3093 (((-58 |#1|) $ (-478)) NIL T ELT)) (-1559 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-3094 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL T ELT)) (-3096 (((-687) $) NIL T ELT)) (-3590 (($ (-687) (-687) |#1|) NIL T ELT)) (-3095 (((-687) $) NIL T ELT)) (-3100 (((-478) $) NIL T ELT)) (-3098 (((-478) $) NIL T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3099 (((-478) $) NIL T ELT)) (-3097 (((-478) $) NIL T ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-2181 (($ $ |#1|) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3092 (((-58 |#1|) $ (-478)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -3972))) (-1114)) (T -60)) -NIL -((-1244 (((-1164 (-625 |#1|)) (-625 |#1|)) 61 T ELT)) (-1243 (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 (-578 (-823))))) |#2| (-823)) 49 T ELT)) (-1245 (((-2 (|:| |minor| (-578 (-823))) (|:| -3246 |#2|) (|:| |minors| (-578 (-578 (-823)))) (|:| |ops| (-578 |#2|))) |#2| (-823)) 72 (|has| |#1| (-308)) ELT))) -(((-61 |#1| |#2|) (-10 -7 (-15 -1243 ((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 (-578 (-823))))) |#2| (-823))) (-15 -1244 ((-1164 (-625 |#1|)) (-625 |#1|))) (IF (|has| |#1| (-308)) (-15 -1245 ((-2 (|:| |minor| (-578 (-823))) (|:| -3246 |#2|) (|:| |minors| (-578 (-578 (-823)))) (|:| |ops| (-578 |#2|))) |#2| (-823))) |%noBranch|)) (-489) (-595 |#1|)) (T -61)) -((-1245 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |minor| (-578 (-823))) (|:| -3246 *3) (|:| |minors| (-578 (-578 (-823)))) (|:| |ops| (-578 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-823)) (-4 *3 (-595 *5)))) (-1244 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-1164 (-625 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-625 *4)) (-4 *5 (-595 *4)))) (-1243 (*1 *2 *3 *4) (-12 (-4 *5 (-489)) (-5 *2 (-2 (|:| |mat| (-625 *5)) (|:| |vec| (-1164 (-578 (-823)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-823)) (-4 *3 (-595 *5))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3301 ((|#1| $) 42 T ELT)) (-3700 (($) NIL T CONST)) (-3303 ((|#1| |#1| $) 37 T ELT)) (-3302 ((|#1| $) 35 T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) NIL T ELT)) (-3585 (($ |#1| $) 38 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1259 ((|#1| $) 36 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 20 T ELT)) (-3541 (($) 46 T ELT)) (-3300 (((-687) $) 33 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) 19 T ELT)) (-3922 (((-765) $) 32 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) NIL T ELT)) (-1246 (($ (-578 |#1|)) 44 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 17 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 14 (|has| $ (-6 -3971)) ELT))) -(((-62 |#1|) (-13 (-1021 |#1|) (-10 -8 (-15 -1246 ($ (-578 |#1|))))) (-1003)) (T -62)) -((-1246 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-62 *3))))) -((-3922 (((-765) $) 13 T ELT) (($ (-1080)) 9 T ELT) (((-1080) $) 8 T ELT))) -(((-63 |#1|) (-10 -7 (-15 -3922 ((-1080) |#1|)) (-15 -3922 (|#1| (-1080))) (-15 -3922 ((-765) |#1|))) (-64)) (T -63)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-1080)) 20 T ELT) (((-1080) $) 19 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(-13 (-955) (-650 |t#1|) (-551 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 |#1|) . T) ((-650 |#1|) . T) ((-659) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3400 (((-342 |#1|) |#1|) 41 T ELT)) (-3714 (((-342 |#1|) |#1|) 30 T ELT) (((-342 |#1|) |#1| (-579 (-48))) 33 T ELT)) (-1213 (((-83) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -3714 ((-342 |#1|) |#1| (-579 (-48)))) (-15 -3714 ((-342 |#1|) |#1|)) (-15 -3400 ((-342 |#1|) |#1|)) (-15 -1213 ((-83) |#1|))) (-1145 (-48))) (T -39)) +((-1213 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-39 *3)) (-4 *3 (-1145 (-48))))) (-3400 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1145 (-48))))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1145 (-48))))) (-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-48))) (-5 *2 (-342 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1145 (-48)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1635 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2050 (($ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2048 (((-83) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1770 (((-626 (-344 |#2|)) (-1169 $)) NIL T ELT) (((-626 (-344 |#2|))) NIL T ELT)) (-3312 (((-344 |#2|) $) NIL T ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1596 (((-83) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3120 (((-688)) NIL (|has| (-344 |#2|) (-314)) ELT)) (-1649 (((-83)) NIL T ELT)) (-1648 (((-83) |#1|) NIL T ELT) (((-83) |#2|) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| (-344 |#2|) (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| (-344 |#2|) (-944 (-344 (-479)))) ELT) (((-3 (-344 |#2|) #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| (-344 |#2|) (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| (-344 |#2|) (-944 (-344 (-479)))) ELT) (((-344 |#2|) $) NIL T ELT)) (-1780 (($ (-1169 (-344 |#2|)) (-1169 $)) NIL T ELT) (($ (-1169 (-344 |#2|))) 60 T ELT) (($ (-1169 |#2|) |#2|) 130 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-344 |#2|) (-295)) ELT)) (-2549 (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1769 (((-626 (-344 |#2|)) $ (-1169 $)) NIL T ELT) (((-626 (-344 |#2|)) $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-344 |#2|))) (|:| |vec| (-1169 (-344 |#2|)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-344 |#2|)) (-626 $)) NIL T ELT)) (-1640 (((-1169 $) (-1169 $)) NIL T ELT)) (-3824 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-344 |#3|)) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-1627 (((-579 (-579 |#1|))) NIL (|has| |#1| (-314)) ELT)) (-1652 (((-83) |#1| |#1|) NIL T ELT)) (-3093 (((-824)) NIL T ELT)) (-2979 (($) NIL (|has| (-344 |#2|) (-314)) ELT)) (-1647 (((-83)) NIL T ELT)) (-1646 (((-83) |#1|) NIL T ELT) (((-83) |#2|) NIL T ELT)) (-2548 (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3485 (($ $) NIL T ELT)) (-2818 (($) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1668 (((-83) $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1752 (($ $ (-688)) NIL (|has| (-344 |#2|) (-295)) ELT) (($ $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-3705 (((-83) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3754 (((-824) $) NIL (|has| (-344 |#2|) (-295)) ELT) (((-737 (-824)) $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-3359 (((-688)) NIL T ELT)) (-1641 (((-1169 $) (-1169 $)) 105 T ELT)) (-3116 (((-344 |#2|) $) NIL T ELT)) (-1628 (((-579 (-851 |#1|)) (-1080)) NIL (|has| |#1| (-308)) ELT)) (-3427 (((-628 $) $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2001 ((|#3| $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1997 (((-824) $) NIL (|has| (-344 |#2|) (-314)) ELT)) (-3064 ((|#3| $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-344 |#2|))) (|:| |vec| (-1169 (-344 |#2|)))) (-1169 $) $) NIL T ELT) (((-626 (-344 |#2|)) (-1169 $)) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1214 (((-1175) (-688)) 83 T ELT)) (-1636 (((-626 (-344 |#2|))) 55 T ELT)) (-1638 (((-626 (-344 |#2|))) 48 T ELT)) (-2469 (($ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1633 (($ (-1169 |#2|) |#2|) 131 T ELT)) (-1637 (((-626 (-344 |#2|))) 49 T ELT)) (-1639 (((-626 (-344 |#2|))) 47 T ELT)) (-1632 (((-2 (|:| |num| (-626 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1634 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1645 (((-1169 $)) 46 T ELT)) (-3900 (((-1169 $)) 45 T ELT)) (-1644 (((-83) $) NIL T ELT)) (-1643 (((-83) $) NIL T ELT) (((-83) $ |#1|) NIL T ELT) (((-83) $ |#2|) NIL T ELT)) (-3428 (($) NIL (|has| (-344 |#2|) (-295)) CONST)) (-2387 (($ (-824)) NIL (|has| (-344 |#2|) (-314)) ELT)) (-1630 (((-3 |#2| #1#)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1654 (((-688)) NIL T ELT)) (-2396 (($) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| (-344 |#2|) (-295)) ELT)) (-3714 (((-342 $) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-344 |#2|) (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1595 (((-688) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3782 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1631 (((-3 |#2| #1#)) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3739 (((-344 |#2|) (-1169 $)) NIL T ELT) (((-344 |#2|)) 43 T ELT)) (-1753 (((-688) $) NIL (|has| (-344 |#2|) (-295)) ELT) (((-3 (-688) #1#) $ $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-3740 (($ $ (-1 (-344 |#2|) (-344 |#2|))) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-1 (-344 |#2|) (-344 |#2|)) (-688)) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT)) (-2395 (((-626 (-344 |#2|)) (-1169 $) (-1 (-344 |#2|) (-344 |#2|))) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3169 ((|#3|) 54 T ELT)) (-1662 (($) NIL (|has| (-344 |#2|) (-295)) ELT)) (-3208 (((-1169 (-344 |#2|)) $ (-1169 $)) NIL T ELT) (((-626 (-344 |#2|)) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 (-344 |#2|)) $) 61 T ELT) (((-626 (-344 |#2|)) (-1169 $)) 106 T ELT)) (-3954 (((-1169 (-344 |#2|)) $) NIL T ELT) (($ (-1169 (-344 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1642 (((-1169 $) (-1169 $)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-344 |#2|)) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2687 (($ $) NIL (|has| (-344 |#2|) (-295)) ELT) (((-628 $) $) NIL (|has| (-344 |#2|) (-116)) ELT)) (-2434 ((|#3| $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1651 (((-83)) 41 T ELT)) (-1650 (((-83) |#1|) 53 T ELT) (((-83) |#2|) 137 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1629 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1653 (((-83)) NIL T ELT)) (-2645 (($) 17 T CONST)) (-2651 (($) 27 T CONST)) (-2654 (($ $ (-1 (-344 |#2|) (-344 |#2|))) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-1 (-344 |#2|) (-344 |#2|)) (-688)) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| (-344 |#2|) (-308)) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 |#2|)) NIL T ELT) (($ (-344 |#2|) $) NIL T ELT) (($ (-344 (-479)) $) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-344 (-479))) NIL (|has| (-344 |#2|) (-308)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-287 |#1| |#2| |#3|) (-10 -7 (-15 -1214 ((-1175) (-688))))) (-308) (-1145 |#1|) (-1145 (-344 |#2|)) |#3|) (T -40)) +((-1214 (*1 *2 *3) (-12 (-5 *3 (-688)) (-4 *4 (-308)) (-4 *5 (-1145 *4)) (-5 *2 (-1175)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1145 (-344 *5))) (-14 *7 *6)))) +((-1215 ((|#2| |#2|) 47 T ELT)) (-1220 ((|#2| |#2|) 136 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-13 (-386) (-944 (-479))))) ELT)) (-1219 ((|#2| |#2|) 100 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-13 (-386) (-944 (-479))))) ELT)) (-1218 ((|#2| |#2|) 101 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-13 (-386) (-944 (-479))))) ELT)) (-1221 ((|#2| (-84) |#2| (-688)) 80 (-12 (|has| |#2| (-358 |#1|)) (|has| |#1| (-13 (-386) (-944 (-479))))) ELT)) (-1217 (((-1075 |#2|) |#2|) 44 T ELT)) (-1216 ((|#2| |#2| (-579 (-546 |#2|))) 18 T ELT) ((|#2| |#2| (-579 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1215 (|#2| |#2|)) (-15 -1216 (|#2| |#2|)) (-15 -1216 (|#2| |#2| |#2|)) (-15 -1216 (|#2| |#2| (-579 |#2|))) (-15 -1216 (|#2| |#2| (-579 (-546 |#2|)))) (-15 -1217 ((-1075 |#2|) |#2|)) (IF (|has| |#1| (-13 (-386) (-944 (-479)))) (IF (|has| |#2| (-358 |#1|)) (PROGN (-15 -1218 (|#2| |#2|)) (-15 -1219 (|#2| |#2|)) (-15 -1220 (|#2| |#2|)) (-15 -1221 (|#2| (-84) |#2| (-688)))) |%noBranch|) |%noBranch|)) (-490) (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 |#1| (-546 $)) $)) (-15 -2982 ((-1029 |#1| (-546 $)) $)) (-15 -3928 ($ (-1029 |#1| (-546 $))))))) (T -41)) +((-1221 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-84)) (-5 *4 (-688)) (-4 *5 (-13 (-386) (-944 (-479)))) (-4 *5 (-490)) (-5 *1 (-41 *5 *2)) (-4 *2 (-358 *5)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *5 (-546 $)) $)) (-15 -2982 ((-1029 *5 (-546 $)) $)) (-15 -3928 ($ (-1029 *5 (-546 $))))))))) (-1220 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)))) (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) (-4 *2 (-358 *3)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) (-15 -2982 ((-1029 *3 (-546 $)) $)) (-15 -3928 ($ (-1029 *3 (-546 $))))))))) (-1219 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)))) (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) (-4 *2 (-358 *3)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) (-15 -2982 ((-1029 *3 (-546 $)) $)) (-15 -3928 ($ (-1029 *3 (-546 $))))))))) (-1218 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)))) (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) (-4 *2 (-358 *3)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) (-15 -2982 ((-1029 *3 (-546 $)) $)) (-15 -3928 ($ (-1029 *3 (-546 $))))))))) (-1217 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-1075 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *4 (-546 $)) $)) (-15 -2982 ((-1029 *4 (-546 $)) $)) (-15 -3928 ($ (-1029 *4 (-546 $))))))))) (-1216 (*1 *2 *2 *3) (-12 (-5 *3 (-579 (-546 *2))) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *4 (-546 $)) $)) (-15 -2982 ((-1029 *4 (-546 $)) $)) (-15 -3928 ($ (-1029 *4 (-546 $))))))) (-4 *4 (-490)) (-5 *1 (-41 *4 *2)))) (-1216 (*1 *2 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *4 (-546 $)) $)) (-15 -2982 ((-1029 *4 (-546 $)) $)) (-15 -3928 ($ (-1029 *4 (-546 $))))))) (-4 *4 (-490)) (-5 *1 (-41 *4 *2)))) (-1216 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) (-15 -2982 ((-1029 *3 (-546 $)) $)) (-15 -3928 ($ (-1029 *3 (-546 $))))))))) (-1216 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) (-15 -2982 ((-1029 *3 (-546 $)) $)) (-15 -3928 ($ (-1029 *3 (-546 $))))))))) (-1215 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) (-15 -2982 ((-1029 *3 (-546 $)) $)) (-15 -3928 ($ (-1029 *3 (-546 $)))))))))) +((-3714 (((-342 (-1075 |#3|)) (-1075 |#3|) (-579 (-48))) 23 T ELT) (((-342 |#3|) |#3| (-579 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3714 ((-342 |#3|) |#3| (-579 (-48)))) (-15 -3714 ((-342 (-1075 |#3|)) (-1075 |#3|) (-579 (-48))))) (-750) (-711) (-855 (-48) |#2| |#1|)) (T -42)) +((-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-48))) (-4 *5 (-750)) (-4 *6 (-711)) (-4 *7 (-855 (-48) *6 *5)) (-5 *2 (-342 (-1075 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1075 *7)))) (-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-48))) (-4 *5 (-750)) (-4 *6 (-711)) (-5 *2 (-342 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-855 (-48) *6 *5))))) +((-1225 (((-688) |#2|) 70 T ELT)) (-1223 (((-688) |#2|) 74 T ELT)) (-1238 (((-579 |#2|)) 37 T ELT)) (-1222 (((-688) |#2|) 73 T ELT)) (-1224 (((-688) |#2|) 69 T ELT)) (-1226 (((-688) |#2|) 72 T ELT)) (-1236 (((-579 (-626 |#1|))) 65 T ELT)) (-1231 (((-579 |#2|)) 60 T ELT)) (-1229 (((-579 |#2|) |#2|) 48 T ELT)) (-1233 (((-579 |#2|)) 62 T ELT)) (-1232 (((-579 |#2|)) 61 T ELT)) (-1235 (((-579 (-626 |#1|))) 53 T ELT)) (-1230 (((-579 |#2|)) 59 T ELT)) (-1228 (((-579 |#2|) |#2|) 47 T ELT)) (-1227 (((-579 |#2|)) 55 T ELT)) (-1237 (((-579 (-626 |#1|))) 66 T ELT)) (-1234 (((-579 |#2|)) 64 T ELT)) (-1999 (((-1169 |#2|) (-1169 |#2|)) 99 (|has| |#1| (-254)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1222 ((-688) |#2|)) (-15 -1223 ((-688) |#2|)) (-15 -1224 ((-688) |#2|)) (-15 -1225 ((-688) |#2|)) (-15 -1226 ((-688) |#2|)) (-15 -1227 ((-579 |#2|))) (-15 -1228 ((-579 |#2|) |#2|)) (-15 -1229 ((-579 |#2|) |#2|)) (-15 -1230 ((-579 |#2|))) (-15 -1231 ((-579 |#2|))) (-15 -1232 ((-579 |#2|))) (-15 -1233 ((-579 |#2|))) (-15 -1234 ((-579 |#2|))) (-15 -1235 ((-579 (-626 |#1|)))) (-15 -1236 ((-579 (-626 |#1|)))) (-15 -1237 ((-579 (-626 |#1|)))) (-15 -1238 ((-579 |#2|))) (IF (|has| |#1| (-254)) (-15 -1999 ((-1169 |#2|) (-1169 |#2|))) |%noBranch|)) (-490) (-355 |#1|)) (T -43)) +((-1999 (*1 *2 *2) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-355 *3)) (-4 *3 (-254)) (-4 *3 (-490)) (-5 *1 (-43 *3 *4)))) (-1238 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1237 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 (-626 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1236 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 (-626 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1235 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 (-626 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1234 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1233 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1232 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1231 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1230 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1229 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-579 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4)))) (-1228 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-579 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4)))) (-1227 (*1 *2) (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3)))) (-1226 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4)))) (-1225 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4)))) (-1224 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4)))) (-1223 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4)))) (-1222 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1760 (((-3 $ #1="failed")) NIL (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ #1#) $ $) NIL T ELT)) (-3207 (((-1169 (-626 |#1|)) (-1169 $)) NIL T ELT) (((-1169 (-626 |#1|))) 24 T ELT)) (-1717 (((-1169 $)) 52 T ELT)) (-3706 (($) NIL T CONST)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL (|has| |#1| (-490)) ELT)) (-1691 (((-3 $ #1#)) NIL (|has| |#1| (-490)) ELT)) (-1776 (((-626 |#1|) (-1169 $)) NIL T ELT) (((-626 |#1|)) NIL T ELT)) (-1715 ((|#1| $) NIL T ELT)) (-1774 (((-626 |#1|) $ (-1169 $)) NIL T ELT) (((-626 |#1|) $) NIL T ELT)) (-2391 (((-3 $ #1#) $) NIL (|has| |#1| (-490)) ELT)) (-1888 (((-1075 (-851 |#1|))) NIL (|has| |#1| (-308)) ELT)) (-2394 (($ $ (-824)) NIL T ELT)) (-1713 ((|#1| $) NIL T ELT)) (-1693 (((-1075 |#1|) $) NIL (|has| |#1| (-490)) ELT)) (-1778 ((|#1| (-1169 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1711 (((-1075 |#1|) $) NIL T ELT)) (-1705 (((-83)) 99 T ELT)) (-1780 (($ (-1169 |#1|) (-1169 $)) NIL T ELT) (($ (-1169 |#1|)) NIL T ELT)) (-3449 (((-3 $ #1#) $) 14 (|has| |#1| (-490)) ELT)) (-3093 (((-824)) 53 T ELT)) (-1702 (((-83)) NIL T ELT)) (-2418 (($ $ (-824)) NIL T ELT)) (-1698 (((-83)) NIL T ELT)) (-1696 (((-83)) NIL T ELT)) (-1700 (((-83)) 101 T ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL (|has| |#1| (-490)) ELT)) (-1692 (((-3 $ #1#)) NIL (|has| |#1| (-490)) ELT)) (-1777 (((-626 |#1|) (-1169 $)) NIL T ELT) (((-626 |#1|)) NIL T ELT)) (-1716 ((|#1| $) NIL T ELT)) (-1775 (((-626 |#1|) $ (-1169 $)) NIL T ELT) (((-626 |#1|) $) NIL T ELT)) (-2392 (((-3 $ #1#) $) NIL (|has| |#1| (-490)) ELT)) (-1892 (((-1075 (-851 |#1|))) NIL (|has| |#1| (-308)) ELT)) (-2393 (($ $ (-824)) NIL T ELT)) (-1714 ((|#1| $) NIL T ELT)) (-1694 (((-1075 |#1|) $) NIL (|has| |#1| (-490)) ELT)) (-1779 ((|#1| (-1169 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1712 (((-1075 |#1|) $) NIL T ELT)) (-1706 (((-83)) 98 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1697 (((-83)) 106 T ELT)) (-1699 (((-83)) 105 T ELT)) (-1701 (((-83)) 107 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1704 (((-83)) 100 T ELT)) (-3782 ((|#1| $ (-479)) 55 T ELT)) (-3208 (((-1169 |#1|) $ (-1169 $)) 48 T ELT) (((-626 |#1|) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 |#1|) $) 28 T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-3954 (((-1169 |#1|) $) NIL T ELT) (($ (-1169 |#1|)) NIL T ELT)) (-1880 (((-579 (-851 |#1|)) (-1169 $)) NIL T ELT) (((-579 (-851 |#1|))) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) 95 T ELT)) (-3928 (((-766) $) 71 T ELT) (($ (-1169 |#1|)) 22 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) 51 T ELT)) (-1695 (((-579 (-1169 |#1|))) NIL (|has| |#1| (-490)) ELT)) (-2421 (($ $ $ $) NIL T ELT)) (-1708 (((-83)) 91 T ELT)) (-2530 (($ (-626 |#1|) $) 18 T ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) 97 T ELT)) (-1707 (((-83)) 92 T ELT)) (-1703 (((-83)) 90 T ELT)) (-2645 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1046 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-355 |#1|) (-586 (-1046 |#2| |#1|)) (-10 -8 (-15 -3928 ($ (-1169 |#1|))))) (-308) (-824) (-579 (-1080)) (-1169 (-626 |#1|))) (T -44)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-308)) (-14 *6 (-1169 (-626 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-824)) (-14 *5 (-579 (-1080)))))) +((-2553 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3384 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3777 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3779 (($ $) NIL T ELT)) (-3581 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2185 (((-1175) $ |#1| |#1|) NIL (|has| $ (-6 -3978)) ELT) (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3767 (($ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-83) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-1718 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750))) ELT)) (-2894 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-3424 (((-83) $ (-688)) NIL T ELT)) (-3010 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT)) (-3769 (($ $ $) 34 (|has| $ (-6 -3978)) ELT)) (-3768 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT)) (-3771 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) 54 T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-1136 (-479)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) NIL (|has| $ (-6 -3978)) ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3778 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2218 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-3781 (($ $ (-688)) NIL T ELT) (($ $) 30 T ELT)) (-2355 (($ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3978)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) NIL T ELT)) (-3425 (((-83) $) NIL T ELT)) (-3401 (((-479) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT) (((-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 21 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-3596 (($ (-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3701 (((-83) $ (-688)) NIL T ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-750)) ELT) (((-479) $) 39 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-2841 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-3500 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-750)) ELT) (((-479) $) 41 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3516 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3698 (((-83) $ (-688)) NIL T ELT)) (-3015 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3509 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) 50 (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-3780 (($ $ (-688)) NIL T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2219 (((-579 |#1|) $) 23 T ELT)) (-2220 (((-83) |#1| $) NIL T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2291 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 |#1|) $) NIL T ELT) (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) |#1| $) NIL T ELT) (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-3783 ((|#2| $) NIL (|has| |#1| (-750)) ELT) (($ $ (-688)) NIL T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3426 (((-83) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT) (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3385 (((-83) $) 19 T ELT)) (-3547 (($) 15 T ELT)) (-3782 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3014 (((-479) $ $) NIL T ELT)) (-1454 (($) 14 T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1559 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-3615 (((-83) $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3772 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-3775 (((-688) $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3773 (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3784 (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-579 $)) NIL T ELT) (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3928 (((-766) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-548 (-766)))) ELT)) (-3504 (((-579 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-1254 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1212 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #5#) |#1| $) 52 T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-3041 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2669 (((-83) $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-750)) ELT)) (-3939 (((-688) $) 26 (|has| $ (-6 -3977)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1006) (-1006)) (T -45)) +NIL +((-3919 (((-83) $) 12 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-344 (-479)) $) 25 T ELT) (($ $ (-344 (-479))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-344 (-479)))) (-15 * (|#1| (-344 (-479)) |#1|)) (-15 -3919 ((-83) |#1|)) (-15 -3940 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 * (|#1| (-824) |#1|))) (-47 |#2| |#3|) (-955) (-710)) (T -46)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 68 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 69 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 71 (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3941 (($ $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3919 (((-83) $) 79 T ELT)) (-2878 (($ |#1| |#2|) 78 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2879 (($ $) 82 T ELT)) (-3158 ((|#1| $) 83 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3448 (((-3 $ "failed") $ $) 67 (|has| |#1| (-490)) ELT)) (-3930 ((|#2| $) 81 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 (-479))) 74 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) 66 (|has| |#1| (-490)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3659 ((|#1| $ |#2|) 76 T ELT)) (-2687 (((-628 $) $) 65 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 70 (|has| |#1| (-490)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-344 (-479)) $) 73 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 72 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-47 |#1| |#2|) (-111) (-955) (-710)) (T -47)) +((-3158 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955)))) (-2879 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) (-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-83)))) (-2878 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)))) (-3941 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)))) (-3659 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955)))) (-3931 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)) (-4 *2 (-308))))) +(-13 (-955) (-80 |t#1| |t#1|) (-10 -8 (-15 -3158 (|t#1| $)) (-15 -2879 ($ $)) (-15 -3930 (|t#2| $)) (-15 -3940 ($ (-1 |t#1| |t#1|) $)) (-15 -3919 ((-83) $)) (-15 -2878 ($ |t#1| |t#2|)) (-15 -3941 ($ $)) (-15 -3659 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-308)) (-15 -3931 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-6 (-144)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-490)) (-6 (-490)) |%noBranch|) (IF (|has| |t#1| (-38 (-344 (-479)))) (-6 (-38 (-344 (-479)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-490)) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-551 (-479)) . T) ((-551 |#1|) |has| |#1| (-144)) ((-551 $) |has| |#1| (-490)) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-242) |has| |#1| (-490)) ((-490) |has| |#1| (-490)) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) |has| |#1| (-490)) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) |has| |#1| (-490)) ((-659) . T) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-1204 (((-579 $) (-1075 $) (-1080)) NIL T ELT) (((-579 $) (-1075 $)) NIL T ELT) (((-579 $) (-851 $)) NIL T ELT)) (-1205 (($ (-1075 $) (-1080)) NIL T ELT) (($ (-1075 $)) NIL T ELT) (($ (-851 $)) NIL T ELT)) (-3172 (((-83) $) 9 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1588 (((-579 (-546 $)) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1592 (($ $ (-245 $)) NIL T ELT) (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-579 (-546 $)) (-579 $)) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-3022 (($ $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-1206 (((-579 $) (-1075 $) (-1080)) NIL T ELT) (((-579 $) (-1075 $)) NIL T ELT) (((-579 $) (-851 $)) NIL T ELT)) (-3167 (($ (-1075 $) (-1080)) NIL T ELT) (($ (-1075 $)) NIL T ELT) (($ (-851 $)) NIL T ELT)) (-3141 (((-3 (-546 $) #1#) $) NIL T ELT) (((-3 (-479) #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT)) (-3140 (((-546 $) $) NIL T ELT) (((-479) $) NIL T ELT) (((-344 (-479)) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-479)) (-626 $)) NIL T ELT) (((-2 (|:| |mat| (-626 (-344 (-479)))) (|:| |vec| (-1169 (-344 (-479))))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-344 (-479))) (-626 $)) NIL T ELT)) (-3824 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-2558 (($ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1587 (((-579 (-84)) $) NIL T ELT)) (-3577 (((-84) (-84)) NIL T ELT)) (-2397 (((-83) $) 11 T ELT)) (-2658 (((-83) $) NIL (|has| $ (-944 (-479))) ELT)) (-2983 (((-1029 (-479) (-546 $)) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL T ELT)) (-3116 (((-1075 $) (-1075 $) (-546 $)) NIL T ELT) (((-1075 $) (-1075 $) (-579 (-546 $))) NIL T ELT) (($ $ (-546 $)) NIL T ELT) (($ $ (-579 (-546 $))) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-1585 (((-1075 $) (-546 $)) NIL (|has| $ (-955)) ELT)) (-3940 (($ (-1 $ $) (-546 $)) NIL T ELT)) (-1590 (((-3 (-546 $) #1#) $) NIL T ELT)) (-2267 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL T ELT) (((-626 (-479)) (-1169 $)) NIL T ELT) (((-2 (|:| |mat| (-626 (-344 (-479)))) (|:| |vec| (-1169 (-344 (-479))))) (-1169 $) $) NIL T ELT) (((-626 (-344 (-479))) (-1169 $)) NIL T ELT)) (-1879 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1589 (((-579 (-546 $)) $) NIL T ELT)) (-2222 (($ (-84) $) NIL T ELT) (($ (-84) (-579 $)) NIL T ELT)) (-2618 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1080)) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-2588 (((-688) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1586 (((-83) $ $) NIL T ELT) (((-83) $ (-1080)) NIL T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-2659 (((-83) $) NIL (|has| $ (-944 (-479))) ELT)) (-3750 (($ $ (-546 $) $) NIL T ELT) (($ $ (-579 (-546 $)) (-579 $)) NIL T ELT) (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ $))) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ (-579 $)))) NIL T ELT) (($ $ (-1080) (-1 $ (-579 $))) NIL T ELT) (($ $ (-1080) (-1 $ $)) NIL T ELT) (($ $ (-579 (-84)) (-579 (-1 $ $))) NIL T ELT) (($ $ (-579 (-84)) (-579 (-1 $ (-579 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-579 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-579 $)) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1591 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3740 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2982 (((-1029 (-479) (-546 $)) $) NIL T ELT)) (-3169 (($ $) NIL (|has| $ (-955)) ELT)) (-3954 (((-324) $) NIL T ELT) (((-177) $) NIL T ELT) (((-140 (-324)) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-546 $)) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-1029 (-479) (-546 $))) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-2575 (($ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-2241 (((-83) (-84)) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2645 (($) 6 T CONST)) (-2651 (($) 10 T CONST)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3041 (((-83) $ $) 13 T ELT)) (-3931 (($ $ $) NIL T ELT)) (-3819 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-344 (-479))) NIL T ELT) (($ $ (-479)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-824)) NIL T ELT)) (* (($ (-344 (-479)) $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-824) $) NIL T ELT))) +(((-48) (-13 (-250) (-27) (-944 (-479)) (-944 (-344 (-479))) (-576 (-479)) (-927) (-576 (-344 (-479))) (-118) (-549 (-140 (-324))) (-188) (-551 (-1029 (-479) (-546 $))) (-10 -8 (-15 -2983 ((-1029 (-479) (-546 $)) $)) (-15 -2982 ((-1029 (-479) (-546 $)) $)) (-15 -3824 ($ $)) (-15 -3116 ((-1075 $) (-1075 $) (-546 $))) (-15 -3116 ((-1075 $) (-1075 $) (-579 (-546 $)))) (-15 -3116 ($ $ (-546 $))) (-15 -3116 ($ $ (-579 (-546 $))))))) (T -48)) +((-2983 (*1 *2 *1) (-12 (-5 *2 (-1029 (-479) (-546 (-48)))) (-5 *1 (-48)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-1029 (-479) (-546 (-48)))) (-5 *1 (-48)))) (-3824 (*1 *1 *1) (-5 *1 (-48))) (-3116 (*1 *2 *2 *3) (-12 (-5 *2 (-1075 (-48))) (-5 *3 (-546 (-48))) (-5 *1 (-48)))) (-3116 (*1 *2 *2 *3) (-12 (-5 *2 (-1075 (-48))) (-5 *3 (-579 (-546 (-48)))) (-5 *1 (-48)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-546 (-48))) (-5 *1 (-48)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-546 (-48)))) (-5 *1 (-48))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1926 (((-579 (-440)) $) 17 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 7 T ELT)) (-3217 (((-1085) $) 18 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-49) (-13 (-1006) (-10 -8 (-15 -1926 ((-579 (-440)) $)) (-15 -3217 ((-1085) $))))) (T -49)) +((-1926 (*1 *2 *1) (-12 (-5 *2 (-579 (-440))) (-5 *1 (-49)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-49))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 86 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2649 (((-83) $) 31 T ELT)) (-3141 (((-3 |#1| #1#) $) 34 T ELT)) (-3140 ((|#1| $) 35 T ELT)) (-3941 (($ $) 41 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3158 ((|#1| $) 32 T ELT)) (-1443 (($ $) 75 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1442 (((-83) $) 44 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($ (-688)) 73 T ELT)) (-3925 (($ (-579 (-479))) 74 T ELT)) (-3930 (((-688) $) 45 T ELT)) (-3928 (((-766) $) 92 T ELT) (($ (-479)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3659 ((|#1| $ $) 29 T ELT)) (-3110 (((-688)) 72 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 46 T CONST)) (-2651 (($) 17 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 65 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT))) +(((-50 |#1| |#2|) (-13 (-556 |#1|) (-944 |#1|) (-10 -8 (-15 -3158 (|#1| $)) (-15 -1443 ($ $)) (-15 -3941 ($ $)) (-15 -3659 (|#1| $ $)) (-15 -2396 ($ (-688))) (-15 -3925 ($ (-579 (-479)))) (-15 -1442 ((-83) $)) (-15 -2649 ((-83) $)) (-15 -3930 ((-688) $)) (-15 -3940 ($ (-1 |#1| |#1|) $)))) (-955) (-579 (-1080))) (T -50)) +((-3158 (*1 *2 *1) (-12 (-4 *2 (-955)) (-5 *1 (-50 *2 *3)) (-14 *3 (-579 (-1080))))) (-1443 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-955)) (-14 *3 (-579 (-1080))))) (-3941 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-955)) (-14 *3 (-579 (-1080))))) (-3659 (*1 *2 *1 *1) (-12 (-4 *2 (-955)) (-5 *1 (-50 *2 *3)) (-14 *3 (-579 (-1080))))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) (-14 *4 (-579 (-1080))))) (-3925 (*1 *1 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) (-14 *4 (-579 (-1080))))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) (-14 *4 (-579 (-1080))))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) (-14 *4 (-579 (-1080))))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) (-14 *4 (-579 (-1080))))) (-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-50 *3 *4)) (-14 *4 (-579 (-1080)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1239 (((-690) $) 8 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1240 (((-1008) $) 10 T ELT)) (-3928 (((-766) $) 15 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1241 (($ (-1008) (-690)) 16 T ELT)) (-3041 (((-83) $ $) 12 T ELT))) +(((-51) (-13 (-1006) (-10 -8 (-15 -1241 ($ (-1008) (-690))) (-15 -1240 ((-1008) $)) (-15 -1239 ((-690) $))))) (T -51)) +((-1241 (*1 *1 *2 *3) (-12 (-5 *2 (-1008)) (-5 *3 (-690)) (-5 *1 (-51)))) (-1240 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-51)))) (-1239 (*1 *2 *1) (-12 (-5 *2 (-690)) (-5 *1 (-51))))) +((-2649 (((-83) (-51)) 18 T ELT)) (-3141 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3140 ((|#1| (-51)) 21 T ELT)) (-3928 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -3928 ((-51) |#1|)) (-15 -3141 ((-3 |#1| "failed") (-51))) (-15 -2649 ((-83) (-51))) (-15 -3140 (|#1| (-51)))) (-1119)) (T -52)) +((-3140 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1119)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-83)) (-5 *1 (-52 *4)) (-4 *4 (-1119)))) (-3141 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1119)))) (-3928 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1119))))) +((-2530 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2530 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-955) (-586 |#1|) (-755 |#1|)) (T -53)) +((-2530 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-586 *5)) (-4 *5 (-955)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-755 *5))))) +((-1243 ((|#3| |#3| (-579 (-1080))) 44 T ELT)) (-1242 ((|#3| (-579 (-980 |#1| |#2| |#3|)) |#3| (-824)) 32 T ELT) ((|#3| (-579 (-980 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1242 (|#3| (-579 (-980 |#1| |#2| |#3|)) |#3|)) (-15 -1242 (|#3| (-579 (-980 |#1| |#2| |#3|)) |#3| (-824))) (-15 -1243 (|#3| |#3| (-579 (-1080))))) (-1006) (-13 (-955) (-790 |#1|) (-549 (-794 |#1|))) (-13 (-358 |#2|) (-790 |#1|) (-549 (-794 |#1|)))) (T -54)) +((-1243 (*1 *2 *2 *3) (-12 (-5 *3 (-579 (-1080))) (-4 *4 (-1006)) (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))))) (-1242 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-579 (-980 *5 *6 *2))) (-5 *4 (-824)) (-4 *5 (-1006)) (-4 *6 (-13 (-955) (-790 *5) (-549 (-794 *5)))) (-4 *2 (-13 (-358 *6) (-790 *5) (-549 (-794 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1242 (*1 *2 *3 *2) (-12 (-5 *3 (-579 (-980 *4 *5 *2))) (-4 *4 (-1006)) (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 13 T ELT)) (-3141 (((-3 (-688) "failed") $) 31 T ELT)) (-3140 (((-688) $) NIL T ELT)) (-2397 (((-83) $) 15 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) 17 T ELT)) (-3928 (((-766) $) 22 T ELT) (($ (-688)) 28 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1244 (($) 10 T CONST)) (-3041 (((-83) $ $) 19 T ELT))) +(((-55) (-13 (-1006) (-944 (-688)) (-10 -8 (-15 -1244 ($) -3934) (-15 -3172 ((-83) $)) (-15 -2397 ((-83) $))))) (T -55)) +((-1244 (*1 *1) (-5 *1 (-55))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55))))) +((-1246 (($ $ (-479) |#3|) 60 T ELT)) (-1245 (($ $ (-479) |#4|) 64 T ELT)) (-3096 ((|#3| $ (-479)) 73 T ELT)) (-2874 (((-579 |#2|) $) 41 T ELT)) (-3229 (((-83) |#2| $) 68 T ELT)) (-1937 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2186 (($ $ |#2|) 46 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 21 T ELT)) (-3782 ((|#2| $ (-479) (-479)) NIL T ELT) ((|#2| $ (-479) (-479) |#2|) 29 T ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) 35 T ELT) (((-688) |#2| $) 70 T ELT)) (-3382 (($ $) 45 T ELT)) (-3095 ((|#4| $ (-479)) 76 T ELT)) (-3928 (((-766) $) 82 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 20 T ELT)) (-3041 (((-83) $ $) 67 T ELT)) (-3939 (((-688) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3041 ((-83) |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -3940 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3940 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1937 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1245 (|#1| |#1| (-479) |#4|)) (-15 -1246 (|#1| |#1| (-479) |#3|)) (-15 -2874 ((-579 |#2|) |#1|)) (-15 -3095 (|#4| |#1| (-479))) (-15 -3096 (|#3| |#1| (-479))) (-15 -3782 (|#2| |#1| (-479) (-479) |#2|)) (-15 -3782 (|#2| |#1| (-479) (-479))) (-15 -2186 (|#1| |#1| |#2|)) (-15 -3229 ((-83) |#2| |#1|)) (-15 -1934 ((-688) |#2| |#1|)) (-15 -1934 ((-688) (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3940 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3939 ((-688) |#1|)) (-15 -3382 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1119) (-318 |#2|) (-318 |#2|)) (T -56)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3770 ((|#1| $ (-479) (-479) |#1|) 48 T ELT)) (-1246 (($ $ (-479) |#2|) 46 T ELT)) (-1245 (($ $ (-479) |#3|) 45 T ELT)) (-3706 (($) 7 T CONST)) (-3096 ((|#2| $ (-479)) 50 T ELT)) (-1564 ((|#1| $ (-479) (-479) |#1|) 47 T ELT)) (-3097 ((|#1| $ (-479) (-479)) 52 T ELT)) (-2874 (((-579 |#1|) $) 30 T ELT)) (-3099 (((-688) $) 55 T ELT)) (-3596 (($ (-688) (-688) |#1|) 61 T ELT)) (-3098 (((-688) $) 54 T ELT)) (-3103 (((-479) $) 59 T ELT)) (-3101 (((-479) $) 57 T ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3102 (((-479) $) 58 T ELT)) (-3100 (((-479) $) 56 T ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-2186 (($ $ |#1|) 60 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ (-479) (-479)) 53 T ELT) ((|#1| $ (-479) (-479) |#1|) 51 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3095 ((|#3| $ (-479)) 49 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-57 |#1| |#2| |#3|) (-111) (-1119) (-318 |t#1|) (-318 |t#1|)) (T -57)) +((-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3596 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-688)) (-4 *3 (-1119)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-2186 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-479)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-479)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-479)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-479)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-688)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-688)))) (-3782 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-318 *2)) (-4 *5 (-318 *2)) (-4 *2 (-1119)))) (-3097 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-318 *2)) (-4 *5 (-318 *2)) (-4 *2 (-1119)))) (-3782 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-318 *2)) (-4 *5 (-318 *2)))) (-3096 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1119)) (-4 *5 (-318 *4)) (-4 *2 (-318 *4)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1119)) (-4 *5 (-318 *4)) (-4 *2 (-318 *4)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-579 *3)))) (-3770 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-318 *2)) (-4 *5 (-318 *2)))) (-1564 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-318 *2)) (-4 *5 (-318 *2)))) (-1246 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-479)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-318 *4)) (-4 *5 (-318 *4)))) (-1245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-479)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1119)) (-4 *5 (-318 *4)) (-4 *3 (-318 *4)))) (-1937 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3940 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3940 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3))))) +(-13 (-423 |t#1|) (-10 -8 (-6 -3978) (-6 -3977) (-15 -3596 ($ (-688) (-688) |t#1|)) (-15 -2186 ($ $ |t#1|)) (-15 -3103 ((-479) $)) (-15 -3102 ((-479) $)) (-15 -3101 ((-479) $)) (-15 -3100 ((-479) $)) (-15 -3099 ((-688) $)) (-15 -3098 ((-688) $)) (-15 -3782 (|t#1| $ (-479) (-479))) (-15 -3097 (|t#1| $ (-479) (-479))) (-15 -3782 (|t#1| $ (-479) (-479) |t#1|)) (-15 -3096 (|t#2| $ (-479))) (-15 -3095 (|t#3| $ (-479))) (-15 -2874 ((-579 |t#1|) $)) (-15 -3770 (|t#1| $ (-479) (-479) |t#1|)) (-15 -1564 (|t#1| $ (-479) (-479) |t#1|)) (-15 -1246 ($ $ (-479) |t#2|)) (-15 -1245 ($ $ (-479) |t#3|)) (-15 -3940 ($ (-1 |t#1| |t#1|) $)) (-15 -1937 ($ (-1 |t#1| |t#1|) $)) (-15 -3940 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3940 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) NIL T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) NIL T ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-1247 (($ (-579 |#1|)) 11 T ELT) (($ (-688) |#1|) 14 T ELT)) (-3596 (($ (-688) |#1|) 13 T ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) |#1|) NIL T ELT) ((|#1| $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 10 T ELT)) (-3784 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1247 ($ (-579 |#1|))) (-15 -1247 ($ (-688) |#1|)))) (-1119)) (T -58)) +((-1247 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-58 *3)))) (-1247 (*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-5 *1 (-58 *3)) (-4 *3 (-1119))))) +((-3823 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3824 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3940 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -3823 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3824 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3940 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1119) (-1119)) (T -59)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-59 *5 *2)))) (-3823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3770 ((|#1| $ (-479) (-479) |#1|) NIL T ELT)) (-1246 (($ $ (-479) (-58 |#1|)) NIL T ELT)) (-1245 (($ $ (-479) (-58 |#1|)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3096 (((-58 |#1|) $ (-479)) NIL T ELT)) (-1564 ((|#1| $ (-479) (-479) |#1|) NIL T ELT)) (-3097 ((|#1| $ (-479) (-479)) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL T ELT)) (-3099 (((-688) $) NIL T ELT)) (-3596 (($ (-688) (-688) |#1|) NIL T ELT)) (-3098 (((-688) $) NIL T ELT)) (-3103 (((-479) $) NIL T ELT)) (-3101 (((-479) $) NIL T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3102 (((-479) $) NIL T ELT)) (-3100 (((-479) $) NIL T ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-2186 (($ $ |#1|) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) (-479)) NIL T ELT) ((|#1| $ (-479) (-479) |#1|) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3095 (((-58 |#1|) $ (-479)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -3978))) (-1119)) (T -60)) +NIL +((-1249 (((-1169 (-626 |#1|)) (-626 |#1|)) 61 T ELT)) (-1248 (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 (-579 (-824))))) |#2| (-824)) 49 T ELT)) (-1250 (((-2 (|:| |minor| (-579 (-824))) (|:| -3250 |#2|) (|:| |minors| (-579 (-579 (-824)))) (|:| |ops| (-579 |#2|))) |#2| (-824)) 72 (|has| |#1| (-308)) ELT))) +(((-61 |#1| |#2|) (-10 -7 (-15 -1248 ((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 (-579 (-824))))) |#2| (-824))) (-15 -1249 ((-1169 (-626 |#1|)) (-626 |#1|))) (IF (|has| |#1| (-308)) (-15 -1250 ((-2 (|:| |minor| (-579 (-824))) (|:| -3250 |#2|) (|:| |minors| (-579 (-579 (-824)))) (|:| |ops| (-579 |#2|))) |#2| (-824))) |%noBranch|)) (-490) (-596 |#1|)) (T -61)) +((-1250 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *5 (-490)) (-5 *2 (-2 (|:| |minor| (-579 (-824))) (|:| -3250 *3) (|:| |minors| (-579 (-579 (-824)))) (|:| |ops| (-579 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-824)) (-4 *3 (-596 *5)))) (-1249 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-1169 (-626 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-626 *4)) (-4 *5 (-596 *4)))) (-1248 (*1 *2 *3 *4) (-12 (-4 *5 (-490)) (-5 *2 (-2 (|:| |mat| (-626 *5)) (|:| |vec| (-1169 (-579 (-824)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-824)) (-4 *3 (-596 *5))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3306 ((|#1| $) 42 T ELT)) (-3706 (($) NIL T CONST)) (-3308 ((|#1| |#1| $) 37 T ELT)) (-3307 ((|#1| $) 35 T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) NIL T ELT)) (-3591 (($ |#1| $) 38 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1264 ((|#1| $) 36 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 20 T ELT)) (-3547 (($) 46 T ELT)) (-3305 (((-688) $) 33 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) 19 T ELT)) (-3928 (((-766) $) 32 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) NIL T ELT)) (-1251 (($ (-579 |#1|)) 44 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 17 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 14 (|has| $ (-6 -3977)) ELT))) +(((-62 |#1|) (-13 (-1025 |#1|) (-10 -8 (-15 -1251 ($ (-579 |#1|))))) (-1006)) (T -62)) +((-1251 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-62 *3))))) +((-3928 (((-766) $) 13 T ELT) (($ (-1085)) 9 T ELT) (((-1085) $) 8 T ELT))) +(((-63 |#1|) (-10 -7 (-15 -3928 ((-1085) |#1|)) (-15 -3928 (|#1| (-1085))) (-15 -3928 ((-766) |#1|))) (-64)) (T -63)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-1085)) 20 T ELT) (((-1085) $) 19 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) (((-64) (-111)) (T -64)) NIL -(-13 (-1003) (-423 (-1080))) -(((-72) . T) ((-550 (-1080)) . T) ((-547 (-765)) . T) ((-547 (-1080)) . T) ((-423 (-1080)) . T) ((-1003) . T) ((-1114) . T)) -((-3465 (($ $) 10 T ELT)) (-3466 (($ $) 12 T ELT))) -(((-65 |#1|) (-10 -7 (-15 -3466 (|#1| |#1|)) (-15 -3465 (|#1| |#1|))) (-66)) (T -65)) +(-13 (-1006) (-424 (-1085))) +(((-72) . T) ((-551 (-1085)) . T) ((-548 (-766)) . T) ((-548 (-1085)) . T) ((-424 (-1085)) . T) ((-1006) . T) ((-1119) . T)) +((-3470 (($ $) 10 T ELT)) (-3471 (($ $) 12 T ELT))) +(((-65 |#1|) (-10 -7 (-15 -3471 (|#1| |#1|)) (-15 -3470 (|#1| |#1|))) (-66)) (T -65)) NIL -((-3463 (($ $) 11 T ELT)) (-3461 (($ $) 10 T ELT)) (-3465 (($ $) 9 T ELT)) (-3466 (($ $) 8 T ELT)) (-3464 (($ $) 7 T ELT)) (-3462 (($ $) 6 T ELT))) +((-3468 (($ $) 11 T ELT)) (-3466 (($ $) 10 T ELT)) (-3470 (($ $) 9 T ELT)) (-3471 (($ $) 8 T ELT)) (-3469 (($ $) 7 T ELT)) (-3467 (($ $) 6 T ELT))) (((-66) (-111)) (T -66)) -((-3463 (*1 *1 *1) (-4 *1 (-66))) (-3461 (*1 *1 *1) (-4 *1 (-66))) (-3465 (*1 *1 *1) (-4 *1 (-66))) (-3466 (*1 *1 *1) (-4 *1 (-66))) (-3464 (*1 *1 *1) (-4 *1 (-66))) (-3462 (*1 *1 *1) (-4 *1 (-66)))) -(-13 (-10 -8 (-15 -3462 ($ $)) (-15 -3464 ($ $)) (-15 -3466 ($ $)) (-15 -3465 ($ $)) (-15 -3461 ($ $)) (-15 -3463 ($ $)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3518 (((-1035) $) 11 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 17 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-67) (-13 (-986) (-10 -8 (-15 -3518 ((-1035) $))))) (T -67)) -((-3518 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-67))))) +((-3468 (*1 *1 *1) (-4 *1 (-66))) (-3466 (*1 *1 *1) (-4 *1 (-66))) (-3470 (*1 *1 *1) (-4 *1 (-66))) (-3471 (*1 *1 *1) (-4 *1 (-66))) (-3469 (*1 *1 *1) (-4 *1 (-66))) (-3467 (*1 *1 *1) (-4 *1 (-66)))) +(-13 (-10 -8 (-15 -3467 ($ $)) (-15 -3469 ($ $)) (-15 -3471 ($ $)) (-15 -3470 ($ $)) (-15 -3466 ($ $)) (-15 -3468 ($ $)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3524 (((-1039) $) 11 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 17 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-67) (-13 (-988) (-10 -8 (-15 -3524 ((-1039) $))))) (T -67)) +((-3524 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-67))))) NIL (((-68) (-111)) (T -68)) NIL -(-13 (-10 -7 (-6 -3971) (-6 (-3973 "*")) (-6 -3972) (-6 -3968) (-6 -3966) (-6 -3965) (-6 -3964) (-6 -3969) (-6 -3963) (-6 -3962) (-6 -3961) (-6 -3960) (-6 -3959) (-6 -3967) (-6 -3970) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3958))) -((-2548 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ "failed") $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1247 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-478))) 24 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 16 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3776 ((|#1| $ |#1|) 13 T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2415 (($ $ $) NIL T ELT)) (-3922 (((-765) $) 22 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2647 (($) 8 T CONST)) (-3037 (((-83) $ $) 10 T ELT)) (-3925 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 30 T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-69 |#1|) (-13 (-406) (-238 |#1| |#1|) (-10 -8 (-15 -1247 ($ (-1 |#1| |#1|))) (-15 -1247 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1247 ($ (-1 |#1| |#1| (-478)))))) (-954)) (T -69)) -((-1247 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-69 *3)))) (-1247 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-69 *3)))) (-1247 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-478))) (-4 *3 (-954)) (-5 *1 (-69 *3))))) -((-1248 (((-341 |#2|) |#2| (-578 |#2|)) 10 T ELT) (((-341 |#2|) |#2| |#2|) 11 T ELT))) -(((-70 |#1| |#2|) (-10 -7 (-15 -1248 ((-341 |#2|) |#2| |#2|)) (-15 -1248 ((-341 |#2|) |#2| (-578 |#2|)))) (-13 (-385) (-118)) (-1140 |#1|)) (T -70)) -((-1248 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-13 (-385) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-70 *5 *3)))) (-1248 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-385) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1140 *4))))) -((-2548 (((-83) $ $) 13 T ELT)) (-1249 (((-83) $ $) 14 T ELT)) (-3037 (((-83) $ $) 11 T ELT))) -(((-71 |#1|) (-10 -7 (-15 -1249 ((-83) |#1| |#1|)) (-15 -2548 ((-83) |#1| |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-72)) (T -71)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(-13 (-10 -7 (-6 -3977) (-6 (-3979 "*")) (-6 -3978) (-6 -3974) (-6 -3972) (-6 -3971) (-6 -3970) (-6 -3975) (-6 -3969) (-6 -3968) (-6 -3967) (-6 -3966) (-6 -3965) (-6 -3973) (-6 -3976) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3964))) +((-2553 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ "failed") $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1252 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-479))) 24 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 16 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3782 ((|#1| $ |#1|) 13 T ELT)) (-2994 (($ $ $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-3928 (((-766) $) 22 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2651 (($) 8 T CONST)) (-3041 (((-83) $ $) 10 T ELT)) (-3931 (($ $ $) NIL T ELT)) (** (($ $ (-824)) 30 T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-69 |#1|) (-13 (-407) (-238 |#1| |#1|) (-10 -8 (-15 -1252 ($ (-1 |#1| |#1|))) (-15 -1252 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1252 ($ (-1 |#1| |#1| (-479)))))) (-955)) (T -69)) +((-1252 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-69 *3)))) (-1252 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-69 *3)))) (-1252 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-479))) (-4 *3 (-955)) (-5 *1 (-69 *3))))) +((-1253 (((-342 |#2|) |#2| (-579 |#2|)) 10 T ELT) (((-342 |#2|) |#2| |#2|) 11 T ELT))) +(((-70 |#1| |#2|) (-10 -7 (-15 -1253 ((-342 |#2|) |#2| |#2|)) (-15 -1253 ((-342 |#2|) |#2| (-579 |#2|)))) (-13 (-386) (-118)) (-1145 |#1|)) (T -70)) +((-1253 (*1 *2 *3 *4) (-12 (-5 *4 (-579 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-13 (-386) (-118))) (-5 *2 (-342 *3)) (-5 *1 (-70 *5 *3)))) (-1253 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-386) (-118))) (-5 *2 (-342 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1145 *4))))) +((-2553 (((-83) $ $) 13 T ELT)) (-1254 (((-83) $ $) 14 T ELT)) (-3041 (((-83) $ $) 11 T ELT))) +(((-71 |#1|) (-10 -7 (-15 -1254 ((-83) |#1| |#1|)) (-15 -2553 ((-83) |#1| |#1|)) (-15 -3041 ((-83) |#1| |#1|))) (-72)) (T -71)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) (((-72) (-111)) (T -72)) -((-3037 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) (-1249 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83))))) -(-13 (-1114) (-10 -8 (-15 -3037 ((-83) $ $)) (-15 -2548 ((-83) $ $)) (-15 -1249 ((-83) $ $)))) -(((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) NIL T ELT)) (-3006 ((|#1| $ |#1|) 24 (|has| $ (-6 -3972)) ELT)) (-1276 (($ $ $) NIL (|has| $ (-6 -3972)) ELT)) (-1277 (($ $ $) NIL (|has| $ (-6 -3972)) ELT)) (-1252 (($ $ (-578 |#1|)) 30 T ELT)) (-3764 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3972)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3972)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3118 (($ $) 12 T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) NIL T ELT)) (-3008 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1285 (($ $ |#1| $) 32 T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1251 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1250 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3119 (($ $) 11 T ELT)) (-3011 (((-578 |#1|) $) NIL T ELT)) (-3504 (((-83) $) 13 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 9 T ELT)) (-3541 (($) 31 T ELT)) (-3776 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3010 (((-478) $ $) NIL T ELT)) (-3609 (((-83) $) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) NIL T ELT)) (-3009 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1253 (($ (-687) |#1|) 33 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-73 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3971) (-6 -3972) (-15 -1253 ($ (-687) |#1|)) (-15 -1252 ($ $ (-578 |#1|))) (-15 -1251 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1251 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1250 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1250 ($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|))))) (-1003)) (T -73)) -((-1253 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *1 (-73 *3)) (-4 *3 (-1003)))) (-1252 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-73 *3)))) (-1251 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1003)))) (-1251 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-73 *3)))) (-1250 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-73 *2)))) (-1250 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-578 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-73 *2))))) -((-1254 ((|#3| |#2| |#2|) 34 T ELT)) (-1256 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3973 #1="*"))) ELT)) (-1255 ((|#3| |#2| |#2|) 36 T ELT)) (-1257 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3973 #1#))) ELT))) -(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1254 (|#3| |#2| |#2|)) (-15 -1255 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3973 "*"))) (PROGN (-15 -1256 (|#1| |#2| |#2|)) (-15 -1257 (|#1| |#2|))) |%noBranch|)) (-954) (-1140 |#1|) (-622 |#1| |#4| |#5|) (-317 |#1|) (-317 |#1|)) (T -74)) -((-1257 (*1 *2 *3) (-12 (|has| *2 (-6 (-3973 #1="*"))) (-4 *5 (-317 *2)) (-4 *6 (-317 *2)) (-4 *2 (-954)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1140 *2)) (-4 *4 (-622 *2 *5 *6)))) (-1256 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3973 #1#))) (-4 *5 (-317 *2)) (-4 *6 (-317 *2)) (-4 *2 (-954)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1140 *2)) (-4 *4 (-622 *2 *5 *6)))) (-1255 (*1 *2 *3 *3) (-12 (-4 *4 (-954)) (-4 *2 (-622 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1140 *4)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)))) (-1254 (*1 *2 *3 *3) (-12 (-4 *4 (-954)) (-4 *2 (-622 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1140 *4)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4))))) -((-1260 (($ (-578 |#2|)) 11 T ELT))) -(((-75 |#1| |#2|) (-10 -7 (-15 -1260 (|#1| (-578 |#2|)))) (-76 |#2|) (-1114)) (T -75)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3700 (($) 7 T CONST)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-76 |#1|) (-111) (-1114)) (T -76)) -((-1260 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-4 *1 (-76 *3)))) (-1259 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1114)))) (-3585 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1114)))) (-1258 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1114))))) -(-13 (-422 |t#1|) (-10 -8 (-6 -3972) (-15 -1260 ($ (-578 |t#1|))) (-15 -1259 (|t#1| $)) (-15 -3585 ($ |t#1| $)) (-15 -1258 (|t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 (((-478) $) NIL (|has| (-478) (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| (-478) (-733)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL (|has| (-478) (-943 (-1075))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-3137 (((-478) $) NIL T ELT) (((-1075) $) NIL (|has| (-478) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-478) (-477)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3168 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-478) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-478) (-789 (-323))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL T ELT)) (-2979 (((-478) $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| (-478) (-1052)) ELT)) (-3169 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-3934 (($ (-1 (-478) (-478)) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL T ELT) (((-625 (-478)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-478) (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL (|has| (-478) (-254)) ELT) (((-343 (-478)) $) NIL T ELT)) (-3111 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3744 (($ $ (-578 (-478)) (-578 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-478) (-478)) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-245 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-245 (-478)))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-1075)) (-578 (-478))) NIL (|has| (-478) (-447 (-1075) (-478))) ELT) (($ $ (-1075) (-478)) NIL (|has| (-478) (-447 (-1075) (-478))) ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ $ (-478)) NIL (|has| (-478) (-238 (-478) (-478))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2976 (($ $) NIL T ELT)) (-2978 (((-478) $) NIL T ELT)) (-3948 (((-793 (-478)) $) NIL (|has| (-478) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-478) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-478) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-478) (-926)) ELT) (((-177) $) NIL (|has| (-478) (-926)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-478) (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 8 T ELT) (($ (-478)) NIL T ELT) (($ (-1075)) NIL (|has| (-478) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL T ELT) (((-910 2) $) 10 T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-478) (-814))) (|has| (-478) (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-3112 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-2011 (($ (-343 (-478))) 9 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3360 (($ $) NIL (|has| (-478) (-733)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3925 (($ $ $) NIL T ELT) (($ (-478) (-478)) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ (-478)) NIL T ELT))) -(((-77) (-13 (-897 (-478)) (-547 (-343 (-478))) (-547 (-910 2)) (-10 -8 (-15 -3109 ((-343 (-478)) $)) (-15 -2011 ($ (-343 (-478))))))) (T -77)) -((-3109 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-77)))) (-2011 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-77))))) -((-1271 (((-578 (-869)) $) 14 T ELT)) (-3518 (((-439) $) 12 T ELT)) (-3922 (((-765) $) 21 T ELT)) (-1261 (($ (-439) (-578 (-869))) 16 T ELT))) -(((-78) (-13 (-547 (-765)) (-10 -8 (-15 -3518 ((-439) $)) (-15 -1271 ((-578 (-869)) $)) (-15 -1261 ($ (-439) (-578 (-869))))))) (T -78)) -((-3518 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-78)))) (-1271 (*1 *2 *1) (-12 (-5 *2 (-578 (-869))) (-5 *1 (-78)))) (-1261 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-869))) (-5 *1 (-78))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) NIL T ELT)) (-3299 (($ $ $) NIL T ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) $) NIL (|has| (-83) (-749)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-1713 (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| (-83) (-749))) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3972)) ELT)) (-2890 (($ $) NIL (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-3764 (((-83) $ (-1131 (-478)) (-83)) NIL (|has| $ (-6 -3972)) ELT) (((-83) $ (-478) (-83)) NIL (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-3383 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-83) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-3818 (((-83) (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-1559 (((-83) $ (-478) (-83)) NIL (|has| $ (-6 -3972)) ELT)) (-3094 (((-83) $ (-478)) NIL T ELT)) (-3396 (((-478) (-83) $ (-478)) NIL (|has| (-83) (-1003)) ELT) (((-478) (-83) $) NIL (|has| (-83) (-1003)) ELT) (((-478) (-1 (-83) (-83)) $) NIL T ELT)) (-2870 (((-578 (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-2541 (($ $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-1283 (($ $ $) NIL T ELT)) (-3590 (($ (-687) (-83)) 10 T ELT)) (-1284 (($ $ $) NIL T ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL T ELT)) (-3495 (($ $ $) NIL (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT)) (-2588 (((-578 (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL T ELT)) (-1932 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT) (($ (-1 (-83) (-83)) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2286 (($ $ $ (-478)) NIL T ELT) (($ (-83) $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 (((-83) $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 (-83) "failed") (-1 (-83) (-83)) $) NIL T ELT)) (-2181 (($ $ (-83)) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-83)) (-578 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT) (($ $ (-83) (-83)) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT) (($ $ (-245 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT) (($ $ (-578 (-245 (-83)))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-2187 (((-578 (-83)) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 (($ $ (-1131 (-478))) NIL T ELT) (((-83) $ (-478)) NIL T ELT) (((-83) $ (-478) (-83)) NIL T ELT)) (-2287 (($ $ (-1131 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-1929 (((-687) (-83) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT) (((-687) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-83) (-548 (-467))) ELT)) (-3507 (($ (-578 (-83))) NIL T ELT)) (-3778 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-83) $) NIL T ELT) (($ $ (-83)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1752 (($ (-687) (-83)) 11 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-2542 (($ $ $) NIL T ELT)) (-2293 (($ $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-79) (-13 (-94) (-10 -8 (-15 -1752 ($ (-687) (-83)))))) (T -79)) -((-1752 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-83)) (-5 *1 (-79))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-80 |#1| |#2|) (-111) (-954) (-954)) (T -80)) -NIL -(-13 (-585 |t#1|) (-961 |t#2|) (-10 -7 (-6 -3966) (-6 -3965))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-1003) . T) ((-1114) . T)) -((-2541 (($ $ $) 12 T ELT)) (-2540 (($ $) 8 T ELT)) (-2542 (($ $ $) 10 T ELT))) -(((-81 |#1|) (-10 -7 (-15 -2541 (|#1| |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1|))) (-82)) (T -81)) -NIL -((-2295 (($ $) 8 T ELT)) (-2541 (($ $ $) 9 T ELT)) (-2540 (($ $) 11 T ELT)) (-2542 (($ $ $) 10 T ELT)) (-2293 (($ $ $) 6 T ELT)) (-2294 (($ $ $) 7 T ELT))) +((-3041 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) (-2553 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) (-1254 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83))))) +(-13 (-1119) (-10 -8 (-15 -3041 ((-83) $ $)) (-15 -2553 ((-83) $ $)) (-15 -1254 ((-83) $ $)))) +(((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) NIL T ELT)) (-3010 ((|#1| $ |#1|) 24 (|has| $ (-6 -3978)) ELT)) (-1281 (($ $ $) NIL (|has| $ (-6 -3978)) ELT)) (-1282 (($ $ $) NIL (|has| $ (-6 -3978)) ELT)) (-1257 (($ $ (-579 |#1|)) 30 T ELT)) (-3770 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3978)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3978)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3121 (($ $) 12 T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1290 (($ $ |#1| $) 32 T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1256 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1255 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-579 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3122 (($ $) 11 T ELT)) (-3015 (((-579 |#1|) $) NIL T ELT)) (-3509 (((-83) $) 13 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 9 T ELT)) (-3547 (($) 31 T ELT)) (-3782 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3014 (((-479) $ $) NIL T ELT)) (-3615 (((-83) $) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1258 (($ (-688) |#1|) 33 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-73 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3977) (-6 -3978) (-15 -1258 ($ (-688) |#1|)) (-15 -1257 ($ $ (-579 |#1|))) (-15 -1256 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1256 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1255 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1255 ($ $ |#1| (-1 (-579 |#1|) |#1| |#1| |#1|))))) (-1006)) (T -73)) +((-1258 (*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-5 *1 (-73 *3)) (-4 *3 (-1006)))) (-1257 (*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-73 *3)))) (-1256 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1006)))) (-1256 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-73 *3)))) (-1255 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-73 *2)))) (-1255 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-579 *2) *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-73 *2))))) +((-1259 ((|#3| |#2| |#2|) 34 T ELT)) (-1261 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3979 #1="*"))) ELT)) (-1260 ((|#3| |#2| |#2|) 36 T ELT)) (-1262 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3979 #1#))) ELT))) +(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1259 (|#3| |#2| |#2|)) (-15 -1260 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3979 "*"))) (PROGN (-15 -1261 (|#1| |#2| |#2|)) (-15 -1262 (|#1| |#2|))) |%noBranch|)) (-955) (-1145 |#1|) (-623 |#1| |#4| |#5|) (-318 |#1|) (-318 |#1|)) (T -74)) +((-1262 (*1 *2 *3) (-12 (|has| *2 (-6 (-3979 #1="*"))) (-4 *5 (-318 *2)) (-4 *6 (-318 *2)) (-4 *2 (-955)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1145 *2)) (-4 *4 (-623 *2 *5 *6)))) (-1261 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3979 #1#))) (-4 *5 (-318 *2)) (-4 *6 (-318 *2)) (-4 *2 (-955)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1145 *2)) (-4 *4 (-623 *2 *5 *6)))) (-1260 (*1 *2 *3 *3) (-12 (-4 *4 (-955)) (-4 *2 (-623 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1145 *4)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)))) (-1259 (*1 *2 *3 *3) (-12 (-4 *4 (-955)) (-4 *2 (-623 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1145 *4)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4))))) +((-1265 (($ (-579 |#2|)) 11 T ELT))) +(((-75 |#1| |#2|) (-10 -7 (-15 -1265 (|#1| (-579 |#2|)))) (-76 |#2|) (-1119)) (T -75)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3706 (($) 7 T CONST)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-76 |#1|) (-111) (-1119)) (T -76)) +((-1265 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-4 *1 (-76 *3)))) (-1264 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1119)))) (-3591 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1119)))) (-1263 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1119))))) +(-13 (-423 |t#1|) (-10 -8 (-6 -3978) (-15 -1265 ($ (-579 |t#1|))) (-15 -1264 (|t#1| $)) (-15 -3591 ($ |t#1| $)) (-15 -1263 (|t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 (((-479) $) NIL (|has| (-479) (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| (-479) (-734)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL (|has| (-479) (-944 (-1080))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| (-479) (-944 (-479))) ELT) (((-3 (-479) #1#) $) NIL (|has| (-479) (-944 (-479))) ELT)) (-3140 (((-479) $) NIL T ELT) (((-1080) $) NIL (|has| (-479) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL (|has| (-479) (-944 (-479))) ELT) (((-479) $) NIL (|has| (-479) (-944 (-479))) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-479)) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-479) (-478)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| (-479) (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| (-479) (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| (-479) (-790 (-324))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-479) $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| (-479) (-1056)) ELT)) (-3171 (((-83) $) NIL (|has| (-479) (-734)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-479) (-750)) ELT)) (-3940 (($ (-1 (-479) (-479)) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL T ELT) (((-626 (-479)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-479) (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL (|has| (-479) (-254)) ELT) (((-344 (-479)) $) NIL T ELT)) (-3114 (((-479) $) NIL (|has| (-479) (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-3750 (($ $ (-579 (-479)) (-579 (-479))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-479) (-479)) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-245 (-479))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-579 (-245 (-479)))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-579 (-1080)) (-579 (-479))) NIL (|has| (-479) (-448 (-1080) (-479))) ELT) (($ $ (-1080) (-479)) NIL (|has| (-479) (-448 (-1080) (-479))) ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ $ (-479)) NIL (|has| (-479) (-238 (-479) (-479))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $ (-1 (-479) (-479))) NIL T ELT) (($ $ (-1 (-479) (-479)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $) NIL (|has| (-479) (-187)) ELT) (($ $ (-688)) NIL (|has| (-479) (-187)) ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-479) $) NIL T ELT)) (-3954 (((-794 (-479)) $) NIL (|has| (-479) (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| (-479) (-549 (-794 (-324)))) ELT) (((-468) $) NIL (|has| (-479) (-549 (-468))) ELT) (((-324) $) NIL (|has| (-479) (-927)) ELT) (((-177) $) NIL (|has| (-479) (-927)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| (-479) (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) 8 T ELT) (($ (-479)) NIL T ELT) (($ (-1080)) NIL (|has| (-479) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL T ELT) (((-911 2) $) 10 T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-479) (-815))) (|has| (-479) (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-3115 (((-479) $) NIL (|has| (-479) (-478)) ELT)) (-2016 (($ (-344 (-479))) 9 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3365 (($ $) NIL (|has| (-479) (-734)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1 (-479) (-479))) NIL T ELT) (($ $ (-1 (-479) (-479)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $) NIL (|has| (-479) (-187)) ELT) (($ $ (-688)) NIL (|has| (-479) (-187)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-3931 (($ $ $) NIL T ELT) (($ (-479) (-479)) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ (-479)) NIL T ELT))) +(((-77) (-13 (-898 (-479)) (-548 (-344 (-479))) (-548 (-911 2)) (-10 -8 (-15 -3112 ((-344 (-479)) $)) (-15 -2016 ($ (-344 (-479))))))) (T -77)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-77)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-77))))) +((-1276 (((-579 (-870)) $) 14 T ELT)) (-3524 (((-440) $) 12 T ELT)) (-3928 (((-766) $) 21 T ELT)) (-1266 (($ (-440) (-579 (-870))) 16 T ELT))) +(((-78) (-13 (-548 (-766)) (-10 -8 (-15 -3524 ((-440) $)) (-15 -1276 ((-579 (-870)) $)) (-15 -1266 ($ (-440) (-579 (-870))))))) (T -78)) +((-3524 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-78)))) (-1276 (*1 *2 *1) (-12 (-5 *2 (-579 (-870))) (-5 *1 (-78)))) (-1266 (*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-579 (-870))) (-5 *1 (-78))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) NIL T ELT)) (-3304 (($ $ $) NIL T ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) $) NIL (|has| (-83) (-750)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-1718 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-750))) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-2894 (($ $) NIL (|has| (-83) (-750)) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-3770 (((-83) $ (-1136 (-479)) (-83)) NIL (|has| $ (-6 -3978)) ELT) (((-83) $ (-479) (-83)) NIL (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-3388 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-83) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-3824 (((-83) (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-1564 (((-83) $ (-479) (-83)) NIL (|has| $ (-6 -3978)) ELT)) (-3097 (((-83) $ (-479)) NIL T ELT)) (-3401 (((-479) (-83) $ (-479)) NIL (|has| (-83) (-1006)) ELT) (((-479) (-83) $) NIL (|has| (-83) (-1006)) ELT) (((-479) (-1 (-83) (-83)) $) NIL T ELT)) (-2874 (((-579 (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-2546 (($ $ $) NIL T ELT)) (-2545 (($ $) NIL T ELT)) (-1288 (($ $ $) NIL T ELT)) (-3596 (($ (-688) (-83)) 10 T ELT)) (-1289 (($ $ $) NIL T ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL T ELT)) (-3500 (($ $ $) NIL (|has| (-83) (-750)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT)) (-2593 (((-579 (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL T ELT)) (-1937 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT) (($ (-1 (-83) (-83)) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2291 (($ $ $ (-479)) NIL T ELT) (($ (-83) $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 (((-83) $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 (-83) "failed") (-1 (-83) (-83)) $) NIL T ELT)) (-2186 (($ $ (-83)) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-83)) (-579 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT) (($ $ (-83) (-83)) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT) (($ $ (-245 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT) (($ $ (-579 (-245 (-83)))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-2192 (((-579 (-83)) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 (($ $ (-1136 (-479))) NIL T ELT) (((-83) $ (-479)) NIL T ELT) (((-83) $ (-479) (-83)) NIL T ELT)) (-2292 (($ $ (-1136 (-479))) NIL T ELT) (($ $ (-479)) NIL T ELT)) (-1934 (((-688) (-83) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT) (((-688) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-83) (-549 (-468))) ELT)) (-3512 (($ (-579 (-83))) NIL T ELT)) (-3784 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-83) $) NIL T ELT) (($ $ (-83)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1757 (($ (-688) (-83)) 11 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-2547 (($ $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-79) (-13 (-94) (-10 -8 (-15 -1757 ($ (-688) (-83)))))) (T -79)) +((-1757 (*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-5 *3 (-83)) (-5 *1 (-79))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-80 |#1| |#2|) (-111) (-955) (-955)) (T -80)) +NIL +(-13 (-586 |t#1|) (-962 |t#2|) (-10 -7 (-6 -3972) (-6 -3971))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-957 |#2|) . T) ((-962 |#2|) . T) ((-1006) . T) ((-1119) . T)) +((-2546 (($ $ $) 12 T ELT)) (-2545 (($ $) 8 T ELT)) (-2547 (($ $ $) 10 T ELT))) +(((-81 |#1|) (-10 -7 (-15 -2546 (|#1| |#1| |#1|)) (-15 -2547 (|#1| |#1| |#1|)) (-15 -2545 (|#1| |#1|))) (-82)) (T -81)) +NIL +((-2300 (($ $) 8 T ELT)) (-2546 (($ $ $) 9 T ELT)) (-2545 (($ $) 11 T ELT)) (-2547 (($ $ $) 10 T ELT)) (-2298 (($ $ $) 6 T ELT)) (-2299 (($ $ $) 7 T ELT))) (((-82) (-111)) (T -82)) -((-2540 (*1 *1 *1) (-4 *1 (-82))) (-2542 (*1 *1 *1 *1) (-4 *1 (-82))) (-2541 (*1 *1 *1 *1) (-4 *1 (-82)))) -(-13 (-599) (-10 -8 (-15 -2540 ($ $)) (-15 -2542 ($ $ $)) (-15 -2541 ($ $ $)))) -(((-599) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) 9 T ELT)) (-3299 (($ $ $) 14 T ELT)) (-2836 (($) 6 T CONST)) (-3117 (((-687)) 23 T ELT)) (-2975 (($) 31 T ELT)) (-2541 (($ $ $) 12 T ELT)) (-2540 (($ $) 8 T ELT)) (-1283 (($ $ $) 15 T ELT)) (-1284 (($ $ $) 16 T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) 29 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) 27 T ELT)) (-2834 (($ $ $) 19 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2835 (($) 7 T CONST)) (-2833 (($ $ $) 20 T ELT)) (-3948 (((-467) $) 33 T ELT)) (-3922 (((-765) $) 35 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2542 (($ $ $) 10 T ELT)) (-2293 (($ $ $) 13 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 21 T ELT)) (-2294 (($ $ $) 11 T ELT))) -(((-83) (-13 (-745) (-873) (-548 (-467)) (-10 -8 (-15 -3299 ($ $ $)) (-15 -1284 ($ $ $)) (-15 -1283 ($ $ $))))) (T -83)) -((-3299 (*1 *1 *1 *1) (-5 *1 (-83))) (-1284 (*1 *1 *1 *1) (-5 *1 (-83))) (-1283 (*1 *1 *1 *1) (-5 *1 (-83)))) -((-2548 (((-83) $ $) NIL T ELT)) (-1505 (((-687) $) 92 T ELT) (($ $ (-687)) 38 T ELT)) (-1269 (((-83) $) 42 T ELT)) (-1263 (($ $ (-1059) (-689)) 59 T ELT) (($ $ (-439) (-689)) 34 T ELT)) (-1262 (($ $ (-45 (-1059) (-689))) 16 T ELT)) (-2822 (((-3 (-689) "failed") $ (-1059)) 27 T ELT) (((-627 (-689)) $ (-439)) 33 T ELT)) (-1271 (((-45 (-1059) (-689)) $) 15 T ELT)) (-3571 (($ (-1075)) 20 T ELT) (($ (-1075) (-687)) 23 T ELT) (($ (-1075) (-55)) 24 T ELT)) (-1270 (((-83) $) 40 T ELT)) (-1268 (((-83) $) 44 T ELT)) (-3518 (((-1075) $) 8 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2613 (((-83) $ (-1075)) 11 T ELT)) (-2110 (($ $ (-1 (-467) (-578 (-467)))) 65 T ELT) (((-627 (-1 (-467) (-578 (-467)))) $) 69 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1265 (((-83) $ (-439)) 37 T ELT)) (-1267 (($ $ (-1 (-83) $ $)) 46 T ELT)) (-3593 (((-627 (-1 (-765) (-578 (-765)))) $) 67 T ELT) (($ $ (-1 (-765) (-578 (-765)))) 52 T ELT) (($ $ (-1 (-765) (-765))) 54 T ELT)) (-1264 (($ $ (-1059)) 56 T ELT) (($ $ (-439)) 57 T ELT)) (-3377 (($ $) 75 T ELT)) (-1266 (($ $ (-1 (-83) $ $)) 47 T ELT)) (-3922 (((-765) $) 61 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2773 (($ $ (-439)) 35 T ELT)) (-2501 (((-55) $) 70 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 88 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 104 T ELT))) -(((-84) (-13 (-749) (-740 (-1075)) (-10 -8 (-15 -1271 ((-45 (-1059) (-689)) $)) (-15 -3377 ($ $)) (-15 -3571 ($ (-1075))) (-15 -3571 ($ (-1075) (-687))) (-15 -3571 ($ (-1075) (-55))) (-15 -1270 ((-83) $)) (-15 -1269 ((-83) $)) (-15 -1268 ((-83) $)) (-15 -1505 ((-687) $)) (-15 -1505 ($ $ (-687))) (-15 -1267 ($ $ (-1 (-83) $ $))) (-15 -1266 ($ $ (-1 (-83) $ $))) (-15 -3593 ((-627 (-1 (-765) (-578 (-765)))) $)) (-15 -3593 ($ $ (-1 (-765) (-578 (-765))))) (-15 -3593 ($ $ (-1 (-765) (-765)))) (-15 -2110 ($ $ (-1 (-467) (-578 (-467))))) (-15 -2110 ((-627 (-1 (-467) (-578 (-467)))) $)) (-15 -1265 ((-83) $ (-439))) (-15 -2773 ($ $ (-439))) (-15 -1264 ($ $ (-1059))) (-15 -1264 ($ $ (-439))) (-15 -2822 ((-3 (-689) "failed") $ (-1059))) (-15 -2822 ((-627 (-689)) $ (-439))) (-15 -1263 ($ $ (-1059) (-689))) (-15 -1263 ($ $ (-439) (-689))) (-15 -1262 ($ $ (-45 (-1059) (-689))))))) (T -84)) -((-1271 (*1 *2 *1) (-12 (-5 *2 (-45 (-1059) (-689))) (-5 *1 (-84)))) (-3377 (*1 *1 *1) (-5 *1 (-84))) (-3571 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-84)))) (-3571 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-687)) (-5 *1 (-84)))) (-3571 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-55)) (-5 *1 (-84)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1269 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-84)))) (-1505 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-84)))) (-1267 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84)))) (-1266 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-627 (-1 (-765) (-578 (-765))))) (-5 *1 (-84)))) (-3593 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-765) (-578 (-765)))) (-5 *1 (-84)))) (-3593 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-84)))) (-2110 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-467) (-578 (-467)))) (-5 *1 (-84)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-627 (-1 (-467) (-578 (-467))))) (-5 *1 (-84)))) (-1265 (*1 *2 *1 *3) (-12 (-5 *3 (-439)) (-5 *2 (-83)) (-5 *1 (-84)))) (-2773 (*1 *1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-84)))) (-1264 (*1 *1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-84)))) (-1264 (*1 *1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-84)))) (-2822 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1059)) (-5 *2 (-689)) (-5 *1 (-84)))) (-2822 (*1 *2 *1 *3) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-689))) (-5 *1 (-84)))) (-1263 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1059)) (-5 *3 (-689)) (-5 *1 (-84)))) (-1263 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-689)) (-5 *1 (-84)))) (-1262 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1059) (-689))) (-5 *1 (-84))))) -((-2498 (((-3 (-1 |#1| (-578 |#1|)) #1="failed") (-84)) 23 T ELT) (((-84) (-84) (-1 |#1| |#1|)) 13 T ELT) (((-84) (-84) (-1 |#1| (-578 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-84) (-578 |#1|)) 25 T ELT)) (-1272 (((-3 (-578 (-1 |#1| (-578 |#1|))) #1#) (-84)) 29 T ELT) (((-84) (-84) (-1 |#1| |#1|)) 33 T ELT) (((-84) (-84) (-578 (-1 |#1| (-578 |#1|)))) 30 T ELT)) (-1273 (((-84) |#1|) 63 T ELT)) (-1274 (((-3 |#1| #1#) (-84)) 58 T ELT))) -(((-85 |#1|) (-10 -7 (-15 -2498 ((-3 |#1| #1="failed") (-84) (-578 |#1|))) (-15 -2498 ((-84) (-84) (-1 |#1| (-578 |#1|)))) (-15 -2498 ((-84) (-84) (-1 |#1| |#1|))) (-15 -2498 ((-3 (-1 |#1| (-578 |#1|)) #1#) (-84))) (-15 -1272 ((-84) (-84) (-578 (-1 |#1| (-578 |#1|))))) (-15 -1272 ((-84) (-84) (-1 |#1| |#1|))) (-15 -1272 ((-3 (-578 (-1 |#1| (-578 |#1|))) #1#) (-84))) (-15 -1273 ((-84) |#1|)) (-15 -1274 ((-3 |#1| #1#) (-84)))) (-1003)) (T -85)) -((-1274 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *1 (-85 *2)) (-4 *2 (-1003)))) (-1273 (*1 *2 *3) (-12 (-5 *2 (-84)) (-5 *1 (-85 *3)) (-4 *3 (-1003)))) (-1272 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-578 (-1 *4 (-578 *4)))) (-5 *1 (-85 *4)) (-4 *4 (-1003)))) (-1272 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-85 *4)))) (-1272 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 (-1 *4 (-578 *4)))) (-4 *4 (-1003)) (-5 *1 (-85 *4)))) (-2498 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-1 *4 (-578 *4))) (-5 *1 (-85 *4)) (-4 *4 (-1003)))) (-2498 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-85 *4)))) (-2498 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 (-578 *4))) (-4 *4 (-1003)) (-5 *1 (-85 *4)))) (-2498 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-578 *2)) (-5 *1 (-85 *2)) (-4 *2 (-1003))))) -((-1275 (((-478) |#2|) 41 T ELT))) -(((-86 |#1| |#2|) (-10 -7 (-15 -1275 ((-478) |#2|))) (-13 (-308) (-943 (-343 (-478)))) (-1140 |#1|)) (T -86)) -((-1275 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-943 (-343 *2)))) (-5 *2 (-478)) (-5 *1 (-86 *4 *3)) (-4 *3 (-1140 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3018 (($ $ (-478)) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2591 (($ (-1070 (-478)) (-478)) NIL T ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2592 (($ $) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3748 (((-687) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2594 (((-478)) NIL T ELT)) (-2593 (((-478) $) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3745 (($ $ (-478)) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-2595 (((-1055 (-478)) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3746 (((-478) $ (-478)) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-87 |#1|) (-772 |#1|) (-478)) (T -87)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-87 |#1|) (-814)) ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| (-87 |#1|) (-814)) ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| (-87 |#1|) (-733)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-87 |#1|) #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL (|has| (-87 |#1|) (-943 (-1075))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-87 |#1|) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-87 |#1|) (-943 (-478))) ELT)) (-3137 (((-87 |#1|) $) NIL T ELT) (((-1075) $) NIL (|has| (-87 |#1|) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL (|has| (-87 |#1|) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-87 |#1|) (-943 (-478))) ELT)) (-3706 (($ $) NIL T ELT) (($ (-478) $) NIL T ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| (-87 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| (-87 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-87 |#1|))) (|:| |vec| (-1164 (-87 |#1|)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-87 |#1|)) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-87 |#1|) (-477)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3168 (((-83) $) NIL (|has| (-87 |#1|) (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-87 |#1|) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-87 |#1|) (-789 (-323))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL T ELT)) (-2979 (((-87 |#1|) $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| (-87 |#1|) (-1052)) ELT)) (-3169 (((-83) $) NIL (|has| (-87 |#1|) (-733)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-3934 (($ (-1 (-87 |#1|) (-87 |#1|)) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| (-87 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| (-87 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-87 |#1|))) (|:| |vec| (-1164 (-87 |#1|)))) (-1164 $) $) NIL T ELT) (((-625 (-87 |#1|)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-87 |#1|) (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL (|has| (-87 |#1|) (-254)) ELT)) (-3111 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-87 |#1|) (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-87 |#1|) (-814)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3744 (($ $ (-578 (-87 |#1|)) (-578 (-87 |#1|))) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-87 |#1|) (-87 |#1|)) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-245 (-87 |#1|))) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-578 (-245 (-87 |#1|)))) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-578 (-1075)) (-578 (-87 |#1|))) NIL (|has| (-87 |#1|) (-447 (-1075) (-87 |#1|))) ELT) (($ $ (-1075) (-87 |#1|)) NIL (|has| (-87 |#1|) (-447 (-1075) (-87 |#1|))) ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ $ (-87 |#1|)) NIL (|has| (-87 |#1|) (-238 (-87 |#1|) (-87 |#1|))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $ (-1 (-87 |#1|) (-87 |#1|))) NIL T ELT) (($ $ (-1 (-87 |#1|) (-87 |#1|)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-87 |#1|) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-87 |#1|) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-87 |#1|) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-87 |#1|) (-804 (-1075))) ELT) (($ $) NIL (|has| (-87 |#1|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-87 |#1|) (-187)) ELT)) (-2976 (($ $) NIL T ELT)) (-2978 (((-87 |#1|) $) NIL T ELT)) (-3948 (((-793 (-478)) $) NIL (|has| (-87 |#1|) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-87 |#1|) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-87 |#1|) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-87 |#1|) (-926)) ELT) (((-177) $) NIL (|has| (-87 |#1|) (-926)) ELT)) (-2596 (((-146 (-343 (-478))) $) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-87 |#1|) (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-87 |#1|)) NIL T ELT) (($ (-1075)) NIL (|has| (-87 |#1|) (-943 (-1075))) ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-87 |#1|) (-814))) (|has| (-87 |#1|) (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-3112 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-477)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3746 (((-343 (-478)) $ (-478)) NIL T ELT)) (-3360 (($ $) NIL (|has| (-87 |#1|) (-733)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1 (-87 |#1|) (-87 |#1|))) NIL T ELT) (($ $ (-1 (-87 |#1|) (-87 |#1|)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-87 |#1|) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-87 |#1|) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-87 |#1|) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-87 |#1|) (-804 (-1075))) ELT) (($ $) NIL (|has| (-87 |#1|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-87 |#1|) (-187)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| (-87 |#1|) (-749)) ELT)) (-3925 (($ $ $) NIL T ELT) (($ (-87 |#1|) (-87 |#1|)) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-87 |#1|) $) NIL T ELT) (($ $ (-87 |#1|)) NIL T ELT))) -(((-88 |#1|) (-13 (-897 (-87 |#1|)) (-10 -8 (-15 -3746 ((-343 (-478)) $ (-478))) (-15 -2596 ((-146 (-343 (-478))) $)) (-15 -3706 ($ $)) (-15 -3706 ($ (-478) $)))) (-478)) (T -88)) -((-3746 (*1 *2 *1 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-88 *4)) (-14 *4 *3) (-5 *3 (-478)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-88 *3)) (-14 *3 (-478)))) (-3706 (*1 *1 *1) (-12 (-5 *1 (-88 *2)) (-14 *2 (-478)))) (-3706 (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-88 *3)) (-14 *3 *2)))) -((-3764 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3012 (((-578 $) $) 31 T ELT)) (-3008 (((-83) $ $) 36 T ELT)) (-3225 (((-83) |#2| $) 40 T ELT)) (-3011 (((-578 |#2|) $) 25 T ELT)) (-3504 (((-83) $) 18 T ELT)) (-3776 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3609 (((-83) $) 57 T ELT)) (-3922 (((-765) $) 47 T ELT)) (-3499 (((-578 $) $) 32 T ELT)) (-3037 (((-83) $ $) 38 T ELT)) (-3933 (((-687) $) 50 T ELT))) -(((-89 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -3764 (|#1| |#1| #1="right" |#1|)) (-15 -3764 (|#1| |#1| #2="left" |#1|)) (-15 -3776 (|#1| |#1| #1#)) (-15 -3776 (|#1| |#1| #2#)) (-15 -3764 (|#2| |#1| #3="value" |#2|)) (-15 -3008 ((-83) |#1| |#1|)) (-15 -3011 ((-578 |#2|) |#1|)) (-15 -3609 ((-83) |#1|)) (-15 -3776 (|#2| |#1| #3#)) (-15 -3504 ((-83) |#1|)) (-15 -3012 ((-578 |#1|) |#1|)) (-15 -3499 ((-578 |#1|) |#1|)) (-15 -3225 ((-83) |#2| |#1|)) (-15 -3933 ((-687) |#1|))) (-90 |#2|) (-1114)) (T -89)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 52 T ELT)) (-3006 ((|#1| $ |#1|) 43 (|has| $ (-6 -3972)) ELT)) (-1276 (($ $ $) 58 (|has| $ (-6 -3972)) ELT)) (-1277 (($ $ $) 60 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3972)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3972)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 45 (|has| $ (-6 -3972)) ELT)) (-3700 (($) 7 T CONST)) (-3118 (($ $) 63 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 54 T ELT)) (-3008 (((-83) $ $) 46 (|has| |#1| (-1003)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3119 (($ $) 65 T ELT)) (-3011 (((-578 |#1|) $) 49 T ELT)) (-3504 (((-83) $) 53 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3010 (((-478) $ $) 48 T ELT)) (-3609 (((-83) $) 50 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) 55 T ELT)) (-3009 (((-83) $ $) 47 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-90 |#1|) (-111) (-1114)) (T -90)) -((-3119 (*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1114)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-90 *3)) (-4 *3 (-1114)))) (-3118 (*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1114)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-90 *3)) (-4 *3 (-1114)))) (-3764 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3972)) (-4 *1 (-90 *3)) (-4 *3 (-1114)))) (-1277 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-90 *2)) (-4 *2 (-1114)))) (-3764 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3972)) (-4 *1 (-90 *3)) (-4 *3 (-1114)))) (-1276 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-90 *2)) (-4 *2 (-1114))))) -(-13 (-916 |t#1|) (-10 -8 (-15 -3119 ($ $)) (-15 -3776 ($ $ "left")) (-15 -3118 ($ $)) (-15 -3776 ($ $ "right")) (IF (|has| $ (-6 -3972)) (PROGN (-15 -3764 ($ $ "left" $)) (-15 -1277 ($ $ $)) (-15 -3764 ($ $ "right" $)) (-15 -1276 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-916 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-1280 (((-83) |#1|) 29 T ELT)) (-1279 (((-687) (-687)) 28 T ELT) (((-687)) 27 T ELT)) (-1278 (((-83) |#1| (-83)) 30 T ELT) (((-83) |#1|) 31 T ELT))) -(((-91 |#1|) (-10 -7 (-15 -1278 ((-83) |#1|)) (-15 -1278 ((-83) |#1| (-83))) (-15 -1279 ((-687))) (-15 -1279 ((-687) (-687))) (-15 -1280 ((-83) |#1|))) (-1140 (-478))) (T -91)) -((-1280 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478))))) (-1279 (*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478))))) (-1279 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478))))) (-1278 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478))))) (-1278 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478)))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 18 T ELT)) (-3395 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3006 ((|#1| $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1276 (($ $ $) 21 (|has| $ (-6 -3972)) ELT)) (-1277 (($ $ $) 23 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3972)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3972)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3118 (($ $) 20 T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) NIL T ELT)) (-3008 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1285 (($ $ |#1| $) 27 T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3119 (($ $) 22 T ELT)) (-3011 (((-578 |#1|) $) NIL T ELT)) (-3504 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-1281 (($ |#1| $) 28 T ELT)) (-3585 (($ |#1| $) 15 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 17 T ELT)) (-3541 (($) 11 T ELT)) (-3776 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3010 (((-478) $ $) NIL T ELT)) (-3609 (((-83) $) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) NIL T ELT)) (-3009 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1282 (($ (-578 |#1|)) 16 T ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-92 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3972) (-6 -3971) (-15 -1282 ($ (-578 |#1|))) (-15 -3585 ($ |#1| $)) (-15 -1281 ($ |#1| $)) (-15 -3395 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-749)) (T -92)) -((-1282 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-92 *3)))) (-3585 (*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-749)))) (-1281 (*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-749)))) (-3395 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-92 *3)) (|:| |greater| (-92 *3)))) (-5 *1 (-92 *3)) (-4 *3 (-749))))) -((-2295 (($ $) 13 T ELT)) (-2540 (($ $) 11 T ELT)) (-1283 (($ $ $) 23 T ELT)) (-1284 (($ $ $) 21 T ELT)) (-2293 (($ $ $) 19 T ELT)) (-2294 (($ $ $) 17 T ELT))) -(((-93 |#1|) (-10 -7 (-15 -1283 (|#1| |#1| |#1|)) (-15 -1284 (|#1| |#1| |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -2294 (|#1| |#1| |#1|)) (-15 -2293 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1|))) (-94)) (T -93)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-2295 (($ $) 103 T ELT)) (-3299 (($ $ $) 31 T ELT)) (-2180 (((-1170) $ (-478) (-478)) 66 (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) $) 98 (|has| (-83) (-749)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) 92 T ELT)) (-1713 (($ $) 102 (-12 (|has| (-83) (-749)) (|has| $ (-6 -3972))) ELT) (($ (-1 (-83) (-83) (-83)) $) 101 (|has| $ (-6 -3972)) ELT)) (-2890 (($ $) 97 (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $) 91 T ELT)) (-3764 (((-83) $ (-1131 (-478)) (-83)) 88 (|has| $ (-6 -3972)) ELT) (((-83) $ (-478) (-83)) 54 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) (-83)) $) 71 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 38 T CONST)) (-2279 (($ $) 100 (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) 90 T ELT)) (-1336 (($ $) 68 (-12 (|has| (-83) (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ (-1 (-83) (-83)) $) 72 (|has| $ (-6 -3971)) ELT) (($ (-83) $) 69 (-12 (|has| (-83) (-1003)) (|has| $ (-6 -3971))) ELT)) (-3818 (((-83) (-1 (-83) (-83) (-83)) $) 74 (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) 73 (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) 70 (-12 (|has| (-83) (-1003)) (|has| $ (-6 -3971))) ELT)) (-1559 (((-83) $ (-478) (-83)) 53 (|has| $ (-6 -3972)) ELT)) (-3094 (((-83) $ (-478)) 55 T ELT)) (-3396 (((-478) (-83) $ (-478)) 95 (|has| (-83) (-1003)) ELT) (((-478) (-83) $) 94 (|has| (-83) (-1003)) ELT) (((-478) (-1 (-83) (-83)) $) 93 T ELT)) (-2870 (((-578 (-83)) $) 45 (|has| $ (-6 -3971)) ELT)) (-2541 (($ $ $) 108 T ELT)) (-2540 (($ $) 106 T ELT)) (-1283 (($ $ $) 32 T ELT)) (-3590 (($ (-687) (-83)) 78 T ELT)) (-1284 (($ $ $) 33 T ELT)) (-2182 (((-478) $) 63 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) 23 T ELT)) (-3495 (($ $ $) 96 (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) 89 T ELT)) (-2588 (((-578 (-83)) $) 46 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-83) $) 48 (-12 (|has| (-83) (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 62 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) 22 T ELT)) (-1932 (($ (-1 (-83) (-83)) $) 41 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-83) (-83) (-83)) $ $) 83 T ELT) (($ (-1 (-83) (-83)) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2286 (($ $ $ (-478)) 87 T ELT) (($ (-83) $ (-478)) 86 T ELT)) (-2185 (((-578 (-478)) $) 60 T ELT)) (-2186 (((-83) (-478) $) 59 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3777 (((-83) $) 64 (|has| (-478) (-749)) ELT)) (-1337 (((-3 (-83) "failed") (-1 (-83) (-83)) $) 75 T ELT)) (-2181 (($ $ (-83)) 65 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) (-83)) $) 43 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-83)) (-578 (-83))) 52 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT) (($ $ (-83) (-83)) 51 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT) (($ $ (-245 (-83))) 50 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT) (($ $ (-578 (-245 (-83)))) 49 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT)) (-1206 (((-83) $ $) 34 T ELT)) (-2184 (((-83) (-83) $) 61 (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-2187 (((-578 (-83)) $) 58 T ELT)) (-3380 (((-83) $) 37 T ELT)) (-3541 (($) 36 T ELT)) (-3776 (($ $ (-1131 (-478))) 77 T ELT) (((-83) $ (-478)) 57 T ELT) (((-83) $ (-478) (-83)) 56 T ELT)) (-2287 (($ $ (-1131 (-478))) 85 T ELT) (($ $ (-478)) 84 T ELT)) (-1929 (((-687) (-83) $) 47 (-12 (|has| (-83) (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) (-83)) $) 44 (|has| $ (-6 -3971)) ELT)) (-1714 (($ $ $ (-478)) 99 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 35 T ELT)) (-3948 (((-467) $) 67 (|has| (-83) (-548 (-467))) ELT)) (-3507 (($ (-578 (-83))) 76 T ELT)) (-3778 (($ (-578 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-83) $) 80 T ELT) (($ $ (-83)) 79 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-1931 (((-83) (-1 (-83) (-83)) $) 42 (|has| $ (-6 -3971)) ELT)) (-2542 (($ $ $) 107 T ELT)) (-2293 (($ $ $) 105 T ELT)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT)) (-2294 (($ $ $) 104 T ELT)) (-3933 (((-687) $) 39 (|has| $ (-6 -3971)) ELT))) +((-2545 (*1 *1 *1) (-4 *1 (-82))) (-2547 (*1 *1 *1 *1) (-4 *1 (-82))) (-2546 (*1 *1 *1 *1) (-4 *1 (-82)))) +(-13 (-600) (-10 -8 (-15 -2545 ($ $)) (-15 -2547 ($ $ $)) (-15 -2546 ($ $ $)))) +(((-600) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) 9 T ELT)) (-3304 (($ $ $) 14 T ELT)) (-2840 (($) 6 T CONST)) (-3120 (((-688)) 23 T ELT)) (-2979 (($) 31 T ELT)) (-2546 (($ $ $) 12 T ELT)) (-2545 (($ $) 8 T ELT)) (-1288 (($ $ $) 15 T ELT)) (-1289 (($ $ $) 16 T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) 29 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) 27 T ELT)) (-2838 (($ $ $) 19 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2839 (($) 7 T CONST)) (-2837 (($ $ $) 20 T ELT)) (-3954 (((-468) $) 33 T ELT)) (-3928 (((-766) $) 35 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2547 (($ $ $) 10 T ELT)) (-2298 (($ $ $) 13 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 18 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 21 T ELT)) (-2299 (($ $ $) 11 T ELT))) +(((-83) (-13 (-746) (-874) (-549 (-468)) (-10 -8 (-15 -3304 ($ $ $)) (-15 -1289 ($ $ $)) (-15 -1288 ($ $ $))))) (T -83)) +((-3304 (*1 *1 *1 *1) (-5 *1 (-83))) (-1289 (*1 *1 *1 *1) (-5 *1 (-83))) (-1288 (*1 *1 *1 *1) (-5 *1 (-83)))) +((-2553 (((-83) $ $) NIL T ELT)) (-1510 (((-688) $) 92 T ELT) (($ $ (-688)) 38 T ELT)) (-1274 (((-83) $) 42 T ELT)) (-1268 (($ $ (-1063) (-690)) 59 T ELT) (($ $ (-440) (-690)) 34 T ELT)) (-1267 (($ $ (-45 (-1063) (-690))) 16 T ELT)) (-2826 (((-3 (-690) "failed") $ (-1063)) 27 T ELT) (((-628 (-690)) $ (-440)) 33 T ELT)) (-1276 (((-45 (-1063) (-690)) $) 15 T ELT)) (-3577 (($ (-1080)) 20 T ELT) (($ (-1080) (-688)) 23 T ELT) (($ (-1080) (-55)) 24 T ELT)) (-1275 (((-83) $) 40 T ELT)) (-1273 (((-83) $) 44 T ELT)) (-3524 (((-1080) $) 8 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2618 (((-83) $ (-1080)) 11 T ELT)) (-2115 (($ $ (-1 (-468) (-579 (-468)))) 65 T ELT) (((-628 (-1 (-468) (-579 (-468)))) $) 69 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1270 (((-83) $ (-440)) 37 T ELT)) (-1272 (($ $ (-1 (-83) $ $)) 46 T ELT)) (-3599 (((-628 (-1 (-766) (-579 (-766)))) $) 67 T ELT) (($ $ (-1 (-766) (-579 (-766)))) 52 T ELT) (($ $ (-1 (-766) (-766))) 54 T ELT)) (-1269 (($ $ (-1063)) 56 T ELT) (($ $ (-440)) 57 T ELT)) (-3382 (($ $) 75 T ELT)) (-1271 (($ $ (-1 (-83) $ $)) 47 T ELT)) (-3928 (((-766) $) 61 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2777 (($ $ (-440)) 35 T ELT)) (-2506 (((-55) $) 70 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 88 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 104 T ELT))) +(((-84) (-13 (-750) (-741 (-1080)) (-10 -8 (-15 -1276 ((-45 (-1063) (-690)) $)) (-15 -3382 ($ $)) (-15 -3577 ($ (-1080))) (-15 -3577 ($ (-1080) (-688))) (-15 -3577 ($ (-1080) (-55))) (-15 -1275 ((-83) $)) (-15 -1274 ((-83) $)) (-15 -1273 ((-83) $)) (-15 -1510 ((-688) $)) (-15 -1510 ($ $ (-688))) (-15 -1272 ($ $ (-1 (-83) $ $))) (-15 -1271 ($ $ (-1 (-83) $ $))) (-15 -3599 ((-628 (-1 (-766) (-579 (-766)))) $)) (-15 -3599 ($ $ (-1 (-766) (-579 (-766))))) (-15 -3599 ($ $ (-1 (-766) (-766)))) (-15 -2115 ($ $ (-1 (-468) (-579 (-468))))) (-15 -2115 ((-628 (-1 (-468) (-579 (-468)))) $)) (-15 -1270 ((-83) $ (-440))) (-15 -2777 ($ $ (-440))) (-15 -1269 ($ $ (-1063))) (-15 -1269 ($ $ (-440))) (-15 -2826 ((-3 (-690) "failed") $ (-1063))) (-15 -2826 ((-628 (-690)) $ (-440))) (-15 -1268 ($ $ (-1063) (-690))) (-15 -1268 ($ $ (-440) (-690))) (-15 -1267 ($ $ (-45 (-1063) (-690))))))) (T -84)) +((-1276 (*1 *2 *1) (-12 (-5 *2 (-45 (-1063) (-690))) (-5 *1 (-84)))) (-3382 (*1 *1 *1) (-5 *1 (-84))) (-3577 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-84)))) (-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-688)) (-5 *1 (-84)))) (-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-55)) (-5 *1 (-84)))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1273 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-84)))) (-1510 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-84)))) (-1272 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84)))) (-1271 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-628 (-1 (-766) (-579 (-766))))) (-5 *1 (-84)))) (-3599 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-766) (-579 (-766)))) (-5 *1 (-84)))) (-3599 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-766) (-766))) (-5 *1 (-84)))) (-2115 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-468) (-579 (-468)))) (-5 *1 (-84)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-628 (-1 (-468) (-579 (-468))))) (-5 *1 (-84)))) (-1270 (*1 *2 *1 *3) (-12 (-5 *3 (-440)) (-5 *2 (-83)) (-5 *1 (-84)))) (-2777 (*1 *1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-84)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-84)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-84)))) (-2826 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1063)) (-5 *2 (-690)) (-5 *1 (-84)))) (-2826 (*1 *2 *1 *3) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-690))) (-5 *1 (-84)))) (-1268 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1063)) (-5 *3 (-690)) (-5 *1 (-84)))) (-1268 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-690)) (-5 *1 (-84)))) (-1267 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1063) (-690))) (-5 *1 (-84))))) +((-2503 (((-3 (-1 |#1| (-579 |#1|)) #1="failed") (-84)) 23 T ELT) (((-84) (-84) (-1 |#1| |#1|)) 13 T ELT) (((-84) (-84) (-1 |#1| (-579 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-84) (-579 |#1|)) 25 T ELT)) (-1277 (((-3 (-579 (-1 |#1| (-579 |#1|))) #1#) (-84)) 29 T ELT) (((-84) (-84) (-1 |#1| |#1|)) 33 T ELT) (((-84) (-84) (-579 (-1 |#1| (-579 |#1|)))) 30 T ELT)) (-1278 (((-84) |#1|) 63 T ELT)) (-1279 (((-3 |#1| #1#) (-84)) 58 T ELT))) +(((-85 |#1|) (-10 -7 (-15 -2503 ((-3 |#1| #1="failed") (-84) (-579 |#1|))) (-15 -2503 ((-84) (-84) (-1 |#1| (-579 |#1|)))) (-15 -2503 ((-84) (-84) (-1 |#1| |#1|))) (-15 -2503 ((-3 (-1 |#1| (-579 |#1|)) #1#) (-84))) (-15 -1277 ((-84) (-84) (-579 (-1 |#1| (-579 |#1|))))) (-15 -1277 ((-84) (-84) (-1 |#1| |#1|))) (-15 -1277 ((-3 (-579 (-1 |#1| (-579 |#1|))) #1#) (-84))) (-15 -1278 ((-84) |#1|)) (-15 -1279 ((-3 |#1| #1#) (-84)))) (-1006)) (T -85)) +((-1279 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *1 (-85 *2)) (-4 *2 (-1006)))) (-1278 (*1 *2 *3) (-12 (-5 *2 (-84)) (-5 *1 (-85 *3)) (-4 *3 (-1006)))) (-1277 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-579 (-1 *4 (-579 *4)))) (-5 *1 (-85 *4)) (-4 *4 (-1006)))) (-1277 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) (-5 *1 (-85 *4)))) (-1277 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-579 (-1 *4 (-579 *4)))) (-4 *4 (-1006)) (-5 *1 (-85 *4)))) (-2503 (*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-1 *4 (-579 *4))) (-5 *1 (-85 *4)) (-4 *4 (-1006)))) (-2503 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) (-5 *1 (-85 *4)))) (-2503 (*1 *2 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 (-579 *4))) (-4 *4 (-1006)) (-5 *1 (-85 *4)))) (-2503 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-579 *2)) (-5 *1 (-85 *2)) (-4 *2 (-1006))))) +((-1280 (((-479) |#2|) 41 T ELT))) +(((-86 |#1| |#2|) (-10 -7 (-15 -1280 ((-479) |#2|))) (-13 (-308) (-944 (-344 (-479)))) (-1145 |#1|)) (T -86)) +((-1280 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-944 (-344 *2)))) (-5 *2 (-479)) (-5 *1 (-86 *4 *3)) (-4 *3 (-1145 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3022 (($ $ (-479)) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2596 (($ (-1075 (-479)) (-479)) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2597 (($ $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3754 (((-688) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2599 (((-479)) NIL T ELT)) (-2598 (((-479) $) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3751 (($ $ (-479)) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-2600 (((-1059 (-479)) $) NIL T ELT)) (-2876 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3752 (((-479) $ (-479)) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-87 |#1|) (-773 |#1|) (-479)) (T -87)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-87 |#1|) (-815)) ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| (-87 |#1|) (-815)) ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| (-87 |#1|) (-734)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-87 |#1|) #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL (|has| (-87 |#1|) (-944 (-1080))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| (-87 |#1|) (-944 (-479))) ELT) (((-3 (-479) #1#) $) NIL (|has| (-87 |#1|) (-944 (-479))) ELT)) (-3140 (((-87 |#1|) $) NIL T ELT) (((-1080) $) NIL (|has| (-87 |#1|) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL (|has| (-87 |#1|) (-944 (-479))) ELT) (((-479) $) NIL (|has| (-87 |#1|) (-944 (-479))) ELT)) (-3712 (($ $) NIL T ELT) (($ (-479) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| (-87 |#1|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| (-87 |#1|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-87 |#1|))) (|:| |vec| (-1169 (-87 |#1|)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-87 |#1|)) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-87 |#1|) (-478)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| (-87 |#1|) (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| (-87 |#1|) (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| (-87 |#1|) (-790 (-324))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-87 |#1|) $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| (-87 |#1|) (-1056)) ELT)) (-3171 (((-83) $) NIL (|has| (-87 |#1|) (-734)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| (-87 |#1|) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-87 |#1|) (-750)) ELT)) (-3940 (($ (-1 (-87 |#1|) (-87 |#1|)) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| (-87 |#1|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| (-87 |#1|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-87 |#1|))) (|:| |vec| (-1169 (-87 |#1|)))) (-1169 $) $) NIL T ELT) (((-626 (-87 |#1|)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-87 |#1|) (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL (|has| (-87 |#1|) (-254)) ELT)) (-3114 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-87 |#1|) (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-87 |#1|) (-815)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-3750 (($ $ (-579 (-87 |#1|)) (-579 (-87 |#1|))) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-87 |#1|) (-87 |#1|)) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-245 (-87 |#1|))) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-579 (-245 (-87 |#1|)))) NIL (|has| (-87 |#1|) (-256 (-87 |#1|))) ELT) (($ $ (-579 (-1080)) (-579 (-87 |#1|))) NIL (|has| (-87 |#1|) (-448 (-1080) (-87 |#1|))) ELT) (($ $ (-1080) (-87 |#1|)) NIL (|has| (-87 |#1|) (-448 (-1080) (-87 |#1|))) ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ $ (-87 |#1|)) NIL (|has| (-87 |#1|) (-238 (-87 |#1|) (-87 |#1|))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $ (-1 (-87 |#1|) (-87 |#1|))) NIL T ELT) (($ $ (-1 (-87 |#1|) (-87 |#1|)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-87 |#1|) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-87 |#1|) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-87 |#1|) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-87 |#1|) (-805 (-1080))) ELT) (($ $) NIL (|has| (-87 |#1|) (-187)) ELT) (($ $ (-688)) NIL (|has| (-87 |#1|) (-187)) ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-87 |#1|) $) NIL T ELT)) (-3954 (((-794 (-479)) $) NIL (|has| (-87 |#1|) (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| (-87 |#1|) (-549 (-794 (-324)))) ELT) (((-468) $) NIL (|has| (-87 |#1|) (-549 (-468))) ELT) (((-324) $) NIL (|has| (-87 |#1|) (-927)) ELT) (((-177) $) NIL (|has| (-87 |#1|) (-927)) ELT)) (-2601 (((-146 (-344 (-479))) $) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| (-87 |#1|) (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-87 |#1|)) NIL T ELT) (($ (-1080)) NIL (|has| (-87 |#1|) (-944 (-1080))) ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-87 |#1|) (-815))) (|has| (-87 |#1|) (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-3115 (((-87 |#1|) $) NIL (|has| (-87 |#1|) (-478)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3752 (((-344 (-479)) $ (-479)) NIL T ELT)) (-3365 (($ $) NIL (|has| (-87 |#1|) (-734)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1 (-87 |#1|) (-87 |#1|))) NIL T ELT) (($ $ (-1 (-87 |#1|) (-87 |#1|)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-87 |#1|) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-87 |#1|) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-87 |#1|) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-87 |#1|) (-805 (-1080))) ELT) (($ $) NIL (|has| (-87 |#1|) (-187)) ELT) (($ $ (-688)) NIL (|has| (-87 |#1|) (-187)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-87 |#1|) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-87 |#1|) (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| (-87 |#1|) (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-87 |#1|) (-750)) ELT)) (-3931 (($ $ $) NIL T ELT) (($ (-87 |#1|) (-87 |#1|)) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ (-87 |#1|) $) NIL T ELT) (($ $ (-87 |#1|)) NIL T ELT))) +(((-88 |#1|) (-13 (-898 (-87 |#1|)) (-10 -8 (-15 -3752 ((-344 (-479)) $ (-479))) (-15 -2601 ((-146 (-344 (-479))) $)) (-15 -3712 ($ $)) (-15 -3712 ($ (-479) $)))) (-479)) (T -88)) +((-3752 (*1 *2 *1 *3) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-88 *4)) (-14 *4 *3) (-5 *3 (-479)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-146 (-344 (-479)))) (-5 *1 (-88 *3)) (-14 *3 (-479)))) (-3712 (*1 *1 *1) (-12 (-5 *1 (-88 *2)) (-14 *2 (-479)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-88 *3)) (-14 *3 *2)))) +((-3770 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3016 (((-579 $) $) 31 T ELT)) (-3012 (((-83) $ $) 36 T ELT)) (-3229 (((-83) |#2| $) 40 T ELT)) (-3015 (((-579 |#2|) $) 25 T ELT)) (-3509 (((-83) $) 18 T ELT)) (-3782 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3615 (((-83) $) 57 T ELT)) (-3928 (((-766) $) 47 T ELT)) (-3504 (((-579 $) $) 32 T ELT)) (-3041 (((-83) $ $) 38 T ELT)) (-3939 (((-688) $) 50 T ELT))) +(((-89 |#1| |#2|) (-10 -7 (-15 -3041 ((-83) |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -3770 (|#1| |#1| #1="right" |#1|)) (-15 -3770 (|#1| |#1| #2="left" |#1|)) (-15 -3782 (|#1| |#1| #1#)) (-15 -3782 (|#1| |#1| #2#)) (-15 -3770 (|#2| |#1| #3="value" |#2|)) (-15 -3012 ((-83) |#1| |#1|)) (-15 -3015 ((-579 |#2|) |#1|)) (-15 -3615 ((-83) |#1|)) (-15 -3782 (|#2| |#1| #3#)) (-15 -3509 ((-83) |#1|)) (-15 -3016 ((-579 |#1|) |#1|)) (-15 -3504 ((-579 |#1|) |#1|)) (-15 -3229 ((-83) |#2| |#1|)) (-15 -3939 ((-688) |#1|))) (-90 |#2|) (-1119)) (T -89)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 52 T ELT)) (-3010 ((|#1| $ |#1|) 43 (|has| $ (-6 -3978)) ELT)) (-1281 (($ $ $) 58 (|has| $ (-6 -3978)) ELT)) (-1282 (($ $ $) 60 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3978)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -3978)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 45 (|has| $ (-6 -3978)) ELT)) (-3706 (($) 7 T CONST)) (-3121 (($ $) 63 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 54 T ELT)) (-3012 (((-83) $ $) 46 (|has| |#1| (-1006)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3122 (($ $) 65 T ELT)) (-3015 (((-579 |#1|) $) 49 T ELT)) (-3509 (((-83) $) 53 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3014 (((-479) $ $) 48 T ELT)) (-3615 (((-83) $) 50 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) 55 T ELT)) (-3013 (((-83) $ $) 47 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-90 |#1|) (-111) (-1119)) (T -90)) +((-3122 (*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1119)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-90 *3)) (-4 *3 (-1119)))) (-3121 (*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1119)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-90 *3)) (-4 *3 (-1119)))) (-3770 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -3978)) (-4 *1 (-90 *3)) (-4 *3 (-1119)))) (-1282 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-90 *2)) (-4 *2 (-1119)))) (-3770 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -3978)) (-4 *1 (-90 *3)) (-4 *3 (-1119)))) (-1281 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-90 *2)) (-4 *2 (-1119))))) +(-13 (-917 |t#1|) (-10 -8 (-15 -3122 ($ $)) (-15 -3782 ($ $ "left")) (-15 -3121 ($ $)) (-15 -3782 ($ $ "right")) (IF (|has| $ (-6 -3978)) (PROGN (-15 -3770 ($ $ "left" $)) (-15 -1282 ($ $ $)) (-15 -3770 ($ $ "right" $)) (-15 -1281 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-917 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-1285 (((-83) |#1|) 29 T ELT)) (-1284 (((-688) (-688)) 28 T ELT) (((-688)) 27 T ELT)) (-1283 (((-83) |#1| (-83)) 30 T ELT) (((-83) |#1|) 31 T ELT))) +(((-91 |#1|) (-10 -7 (-15 -1283 ((-83) |#1|)) (-15 -1283 ((-83) |#1| (-83))) (-15 -1284 ((-688))) (-15 -1284 ((-688) (-688))) (-15 -1285 ((-83) |#1|))) (-1145 (-479))) (T -91)) +((-1285 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479))))) (-1284 (*1 *2 *2) (-12 (-5 *2 (-688)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479))))) (-1284 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479))))) (-1283 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479))))) (-1283 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479)))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 18 T ELT)) (-3400 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3010 ((|#1| $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1281 (($ $ $) 21 (|has| $ (-6 -3978)) ELT)) (-1282 (($ $ $) 23 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3978)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3978)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3121 (($ $) 20 T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1290 (($ $ |#1| $) 27 T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3122 (($ $) 22 T ELT)) (-3015 (((-579 |#1|) $) NIL T ELT)) (-3509 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-1286 (($ |#1| $) 28 T ELT)) (-3591 (($ |#1| $) 15 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 17 T ELT)) (-3547 (($) 11 T ELT)) (-3782 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3014 (((-479) $ $) NIL T ELT)) (-3615 (((-83) $) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1287 (($ (-579 |#1|)) 16 T ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-92 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3978) (-6 -3977) (-15 -1287 ($ (-579 |#1|))) (-15 -3591 ($ |#1| $)) (-15 -1286 ($ |#1| $)) (-15 -3400 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-750)) (T -92)) +((-1287 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-92 *3)))) (-3591 (*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-750)))) (-1286 (*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-750)))) (-3400 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-92 *3)) (|:| |greater| (-92 *3)))) (-5 *1 (-92 *3)) (-4 *3 (-750))))) +((-2300 (($ $) 13 T ELT)) (-2545 (($ $) 11 T ELT)) (-1288 (($ $ $) 23 T ELT)) (-1289 (($ $ $) 21 T ELT)) (-2298 (($ $ $) 19 T ELT)) (-2299 (($ $ $) 17 T ELT))) +(((-93 |#1|) (-10 -7 (-15 -1288 (|#1| |#1| |#1|)) (-15 -1289 (|#1| |#1| |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2298 (|#1| |#1| |#1|)) (-15 -2545 (|#1| |#1|))) (-94)) (T -93)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-2300 (($ $) 103 T ELT)) (-3304 (($ $ $) 31 T ELT)) (-2185 (((-1175) $ (-479) (-479)) 66 (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) $) 98 (|has| (-83) (-750)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) 92 T ELT)) (-1718 (($ $) 102 (-12 (|has| (-83) (-750)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) (-83) (-83)) $) 101 (|has| $ (-6 -3978)) ELT)) (-2894 (($ $) 97 (|has| (-83) (-750)) ELT) (($ (-1 (-83) (-83) (-83)) $) 91 T ELT)) (-3770 (((-83) $ (-1136 (-479)) (-83)) 88 (|has| $ (-6 -3978)) ELT) (((-83) $ (-479) (-83)) 54 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) (-83)) $) 71 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 38 T CONST)) (-2284 (($ $) 100 (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) 90 T ELT)) (-1341 (($ $) 68 (-12 (|has| (-83) (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ (-1 (-83) (-83)) $) 72 (|has| $ (-6 -3977)) ELT) (($ (-83) $) 69 (-12 (|has| (-83) (-1006)) (|has| $ (-6 -3977))) ELT)) (-3824 (((-83) (-1 (-83) (-83) (-83)) $) 74 (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) 73 (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) 70 (-12 (|has| (-83) (-1006)) (|has| $ (-6 -3977))) ELT)) (-1564 (((-83) $ (-479) (-83)) 53 (|has| $ (-6 -3978)) ELT)) (-3097 (((-83) $ (-479)) 55 T ELT)) (-3401 (((-479) (-83) $ (-479)) 95 (|has| (-83) (-1006)) ELT) (((-479) (-83) $) 94 (|has| (-83) (-1006)) ELT) (((-479) (-1 (-83) (-83)) $) 93 T ELT)) (-2874 (((-579 (-83)) $) 45 (|has| $ (-6 -3977)) ELT)) (-2546 (($ $ $) 108 T ELT)) (-2545 (($ $) 106 T ELT)) (-1288 (($ $ $) 32 T ELT)) (-3596 (($ (-688) (-83)) 78 T ELT)) (-1289 (($ $ $) 33 T ELT)) (-2187 (((-479) $) 63 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) 23 T ELT)) (-3500 (($ $ $) 96 (|has| (-83) (-750)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) 89 T ELT)) (-2593 (((-579 (-83)) $) 46 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-83) $) 48 (-12 (|has| (-83) (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 62 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) 22 T ELT)) (-1937 (($ (-1 (-83) (-83)) $) 41 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-83) (-83) (-83)) $ $) 83 T ELT) (($ (-1 (-83) (-83)) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2291 (($ $ $ (-479)) 87 T ELT) (($ (-83) $ (-479)) 86 T ELT)) (-2190 (((-579 (-479)) $) 60 T ELT)) (-2191 (((-83) (-479) $) 59 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3783 (((-83) $) 64 (|has| (-479) (-750)) ELT)) (-1342 (((-3 (-83) "failed") (-1 (-83) (-83)) $) 75 T ELT)) (-2186 (($ $ (-83)) 65 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) (-83)) $) 43 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-83)) (-579 (-83))) 52 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT) (($ $ (-83) (-83)) 51 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT) (($ $ (-245 (-83))) 50 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT) (($ $ (-579 (-245 (-83)))) 49 (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT)) (-1211 (((-83) $ $) 34 T ELT)) (-2189 (((-83) (-83) $) 61 (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-2192 (((-579 (-83)) $) 58 T ELT)) (-3385 (((-83) $) 37 T ELT)) (-3547 (($) 36 T ELT)) (-3782 (($ $ (-1136 (-479))) 77 T ELT) (((-83) $ (-479)) 57 T ELT) (((-83) $ (-479) (-83)) 56 T ELT)) (-2292 (($ $ (-1136 (-479))) 85 T ELT) (($ $ (-479)) 84 T ELT)) (-1934 (((-688) (-83) $) 47 (-12 (|has| (-83) (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) (-83)) $) 44 (|has| $ (-6 -3977)) ELT)) (-1719 (($ $ $ (-479)) 99 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 35 T ELT)) (-3954 (((-468) $) 67 (|has| (-83) (-549 (-468))) ELT)) (-3512 (($ (-579 (-83))) 76 T ELT)) (-3784 (($ (-579 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-83) $) 80 T ELT) (($ $ (-83)) 79 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-1936 (((-83) (-1 (-83) (-83)) $) 42 (|has| $ (-6 -3977)) ELT)) (-2547 (($ $ $) 107 T ELT)) (-2298 (($ $ $) 105 T ELT)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT)) (-2299 (($ $ $) 104 T ELT)) (-3939 (((-688) $) 39 (|has| $ (-6 -3977)) ELT))) (((-94) (-111)) (T -94)) -((-1284 (*1 *1 *1 *1) (-4 *1 (-94))) (-1283 (*1 *1 *1 *1) (-4 *1 (-94))) (-3299 (*1 *1 *1 *1) (-4 *1 (-94)))) -(-13 (-749) (-82) (-599) (-19 (-83)) (-10 -8 (-15 -1284 ($ $ $)) (-15 -1283 ($ $ $)) (-15 -3299 ($ $ $)))) -(((-34) . T) ((-72) . T) ((-82) . T) ((-547 (-765)) . T) ((-122 (-83)) . T) ((-548 (-467)) |has| (-83) (-548 (-467))) ((-238 (-478) (-83)) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) (-83)) . T) ((-256 (-83)) -12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ((-317 (-83)) . T) ((-422 (-83)) . T) ((-533 (-478) (-83)) . T) ((-447 (-83) (-83)) -12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ((-588 (-83)) . T) ((-599) . T) ((-19 (-83)) . T) ((-749) . T) ((-752) . T) ((-1003) . T) ((-1114) . T)) -((-1932 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3377 (($ $) 16 T ELT)) (-3933 (((-687) $) 25 T ELT))) -(((-95 |#1| |#2|) (-10 -7 (-15 -1932 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3933 ((-687) |#1|)) (-15 -3377 (|#1| |#1|))) (-96 |#2|) (-1003)) (T -95)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 52 T ELT)) (-3006 ((|#1| $ |#1|) 43 (|has| $ (-6 -3972)) ELT)) (-1276 (($ $ $) 58 (|has| $ (-6 -3972)) ELT)) (-1277 (($ $ $) 60 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3972)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3972)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 45 (|has| $ (-6 -3972)) ELT)) (-3700 (($) 7 T CONST)) (-3118 (($ $) 63 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 54 T ELT)) (-3008 (((-83) $ $) 46 (|has| |#1| (-1003)) ELT)) (-1285 (($ $ |#1| $) 66 T ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3119 (($ $) 65 T ELT)) (-3011 (((-578 |#1|) $) 49 T ELT)) (-3504 (((-83) $) 53 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3010 (((-478) $ $) 48 T ELT)) (-3609 (((-83) $) 50 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) 55 T ELT)) (-3009 (((-83) $ $) 47 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-96 |#1|) (-111) (-1003)) (T -96)) -((-1285 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-96 *2)) (-4 *2 (-1003))))) -(-13 (-90 |t#1|) (-10 -8 (-6 -3972) (-6 -3971) (-15 -1285 ($ $ |t#1| $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-90 |#1|) . T) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-916 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 18 T ELT)) (-3006 ((|#1| $ |#1|) 22 (|has| $ (-6 -3972)) ELT)) (-1276 (($ $ $) 23 (|has| $ (-6 -3972)) ELT)) (-1277 (($ $ $) 21 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3972)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3972)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3118 (($ $) 24 T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) NIL T ELT)) (-3008 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1285 (($ $ |#1| $) NIL T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3119 (($ $) NIL T ELT)) (-3011 (((-578 |#1|) $) NIL T ELT)) (-3504 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3585 (($ |#1| $) 15 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 17 T ELT)) (-3541 (($) 11 T ELT)) (-3776 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3010 (((-478) $ $) NIL T ELT)) (-3609 (((-83) $) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) 20 T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) NIL T ELT)) (-3009 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1286 (($ (-578 |#1|)) 16 T ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-97 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3972) (-15 -1286 ($ (-578 |#1|))) (-15 -3585 ($ |#1| $)))) (-749)) (T -97)) -((-1286 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-97 *3)))) (-3585 (*1 *1 *2 *1) (-12 (-5 *1 (-97 *2)) (-4 *2 (-749))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 31 T ELT)) (-3006 ((|#1| $ |#1|) 33 (|has| $ (-6 -3972)) ELT)) (-1276 (($ $ $) 37 (|has| $ (-6 -3972)) ELT)) (-1277 (($ $ $) 35 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3972)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3972)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3118 (($ $) 24 T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) NIL T ELT)) (-3008 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1285 (($ $ |#1| $) 17 T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3119 (($ $) 23 T ELT)) (-3011 (((-578 |#1|) $) NIL T ELT)) (-3504 (((-83) $) 26 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 21 T ELT)) (-3541 (($) 13 T ELT)) (-3776 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3010 (((-478) $ $) NIL T ELT)) (-3609 (((-83) $) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) NIL T ELT)) (-3009 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1287 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 12 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-98 |#1|) (-13 (-96 |#1|) (-10 -8 (-15 -1287 ($ |#1|)) (-15 -1287 ($ $ |#1| $)))) (-1003)) (T -98)) -((-1287 (*1 *1 *2) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1003)))) (-1287 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1003))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) 32 T ELT)) (-3117 (((-687)) 17 T ELT)) (-3700 (($) 9 T CONST)) (-2975 (($) 27 T ELT)) (-2511 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2838 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-1992 (((-823) $) 25 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) 23 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1288 (($ (-687)) 8 T ELT)) (-3701 (($ $ $) 29 T ELT)) (-3702 (($ $ $) 28 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2293 (($ $ $) 31 T ELT)) (-2546 (((-83) $ $) 14 T ELT)) (-2547 (((-83) $ $) 12 T ELT)) (-3037 (((-83) $ $) 10 T ELT)) (-2665 (((-83) $ $) 13 T ELT)) (-2666 (((-83) $ $) 11 T ELT)) (-2294 (($ $ $) 30 T ELT))) -(((-99) (-13 (-745) (-599) (-10 -8 (-15 -1288 ($ (-687))) (-15 -3702 ($ $ $)) (-15 -3701 ($ $ $)) (-15 -3700 ($) -3928)))) (T -99)) -((-1288 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-99)))) (-3702 (*1 *1 *1 *1) (-5 *1 (-99))) (-3701 (*1 *1 *1 *1) (-5 *1 (-99))) (-3700 (*1 *1) (-5 *1 (-99)))) -((-687) (|%ilt| |#1| 256)) -((-2548 (((-83) $ $) NIL (|has| (-99) (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) (-99) (-99)) $) NIL T ELT) (((-83) $) NIL (|has| (-99) (-749)) ELT)) (-1713 (($ (-1 (-83) (-99) (-99)) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| (-99) (-749))) ELT)) (-2890 (($ (-1 (-83) (-99) (-99)) $) NIL T ELT) (($ $) NIL (|has| (-99) (-749)) ELT)) (-3764 (((-99) $ (-478) (-99)) 26 (|has| $ (-6 -3972)) ELT) (((-99) $ (-1131 (-478)) (-99)) NIL (|has| $ (-6 -3972)) ELT)) (-1289 (((-687) $ (-687)) 35 T ELT)) (-3686 (($ (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-99) (-1003))) ELT)) (-3383 (($ (-99) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-99) (-1003))) ELT) (($ (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-99) (-1 (-99) (-99) (-99)) $ (-99) (-99)) NIL (-12 (|has| $ (-6 -3971)) (|has| (-99) (-1003))) ELT) (((-99) (-1 (-99) (-99) (-99)) $ (-99)) NIL (|has| $ (-6 -3971)) ELT) (((-99) (-1 (-99) (-99) (-99)) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 (((-99) $ (-478) (-99)) 25 (|has| $ (-6 -3972)) ELT)) (-3094 (((-99) $ (-478)) 20 T ELT)) (-3396 (((-478) (-1 (-83) (-99)) $) NIL T ELT) (((-478) (-99) $) NIL (|has| (-99) (-1003)) ELT) (((-478) (-99) $ (-478)) NIL (|has| (-99) (-1003)) ELT)) (-2870 (((-578 (-99)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) (-99)) 14 T ELT)) (-2182 (((-478) $) 27 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| (-99) (-749)) ELT)) (-3495 (($ (-1 (-83) (-99) (-99)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-99) (-749)) ELT)) (-2588 (((-578 (-99)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-99) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-99) (-1003))) ELT)) (-2183 (((-478) $) 30 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-99) (-749)) ELT)) (-1932 (($ (-1 (-99) (-99)) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-99) (-99)) $) NIL T ELT) (($ (-1 (-99) (-99) (-99)) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| (-99) (-1003)) ELT)) (-2286 (($ (-99) $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| (-99) (-1003)) ELT)) (-3777 (((-99) $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 (-99) "failed") (-1 (-83) (-99)) $) NIL T ELT)) (-2181 (($ $ (-99)) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-99)))) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1003))) ELT) (($ $ (-245 (-99))) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1003))) ELT) (($ $ (-99) (-99)) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1003))) ELT) (($ $ (-578 (-99)) (-578 (-99))) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) (-99) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-99) (-1003))) ELT)) (-2187 (((-578 (-99)) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) 12 T ELT)) (-3776 (((-99) $ (-478) (-99)) NIL T ELT) (((-99) $ (-478)) 23 T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-99) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-99) (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-99) (-548 (-467))) ELT)) (-3507 (($ (-578 (-99))) 41 T ELT)) (-3778 (($ $ (-99)) NIL T ELT) (($ (-99) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-862 (-99)) $) 36 T ELT) (((-1059) $) 38 T ELT) (((-765) $) NIL (|has| (-99) (-547 (-765))) ELT)) (-1290 (((-687) $) 18 T ELT)) (-1291 (($ (-687)) 8 T ELT)) (-1249 (((-83) $ $) NIL (|has| (-99) (-72)) ELT)) (-1931 (((-83) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-99) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-99) (-749)) ELT)) (-3037 (((-83) $ $) 33 (|has| (-99) (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| (-99) (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| (-99) (-749)) ELT)) (-3933 (((-687) $) 15 (|has| $ (-6 -3971)) ELT))) -(((-100) (-13 (-19 (-99)) (-547 (-862 (-99))) (-547 (-1059)) (-10 -8 (-15 -1291 ($ (-687))) (-15 -1290 ((-687) $)) (-15 -1289 ((-687) $ (-687))) (-6 -3971)))) (T -100)) -((-1291 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-100)))) (-1290 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-100)))) (-1289 (*1 *2 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-100))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1292 (($) 6 T CONST)) (-1294 (($) 7 T CONST)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 14 T ELT)) (-1293 (($) 8 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 10 T ELT))) -(((-101) (-13 (-1003) (-10 -8 (-15 -1294 ($) -3928) (-15 -1293 ($) -3928) (-15 -1292 ($) -3928)))) (T -101)) -((-1294 (*1 *1) (-5 *1 (-101))) (-1293 (*1 *1) (-5 *1 (-101))) (-1292 (*1 *1) (-5 *1 (-101)))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT))) +((-1289 (*1 *1 *1 *1) (-4 *1 (-94))) (-1288 (*1 *1 *1 *1) (-4 *1 (-94))) (-3304 (*1 *1 *1 *1) (-4 *1 (-94)))) +(-13 (-750) (-82) (-600) (-19 (-83)) (-10 -8 (-15 -1289 ($ $ $)) (-15 -1288 ($ $ $)) (-15 -3304 ($ $ $)))) +(((-34) . T) ((-72) . T) ((-82) . T) ((-548 (-766)) . T) ((-122 (-83)) . T) ((-549 (-468)) |has| (-83) (-549 (-468))) ((-238 (-479) (-83)) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) (-83)) . T) ((-256 (-83)) -12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ((-318 (-83)) . T) ((-423 (-83)) . T) ((-534 (-479) (-83)) . T) ((-448 (-83) (-83)) -12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ((-589 (-83)) . T) ((-600) . T) ((-19 (-83)) . T) ((-750) . T) ((-753) . T) ((-1006) . T) ((-1119) . T)) +((-1937 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3382 (($ $) 16 T ELT)) (-3939 (((-688) $) 25 T ELT))) +(((-95 |#1| |#2|) (-10 -7 (-15 -1937 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3939 ((-688) |#1|)) (-15 -3382 (|#1| |#1|))) (-96 |#2|) (-1006)) (T -95)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 52 T ELT)) (-3010 ((|#1| $ |#1|) 43 (|has| $ (-6 -3978)) ELT)) (-1281 (($ $ $) 58 (|has| $ (-6 -3978)) ELT)) (-1282 (($ $ $) 60 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3978)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -3978)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 45 (|has| $ (-6 -3978)) ELT)) (-3706 (($) 7 T CONST)) (-3121 (($ $) 63 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 54 T ELT)) (-3012 (((-83) $ $) 46 (|has| |#1| (-1006)) ELT)) (-1290 (($ $ |#1| $) 66 T ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3122 (($ $) 65 T ELT)) (-3015 (((-579 |#1|) $) 49 T ELT)) (-3509 (((-83) $) 53 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3014 (((-479) $ $) 48 T ELT)) (-3615 (((-83) $) 50 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) 55 T ELT)) (-3013 (((-83) $ $) 47 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-96 |#1|) (-111) (-1006)) (T -96)) +((-1290 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-96 *2)) (-4 *2 (-1006))))) +(-13 (-90 |t#1|) (-10 -8 (-6 -3978) (-6 -3977) (-15 -1290 ($ $ |t#1| $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-90 |#1|) . T) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-917 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 18 T ELT)) (-3010 ((|#1| $ |#1|) 22 (|has| $ (-6 -3978)) ELT)) (-1281 (($ $ $) 23 (|has| $ (-6 -3978)) ELT)) (-1282 (($ $ $) 21 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3978)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3978)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3121 (($ $) 24 T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1290 (($ $ |#1| $) NIL T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3122 (($ $) NIL T ELT)) (-3015 (((-579 |#1|) $) NIL T ELT)) (-3509 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3591 (($ |#1| $) 15 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 17 T ELT)) (-3547 (($) 11 T ELT)) (-3782 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3014 (((-479) $ $) NIL T ELT)) (-3615 (((-83) $) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) 20 T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1291 (($ (-579 |#1|)) 16 T ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-97 |#1|) (-13 (-96 |#1|) (-10 -8 (-6 -3978) (-15 -1291 ($ (-579 |#1|))) (-15 -3591 ($ |#1| $)))) (-750)) (T -97)) +((-1291 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-97 *3)))) (-3591 (*1 *1 *2 *1) (-12 (-5 *1 (-97 *2)) (-4 *2 (-750))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 31 T ELT)) (-3010 ((|#1| $ |#1|) 33 (|has| $ (-6 -3978)) ELT)) (-1281 (($ $ $) 37 (|has| $ (-6 -3978)) ELT)) (-1282 (($ $ $) 35 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3978)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3978)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3121 (($ $) 24 T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1290 (($ $ |#1| $) 17 T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3122 (($ $) 23 T ELT)) (-3015 (((-579 |#1|) $) NIL T ELT)) (-3509 (((-83) $) 26 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 21 T ELT)) (-3547 (($) 13 T ELT)) (-3782 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3014 (((-479) $ $) NIL T ELT)) (-3615 (((-83) $) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1292 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 12 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-98 |#1|) (-13 (-96 |#1|) (-10 -8 (-15 -1292 ($ |#1|)) (-15 -1292 ($ $ |#1| $)))) (-1006)) (T -98)) +((-1292 (*1 *1 *2) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1006)))) (-1292 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1006))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) 32 T ELT)) (-3120 (((-688)) 17 T ELT)) (-3706 (($) 9 T CONST)) (-2979 (($) 27 T ELT)) (-2516 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2842 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-1997 (((-824) $) 25 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) 23 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1293 (($ (-688)) 8 T ELT)) (-3707 (($ $ $) 29 T ELT)) (-3708 (($ $ $) 28 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) 31 T ELT)) (-2551 (((-83) $ $) 14 T ELT)) (-2552 (((-83) $ $) 12 T ELT)) (-3041 (((-83) $ $) 10 T ELT)) (-2669 (((-83) $ $) 13 T ELT)) (-2670 (((-83) $ $) 11 T ELT)) (-2299 (($ $ $) 30 T ELT))) +(((-99) (-13 (-746) (-600) (-10 -8 (-15 -1293 ($ (-688))) (-15 -3708 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -3706 ($) -3934)))) (T -99)) +((-1293 (*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-99)))) (-3708 (*1 *1 *1 *1) (-5 *1 (-99))) (-3707 (*1 *1 *1 *1) (-5 *1 (-99))) (-3706 (*1 *1) (-5 *1 (-99)))) +((-688) (|%ilt| |#1| 256)) +((-2553 (((-83) $ $) NIL (|has| (-99) (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) (-99) (-99)) $) NIL T ELT) (((-83) $) NIL (|has| (-99) (-750)) ELT)) (-1718 (($ (-1 (-83) (-99) (-99)) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-99) (-750))) ELT)) (-2894 (($ (-1 (-83) (-99) (-99)) $) NIL T ELT) (($ $) NIL (|has| (-99) (-750)) ELT)) (-3770 (((-99) $ (-479) (-99)) 26 (|has| $ (-6 -3978)) ELT) (((-99) $ (-1136 (-479)) (-99)) NIL (|has| $ (-6 -3978)) ELT)) (-1294 (((-688) $ (-688)) 35 T ELT)) (-3692 (($ (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-99) (-1006))) ELT)) (-3388 (($ (-99) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-99) (-1006))) ELT) (($ (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-99) (-1 (-99) (-99) (-99)) $ (-99) (-99)) NIL (-12 (|has| $ (-6 -3977)) (|has| (-99) (-1006))) ELT) (((-99) (-1 (-99) (-99) (-99)) $ (-99)) NIL (|has| $ (-6 -3977)) ELT) (((-99) (-1 (-99) (-99) (-99)) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 (((-99) $ (-479) (-99)) 25 (|has| $ (-6 -3978)) ELT)) (-3097 (((-99) $ (-479)) 20 T ELT)) (-3401 (((-479) (-1 (-83) (-99)) $) NIL T ELT) (((-479) (-99) $) NIL (|has| (-99) (-1006)) ELT) (((-479) (-99) $ (-479)) NIL (|has| (-99) (-1006)) ELT)) (-2874 (((-579 (-99)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) (-99)) 14 T ELT)) (-2187 (((-479) $) 27 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| (-99) (-750)) ELT)) (-3500 (($ (-1 (-83) (-99) (-99)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-99) (-750)) ELT)) (-2593 (((-579 (-99)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-99) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-99) (-1006))) ELT)) (-2188 (((-479) $) 30 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-99) (-750)) ELT)) (-1937 (($ (-1 (-99) (-99)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-99) (-99)) $) NIL T ELT) (($ (-1 (-99) (-99) (-99)) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| (-99) (-1006)) ELT)) (-2291 (($ (-99) $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| (-99) (-1006)) ELT)) (-3783 (((-99) $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 (-99) "failed") (-1 (-83) (-99)) $) NIL T ELT)) (-2186 (($ $ (-99)) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-99)))) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1006))) ELT) (($ $ (-245 (-99))) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1006))) ELT) (($ $ (-99) (-99)) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1006))) ELT) (($ $ (-579 (-99)) (-579 (-99))) NIL (-12 (|has| (-99) (-256 (-99))) (|has| (-99) (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) (-99) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-99) (-1006))) ELT)) (-2192 (((-579 (-99)) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) 12 T ELT)) (-3782 (((-99) $ (-479) (-99)) NIL T ELT) (((-99) $ (-479)) 23 T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-99) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-99) (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-99) (-549 (-468))) ELT)) (-3512 (($ (-579 (-99))) 41 T ELT)) (-3784 (($ $ (-99)) NIL T ELT) (($ (-99) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-863 (-99)) $) 36 T ELT) (((-1063) $) 38 T ELT) (((-766) $) NIL (|has| (-99) (-548 (-766))) ELT)) (-1295 (((-688) $) 18 T ELT)) (-1296 (($ (-688)) 8 T ELT)) (-1254 (((-83) $ $) NIL (|has| (-99) (-72)) ELT)) (-1936 (((-83) (-1 (-83) (-99)) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-99) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-99) (-750)) ELT)) (-3041 (((-83) $ $) 33 (|has| (-99) (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-99) (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-99) (-750)) ELT)) (-3939 (((-688) $) 15 (|has| $ (-6 -3977)) ELT))) +(((-100) (-13 (-19 (-99)) (-548 (-863 (-99))) (-548 (-1063)) (-10 -8 (-15 -1296 ($ (-688))) (-15 -1295 ((-688) $)) (-15 -1294 ((-688) $ (-688))) (-6 -3977)))) (T -100)) +((-1296 (*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-100)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-100)))) (-1294 (*1 *2 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-100))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1297 (($) 6 T CONST)) (-1299 (($) 7 T CONST)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 14 T ELT)) (-1298 (($) 8 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 10 T ELT))) +(((-101) (-13 (-1006) (-10 -8 (-15 -1299 ($) -3934) (-15 -1298 ($) -3934) (-15 -1297 ($) -3934)))) (T -101)) +((-1299 (*1 *1) (-5 *1 (-101))) (-1298 (*1 *1) (-5 *1 (-101))) (-1297 (*1 *1) (-5 *1 (-101)))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT))) (((-102) (-111)) (T -102)) -((-1295 (*1 *1 *1 *1) (|partial| -4 *1 (-102)))) -(-13 (-23) (-10 -8 (-15 -1295 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-1296 (((-1170) $ (-687)) 17 T ELT)) (-3396 (((-687) $) 18 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +((-1300 (*1 *1 *1 *1) (|partial| -4 *1 (-102)))) +(-13 (-23) (-10 -8 (-15 -1300 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-1301 (((-1175) $ (-688)) 17 T ELT)) (-3401 (((-688) $) 18 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) (((-103) (-111)) (T -103)) -((-3396 (*1 *2 *1) (-12 (-4 *1 (-103)) (-5 *2 (-687)))) (-1296 (*1 *2 *1 *3) (-12 (-4 *1 (-103)) (-5 *3 (-687)) (-5 *2 (-1170))))) -(-13 (-1003) (-10 -8 (-15 -3396 ((-687) $)) (-15 -1296 ((-1170) $ (-687))))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3162 (((-578 (-1035)) $) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-104) (-13 (-986) (-10 -8 (-15 -3162 ((-578 (-1035)) $))))) (T -104)) -((-3162 (*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-104))))) -((-2548 (((-83) $ $) 49 T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-687) #1="failed") $) 60 T ELT)) (-3137 (((-687) $) 58 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) 37 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1298 (((-83)) 61 T ELT)) (-1297 (((-83) (-83)) 63 T ELT)) (-2505 (((-83) $) 30 T ELT)) (-1299 (((-83) $) 57 T ELT)) (-3922 (((-765) $) 28 T ELT) (($ (-687)) 20 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 18 T CONST)) (-2647 (($) 19 T CONST)) (-1300 (($ (-687)) 21 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) 40 T ELT)) (-3037 (((-83) $ $) 32 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 35 T ELT)) (-3813 (((-3 $ #1#) $ $) 42 T ELT)) (-3815 (($ $ $) 38 T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-687) $) 48 T ELT) (($ (-823) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-105) (-13 (-749) (-23) (-658) (-943 (-687)) (-10 -8 (-6 (-3973 "*")) (-15 -3813 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1300 ($ (-687))) (-15 -2505 ((-83) $)) (-15 -1299 ((-83) $)) (-15 -1298 ((-83))) (-15 -1297 ((-83) (-83)))))) (T -105)) -((-3813 (*1 *1 *1 *1) (|partial| -5 *1 (-105))) (** (*1 *1 *1 *1) (-5 *1 (-105))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-105)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1299 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1298 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1297 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1301 (($ (-578 |#3|)) 63 T ELT)) (-3391 (($ $) 125 T ELT) (($ $ (-478) (-478)) 124 T ELT)) (-3700 (($) 20 T ELT)) (-3138 (((-3 |#3| "failed") $) 86 T ELT)) (-3137 ((|#3| $) NIL T ELT)) (-1305 (($ $ (-578 (-478))) 126 T ELT)) (-1302 (((-578 |#3|) $) 58 T ELT)) (-3090 (((-687) $) 68 T ELT)) (-3920 (($ $ $) 120 T ELT)) (-1303 (($) 67 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1304 (($) 19 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3776 ((|#3| $ (-478)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-478) (-478)) 73 T ELT) ((|#3| $ (-478) (-478) (-478)) 74 T ELT) ((|#3| $ (-478) (-478) (-478) (-478)) 75 T ELT) ((|#3| $ (-578 (-478))) 76 T ELT)) (-3924 (((-687) $) 69 T ELT)) (-1965 (($ $ (-478) $ (-478)) 121 T ELT) (($ $ (-478) (-478)) 123 T ELT)) (-3922 (((-765) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-194 |#2| |#3|)) 102 T ELT) (($ (-1042 |#2| |#3|)) 105 T ELT) (($ (-578 |#3|)) 77 T ELT) (($ (-578 $)) 83 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 96 T CONST)) (-2647 (($) 97 T CONST)) (-3037 (((-83) $ $) 107 T ELT)) (-3813 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3815 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-478)) 116 T ELT) (($ (-478) $) 115 T ELT) (($ $ $) 122 T ELT))) -(((-106 |#1| |#2| |#3|) (-13 (-398 |#3| (-687)) (-403 (-478) (-687)) (-238 (-478) |#3|) (-550 (-194 |#2| |#3|)) (-550 (-1042 |#2| |#3|)) (-550 (-578 |#3|)) (-550 (-578 $)) (-10 -8 (-15 -3090 ((-687) $)) (-15 -3776 (|#3| $)) (-15 -3776 (|#3| $ (-478) (-478))) (-15 -3776 (|#3| $ (-478) (-478) (-478))) (-15 -3776 (|#3| $ (-478) (-478) (-478) (-478))) (-15 -3776 (|#3| $ (-578 (-478)))) (-15 -3920 ($ $ $)) (-15 * ($ $ $)) (-15 -1965 ($ $ (-478) $ (-478))) (-15 -1965 ($ $ (-478) (-478))) (-15 -3391 ($ $)) (-15 -3391 ($ $ (-478) (-478))) (-15 -1305 ($ $ (-578 (-478)))) (-15 -1304 ($)) (-15 -1303 ($)) (-15 -1302 ((-578 |#3|) $)) (-15 -1301 ($ (-578 |#3|))) (-15 -3700 ($)))) (-478) (-687) (-144)) (T -106)) -((-3920 (*1 *1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-3090 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 *2) (-4 *5 (-144)))) (-3776 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-106 *3 *4 *2)) (-14 *3 (-478)) (-14 *4 (-687)))) (-3776 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-687)))) (-3776 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-687)))) (-3776 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-687)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-478))) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 (-478)) (-14 *5 (-687)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-1965 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) (-4 *5 (-144)))) (-1965 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) (-4 *5 (-144)))) (-3391 (*1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-3391 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) (-4 *5 (-144)))) (-1305 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 (-687)) (-4 *5 (-144)))) (-1304 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-1303 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-578 *5)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 (-687)) (-4 *5 (-144)))) (-1301 (*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-144)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 (-687)))) (-3700 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144))))) -((-2395 (((-106 |#1| |#2| |#4|) (-578 |#4|) (-106 |#1| |#2| |#3|)) 14 T ELT)) (-3934 (((-106 |#1| |#2| |#4|) (-1 |#4| |#3|) (-106 |#1| |#2| |#3|)) 18 T ELT))) -(((-107 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2395 ((-106 |#1| |#2| |#4|) (-578 |#4|) (-106 |#1| |#2| |#3|))) (-15 -3934 ((-106 |#1| |#2| |#4|) (-1 |#4| |#3|) (-106 |#1| |#2| |#3|)))) (-478) (-687) (-144) (-144)) (T -107)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-478)) (-14 *6 (-687)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8)))) (-2395 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-478)) (-14 *6 (-687)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3505 (((-1035) $) 12 T ELT)) (-3506 (((-1035) $) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-108) (-13 (-986) (-10 -8 (-15 -3506 ((-1035) $)) (-15 -3505 ((-1035) $))))) (T -108)) -((-3506 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-108)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-108))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1409 (((-159) $) 11 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 20 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3162 (((-578 (-1035)) $) 13 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-109) (-13 (-986) (-10 -8 (-15 -1409 ((-159) $)) (-15 -3162 ((-578 (-1035)) $))))) (T -109)) -((-1409 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-109)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-109))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1407 (((-578 (-767)) $) NIL T ELT)) (-3518 (((-439) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1409 (((-159) $) NIL T ELT)) (-2613 (((-83) $ (-439)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1408 (((-578 (-83)) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (((-155) $) 6 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2501 (((-55) $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-110) (-13 (-158) (-547 (-155)))) (T -110)) -NIL -((-1307 (((-578 (-156 (-110))) $) 13 T ELT)) (-1306 (((-578 (-156 (-110))) $) 14 T ELT)) (-1308 (((-578 (-742)) $) 10 T ELT)) (-1465 (((-110) $) 7 T ELT)) (-3922 (((-765) $) 16 T ELT))) -(((-111) (-13 (-547 (-765)) (-10 -8 (-15 -1465 ((-110) $)) (-15 -1308 ((-578 (-742)) $)) (-15 -1307 ((-578 (-156 (-110))) $)) (-15 -1306 ((-578 (-156 (-110))) $))))) (T -111)) -((-1465 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-578 (-742))) (-5 *1 (-111)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-578 (-156 (-110)))) (-5 *1 (-111)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-578 (-156 (-110)))) (-5 *1 (-111))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3404 (($) 17 T CONST)) (-1785 (($) NIL (|has| (-115) (-313)) ELT)) (-3214 (($ $ $) 19 T ELT) (($ $ (-115)) NIL T ELT) (($ (-115) $) NIL T ELT)) (-3216 (($ $ $) NIL T ELT)) (-3215 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| (-115) (-313)) ELT)) (-3219 (($) NIL T ELT) (($ (-578 (-115))) NIL T ELT)) (-1553 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT)) (-3382 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-115) $) 56 (|has| $ (-6 -3971)) ELT)) (-3383 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-115) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT)) (-3818 (((-115) (-1 (-115) (-115) (-115)) $) NIL (|has| $ (-6 -3971)) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) NIL (|has| $ (-6 -3971)) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT)) (-2975 (($) NIL (|has| (-115) (-313)) ELT)) (-2870 (((-578 (-115)) $) 65 (|has| $ (-6 -3971)) ELT)) (-3221 (((-83) $ $) NIL T ELT)) (-2511 (((-115) $) NIL (|has| (-115) (-749)) ELT)) (-2588 (((-578 (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-115) $) 29 (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT)) (-2838 (((-115) $) NIL (|has| (-115) (-749)) ELT)) (-1932 (($ (-1 (-115) (-115)) $) 64 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-115) (-115)) $) 60 T ELT)) (-3406 (($) 18 T CONST)) (-1992 (((-823) $) NIL (|has| (-115) (-313)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3218 (($ $ $) 32 T ELT)) (-1258 (((-115) $) 57 T ELT)) (-3585 (($ (-115) $) 55 T ELT)) (-2382 (($ (-823)) NIL (|has| (-115) (-313)) ELT)) (-1311 (($) 16 T CONST)) (-3223 (((-1020) $) NIL T ELT)) (-1337 (((-3 (-115) "failed") (-1 (-83) (-115)) $) NIL T ELT)) (-1259 (((-115) $) 58 T ELT)) (-1930 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-115)) (-578 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT) (($ $ (-115) (-115)) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT) (($ $ (-245 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT) (($ $ (-578 (-245 (-115)))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) 53 T ELT)) (-1312 (($) 15 T CONST)) (-3217 (($ $ $) 34 T ELT) (($ $ (-115)) NIL T ELT)) (-1449 (($ (-578 (-115))) NIL T ELT) (($) NIL T ELT)) (-1929 (((-687) (-115) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT) (((-687) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-1059) $) 39 T ELT) (((-467) $) NIL (|has| (-115) (-548 (-467))) ELT) (((-578 (-115)) $) 37 T ELT)) (-3507 (($ (-578 (-115))) NIL T ELT)) (-1786 (($ $) 35 (|has| (-115) (-313)) ELT)) (-3922 (((-765) $) 51 T ELT)) (-1313 (($ (-1059)) 14 T ELT) (($ (-578 (-115))) 48 T ELT)) (-1787 (((-687) $) NIL T ELT)) (-3220 (($) 54 T ELT) (($ (-578 (-115))) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1260 (($ (-578 (-115))) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-1309 (($) 21 T CONST)) (-1310 (($) 20 T CONST)) (-3037 (((-83) $ $) 26 T ELT)) (-3933 (((-687) $) 52 (|has| $ (-6 -3971)) ELT))) -(((-112) (-13 (-1003) (-548 (-1059)) (-362 (-115)) (-548 (-578 (-115))) (-10 -8 (-15 -1313 ($ (-1059))) (-15 -1313 ($ (-578 (-115)))) (-15 -1312 ($) -3928) (-15 -1311 ($) -3928) (-15 -3404 ($) -3928) (-15 -3406 ($) -3928) (-15 -1310 ($) -3928) (-15 -1309 ($) -3928)))) (T -112)) -((-1313 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-112)))) (-1313 (*1 *1 *2) (-12 (-5 *2 (-578 (-115))) (-5 *1 (-112)))) (-1312 (*1 *1) (-5 *1 (-112))) (-1311 (*1 *1) (-5 *1 (-112))) (-3404 (*1 *1) (-5 *1 (-112))) (-3406 (*1 *1) (-5 *1 (-112))) (-1310 (*1 *1) (-5 *1 (-112))) (-1309 (*1 *1) (-5 *1 (-112)))) -((-3717 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3715 ((|#1| |#3|) 9 T ELT)) (-3716 ((|#3| |#3|) 15 T ELT))) -(((-113 |#1| |#2| |#3|) (-10 -7 (-15 -3715 (|#1| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -3717 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-489) (-897 |#1|) (-317 |#2|)) (T -113)) -((-3717 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-113 *4 *5 *3)) (-4 *3 (-317 *5)))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-489)) (-4 *4 (-897 *3)) (-5 *1 (-113 *3 *4 *2)) (-4 *2 (-317 *4)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-113 *2 *4 *3)) (-4 *3 (-317 *4))))) -((-1352 (($ $ $) 8 T ELT)) (-1350 (($ $) 7 T ELT)) (-3083 (($ $ $) 6 T ELT))) +((-3401 (*1 *2 *1) (-12 (-4 *1 (-103)) (-5 *2 (-688)))) (-1301 (*1 *2 *1 *3) (-12 (-4 *1 (-103)) (-5 *3 (-688)) (-5 *2 (-1175))))) +(-13 (-1006) (-10 -8 (-15 -3401 ((-688) $)) (-15 -1301 ((-1175) $ (-688))))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-579 (-1039)) $) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-104) (-13 (-988) (-10 -8 (-15 -3217 ((-579 (-1039)) $))))) (T -104)) +((-3217 (*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-104))))) +((-2553 (((-83) $ $) 49 T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-688) #1="failed") $) 60 T ELT)) (-3140 (((-688) $) 58 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) 37 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1303 (((-83)) 61 T ELT)) (-1302 (((-83) (-83)) 63 T ELT)) (-2510 (((-83) $) 30 T ELT)) (-1304 (((-83) $) 57 T ELT)) (-3928 (((-766) $) 28 T ELT) (($ (-688)) 20 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 18 T CONST)) (-2651 (($) 19 T CONST)) (-1305 (($ (-688)) 21 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) 40 T ELT)) (-3041 (((-83) $ $) 32 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 35 T ELT)) (-3819 (((-3 $ #1#) $ $) 42 T ELT)) (-3821 (($ $ $) 38 T ELT)) (** (($ $ (-688)) NIL T ELT) (($ $ (-824)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-688) $) 48 T ELT) (($ (-824) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-105) (-13 (-750) (-23) (-659) (-944 (-688)) (-10 -8 (-6 (-3979 "*")) (-15 -3819 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1305 ($ (-688))) (-15 -2510 ((-83) $)) (-15 -1304 ((-83) $)) (-15 -1303 ((-83))) (-15 -1302 ((-83) (-83)))))) (T -105)) +((-3819 (*1 *1 *1 *1) (|partial| -5 *1 (-105))) (** (*1 *1 *1 *1) (-5 *1 (-105))) (-1305 (*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-105)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1303 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) (-1302 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1306 (($ (-579 |#3|)) 63 T ELT)) (-3396 (($ $) 125 T ELT) (($ $ (-479) (-479)) 124 T ELT)) (-3706 (($) 20 T ELT)) (-3141 (((-3 |#3| "failed") $) 86 T ELT)) (-3140 ((|#3| $) NIL T ELT)) (-1310 (($ $ (-579 (-479))) 126 T ELT)) (-1307 (((-579 |#3|) $) 58 T ELT)) (-3093 (((-688) $) 68 T ELT)) (-3926 (($ $ $) 120 T ELT)) (-1308 (($) 67 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1309 (($) 19 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3782 ((|#3| $ (-479)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-479) (-479)) 73 T ELT) ((|#3| $ (-479) (-479) (-479)) 74 T ELT) ((|#3| $ (-479) (-479) (-479) (-479)) 75 T ELT) ((|#3| $ (-579 (-479))) 76 T ELT)) (-3930 (((-688) $) 69 T ELT)) (-1970 (($ $ (-479) $ (-479)) 121 T ELT) (($ $ (-479) (-479)) 123 T ELT)) (-3928 (((-766) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-194 |#2| |#3|)) 102 T ELT) (($ (-1046 |#2| |#3|)) 105 T ELT) (($ (-579 |#3|)) 77 T ELT) (($ (-579 $)) 83 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 96 T CONST)) (-2651 (($) 97 T CONST)) (-3041 (((-83) $ $) 107 T ELT)) (-3819 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3821 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-479)) 116 T ELT) (($ (-479) $) 115 T ELT) (($ $ $) 122 T ELT))) +(((-106 |#1| |#2| |#3|) (-13 (-399 |#3| (-688)) (-404 (-479) (-688)) (-238 (-479) |#3|) (-551 (-194 |#2| |#3|)) (-551 (-1046 |#2| |#3|)) (-551 (-579 |#3|)) (-551 (-579 $)) (-10 -8 (-15 -3093 ((-688) $)) (-15 -3782 (|#3| $)) (-15 -3782 (|#3| $ (-479) (-479))) (-15 -3782 (|#3| $ (-479) (-479) (-479))) (-15 -3782 (|#3| $ (-479) (-479) (-479) (-479))) (-15 -3782 (|#3| $ (-579 (-479)))) (-15 -3926 ($ $ $)) (-15 * ($ $ $)) (-15 -1970 ($ $ (-479) $ (-479))) (-15 -1970 ($ $ (-479) (-479))) (-15 -3396 ($ $)) (-15 -3396 ($ $ (-479) (-479))) (-15 -1310 ($ $ (-579 (-479)))) (-15 -1309 ($)) (-15 -1308 ($)) (-15 -1307 ((-579 |#3|) $)) (-15 -1306 ($ (-579 |#3|))) (-15 -3706 ($)))) (-479) (-688) (-144)) (T -106)) +((-3926 (*1 *1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-479)) (-14 *4 *2) (-4 *5 (-144)))) (-3782 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-106 *3 *4 *2)) (-14 *3 (-479)) (-14 *4 (-688)))) (-3782 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-479)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-688)))) (-3782 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-479)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-688)))) (-3782 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-479)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-688)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 (-579 (-479))) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 (-479)) (-14 *5 (-688)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144)))) (-1970 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-688)) (-4 *5 (-144)))) (-1970 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-688)) (-4 *5 (-144)))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144)))) (-3396 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-688)) (-4 *5 (-144)))) (-1310 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-479)) (-14 *4 (-688)) (-4 *5 (-144)))) (-1309 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144)))) (-1308 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-579 *5)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-479)) (-14 *4 (-688)) (-4 *5 (-144)))) (-1306 (*1 *1 *2) (-12 (-5 *2 (-579 *5)) (-4 *5 (-144)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-479)) (-14 *4 (-688)))) (-3706 (*1 *1) (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144))))) +((-2400 (((-106 |#1| |#2| |#4|) (-579 |#4|) (-106 |#1| |#2| |#3|)) 14 T ELT)) (-3940 (((-106 |#1| |#2| |#4|) (-1 |#4| |#3|) (-106 |#1| |#2| |#3|)) 18 T ELT))) +(((-107 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2400 ((-106 |#1| |#2| |#4|) (-579 |#4|) (-106 |#1| |#2| |#3|))) (-15 -3940 ((-106 |#1| |#2| |#4|) (-1 |#4| |#3|) (-106 |#1| |#2| |#3|)))) (-479) (-688) (-144) (-144)) (T -107)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-479)) (-14 *6 (-688)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8)))) (-2400 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-479)) (-14 *6 (-688)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3510 (((-1039) $) 12 T ELT)) (-3511 (((-1039) $) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-108) (-13 (-988) (-10 -8 (-15 -3511 ((-1039) $)) (-15 -3510 ((-1039) $))))) (T -108)) +((-3511 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-108)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-108))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1414 (((-159) $) 11 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 20 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-579 (-1039)) $) 13 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-109) (-13 (-988) (-10 -8 (-15 -1414 ((-159) $)) (-15 -3217 ((-579 (-1039)) $))))) (T -109)) +((-1414 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-109)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-109))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1412 (((-579 (-768)) $) NIL T ELT)) (-3524 (((-440) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1414 (((-159) $) NIL T ELT)) (-2618 (((-83) $ (-440)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1413 (((-579 (-83)) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (((-155) $) 6 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2506 (((-55) $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-110) (-13 (-158) (-548 (-155)))) (T -110)) +NIL +((-1312 (((-579 (-156 (-110))) $) 13 T ELT)) (-1311 (((-579 (-156 (-110))) $) 14 T ELT)) (-1313 (((-579 (-743)) $) 10 T ELT)) (-1470 (((-110) $) 7 T ELT)) (-3928 (((-766) $) 16 T ELT))) +(((-111) (-13 (-548 (-766)) (-10 -8 (-15 -1470 ((-110) $)) (-15 -1313 ((-579 (-743)) $)) (-15 -1312 ((-579 (-156 (-110))) $)) (-15 -1311 ((-579 (-156 (-110))) $))))) (T -111)) +((-1470 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-579 (-743))) (-5 *1 (-111)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-579 (-156 (-110)))) (-5 *1 (-111)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-579 (-156 (-110)))) (-5 *1 (-111))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3409 (($) 17 T CONST)) (-1790 (($) NIL (|has| (-115) (-314)) ELT)) (-3218 (($ $ $) 19 T ELT) (($ $ (-115)) NIL T ELT) (($ (-115) $) NIL T ELT)) (-3220 (($ $ $) NIL T ELT)) (-3219 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| (-115) (-314)) ELT)) (-3223 (($) NIL T ELT) (($ (-579 (-115))) NIL T ELT)) (-1558 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT)) (-3387 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-115) $) 56 (|has| $ (-6 -3977)) ELT)) (-3388 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-115) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT)) (-3824 (((-115) (-1 (-115) (-115) (-115)) $) NIL (|has| $ (-6 -3977)) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) NIL (|has| $ (-6 -3977)) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT)) (-2979 (($) NIL (|has| (-115) (-314)) ELT)) (-2874 (((-579 (-115)) $) 65 (|has| $ (-6 -3977)) ELT)) (-3225 (((-83) $ $) NIL T ELT)) (-2516 (((-115) $) NIL (|has| (-115) (-750)) ELT)) (-2593 (((-579 (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-115) $) 29 (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT)) (-2842 (((-115) $) NIL (|has| (-115) (-750)) ELT)) (-1937 (($ (-1 (-115) (-115)) $) 64 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-115) (-115)) $) 60 T ELT)) (-3411 (($) 18 T CONST)) (-1997 (((-824) $) NIL (|has| (-115) (-314)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3222 (($ $ $) 32 T ELT)) (-1263 (((-115) $) 57 T ELT)) (-3591 (($ (-115) $) 55 T ELT)) (-2387 (($ (-824)) NIL (|has| (-115) (-314)) ELT)) (-1316 (($) 16 T CONST)) (-3227 (((-1024) $) NIL T ELT)) (-1342 (((-3 (-115) "failed") (-1 (-83) (-115)) $) NIL T ELT)) (-1264 (((-115) $) 58 T ELT)) (-1935 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-115)) (-579 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT) (($ $ (-115) (-115)) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT) (($ $ (-245 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT) (($ $ (-579 (-245 (-115)))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) 53 T ELT)) (-1317 (($) 15 T CONST)) (-3221 (($ $ $) 34 T ELT) (($ $ (-115)) NIL T ELT)) (-1454 (($ (-579 (-115))) NIL T ELT) (($) NIL T ELT)) (-1934 (((-688) (-115) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT) (((-688) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-1063) $) 39 T ELT) (((-468) $) NIL (|has| (-115) (-549 (-468))) ELT) (((-579 (-115)) $) 37 T ELT)) (-3512 (($ (-579 (-115))) NIL T ELT)) (-1791 (($ $) 35 (|has| (-115) (-314)) ELT)) (-3928 (((-766) $) 51 T ELT)) (-1318 (($ (-1063)) 14 T ELT) (($ (-579 (-115))) 48 T ELT)) (-1792 (((-688) $) NIL T ELT)) (-3224 (($) 54 T ELT) (($ (-579 (-115))) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1265 (($ (-579 (-115))) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-1314 (($) 21 T CONST)) (-1315 (($) 20 T CONST)) (-3041 (((-83) $ $) 26 T ELT)) (-3939 (((-688) $) 52 (|has| $ (-6 -3977)) ELT))) +(((-112) (-13 (-1006) (-549 (-1063)) (-363 (-115)) (-549 (-579 (-115))) (-10 -8 (-15 -1318 ($ (-1063))) (-15 -1318 ($ (-579 (-115)))) (-15 -1317 ($) -3934) (-15 -1316 ($) -3934) (-15 -3409 ($) -3934) (-15 -3411 ($) -3934) (-15 -1315 ($) -3934) (-15 -1314 ($) -3934)))) (T -112)) +((-1318 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-112)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-579 (-115))) (-5 *1 (-112)))) (-1317 (*1 *1) (-5 *1 (-112))) (-1316 (*1 *1) (-5 *1 (-112))) (-3409 (*1 *1) (-5 *1 (-112))) (-3411 (*1 *1) (-5 *1 (-112))) (-1315 (*1 *1) (-5 *1 (-112))) (-1314 (*1 *1) (-5 *1 (-112)))) +((-3723 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3721 ((|#1| |#3|) 9 T ELT)) (-3722 ((|#3| |#3|) 15 T ELT))) +(((-113 |#1| |#2| |#3|) (-10 -7 (-15 -3721 (|#1| |#3|)) (-15 -3722 (|#3| |#3|)) (-15 -3723 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-490) (-898 |#1|) (-318 |#2|)) (T -113)) +((-3723 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-898 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-113 *4 *5 *3)) (-4 *3 (-318 *5)))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-490)) (-4 *4 (-898 *3)) (-5 *1 (-113 *3 *4 *2)) (-4 *2 (-318 *4)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-898 *2)) (-4 *2 (-490)) (-5 *1 (-113 *2 *4 *3)) (-4 *3 (-318 *4))))) +((-1357 (($ $ $) 8 T ELT)) (-1355 (($ $) 7 T ELT)) (-3086 (($ $ $) 6 T ELT))) (((-114) (-111)) (T -114)) -((-1352 (*1 *1 *1 *1) (-4 *1 (-114))) (-1350 (*1 *1 *1) (-4 *1 (-114))) (-3083 (*1 *1 *1 *1) (-4 *1 (-114)))) -(-13 (-10 -8 (-15 -3083 ($ $ $)) (-15 -1350 ($ $)) (-15 -1352 ($ $ $)))) -((-2548 (((-83) $ $) NIL T ELT)) (-1321 (($) 30 T CONST)) (-1316 (((-83) $) 42 T ELT)) (-3404 (($ $) 52 T ELT)) (-1328 (($) 23 T CONST)) (-1501 (($) 21 T CONST)) (-3117 (((-687)) 13 T ELT)) (-2975 (($) 20 T ELT)) (-2559 (($) 22 T CONST)) (-1330 (((-687) $) 17 T ELT)) (-1327 (($) 24 T CONST)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1315 (((-83) $) 44 T ELT)) (-3406 (($ $) 53 T ELT)) (-1992 (((-823) $) 18 T ELT)) (-1325 (($) 26 T CONST)) (-3222 (((-1059) $) 50 T ELT)) (-2382 (($ (-823)) 16 T ELT)) (-1322 (($) 29 T CONST)) (-1318 (((-83) $) 40 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1324 (($) 27 T CONST)) (-1320 (($) 31 T CONST)) (-1319 (((-83) $) 38 T ELT)) (-3922 (((-765) $) 33 T ELT)) (-1329 (($ (-687)) 14 T ELT) (($ (-1059)) 51 T ELT)) (-1326 (($) 25 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1323 (($) 28 T CONST)) (-1314 (((-83) $) 48 T ELT)) (-1317 (((-83) $) 46 T ELT)) (-2546 (((-83) $ $) 11 T ELT)) (-2547 (((-83) $ $) 9 T ELT)) (-3037 (((-83) $ $) 7 T ELT)) (-2665 (((-83) $ $) 10 T ELT)) (-2666 (((-83) $ $) 8 T ELT))) -(((-115) (-13 (-745) (-10 -8 (-15 -1330 ((-687) $)) (-15 -1329 ($ (-687))) (-15 -1329 ($ (-1059))) (-15 -1501 ($) -3928) (-15 -2559 ($) -3928) (-15 -1328 ($) -3928) (-15 -1327 ($) -3928) (-15 -1326 ($) -3928) (-15 -1325 ($) -3928) (-15 -1324 ($) -3928) (-15 -1323 ($) -3928) (-15 -1322 ($) -3928) (-15 -1321 ($) -3928) (-15 -1320 ($) -3928) (-15 -3404 ($ $)) (-15 -3406 ($ $)) (-15 -1319 ((-83) $)) (-15 -1318 ((-83) $)) (-15 -1317 ((-83) $)) (-15 -1316 ((-83) $)) (-15 -1315 ((-83) $)) (-15 -1314 ((-83) $))))) (T -115)) -((-1330 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-115)))) (-1329 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-115)))) (-1329 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-115)))) (-1501 (*1 *1) (-5 *1 (-115))) (-2559 (*1 *1) (-5 *1 (-115))) (-1328 (*1 *1) (-5 *1 (-115))) (-1327 (*1 *1) (-5 *1 (-115))) (-1326 (*1 *1) (-5 *1 (-115))) (-1325 (*1 *1) (-5 *1 (-115))) (-1324 (*1 *1) (-5 *1 (-115))) (-1323 (*1 *1) (-5 *1 (-115))) (-1322 (*1 *1) (-5 *1 (-115))) (-1321 (*1 *1) (-5 *1 (-115))) (-1320 (*1 *1) (-5 *1 (-115))) (-3404 (*1 *1 *1) (-5 *1 (-115))) (-3406 (*1 *1 *1) (-5 *1 (-115))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-2683 (((-627 $) $) 44 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-1357 (*1 *1 *1 *1) (-4 *1 (-114))) (-1355 (*1 *1 *1) (-4 *1 (-114))) (-3086 (*1 *1 *1 *1) (-4 *1 (-114)))) +(-13 (-10 -8 (-15 -3086 ($ $ $)) (-15 -1355 ($ $)) (-15 -1357 ($ $ $)))) +((-2553 (((-83) $ $) NIL T ELT)) (-1326 (($) 30 T CONST)) (-1321 (((-83) $) 42 T ELT)) (-3409 (($ $) 52 T ELT)) (-1333 (($) 23 T CONST)) (-1506 (($) 21 T CONST)) (-3120 (((-688)) 13 T ELT)) (-2979 (($) 20 T ELT)) (-2564 (($) 22 T CONST)) (-1335 (((-688) $) 17 T ELT)) (-1332 (($) 24 T CONST)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1320 (((-83) $) 44 T ELT)) (-3411 (($ $) 53 T ELT)) (-1997 (((-824) $) 18 T ELT)) (-1330 (($) 26 T CONST)) (-3226 (((-1063) $) 50 T ELT)) (-2387 (($ (-824)) 16 T ELT)) (-1327 (($) 29 T CONST)) (-1323 (((-83) $) 40 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1329 (($) 27 T CONST)) (-1325 (($) 31 T CONST)) (-1324 (((-83) $) 38 T ELT)) (-3928 (((-766) $) 33 T ELT)) (-1334 (($ (-688)) 14 T ELT) (($ (-1063)) 51 T ELT)) (-1331 (($) 25 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1328 (($) 28 T CONST)) (-1319 (((-83) $) 48 T ELT)) (-1322 (((-83) $) 46 T ELT)) (-2551 (((-83) $ $) 11 T ELT)) (-2552 (((-83) $ $) 9 T ELT)) (-3041 (((-83) $ $) 7 T ELT)) (-2669 (((-83) $ $) 10 T ELT)) (-2670 (((-83) $ $) 8 T ELT))) +(((-115) (-13 (-746) (-10 -8 (-15 -1335 ((-688) $)) (-15 -1334 ($ (-688))) (-15 -1334 ($ (-1063))) (-15 -1506 ($) -3934) (-15 -2564 ($) -3934) (-15 -1333 ($) -3934) (-15 -1332 ($) -3934) (-15 -1331 ($) -3934) (-15 -1330 ($) -3934) (-15 -1329 ($) -3934) (-15 -1328 ($) -3934) (-15 -1327 ($) -3934) (-15 -1326 ($) -3934) (-15 -1325 ($) -3934) (-15 -3409 ($ $)) (-15 -3411 ($ $)) (-15 -1324 ((-83) $)) (-15 -1323 ((-83) $)) (-15 -1322 ((-83) $)) (-15 -1321 ((-83) $)) (-15 -1320 ((-83) $)) (-15 -1319 ((-83) $))))) (T -115)) +((-1335 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-115)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-115)))) (-1334 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-115)))) (-1506 (*1 *1) (-5 *1 (-115))) (-2564 (*1 *1) (-5 *1 (-115))) (-1333 (*1 *1) (-5 *1 (-115))) (-1332 (*1 *1) (-5 *1 (-115))) (-1331 (*1 *1) (-5 *1 (-115))) (-1330 (*1 *1) (-5 *1 (-115))) (-1329 (*1 *1) (-5 *1 (-115))) (-1328 (*1 *1) (-5 *1 (-115))) (-1327 (*1 *1) (-5 *1 (-115))) (-1326 (*1 *1) (-5 *1 (-115))) (-1325 (*1 *1) (-5 *1 (-115))) (-3409 (*1 *1 *1) (-5 *1 (-115))) (-3411 (*1 *1 *1) (-5 *1 (-115))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1321 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT)) (-2687 (((-628 $) $) 44 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-116) (-111)) (T -116)) -((-2683 (*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-116))))) -(-13 (-954) (-10 -8 (-15 -2683 ((-627 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2429 ((|#1| (-625 |#1|) |#1|) 19 T ELT))) -(((-117 |#1|) (-10 -7 (-15 -2429 (|#1| (-625 |#1|) |#1|))) (-144)) (T -117)) -((-2429 (*1 *2 *3 *2) (-12 (-5 *3 (-625 *2)) (-4 *2 (-144)) (-5 *1 (-117 *2))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-2687 (*1 *2 *1) (-12 (-5 *2 (-628 *1)) (-4 *1 (-116))))) +(-13 (-955) (-10 -8 (-15 -2687 ((-628 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-659) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2434 ((|#1| (-626 |#1|) |#1|) 19 T ELT))) +(((-117 |#1|) (-10 -7 (-15 -2434 (|#1| (-626 |#1|) |#1|))) (-144)) (T -117)) +((-2434 (*1 *2 *3 *2) (-12 (-5 *3 (-626 *2)) (-4 *2 (-144)) (-5 *1 (-117 *2))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-118) (-111)) (T -118)) NIL -(-13 (-954)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-1333 (((-2 (|:| -2383 (-687)) (|:| -3930 (-343 |#2|)) (|:| |radicand| |#2|)) (-343 |#2|) (-687)) 76 T ELT)) (-1332 (((-3 (-2 (|:| |radicand| (-343 |#2|)) (|:| |deg| (-687))) "failed") |#3|) 56 T ELT)) (-1331 (((-2 (|:| -3930 (-343 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1334 ((|#1| |#3| |#3|) 44 T ELT)) (-3744 ((|#3| |#3| (-343 |#2|) (-343 |#2|)) 20 T ELT)) (-1335 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-343 |#2|)) (|:| |c2| (-343 |#2|)) (|:| |deg| (-687))) |#3| |#3|) 53 T ELT))) -(((-119 |#1| |#2| |#3|) (-10 -7 (-15 -1331 ((-2 (|:| -3930 (-343 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1332 ((-3 (-2 (|:| |radicand| (-343 |#2|)) (|:| |deg| (-687))) "failed") |#3|)) (-15 -1333 ((-2 (|:| -2383 (-687)) (|:| -3930 (-343 |#2|)) (|:| |radicand| |#2|)) (-343 |#2|) (-687))) (-15 -1334 (|#1| |#3| |#3|)) (-15 -3744 (|#3| |#3| (-343 |#2|) (-343 |#2|))) (-15 -1335 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-343 |#2|)) (|:| |c2| (-343 |#2|)) (|:| |deg| (-687))) |#3| |#3|))) (-1119) (-1140 |#1|) (-1140 (-343 |#2|))) (T -119)) -((-1335 (*1 *2 *3 *3) (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-343 *5)) (|:| |c2| (-343 *5)) (|:| |deg| (-687)))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1140 (-343 *5))))) (-3744 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-343 *5)) (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-5 *1 (-119 *4 *5 *2)) (-4 *2 (-1140 *3)))) (-1334 (*1 *2 *3 *3) (-12 (-4 *4 (-1140 *2)) (-4 *2 (-1119)) (-5 *1 (-119 *2 *4 *3)) (-4 *3 (-1140 (-343 *4))))) (-1333 (*1 *2 *3 *4) (-12 (-5 *3 (-343 *6)) (-4 *5 (-1119)) (-4 *6 (-1140 *5)) (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *3) (|:| |radicand| *6))) (-5 *1 (-119 *5 *6 *7)) (-5 *4 (-687)) (-4 *7 (-1140 *3)))) (-1332 (*1 *2 *3) (|partial| -12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| |radicand| (-343 *5)) (|:| |deg| (-687)))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1140 (-343 *5))))) (-1331 (*1 *2 *3) (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -3930 (-343 *5)) (|:| |poly| *3))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1140 (-343 *5)))))) -((-2685 (((-3 (-578 (-1070 |#2|)) "failed") (-578 (-1070 |#2|)) (-1070 |#2|)) 35 T ELT))) -(((-120 |#1| |#2|) (-10 -7 (-15 -2685 ((-3 (-578 (-1070 |#2|)) "failed") (-578 (-1070 |#2|)) (-1070 |#2|)))) (-477) (-137 |#1|)) (T -120)) -((-2685 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-137 *4)) (-4 *4 (-477)) (-5 *1 (-120 *4 *5))))) -((-3686 (($ (-1 (-83) |#2|) $) 37 T ELT)) (-1336 (($ $) 44 T ELT)) (-3383 (($ (-1 (-83) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3818 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1337 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 27 T ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) 24 T ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) 18 T ELT) (((-687) |#2| $) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) 21 T ELT)) (-3933 (((-687) $) 12 T ELT))) -(((-121 |#1| |#2|) (-10 -7 (-15 -1336 (|#1| |#1|)) (-15 -3383 (|#1| |#2| |#1|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3686 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3383 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1337 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -1929 ((-687) |#2| |#1|)) (-15 -1929 ((-687) (-1 (-83) |#2|) |#1|)) (-15 -1930 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1931 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3933 ((-687) |#1|))) (-122 |#2|) (-1114)) (T -121)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 48 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-1336 (($ $) 45 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3971)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 52 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 44 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 53 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-122 |#1|) (-111) (-1114)) (T -122)) -((-3507 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-4 *1 (-122 *3)))) (-1337 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-83) *2)) (-4 *1 (-122 *2)) (-4 *2 (-1114)))) (-3818 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3971)) (-4 *1 (-122 *2)) (-4 *2 (-1114)))) (-3818 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3971)) (-4 *1 (-122 *2)) (-4 *2 (-1114)))) (-3383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3971)) (-4 *1 (-122 *3)) (-4 *3 (-1114)))) (-3686 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3971)) (-4 *1 (-122 *3)) (-4 *3 (-1114)))) (-3818 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -3971)) (-4 *1 (-122 *2)) (-4 *2 (-1114)))) (-3383 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-122 *2)) (-4 *2 (-1114)) (-4 *2 (-1003)))) (-1336 (*1 *1 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-122 *2)) (-4 *2 (-1114)) (-4 *2 (-1003))))) -(-13 (-422 |t#1|) (-10 -8 (-15 -3507 ($ (-578 |t#1|))) (-15 -1337 ((-3 |t#1| "failed") (-1 (-83) |t#1|) $)) (IF (|has| $ (-6 -3971)) (PROGN (-15 -3818 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3818 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3383 ($ (-1 (-83) |t#1|) $)) (-15 -3686 ($ (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3818 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3383 ($ |t#1| $)) (-15 -1336 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ #1#) $) 113 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2874 (($ |#2| (-578 (-823))) 72 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1338 (($ (-823)) 58 T ELT)) (-3887 (((-105)) 23 T ELT)) (-3922 (((-765) $) 88 T ELT) (($ (-478)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3653 ((|#2| $ (-578 (-823))) 75 T ELT)) (-3107 (((-687)) 20 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 48 T CONST)) (-2647 (($) 52 T CONST)) (-3037 (((-83) $ $) 34 T ELT)) (-3925 (($ $ |#2|) NIL T ELT)) (-3813 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3815 (($ $ $) 39 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) -(((-123 |#1| |#2| |#3|) (-13 (-954) (-38 |#2|) (-1172 |#2|) (-10 -8 (-15 -1338 ($ (-823))) (-15 -2874 ($ |#2| (-578 (-823)))) (-15 -3653 (|#2| $ (-578 (-823)))) (-15 -3444 ((-3 $ "failed") $)))) (-823) (-308) (-899 |#1| |#2|)) (T -123)) -((-3444 (*1 *1 *1) (|partial| -12 (-5 *1 (-123 *2 *3 *4)) (-14 *2 (-823)) (-4 *3 (-308)) (-14 *4 (-899 *2 *3)))) (-1338 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-123 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-308)) (-14 *5 (-899 *3 *4)))) (-2874 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-823)) (-4 *2 (-308)) (-14 *5 (-899 *4 *2)))) (-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-823))) (-4 *2 (-308)) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-823)) (-14 *5 (-899 *4 *2))))) -((-1340 (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-578 (-578 (-847 (-177)))) (-177) (-177) (-177) (-177)) 59 T ELT)) (-1339 (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-829) (-343 (-478)) (-343 (-478))) 95 T ELT) (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-829)) 96 T ELT)) (-1493 (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-578 (-578 (-847 (-177))))) 99 T ELT) (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-578 (-847 (-177)))) 98 T ELT) (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-829) (-343 (-478)) (-343 (-478))) 89 T ELT) (((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-829)) 90 T ELT))) -(((-124) (-10 -7 (-15 -1493 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-829))) (-15 -1493 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-829) (-343 (-478)) (-343 (-478)))) (-15 -1339 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-829))) (-15 -1339 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-829) (-343 (-478)) (-343 (-478)))) (-15 -1340 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-578 (-578 (-847 (-177)))) (-177) (-177) (-177) (-177))) (-15 -1493 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-578 (-847 (-177))))) (-15 -1493 ((-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177)))) (-578 (-578 (-847 (-177)))))))) (T -124)) -((-1493 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177))))) (-5 *1 (-124)) (-5 *3 (-578 (-578 (-847 (-177))))))) (-1493 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177))))) (-5 *1 (-124)) (-5 *3 (-578 (-847 (-177)))))) (-1340 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-177)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 *4)))) (|:| |xValues| (-992 *4)) (|:| |yValues| (-992 *4)))) (-5 *1 (-124)) (-5 *3 (-578 (-578 (-847 *4)))))) (-1339 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-829)) (-5 *4 (-343 (-478))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177))))) (-5 *1 (-124)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177))))) (-5 *1 (-124)))) (-1493 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-829)) (-5 *4 (-343 (-478))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177))))) (-5 *1 (-124)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) (|:| |yValues| (-992 (-177))))) (-5 *1 (-124))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3163 (((-578 (-1035)) $) 20 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 27 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3162 (((-1035) $) 10 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-125) (-13 (-986) (-10 -8 (-15 -3163 ((-578 (-1035)) $)) (-15 -3162 ((-1035) $))))) (T -125)) -((-3163 (*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-125)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-125))))) -((-1393 (((-578 (-140 |#2|)) |#1| |#2|) 50 T ELT))) -(((-126 |#1| |#2|) (-10 -7 (-15 -1393 ((-578 (-140 |#2|)) |#1| |#2|))) (-1140 (-140 (-478))) (-13 (-308) (-748))) (T -126)) -((-1393 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-140 *4))) (-5 *1 (-126 *3 *4)) (-4 *3 (-1140 (-140 (-478)))) (-4 *4 (-13 (-308) (-748)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3505 (((-1115) $) 13 T ELT)) (-3506 (((-1035) $) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 20 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-127) (-13 (-986) (-10 -8 (-15 -3506 ((-1035) $)) (-15 -3505 ((-1115) $))))) (T -127)) -((-3506 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-127)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-127))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1342 (($) 38 T ELT)) (-3080 (($) 37 T ELT)) (-1341 (((-823)) 43 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2937 (((-478) $) 41 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3079 (($) 39 T ELT)) (-2936 (($ (-478)) 44 T ELT)) (-3922 (((-765) $) 50 T ELT)) (-3078 (($) 40 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 35 T ELT)) (-3815 (($ $ $) 32 T ELT)) (* (($ (-823) $) 42 T ELT) (($ (-177) $) 11 T ELT))) -(((-128) (-13 (-25) (-10 -8 (-15 * ($ (-823) $)) (-15 * ($ (-177) $)) (-15 -3815 ($ $ $)) (-15 -3080 ($)) (-15 -1342 ($)) (-15 -3079 ($)) (-15 -3078 ($)) (-15 -2937 ((-478) $)) (-15 -1341 ((-823))) (-15 -2936 ($ (-478)))))) (T -128)) -((-3815 (*1 *1 *1 *1) (-5 *1 (-128))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-128)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-128)))) (-3080 (*1 *1) (-5 *1 (-128))) (-1342 (*1 *1) (-5 *1 (-128))) (-3079 (*1 *1) (-5 *1 (-128))) (-3078 (*1 *1) (-5 *1 (-128))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-128)))) (-1341 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-128)))) (-2936 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-128))))) -((-1355 ((|#2| |#2| (-995 |#2|)) 98 T ELT) ((|#2| |#2| (-1075)) 75 T ELT)) (-3920 ((|#2| |#2| (-995 |#2|)) 97 T ELT) ((|#2| |#2| (-1075)) 74 T ELT)) (-1352 ((|#2| |#2| |#2|) 25 T ELT)) (-3571 (((-84) (-84)) 111 T ELT)) (-1349 ((|#2| (-578 |#2|)) 130 T ELT)) (-1346 ((|#2| (-578 |#2|)) 150 T ELT)) (-1345 ((|#2| (-578 |#2|)) 138 T ELT)) (-1343 ((|#2| |#2|) 136 T ELT)) (-1347 ((|#2| (-578 |#2|)) 124 T ELT)) (-1348 ((|#2| (-578 |#2|)) 125 T ELT)) (-1344 ((|#2| (-578 |#2|)) 148 T ELT)) (-1356 ((|#2| |#2| (-1075)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1350 ((|#2| |#2|) 21 T ELT)) (-3083 ((|#2| |#2| |#2|) 24 T ELT)) (-2236 (((-83) (-84)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-129 |#1| |#2|) (-10 -7 (-15 -2236 ((-83) (-84))) (-15 -3571 ((-84) (-84))) (-15 ** (|#2| |#2| |#2|)) (-15 -3083 (|#2| |#2| |#2|)) (-15 -1352 (|#2| |#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -1356 (|#2| |#2| (-1075))) (-15 -1355 (|#2| |#2| (-1075))) (-15 -1355 (|#2| |#2| (-995 |#2|))) (-15 -3920 (|#2| |#2| (-1075))) (-15 -3920 (|#2| |#2| (-995 |#2|))) (-15 -1343 (|#2| |#2|)) (-15 -1344 (|#2| (-578 |#2|))) (-15 -1345 (|#2| (-578 |#2|))) (-15 -1346 (|#2| (-578 |#2|))) (-15 -1347 (|#2| (-578 |#2|))) (-15 -1348 (|#2| (-578 |#2|))) (-15 -1349 (|#2| (-578 |#2|)))) (-489) (-357 |#1|)) (T -129)) -((-1349 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1348 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-489)))) (-1343 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-3920 (*1 *2 *2 *3) (-12 (-5 *3 (-995 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)))) (-3920 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) (-1355 (*1 *2 *2 *3) (-12 (-5 *3 (-995 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)))) (-1355 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) (-1356 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-1350 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-1352 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-3083 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-129 *3 *4)) (-4 *4 (-357 *3)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-129 *4 *5)) (-4 *5 (-357 *4))))) -((-1354 ((|#1| |#1| |#1|) 66 T ELT)) (-1353 ((|#1| |#1| |#1|) 63 T ELT)) (-1352 ((|#1| |#1| |#1|) 57 T ELT)) (-2871 ((|#1| |#1|) 43 T ELT)) (-1351 ((|#1| |#1| (-578 |#1|)) 55 T ELT)) (-1350 ((|#1| |#1|) 47 T ELT)) (-3083 ((|#1| |#1| |#1|) 51 T ELT))) -(((-130 |#1|) (-10 -7 (-15 -3083 (|#1| |#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -1351 (|#1| |#1| (-578 |#1|))) (-15 -2871 (|#1| |#1|)) (-15 -1352 (|#1| |#1| |#1|)) (-15 -1353 (|#1| |#1| |#1|)) (-15 -1354 (|#1| |#1| |#1|))) (-477)) (T -130)) -((-1354 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-1353 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-1352 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-2871 (*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-1351 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-477)) (-5 *1 (-130 *2)))) (-1350 (*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) (-3083 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) -((-1355 (($ $ (-1075)) 12 T ELT) (($ $ (-995 $)) 11 T ELT)) (-3920 (($ $ (-1075)) 10 T ELT) (($ $ (-995 $)) 9 T ELT)) (-1352 (($ $ $) 8 T ELT)) (-1356 (($ $) 14 T ELT) (($ $ (-1075)) 13 T ELT)) (-1350 (($ $) 7 T ELT)) (-3083 (($ $ $) 6 T ELT))) +(-13 (-955)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-659) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-1338 (((-2 (|:| -2388 (-688)) (|:| -3936 (-344 |#2|)) (|:| |radicand| |#2|)) (-344 |#2|) (-688)) 76 T ELT)) (-1337 (((-3 (-2 (|:| |radicand| (-344 |#2|)) (|:| |deg| (-688))) "failed") |#3|) 56 T ELT)) (-1336 (((-2 (|:| -3936 (-344 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1339 ((|#1| |#3| |#3|) 44 T ELT)) (-3750 ((|#3| |#3| (-344 |#2|) (-344 |#2|)) 20 T ELT)) (-1340 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-344 |#2|)) (|:| |c2| (-344 |#2|)) (|:| |deg| (-688))) |#3| |#3|) 53 T ELT))) +(((-119 |#1| |#2| |#3|) (-10 -7 (-15 -1336 ((-2 (|:| -3936 (-344 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1337 ((-3 (-2 (|:| |radicand| (-344 |#2|)) (|:| |deg| (-688))) "failed") |#3|)) (-15 -1338 ((-2 (|:| -2388 (-688)) (|:| -3936 (-344 |#2|)) (|:| |radicand| |#2|)) (-344 |#2|) (-688))) (-15 -1339 (|#1| |#3| |#3|)) (-15 -3750 (|#3| |#3| (-344 |#2|) (-344 |#2|))) (-15 -1340 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-344 |#2|)) (|:| |c2| (-344 |#2|)) (|:| |deg| (-688))) |#3| |#3|))) (-1124) (-1145 |#1|) (-1145 (-344 |#2|))) (T -119)) +((-1340 (*1 *2 *3 *3) (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-344 *5)) (|:| |c2| (-344 *5)) (|:| |deg| (-688)))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1145 (-344 *5))))) (-3750 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-344 *5)) (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-5 *1 (-119 *4 *5 *2)) (-4 *2 (-1145 *3)))) (-1339 (*1 *2 *3 *3) (-12 (-4 *4 (-1145 *2)) (-4 *2 (-1124)) (-5 *1 (-119 *2 *4 *3)) (-4 *3 (-1145 (-344 *4))))) (-1338 (*1 *2 *3 *4) (-12 (-5 *3 (-344 *6)) (-4 *5 (-1124)) (-4 *6 (-1145 *5)) (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *3) (|:| |radicand| *6))) (-5 *1 (-119 *5 *6 *7)) (-5 *4 (-688)) (-4 *7 (-1145 *3)))) (-1337 (*1 *2 *3) (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| |radicand| (-344 *5)) (|:| |deg| (-688)))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1145 (-344 *5))))) (-1336 (*1 *2 *3) (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -3936 (-344 *5)) (|:| |poly| *3))) (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1145 (-344 *5)))))) +((-2689 (((-3 (-579 (-1075 |#2|)) "failed") (-579 (-1075 |#2|)) (-1075 |#2|)) 35 T ELT))) +(((-120 |#1| |#2|) (-10 -7 (-15 -2689 ((-3 (-579 (-1075 |#2|)) "failed") (-579 (-1075 |#2|)) (-1075 |#2|)))) (-478) (-137 |#1|)) (T -120)) +((-2689 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 (-1075 *5))) (-5 *3 (-1075 *5)) (-4 *5 (-137 *4)) (-4 *4 (-478)) (-5 *1 (-120 *4 *5))))) +((-3692 (($ (-1 (-83) |#2|) $) 37 T ELT)) (-1341 (($ $) 44 T ELT)) (-3388 (($ (-1 (-83) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-3824 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1342 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 27 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 24 T ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) 18 T ELT) (((-688) |#2| $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 21 T ELT)) (-3939 (((-688) $) 12 T ELT))) +(((-121 |#1| |#2|) (-10 -7 (-15 -1341 (|#1| |#1|)) (-15 -3388 (|#1| |#2| |#1|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3692 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3388 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1342 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -1934 ((-688) |#2| |#1|)) (-15 -1934 ((-688) (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3939 ((-688) |#1|))) (-122 |#2|) (-1119)) (T -121)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 48 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-1341 (($ $) 45 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3977)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 52 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 44 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 53 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-122 |#1|) (-111) (-1119)) (T -122)) +((-3512 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-4 *1 (-122 *3)))) (-1342 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-83) *2)) (-4 *1 (-122 *2)) (-4 *2 (-1119)))) (-3824 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3977)) (-4 *1 (-122 *2)) (-4 *2 (-1119)))) (-3824 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3977)) (-4 *1 (-122 *2)) (-4 *2 (-1119)))) (-3388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3977)) (-4 *1 (-122 *3)) (-4 *3 (-1119)))) (-3692 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3977)) (-4 *1 (-122 *3)) (-4 *3 (-1119)))) (-3824 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (|has| *1 (-6 -3977)) (-4 *1 (-122 *2)) (-4 *2 (-1119)))) (-3388 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-122 *2)) (-4 *2 (-1119)) (-4 *2 (-1006)))) (-1341 (*1 *1 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-122 *2)) (-4 *2 (-1119)) (-4 *2 (-1006))))) +(-13 (-423 |t#1|) (-10 -8 (-15 -3512 ($ (-579 |t#1|))) (-15 -1342 ((-3 |t#1| "failed") (-1 (-83) |t#1|) $)) (IF (|has| $ (-6 -3977)) (PROGN (-15 -3824 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3824 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3388 ($ (-1 (-83) |t#1|) $)) (-15 -3692 ($ (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -3824 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3388 ($ |t#1| $)) (-15 -1341 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ #1#) $) 113 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2878 (($ |#2| (-579 (-824))) 72 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1343 (($ (-824)) 58 T ELT)) (-3893 (((-105)) 23 T ELT)) (-3928 (((-766) $) 88 T ELT) (($ (-479)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3659 ((|#2| $ (-579 (-824))) 75 T ELT)) (-3110 (((-688)) 20 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 48 T CONST)) (-2651 (($) 52 T CONST)) (-3041 (((-83) $ $) 34 T ELT)) (-3931 (($ $ |#2|) NIL T ELT)) (-3819 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3821 (($ $ $) 39 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT))) +(((-123 |#1| |#2| |#3|) (-13 (-955) (-38 |#2|) (-1177 |#2|) (-10 -8 (-15 -1343 ($ (-824))) (-15 -2878 ($ |#2| (-579 (-824)))) (-15 -3659 (|#2| $ (-579 (-824)))) (-15 -3449 ((-3 $ "failed") $)))) (-824) (-308) (-900 |#1| |#2|)) (T -123)) +((-3449 (*1 *1 *1) (|partial| -12 (-5 *1 (-123 *2 *3 *4)) (-14 *2 (-824)) (-4 *3 (-308)) (-14 *4 (-900 *2 *3)))) (-1343 (*1 *1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-123 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-308)) (-14 *5 (-900 *3 *4)))) (-2878 (*1 *1 *2 *3) (-12 (-5 *3 (-579 (-824))) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-824)) (-4 *2 (-308)) (-14 *5 (-900 *4 *2)))) (-3659 (*1 *2 *1 *3) (-12 (-5 *3 (-579 (-824))) (-4 *2 (-308)) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-824)) (-14 *5 (-900 *4 *2))))) +((-1345 (((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-579 (-579 (-848 (-177)))) (-177) (-177) (-177) (-177)) 59 T ELT)) (-1344 (((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-830) (-344 (-479)) (-344 (-479))) 95 T ELT) (((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-830)) 96 T ELT)) (-1498 (((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-579 (-579 (-848 (-177))))) 99 T ELT) (((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-579 (-848 (-177)))) 98 T ELT) (((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-830) (-344 (-479)) (-344 (-479))) 89 T ELT) (((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-830)) 90 T ELT))) +(((-124) (-10 -7 (-15 -1498 ((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-830))) (-15 -1498 ((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-830) (-344 (-479)) (-344 (-479)))) (-15 -1344 ((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-830))) (-15 -1344 ((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-830) (-344 (-479)) (-344 (-479)))) (-15 -1345 ((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-579 (-579 (-848 (-177)))) (-177) (-177) (-177) (-177))) (-15 -1498 ((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-579 (-848 (-177))))) (-15 -1498 ((-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177)))) (-579 (-579 (-848 (-177)))))))) (T -124)) +((-1498 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177))))) (-5 *1 (-124)) (-5 *3 (-579 (-579 (-848 (-177))))))) (-1498 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177))))) (-5 *1 (-124)) (-5 *3 (-579 (-848 (-177)))))) (-1345 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-177)) (-5 *2 (-2 (|:| |brans| (-579 (-579 (-848 *4)))) (|:| |xValues| (-994 *4)) (|:| |yValues| (-994 *4)))) (-5 *1 (-124)) (-5 *3 (-579 (-579 (-848 *4)))))) (-1344 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-344 (-479))) (-5 *2 (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177))))) (-5 *1 (-124)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177))))) (-5 *1 (-124)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-344 (-479))) (-5 *2 (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177))))) (-5 *1 (-124)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) (|:| |yValues| (-994 (-177))))) (-5 *1 (-124))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3165 (((-579 (-1039)) $) 20 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 27 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-1039) $) 10 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-125) (-13 (-988) (-10 -8 (-15 -3165 ((-579 (-1039)) $)) (-15 -3217 ((-1039) $))))) (T -125)) +((-3165 (*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-125)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-125))))) +((-1398 (((-579 (-140 |#2|)) |#1| |#2|) 50 T ELT))) +(((-126 |#1| |#2|) (-10 -7 (-15 -1398 ((-579 (-140 |#2|)) |#1| |#2|))) (-1145 (-140 (-479))) (-13 (-308) (-749))) (T -126)) +((-1398 (*1 *2 *3 *4) (-12 (-5 *2 (-579 (-140 *4))) (-5 *1 (-126 *3 *4)) (-4 *3 (-1145 (-140 (-479)))) (-4 *4 (-13 (-308) (-749)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3510 (((-1120) $) 13 T ELT)) (-3511 (((-1039) $) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 20 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-127) (-13 (-988) (-10 -8 (-15 -3511 ((-1039) $)) (-15 -3510 ((-1120) $))))) (T -127)) +((-3511 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-127)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-127))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1347 (($) 38 T ELT)) (-3083 (($) 37 T ELT)) (-1346 (((-824)) 43 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2941 (((-479) $) 41 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3082 (($) 39 T ELT)) (-2940 (($ (-479)) 44 T ELT)) (-3928 (((-766) $) 50 T ELT)) (-3081 (($) 40 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 35 T ELT)) (-3821 (($ $ $) 32 T ELT)) (* (($ (-824) $) 42 T ELT) (($ (-177) $) 11 T ELT))) +(((-128) (-13 (-25) (-10 -8 (-15 * ($ (-824) $)) (-15 * ($ (-177) $)) (-15 -3821 ($ $ $)) (-15 -3083 ($)) (-15 -1347 ($)) (-15 -3082 ($)) (-15 -3081 ($)) (-15 -2941 ((-479) $)) (-15 -1346 ((-824))) (-15 -2940 ($ (-479)))))) (T -128)) +((-3821 (*1 *1 *1 *1) (-5 *1 (-128))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-128)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-128)))) (-3083 (*1 *1) (-5 *1 (-128))) (-1347 (*1 *1) (-5 *1 (-128))) (-3082 (*1 *1) (-5 *1 (-128))) (-3081 (*1 *1) (-5 *1 (-128))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-128)))) (-1346 (*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-128)))) (-2940 (*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-128))))) +((-1360 ((|#2| |#2| (-997 |#2|)) 98 T ELT) ((|#2| |#2| (-1080)) 75 T ELT)) (-3926 ((|#2| |#2| (-997 |#2|)) 97 T ELT) ((|#2| |#2| (-1080)) 74 T ELT)) (-1357 ((|#2| |#2| |#2|) 25 T ELT)) (-3577 (((-84) (-84)) 111 T ELT)) (-1354 ((|#2| (-579 |#2|)) 130 T ELT)) (-1351 ((|#2| (-579 |#2|)) 150 T ELT)) (-1350 ((|#2| (-579 |#2|)) 138 T ELT)) (-1348 ((|#2| |#2|) 136 T ELT)) (-1352 ((|#2| (-579 |#2|)) 124 T ELT)) (-1353 ((|#2| (-579 |#2|)) 125 T ELT)) (-1349 ((|#2| (-579 |#2|)) 148 T ELT)) (-1361 ((|#2| |#2| (-1080)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1355 ((|#2| |#2|) 21 T ELT)) (-3086 ((|#2| |#2| |#2|) 24 T ELT)) (-2241 (((-83) (-84)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-129 |#1| |#2|) (-10 -7 (-15 -2241 ((-83) (-84))) (-15 -3577 ((-84) (-84))) (-15 ** (|#2| |#2| |#2|)) (-15 -3086 (|#2| |#2| |#2|)) (-15 -1357 (|#2| |#2| |#2|)) (-15 -1355 (|#2| |#2|)) (-15 -1361 (|#2| |#2|)) (-15 -1361 (|#2| |#2| (-1080))) (-15 -1360 (|#2| |#2| (-1080))) (-15 -1360 (|#2| |#2| (-997 |#2|))) (-15 -3926 (|#2| |#2| (-1080))) (-15 -3926 (|#2| |#2| (-997 |#2|))) (-15 -1348 (|#2| |#2|)) (-15 -1349 (|#2| (-579 |#2|))) (-15 -1350 (|#2| (-579 |#2|))) (-15 -1351 (|#2| (-579 |#2|))) (-15 -1352 (|#2| (-579 |#2|))) (-15 -1353 (|#2| (-579 |#2|))) (-15 -1354 (|#2| (-579 |#2|)))) (-490) (-358 |#1|)) (T -129)) +((-1354 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-490)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-490)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-490)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-490)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-490)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) (-4 *4 (-490)))) (-1348 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) (-3926 (*1 *2 *2 *3) (-12 (-5 *3 (-997 *2)) (-4 *2 (-358 *4)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)))) (-3926 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)) (-4 *2 (-358 *4)))) (-1360 (*1 *2 *2 *3) (-12 (-5 *3 (-997 *2)) (-4 *2 (-358 *4)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)))) (-1360 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)) (-4 *2 (-358 *4)))) (-1361 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)) (-4 *2 (-358 *4)))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) (-1355 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) (-1357 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) (-3086 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-129 *3 *4)) (-4 *4 (-358 *3)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-129 *4 *5)) (-4 *5 (-358 *4))))) +((-1359 ((|#1| |#1| |#1|) 66 T ELT)) (-1358 ((|#1| |#1| |#1|) 63 T ELT)) (-1357 ((|#1| |#1| |#1|) 57 T ELT)) (-2875 ((|#1| |#1|) 43 T ELT)) (-1356 ((|#1| |#1| (-579 |#1|)) 55 T ELT)) (-1355 ((|#1| |#1|) 47 T ELT)) (-3086 ((|#1| |#1| |#1|) 51 T ELT))) +(((-130 |#1|) (-10 -7 (-15 -3086 (|#1| |#1| |#1|)) (-15 -1355 (|#1| |#1|)) (-15 -1356 (|#1| |#1| (-579 |#1|))) (-15 -2875 (|#1| |#1|)) (-15 -1357 (|#1| |#1| |#1|)) (-15 -1358 (|#1| |#1| |#1|)) (-15 -1359 (|#1| |#1| |#1|))) (-478)) (T -130)) +((-1359 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478)))) (-1358 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478)))) (-1357 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478)))) (-2875 (*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478)))) (-1356 (*1 *2 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-478)) (-5 *1 (-130 *2)))) (-1355 (*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478)))) (-3086 (*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478))))) +((-1360 (($ $ (-1080)) 12 T ELT) (($ $ (-997 $)) 11 T ELT)) (-3926 (($ $ (-1080)) 10 T ELT) (($ $ (-997 $)) 9 T ELT)) (-1357 (($ $ $) 8 T ELT)) (-1361 (($ $) 14 T ELT) (($ $ (-1080)) 13 T ELT)) (-1355 (($ $) 7 T ELT)) (-3086 (($ $ $) 6 T ELT))) (((-131) (-111)) (T -131)) -((-1356 (*1 *1 *1) (-4 *1 (-131))) (-1356 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1075)))) (-1355 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1075)))) (-1355 (*1 *1 *1 *2) (-12 (-5 *2 (-995 *1)) (-4 *1 (-131)))) (-3920 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1075)))) (-3920 (*1 *1 *1 *2) (-12 (-5 *2 (-995 *1)) (-4 *1 (-131))))) -(-13 (-114) (-10 -8 (-15 -1356 ($ $)) (-15 -1356 ($ $ (-1075))) (-15 -1355 ($ $ (-1075))) (-15 -1355 ($ $ (-995 $))) (-15 -3920 ($ $ (-1075))) (-15 -3920 ($ $ (-995 $))))) +((-1361 (*1 *1 *1) (-4 *1 (-131))) (-1361 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1080)))) (-1360 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1080)))) (-1360 (*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-131)))) (-3926 (*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1080)))) (-3926 (*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-131))))) +(-13 (-114) (-10 -8 (-15 -1361 ($ $)) (-15 -1361 ($ $ (-1080))) (-15 -1360 ($ $ (-1080))) (-15 -1360 ($ $ (-997 $))) (-15 -3926 ($ $ (-1080))) (-15 -3926 ($ $ (-997 $))))) (((-114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-1357 (($ (-478)) 15 T ELT) (($ $ $) 16 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 19 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT))) -(((-132) (-13 (-1003) (-10 -8 (-15 -1357 ($ (-478))) (-15 -1357 ($ $ $))))) (T -132)) -((-1357 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-132)))) (-1357 (*1 *1 *1 *1) (-5 *1 (-132)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 16 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3162 (((-578 (-1035)) $) 10 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-133) (-13 (-986) (-10 -8 (-15 -3162 ((-578 (-1035)) $))))) (T -133)) -((-3162 (*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-133))))) -((-3571 (((-84) (-1075)) 103 T ELT))) -(((-134) (-10 -7 (-15 -3571 ((-84) (-1075))))) (T -134)) -((-3571 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-84)) (-5 *1 (-134))))) -((-1578 ((|#3| |#3|) 19 T ELT))) -(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -1578 (|#3| |#3|))) (-954) (-1140 |#1|) (-1140 |#2|)) (T -135)) -((-1578 (*1 *2 *2) (-12 (-4 *3 (-954)) (-4 *4 (-1140 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-1140 *4))))) -((-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 222 T ELT)) (-3307 ((|#2| $) 102 T ELT)) (-3469 (($ $) 255 T ELT)) (-3615 (($ $) 249 T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1="failed") (-578 (-1070 $)) (-1070 $)) 47 T ELT)) (-3467 (($ $) 253 T ELT)) (-3614 (($ $) 247 T ELT)) (-3138 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3137 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2544 (($ $ $) 228 T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) 160 T ELT) (((-625 |#2|) (-625 $)) 154 T ELT)) (-3818 (($ (-1070 |#2|)) 125 T ELT) (((-3 $ #1#) (-343 (-1070 |#2|))) NIL T ELT)) (-3444 (((-3 $ #1#) $) 213 T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) 203 T ELT)) (-3004 (((-83) $) 198 T ELT)) (-3003 (((-343 (-478)) $) 201 T ELT)) (-3090 (((-823)) 96 T ELT)) (-2543 (($ $ $) 230 T ELT)) (-1358 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3603 (($) 244 T ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 192 T ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 197 T ELT)) (-3113 ((|#2| $) 100 T ELT)) (-1996 (((-1070 |#2|) $) 127 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3918 (($ $) 246 T ELT)) (-3060 (((-1070 |#2|) $) 126 T ELT)) (-2464 (($ $) 206 T ELT)) (-1360 (($) 103 T ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 95 T ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 64 T ELT)) (-3443 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3919 (($ $) 245 T ELT)) (-1590 (((-687) $) 225 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 234 T ELT)) (-3733 ((|#2| (-1164 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3734 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-3167 (((-1070 |#2|)) 120 T ELT)) (-3468 (($ $) 254 T ELT)) (-3610 (($ $) 248 T ELT)) (-3205 (((-1164 |#2|) $ (-1164 $)) 136 T ELT) (((-625 |#2|) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 |#2|) $) 116 T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-3948 (((-1164 |#2|) $) NIL T ELT) (($ (-1164 |#2|)) NIL T ELT) (((-1070 |#2|) $) NIL T ELT) (($ (-1070 |#2|)) NIL T ELT) (((-793 (-478)) $) 183 T ELT) (((-793 (-323)) $) 187 T ELT) (((-140 (-323)) $) 172 T ELT) (((-140 (-177)) $) 167 T ELT) (((-467) $) 179 T ELT)) (-2990 (($ $) 104 T ELT)) (-3922 (((-765) $) 143 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT)) (-2429 (((-1070 |#2|) $) 32 T ELT)) (-3107 (((-687)) 106 T CONST)) (-1249 (((-83) $ $) 13 T ELT)) (-3475 (($ $) 258 T ELT)) (-3463 (($ $) 252 T ELT)) (-3473 (($ $) 256 T ELT)) (-3461 (($ $) 250 T ELT)) (-2218 ((|#2| $) 241 T ELT)) (-3474 (($ $) 257 T ELT)) (-3462 (($ $) 251 T ELT)) (-3360 (($ $) 162 T ELT)) (-3037 (((-83) $ $) 110 T ELT)) (-3813 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 111 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-343 (-478))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT))) -(((-136 |#1| |#2|) (-10 -7 (-15 -3734 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -3922 (|#1| |#1|)) (-15 -3443 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2046 ((-2 (|:| -1755 |#1|) (|:| -3958 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1590 ((-687) |#1|)) (-15 -2860 ((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3948 ((-467) |#1|)) (-15 -3948 ((-140 (-177)) |#1|)) (-15 -3948 ((-140 (-323)) |#1|)) (-15 -3615 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3603 (|#1|)) (-15 ** (|#1| |#1| (-343 (-478)))) (-15 -2687 ((-341 (-1070 |#1|)) (-1070 |#1|))) (-15 -2686 ((-341 (-1070 |#1|)) (-1070 |#1|))) (-15 -2685 ((-3 (-578 (-1070 |#1|)) #1#) (-578 (-1070 |#1|)) (-1070 |#1|))) (-15 -3005 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3003 ((-343 (-478)) |#1|)) (-15 -3004 ((-83) |#1|)) (-15 -1358 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2218 (|#2| |#1|)) (-15 -3360 (|#1| |#1|)) (-15 -3443 ((-3 |#1| #1#) |#1| |#2|)) (-15 -2990 (|#1| |#1|)) (-15 -1360 (|#1|)) (-15 -3948 ((-793 (-323)) |#1|)) (-15 -3948 ((-793 (-478)) |#1|)) (-15 -2777 ((-791 (-323) |#1|) |#1| (-793 (-323)) (-791 (-323) |#1|))) (-15 -2777 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|))) (-15 -3934 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3818 ((-3 |#1| #1#) (-343 (-1070 |#2|)))) (-15 -3060 ((-1070 |#2|) |#1|)) (-15 -3948 (|#1| (-1070 |#2|))) (-15 -3818 (|#1| (-1070 |#2|))) (-15 -3167 ((-1070 |#2|))) (-15 -2261 ((-625 |#2|) (-625 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-625 (-478)) (-625 |#1|))) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3948 ((-1070 |#2|) |#1|)) (-15 -3733 (|#2|)) (-15 -3948 (|#1| (-1164 |#2|))) (-15 -3948 ((-1164 |#2|) |#1|)) (-15 -3205 ((-625 |#2|) (-1164 |#1|))) (-15 -3205 ((-1164 |#2|) |#1|)) (-15 -1996 ((-1070 |#2|) |#1|)) (-15 -2429 ((-1070 |#2|) |#1|)) (-15 -3733 (|#2| (-1164 |#1|))) (-15 -3205 ((-625 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3205 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -3113 (|#2| |#1|)) (-15 -3307 (|#2| |#1|)) (-15 -3090 ((-823))) (-15 -3922 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3107 ((-687)) -3928) (-15 -3922 (|#1| (-478))) (-15 ** (|#1| |#1| (-687))) (-15 -3444 ((-3 |#1| #1#) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-823))) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -1249 ((-83) |#1| |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-137 |#2|) (-144)) (T -136)) -((-3107 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) (-3090 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-823)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) (-3733 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-136 *3 *2)) (-4 *3 (-137 *2)))) (-3167 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1070 *4)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 111 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-2045 (($ $) 112 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-2043 (((-83) $) 114 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-1765 (((-625 |#1|) (-1164 $)) 58 T ELT) (((-625 |#1|)) 74 T ELT)) (-3307 ((|#1| $) 64 T ELT)) (-3469 (($ $) 247 (|has| |#1| (-1100)) ELT)) (-3615 (($ $) 230 (|has| |#1| (-1100)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) 164 (|has| |#1| (-295)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 261 (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-3751 (($ $) 131 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-3947 (((-341 $) $) 132 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-3018 (($ $) 260 (-12 (|has| |#1| (-908)) (|has| |#1| (-1100))) ELT)) (-2685 (((-3 (-578 (-1070 $)) "failed") (-578 (-1070 $)) (-1070 $)) 264 (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-1591 (((-83) $ $) 122 (|has| |#1| (-254)) ELT)) (-3117 (((-687)) 105 (|has| |#1| (-313)) ELT)) (-3467 (($ $) 246 (|has| |#1| (-1100)) ELT)) (-3614 (($ $) 231 (|has| |#1| (-1100)) ELT)) (-3471 (($ $) 245 (|has| |#1| (-1100)) ELT)) (-3613 (($ $) 232 (|has| |#1| (-1100)) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 (-478) #1="failed") $) 191 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 189 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3137 (((-478) $) 190 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 188 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 187 T ELT)) (-1775 (($ (-1164 |#1|) (-1164 $)) 60 T ELT) (($ (-1164 |#1|)) 77 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-295)) ELT)) (-2544 (($ $ $) 126 (|has| |#1| (-254)) ELT)) (-1764 (((-625 |#1|) $ (-1164 $)) 65 T ELT) (((-625 |#1|) $) 72 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 183 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 182 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 181 T ELT) (((-625 |#1|) (-625 $)) 180 T ELT)) (-3818 (($ (-1070 |#1|)) 175 T ELT) (((-3 $ "failed") (-343 (-1070 |#1|))) 172 (|has| |#1| (-308)) ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3619 ((|#1| $) 272 T ELT)) (-3005 (((-3 (-343 (-478)) "failed") $) 265 (|has| |#1| (-477)) ELT)) (-3004 (((-83) $) 267 (|has| |#1| (-477)) ELT)) (-3003 (((-343 (-478)) $) 266 (|has| |#1| (-477)) ELT)) (-3090 (((-823)) 66 T ELT)) (-2975 (($) 108 (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) 125 (|has| |#1| (-254)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 120 (|has| |#1| (-254)) ELT)) (-2814 (($) 166 (|has| |#1| (-295)) ELT)) (-1663 (((-83) $) 167 (|has| |#1| (-295)) ELT)) (-1747 (($ $ (-687)) 158 (|has| |#1| (-295)) ELT) (($ $) 157 (|has| |#1| (-295)) ELT)) (-3699 (((-83) $) 133 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-1358 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-965)) (|has| |#1| (-1100))) ELT)) (-3603 (($) 257 (|has| |#1| (-1100)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 280 (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 279 (|has| |#1| (-789 (-323))) ELT)) (-3748 (((-823) $) 169 (|has| |#1| (-295)) ELT) (((-736 (-823)) $) 155 (|has| |#1| (-295)) ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 259 (-12 (|has| |#1| (-908)) (|has| |#1| (-1100))) ELT)) (-3113 ((|#1| $) 63 T ELT)) (-3422 (((-627 $) $) 159 (|has| |#1| (-295)) ELT)) (-1588 (((-3 (-578 $) #2="failed") (-578 $) $) 129 (|has| |#1| (-254)) ELT)) (-1996 (((-1070 |#1|) $) 56 (|has| |#1| (-308)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-1992 (((-823) $) 107 (|has| |#1| (-313)) ELT)) (-3918 (($ $) 254 (|has| |#1| (-1100)) ELT)) (-3060 (((-1070 |#1|) $) 173 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 185 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 184 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 179 T ELT) (((-625 |#1|) (-1164 $)) 178 T ELT)) (-1874 (($ (-578 $)) 118 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT) (($ $ $) 117 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 134 (|has| |#1| (-308)) ELT)) (-3423 (($) 160 (|has| |#1| (-295)) CONST)) (-2382 (($ (-823)) 106 (|has| |#1| (-313)) ELT)) (-1360 (($) 276 T ELT)) (-3620 ((|#1| $) 273 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2391 (($) 177 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 119 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-3125 (($ (-578 $)) 116 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT) (($ $ $) 115 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) 163 (|has| |#1| (-295)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 263 (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 262 (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-3708 (((-341 $) $) 130 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-254)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 127 (|has| |#1| (-254)) ELT)) (-3443 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 110 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 121 (|has| |#1| (-254)) ELT)) (-3919 (($ $) 255 (|has| |#1| (-1100)) ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) 287 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 285 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 284 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) 283 (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) |#1|) 282 (|has| |#1| (-447 (-1075) |#1|)) ELT)) (-1590 (((-687) $) 123 (|has| |#1| (-254)) ELT)) (-3776 (($ $ |#1|) 288 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 124 (|has| |#1| (-254)) ELT)) (-3733 ((|#1| (-1164 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1748 (((-687) $) 168 (|has| |#1| (-295)) ELT) (((-3 (-687) "failed") $ $) 156 (|has| |#1| (-295)) ELT)) (-3734 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 141 T ELT) (($ $ (-578 (-1075)) (-578 (-687))) 147 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075) (-687)) 146 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-578 (-1075))) 145 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075)) 143 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-687)) 153 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2542 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT) (($ $) 151 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2542 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT)) (-2390 (((-625 |#1|) (-1164 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-308)) ELT)) (-3167 (((-1070 |#1|)) 176 T ELT)) (-3472 (($ $) 244 (|has| |#1| (-1100)) ELT)) (-3612 (($ $) 233 (|has| |#1| (-1100)) ELT)) (-1657 (($) 165 (|has| |#1| (-295)) ELT)) (-3470 (($ $) 243 (|has| |#1| (-1100)) ELT)) (-3611 (($ $) 234 (|has| |#1| (-1100)) ELT)) (-3468 (($ $) 242 (|has| |#1| (-1100)) ELT)) (-3610 (($ $) 235 (|has| |#1| (-1100)) ELT)) (-3205 (((-1164 |#1|) $ (-1164 $)) 62 T ELT) (((-625 |#1|) (-1164 $) (-1164 $)) 61 T ELT) (((-1164 |#1|) $) 79 T ELT) (((-625 |#1|) (-1164 $)) 78 T ELT)) (-3948 (((-1164 |#1|) $) 76 T ELT) (($ (-1164 |#1|)) 75 T ELT) (((-1070 |#1|) $) 192 T ELT) (($ (-1070 |#1|)) 174 T ELT) (((-793 (-478)) $) 278 (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) 277 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-140 (-323)) $) 229 (|has| |#1| (-926)) ELT) (((-140 (-177)) $) 228 (|has| |#1| (-926)) ELT) (((-467) $) 227 (|has| |#1| (-548 (-467))) ELT)) (-2990 (($ $) 275 T ELT)) (-2684 (((-3 (-1164 $) "failed") (-625 $)) 162 (OR (-2542 (|has| $ (-116)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) (|has| |#1| (-295))) ELT)) (-1359 (($ |#1| |#1|) 274 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-343 (-478))) 104 (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) 109 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-2683 (($ $) 161 (|has| |#1| (-295)) ELT) (((-627 $) $) 55 (OR (-2542 (|has| $ (-116)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) (|has| |#1| (-116))) ELT)) (-2429 (((-1070 |#1|) $) 57 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-1994 (((-1164 $)) 80 T ELT)) (-3475 (($ $) 253 (|has| |#1| (-1100)) ELT)) (-3463 (($ $) 241 (|has| |#1| (-1100)) ELT)) (-2044 (((-83) $ $) 113 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814)))) ELT)) (-3473 (($ $) 252 (|has| |#1| (-1100)) ELT)) (-3461 (($ $) 240 (|has| |#1| (-1100)) ELT)) (-3477 (($ $) 251 (|has| |#1| (-1100)) ELT)) (-3465 (($ $) 239 (|has| |#1| (-1100)) ELT)) (-2218 ((|#1| $) 269 (|has| |#1| (-1100)) ELT)) (-3478 (($ $) 250 (|has| |#1| (-1100)) ELT)) (-3466 (($ $) 238 (|has| |#1| (-1100)) ELT)) (-3476 (($ $) 249 (|has| |#1| (-1100)) ELT)) (-3464 (($ $) 237 (|has| |#1| (-1100)) ELT)) (-3474 (($ $) 248 (|has| |#1| (-1100)) ELT)) (-3462 (($ $) 236 (|has| |#1| (-1100)) ELT)) (-3360 (($ $) 270 (|has| |#1| (-965)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 139 T ELT) (($ $ (-578 (-1075)) (-578 (-687))) 150 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075) (-687)) 149 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-578 (-1075))) 148 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075)) 144 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-687)) 154 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2542 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT) (($ $) 152 (OR (-2542 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2542 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2542 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 138 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-343 (-478))) 258 (-12 (|has| |#1| (-908)) (|has| |#1| (-1100))) ELT) (($ $ $) 256 (|has| |#1| (-1100)) ELT) (($ $ (-478)) 135 (|has| |#1| (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-343 (-478)) $) 137 (|has| |#1| (-308)) ELT) (($ $ (-343 (-478))) 136 (|has| |#1| (-308)) ELT))) +((-2553 (((-83) $ $) NIL T ELT)) (-1362 (($ (-479)) 15 T ELT) (($ $ $) 16 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 19 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 11 T ELT))) +(((-132) (-13 (-1006) (-10 -8 (-15 -1362 ($ (-479))) (-15 -1362 ($ $ $))))) (T -132)) +((-1362 (*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-132)))) (-1362 (*1 *1 *1 *1) (-5 *1 (-132)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 16 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-579 (-1039)) $) 10 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-133) (-13 (-988) (-10 -8 (-15 -3217 ((-579 (-1039)) $))))) (T -133)) +((-3217 (*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-133))))) +((-3577 (((-84) (-1080)) 103 T ELT))) +(((-134) (-10 -7 (-15 -3577 ((-84) (-1080))))) (T -134)) +((-3577 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-84)) (-5 *1 (-134))))) +((-1583 ((|#3| |#3|) 19 T ELT))) +(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -1583 (|#3| |#3|))) (-955) (-1145 |#1|) (-1145 |#2|)) (T -135)) +((-1583 (*1 *2 *2) (-12 (-4 *3 (-955)) (-4 *4 (-1145 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-1145 *4))))) +((-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 222 T ELT)) (-3312 ((|#2| $) 102 T ELT)) (-3474 (($ $) 255 T ELT)) (-3621 (($ $) 249 T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1="failed") (-579 (-1075 $)) (-1075 $)) 47 T ELT)) (-3472 (($ $) 253 T ELT)) (-3620 (($ $) 247 T ELT)) (-3141 (((-3 (-479) #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3140 (((-479) $) NIL T ELT) (((-344 (-479)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2549 (($ $ $) 228 T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL T ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) 160 T ELT) (((-626 |#2|) (-626 $)) 154 T ELT)) (-3824 (($ (-1075 |#2|)) 125 T ELT) (((-3 $ #1#) (-344 (-1075 |#2|))) NIL T ELT)) (-3449 (((-3 $ #1#) $) 213 T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) 203 T ELT)) (-3008 (((-83) $) 198 T ELT)) (-3007 (((-344 (-479)) $) 201 T ELT)) (-3093 (((-824)) 96 T ELT)) (-2548 (($ $ $) 230 T ELT)) (-1363 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3609 (($) 244 T ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 192 T ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 197 T ELT)) (-3116 ((|#2| $) 100 T ELT)) (-2001 (((-1075 |#2|) $) 127 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3924 (($ $) 246 T ELT)) (-3064 (((-1075 |#2|) $) 126 T ELT)) (-2469 (($ $) 206 T ELT)) (-1365 (($) 103 T ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 95 T ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 64 T ELT)) (-3448 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3925 (($ $) 245 T ELT)) (-1595 (((-688) $) 225 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 234 T ELT)) (-3739 ((|#2| (-1169 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3740 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $) NIL T ELT)) (-3169 (((-1075 |#2|)) 120 T ELT)) (-3473 (($ $) 254 T ELT)) (-3616 (($ $) 248 T ELT)) (-3208 (((-1169 |#2|) $ (-1169 $)) 136 T ELT) (((-626 |#2|) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 |#2|) $) 116 T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-3954 (((-1169 |#2|) $) NIL T ELT) (($ (-1169 |#2|)) NIL T ELT) (((-1075 |#2|) $) NIL T ELT) (($ (-1075 |#2|)) NIL T ELT) (((-794 (-479)) $) 183 T ELT) (((-794 (-324)) $) 187 T ELT) (((-140 (-324)) $) 172 T ELT) (((-140 (-177)) $) 167 T ELT) (((-468) $) 179 T ELT)) (-2994 (($ $) 104 T ELT)) (-3928 (((-766) $) 143 T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ $) NIL T ELT)) (-2434 (((-1075 |#2|) $) 32 T ELT)) (-3110 (((-688)) 106 T CONST)) (-1254 (((-83) $ $) 13 T ELT)) (-3480 (($ $) 258 T ELT)) (-3468 (($ $) 252 T ELT)) (-3478 (($ $) 256 T ELT)) (-3466 (($ $) 250 T ELT)) (-2223 ((|#2| $) 241 T ELT)) (-3479 (($ $) 257 T ELT)) (-3467 (($ $) 251 T ELT)) (-3365 (($ $) 162 T ELT)) (-3041 (((-83) $ $) 110 T ELT)) (-3819 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 111 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-344 (-479))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT))) +(((-136 |#1| |#2|) (-10 -7 (-15 -3740 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -3928 (|#1| |#1|)) (-15 -3448 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2051 ((-2 (|:| -1760 |#1|) (|:| -3964 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1595 ((-688) |#1|)) (-15 -2864 ((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|)) (-15 -2548 (|#1| |#1| |#1|)) (-15 -2549 (|#1| |#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 ** (|#1| |#1| (-479))) (-15 * (|#1| |#1| (-344 (-479)))) (-15 * (|#1| (-344 (-479)) |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3954 ((-468) |#1|)) (-15 -3954 ((-140 (-177)) |#1|)) (-15 -3954 ((-140 (-324)) |#1|)) (-15 -3621 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3609 (|#1|)) (-15 ** (|#1| |#1| (-344 (-479)))) (-15 -2691 ((-342 (-1075 |#1|)) (-1075 |#1|))) (-15 -2690 ((-342 (-1075 |#1|)) (-1075 |#1|))) (-15 -2689 ((-3 (-579 (-1075 |#1|)) #1#) (-579 (-1075 |#1|)) (-1075 |#1|))) (-15 -3009 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3007 ((-344 (-479)) |#1|)) (-15 -3008 ((-83) |#1|)) (-15 -1363 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2223 (|#2| |#1|)) (-15 -3365 (|#1| |#1|)) (-15 -3448 ((-3 |#1| #1#) |#1| |#2|)) (-15 -2994 (|#1| |#1|)) (-15 -1365 (|#1|)) (-15 -3954 ((-794 (-324)) |#1|)) (-15 -3954 ((-794 (-479)) |#1|)) (-15 -2781 ((-792 (-324) |#1|) |#1| (-794 (-324)) (-792 (-324) |#1|))) (-15 -2781 ((-792 (-479) |#1|) |#1| (-794 (-479)) (-792 (-479) |#1|))) (-15 -3940 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|) (-688))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3824 ((-3 |#1| #1#) (-344 (-1075 |#2|)))) (-15 -3064 ((-1075 |#2|) |#1|)) (-15 -3954 (|#1| (-1075 |#2|))) (-15 -3824 (|#1| (-1075 |#2|))) (-15 -3169 ((-1075 |#2|))) (-15 -2266 ((-626 |#2|) (-626 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-626 (-479)) (-626 |#1|))) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3954 ((-1075 |#2|) |#1|)) (-15 -3739 (|#2|)) (-15 -3954 (|#1| (-1169 |#2|))) (-15 -3954 ((-1169 |#2|) |#1|)) (-15 -3208 ((-626 |#2|) (-1169 |#1|))) (-15 -3208 ((-1169 |#2|) |#1|)) (-15 -2001 ((-1075 |#2|) |#1|)) (-15 -2434 ((-1075 |#2|) |#1|)) (-15 -3739 (|#2| (-1169 |#1|))) (-15 -3208 ((-626 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -3208 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -3116 (|#2| |#1|)) (-15 -3312 (|#2| |#1|)) (-15 -3093 ((-824))) (-15 -3928 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3110 ((-688)) -3934) (-15 -3928 (|#1| (-479))) (-15 ** (|#1| |#1| (-688))) (-15 -3449 ((-3 |#1| #1#) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-824))) (-15 -3819 (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 * (|#1| (-824) |#1|)) (-15 -3821 (|#1| |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -1254 ((-83) |#1| |#1|)) (-15 -3041 ((-83) |#1| |#1|))) (-137 |#2|) (-144)) (T -136)) +((-3110 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-688)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) (-3093 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-824)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) (-3739 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-136 *3 *2)) (-4 *3 (-137 *2)))) (-3169 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1075 *4)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 111 (OR (|has| |#1| (-490)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT)) (-2050 (($ $) 112 (OR (|has| |#1| (-490)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT)) (-2048 (((-83) $) 114 (OR (|has| |#1| (-490)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT)) (-1770 (((-626 |#1|) (-1169 $)) 58 T ELT) (((-626 |#1|)) 74 T ELT)) (-3312 ((|#1| $) 64 T ELT)) (-3474 (($ $) 247 (|has| |#1| (-1105)) ELT)) (-3621 (($ $) 230 (|has| |#1| (-1105)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) 164 (|has| |#1| (-295)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 261 (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) ELT)) (-3757 (($ $) 131 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-308))) ELT)) (-3953 (((-342 $) $) 132 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-308))) ELT)) (-3022 (($ $) 260 (-12 (|has| |#1| (-909)) (|has| |#1| (-1105))) ELT)) (-2689 (((-3 (-579 (-1075 $)) "failed") (-579 (-1075 $)) (-1075 $)) 264 (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) ELT)) (-1596 (((-83) $ $) 122 (|has| |#1| (-254)) ELT)) (-3120 (((-688)) 105 (|has| |#1| (-314)) ELT)) (-3472 (($ $) 246 (|has| |#1| (-1105)) ELT)) (-3620 (($ $) 231 (|has| |#1| (-1105)) ELT)) (-3476 (($ $) 245 (|has| |#1| (-1105)) ELT)) (-3619 (($ $) 232 (|has| |#1| (-1105)) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 (-479) #1="failed") $) 191 (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) 189 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3140 (((-479) $) 190 (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) 188 (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 187 T ELT)) (-1780 (($ (-1169 |#1|) (-1169 $)) 60 T ELT) (($ (-1169 |#1|)) 77 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-295)) ELT)) (-2549 (($ $ $) 126 (|has| |#1| (-254)) ELT)) (-1769 (((-626 |#1|) $ (-1169 $)) 65 T ELT) (((-626 |#1|) $) 72 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 183 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 182 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 181 T ELT) (((-626 |#1|) (-626 $)) 180 T ELT)) (-3824 (($ (-1075 |#1|)) 175 T ELT) (((-3 $ "failed") (-344 (-1075 |#1|))) 172 (|has| |#1| (-308)) ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3625 ((|#1| $) 272 T ELT)) (-3009 (((-3 (-344 (-479)) "failed") $) 265 (|has| |#1| (-478)) ELT)) (-3008 (((-83) $) 267 (|has| |#1| (-478)) ELT)) (-3007 (((-344 (-479)) $) 266 (|has| |#1| (-478)) ELT)) (-3093 (((-824)) 66 T ELT)) (-2979 (($) 108 (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) 125 (|has| |#1| (-254)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 120 (|has| |#1| (-254)) ELT)) (-2818 (($) 166 (|has| |#1| (-295)) ELT)) (-1668 (((-83) $) 167 (|has| |#1| (-295)) ELT)) (-1752 (($ $ (-688)) 158 (|has| |#1| (-295)) ELT) (($ $) 157 (|has| |#1| (-295)) ELT)) (-3705 (((-83) $) 133 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-308))) ELT)) (-1363 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-966)) (|has| |#1| (-1105))) ELT)) (-3609 (($) 257 (|has| |#1| (-1105)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 280 (|has| |#1| (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 279 (|has| |#1| (-790 (-324))) ELT)) (-3754 (((-824) $) 169 (|has| |#1| (-295)) ELT) (((-737 (-824)) $) 155 (|has| |#1| (-295)) ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 259 (-12 (|has| |#1| (-909)) (|has| |#1| (-1105))) ELT)) (-3116 ((|#1| $) 63 T ELT)) (-3427 (((-628 $) $) 159 (|has| |#1| (-295)) ELT)) (-1593 (((-3 (-579 $) #2="failed") (-579 $) $) 129 (|has| |#1| (-254)) ELT)) (-2001 (((-1075 |#1|) $) 56 (|has| |#1| (-308)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-1997 (((-824) $) 107 (|has| |#1| (-314)) ELT)) (-3924 (($ $) 254 (|has| |#1| (-1105)) ELT)) (-3064 (((-1075 |#1|) $) 173 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 185 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 184 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 179 T ELT) (((-626 |#1|) (-1169 $)) 178 T ELT)) (-1879 (($ (-579 $)) 118 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT) (($ $ $) 117 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 134 (|has| |#1| (-308)) ELT)) (-3428 (($) 160 (|has| |#1| (-295)) CONST)) (-2387 (($ (-824)) 106 (|has| |#1| (-314)) ELT)) (-1365 (($) 276 T ELT)) (-3626 ((|#1| $) 273 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2396 (($) 177 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 119 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT)) (-3128 (($ (-579 $)) 116 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT) (($ $ $) 115 (OR (|has| |#1| (-254)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) 163 (|has| |#1| (-295)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 263 (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 262 (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) ELT)) (-3714 (((-342 $) $) 130 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-308))) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-254)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 127 (|has| |#1| (-254)) ELT)) (-3448 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-490)) ELT) (((-3 $ "failed") $ $) 110 (OR (|has| |#1| (-490)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 121 (|has| |#1| (-254)) ELT)) (-3925 (($ $) 255 (|has| |#1| (-1105)) ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) 287 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 285 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-245 |#1|))) 284 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) 283 (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) |#1|) 282 (|has| |#1| (-448 (-1080) |#1|)) ELT)) (-1595 (((-688) $) 123 (|has| |#1| (-254)) ELT)) (-3782 (($ $ |#1|) 288 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 124 (|has| |#1| (-254)) ELT)) (-3739 ((|#1| (-1169 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1753 (((-688) $) 168 (|has| |#1| (-295)) ELT) (((-3 (-688) "failed") $ $) 156 (|has| |#1| (-295)) ELT)) (-3740 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 141 T ELT) (($ $ (-579 (-1080)) (-579 (-688))) 147 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080) (-688)) 146 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-579 (-1080))) 145 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080)) 143 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-688)) 153 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2547 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT) (($ $) 151 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2547 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT)) (-2395 (((-626 |#1|) (-1169 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-308)) ELT)) (-3169 (((-1075 |#1|)) 176 T ELT)) (-3477 (($ $) 244 (|has| |#1| (-1105)) ELT)) (-3618 (($ $) 233 (|has| |#1| (-1105)) ELT)) (-1662 (($) 165 (|has| |#1| (-295)) ELT)) (-3475 (($ $) 243 (|has| |#1| (-1105)) ELT)) (-3617 (($ $) 234 (|has| |#1| (-1105)) ELT)) (-3473 (($ $) 242 (|has| |#1| (-1105)) ELT)) (-3616 (($ $) 235 (|has| |#1| (-1105)) ELT)) (-3208 (((-1169 |#1|) $ (-1169 $)) 62 T ELT) (((-626 |#1|) (-1169 $) (-1169 $)) 61 T ELT) (((-1169 |#1|) $) 79 T ELT) (((-626 |#1|) (-1169 $)) 78 T ELT)) (-3954 (((-1169 |#1|) $) 76 T ELT) (($ (-1169 |#1|)) 75 T ELT) (((-1075 |#1|) $) 192 T ELT) (($ (-1075 |#1|)) 174 T ELT) (((-794 (-479)) $) 278 (|has| |#1| (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) 277 (|has| |#1| (-549 (-794 (-324)))) ELT) (((-140 (-324)) $) 229 (|has| |#1| (-927)) ELT) (((-140 (-177)) $) 228 (|has| |#1| (-927)) ELT) (((-468) $) 227 (|has| |#1| (-549 (-468))) ELT)) (-2994 (($ $) 275 T ELT)) (-2688 (((-3 (-1169 $) "failed") (-626 $)) 162 (OR (-2547 (|has| $ (-116)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) (|has| |#1| (-295))) ELT)) (-1364 (($ |#1| |#1|) 274 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-344 (-479))) 104 (OR (|has| |#1| (-308)) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) 109 (OR (|has| |#1| (-490)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT)) (-2687 (($ $) 161 (|has| |#1| (-295)) ELT) (((-628 $) $) 55 (OR (-2547 (|has| $ (-116)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) (|has| |#1| (-116))) ELT)) (-2434 (((-1075 |#1|) $) 57 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-1999 (((-1169 $)) 80 T ELT)) (-3480 (($ $) 253 (|has| |#1| (-1105)) ELT)) (-3468 (($ $) 241 (|has| |#1| (-1105)) ELT)) (-2049 (((-83) $ $) 113 (OR (|has| |#1| (-490)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815)))) ELT)) (-3478 (($ $) 252 (|has| |#1| (-1105)) ELT)) (-3466 (($ $) 240 (|has| |#1| (-1105)) ELT)) (-3482 (($ $) 251 (|has| |#1| (-1105)) ELT)) (-3470 (($ $) 239 (|has| |#1| (-1105)) ELT)) (-2223 ((|#1| $) 269 (|has| |#1| (-1105)) ELT)) (-3483 (($ $) 250 (|has| |#1| (-1105)) ELT)) (-3471 (($ $) 238 (|has| |#1| (-1105)) ELT)) (-3481 (($ $) 249 (|has| |#1| (-1105)) ELT)) (-3469 (($ $) 237 (|has| |#1| (-1105)) ELT)) (-3479 (($ $) 248 (|has| |#1| (-1105)) ELT)) (-3467 (($ $) 236 (|has| |#1| (-1105)) ELT)) (-3365 (($ $) 270 (|has| |#1| (-966)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 139 T ELT) (($ $ (-579 (-1080)) (-579 (-688))) 150 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080) (-688)) 149 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-579 (-1080))) 148 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080)) 144 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-688)) 154 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2547 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT) (($ $) 152 (OR (-2547 (|has| |#1| (-308)) (|has| |#1| (-187))) (-2547 (|has| |#1| (-308)) (|has| |#1| (-188))) (|has| |#1| (-187)) (-2547 (|has| |#1| (-187)) (|has| |#1| (-308)))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 138 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-344 (-479))) 258 (-12 (|has| |#1| (-909)) (|has| |#1| (-1105))) ELT) (($ $ $) 256 (|has| |#1| (-1105)) ELT) (($ $ (-479)) 135 (|has| |#1| (-308)) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-344 (-479)) $) 137 (|has| |#1| (-308)) ELT) (($ $ (-344 (-479))) 136 (|has| |#1| (-308)) ELT))) (((-137 |#1|) (-111) (-144)) (T -137)) -((-3113 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-1360 (*1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-2990 (*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-1359 (*1 *1 *2 *2) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3443 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) (-3360 (*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) (-2218 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-1100)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-965)) (-4 *3 (-1100)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) (-3005 (*1 *2 *1) (|partial| -12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478)))))) -(-13 (-656 |t#1| (-1070 |t#1|)) (-348 |t#1|) (-182 |t#1|) (-284 |t#1|) (-336 |t#1|) (-787 |t#1|) (-322 |t#1|) (-144) (-10 -8 (-6 -1359) (-15 -1360 ($)) (-15 -2990 ($ $)) (-15 -1359 ($ |t#1| |t#1|)) (-15 -3620 (|t#1| $)) (-15 -3619 (|t#1| $)) (-15 -3113 (|t#1| $)) (IF (|has| |t#1| (-489)) (PROGN (-6 (-489)) (-15 -3443 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-254)) (-6 (-254)) |%noBranch|) (IF (|has| |t#1| (-6 -3970)) (-6 -3970) |%noBranch|) (IF (|has| |t#1| (-6 -3967)) (-6 -3967) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-926)) (PROGN (-6 (-548 (-140 (-177)))) (-6 (-548 (-140 (-323))))) |%noBranch|) (IF (|has| |t#1| (-965)) (-15 -3360 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1100)) (PROGN (-6 (-1100)) (-15 -2218 (|t#1| $)) (IF (|has| |t#1| (-908)) (-6 (-908)) |%noBranch|) (IF (|has| |t#1| (-965)) (-15 -1358 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-477)) (PROGN (-15 -3004 ((-83) $)) (-15 -3003 ((-343 (-478)) $)) (-15 -3005 ((-3 (-343 (-478)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-814)) (IF (|has| |t#1| (-254)) (-6 (-814)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-35) |has| |#1| (-1100)) ((-66) |has| |#1| (-1100)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-295)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-295)) (|has| |#1| (-308))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-547 (-765)) . T) ((-144) . T) ((-548 (-140 (-177))) |has| |#1| (-926)) ((-548 (-140 (-323))) |has| |#1| (-926)) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478)))) ((-548 (-1070 |#1|)) . T) ((-184 $) OR (|has| |#1| (-295)) (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) OR (|has| |#1| (-295)) (|has| |#1| (-188))) ((-187) OR (|has| |#1| (-295)) (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-198) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-236) |has| |#1| (-1100)) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-254) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-308) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-338) |has| |#1| (-295)) ((-313) OR (|has| |#1| (-295)) (|has| |#1| (-313))) ((-295) |has| |#1| (-295)) ((-315 |#1| (-1070 |#1|)) . T) ((-346 |#1| (-1070 |#1|)) . T) ((-284 |#1|) . T) ((-322 |#1|) . T) ((-336 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-426) |has| |#1| (-1100)) ((-447 (-1075) |#1|) |has| |#1| (-447 (-1075) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-583 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-577 |#1|) . T) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-649 |#1|) . T) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-656 |#1| (-1070 |#1|)) . T) ((-658) . T) ((-799 $ (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-802 (-1075)) |has| |#1| (-802 (-1075))) ((-804 (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-787 |#1|) . T) ((-814) -12 (|has| |#1| (-254)) (|has| |#1| (-814))) ((-825) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-908) -12 (|has| |#1| (-908)) (|has| |#1| (-1100))) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1052) |has| |#1| (-295)) ((-1100) |has| |#1| (-1100)) ((-1103) |has| |#1| (-1100)) ((-1114) . T) ((-1119) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (-12 (|has| |#1| (-254)) (|has| |#1| (-814))))) -((-3708 (((-341 |#2|) |#2|) 67 T ELT))) -(((-138 |#1| |#2|) (-10 -7 (-15 -3708 ((-341 |#2|) |#2|))) (-254) (-1140 (-140 |#1|))) (T -138)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-138 *4 *3)) (-4 *3 (-1140 (-140 *4)))))) -((-1363 (((-1035) (-1035) (-243)) 8 T ELT)) (-1361 (((-578 (-627 (-232))) (-1059)) 81 T ELT)) (-1362 (((-627 (-232)) (-1035)) 76 T ELT))) -(((-139) (-13 (-1114) (-10 -7 (-15 -1363 ((-1035) (-1035) (-243))) (-15 -1362 ((-627 (-232)) (-1035))) (-15 -1361 ((-578 (-627 (-232))) (-1059)))))) (T -139)) -((-1363 (*1 *2 *2 *3) (-12 (-5 *2 (-1035)) (-5 *3 (-243)) (-5 *1 (-139)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-1035)) (-5 *2 (-627 (-232))) (-5 *1 (-139)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-578 (-627 (-232)))) (-5 *1 (-139))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 15 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-2045 (($ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-2043 (((-83) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-1765 (((-625 |#1|) (-1164 $)) NIL T ELT) (((-625 |#1|)) NIL T ELT)) (-3307 ((|#1| $) NIL T ELT)) (-3469 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3615 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| |#1| (-295)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-3751 (($ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-3947 (((-341 $) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-3018 (($ $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-1100))) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-254)) ELT)) (-3117 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3467 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3614 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3471 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3613 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-1775 (($ (-1164 |#1|) (-1164 $)) NIL T ELT) (($ (-1164 |#1|)) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-295)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-1764 (((-625 |#1|) $ (-1164 $)) NIL T ELT) (((-625 |#1|) $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3818 (($ (-1070 |#1|)) NIL T ELT) (((-3 $ #1#) (-343 (-1070 |#1|))) NIL (|has| |#1| (-308)) ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3619 ((|#1| $) 20 T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-477)) ELT)) (-3004 (((-83) $) NIL (|has| |#1| (-477)) ELT)) (-3003 (((-343 (-478)) $) NIL (|has| |#1| (-477)) ELT)) (-3090 (((-823)) NIL T ELT)) (-2975 (($) NIL (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-254)) ELT)) (-2814 (($) NIL (|has| |#1| (-295)) ELT)) (-1663 (((-83) $) NIL (|has| |#1| (-295)) ELT)) (-1747 (($ $ (-687)) NIL (|has| |#1| (-295)) ELT) (($ $) NIL (|has| |#1| (-295)) ELT)) (-3699 (((-83) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-1358 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-965)) (|has| |#1| (-1100))) ELT)) (-3603 (($) NIL (|has| |#1| (-1100)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| |#1| (-789 (-323))) ELT)) (-3748 (((-823) $) NIL (|has| |#1| (-295)) ELT) (((-736 (-823)) $) NIL (|has| |#1| (-295)) ELT)) (-2392 (((-83) $) 17 T ELT)) (-2992 (($ $ (-478)) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-1100))) ELT)) (-3113 ((|#1| $) 30 T ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-295)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-254)) ELT)) (-1996 (((-1070 |#1|) $) NIL (|has| |#1| (-308)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1992 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-3918 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3060 (((-1070 |#1|) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-254)) ELT) (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3423 (($) NIL (|has| |#1| (-295)) CONST)) (-2382 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1360 (($) NIL T ELT)) (-3620 ((|#1| $) 21 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-254)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-254)) ELT) (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| |#1| (-295)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) ELT)) (-3708 (((-341 $) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-308))) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-254)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-254)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-254)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) NIL (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) |#1|) NIL (|has| |#1| (-447 (-1075) |#1|)) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-254)) ELT)) (-3776 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-254)) ELT)) (-3733 ((|#1| (-1164 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1748 (((-687) $) NIL (|has| |#1| (-295)) ELT) (((-3 (-687) #1#) $ $) NIL (|has| |#1| (-295)) ELT)) (-3734 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT)) (-2390 (((-625 |#1|) (-1164 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT)) (-3167 (((-1070 |#1|)) NIL T ELT)) (-3472 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3612 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-1657 (($) NIL (|has| |#1| (-295)) ELT)) (-3470 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3611 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3468 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3610 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3205 (((-1164 |#1|) $ (-1164 $)) NIL T ELT) (((-625 |#1|) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 |#1|) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-3948 (((-1164 |#1|) $) NIL T ELT) (($ (-1164 |#1|)) NIL T ELT) (((-1070 |#1|) $) NIL T ELT) (($ (-1070 |#1|)) NIL T ELT) (((-793 (-478)) $) NIL (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| |#1| (-548 (-793 (-323)))) ELT) (((-140 (-323)) $) NIL (|has| |#1| (-926)) ELT) (((-140 (-177)) $) NIL (|has| |#1| (-926)) ELT) (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-2990 (($ $) 29 T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-295))) ELT)) (-1359 (($ |#1| |#1|) 19 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-2683 (($ $) NIL (|has| |#1| (-295)) ELT) (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-2429 (((-1070 |#1|) $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3463 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-2044 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-814))) (|has| |#1| (-489))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3461 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3477 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3465 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-2218 ((|#1| $) NIL (|has| |#1| (-1100)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3466 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3476 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3464 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3474 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3462 (($ $) NIL (|has| |#1| (-1100)) ELT)) (-3360 (($ $) NIL (|has| |#1| (-965)) ELT)) (-2640 (($) 8 T CONST)) (-2647 (($) 10 T CONST)) (-2650 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 23 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-343 (-478))) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-1100))) ELT) (($ $ $) NIL (|has| |#1| (-1100)) ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-308)) ELT))) +((-3116 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-1365 (*1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-2994 (*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-1364 (*1 *1 *2 *2) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3626 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-490)))) (-3365 (*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-966)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-1105)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-966)) (-4 *3 (-1105)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-83)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-344 (-479))))) (-3009 (*1 *2 *1) (|partial| -12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-344 (-479)))))) +(-13 (-657 |t#1| (-1075 |t#1|)) (-349 |t#1|) (-182 |t#1|) (-284 |t#1|) (-337 |t#1|) (-788 |t#1|) (-323 |t#1|) (-144) (-10 -8 (-6 -1364) (-15 -1365 ($)) (-15 -2994 ($ $)) (-15 -1364 ($ |t#1| |t#1|)) (-15 -3626 (|t#1| $)) (-15 -3625 (|t#1| $)) (-15 -3116 (|t#1| $)) (IF (|has| |t#1| (-490)) (PROGN (-6 (-490)) (-15 -3448 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-254)) (-6 (-254)) |%noBranch|) (IF (|has| |t#1| (-6 -3976)) (-6 -3976) |%noBranch|) (IF (|has| |t#1| (-6 -3973)) (-6 -3973) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-927)) (PROGN (-6 (-549 (-140 (-177)))) (-6 (-549 (-140 (-324))))) |%noBranch|) (IF (|has| |t#1| (-966)) (-15 -3365 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1105)) (PROGN (-6 (-1105)) (-15 -2223 (|t#1| $)) (IF (|has| |t#1| (-909)) (-6 (-909)) |%noBranch|) (IF (|has| |t#1| (-966)) (-15 -1363 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-478)) (PROGN (-15 -3008 ((-83) $)) (-15 -3007 ((-344 (-479)) $)) (-15 -3009 ((-3 (-344 (-479)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-815)) (IF (|has| |t#1| (-254)) (-6 (-815)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-490)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-35) |has| |#1| (-1105)) ((-66) |has| |#1| (-1105)) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-295)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-295)) (|has| |#1| (-308))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-551 $) OR (|has| |#1| (-490)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-548 (-766)) . T) ((-144) . T) ((-549 (-140 (-177))) |has| |#1| (-927)) ((-549 (-140 (-324))) |has| |#1| (-927)) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-549 (-794 (-324))) |has| |#1| (-549 (-794 (-324)))) ((-549 (-794 (-479))) |has| |#1| (-549 (-794 (-479)))) ((-549 (-1075 |#1|)) . T) ((-184 $) OR (|has| |#1| (-295)) (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) OR (|has| |#1| (-295)) (|has| |#1| (-188))) ((-187) OR (|has| |#1| (-295)) (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-198) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-236) |has| |#1| (-1105)) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-242) OR (|has| |#1| (-490)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-254) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-308) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-339) |has| |#1| (-295)) ((-314) OR (|has| |#1| (-295)) (|has| |#1| (-314))) ((-295) |has| |#1| (-295)) ((-316 |#1| (-1075 |#1|)) . T) ((-347 |#1| (-1075 |#1|)) . T) ((-284 |#1|) . T) ((-323 |#1|) . T) ((-337 |#1|) . T) ((-349 |#1|) . T) ((-386) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-427) |has| |#1| (-1105)) ((-448 (-1080) |#1|) |has| |#1| (-448 (-1080) |#1|)) ((-448 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-490) OR (|has| |#1| (-490)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-584 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-586 (-479)) |has| |#1| (-576 (-479))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-578 |#1|) . T) ((-578 $) OR (|has| |#1| (-490)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-576 (-479)) |has| |#1| (-576 (-479))) ((-576 |#1|) . T) ((-650 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-650 |#1|) . T) ((-650 $) OR (|has| |#1| (-490)) (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-657 |#1| (-1075 |#1|)) . T) ((-659) . T) ((-800 $ (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-803 (-1080)) |has| |#1| (-803 (-1080))) ((-805 (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-790 (-324)) |has| |#1| (-790 (-324))) ((-790 (-479)) |has| |#1| (-790 (-479))) ((-788 |#1|) . T) ((-815) -12 (|has| |#1| (-254)) (|has| |#1| (-815))) ((-826) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (|has| |#1| (-254))) ((-909) -12 (|has| |#1| (-909)) (|has| |#1| (-1105))) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-957 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-957 |#1|) . T) ((-957 $) . T) ((-962 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-962 |#1|) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1056) |has| |#1| (-295)) ((-1105) |has| |#1| (-1105)) ((-1108) |has| |#1| (-1105)) ((-1119) . T) ((-1124) OR (|has| |#1| (-295)) (|has| |#1| (-308)) (-12 (|has| |#1| (-254)) (|has| |#1| (-815))))) +((-3714 (((-342 |#2|) |#2|) 67 T ELT))) +(((-138 |#1| |#2|) (-10 -7 (-15 -3714 ((-342 |#2|) |#2|))) (-254) (-1145 (-140 |#1|))) (T -138)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-254)) (-5 *2 (-342 *3)) (-5 *1 (-138 *4 *3)) (-4 *3 (-1145 (-140 *4)))))) +((-1368 (((-1039) (-1039) (-243)) 8 T ELT)) (-1366 (((-579 (-628 (-232))) (-1063)) 81 T ELT)) (-1367 (((-628 (-232)) (-1039)) 76 T ELT))) +(((-139) (-13 (-1119) (-10 -7 (-15 -1368 ((-1039) (-1039) (-243))) (-15 -1367 ((-628 (-232)) (-1039))) (-15 -1366 ((-579 (-628 (-232))) (-1063)))))) (T -139)) +((-1368 (*1 *2 *2 *3) (-12 (-5 *2 (-1039)) (-5 *3 (-243)) (-5 *1 (-139)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-628 (-232))) (-5 *1 (-139)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-579 (-628 (-232)))) (-5 *1 (-139))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 15 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-490))) ELT)) (-2050 (($ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-490))) ELT)) (-2048 (((-83) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-490))) ELT)) (-1770 (((-626 |#1|) (-1169 $)) NIL T ELT) (((-626 |#1|)) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT)) (-3474 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3621 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| |#1| (-295)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) ELT)) (-3757 (($ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-308))) ELT)) (-3953 (((-342 $) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-308))) ELT)) (-3022 (($ $) NIL (-12 (|has| |#1| (-909)) (|has| |#1| (-1105))) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-254)) ELT)) (-3120 (((-688)) NIL (|has| |#1| (-314)) ELT)) (-3472 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3620 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3476 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3619 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT)) (-1780 (($ (-1169 |#1|) (-1169 $)) NIL T ELT) (($ (-1169 |#1|)) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-295)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-1769 (((-626 |#1|) $ (-1169 $)) NIL T ELT) (((-626 |#1|) $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3824 (($ (-1075 |#1|)) NIL T ELT) (((-3 $ #1#) (-344 (-1075 |#1|))) NIL (|has| |#1| (-308)) ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3625 ((|#1| $) 20 T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-478)) ELT)) (-3008 (((-83) $) NIL (|has| |#1| (-478)) ELT)) (-3007 (((-344 (-479)) $) NIL (|has| |#1| (-478)) ELT)) (-3093 (((-824)) NIL T ELT)) (-2979 (($) NIL (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-254)) ELT)) (-2818 (($) NIL (|has| |#1| (-295)) ELT)) (-1668 (((-83) $) NIL (|has| |#1| (-295)) ELT)) (-1752 (($ $ (-688)) NIL (|has| |#1| (-295)) ELT) (($ $) NIL (|has| |#1| (-295)) ELT)) (-3705 (((-83) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-308))) ELT)) (-1363 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-966)) (|has| |#1| (-1105))) ELT)) (-3609 (($) NIL (|has| |#1| (-1105)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| |#1| (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| |#1| (-790 (-324))) ELT)) (-3754 (((-824) $) NIL (|has| |#1| (-295)) ELT) (((-737 (-824)) $) NIL (|has| |#1| (-295)) ELT)) (-2397 (((-83) $) 17 T ELT)) (-2996 (($ $ (-479)) NIL (-12 (|has| |#1| (-909)) (|has| |#1| (-1105))) ELT)) (-3116 ((|#1| $) 30 T ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-295)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-254)) ELT)) (-2001 (((-1075 |#1|) $) NIL (|has| |#1| (-308)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1997 (((-824) $) NIL (|has| |#1| (-314)) ELT)) (-3924 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3064 (((-1075 |#1|) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-254)) ELT) (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3428 (($) NIL (|has| |#1| (-295)) CONST)) (-2387 (($ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1365 (($) NIL T ELT)) (-3626 ((|#1| $) 21 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-254)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-254)) ELT) (($ $ $) NIL (|has| |#1| (-254)) ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| |#1| (-295)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) ELT)) (-3714 (((-342 $) $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-308))) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-254)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-254)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-490))) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-254)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) NIL (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) |#1|) NIL (|has| |#1| (-448 (-1080) |#1|)) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-254)) ELT)) (-3782 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-254)) ELT)) (-3739 ((|#1| (-1169 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1753 (((-688) $) NIL (|has| |#1| (-295)) ELT) (((-3 (-688) #1#) $ $) NIL (|has| |#1| (-295)) ELT)) (-3740 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT)) (-2395 (((-626 |#1|) (-1169 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT)) (-3169 (((-1075 |#1|)) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3618 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-1662 (($) NIL (|has| |#1| (-295)) ELT)) (-3475 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3617 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3616 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3208 (((-1169 |#1|) $ (-1169 $)) NIL T ELT) (((-626 |#1|) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 |#1|) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-3954 (((-1169 |#1|) $) NIL T ELT) (($ (-1169 |#1|)) NIL T ELT) (((-1075 |#1|) $) NIL T ELT) (($ (-1075 |#1|)) NIL T ELT) (((-794 (-479)) $) NIL (|has| |#1| (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| |#1| (-549 (-794 (-324)))) ELT) (((-140 (-324)) $) NIL (|has| |#1| (-927)) ELT) (((-140 (-177)) $) NIL (|has| |#1| (-927)) ELT) (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-2994 (($ $) 29 T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-295))) ELT)) (-1364 (($ |#1| |#1|) 19 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-308)) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-490))) ELT)) (-2687 (($ $) NIL (|has| |#1| (-295)) ELT) (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-2434 (((-1075 |#1|) $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3468 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-2049 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-254)) (|has| |#1| (-815))) (|has| |#1| (-490))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3466 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3482 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3470 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-2223 ((|#1| $) NIL (|has| |#1| (-1105)) ELT)) (-3483 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3471 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3481 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3469 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3479 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3467 (($ $) NIL (|has| |#1| (-1105)) ELT)) (-3365 (($ $) NIL (|has| |#1| (-966)) ELT)) (-2645 (($) 8 T CONST)) (-2651 (($) 10 T CONST)) (-2654 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-188)) (|has| |#1| (-308))) (|has| |#1| (-187))) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 23 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-344 (-479))) NIL (-12 (|has| |#1| (-909)) (|has| |#1| (-1105))) ELT) (($ $ $) NIL (|has| |#1| (-1105)) ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-308)) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-308)) ELT))) (((-140 |#1|) (-137 |#1|) (-144)) (T -140)) NIL -((-3934 (((-140 |#2|) (-1 |#2| |#1|) (-140 |#1|)) 14 T ELT))) -(((-141 |#1| |#2|) (-10 -7 (-15 -3934 ((-140 |#2|) (-1 |#2| |#1|) (-140 |#1|)))) (-144) (-144)) (T -141)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-140 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-5 *2 (-140 *6)) (-5 *1 (-141 *5 *6))))) -((-3948 (((-793 |#1|) |#3|) 22 T ELT))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3948 ((-793 |#1|) |#3|))) (-1003) (-13 (-548 (-793 |#1|)) (-144)) (-137 |#2|)) (T -142)) -((-3948 (*1 *2 *3) (-12 (-4 *5 (-13 (-548 *2) (-144))) (-5 *2 (-793 *4)) (-5 *1 (-142 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-137 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1365 (((-83) $) 9 T ELT)) (-1364 (((-83) $ (-83)) 11 T ELT)) (-3590 (($) 13 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3377 (($ $) 14 T ELT)) (-3922 (((-765) $) 18 T ELT)) (-3678 (((-83) $) 8 T ELT)) (-3837 (((-83) $ (-83)) 10 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-143) (-13 (-1003) (-10 -8 (-15 -3590 ($)) (-15 -3678 ((-83) $)) (-15 -1365 ((-83) $)) (-15 -3837 ((-83) $ (-83))) (-15 -1364 ((-83) $ (-83))) (-15 -3377 ($ $))))) (T -143)) -((-3590 (*1 *1) (-5 *1 (-143))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-1365 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-3837 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-1364 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-3377 (*1 *1 *1) (-5 *1 (-143)))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-3940 (((-140 |#2|) (-1 |#2| |#1|) (-140 |#1|)) 14 T ELT))) +(((-141 |#1| |#2|) (-10 -7 (-15 -3940 ((-140 |#2|) (-1 |#2| |#1|) (-140 |#1|)))) (-144) (-144)) (T -141)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-140 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-5 *2 (-140 *6)) (-5 *1 (-141 *5 *6))))) +((-3954 (((-794 |#1|) |#3|) 22 T ELT))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3954 ((-794 |#1|) |#3|))) (-1006) (-13 (-549 (-794 |#1|)) (-144)) (-137 |#2|)) (T -142)) +((-3954 (*1 *2 *3) (-12 (-4 *5 (-13 (-549 *2) (-144))) (-5 *2 (-794 *4)) (-5 *1 (-142 *4 *5 *3)) (-4 *4 (-1006)) (-4 *3 (-137 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1370 (((-83) $) 9 T ELT)) (-1369 (((-83) $ (-83)) 11 T ELT)) (-3596 (($) 13 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3382 (($ $) 14 T ELT)) (-3928 (((-766) $) 18 T ELT)) (-3684 (((-83) $) 8 T ELT)) (-3843 (((-83) $ (-83)) 10 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-143) (-13 (-1006) (-10 -8 (-15 -3596 ($)) (-15 -3684 ((-83) $)) (-15 -1370 ((-83) $)) (-15 -3843 ((-83) $ (-83))) (-15 -1369 ((-83) $ (-83))) (-15 -3382 ($ $))))) (T -143)) +((-3596 (*1 *1) (-5 *1 (-143))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-3843 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-1369 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) (-3382 (*1 *1 *1) (-5 *1 (-143)))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-144) (-111)) (T -144)) NIL -(-13 (-954) (-80 $ $) (-10 -7 (-6 (-3973 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-1683 (($ $) 6 T ELT))) +(-13 (-955) (-80 $ $) (-10 -7 (-6 (-3979 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-659) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-1688 (($ $) 6 T ELT))) (((-145) (-111)) (T -145)) -((-1683 (*1 *1 *1) (-4 *1 (-145)))) -(-13 (-10 -8 (-15 -1683 ($ $)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 ((|#1| $) 79 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2544 (($ $ $) NIL T ELT)) (-1370 (($ $) 21 T ELT)) (-1374 (($ |#1| (-1055 |#1|)) 48 T ELT)) (-3444 (((-3 $ #1#) $) 123 T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-1371 (((-1055 |#1|) $) 86 T ELT)) (-1373 (((-1055 |#1|) $) 83 T ELT)) (-1372 (((-1055 |#1|) $) 84 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1367 (((-1055 |#1|) $) 93 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1874 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT)) (-3745 (($ $ (-478)) 96 T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1366 (((-1055 |#1|) $) 94 T ELT)) (-1368 (((-1055 (-343 |#1|)) $) 14 T ELT)) (-2596 (($ (-343 |#1|)) 17 T ELT) (($ |#1| (-1055 |#1|) (-1055 |#1|)) 38 T ELT)) (-2872 (($ $) 98 T ELT)) (-3922 (((-765) $) 139 T ELT) (($ (-478)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-343 |#1|)) 36 T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT)) (-3107 (((-687)) 67 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-1369 (((-1055 (-343 |#1|)) $) 20 T ELT)) (-2640 (($) 103 T CONST)) (-2647 (($) 28 T CONST)) (-3037 (((-83) $ $) 35 T ELT)) (-3925 (($ $ $) 121 T ELT)) (-3813 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3815 (($ $ $) 107 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-343 |#1|) $) 117 T ELT) (($ $ (-343 |#1|)) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT))) -(((-146 |#1|) (-13 (-38 |#1|) (-38 (-343 |#1|)) (-308) (-10 -8 (-15 -2596 ($ (-343 |#1|))) (-15 -2596 ($ |#1| (-1055 |#1|) (-1055 |#1|))) (-15 -1374 ($ |#1| (-1055 |#1|))) (-15 -1373 ((-1055 |#1|) $)) (-15 -1372 ((-1055 |#1|) $)) (-15 -1371 ((-1055 |#1|) $)) (-15 -3110 (|#1| $)) (-15 -1370 ($ $)) (-15 -1369 ((-1055 (-343 |#1|)) $)) (-15 -1368 ((-1055 (-343 |#1|)) $)) (-15 -1367 ((-1055 |#1|) $)) (-15 -1366 ((-1055 |#1|) $)) (-15 -3745 ($ $ (-478))) (-15 -2872 ($ $)))) (-254)) (T -146)) -((-2596 (*1 *1 *2) (-12 (-5 *2 (-343 *3)) (-4 *3 (-254)) (-5 *1 (-146 *3)))) (-2596 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2)))) (-1374 (*1 *1 *2 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-3110 (*1 *2 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) (-1370 (*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-1055 (-343 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-1055 (-343 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-2872 (*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254))))) -((-1375 (($ (-78) $) 15 T ELT)) (-3202 (((-627 (-78)) (-439) $) 14 T ELT)) (-3922 (((-765) $) 18 T ELT)) (-1376 (((-578 (-78)) $) 8 T ELT))) -(((-147) (-13 (-547 (-765)) (-10 -8 (-15 -1376 ((-578 (-78)) $)) (-15 -1375 ($ (-78) $)) (-15 -3202 ((-627 (-78)) (-439) $))))) (T -147)) -((-1376 (*1 *2 *1) (-12 (-5 *2 (-578 (-78))) (-5 *1 (-147)))) (-1375 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-147)))) (-3202 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-78))) (-5 *1 (-147))))) -((-1389 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 38 T ELT)) (-1380 (((-847 |#1|) (-847 |#1|)) 22 T ELT)) (-1385 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 34 T ELT)) (-1378 (((-847 |#1|) (-847 |#1|)) 20 T ELT)) (-1383 (((-847 |#1|) (-847 |#1|)) 28 T ELT)) (-1382 (((-847 |#1|) (-847 |#1|)) 27 T ELT)) (-1381 (((-847 |#1|) (-847 |#1|)) 26 T ELT)) (-1386 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 35 T ELT)) (-1384 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 33 T ELT)) (-1626 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 32 T ELT)) (-1379 (((-847 |#1|) (-847 |#1|)) 21 T ELT)) (-1390 (((-1 (-847 |#1|) (-847 |#1|)) |#1| |#1|) 41 T ELT)) (-1377 (((-847 |#1|) (-847 |#1|)) 8 T ELT)) (-1388 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 37 T ELT)) (-1387 (((-1 (-847 |#1|) (-847 |#1|)) |#1|) 36 T ELT))) -(((-148 |#1|) (-10 -7 (-15 -1377 ((-847 |#1|) (-847 |#1|))) (-15 -1378 ((-847 |#1|) (-847 |#1|))) (-15 -1379 ((-847 |#1|) (-847 |#1|))) (-15 -1380 ((-847 |#1|) (-847 |#1|))) (-15 -1381 ((-847 |#1|) (-847 |#1|))) (-15 -1382 ((-847 |#1|) (-847 |#1|))) (-15 -1383 ((-847 |#1|) (-847 |#1|))) (-15 -1626 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1384 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1385 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1386 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1387 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1388 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1389 ((-1 (-847 |#1|) (-847 |#1|)) |#1|)) (-15 -1390 ((-1 (-847 |#1|) (-847 |#1|)) |#1| |#1|))) (-13 (-308) (-1100) (-908))) (T -148)) -((-1390 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1100) (-908))))) (-1389 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1100) (-908))))) (-1388 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1100) (-908))))) (-1387 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1100) (-908))))) (-1386 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1100) (-908))))) (-1385 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1100) (-908))))) (-1384 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1100) (-908))))) (-1626 (*1 *2 *3) (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1100) (-908))))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) (-5 *1 (-148 *3)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) (-5 *1 (-148 *3)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) (-5 *1 (-148 *3)))) (-1380 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) (-5 *1 (-148 *3)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) (-5 *1 (-148 *3)))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) (-5 *1 (-148 *3)))) (-1377 (*1 *2 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) (-5 *1 (-148 *3))))) -((-2429 ((|#2| |#3|) 28 T ELT))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2429 (|#2| |#3|))) (-144) (-1140 |#1|) (-656 |#1| |#2|)) (T -149)) -((-2429 (*1 *2 *3) (-12 (-4 *4 (-144)) (-4 *2 (-1140 *4)) (-5 *1 (-149 *4 *2 *3)) (-4 *3 (-656 *4 *2))))) -((-2777 (((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)) 44 (|has| (-850 |#2|) (-789 |#1|)) ELT))) -(((-150 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-850 |#2|) (-789 |#1|)) (-15 -2777 ((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|))) |%noBranch|)) (-1003) (-13 (-789 |#1|) (-144)) (-137 |#2|)) (T -150)) -((-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *3)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-4 *3 (-137 *6)) (-4 (-850 *6) (-789 *5)) (-4 *6 (-13 (-789 *5) (-144))) (-5 *1 (-150 *5 *6 *3))))) -((-1392 (((-578 |#1|) (-578 |#1|) |#1|) 41 T ELT)) (-1391 (((-578 |#1|) |#1| (-578 |#1|)) 20 T ELT)) (-2059 (((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|)) 36 T ELT) ((|#1| (-578 |#1|) (-578 |#1|)) 32 T ELT))) -(((-151 |#1|) (-10 -7 (-15 -1391 ((-578 |#1|) |#1| (-578 |#1|))) (-15 -2059 (|#1| (-578 |#1|) (-578 |#1|))) (-15 -2059 ((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|))) (-15 -1392 ((-578 |#1|) (-578 |#1|) |#1|))) (-254)) (T -151)) -((-1392 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3)))) (-2059 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-578 *4))) (-5 *2 (-578 *4)) (-4 *4 (-254)) (-5 *1 (-151 *4)))) (-2059 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-151 *2)) (-4 *2 (-254)))) (-1391 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3297 (((-1115) $) 14 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3061 (((-1035) $) 11 T ELT)) (-3922 (((-765) $) 21 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-152) (-13 (-986) (-10 -8 (-15 -3061 ((-1035) $)) (-15 -3297 ((-1115) $))))) (T -152)) -((-3061 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-152)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-152))))) -((-1401 (((-2 (|:| |start| |#2|) (|:| -1762 (-341 |#2|))) |#2|) 66 T ELT)) (-1400 ((|#1| |#1|) 58 T ELT)) (-1399 (((-140 |#1|) |#2|) 94 T ELT)) (-1398 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1397 ((|#2| |#2|) 91 T ELT)) (-1396 (((-341 |#2|) |#2| |#1|) 119 T ELT) (((-341 |#2|) |#2| |#1| (-83)) 88 T ELT)) (-3113 ((|#1| |#2|) 118 T ELT)) (-1395 ((|#2| |#2|) 131 T ELT)) (-3708 (((-341 |#2|) |#2|) 154 T ELT) (((-341 |#2|) |#2| |#1|) 33 T ELT) (((-341 |#2|) |#2| |#1| (-83)) 153 T ELT)) (-1394 (((-578 (-2 (|:| -1762 (-578 |#2|)) (|:| -1579 |#1|))) |#2| |#2|) 152 T ELT) (((-578 (-2 (|:| -1762 (-578 |#2|)) (|:| -1579 |#1|))) |#2| |#2| (-83)) 82 T ELT)) (-1393 (((-578 (-140 |#1|)) |#2| |#1|) 42 T ELT) (((-578 (-140 |#1|)) |#2|) 43 T ELT))) -(((-153 |#1| |#2|) (-10 -7 (-15 -1393 ((-578 (-140 |#1|)) |#2|)) (-15 -1393 ((-578 (-140 |#1|)) |#2| |#1|)) (-15 -1394 ((-578 (-2 (|:| -1762 (-578 |#2|)) (|:| -1579 |#1|))) |#2| |#2| (-83))) (-15 -1394 ((-578 (-2 (|:| -1762 (-578 |#2|)) (|:| -1579 |#1|))) |#2| |#2|)) (-15 -3708 ((-341 |#2|) |#2| |#1| (-83))) (-15 -3708 ((-341 |#2|) |#2| |#1|)) (-15 -3708 ((-341 |#2|) |#2|)) (-15 -1395 (|#2| |#2|)) (-15 -3113 (|#1| |#2|)) (-15 -1396 ((-341 |#2|) |#2| |#1| (-83))) (-15 -1396 ((-341 |#2|) |#2| |#1|)) (-15 -1397 (|#2| |#2|)) (-15 -1398 (|#1| |#2| |#1|)) (-15 -1398 (|#1| |#2|)) (-15 -1399 ((-140 |#1|) |#2|)) (-15 -1400 (|#1| |#1|)) (-15 -1401 ((-2 (|:| |start| |#2|) (|:| -1762 (-341 |#2|))) |#2|))) (-13 (-308) (-748)) (-1140 (-140 |#1|))) (T -153)) -((-1401 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-2 (|:| |start| *3) (|:| -1762 (-341 *3)))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) (-1400 (*1 *2 *2) (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1140 (-140 *2))))) (-1399 (*1 *2 *3) (-12 (-5 *2 (-140 *4)) (-5 *1 (-153 *4 *3)) (-4 *4 (-13 (-308) (-748))) (-4 *3 (-1140 *2)))) (-1398 (*1 *2 *3) (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1140 (-140 *2))))) (-1398 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1140 (-140 *2))))) (-1397 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-748))) (-5 *1 (-153 *3 *2)) (-4 *2 (-1140 (-140 *3))))) (-1396 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) (-1396 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) (-3113 (*1 *2 *3) (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1140 (-140 *2))))) (-1395 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-748))) (-5 *1 (-153 *3 *2)) (-4 *2 (-1140 (-140 *3))))) (-3708 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) (-3708 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) (-3708 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) (-1394 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-2 (|:| -1762 (-578 *3)) (|:| -1579 *4)))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) (-1394 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-308) (-748))) (-5 *2 (-578 (-2 (|:| -1762 (-578 *3)) (|:| -1579 *5)))) (-5 *1 (-153 *5 *3)) (-4 *3 (-1140 (-140 *5))))) (-1393 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-140 *4))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) (-1393 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-140 *4))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4)))))) -((-1402 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1403 (((-687) |#2|) 18 T ELT)) (-1404 ((|#2| |#2| |#2|) 20 T ELT))) -(((-154 |#1| |#2|) (-10 -7 (-15 -1402 ((-3 |#2| "failed") |#2|)) (-15 -1403 ((-687) |#2|)) (-15 -1404 (|#2| |#2| |#2|))) (-1114) (-611 |#1|)) (T -154)) -((-1404 (*1 *2 *2 *2) (-12 (-4 *3 (-1114)) (-5 *1 (-154 *3 *2)) (-4 *2 (-611 *3)))) (-1403 (*1 *2 *3) (-12 (-4 *4 (-1114)) (-5 *2 (-687)) (-5 *1 (-154 *4 *3)) (-4 *3 (-611 *4)))) (-1402 (*1 *2 *2) (|partial| -12 (-4 *3 (-1114)) (-5 *1 (-154 *3 *2)) (-4 *2 (-611 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1407 (((-578 (-767)) $) NIL T ELT)) (-3518 (((-439) $) 8 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1409 (((-159) $) 10 T ELT)) (-2613 (((-83) $ (-439)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1405 (((-627 $) (-439)) 17 T ELT)) (-1408 (((-578 (-83)) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2501 (((-55) $) 12 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-155) (-13 (-158) (-10 -8 (-15 -1405 ((-627 $) (-439)))))) (T -155)) -((-1405 (*1 *2 *3) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-155))) (-5 *1 (-155))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1465 ((|#1| $) 7 T ELT)) (-3922 (((-765) $) 14 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1406 (((-578 (-1080)) $) 10 T ELT)) (-3037 (((-83) $ $) 12 T ELT))) -(((-156 |#1|) (-13 (-1003) (-10 -8 (-15 -1465 (|#1| $)) (-15 -1406 ((-578 (-1080)) $)))) (-158)) (T -156)) -((-1465 (*1 *2 *1) (-12 (-5 *1 (-156 *2)) (-4 *2 (-158)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-578 (-1080))) (-5 *1 (-156 *3)) (-4 *3 (-158))))) -((-1407 (((-578 (-767)) $) 16 T ELT)) (-1409 (((-159) $) 8 T ELT)) (-1408 (((-578 (-83)) $) 13 T ELT)) (-2501 (((-55) $) 10 T ELT))) -(((-157 |#1|) (-10 -7 (-15 -1407 ((-578 (-767)) |#1|)) (-15 -1408 ((-578 (-83)) |#1|)) (-15 -1409 ((-159) |#1|)) (-15 -2501 ((-55) |#1|))) (-158)) (T -157)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-1407 (((-578 (-767)) $) 22 T ELT)) (-3518 (((-439) $) 19 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1409 (((-159) $) 24 T ELT)) (-2613 (((-83) $ (-439)) 17 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1408 (((-578 (-83)) $) 23 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2501 (((-55) $) 18 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +((-1688 (*1 *1 *1) (-4 *1 (-145)))) +(-13 (-10 -8 (-15 -1688 ($ $)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 ((|#1| $) 79 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2549 (($ $ $) NIL T ELT)) (-1375 (($ $) 21 T ELT)) (-1379 (($ |#1| (-1059 |#1|)) 48 T ELT)) (-3449 (((-3 $ #1#) $) 123 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-1376 (((-1059 |#1|) $) 86 T ELT)) (-1378 (((-1059 |#1|) $) 83 T ELT)) (-1377 (((-1059 |#1|) $) 84 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1372 (((-1059 |#1|) $) 93 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-1879 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT)) (-3751 (($ $ (-479)) 96 T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1371 (((-1059 |#1|) $) 94 T ELT)) (-1373 (((-1059 (-344 |#1|)) $) 14 T ELT)) (-2601 (($ (-344 |#1|)) 17 T ELT) (($ |#1| (-1059 |#1|) (-1059 |#1|)) 38 T ELT)) (-2876 (($ $) 98 T ELT)) (-3928 (((-766) $) 139 T ELT) (($ (-479)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-344 |#1|)) 36 T ELT) (($ (-344 (-479))) NIL T ELT) (($ $) NIL T ELT)) (-3110 (((-688)) 67 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-1374 (((-1059 (-344 |#1|)) $) 20 T ELT)) (-2645 (($) 103 T CONST)) (-2651 (($) 28 T CONST)) (-3041 (((-83) $ $) 35 T ELT)) (-3931 (($ $ $) 121 T ELT)) (-3819 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3821 (($ $ $) 107 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-344 |#1|) $) 117 T ELT) (($ $ (-344 |#1|)) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT))) +(((-146 |#1|) (-13 (-38 |#1|) (-38 (-344 |#1|)) (-308) (-10 -8 (-15 -2601 ($ (-344 |#1|))) (-15 -2601 ($ |#1| (-1059 |#1|) (-1059 |#1|))) (-15 -1379 ($ |#1| (-1059 |#1|))) (-15 -1378 ((-1059 |#1|) $)) (-15 -1377 ((-1059 |#1|) $)) (-15 -1376 ((-1059 |#1|) $)) (-15 -3113 (|#1| $)) (-15 -1375 ($ $)) (-15 -1374 ((-1059 (-344 |#1|)) $)) (-15 -1373 ((-1059 (-344 |#1|)) $)) (-15 -1372 ((-1059 |#1|) $)) (-15 -1371 ((-1059 |#1|) $)) (-15 -3751 ($ $ (-479))) (-15 -2876 ($ $)))) (-254)) (T -146)) +((-2601 (*1 *1 *2) (-12 (-5 *2 (-344 *3)) (-4 *3 (-254)) (-5 *1 (-146 *3)))) (-2601 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1059 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2)))) (-1379 (*1 *1 *2 *3) (-12 (-5 *3 (-1059 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1377 (*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-3113 (*1 *2 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) (-1375 (*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-1059 (-344 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-1059 (-344 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) (-2876 (*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254))))) +((-1380 (($ (-78) $) 15 T ELT)) (-3205 (((-628 (-78)) (-440) $) 14 T ELT)) (-3928 (((-766) $) 18 T ELT)) (-1381 (((-579 (-78)) $) 8 T ELT))) +(((-147) (-13 (-548 (-766)) (-10 -8 (-15 -1381 ((-579 (-78)) $)) (-15 -1380 ($ (-78) $)) (-15 -3205 ((-628 (-78)) (-440) $))))) (T -147)) +((-1381 (*1 *2 *1) (-12 (-5 *2 (-579 (-78))) (-5 *1 (-147)))) (-1380 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-147)))) (-3205 (*1 *2 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-78))) (-5 *1 (-147))))) +((-1394 (((-1 (-848 |#1|) (-848 |#1|)) |#1|) 38 T ELT)) (-1385 (((-848 |#1|) (-848 |#1|)) 22 T ELT)) (-1390 (((-1 (-848 |#1|) (-848 |#1|)) |#1|) 34 T ELT)) (-1383 (((-848 |#1|) (-848 |#1|)) 20 T ELT)) (-1388 (((-848 |#1|) (-848 |#1|)) 28 T ELT)) (-1387 (((-848 |#1|) (-848 |#1|)) 27 T ELT)) (-1386 (((-848 |#1|) (-848 |#1|)) 26 T ELT)) (-1391 (((-1 (-848 |#1|) (-848 |#1|)) |#1|) 35 T ELT)) (-1389 (((-1 (-848 |#1|) (-848 |#1|)) |#1|) 33 T ELT)) (-1631 (((-1 (-848 |#1|) (-848 |#1|)) |#1|) 32 T ELT)) (-1384 (((-848 |#1|) (-848 |#1|)) 21 T ELT)) (-1395 (((-1 (-848 |#1|) (-848 |#1|)) |#1| |#1|) 41 T ELT)) (-1382 (((-848 |#1|) (-848 |#1|)) 8 T ELT)) (-1393 (((-1 (-848 |#1|) (-848 |#1|)) |#1|) 37 T ELT)) (-1392 (((-1 (-848 |#1|) (-848 |#1|)) |#1|) 36 T ELT))) +(((-148 |#1|) (-10 -7 (-15 -1382 ((-848 |#1|) (-848 |#1|))) (-15 -1383 ((-848 |#1|) (-848 |#1|))) (-15 -1384 ((-848 |#1|) (-848 |#1|))) (-15 -1385 ((-848 |#1|) (-848 |#1|))) (-15 -1386 ((-848 |#1|) (-848 |#1|))) (-15 -1387 ((-848 |#1|) (-848 |#1|))) (-15 -1388 ((-848 |#1|) (-848 |#1|))) (-15 -1631 ((-1 (-848 |#1|) (-848 |#1|)) |#1|)) (-15 -1389 ((-1 (-848 |#1|) (-848 |#1|)) |#1|)) (-15 -1390 ((-1 (-848 |#1|) (-848 |#1|)) |#1|)) (-15 -1391 ((-1 (-848 |#1|) (-848 |#1|)) |#1|)) (-15 -1392 ((-1 (-848 |#1|) (-848 |#1|)) |#1|)) (-15 -1393 ((-1 (-848 |#1|) (-848 |#1|)) |#1|)) (-15 -1394 ((-1 (-848 |#1|) (-848 |#1|)) |#1|)) (-15 -1395 ((-1 (-848 |#1|) (-848 |#1|)) |#1| |#1|))) (-13 (-308) (-1105) (-909))) (T -148)) +((-1395 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1105) (-909))))) (-1394 (*1 *2 *3) (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1105) (-909))))) (-1393 (*1 *2 *3) (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1105) (-909))))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1105) (-909))))) (-1391 (*1 *2 *3) (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1105) (-909))))) (-1390 (*1 *2 *3) (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1105) (-909))))) (-1389 (*1 *2 *3) (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1105) (-909))))) (-1631 (*1 *2 *3) (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) (-4 *3 (-13 (-308) (-1105) (-909))))) (-1388 (*1 *2 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3)))) (-1387 (*1 *2 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3)))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3)))) (-1385 (*1 *2 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3)))) (-1384 (*1 *2 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3)))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3))))) +((-2434 ((|#2| |#3|) 28 T ELT))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2434 (|#2| |#3|))) (-144) (-1145 |#1|) (-657 |#1| |#2|)) (T -149)) +((-2434 (*1 *2 *3) (-12 (-4 *4 (-144)) (-4 *2 (-1145 *4)) (-5 *1 (-149 *4 *2 *3)) (-4 *3 (-657 *4 *2))))) +((-2781 (((-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|)) 44 (|has| (-851 |#2|) (-790 |#1|)) ELT))) +(((-150 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-851 |#2|) (-790 |#1|)) (-15 -2781 ((-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|))) |%noBranch|)) (-1006) (-13 (-790 |#1|) (-144)) (-137 |#2|)) (T -150)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-792 *5 *3)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-4 *3 (-137 *6)) (-4 (-851 *6) (-790 *5)) (-4 *6 (-13 (-790 *5) (-144))) (-5 *1 (-150 *5 *6 *3))))) +((-1397 (((-579 |#1|) (-579 |#1|) |#1|) 41 T ELT)) (-1396 (((-579 |#1|) |#1| (-579 |#1|)) 20 T ELT)) (-2064 (((-579 |#1|) (-579 (-579 |#1|)) (-579 |#1|)) 36 T ELT) ((|#1| (-579 |#1|) (-579 |#1|)) 32 T ELT))) +(((-151 |#1|) (-10 -7 (-15 -1396 ((-579 |#1|) |#1| (-579 |#1|))) (-15 -2064 (|#1| (-579 |#1|) (-579 |#1|))) (-15 -2064 ((-579 |#1|) (-579 (-579 |#1|)) (-579 |#1|))) (-15 -1397 ((-579 |#1|) (-579 |#1|) |#1|))) (-254)) (T -151)) +((-1397 (*1 *2 *2 *3) (-12 (-5 *2 (-579 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3)))) (-2064 (*1 *2 *3 *2) (-12 (-5 *3 (-579 (-579 *4))) (-5 *2 (-579 *4)) (-4 *4 (-254)) (-5 *1 (-151 *4)))) (-2064 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *2)) (-5 *1 (-151 *2)) (-4 *2 (-254)))) (-1396 (*1 *2 *3 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3301 (((-1120) $) 14 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3190 (((-1039) $) 11 T ELT)) (-3928 (((-766) $) 21 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-152) (-13 (-988) (-10 -8 (-15 -3190 ((-1039) $)) (-15 -3301 ((-1120) $))))) (T -152)) +((-3190 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-152)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-152))))) +((-1406 (((-2 (|:| |start| |#2|) (|:| -1767 (-342 |#2|))) |#2|) 66 T ELT)) (-1405 ((|#1| |#1|) 58 T ELT)) (-1404 (((-140 |#1|) |#2|) 94 T ELT)) (-1403 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1402 ((|#2| |#2|) 91 T ELT)) (-1401 (((-342 |#2|) |#2| |#1|) 119 T ELT) (((-342 |#2|) |#2| |#1| (-83)) 88 T ELT)) (-3116 ((|#1| |#2|) 118 T ELT)) (-1400 ((|#2| |#2|) 131 T ELT)) (-3714 (((-342 |#2|) |#2|) 154 T ELT) (((-342 |#2|) |#2| |#1|) 33 T ELT) (((-342 |#2|) |#2| |#1| (-83)) 153 T ELT)) (-1399 (((-579 (-2 (|:| -1767 (-579 |#2|)) (|:| -1584 |#1|))) |#2| |#2|) 152 T ELT) (((-579 (-2 (|:| -1767 (-579 |#2|)) (|:| -1584 |#1|))) |#2| |#2| (-83)) 82 T ELT)) (-1398 (((-579 (-140 |#1|)) |#2| |#1|) 42 T ELT) (((-579 (-140 |#1|)) |#2|) 43 T ELT))) +(((-153 |#1| |#2|) (-10 -7 (-15 -1398 ((-579 (-140 |#1|)) |#2|)) (-15 -1398 ((-579 (-140 |#1|)) |#2| |#1|)) (-15 -1399 ((-579 (-2 (|:| -1767 (-579 |#2|)) (|:| -1584 |#1|))) |#2| |#2| (-83))) (-15 -1399 ((-579 (-2 (|:| -1767 (-579 |#2|)) (|:| -1584 |#1|))) |#2| |#2|)) (-15 -3714 ((-342 |#2|) |#2| |#1| (-83))) (-15 -3714 ((-342 |#2|) |#2| |#1|)) (-15 -3714 ((-342 |#2|) |#2|)) (-15 -1400 (|#2| |#2|)) (-15 -3116 (|#1| |#2|)) (-15 -1401 ((-342 |#2|) |#2| |#1| (-83))) (-15 -1401 ((-342 |#2|) |#2| |#1|)) (-15 -1402 (|#2| |#2|)) (-15 -1403 (|#1| |#2| |#1|)) (-15 -1403 (|#1| |#2|)) (-15 -1404 ((-140 |#1|) |#2|)) (-15 -1405 (|#1| |#1|)) (-15 -1406 ((-2 (|:| |start| |#2|) (|:| -1767 (-342 |#2|))) |#2|))) (-13 (-308) (-749)) (-1145 (-140 |#1|))) (T -153)) +((-1406 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-2 (|:| |start| *3) (|:| -1767 (-342 *3)))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) (-1405 (*1 *2 *2) (-12 (-4 *2 (-13 (-308) (-749))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1145 (-140 *2))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-140 *4)) (-5 *1 (-153 *4 *3)) (-4 *4 (-13 (-308) (-749))) (-4 *3 (-1145 *2)))) (-1403 (*1 *2 *3) (-12 (-4 *2 (-13 (-308) (-749))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1145 (-140 *2))))) (-1403 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-308) (-749))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1145 (-140 *2))))) (-1402 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-749))) (-5 *1 (-153 *3 *2)) (-4 *2 (-1145 (-140 *3))))) (-1401 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) (-1401 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) (-3116 (*1 *2 *3) (-12 (-4 *2 (-13 (-308) (-749))) (-5 *1 (-153 *2 *3)) (-4 *3 (-1145 (-140 *2))))) (-1400 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-749))) (-5 *1 (-153 *3 *2)) (-4 *2 (-1145 (-140 *3))))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) (-3714 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) (-3714 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) (-1399 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-579 (-2 (|:| -1767 (-579 *3)) (|:| -1584 *4)))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) (-1399 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-308) (-749))) (-5 *2 (-579 (-2 (|:| -1767 (-579 *3)) (|:| -1584 *5)))) (-5 *1 (-153 *5 *3)) (-4 *3 (-1145 (-140 *5))))) (-1398 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-579 (-140 *4))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) (-1398 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-579 (-140 *4))) (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4)))))) +((-1407 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1408 (((-688) |#2|) 18 T ELT)) (-1409 ((|#2| |#2| |#2|) 20 T ELT))) +(((-154 |#1| |#2|) (-10 -7 (-15 -1407 ((-3 |#2| "failed") |#2|)) (-15 -1408 ((-688) |#2|)) (-15 -1409 (|#2| |#2| |#2|))) (-1119) (-612 |#1|)) (T -154)) +((-1409 (*1 *2 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-154 *3 *2)) (-4 *2 (-612 *3)))) (-1408 (*1 *2 *3) (-12 (-4 *4 (-1119)) (-5 *2 (-688)) (-5 *1 (-154 *4 *3)) (-4 *3 (-612 *4)))) (-1407 (*1 *2 *2) (|partial| -12 (-4 *3 (-1119)) (-5 *1 (-154 *3 *2)) (-4 *2 (-612 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1412 (((-579 (-768)) $) NIL T ELT)) (-3524 (((-440) $) 8 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1414 (((-159) $) 10 T ELT)) (-2618 (((-83) $ (-440)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1410 (((-628 $) (-440)) 17 T ELT)) (-1413 (((-579 (-83)) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2506 (((-55) $) 12 T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-155) (-13 (-158) (-10 -8 (-15 -1410 ((-628 $) (-440)))))) (T -155)) +((-1410 (*1 *2 *3) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-155))) (-5 *1 (-155))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1470 ((|#1| $) 7 T ELT)) (-3928 (((-766) $) 14 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1411 (((-579 (-1085)) $) 10 T ELT)) (-3041 (((-83) $ $) 12 T ELT))) +(((-156 |#1|) (-13 (-1006) (-10 -8 (-15 -1470 (|#1| $)) (-15 -1411 ((-579 (-1085)) $)))) (-158)) (T -156)) +((-1470 (*1 *2 *1) (-12 (-5 *1 (-156 *2)) (-4 *2 (-158)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-579 (-1085))) (-5 *1 (-156 *3)) (-4 *3 (-158))))) +((-1412 (((-579 (-768)) $) 16 T ELT)) (-1414 (((-159) $) 8 T ELT)) (-1413 (((-579 (-83)) $) 13 T ELT)) (-2506 (((-55) $) 10 T ELT))) +(((-157 |#1|) (-10 -7 (-15 -1412 ((-579 (-768)) |#1|)) (-15 -1413 ((-579 (-83)) |#1|)) (-15 -1414 ((-159) |#1|)) (-15 -2506 ((-55) |#1|))) (-158)) (T -157)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-1412 (((-579 (-768)) $) 22 T ELT)) (-3524 (((-440) $) 19 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1414 (((-159) $) 24 T ELT)) (-2618 (((-83) $ (-440)) 17 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1413 (((-579 (-83)) $) 23 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2506 (((-55) $) 18 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) (((-158) (-111)) (T -158)) -((-1409 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-159)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-578 (-83))))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-578 (-767)))))) -(-13 (-740 (-439)) (-10 -8 (-15 -1409 ((-159) $)) (-15 -1408 ((-578 (-83)) $)) (-15 -1407 ((-578 (-767)) $)))) -(((-72) . T) ((-547 (-765)) . T) ((-740 (-439)) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3922 (((-765) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 10 T ELT))) -(((-159) (-13 (-1003) (-10 -8 (-15 -9 ($) -3928) (-15 -8 ($) -3928) (-15 -7 ($) -3928)))) (T -159)) +((-1414 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-159)))) (-1413 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-579 (-83))))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-579 (-768)))))) +(-13 (-741 (-440)) (-10 -8 (-15 -1414 ((-159) $)) (-15 -1413 ((-579 (-83)) $)) (-15 -1412 ((-579 (-768)) $)))) +(((-72) . T) ((-548 (-766)) . T) ((-741 (-440)) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3928 (((-766) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 10 T ELT))) +(((-159) (-13 (-1006) (-10 -8 (-15 -9 ($) -3934) (-15 -8 ($) -3934) (-15 -7 ($) -3934)))) (T -159)) ((-9 (*1 *1) (-5 *1 (-159))) (-8 (*1 *1) (-5 *1 (-159))) (-7 (*1 *1) (-5 *1 (-159)))) -((-3618 ((|#2| |#2|) 28 T ELT)) (-3621 (((-83) |#2|) 19 T ELT)) (-3619 (((-261 |#1|) |#2|) 12 T ELT)) (-3620 (((-261 |#1|) |#2|) 14 T ELT)) (-3616 ((|#2| |#2| (-1075)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3622 (((-140 (-261 |#1|)) |#2|) 10 T ELT)) (-3617 ((|#2| |#2| (-1075)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-160 |#1| |#2|) (-10 -7 (-15 -3616 (|#2| |#2|)) (-15 -3616 (|#2| |#2| (-1075))) (-15 -3617 (|#2| |#2|)) (-15 -3617 (|#2| |#2| (-1075))) (-15 -3619 ((-261 |#1|) |#2|)) (-15 -3620 ((-261 |#1|) |#2|)) (-15 -3621 ((-83) |#2|)) (-15 -3618 (|#2| |#2|)) (-15 -3622 ((-140 (-261 |#1|)) |#2|))) (-13 (-489) (-943 (-478))) (-13 (-27) (-1100) (-357 (-140 |#1|)))) (T -160)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-140 (-261 *4))) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 (-140 *4)))))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 (-140 *3)))))) (-3621 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-83)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 (-140 *4)))))) (-3620 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-261 *4)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 (-140 *4)))))) (-3619 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-261 *4)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 (-140 *4)))))) (-3617 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 (-140 *4)))))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 (-140 *3)))))) (-3616 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 (-140 *4)))))) (-3616 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 (-140 *3))))))) -((-1413 (((-1164 (-625 (-850 |#1|))) (-1164 (-625 |#1|))) 26 T ELT)) (-3922 (((-1164 (-625 (-343 (-850 |#1|)))) (-1164 (-625 |#1|))) 37 T ELT))) -(((-161 |#1|) (-10 -7 (-15 -1413 ((-1164 (-625 (-850 |#1|))) (-1164 (-625 |#1|)))) (-15 -3922 ((-1164 (-625 (-343 (-850 |#1|)))) (-1164 (-625 |#1|))))) (-144)) (T -161)) -((-3922 (*1 *2 *3) (-12 (-5 *3 (-1164 (-625 *4))) (-4 *4 (-144)) (-5 *2 (-1164 (-625 (-343 (-850 *4))))) (-5 *1 (-161 *4)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-1164 (-625 *4))) (-4 *4 (-144)) (-5 *2 (-1164 (-625 (-850 *4)))) (-5 *1 (-161 *4))))) -((-1421 (((-1077 (-343 (-478))) (-1077 (-343 (-478))) (-1077 (-343 (-478)))) 93 T ELT)) (-1423 (((-1077 (-343 (-478))) (-578 (-478)) (-578 (-478))) 106 T ELT)) (-1414 (((-1077 (-343 (-478))) (-823)) 54 T ELT)) (-3830 (((-1077 (-343 (-478))) (-823)) 79 T ELT)) (-3744 (((-343 (-478)) (-1077 (-343 (-478)))) 89 T ELT)) (-1415 (((-1077 (-343 (-478))) (-823)) 37 T ELT)) (-1418 (((-1077 (-343 (-478))) (-823)) 66 T ELT)) (-1417 (((-1077 (-343 (-478))) (-823)) 61 T ELT)) (-1420 (((-1077 (-343 (-478))) (-1077 (-343 (-478))) (-1077 (-343 (-478)))) 87 T ELT)) (-2872 (((-1077 (-343 (-478))) (-823)) 29 T ELT)) (-1419 (((-343 (-478)) (-1077 (-343 (-478))) (-1077 (-343 (-478)))) 91 T ELT)) (-1416 (((-1077 (-343 (-478))) (-823)) 35 T ELT)) (-1422 (((-1077 (-343 (-478))) (-578 (-823))) 100 T ELT))) -(((-162) (-10 -7 (-15 -2872 ((-1077 (-343 (-478))) (-823))) (-15 -1414 ((-1077 (-343 (-478))) (-823))) (-15 -1415 ((-1077 (-343 (-478))) (-823))) (-15 -1416 ((-1077 (-343 (-478))) (-823))) (-15 -1417 ((-1077 (-343 (-478))) (-823))) (-15 -1418 ((-1077 (-343 (-478))) (-823))) (-15 -3830 ((-1077 (-343 (-478))) (-823))) (-15 -1419 ((-343 (-478)) (-1077 (-343 (-478))) (-1077 (-343 (-478))))) (-15 -1420 ((-1077 (-343 (-478))) (-1077 (-343 (-478))) (-1077 (-343 (-478))))) (-15 -3744 ((-343 (-478)) (-1077 (-343 (-478))))) (-15 -1421 ((-1077 (-343 (-478))) (-1077 (-343 (-478))) (-1077 (-343 (-478))))) (-15 -1422 ((-1077 (-343 (-478))) (-578 (-823)))) (-15 -1423 ((-1077 (-343 (-478))) (-578 (-478)) (-578 (-478)))))) (T -162)) -((-1423 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-1421 (*1 *2 *2 *2) (-12 (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-1077 (-343 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-162)))) (-1420 (*1 *2 *2 *2) (-12 (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-1419 (*1 *2 *3 *3) (-12 (-5 *3 (-1077 (-343 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-162)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-1416 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) -((-1425 (((-341 (-1070 (-478))) (-478)) 38 T ELT)) (-1424 (((-578 (-1070 (-478))) (-478)) 33 T ELT)) (-2782 (((-1070 (-478)) (-478)) 28 T ELT))) -(((-163) (-10 -7 (-15 -1424 ((-578 (-1070 (-478))) (-478))) (-15 -2782 ((-1070 (-478)) (-478))) (-15 -1425 ((-341 (-1070 (-478))) (-478))))) (T -163)) -((-1425 (*1 *2 *3) (-12 (-5 *2 (-341 (-1070 (-478)))) (-5 *1 (-163)) (-5 *3 (-478)))) (-2782 (*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-163)) (-5 *3 (-478)))) (-1424 (*1 *2 *3) (-12 (-5 *2 (-578 (-1070 (-478)))) (-5 *1 (-163)) (-5 *3 (-478))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1426 ((|#2| $ (-687) |#2|) 11 T ELT)) (-3094 ((|#2| $ (-687)) 10 T ELT)) (-3590 (($) 8 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 23 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 13 T ELT))) -(((-164 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -3590 ($)) (-15 -3094 (|#2| $ (-687))) (-15 -1426 (|#2| $ (-687) |#2|)))) (-823) (-1003)) (T -164)) -((-3590 (*1 *1) (-12 (-5 *1 (-164 *2 *3)) (-14 *2 (-823)) (-4 *3 (-1003)))) (-3094 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *2 (-1003)) (-5 *1 (-164 *4 *2)) (-14 *4 (-823)))) (-1426 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-164 *4 *2)) (-14 *4 (-823)) (-4 *2 (-1003))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1947 (((-1170) $) 36 T ELT) (((-1170) $ (-823) (-823)) 40 T ELT)) (-3776 (($ $ (-895)) 19 T ELT) (((-200 (-1059)) $ (-1075)) 15 T ELT)) (-3593 (((-1170) $) 34 T ELT)) (-3922 (((-765) $) 31 T ELT) (($ (-578 |#1|)) 8 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $ $) 26 T ELT)) (-3815 (($ $ $) 22 T ELT))) -(((-165 |#1|) (-13 (-1003) (-550 (-578 |#1|)) (-10 -8 (-15 -3776 ($ $ (-895))) (-15 -3776 ((-200 (-1059)) $ (-1075))) (-15 -3815 ($ $ $)) (-15 -3813 ($ $ $)) (-15 -3593 ((-1170) $)) (-15 -1947 ((-1170) $)) (-15 -1947 ((-1170) $ (-823) (-823))))) (-13 (-749) (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 ((-1170) $)) (-15 -1947 ((-1170) $))))) (T -165)) -((-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 ((-1170) $)) (-15 -1947 ((-1170) $))))))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-200 (-1059))) (-5 *1 (-165 *4)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3776 ((-1059) $ *3)) (-15 -3593 ((-1170) $)) (-15 -1947 ((-1170) $))))))) (-3815 (*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-13 (-749) (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 ((-1170) $)) (-15 -1947 ((-1170) $))))))) (-3813 (*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-13 (-749) (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 ((-1170) $)) (-15 -1947 ((-1170) $))))))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 (*2 $)) (-15 -1947 (*2 $))))))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 (*2 $)) (-15 -1947 (*2 $))))))) (-1947 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1170)) (-5 *1 (-165 *4)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 (*2 $)) (-15 -1947 (*2 $)))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) 10 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2832 (($ (-572 |#1|)) 11 T ELT)) (-3922 (((-765) $) 18 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT))) -(((-166 |#1|) (-13 (-745) (-10 -8 (-15 -2832 ($ (-572 |#1|))))) (-578 (-1075))) (T -166)) -((-2832 (*1 *1 *2) (-12 (-5 *2 (-572 *3)) (-14 *3 (-578 (-1075))) (-5 *1 (-166 *3))))) -((-1427 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-167 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1427 (|#2| |#4| (-1 |#2| |#2|)))) (-308) (-1140 |#1|) (-1140 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -167)) -((-1427 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-308)) (-4 *6 (-1140 (-343 *2))) (-4 *2 (-1140 *5)) (-5 *1 (-167 *5 *2 *6 *3)) (-4 *3 (-287 *5 *2 *6))))) -((-1431 ((|#2| |#2| (-687) |#2|) 55 T ELT)) (-1430 ((|#2| |#2| (-687) |#2|) 51 T ELT)) (-2353 (((-578 |#2|) (-578 (-2 (|:| |deg| (-687)) (|:| -2555 |#2|)))) 79 T ELT)) (-1429 (((-578 (-2 (|:| |deg| (-687)) (|:| -2555 |#2|))) |#2|) 72 T ELT)) (-1432 (((-83) |#2|) 70 T ELT)) (-3709 (((-341 |#2|) |#2|) 92 T ELT)) (-3708 (((-341 |#2|) |#2|) 91 T ELT)) (-2354 ((|#2| |#2| (-687) |#2|) 49 T ELT)) (-1428 (((-2 (|:| |cont| |#1|) (|:| -1762 (-578 (-2 (|:| |irr| |#2|) (|:| -2377 (-478)))))) |#2| (-83)) 86 T ELT))) -(((-168 |#1| |#2|) (-10 -7 (-15 -3708 ((-341 |#2|) |#2|)) (-15 -3709 ((-341 |#2|) |#2|)) (-15 -1428 ((-2 (|:| |cont| |#1|) (|:| -1762 (-578 (-2 (|:| |irr| |#2|) (|:| -2377 (-478)))))) |#2| (-83))) (-15 -1429 ((-578 (-2 (|:| |deg| (-687)) (|:| -2555 |#2|))) |#2|)) (-15 -2353 ((-578 |#2|) (-578 (-2 (|:| |deg| (-687)) (|:| -2555 |#2|))))) (-15 -2354 (|#2| |#2| (-687) |#2|)) (-15 -1430 (|#2| |#2| (-687) |#2|)) (-15 -1431 (|#2| |#2| (-687) |#2|)) (-15 -1432 ((-83) |#2|))) (-295) (-1140 |#1|)) (T -168)) -((-1432 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1140 *4)))) (-1431 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1140 *4)))) (-1430 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1140 *4)))) (-2354 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1140 *4)))) (-2353 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |deg| (-687)) (|:| -2555 *5)))) (-4 *5 (-1140 *4)) (-4 *4 (-295)) (-5 *2 (-578 *5)) (-5 *1 (-168 *4 *5)))) (-1429 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-578 (-2 (|:| |deg| (-687)) (|:| -2555 *3)))) (-5 *1 (-168 *4 *3)) (-4 *3 (-1140 *4)))) (-1428 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-295)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1762 (-578 (-2 (|:| |irr| *3) (|:| -2377 (-478))))))) (-5 *1 (-168 *5 *3)) (-4 *3 (-1140 *5)))) (-3709 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1140 *4)))) (-3708 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1140 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 (((-478) $) NIL (|has| (-478) (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| (-478) (-733)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL (|has| (-478) (-943 (-1075))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-3137 (((-478) $) NIL T ELT) (((-1075) $) NIL (|has| (-478) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-478) (-477)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3168 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-478) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-478) (-789 (-323))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL T ELT)) (-2979 (((-478) $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| (-478) (-1052)) ELT)) (-3169 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-3934 (($ (-1 (-478) (-478)) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL T ELT) (((-625 (-478)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-478) (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL (|has| (-478) (-254)) ELT) (((-343 (-478)) $) NIL T ELT)) (-3111 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3744 (($ $ (-578 (-478)) (-578 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-478) (-478)) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-245 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-245 (-478)))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-1075)) (-578 (-478))) NIL (|has| (-478) (-447 (-1075) (-478))) ELT) (($ $ (-1075) (-478)) NIL (|has| (-478) (-447 (-1075) (-478))) ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ $ (-478)) NIL (|has| (-478) (-238 (-478) (-478))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2976 (($ $) NIL T ELT)) (-2978 (((-478) $) NIL T ELT)) (-1433 (($ (-343 (-478))) 9 T ELT)) (-3948 (((-793 (-478)) $) NIL (|has| (-478) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-478) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-478) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-478) (-926)) ELT) (((-177) $) NIL (|has| (-478) (-926)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-478) (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 8 T ELT) (($ (-478)) NIL T ELT) (($ (-1075)) NIL (|has| (-478) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL T ELT) (((-910 10) $) 10 T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-478) (-814))) (|has| (-478) (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-3112 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3360 (($ $) NIL (|has| (-478) (-733)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3925 (($ $ $) NIL T ELT) (($ (-478) (-478)) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ (-478)) NIL T ELT))) -(((-169) (-13 (-897 (-478)) (-547 (-343 (-478))) (-547 (-910 10)) (-10 -8 (-15 -3109 ((-343 (-478)) $)) (-15 -1433 ($ (-343 (-478))))))) (T -169)) -((-3109 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-169)))) (-1433 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-169))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3298 (((-1016) $) 14 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3159 (((-416) $) 11 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 24 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3162 (((-1035) $) 16 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-170) (-13 (-986) (-10 -8 (-15 -3159 ((-416) $)) (-15 -3298 ((-1016) $)) (-15 -3162 ((-1035) $))))) (T -170)) -((-3159 (*1 *2 *1) (-12 (-5 *2 (-416)) (-5 *1 (-170)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-170)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-170))))) -((-3788 (((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-995 (-743 |#2|)) (-1059)) 29 T ELT) (((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-995 (-743 |#2|))) 25 T ELT)) (-1434 (((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1075) (-743 |#2|) (-743 |#2|) (-83)) 17 T ELT))) -(((-171 |#1| |#2|) (-10 -7 (-15 -3788 ((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-995 (-743 |#2|)))) (-15 -3788 ((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-995 (-743 |#2|)) (-1059))) (-15 -1434 ((-3 (|:| |f1| (-743 |#2|)) (|:| |f2| (-578 (-743 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1075) (-743 |#2|) (-743 |#2|) (-83)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1100) (-864) (-29 |#1|))) (T -171)) -((-1434 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1075)) (-5 *6 (-83)) (-4 *7 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-4 *3 (-13 (-1100) (-864) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-171 *7 *3)) (-5 *5 (-743 *3)))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-995 (-743 *3))) (-5 *5 (-1059)) (-4 *3 (-13 (-1100) (-864) (-29 *6))) (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-171 *6 *3)))) (-3788 (*1 *2 *3 *4) (-12 (-5 *4 (-995 (-743 *3))) (-4 *3 (-13 (-1100) (-864) (-29 *5))) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-171 *5 *3))))) -((-3788 (((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-343 (-850 |#1|)) (-995 (-743 (-343 (-850 |#1|)))) (-1059)) 49 T ELT) (((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-995 (-743 (-343 (-850 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-995 (-743 (-261 |#1|))) (-1059)) 50 T ELT) (((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-995 (-743 (-261 |#1|)))) 22 T ELT))) -(((-172 |#1|) (-10 -7 (-15 -3788 ((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-343 (-850 |#1|)) (-995 (-743 (-261 |#1|))))) (-15 -3788 ((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-995 (-743 (-261 |#1|))) (-1059))) (-15 -3788 ((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-995 (-743 (-343 (-850 |#1|)))))) (-15 -3788 ((-3 (|:| |f1| (-743 (-261 |#1|))) (|:| |f2| (-578 (-743 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-343 (-850 |#1|)) (-995 (-743 (-343 (-850 |#1|)))) (-1059)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (T -172)) -((-3788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-995 (-743 (-343 (-850 *6))))) (-5 *5 (-1059)) (-5 *3 (-343 (-850 *6))) (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 (-261 *6))) (|:| |f2| (-578 (-743 (-261 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-172 *6)))) (-3788 (*1 *2 *3 *4) (-12 (-5 *4 (-995 (-743 (-343 (-850 *5))))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 (-261 *5))) (|:| |f2| (-578 (-743 (-261 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *5)))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-343 (-850 *6))) (-5 *4 (-995 (-743 (-261 *6)))) (-5 *5 (-1059)) (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 (-261 *6))) (|:| |f2| (-578 (-743 (-261 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *6)))) (-3788 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-995 (-743 (-261 *5)))) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |f1| (-743 (-261 *5))) (|:| |f2| (-578 (-743 (-261 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *5))))) -((-3818 (((-2 (|:| -1986 (-1070 |#1|)) (|:| |deg| (-823))) (-1070 |#1|)) 26 T ELT)) (-3939 (((-578 (-261 |#2|)) (-261 |#2|) (-823)) 51 T ELT))) -(((-173 |#1| |#2|) (-10 -7 (-15 -3818 ((-2 (|:| -1986 (-1070 |#1|)) (|:| |deg| (-823))) (-1070 |#1|))) (-15 -3939 ((-578 (-261 |#2|)) (-261 |#2|) (-823)))) (-954) (-489)) (T -173)) -((-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-4 *6 (-489)) (-5 *2 (-578 (-261 *6))) (-5 *1 (-173 *5 *6)) (-5 *3 (-261 *6)) (-4 *5 (-954)))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-2 (|:| -1986 (-1070 *4)) (|:| |deg| (-823)))) (-5 *1 (-173 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-489))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1478 ((|#1| $) NIL T ELT)) (-3301 ((|#1| $) 31 T ELT)) (-3700 (($) NIL T CONST)) (-2983 (($ $) NIL T ELT)) (-2279 (($ $) 40 T ELT)) (-3303 ((|#1| |#1| $) NIL T ELT)) (-3302 ((|#1| $) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3809 (((-687) $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) NIL T ELT)) (-1476 ((|#1| |#1| $) 36 T ELT)) (-1475 ((|#1| |#1| $) 38 T ELT)) (-3585 (($ |#1| $) NIL T ELT)) (-2583 (((-687) $) 34 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-2982 ((|#1| $) NIL T ELT)) (-1474 ((|#1| $) 32 T ELT)) (-1473 ((|#1| $) 30 T ELT)) (-1259 ((|#1| $) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2985 ((|#1| |#1| $) NIL T ELT)) (-3380 (((-83) $) 9 T ELT)) (-3541 (($) NIL T ELT)) (-2984 ((|#1| $) NIL T ELT)) (-1479 (($) NIL T ELT) (($ (-578 |#1|)) 17 T ELT)) (-3300 (((-687) $) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1477 ((|#1| $) 14 T ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) NIL T ELT)) (-2981 ((|#1| $) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-174 |#1|) (-13 (-211 |#1|) (-10 -8 (-15 -1479 ($ (-578 |#1|))))) (-1003)) (T -174)) -((-1479 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-174 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1436 (($ (-261 |#1|)) 24 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2645 (((-83) $) NIL T ELT)) (-3138 (((-3 (-261 |#1|) #1#) $) NIL T ELT)) (-3137 (((-261 |#1|) $) NIL T ELT)) (-3935 (($ $) 32 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3934 (($ (-1 (-261 |#1|) (-261 |#1|)) $) NIL T ELT)) (-3155 (((-261 |#1|) $) NIL T ELT)) (-1438 (($ $) 31 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1437 (((-83) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($ (-687)) NIL T ELT)) (-1435 (($ $) 33 T ELT)) (-3924 (((-478) $) NIL T ELT)) (-3922 (((-765) $) 65 T ELT) (($ (-478)) NIL T ELT) (($ (-261 |#1|)) NIL T ELT)) (-3653 (((-261 |#1|) $ $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 26 T CONST)) (-2647 (($) NIL T CONST)) (-3037 (((-83) $ $) 29 T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 20 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-261 |#1|) $) 19 T ELT))) -(((-175 |#1| |#2|) (-13 (-555 (-261 |#1|)) (-943 (-261 |#1|)) (-10 -8 (-15 -3155 ((-261 |#1|) $)) (-15 -1438 ($ $)) (-15 -3935 ($ $)) (-15 -3653 ((-261 |#1|) $ $)) (-15 -2391 ($ (-687))) (-15 -1437 ((-83) $)) (-15 -2645 ((-83) $)) (-15 -3924 ((-478) $)) (-15 -3934 ($ (-1 (-261 |#1|) (-261 |#1|)) $)) (-15 -1436 ($ (-261 |#1|))) (-15 -1435 ($ $)))) (-13 (-954) (-749)) (-578 (-1075))) (T -175)) -((-3155 (*1 *2 *1) (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1075))))) (-1438 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) (-14 *3 (-578 (-1075))))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) (-14 *3 (-578 (-1075))))) (-3653 (*1 *2 *1 *1) (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1075))))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1075))))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1075))))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1075))))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) (-14 *4 (-578 (-1075))))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-261 *3) (-261 *3))) (-4 *3 (-13 (-954) (-749))) (-5 *1 (-175 *3 *4)) (-14 *4 (-578 (-1075))))) (-1436 (*1 *1 *2) (-12 (-5 *2 (-261 *3)) (-4 *3 (-13 (-954) (-749))) (-5 *1 (-175 *3 *4)) (-14 *4 (-578 (-1075))))) (-1435 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) (-14 *3 (-578 (-1075)))))) -((-1439 (((-83) (-1059)) 26 T ELT)) (-1440 (((-3 (-743 |#2|) #1="failed") (-545 |#2|) |#2| (-743 |#2|) (-743 |#2|) (-83)) 35 T ELT)) (-1441 (((-3 (-83) #1#) (-1070 |#2|) (-743 |#2|) (-743 |#2|) (-83)) 83 T ELT) (((-3 (-83) #1#) (-850 |#1|) (-1075) (-743 |#2|) (-743 |#2|) (-83)) 84 T ELT))) -(((-176 |#1| |#2|) (-10 -7 (-15 -1439 ((-83) (-1059))) (-15 -1440 ((-3 (-743 |#2|) #1="failed") (-545 |#2|) |#2| (-743 |#2|) (-743 |#2|) (-83))) (-15 -1441 ((-3 (-83) #1#) (-850 |#1|) (-1075) (-743 |#2|) (-743 |#2|) (-83))) (-15 -1441 ((-3 (-83) #1#) (-1070 |#2|) (-743 |#2|) (-743 |#2|) (-83)))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-1100) (-29 |#1|))) (T -176)) -((-1441 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-83)) (-5 *3 (-1070 *6)) (-5 *4 (-743 *6)) (-4 *6 (-13 (-1100) (-29 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-176 *5 *6)))) (-1441 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-83)) (-5 *3 (-850 *6)) (-5 *4 (-1075)) (-5 *5 (-743 *7)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-4 *7 (-13 (-1100) (-29 *6))) (-5 *1 (-176 *6 *7)))) (-1440 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-743 *4)) (-5 *3 (-545 *4)) (-5 *5 (-83)) (-4 *4 (-13 (-1100) (-29 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-176 *6 *4)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-83)) (-5 *1 (-176 *4 *5)) (-4 *5 (-13 (-1100) (-29 *4)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 86 T ELT)) (-3110 (((-478) $) 18 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3747 (($ $) NIL T ELT)) (-3469 (($ $) 73 T ELT)) (-3615 (($ $) 61 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-3018 (($ $) 52 T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3467 (($ $) 71 T ELT)) (-3614 (($ $) 59 T ELT)) (-3599 (((-478) $) 83 T ELT)) (-3471 (($ $) 76 T ELT)) (-3613 (($ $) 63 T ELT)) (-3700 (($) NIL T CONST)) (-3108 (($ $) NIL T ELT)) (-3138 (((-3 (-478) #1#) $) 116 T ELT) (((-3 (-343 (-478)) #1#) $) 113 T ELT)) (-3137 (((-478) $) 114 T ELT) (((-343 (-478)) $) 111 T ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) 91 T ELT)) (-1727 (((-343 (-478)) $ (-687)) 106 T ELT) (((-343 (-478)) $ (-687) (-687)) 105 T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-1751 (((-823)) 12 T ELT) (((-823) (-823)) NIL (|has| $ (-6 -3962)) ELT)) (-3168 (((-83) $) 107 T ELT)) (-3603 (($) 31 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL T ELT)) (-3748 (((-478) $) 25 T ELT)) (-2392 (((-83) $) 87 T ELT)) (-2992 (($ $ (-478)) NIL T ELT)) (-3113 (($ $) NIL T ELT)) (-3169 (((-83) $) 85 T ELT)) (-1442 (((-83) $) 140 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) 49 T ELT) (($) 21 (-12 (-2540 (|has| $ (-6 -3954))) (-2540 (|has| $ (-6 -3962)))) ELT)) (-2838 (($ $ $) 48 T ELT) (($) 20 (-12 (-2540 (|has| $ (-6 -3954))) (-2540 (|has| $ (-6 -3962)))) ELT)) (-1753 (((-478) $) 10 T ELT)) (-1726 (($ $) 16 T ELT)) (-1725 (($ $) 53 T ELT)) (-3918 (($ $) 58 T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-1750 (((-823) (-478)) NIL (|has| $ (-6 -3962)) ELT)) (-3223 (((-1020) $) 89 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL T ELT)) (-3111 (($ $) NIL T ELT)) (-3234 (($ (-478) (-478)) NIL T ELT) (($ (-478) (-478) (-823)) 98 T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2383 (((-478) $) 11 T ELT)) (-1724 (($) 30 T ELT)) (-3919 (($ $) 57 T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-2595 (((-823)) NIL T ELT) (((-823) (-823)) NIL (|has| $ (-6 -3962)) ELT)) (-3734 (($ $) 92 T ELT) (($ $ (-687)) NIL T ELT)) (-1749 (((-823) (-478)) NIL (|has| $ (-6 -3962)) ELT)) (-3472 (($ $) 74 T ELT)) (-3612 (($ $) 64 T ELT)) (-3470 (($ $) 75 T ELT)) (-3611 (($ $) 62 T ELT)) (-3468 (($ $) 72 T ELT)) (-3610 (($ $) 60 T ELT)) (-3948 (((-323) $) 102 T ELT) (((-177) $) 99 T ELT) (((-793 (-323)) $) NIL T ELT) (((-467) $) 38 T ELT)) (-3922 (((-765) $) 35 T ELT) (($ (-478)) 56 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-478)) 56 T ELT) (($ (-343 (-478))) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-3112 (($ $) NIL T ELT)) (-1752 (((-823)) 19 T ELT) (((-823) (-823)) NIL (|has| $ (-6 -3962)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2675 (((-823)) 7 T ELT)) (-3475 (($ $) 79 T ELT)) (-3463 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3473 (($ $) 77 T ELT)) (-3461 (($ $) 65 T ELT)) (-3477 (($ $) 82 T ELT)) (-3465 (($ $) 70 T ELT)) (-3478 (($ $) 80 T ELT)) (-3466 (($ $) 68 T ELT)) (-3476 (($ $) 81 T ELT)) (-3464 (($ $) 69 T ELT)) (-3474 (($ $) 78 T ELT)) (-3462 (($ $) 66 T ELT)) (-3360 (($ $) 108 T ELT)) (-2640 (($) 27 T CONST)) (-2647 (($) 28 T CONST)) (-3364 (($ $) 95 T ELT)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3361 (($ $ $) 97 T ELT)) (-2546 (((-83) $ $) 42 T ELT)) (-2547 (((-83) $ $) 40 T ELT)) (-3037 (((-83) $ $) 50 T ELT)) (-2665 (((-83) $ $) 41 T ELT)) (-2666 (((-83) $ $) 39 T ELT)) (-3925 (($ $ $) 29 T ELT) (($ $ (-478)) 51 T ELT)) (-3813 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3815 (($ $ $) 44 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 54 T ELT) (($ $ (-343 (-478))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) -(((-177) (-13 (-340) (-188) (-1100) (-548 (-467)) (-10 -8 (-15 -3925 ($ $ (-478))) (-15 ** ($ $ $)) (-15 -1724 ($)) (-15 -1726 ($ $)) (-15 -1725 ($ $)) (-15 -3463 ($ $ $)) (-15 -3364 ($ $)) (-15 -3361 ($ $ $)) (-15 -1727 ((-343 (-478)) $ (-687))) (-15 -1727 ((-343 (-478)) $ (-687) (-687))) (-15 -1442 ((-83) $))))) (T -177)) -((** (*1 *1 *1 *1) (-5 *1 (-177))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-177)))) (-1724 (*1 *1) (-5 *1 (-177))) (-1726 (*1 *1 *1) (-5 *1 (-177))) (-1725 (*1 *1 *1) (-5 *1 (-177))) (-3463 (*1 *1 *1 *1) (-5 *1 (-177))) (-3364 (*1 *1 *1) (-5 *1 (-177))) (-3361 (*1 *1 *1 *1) (-5 *1 (-177))) (-1727 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-177)))) (-1727 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-177)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-177))))) -((-3363 (((-140 (-177)) (-687) (-140 (-177))) 11 T ELT) (((-177) (-687) (-177)) 12 T ELT)) (-1443 (((-140 (-177)) (-140 (-177))) 13 T ELT) (((-177) (-177)) 14 T ELT)) (-1444 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 19 T ELT) (((-177) (-177) (-177)) 22 T ELT)) (-3362 (((-140 (-177)) (-140 (-177))) 27 T ELT) (((-177) (-177)) 26 T ELT)) (-3366 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 57 T ELT) (((-177) (-177) (-177)) 49 T ELT)) (-3368 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 62 T ELT) (((-177) (-177) (-177)) 60 T ELT)) (-3365 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 15 T ELT) (((-177) (-177) (-177)) 16 T ELT)) (-3367 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 17 T ELT) (((-177) (-177) (-177)) 18 T ELT)) (-3370 (((-140 (-177)) (-140 (-177))) 74 T ELT) (((-177) (-177)) 73 T ELT)) (-3369 (((-177) (-177)) 68 T ELT) (((-140 (-177)) (-140 (-177))) 72 T ELT)) (-3364 (((-140 (-177)) (-140 (-177))) 8 T ELT) (((-177) (-177)) 9 T ELT)) (-3361 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 35 T ELT) (((-177) (-177) (-177)) 31 T ELT))) -(((-178) (-10 -7 (-15 -3364 ((-177) (-177))) (-15 -3364 ((-140 (-177)) (-140 (-177)))) (-15 -3361 ((-177) (-177) (-177))) (-15 -3361 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -1443 ((-177) (-177))) (-15 -1443 ((-140 (-177)) (-140 (-177)))) (-15 -3362 ((-177) (-177))) (-15 -3362 ((-140 (-177)) (-140 (-177)))) (-15 -3363 ((-177) (-687) (-177))) (-15 -3363 ((-140 (-177)) (-687) (-140 (-177)))) (-15 -3365 ((-177) (-177) (-177))) (-15 -3365 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3366 ((-177) (-177) (-177))) (-15 -3366 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3367 ((-177) (-177) (-177))) (-15 -3367 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3368 ((-177) (-177) (-177))) (-15 -3368 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3369 ((-140 (-177)) (-140 (-177)))) (-15 -3369 ((-177) (-177))) (-15 -3370 ((-177) (-177))) (-15 -3370 ((-140 (-177)) (-140 (-177)))) (-15 -1444 ((-177) (-177) (-177))) (-15 -1444 ((-140 (-177)) (-140 (-177)) (-140 (-177)))))) (T -178)) -((-1444 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-1444 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3369 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3369 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3368 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3368 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3367 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3367 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3366 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3366 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3365 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3365 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3363 (*1 *2 *3 *2) (-12 (-5 *2 (-140 (-177))) (-5 *3 (-687)) (-5 *1 (-178)))) (-3363 (*1 *2 *3 *2) (-12 (-5 *2 (-177)) (-5 *3 (-687)) (-5 *1 (-178)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3361 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3361 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3364 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3364 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3814 (($ (-687) (-687)) NIL T ELT)) (-2332 (($ $ $) NIL T ELT)) (-3391 (($ (-1164 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3849 (($ |#1| |#1| |#1|) 33 T ELT)) (-3102 (((-83) $) NIL T ELT)) (-2331 (($ $ (-478) (-478)) NIL T ELT)) (-2330 (($ $ (-478) (-478)) NIL T ELT)) (-2329 (($ $ (-478) (-478) (-478) (-478)) NIL T ELT)) (-2334 (($ $) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-2328 (($ $ (-478) (-478) $) NIL T ELT)) (-3764 ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) NIL T ELT)) (-1241 (($ $ (-478) (-1164 |#1|)) NIL T ELT)) (-1240 (($ $ (-478) (-1164 |#1|)) NIL T ELT)) (-3823 (($ |#1| |#1| |#1|) 32 T ELT)) (-3310 (($ (-687) |#1|) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3091 (($ $) NIL (|has| |#1| (-254)) ELT)) (-3093 (((-1164 |#1|) $ (-478)) NIL T ELT)) (-1445 (($ |#1|) 31 T ELT)) (-1446 (($ |#1|) 30 T ELT)) (-1447 (($ |#1|) 29 T ELT)) (-3090 (((-687) $) NIL (|has| |#1| (-489)) ELT)) (-1559 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-3094 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL T ELT)) (-3089 (((-687) $) NIL (|has| |#1| (-489)) ELT)) (-3088 (((-578 (-1164 |#1|)) $) NIL (|has| |#1| (-489)) ELT)) (-3096 (((-687) $) NIL T ELT)) (-3590 (($ (-687) (-687) |#1|) NIL T ELT)) (-3095 (((-687) $) NIL T ELT)) (-3304 ((|#1| $) NIL (|has| |#1| (-6 (-3973 #1="*"))) ELT)) (-3100 (((-478) $) NIL T ELT)) (-3098 (((-478) $) NIL T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3099 (((-478) $) NIL T ELT)) (-3097 (((-478) $) NIL T ELT)) (-3105 (($ (-578 (-578 |#1|))) 11 T ELT) (($ (-687) (-687) (-1 |#1| (-478) (-478))) NIL T ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3570 (((-578 (-578 |#1|)) $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3566 (((-3 $ #2="failed") $) NIL (|has| |#1| (-308)) ELT)) (-1448 (($) 12 T ELT)) (-2333 (($ $ $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-2181 (($ $ |#1|) NIL T ELT)) (-3443 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478))) NIL T ELT)) (-3309 (($ (-578 |#1|)) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3103 (((-83) $) NIL T ELT)) (-3305 ((|#1| $) NIL (|has| |#1| (-6 (-3973 #1#))) ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3092 (((-1164 |#1|) $ (-478)) NIL T ELT)) (-3922 (($ (-1164 |#1|)) NIL T ELT) (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3101 (((-83) $) NIL T ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-478) $) NIL T ELT) (((-1164 |#1|) $ (-1164 |#1|)) 15 T ELT) (((-1164 |#1|) (-1164 |#1|) $) NIL T ELT) (((-847 |#1|) $ (-847 |#1|)) 21 T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-179 |#1|) (-13 (-622 |#1| (-1164 |#1|) (-1164 |#1|)) (-10 -8 (-15 * ((-847 |#1|) $ (-847 |#1|))) (-15 -1448 ($)) (-15 -1447 ($ |#1|)) (-15 -1446 ($ |#1|)) (-15 -1445 ($ |#1|)) (-15 -3823 ($ |#1| |#1| |#1|)) (-15 -3849 ($ |#1| |#1| |#1|)))) (-13 (-308) (-1100))) (T -179)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100))) (-5 *1 (-179 *3)))) (-1448 (*1 *1) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100))))) (-1447 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100))))) (-1446 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100))))) (-1445 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100))))) (-3823 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100))))) (-3849 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100)))))) -((-1553 (($ (-1 (-83) |#2|) $) 16 T ELT)) (-3382 (($ |#2| $) NIL T ELT) (($ (-1 (-83) |#2|) $) 28 T ELT)) (-1449 (($) NIL T ELT) (($ (-578 |#2|)) 11 T ELT)) (-3037 (((-83) $ $) 26 T ELT))) -(((-180 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -1553 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3382 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3382 (|#1| |#2| |#1|)) (-15 -1449 (|#1| (-578 |#2|))) (-15 -1449 (|#1|))) (-181 |#2|) (-1003)) (T -180)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1553 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-1336 (($ $) 62 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ |#1| $) 51 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3383 (($ |#1| $) 61 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-1449 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 54 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-181 |#1|) (-111) (-1003)) (T -181)) +((-3624 ((|#2| |#2|) 28 T ELT)) (-3627 (((-83) |#2|) 19 T ELT)) (-3625 (((-261 |#1|) |#2|) 12 T ELT)) (-3626 (((-261 |#1|) |#2|) 14 T ELT)) (-3622 ((|#2| |#2| (-1080)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3628 (((-140 (-261 |#1|)) |#2|) 10 T ELT)) (-3623 ((|#2| |#2| (-1080)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-160 |#1| |#2|) (-10 -7 (-15 -3622 (|#2| |#2|)) (-15 -3622 (|#2| |#2| (-1080))) (-15 -3623 (|#2| |#2|)) (-15 -3623 (|#2| |#2| (-1080))) (-15 -3625 ((-261 |#1|) |#2|)) (-15 -3626 ((-261 |#1|) |#2|)) (-15 -3627 ((-83) |#2|)) (-15 -3624 (|#2| |#2|)) (-15 -3628 ((-140 (-261 |#1|)) |#2|))) (-13 (-490) (-944 (-479))) (-13 (-27) (-1105) (-358 (-140 |#1|)))) (T -160)) +((-3628 (*1 *2 *3) (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-140 (-261 *4))) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 (-140 *4)))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 (-140 *3)))))) (-3627 (*1 *2 *3) (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-83)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 (-140 *4)))))) (-3626 (*1 *2 *3) (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-261 *4)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 (-140 *4)))))) (-3625 (*1 *2 *3) (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-261 *4)) (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 (-140 *4)))))) (-3623 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 (-140 *4)))))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 (-140 *3)))))) (-3622 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 (-140 *4)))))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 (-140 *3))))))) +((-1418 (((-1169 (-626 (-851 |#1|))) (-1169 (-626 |#1|))) 26 T ELT)) (-3928 (((-1169 (-626 (-344 (-851 |#1|)))) (-1169 (-626 |#1|))) 37 T ELT))) +(((-161 |#1|) (-10 -7 (-15 -1418 ((-1169 (-626 (-851 |#1|))) (-1169 (-626 |#1|)))) (-15 -3928 ((-1169 (-626 (-344 (-851 |#1|)))) (-1169 (-626 |#1|))))) (-144)) (T -161)) +((-3928 (*1 *2 *3) (-12 (-5 *3 (-1169 (-626 *4))) (-4 *4 (-144)) (-5 *2 (-1169 (-626 (-344 (-851 *4))))) (-5 *1 (-161 *4)))) (-1418 (*1 *2 *3) (-12 (-5 *3 (-1169 (-626 *4))) (-4 *4 (-144)) (-5 *2 (-1169 (-626 (-851 *4)))) (-5 *1 (-161 *4))))) +((-1426 (((-1082 (-344 (-479))) (-1082 (-344 (-479))) (-1082 (-344 (-479)))) 93 T ELT)) (-1428 (((-1082 (-344 (-479))) (-579 (-479)) (-579 (-479))) 106 T ELT)) (-1419 (((-1082 (-344 (-479))) (-824)) 54 T ELT)) (-3836 (((-1082 (-344 (-479))) (-824)) 79 T ELT)) (-3750 (((-344 (-479)) (-1082 (-344 (-479)))) 89 T ELT)) (-1420 (((-1082 (-344 (-479))) (-824)) 37 T ELT)) (-1423 (((-1082 (-344 (-479))) (-824)) 66 T ELT)) (-1422 (((-1082 (-344 (-479))) (-824)) 61 T ELT)) (-1425 (((-1082 (-344 (-479))) (-1082 (-344 (-479))) (-1082 (-344 (-479)))) 87 T ELT)) (-2876 (((-1082 (-344 (-479))) (-824)) 29 T ELT)) (-1424 (((-344 (-479)) (-1082 (-344 (-479))) (-1082 (-344 (-479)))) 91 T ELT)) (-1421 (((-1082 (-344 (-479))) (-824)) 35 T ELT)) (-1427 (((-1082 (-344 (-479))) (-579 (-824))) 100 T ELT))) +(((-162) (-10 -7 (-15 -2876 ((-1082 (-344 (-479))) (-824))) (-15 -1419 ((-1082 (-344 (-479))) (-824))) (-15 -1420 ((-1082 (-344 (-479))) (-824))) (-15 -1421 ((-1082 (-344 (-479))) (-824))) (-15 -1422 ((-1082 (-344 (-479))) (-824))) (-15 -1423 ((-1082 (-344 (-479))) (-824))) (-15 -3836 ((-1082 (-344 (-479))) (-824))) (-15 -1424 ((-344 (-479)) (-1082 (-344 (-479))) (-1082 (-344 (-479))))) (-15 -1425 ((-1082 (-344 (-479))) (-1082 (-344 (-479))) (-1082 (-344 (-479))))) (-15 -3750 ((-344 (-479)) (-1082 (-344 (-479))))) (-15 -1426 ((-1082 (-344 (-479))) (-1082 (-344 (-479))) (-1082 (-344 (-479))))) (-15 -1427 ((-1082 (-344 (-479))) (-579 (-824)))) (-15 -1428 ((-1082 (-344 (-479))) (-579 (-479)) (-579 (-479)))))) (T -162)) +((-1428 (*1 *2 *3 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-579 (-824))) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-1426 (*1 *2 *2 *2) (-12 (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-1082 (-344 (-479)))) (-5 *2 (-344 (-479))) (-5 *1 (-162)))) (-1425 (*1 *2 *2 *2) (-12 (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-1424 (*1 *2 *3 *3) (-12 (-5 *3 (-1082 (-344 (-479)))) (-5 *2 (-344 (-479))) (-5 *1 (-162)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-1421 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-1419 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) (-2876 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) +((-1430 (((-342 (-1075 (-479))) (-479)) 38 T ELT)) (-1429 (((-579 (-1075 (-479))) (-479)) 33 T ELT)) (-2786 (((-1075 (-479)) (-479)) 28 T ELT))) +(((-163) (-10 -7 (-15 -1429 ((-579 (-1075 (-479))) (-479))) (-15 -2786 ((-1075 (-479)) (-479))) (-15 -1430 ((-342 (-1075 (-479))) (-479))))) (T -163)) +((-1430 (*1 *2 *3) (-12 (-5 *2 (-342 (-1075 (-479)))) (-5 *1 (-163)) (-5 *3 (-479)))) (-2786 (*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-163)) (-5 *3 (-479)))) (-1429 (*1 *2 *3) (-12 (-5 *2 (-579 (-1075 (-479)))) (-5 *1 (-163)) (-5 *3 (-479))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1431 ((|#2| $ (-688) |#2|) 11 T ELT)) (-3097 ((|#2| $ (-688)) 10 T ELT)) (-3596 (($) 8 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 23 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 13 T ELT))) +(((-164 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -3596 ($)) (-15 -3097 (|#2| $ (-688))) (-15 -1431 (|#2| $ (-688) |#2|)))) (-824) (-1006)) (T -164)) +((-3596 (*1 *1) (-12 (-5 *1 (-164 *2 *3)) (-14 *2 (-824)) (-4 *3 (-1006)))) (-3097 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *2 (-1006)) (-5 *1 (-164 *4 *2)) (-14 *4 (-824)))) (-1431 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-164 *4 *2)) (-14 *4 (-824)) (-4 *2 (-1006))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1952 (((-1175) $) 36 T ELT) (((-1175) $ (-824) (-824)) 40 T ELT)) (-3782 (($ $ (-896)) 19 T ELT) (((-200 (-1063)) $ (-1080)) 15 T ELT)) (-3599 (((-1175) $) 34 T ELT)) (-3928 (((-766) $) 31 T ELT) (($ (-579 |#1|)) 8 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $ $) 26 T ELT)) (-3821 (($ $ $) 22 T ELT))) +(((-165 |#1|) (-13 (-1006) (-551 (-579 |#1|)) (-10 -8 (-15 -3782 ($ $ (-896))) (-15 -3782 ((-200 (-1063)) $ (-1080))) (-15 -3821 ($ $ $)) (-15 -3819 ($ $ $)) (-15 -3599 ((-1175) $)) (-15 -1952 ((-1175) $)) (-15 -1952 ((-1175) $ (-824) (-824))))) (-13 (-750) (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 ((-1175) $)) (-15 -1952 ((-1175) $))))) (T -165)) +((-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-896)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-750) (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 ((-1175) $)) (-15 -1952 ((-1175) $))))))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-200 (-1063))) (-5 *1 (-165 *4)) (-4 *4 (-13 (-750) (-10 -8 (-15 -3782 ((-1063) $ *3)) (-15 -3599 ((-1175) $)) (-15 -1952 ((-1175) $))))))) (-3821 (*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-13 (-750) (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 ((-1175) $)) (-15 -1952 ((-1175) $))))))) (-3819 (*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 (-13 (-750) (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 ((-1175) $)) (-15 -1952 ((-1175) $))))))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-750) (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 (*2 $)) (-15 -1952 (*2 $))))))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-165 *3)) (-4 *3 (-13 (-750) (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 (*2 $)) (-15 -1952 (*2 $))))))) (-1952 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1175)) (-5 *1 (-165 *4)) (-4 *4 (-13 (-750) (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 (*2 $)) (-15 -1952 (*2 $)))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) 10 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2836 (($ (-573 |#1|)) 11 T ELT)) (-3928 (((-766) $) 18 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT))) +(((-166 |#1|) (-13 (-746) (-10 -8 (-15 -2836 ($ (-573 |#1|))))) (-579 (-1080))) (T -166)) +((-2836 (*1 *1 *2) (-12 (-5 *2 (-573 *3)) (-14 *3 (-579 (-1080))) (-5 *1 (-166 *3))))) +((-1432 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-167 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1432 (|#2| |#4| (-1 |#2| |#2|)))) (-308) (-1145 |#1|) (-1145 (-344 |#2|)) (-287 |#1| |#2| |#3|)) (T -167)) +((-1432 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-308)) (-4 *6 (-1145 (-344 *2))) (-4 *2 (-1145 *5)) (-5 *1 (-167 *5 *2 *6 *3)) (-4 *3 (-287 *5 *2 *6))))) +((-1436 ((|#2| |#2| (-688) |#2|) 55 T ELT)) (-1435 ((|#2| |#2| (-688) |#2|) 51 T ELT)) (-2358 (((-579 |#2|) (-579 (-2 (|:| |deg| (-688)) (|:| -2560 |#2|)))) 79 T ELT)) (-1434 (((-579 (-2 (|:| |deg| (-688)) (|:| -2560 |#2|))) |#2|) 72 T ELT)) (-1437 (((-83) |#2|) 70 T ELT)) (-3715 (((-342 |#2|) |#2|) 92 T ELT)) (-3714 (((-342 |#2|) |#2|) 91 T ELT)) (-2359 ((|#2| |#2| (-688) |#2|) 49 T ELT)) (-1433 (((-2 (|:| |cont| |#1|) (|:| -1767 (-579 (-2 (|:| |irr| |#2|) (|:| -2382 (-479)))))) |#2| (-83)) 86 T ELT))) +(((-168 |#1| |#2|) (-10 -7 (-15 -3714 ((-342 |#2|) |#2|)) (-15 -3715 ((-342 |#2|) |#2|)) (-15 -1433 ((-2 (|:| |cont| |#1|) (|:| -1767 (-579 (-2 (|:| |irr| |#2|) (|:| -2382 (-479)))))) |#2| (-83))) (-15 -1434 ((-579 (-2 (|:| |deg| (-688)) (|:| -2560 |#2|))) |#2|)) (-15 -2358 ((-579 |#2|) (-579 (-2 (|:| |deg| (-688)) (|:| -2560 |#2|))))) (-15 -2359 (|#2| |#2| (-688) |#2|)) (-15 -1435 (|#2| |#2| (-688) |#2|)) (-15 -1436 (|#2| |#2| (-688) |#2|)) (-15 -1437 ((-83) |#2|))) (-295) (-1145 |#1|)) (T -168)) +((-1437 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1145 *4)))) (-1436 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-688)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1145 *4)))) (-1435 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-688)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1145 *4)))) (-2359 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-688)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1145 *4)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| |deg| (-688)) (|:| -2560 *5)))) (-4 *5 (-1145 *4)) (-4 *4 (-295)) (-5 *2 (-579 *5)) (-5 *1 (-168 *4 *5)))) (-1434 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-579 (-2 (|:| |deg| (-688)) (|:| -2560 *3)))) (-5 *1 (-168 *4 *3)) (-4 *3 (-1145 *4)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-295)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1767 (-579 (-2 (|:| |irr| *3) (|:| -2382 (-479))))))) (-5 *1 (-168 *5 *3)) (-4 *3 (-1145 *5)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-342 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1145 *4)))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-342 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1145 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 (((-479) $) NIL (|has| (-479) (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| (-479) (-734)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL (|has| (-479) (-944 (-1080))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| (-479) (-944 (-479))) ELT) (((-3 (-479) #1#) $) NIL (|has| (-479) (-944 (-479))) ELT)) (-3140 (((-479) $) NIL T ELT) (((-1080) $) NIL (|has| (-479) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL (|has| (-479) (-944 (-479))) ELT) (((-479) $) NIL (|has| (-479) (-944 (-479))) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-479)) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-479) (-478)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| (-479) (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| (-479) (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| (-479) (-790 (-324))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-479) $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| (-479) (-1056)) ELT)) (-3171 (((-83) $) NIL (|has| (-479) (-734)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-479) (-750)) ELT)) (-3940 (($ (-1 (-479) (-479)) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL T ELT) (((-626 (-479)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-479) (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL (|has| (-479) (-254)) ELT) (((-344 (-479)) $) NIL T ELT)) (-3114 (((-479) $) NIL (|has| (-479) (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-3750 (($ $ (-579 (-479)) (-579 (-479))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-479) (-479)) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-245 (-479))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-579 (-245 (-479)))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-579 (-1080)) (-579 (-479))) NIL (|has| (-479) (-448 (-1080) (-479))) ELT) (($ $ (-1080) (-479)) NIL (|has| (-479) (-448 (-1080) (-479))) ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ $ (-479)) NIL (|has| (-479) (-238 (-479) (-479))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $ (-1 (-479) (-479))) NIL T ELT) (($ $ (-1 (-479) (-479)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $) NIL (|has| (-479) (-187)) ELT) (($ $ (-688)) NIL (|has| (-479) (-187)) ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-479) $) NIL T ELT)) (-1438 (($ (-344 (-479))) 9 T ELT)) (-3954 (((-794 (-479)) $) NIL (|has| (-479) (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| (-479) (-549 (-794 (-324)))) ELT) (((-468) $) NIL (|has| (-479) (-549 (-468))) ELT) (((-324) $) NIL (|has| (-479) (-927)) ELT) (((-177) $) NIL (|has| (-479) (-927)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| (-479) (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) 8 T ELT) (($ (-479)) NIL T ELT) (($ (-1080)) NIL (|has| (-479) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL T ELT) (((-911 10) $) 10 T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-479) (-815))) (|has| (-479) (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-3115 (((-479) $) NIL (|has| (-479) (-478)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3365 (($ $) NIL (|has| (-479) (-734)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1 (-479) (-479))) NIL T ELT) (($ $ (-1 (-479) (-479)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $) NIL (|has| (-479) (-187)) ELT) (($ $ (-688)) NIL (|has| (-479) (-187)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-3931 (($ $ $) NIL T ELT) (($ (-479) (-479)) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ (-479)) NIL T ELT))) +(((-169) (-13 (-898 (-479)) (-548 (-344 (-479))) (-548 (-911 10)) (-10 -8 (-15 -3112 ((-344 (-479)) $)) (-15 -1438 ($ (-344 (-479))))))) (T -169)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-169)))) (-1438 (*1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-169))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3302 (((-1019) $) 14 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3162 (((-417) $) 11 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 24 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-1039) $) 16 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-170) (-13 (-988) (-10 -8 (-15 -3162 ((-417) $)) (-15 -3302 ((-1019) $)) (-15 -3217 ((-1039) $))))) (T -170)) +((-3162 (*1 *2 *1) (-12 (-5 *2 (-417)) (-5 *1 (-170)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-170)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-170))))) +((-3794 (((-3 (|:| |f1| (-744 |#2|)) (|:| |f2| (-579 (-744 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-997 (-744 |#2|)) (-1063)) 29 T ELT) (((-3 (|:| |f1| (-744 |#2|)) (|:| |f2| (-579 (-744 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-997 (-744 |#2|))) 25 T ELT)) (-1439 (((-3 (|:| |f1| (-744 |#2|)) (|:| |f2| (-579 (-744 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1080) (-744 |#2|) (-744 |#2|) (-83)) 17 T ELT))) +(((-171 |#1| |#2|) (-10 -7 (-15 -3794 ((-3 (|:| |f1| (-744 |#2|)) (|:| |f2| (-579 (-744 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-997 (-744 |#2|)))) (-15 -3794 ((-3 (|:| |f1| (-744 |#2|)) (|:| |f2| (-579 (-744 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-997 (-744 |#2|)) (-1063))) (-15 -1439 ((-3 (|:| |f1| (-744 |#2|)) (|:| |f2| (-579 (-744 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1080) (-744 |#2|) (-744 |#2|) (-83)))) (-13 (-254) (-118) (-944 (-479)) (-576 (-479))) (-13 (-1105) (-865) (-29 |#1|))) (T -171)) +((-1439 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1080)) (-5 *6 (-83)) (-4 *7 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-4 *3 (-13 (-1105) (-865) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-744 *3)) (|:| |f2| (-579 (-744 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-171 *7 *3)) (-5 *5 (-744 *3)))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-997 (-744 *3))) (-5 *5 (-1063)) (-4 *3 (-13 (-1105) (-865) (-29 *6))) (-4 *6 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (|:| |f1| (-744 *3)) (|:| |f2| (-579 (-744 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-171 *6 *3)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-744 *3))) (-4 *3 (-13 (-1105) (-865) (-29 *5))) (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (|:| |f1| (-744 *3)) (|:| |f2| (-579 (-744 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-171 *5 *3))))) +((-3794 (((-3 (|:| |f1| (-744 (-261 |#1|))) (|:| |f2| (-579 (-744 (-261 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-344 (-851 |#1|)) (-997 (-744 (-344 (-851 |#1|)))) (-1063)) 49 T ELT) (((-3 (|:| |f1| (-744 (-261 |#1|))) (|:| |f2| (-579 (-744 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-344 (-851 |#1|)) (-997 (-744 (-344 (-851 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-744 (-261 |#1|))) (|:| |f2| (-579 (-744 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-344 (-851 |#1|)) (-997 (-744 (-261 |#1|))) (-1063)) 50 T ELT) (((-3 (|:| |f1| (-744 (-261 |#1|))) (|:| |f2| (-579 (-744 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-344 (-851 |#1|)) (-997 (-744 (-261 |#1|)))) 22 T ELT))) +(((-172 |#1|) (-10 -7 (-15 -3794 ((-3 (|:| |f1| (-744 (-261 |#1|))) (|:| |f2| (-579 (-744 (-261 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-344 (-851 |#1|)) (-997 (-744 (-261 |#1|))))) (-15 -3794 ((-3 (|:| |f1| (-744 (-261 |#1|))) (|:| |f2| (-579 (-744 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-344 (-851 |#1|)) (-997 (-744 (-261 |#1|))) (-1063))) (-15 -3794 ((-3 (|:| |f1| (-744 (-261 |#1|))) (|:| |f2| (-579 (-744 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-344 (-851 |#1|)) (-997 (-744 (-344 (-851 |#1|)))))) (-15 -3794 ((-3 (|:| |f1| (-744 (-261 |#1|))) (|:| |f2| (-579 (-744 (-261 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-344 (-851 |#1|)) (-997 (-744 (-344 (-851 |#1|)))) (-1063)))) (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (T -172)) +((-3794 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-997 (-744 (-344 (-851 *6))))) (-5 *5 (-1063)) (-5 *3 (-344 (-851 *6))) (-4 *6 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (|:| |f1| (-744 (-261 *6))) (|:| |f2| (-579 (-744 (-261 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-172 *6)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-744 (-344 (-851 *5))))) (-5 *3 (-344 (-851 *5))) (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (|:| |f1| (-744 (-261 *5))) (|:| |f2| (-579 (-744 (-261 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *5)))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-344 (-851 *6))) (-5 *4 (-997 (-744 (-261 *6)))) (-5 *5 (-1063)) (-4 *6 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (|:| |f1| (-744 (-261 *6))) (|:| |f2| (-579 (-744 (-261 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *6)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-997 (-744 (-261 *5)))) (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (|:| |f1| (-744 (-261 *5))) (|:| |f2| (-579 (-744 (-261 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-172 *5))))) +((-3824 (((-2 (|:| -1991 (-1075 |#1|)) (|:| |deg| (-824))) (-1075 |#1|)) 26 T ELT)) (-3945 (((-579 (-261 |#2|)) (-261 |#2|) (-824)) 51 T ELT))) +(((-173 |#1| |#2|) (-10 -7 (-15 -3824 ((-2 (|:| -1991 (-1075 |#1|)) (|:| |deg| (-824))) (-1075 |#1|))) (-15 -3945 ((-579 (-261 |#2|)) (-261 |#2|) (-824)))) (-955) (-490)) (T -173)) +((-3945 (*1 *2 *3 *4) (-12 (-5 *4 (-824)) (-4 *6 (-490)) (-5 *2 (-579 (-261 *6))) (-5 *1 (-173 *5 *6)) (-5 *3 (-261 *6)) (-4 *5 (-955)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-955)) (-5 *2 (-2 (|:| -1991 (-1075 *4)) (|:| |deg| (-824)))) (-5 *1 (-173 *4 *5)) (-5 *3 (-1075 *4)) (-4 *5 (-490))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1483 ((|#1| $) NIL T ELT)) (-3306 ((|#1| $) 31 T ELT)) (-3706 (($) NIL T CONST)) (-2987 (($ $) NIL T ELT)) (-2284 (($ $) 40 T ELT)) (-3308 ((|#1| |#1| $) NIL T ELT)) (-3307 ((|#1| $) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3815 (((-688) $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) NIL T ELT)) (-1481 ((|#1| |#1| $) 36 T ELT)) (-1480 ((|#1| |#1| $) 38 T ELT)) (-3591 (($ |#1| $) NIL T ELT)) (-2588 (((-688) $) 34 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-2986 ((|#1| $) NIL T ELT)) (-1479 ((|#1| $) 32 T ELT)) (-1478 ((|#1| $) 30 T ELT)) (-1264 ((|#1| $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2989 ((|#1| |#1| $) NIL T ELT)) (-3385 (((-83) $) 9 T ELT)) (-3547 (($) NIL T ELT)) (-2988 ((|#1| $) NIL T ELT)) (-1484 (($) NIL T ELT) (($ (-579 |#1|)) 17 T ELT)) (-3305 (((-688) $) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1482 ((|#1| $) 14 T ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) NIL T ELT)) (-2985 ((|#1| $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-174 |#1|) (-13 (-211 |#1|) (-10 -8 (-15 -1484 ($ (-579 |#1|))))) (-1006)) (T -174)) +((-1484 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-174 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1441 (($ (-261 |#1|)) 24 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2649 (((-83) $) NIL T ELT)) (-3141 (((-3 (-261 |#1|) #1#) $) NIL T ELT)) (-3140 (((-261 |#1|) $) NIL T ELT)) (-3941 (($ $) 32 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3940 (($ (-1 (-261 |#1|) (-261 |#1|)) $) NIL T ELT)) (-3158 (((-261 |#1|) $) NIL T ELT)) (-1443 (($ $) 31 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1442 (((-83) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($ (-688)) NIL T ELT)) (-1440 (($ $) 33 T ELT)) (-3930 (((-479) $) NIL T ELT)) (-3928 (((-766) $) 65 T ELT) (($ (-479)) NIL T ELT) (($ (-261 |#1|)) NIL T ELT)) (-3659 (((-261 |#1|) $ $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 26 T CONST)) (-2651 (($) NIL T CONST)) (-3041 (((-83) $ $) 29 T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 20 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-261 |#1|) $) 19 T ELT))) +(((-175 |#1| |#2|) (-13 (-556 (-261 |#1|)) (-944 (-261 |#1|)) (-10 -8 (-15 -3158 ((-261 |#1|) $)) (-15 -1443 ($ $)) (-15 -3941 ($ $)) (-15 -3659 ((-261 |#1|) $ $)) (-15 -2396 ($ (-688))) (-15 -1442 ((-83) $)) (-15 -2649 ((-83) $)) (-15 -3930 ((-479) $)) (-15 -3940 ($ (-1 (-261 |#1|) (-261 |#1|)) $)) (-15 -1441 ($ (-261 |#1|))) (-15 -1440 ($ $)))) (-13 (-955) (-750)) (-579 (-1080))) (T -175)) +((-3158 (*1 *2 *1) (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) (-14 *4 (-579 (-1080))))) (-1443 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-955) (-750))) (-14 *3 (-579 (-1080))))) (-3941 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-955) (-750))) (-14 *3 (-579 (-1080))))) (-3659 (*1 *2 *1 *1) (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) (-14 *4 (-579 (-1080))))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) (-14 *4 (-579 (-1080))))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) (-14 *4 (-579 (-1080))))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) (-14 *4 (-579 (-1080))))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) (-14 *4 (-579 (-1080))))) (-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-261 *3) (-261 *3))) (-4 *3 (-13 (-955) (-750))) (-5 *1 (-175 *3 *4)) (-14 *4 (-579 (-1080))))) (-1441 (*1 *1 *2) (-12 (-5 *2 (-261 *3)) (-4 *3 (-13 (-955) (-750))) (-5 *1 (-175 *3 *4)) (-14 *4 (-579 (-1080))))) (-1440 (*1 *1 *1) (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-955) (-750))) (-14 *3 (-579 (-1080)))))) +((-1444 (((-83) (-1063)) 26 T ELT)) (-1445 (((-3 (-744 |#2|) #1="failed") (-546 |#2|) |#2| (-744 |#2|) (-744 |#2|) (-83)) 35 T ELT)) (-1446 (((-3 (-83) #1#) (-1075 |#2|) (-744 |#2|) (-744 |#2|) (-83)) 83 T ELT) (((-3 (-83) #1#) (-851 |#1|) (-1080) (-744 |#2|) (-744 |#2|) (-83)) 84 T ELT))) +(((-176 |#1| |#2|) (-10 -7 (-15 -1444 ((-83) (-1063))) (-15 -1445 ((-3 (-744 |#2|) #1="failed") (-546 |#2|) |#2| (-744 |#2|) (-744 |#2|) (-83))) (-15 -1446 ((-3 (-83) #1#) (-851 |#1|) (-1080) (-744 |#2|) (-744 |#2|) (-83))) (-15 -1446 ((-3 (-83) #1#) (-1075 |#2|) (-744 |#2|) (-744 |#2|) (-83)))) (-13 (-386) (-944 (-479)) (-576 (-479))) (-13 (-1105) (-29 |#1|))) (T -176)) +((-1446 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-83)) (-5 *3 (-1075 *6)) (-5 *4 (-744 *6)) (-4 *6 (-13 (-1105) (-29 *5))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-176 *5 *6)))) (-1446 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-83)) (-5 *3 (-851 *6)) (-5 *4 (-1080)) (-5 *5 (-744 *7)) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-4 *7 (-13 (-1105) (-29 *6))) (-5 *1 (-176 *6 *7)))) (-1445 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-744 *4)) (-5 *3 (-546 *4)) (-5 *5 (-83)) (-4 *4 (-13 (-1105) (-29 *6))) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-176 *6 *4)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-83)) (-5 *1 (-176 *4 *5)) (-4 *5 (-13 (-1105) (-29 *4)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 86 T ELT)) (-3113 (((-479) $) 18 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3753 (($ $) NIL T ELT)) (-3474 (($ $) 73 T ELT)) (-3621 (($ $) 61 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-3022 (($ $) 52 T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3472 (($ $) 71 T ELT)) (-3620 (($ $) 59 T ELT)) (-3605 (((-479) $) 83 T ELT)) (-3476 (($ $) 76 T ELT)) (-3619 (($ $) 63 T ELT)) (-3706 (($) NIL T CONST)) (-3111 (($ $) NIL T ELT)) (-3141 (((-3 (-479) #1#) $) 116 T ELT) (((-3 (-344 (-479)) #1#) $) 113 T ELT)) (-3140 (((-479) $) 114 T ELT) (((-344 (-479)) $) 111 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) 91 T ELT)) (-1732 (((-344 (-479)) $ (-688)) 106 T ELT) (((-344 (-479)) $ (-688) (-688)) 105 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-1756 (((-824)) 12 T ELT) (((-824) (-824)) NIL (|has| $ (-6 -3968)) ELT)) (-3170 (((-83) $) 107 T ELT)) (-3609 (($) 31 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL T ELT)) (-3754 (((-479) $) 25 T ELT)) (-2397 (((-83) $) 87 T ELT)) (-2996 (($ $ (-479)) NIL T ELT)) (-3116 (($ $) NIL T ELT)) (-3171 (((-83) $) 85 T ELT)) (-1447 (((-83) $) 140 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) 49 T ELT) (($) 21 (-12 (-2545 (|has| $ (-6 -3960))) (-2545 (|has| $ (-6 -3968)))) ELT)) (-2842 (($ $ $) 48 T ELT) (($) 20 (-12 (-2545 (|has| $ (-6 -3960))) (-2545 (|has| $ (-6 -3968)))) ELT)) (-1758 (((-479) $) 10 T ELT)) (-1731 (($ $) 16 T ELT)) (-1730 (($ $) 53 T ELT)) (-3924 (($ $) 58 T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-1755 (((-824) (-479)) NIL (|has| $ (-6 -3968)) ELT)) (-3227 (((-1024) $) 89 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL T ELT)) (-3114 (($ $) NIL T ELT)) (-3238 (($ (-479) (-479)) NIL T ELT) (($ (-479) (-479) (-824)) 98 T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-2388 (((-479) $) 11 T ELT)) (-1729 (($) 30 T ELT)) (-3925 (($ $) 57 T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-2600 (((-824)) NIL T ELT) (((-824) (-824)) NIL (|has| $ (-6 -3968)) ELT)) (-3740 (($ $) 92 T ELT) (($ $ (-688)) NIL T ELT)) (-1754 (((-824) (-479)) NIL (|has| $ (-6 -3968)) ELT)) (-3477 (($ $) 74 T ELT)) (-3618 (($ $) 64 T ELT)) (-3475 (($ $) 75 T ELT)) (-3617 (($ $) 62 T ELT)) (-3473 (($ $) 72 T ELT)) (-3616 (($ $) 60 T ELT)) (-3954 (((-324) $) 102 T ELT) (((-177) $) 99 T ELT) (((-794 (-324)) $) NIL T ELT) (((-468) $) 38 T ELT)) (-3928 (((-766) $) 35 T ELT) (($ (-479)) 56 T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-479)) 56 T ELT) (($ (-344 (-479))) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-3115 (($ $) NIL T ELT)) (-1757 (((-824)) 19 T ELT) (((-824) (-824)) NIL (|has| $ (-6 -3968)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2679 (((-824)) 7 T ELT)) (-3480 (($ $) 79 T ELT)) (-3468 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3478 (($ $) 77 T ELT)) (-3466 (($ $) 65 T ELT)) (-3482 (($ $) 82 T ELT)) (-3470 (($ $) 70 T ELT)) (-3483 (($ $) 80 T ELT)) (-3471 (($ $) 68 T ELT)) (-3481 (($ $) 81 T ELT)) (-3469 (($ $) 69 T ELT)) (-3479 (($ $) 78 T ELT)) (-3467 (($ $) 66 T ELT)) (-3365 (($ $) 108 T ELT)) (-2645 (($) 27 T CONST)) (-2651 (($) 28 T CONST)) (-3369 (($ $) 95 T ELT)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3366 (($ $ $) 97 T ELT)) (-2551 (((-83) $ $) 42 T ELT)) (-2552 (((-83) $ $) 40 T ELT)) (-3041 (((-83) $ $) 50 T ELT)) (-2669 (((-83) $ $) 41 T ELT)) (-2670 (((-83) $ $) 39 T ELT)) (-3931 (($ $ $) 29 T ELT) (($ $ (-479)) 51 T ELT)) (-3819 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3821 (($ $ $) 44 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 54 T ELT) (($ $ (-344 (-479))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT))) +(((-177) (-13 (-341) (-188) (-1105) (-549 (-468)) (-10 -8 (-15 -3931 ($ $ (-479))) (-15 ** ($ $ $)) (-15 -1729 ($)) (-15 -1731 ($ $)) (-15 -1730 ($ $)) (-15 -3468 ($ $ $)) (-15 -3369 ($ $)) (-15 -3366 ($ $ $)) (-15 -1732 ((-344 (-479)) $ (-688))) (-15 -1732 ((-344 (-479)) $ (-688) (-688))) (-15 -1447 ((-83) $))))) (T -177)) +((** (*1 *1 *1 *1) (-5 *1 (-177))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-177)))) (-1729 (*1 *1) (-5 *1 (-177))) (-1731 (*1 *1 *1) (-5 *1 (-177))) (-1730 (*1 *1 *1) (-5 *1 (-177))) (-3468 (*1 *1 *1 *1) (-5 *1 (-177))) (-3369 (*1 *1 *1) (-5 *1 (-177))) (-3366 (*1 *1 *1 *1) (-5 *1 (-177))) (-1732 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *2 (-344 (-479))) (-5 *1 (-177)))) (-1732 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-344 (-479))) (-5 *1 (-177)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-177))))) +((-3368 (((-140 (-177)) (-688) (-140 (-177))) 11 T ELT) (((-177) (-688) (-177)) 12 T ELT)) (-1448 (((-140 (-177)) (-140 (-177))) 13 T ELT) (((-177) (-177)) 14 T ELT)) (-1449 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 19 T ELT) (((-177) (-177) (-177)) 22 T ELT)) (-3367 (((-140 (-177)) (-140 (-177))) 27 T ELT) (((-177) (-177)) 26 T ELT)) (-3371 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 57 T ELT) (((-177) (-177) (-177)) 49 T ELT)) (-3373 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 62 T ELT) (((-177) (-177) (-177)) 60 T ELT)) (-3370 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 15 T ELT) (((-177) (-177) (-177)) 16 T ELT)) (-3372 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 17 T ELT) (((-177) (-177) (-177)) 18 T ELT)) (-3375 (((-140 (-177)) (-140 (-177))) 74 T ELT) (((-177) (-177)) 73 T ELT)) (-3374 (((-177) (-177)) 68 T ELT) (((-140 (-177)) (-140 (-177))) 72 T ELT)) (-3369 (((-140 (-177)) (-140 (-177))) 8 T ELT) (((-177) (-177)) 9 T ELT)) (-3366 (((-140 (-177)) (-140 (-177)) (-140 (-177))) 35 T ELT) (((-177) (-177) (-177)) 31 T ELT))) +(((-178) (-10 -7 (-15 -3369 ((-177) (-177))) (-15 -3369 ((-140 (-177)) (-140 (-177)))) (-15 -3366 ((-177) (-177) (-177))) (-15 -3366 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -1448 ((-177) (-177))) (-15 -1448 ((-140 (-177)) (-140 (-177)))) (-15 -3367 ((-177) (-177))) (-15 -3367 ((-140 (-177)) (-140 (-177)))) (-15 -3368 ((-177) (-688) (-177))) (-15 -3368 ((-140 (-177)) (-688) (-140 (-177)))) (-15 -3370 ((-177) (-177) (-177))) (-15 -3370 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3371 ((-177) (-177) (-177))) (-15 -3371 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3372 ((-177) (-177) (-177))) (-15 -3372 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3373 ((-177) (-177) (-177))) (-15 -3373 ((-140 (-177)) (-140 (-177)) (-140 (-177)))) (-15 -3374 ((-140 (-177)) (-140 (-177)))) (-15 -3374 ((-177) (-177))) (-15 -3375 ((-177) (-177))) (-15 -3375 ((-140 (-177)) (-140 (-177)))) (-15 -1449 ((-177) (-177) (-177))) (-15 -1449 ((-140 (-177)) (-140 (-177)) (-140 (-177)))))) (T -178)) +((-1449 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-1449 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3373 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3373 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3372 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3371 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3371 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3370 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3370 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3368 (*1 *2 *3 *2) (-12 (-5 *2 (-140 (-177))) (-5 *3 (-688)) (-5 *1 (-178)))) (-3368 (*1 *2 *3 *2) (-12 (-5 *2 (-177)) (-5 *3 (-688)) (-5 *1 (-178)))) (-3367 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3367 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-1448 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-1448 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3366 (*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3366 (*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) (-3369 (*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) (-3369 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3820 (($ (-688) (-688)) NIL T ELT)) (-2337 (($ $ $) NIL T ELT)) (-3396 (($ (-1169 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3855 (($ |#1| |#1| |#1|) 33 T ELT)) (-3105 (((-83) $) NIL T ELT)) (-2336 (($ $ (-479) (-479)) NIL T ELT)) (-2335 (($ $ (-479) (-479)) NIL T ELT)) (-2334 (($ $ (-479) (-479) (-479) (-479)) NIL T ELT)) (-2339 (($ $) NIL T ELT)) (-3107 (((-83) $) NIL T ELT)) (-2333 (($ $ (-479) (-479) $) NIL T ELT)) (-3770 ((|#1| $ (-479) (-479) |#1|) NIL T ELT) (($ $ (-579 (-479)) (-579 (-479)) $) NIL T ELT)) (-1246 (($ $ (-479) (-1169 |#1|)) NIL T ELT)) (-1245 (($ $ (-479) (-1169 |#1|)) NIL T ELT)) (-3829 (($ |#1| |#1| |#1|) 32 T ELT)) (-3315 (($ (-688) |#1|) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3094 (($ $) NIL (|has| |#1| (-254)) ELT)) (-3096 (((-1169 |#1|) $ (-479)) NIL T ELT)) (-1450 (($ |#1|) 31 T ELT)) (-1451 (($ |#1|) 30 T ELT)) (-1452 (($ |#1|) 29 T ELT)) (-3093 (((-688) $) NIL (|has| |#1| (-490)) ELT)) (-1564 ((|#1| $ (-479) (-479) |#1|) NIL T ELT)) (-3097 ((|#1| $ (-479) (-479)) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL T ELT)) (-3092 (((-688) $) NIL (|has| |#1| (-490)) ELT)) (-3091 (((-579 (-1169 |#1|)) $) NIL (|has| |#1| (-490)) ELT)) (-3099 (((-688) $) NIL T ELT)) (-3596 (($ (-688) (-688) |#1|) NIL T ELT)) (-3098 (((-688) $) NIL T ELT)) (-3309 ((|#1| $) NIL (|has| |#1| (-6 (-3979 #1="*"))) ELT)) (-3103 (((-479) $) NIL T ELT)) (-3101 (((-479) $) NIL T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3102 (((-479) $) NIL T ELT)) (-3100 (((-479) $) NIL T ELT)) (-3108 (($ (-579 (-579 |#1|))) 11 T ELT) (($ (-688) (-688) (-1 |#1| (-479) (-479))) NIL T ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3576 (((-579 (-579 |#1|)) $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3572 (((-3 $ #2="failed") $) NIL (|has| |#1| (-308)) ELT)) (-1453 (($) 12 T ELT)) (-2338 (($ $ $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-2186 (($ $ |#1|) NIL T ELT)) (-3448 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-490)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) (-479)) NIL T ELT) ((|#1| $ (-479) (-479) |#1|) NIL T ELT) (($ $ (-579 (-479)) (-579 (-479))) NIL T ELT)) (-3314 (($ (-579 |#1|)) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-3310 ((|#1| $) NIL (|has| |#1| (-6 (-3979 #1#))) ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3095 (((-1169 |#1|) $ (-479)) NIL T ELT)) (-3928 (($ (-1169 |#1|)) NIL T ELT) (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3104 (((-83) $) NIL T ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-479) $) NIL T ELT) (((-1169 |#1|) $ (-1169 |#1|)) 15 T ELT) (((-1169 |#1|) (-1169 |#1|) $) NIL T ELT) (((-848 |#1|) $ (-848 |#1|)) 21 T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-179 |#1|) (-13 (-623 |#1| (-1169 |#1|) (-1169 |#1|)) (-10 -8 (-15 * ((-848 |#1|) $ (-848 |#1|))) (-15 -1453 ($)) (-15 -1452 ($ |#1|)) (-15 -1451 ($ |#1|)) (-15 -1450 ($ |#1|)) (-15 -3829 ($ |#1| |#1| |#1|)) (-15 -3855 ($ |#1| |#1| |#1|)))) (-13 (-308) (-1105))) (T -179)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105))) (-5 *1 (-179 *3)))) (-1453 (*1 *1) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105))))) (-1452 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105))))) (-1451 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105))))) (-1450 (*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105))))) (-3829 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105))))) (-3855 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105)))))) +((-1558 (($ (-1 (-83) |#2|) $) 16 T ELT)) (-3387 (($ |#2| $) NIL T ELT) (($ (-1 (-83) |#2|) $) 28 T ELT)) (-1454 (($) NIL T ELT) (($ (-579 |#2|)) 11 T ELT)) (-3041 (((-83) $ $) 26 T ELT))) +(((-180 |#1| |#2|) (-10 -7 (-15 -3041 ((-83) |#1| |#1|)) (-15 -1558 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3387 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3387 (|#1| |#2| |#1|)) (-15 -1454 (|#1| (-579 |#2|))) (-15 -1454 (|#1|))) (-181 |#2|) (-1006)) (T -180)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1558 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-1341 (($ $) 62 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ |#1| $) 51 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3388 (($ |#1| $) 61 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-1454 (($) 53 T ELT) (($ (-579 |#1|)) 52 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 63 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 54 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-181 |#1|) (-111) (-1006)) (T -181)) NIL (-13 (-190 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3734 (($ $ (-1 |#1| |#1|) (-687)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1075)) 60 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 58 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 57 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 56 (|has| |#1| (-804 (-1075))) ELT) (($ $) 52 (|has| |#1| (-187)) ELT) (($ $ (-687)) 50 (|has| |#1| (-187)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1 |#1| |#1|) (-687)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1075)) 59 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 55 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 54 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 53 (|has| |#1| (-804 (-1075))) ELT) (($ $) 51 (|has| |#1| (-187)) ELT) (($ $ (-687)) 49 (|has| |#1| (-187)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-182 |#1|) (-111) (-954)) (T -182)) -NIL -(-13 (-954) (-222 |t#1|) (-10 -7 (IF (|has| |t#1| (-188)) (-6 (-188)) |%noBranch|) (IF (|has| |t#1| (-802 (-1075))) (-6 (-802 (-1075))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-799 $ (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-802 (-1075)) |has| |#1| (-802 (-1075))) ((-804 (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2650 ((|#2| $) 9 T ELT))) -(((-183 |#1| |#2|) (-10 -7 (-15 -2650 (|#2| |#1|))) (-184 |#2|) (-1114)) (T -183)) -NIL -((-3734 ((|#1| $) 7 T ELT)) (-2650 ((|#1| $) 6 T ELT))) -(((-184 |#1|) (-111) (-1114)) (T -184)) -((-3734 (*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1114)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1114))))) -(-13 (-1114) (-10 -8 (-15 -3734 (|t#1| $)) (-15 -2650 (|t#1| $)))) -(((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3734 (($ $ (-687)) 42 T ELT) (($ $) 40 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2650 (($ $ (-687)) 43 T ELT) (($ $) 41 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-185 |#1|) (-111) (-954)) (T -185)) -NIL -(-13 (-80 |t#1| |t#1|) (-187) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-649 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-184 $) . T) ((-187) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-3734 (($ $) NIL T ELT) (($ $ (-687)) 9 T ELT)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) 11 T ELT))) -(((-186 |#1|) (-10 -7 (-15 -2650 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1| (-687))) (-15 -2650 (|#1| |#1|)) (-15 -3734 (|#1| |#1|))) (-187)) (T -186)) -NIL -((-3734 (($ $) 7 T ELT) (($ $ (-687)) 10 T ELT)) (-2650 (($ $) 6 T ELT) (($ $ (-687)) 9 T ELT))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3740 (($ $ (-1 |#1| |#1|) (-688)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1080)) 60 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 58 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 57 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 56 (|has| |#1| (-805 (-1080))) ELT) (($ $) 52 (|has| |#1| (-187)) ELT) (($ $ (-688)) 50 (|has| |#1| (-187)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1 |#1| |#1|) (-688)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1080)) 59 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 55 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 54 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 53 (|has| |#1| (-805 (-1080))) ELT) (($ $) 51 (|has| |#1| (-187)) ELT) (($ $ (-688)) 49 (|has| |#1| (-187)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-182 |#1|) (-111) (-955)) (T -182)) +NIL +(-13 (-955) (-222 |t#1|) (-10 -7 (IF (|has| |t#1| (-188)) (-6 (-188)) |%noBranch|) (IF (|has| |t#1| (-803 (-1080))) (-6 (-803 (-1080))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-659) . T) ((-800 $ (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-803 (-1080)) |has| |#1| (-803 (-1080))) ((-805 (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2654 ((|#2| $) 9 T ELT))) +(((-183 |#1| |#2|) (-10 -7 (-15 -2654 (|#2| |#1|))) (-184 |#2|) (-1119)) (T -183)) +NIL +((-3740 ((|#1| $) 7 T ELT)) (-2654 ((|#1| $) 6 T ELT))) +(((-184 |#1|) (-111) (-1119)) (T -184)) +((-3740 (*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1119)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -3740 (|t#1| $)) (-15 -2654 (|t#1| $)))) +(((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3740 (($ $ (-688)) 42 T ELT) (($ $) 40 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2654 (($ $ (-688)) 43 T ELT) (($ $) 41 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-185 |#1|) (-111) (-955)) (T -185)) +NIL +(-13 (-80 |t#1| |t#1|) (-187) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-650 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-548 (-766)) . T) ((-184 $) . T) ((-187) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) |has| |#1| (-144)) ((-650 |#1|) |has| |#1| (-144)) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-3740 (($ $) NIL T ELT) (($ $ (-688)) 9 T ELT)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) 11 T ELT))) +(((-186 |#1|) (-10 -7 (-15 -2654 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1| (-688))) (-15 -2654 (|#1| |#1|)) (-15 -3740 (|#1| |#1|))) (-187)) (T -186)) +NIL +((-3740 (($ $) 7 T ELT) (($ $ (-688)) 10 T ELT)) (-2654 (($ $) 6 T ELT) (($ $ (-688)) 9 T ELT))) (((-187) (-111)) (T -187)) -((-3734 (*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-687)))) (-2650 (*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-687))))) -(-13 (-184 $) (-10 -8 (-15 -3734 ($ $ (-687))) (-15 -2650 ($ $ (-687))))) -(((-184 $) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3734 (($ $ (-687)) 47 T ELT) (($ $) 45 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-687)) 48 T ELT) (($ $) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-3740 (*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-688)))) (-2654 (*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-688))))) +(-13 (-184 $) (-10 -8 (-15 -3740 ($ $ (-688))) (-15 -2654 ($ $ (-688))))) +(((-184 $) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3740 (($ $ (-688)) 47 T ELT) (($ $) 45 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-688)) 48 T ELT) (($ $) 46 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-188) (-111)) (T -188)) NIL -(-13 (-954) (-187)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-184 $) . T) ((-187) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-1449 (($) 12 T ELT) (($ (-578 |#2|)) NIL T ELT)) (-3377 (($ $) 14 T ELT)) (-3507 (($ (-578 |#2|)) 10 T ELT)) (-3922 (((-765) $) 21 T ELT))) -(((-189 |#1| |#2|) (-10 -7 (-15 -3922 ((-765) |#1|)) (-15 -1449 (|#1| (-578 |#2|))) (-15 -1449 (|#1|)) (-15 -3507 (|#1| (-578 |#2|))) (-15 -3377 (|#1| |#1|))) (-190 |#2|) (-1003)) (T -189)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1553 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-1336 (($ $) 62 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ |#1| $) 51 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3383 (($ |#1| $) 61 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-1449 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 54 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-190 |#1|) (-111) (-1003)) (T -190)) -((-1449 (*1 *1) (-12 (-4 *1 (-190 *2)) (-4 *2 (-1003)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-4 *1 (-190 *3)))) (-3382 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-190 *2)) (-4 *2 (-1003)))) (-3382 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3971)) (-4 *1 (-190 *3)) (-4 *3 (-1003)))) (-1553 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3971)) (-4 *1 (-190 *3)) (-4 *3 (-1003))))) -(-13 (-76 |t#1|) (-122 |t#1|) (-10 -8 (-15 -1449 ($)) (-15 -1449 ($ (-578 |t#1|))) (IF (|has| $ (-6 -3971)) (PROGN (-15 -3382 ($ |t#1| $)) (-15 -3382 ($ (-1 (-83) |t#1|) $)) (-15 -1553 ($ (-1 (-83) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-1450 (((-2 (|:| |varOrder| (-578 (-1075))) (|:| |inhom| (-3 (-578 (-1164 (-687))) "failed")) (|:| |hom| (-578 (-1164 (-687))))) (-245 (-850 (-478)))) 42 T ELT))) -(((-191) (-10 -7 (-15 -1450 ((-2 (|:| |varOrder| (-578 (-1075))) (|:| |inhom| (-3 (-578 (-1164 (-687))) "failed")) (|:| |hom| (-578 (-1164 (-687))))) (-245 (-850 (-478))))))) (T -191)) -((-1450 (*1 *2 *3) (-12 (-5 *3 (-245 (-850 (-478)))) (-5 *2 (-2 (|:| |varOrder| (-578 (-1075))) (|:| |inhom| (-3 (-578 (-1164 (-687))) "failed")) (|:| |hom| (-578 (-1164 (-687)))))) (-5 *1 (-191))))) -((-3117 (((-687)) 56 T ELT)) (-2261 (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1164 |#3|))) (-625 $) (-1164 $)) 53 T ELT) (((-625 |#3|) (-625 $)) 44 T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3887 (((-105)) 62 T ELT)) (-3734 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-3922 (((-1164 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-765) $) NIL T ELT) (($ (-478)) 12 T ELT) (($ (-343 (-478))) NIL T ELT)) (-3107 (((-687)) 15 T CONST)) (-3925 (($ $ |#3|) 59 T ELT))) -(((-192 |#1| |#2| |#3|) (-10 -7 (-15 -3922 (|#1| (-343 (-478)))) (-15 -3922 (|#1| (-478))) (-15 -3734 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -3922 ((-765) |#1|)) (-15 -3107 ((-687)) -3928) (-15 -2261 ((-625 (-478)) (-625 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 |#1|) (-1164 |#1|))) (-15 -3922 (|#1| |#3|)) (-15 -3734 (|#1| |#1| (-1 |#3| |#3|) (-687))) (-15 -3734 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2261 ((-625 |#3|) (-625 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1164 |#3|))) (-625 |#1|) (-1164 |#1|))) (-15 -3117 ((-687))) (-15 -3925 (|#1| |#1| |#3|)) (-15 -3887 ((-105))) (-15 -3922 ((-1164 |#3|) |#1|))) (-193 |#2| |#3|) (-687) (-1114)) (T -192)) -((-3887 (*1 *2) (-12 (-14 *4 (-687)) (-4 *5 (-1114)) (-5 *2 (-105)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5)))) (-3117 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1114)) (-5 *2 (-687)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5)))) (-3107 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1114)) (-5 *2 (-687)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5))))) -((-2548 (((-83) $ $) 19 (|has| |#2| (-72)) ELT)) (-3170 (((-83) $) 80 (|has| |#2| (-23)) ELT)) (-3683 (($ (-823)) 134 (|has| |#2| (-954)) ELT)) (-2180 (((-1170) $ (-478) (-478)) 44 (|has| $ (-6 -3972)) ELT)) (-2463 (($ $ $) 130 (|has| |#2| (-710)) ELT)) (-1295 (((-3 $ "failed") $ $) 82 (|has| |#2| (-102)) ELT)) (-3117 (((-687)) 119 (|has| |#2| (-313)) ELT)) (-3764 ((|#2| $ (-478) |#2|) 56 (|has| $ (-6 -3972)) ELT)) (-3700 (($) 7 T CONST)) (-3138 (((-3 (-478) #1="failed") $) 75 (-2542 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) ELT) (((-3 (-343 (-478)) #1#) $) 72 (-2542 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1003)) ELT)) (-3137 (((-478) $) 74 (-2542 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) ELT) (((-343 (-478)) $) 71 (-2542 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) ((|#2| $) 70 (|has| |#2| (-1003)) ELT)) (-2261 (((-625 (-478)) (-625 $)) 116 (-2542 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 115 (-2542 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) 114 (|has| |#2| (-954)) ELT) (((-625 |#2|) (-625 $)) 113 (|has| |#2| (-954)) ELT)) (-3444 (((-3 $ "failed") $) 90 (|has| |#2| (-954)) ELT)) (-2975 (($) 122 (|has| |#2| (-313)) ELT)) (-1559 ((|#2| $ (-478) |#2|) 57 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ (-478)) 55 T ELT)) (-3168 (((-83) $) 129 (|has| |#2| (-710)) ELT)) (-2870 (((-578 |#2|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) 92 (|has| |#2| (-954)) ELT)) (-2182 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) 123 (|has| |#2| (-749)) ELT)) (-2588 (((-578 |#2|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) 124 (|has| |#2| (-749)) ELT)) (-1932 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-1992 (((-823) $) 121 (|has| |#2| (-313)) ELT)) (-2262 (((-625 (-478)) (-1164 $)) 118 (-2542 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 117 (-2542 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) 112 (|has| |#2| (-954)) ELT) (((-625 |#2|) (-1164 $)) 111 (|has| |#2| (-954)) ELT)) (-3222 (((-1059) $) 22 (|has| |#2| (-1003)) ELT)) (-2185 (((-578 (-478)) $) 50 T ELT)) (-2186 (((-83) (-478) $) 51 T ELT)) (-2382 (($ (-823)) 120 (|has| |#2| (-313)) ELT)) (-3223 (((-1020) $) 21 (|has| |#2| (-1003)) ELT)) (-3777 ((|#2| $) 46 (|has| (-478) (-749)) ELT)) (-2181 (($ $ |#2|) 45 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#2|))) 26 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) 25 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 23 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#2| $) 49 (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#2| $ (-478) |#2|) 54 T ELT) ((|#2| $ (-478)) 53 T ELT)) (-3812 ((|#2| $ $) 133 (|has| |#2| (-954)) ELT)) (-1451 (($ (-1164 |#2|)) 135 T ELT)) (-3887 (((-105)) 132 (|has| |#2| (-308)) ELT)) (-3734 (($ $ (-687)) 109 (-2542 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) 107 (-2542 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 103 (-2542 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075) (-687)) 102 (-2542 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075))) 101 (-2542 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075)) 99 (-2542 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) 97 (|has| |#2| (-954)) ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-1164 |#2|) $) 136 T ELT) (($ (-478)) 76 (OR (-2542 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (|has| |#2| (-954))) ELT) (($ (-343 (-478))) 73 (-2542 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) (($ |#2|) 68 (|has| |#2| (-1003)) ELT) (((-765) $) 17 (|has| |#2| (-547 (-765))) ELT)) (-3107 (((-687)) 94 (|has| |#2| (-954)) CONST)) (-1249 (((-83) $ $) 20 (|has| |#2| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) 33 (|has| $ (-6 -3971)) ELT)) (-2640 (($) 79 (|has| |#2| (-23)) CONST)) (-2647 (($) 93 (|has| |#2| (-954)) CONST)) (-2650 (($ $ (-687)) 110 (-2542 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) 108 (-2542 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 106 (-2542 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075) (-687)) 105 (-2542 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075))) 104 (-2542 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075)) 100 (-2542 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) 95 (|has| |#2| (-954)) ELT)) (-2546 (((-83) $ $) 125 (|has| |#2| (-749)) ELT)) (-2547 (((-83) $ $) 127 (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#2| (-72)) ELT)) (-2665 (((-83) $ $) 126 (|has| |#2| (-749)) ELT)) (-2666 (((-83) $ $) 128 (|has| |#2| (-749)) ELT)) (-3925 (($ $ |#2|) 131 (|has| |#2| (-308)) ELT)) (-3813 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3815 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-687)) 91 (|has| |#2| (-954)) ELT) (($ $ (-823)) 88 (|has| |#2| (-954)) ELT)) (* (($ $ $) 89 (|has| |#2| (-954)) ELT) (($ $ |#2|) 87 (|has| |#2| (-658)) ELT) (($ |#2| $) 86 (|has| |#2| (-658)) ELT) (($ (-478) $) 83 (|has| |#2| (-21)) ELT) (($ (-687) $) 81 (|has| |#2| (-23)) ELT) (($ (-823) $) 78 (|has| |#2| (-25)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-193 |#1| |#2|) (-111) (-687) (-1114)) (T -193)) -((-1451 (*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1114)) (-4 *1 (-193 *3 *4)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-193 *3 *4)) (-4 *4 (-954)) (-4 *4 (-1114)))) (-3812 (*1 *2 *1 *1) (-12 (-4 *1 (-193 *3 *2)) (-4 *2 (-1114)) (-4 *2 (-954))))) -(-13 (-533 (-478) |t#2|) (-547 (-1164 |t#2|)) (-10 -8 (-6 -3971) (-15 -1451 ($ (-1164 |t#2|))) (IF (|has| |t#2| (-1003)) (-6 (-348 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-954)) (PROGN (-6 (-80 |t#2| |t#2|)) (-6 (-182 |t#2|)) (-6 (-322 |t#2|)) (-15 -3683 ($ (-823))) (-15 -3812 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-658)) (-6 (-577 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-313)) (-6 (-313)) |%noBranch|) (IF (|has| |t#2| (-144)) (-6 (-649 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3968)) (-6 -3968) |%noBranch|) (IF (|has| |t#2| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#2| (-710)) (-6 (-710)) |%noBranch|) (IF (|has| |t#2| (-308)) (-6 (-1172 |t#2|)) |%noBranch|))) -(((-21) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-954)) (|has| |#2| (-710)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-954)) (|has| |#2| (-710)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1003)) (|has| |#2| (-954)) (|has| |#2| (-749)) (|has| |#2| (-710)) (|has| |#2| (-658)) (|has| |#2| (-313)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-80 |#2| |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-102) OR (|has| |#2| (-954)) (|has| |#2| (-710)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-21))) ((-550 (-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ((-550 (-478)) OR (|has| |#2| (-954)) (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003)))) ((-550 |#2|) |has| |#2| (-1003)) ((-547 (-765)) OR (|has| |#2| (-1003)) (|has| |#2| (-954)) (|has| |#2| (-749)) (|has| |#2| (-710)) (|has| |#2| (-658)) (|has| |#2| (-313)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-547 (-765))) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-547 (-1164 |#2|)) . T) ((-184 $) OR (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) (-12 (|has| |#2| (-188)) (|has| |#2| (-954)))) ((-182 |#2|) |has| |#2| (-954)) ((-188) -12 (|has| |#2| (-188)) (|has| |#2| (-954))) ((-187) OR (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) (-12 (|has| |#2| (-188)) (|has| |#2| (-954)))) ((-222 |#2|) |has| |#2| (-954)) ((-238 (-478) |#2|) . T) ((-240 (-478) |#2|) . T) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-313) |has| |#2| (-313)) ((-322 |#2|) |has| |#2| (-954)) ((-348 |#2|) |has| |#2| (-1003)) ((-422 |#2|) . T) ((-533 (-478) |#2|) . T) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-583 (-478)) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-21))) ((-583 |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-658)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-583 $) |has| |#2| (-954)) ((-585 (-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ((-585 |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-585 $) |has| |#2| (-954)) ((-577 |#2|) OR (|has| |#2| (-658)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-575 (-478)) -12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ((-575 |#2|) |has| |#2| (-954)) ((-649 |#2|) OR (|has| |#2| (-308)) (|has| |#2| (-144))) ((-658) |has| |#2| (-954)) ((-709) |has| |#2| (-710)) ((-710) |has| |#2| (-710)) ((-711) |has| |#2| (-710)) ((-714) |has| |#2| (-710)) ((-749) OR (|has| |#2| (-749)) (|has| |#2| (-710))) ((-752) OR (|has| |#2| (-749)) (|has| |#2| (-710))) ((-799 $ (-1075)) OR (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) (-12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954)))) ((-802 (-1075)) -12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954))) ((-804 (-1075)) OR (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) (-12 (|has| |#2| (-802 (-1075))) (|has| |#2| (-954)))) ((-943 (-343 (-478))) -12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ((-943 (-478)) -12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) ((-943 |#2|) |has| |#2| (-1003)) ((-956 |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-658)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-961 |#2|) OR (|has| |#2| (-954)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-954) |has| |#2| (-954)) ((-962) |has| |#2| (-954)) ((-1013) |has| |#2| (-954)) ((-1003) OR (|has| |#2| (-1003)) (|has| |#2| (-954)) (|has| |#2| (-749)) (|has| |#2| (-710)) (|has| |#2| (-658)) (|has| |#2| (-313)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1114) . T) ((-1172 |#2|) |has| |#2| (-308))) -((-2548 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3170 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3683 (($ (-823)) 63 (|has| |#2| (-954)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-2463 (($ $ $) 69 (|has| |#2| (-710)) ELT)) (-1295 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-102)) ELT)) (-3117 (((-687)) NIL (|has| |#2| (-313)) ELT)) (-3764 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1003)) ELT)) (-3137 (((-478) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) ((|#2| $) 29 (|has| |#2| (-1003)) ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-625 $)) NIL (|has| |#2| (-954)) ELT)) (-3444 (((-3 $ #1#) $) 59 (|has| |#2| (-954)) ELT)) (-2975 (($) NIL (|has| |#2| (-313)) ELT)) (-1559 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ (-478)) 57 T ELT)) (-3168 (((-83) $) NIL (|has| |#2| (-710)) ELT)) (-2870 (((-578 |#2|) $) 14 (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) NIL (|has| |#2| (-954)) ELT)) (-2182 (((-478) $) 20 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-2588 (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-1932 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1992 (((-823) $) NIL (|has| |#2| (-313)) ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-1164 $)) NIL (|has| |#2| (-954)) ELT)) (-3222 (((-1059) $) NIL (|has| |#2| (-1003)) ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-2382 (($ (-823)) NIL (|has| |#2| (-313)) ELT)) (-3223 (((-1020) $) NIL (|has| |#2| (-1003)) ELT)) (-3777 ((|#2| $) NIL (|has| (-478) (-749)) ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) 24 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-478)) 21 T ELT)) (-3812 ((|#2| $ $) NIL (|has| |#2| (-954)) ELT)) (-1451 (($ (-1164 |#2|)) 18 T ELT)) (-3887 (((-105)) NIL (|has| |#2| (-308)) ELT)) (-3734 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-1164 |#2|) $) 9 T ELT) (($ (-478)) NIL (OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (|has| |#2| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) (($ |#2|) 12 (|has| |#2| (-1003)) ELT) (((-765) $) NIL (|has| |#2| (-547 (-765))) ELT)) (-3107 (((-687)) NIL (|has| |#2| (-954)) CONST)) (-1249 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2640 (($) 37 (|has| |#2| (-23)) CONST)) (-2647 (($) 41 (|has| |#2| (-954)) CONST)) (-2650 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) 28 (|has| |#2| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2666 (((-83) $ $) 67 (|has| |#2| (-749)) ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3815 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-687)) NIL (|has| |#2| (-954)) ELT) (($ $ (-823)) NIL (|has| |#2| (-954)) ELT)) (* (($ $ $) 47 (|has| |#2| (-954)) ELT) (($ $ |#2|) 45 (|has| |#2| (-658)) ELT) (($ |#2| $) 46 (|has| |#2| (-658)) ELT) (($ (-478) $) NIL (|has| |#2| (-21)) ELT) (($ (-687) $) NIL (|has| |#2| (-23)) ELT) (($ (-823) $) NIL (|has| |#2| (-25)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-194 |#1| |#2|) (-193 |#1| |#2|) (-687) (-1114)) (T -194)) -NIL -((-3817 (((-194 |#1| |#3|) (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|) 21 T ELT)) (-3818 ((|#3| (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|) 23 T ELT)) (-3934 (((-194 |#1| |#3|) (-1 |#3| |#2|) (-194 |#1| |#2|)) 18 T ELT))) -(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3817 ((-194 |#1| |#3|) (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|)) (-15 -3818 (|#3| (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|)) (-15 -3934 ((-194 |#1| |#3|) (-1 |#3| |#2|) (-194 |#1| |#2|)))) (-687) (-1114) (-1114)) (T -195)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-194 *5 *6)) (-14 *5 (-687)) (-4 *6 (-1114)) (-4 *7 (-1114)) (-5 *2 (-194 *5 *7)) (-5 *1 (-195 *5 *6 *7)))) (-3818 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-194 *5 *6)) (-14 *5 (-687)) (-4 *6 (-1114)) (-4 *2 (-1114)) (-5 *1 (-195 *5 *6 *2)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-194 *6 *7)) (-14 *6 (-687)) (-4 *7 (-1114)) (-4 *5 (-1114)) (-5 *2 (-194 *6 *5)) (-5 *1 (-195 *6 *7 *5))))) -((-1455 (((-478) (-578 (-1059))) 36 T ELT) (((-478) (-1059)) 29 T ELT)) (-1454 (((-1170) (-578 (-1059))) 40 T ELT) (((-1170) (-1059)) 39 T ELT)) (-1452 (((-1059)) 16 T ELT)) (-1453 (((-1059) (-478) (-1059)) 23 T ELT)) (-3749 (((-578 (-1059)) (-578 (-1059)) (-478) (-1059)) 37 T ELT) (((-1059) (-1059) (-478) (-1059)) 35 T ELT)) (-2600 (((-578 (-1059)) (-578 (-1059))) 15 T ELT) (((-578 (-1059)) (-1059)) 11 T ELT))) -(((-196) (-10 -7 (-15 -2600 ((-578 (-1059)) (-1059))) (-15 -2600 ((-578 (-1059)) (-578 (-1059)))) (-15 -1452 ((-1059))) (-15 -1453 ((-1059) (-478) (-1059))) (-15 -3749 ((-1059) (-1059) (-478) (-1059))) (-15 -3749 ((-578 (-1059)) (-578 (-1059)) (-478) (-1059))) (-15 -1454 ((-1170) (-1059))) (-15 -1454 ((-1170) (-578 (-1059)))) (-15 -1455 ((-478) (-1059))) (-15 -1455 ((-478) (-578 (-1059)))))) (T -196)) -((-1455 (*1 *2 *3) (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-478)) (-5 *1 (-196)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-478)) (-5 *1 (-196)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-1170)) (-5 *1 (-196)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-196)))) (-3749 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 (-1059))) (-5 *3 (-478)) (-5 *4 (-1059)) (-5 *1 (-196)))) (-3749 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-478)) (-5 *1 (-196)))) (-1453 (*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-478)) (-5 *1 (-196)))) (-1452 (*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-196)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-196)))) (-2600 (*1 *2 *3) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-196)) (-5 *3 (-1059))))) -((** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 18 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-343 (-478)) $) 25 T ELT) (($ $ (-343 (-478))) NIL T ELT))) -(((-197 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-478))) (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 ** (|#1| |#1| (-687))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-823))) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-198)) (T -197)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 52 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 56 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 53 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-343 (-478)) $) 55 T ELT) (($ $ (-343 (-478))) 54 T ELT))) +(-13 (-955) (-187)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-184 $) . T) ((-187) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-659) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-1454 (($) 12 T ELT) (($ (-579 |#2|)) NIL T ELT)) (-3382 (($ $) 14 T ELT)) (-3512 (($ (-579 |#2|)) 10 T ELT)) (-3928 (((-766) $) 21 T ELT))) +(((-189 |#1| |#2|) (-10 -7 (-15 -3928 ((-766) |#1|)) (-15 -1454 (|#1| (-579 |#2|))) (-15 -1454 (|#1|)) (-15 -3512 (|#1| (-579 |#2|))) (-15 -3382 (|#1| |#1|))) (-190 |#2|) (-1006)) (T -189)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1558 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-1341 (($ $) 62 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ |#1| $) 51 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3388 (($ |#1| $) 61 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-1454 (($) 53 T ELT) (($ (-579 |#1|)) 52 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 63 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 54 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-190 |#1|) (-111) (-1006)) (T -190)) +((-1454 (*1 *1) (-12 (-4 *1 (-190 *2)) (-4 *2 (-1006)))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-4 *1 (-190 *3)))) (-3387 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-190 *2)) (-4 *2 (-1006)))) (-3387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3977)) (-4 *1 (-190 *3)) (-4 *3 (-1006)))) (-1558 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3977)) (-4 *1 (-190 *3)) (-4 *3 (-1006))))) +(-13 (-76 |t#1|) (-122 |t#1|) (-10 -8 (-15 -1454 ($)) (-15 -1454 ($ (-579 |t#1|))) (IF (|has| $ (-6 -3977)) (PROGN (-15 -3387 ($ |t#1| $)) (-15 -3387 ($ (-1 (-83) |t#1|) $)) (-15 -1558 ($ (-1 (-83) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-1455 (((-2 (|:| |varOrder| (-579 (-1080))) (|:| |inhom| (-3 (-579 (-1169 (-688))) "failed")) (|:| |hom| (-579 (-1169 (-688))))) (-245 (-851 (-479)))) 42 T ELT))) +(((-191) (-10 -7 (-15 -1455 ((-2 (|:| |varOrder| (-579 (-1080))) (|:| |inhom| (-3 (-579 (-1169 (-688))) "failed")) (|:| |hom| (-579 (-1169 (-688))))) (-245 (-851 (-479))))))) (T -191)) +((-1455 (*1 *2 *3) (-12 (-5 *3 (-245 (-851 (-479)))) (-5 *2 (-2 (|:| |varOrder| (-579 (-1080))) (|:| |inhom| (-3 (-579 (-1169 (-688))) "failed")) (|:| |hom| (-579 (-1169 (-688)))))) (-5 *1 (-191))))) +((-3120 (((-688)) 56 T ELT)) (-2266 (((-2 (|:| |mat| (-626 |#3|)) (|:| |vec| (-1169 |#3|))) (-626 $) (-1169 $)) 53 T ELT) (((-626 |#3|) (-626 $)) 44 T ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-479)) (-626 $)) NIL T ELT)) (-3893 (((-105)) 62 T ELT)) (-3740 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $) NIL T ELT)) (-3928 (((-1169 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-766) $) NIL T ELT) (($ (-479)) 12 T ELT) (($ (-344 (-479))) NIL T ELT)) (-3110 (((-688)) 15 T CONST)) (-3931 (($ $ |#3|) 59 T ELT))) +(((-192 |#1| |#2| |#3|) (-10 -7 (-15 -3928 (|#1| (-344 (-479)))) (-15 -3928 (|#1| (-479))) (-15 -3740 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -3928 ((-766) |#1|)) (-15 -3110 ((-688)) -3934) (-15 -2266 ((-626 (-479)) (-626 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 |#1|) (-1169 |#1|))) (-15 -3928 (|#1| |#3|)) (-15 -3740 (|#1| |#1| (-1 |#3| |#3|) (-688))) (-15 -3740 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2266 ((-626 |#3|) (-626 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 |#3|)) (|:| |vec| (-1169 |#3|))) (-626 |#1|) (-1169 |#1|))) (-15 -3120 ((-688))) (-15 -3931 (|#1| |#1| |#3|)) (-15 -3893 ((-105))) (-15 -3928 ((-1169 |#3|) |#1|))) (-193 |#2| |#3|) (-688) (-1119)) (T -192)) +((-3893 (*1 *2) (-12 (-14 *4 (-688)) (-4 *5 (-1119)) (-5 *2 (-105)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5)))) (-3120 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-688)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5)))) (-3110 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-688)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5))))) +((-2553 (((-83) $ $) 19 (|has| |#2| (-72)) ELT)) (-3172 (((-83) $) 80 (|has| |#2| (-23)) ELT)) (-3689 (($ (-824)) 134 (|has| |#2| (-955)) ELT)) (-2185 (((-1175) $ (-479) (-479)) 44 (|has| $ (-6 -3978)) ELT)) (-2468 (($ $ $) 130 (|has| |#2| (-711)) ELT)) (-1300 (((-3 $ "failed") $ $) 82 (|has| |#2| (-102)) ELT)) (-3120 (((-688)) 119 (|has| |#2| (-314)) ELT)) (-3770 ((|#2| $ (-479) |#2|) 56 (|has| $ (-6 -3978)) ELT)) (-3706 (($) 7 T CONST)) (-3141 (((-3 (-479) #1="failed") $) 75 (-2547 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) ELT) (((-3 (-344 (-479)) #1#) $) 72 (-2547 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1006)) ELT)) (-3140 (((-479) $) 74 (-2547 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) ELT) (((-344 (-479)) $) 71 (-2547 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) ((|#2| $) 70 (|has| |#2| (-1006)) ELT)) (-2266 (((-626 (-479)) (-626 $)) 116 (-2547 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 115 (-2547 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) 114 (|has| |#2| (-955)) ELT) (((-626 |#2|) (-626 $)) 113 (|has| |#2| (-955)) ELT)) (-3449 (((-3 $ "failed") $) 90 (|has| |#2| (-955)) ELT)) (-2979 (($) 122 (|has| |#2| (-314)) ELT)) (-1564 ((|#2| $ (-479) |#2|) 57 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ (-479)) 55 T ELT)) (-3170 (((-83) $) 129 (|has| |#2| (-711)) ELT)) (-2874 (((-579 |#2|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) 92 (|has| |#2| (-955)) ELT)) (-2187 (((-479) $) 47 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) 123 (|has| |#2| (-750)) ELT)) (-2593 (((-579 |#2|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#2| $) 27 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 48 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) 124 (|has| |#2| (-750)) ELT)) (-1937 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-1997 (((-824) $) 121 (|has| |#2| (-314)) ELT)) (-2267 (((-626 (-479)) (-1169 $)) 118 (-2547 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 117 (-2547 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) 112 (|has| |#2| (-955)) ELT) (((-626 |#2|) (-1169 $)) 111 (|has| |#2| (-955)) ELT)) (-3226 (((-1063) $) 22 (|has| |#2| (-1006)) ELT)) (-2190 (((-579 (-479)) $) 50 T ELT)) (-2191 (((-83) (-479) $) 51 T ELT)) (-2387 (($ (-824)) 120 (|has| |#2| (-314)) ELT)) (-3227 (((-1024) $) 21 (|has| |#2| (-1006)) ELT)) (-3783 ((|#2| $) 46 (|has| (-479) (-750)) ELT)) (-2186 (($ $ |#2|) 45 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#2|))) 26 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) 25 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) 23 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#2| $) 49 (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#2| $ (-479) |#2|) 54 T ELT) ((|#2| $ (-479)) 53 T ELT)) (-3818 ((|#2| $ $) 133 (|has| |#2| (-955)) ELT)) (-1456 (($ (-1169 |#2|)) 135 T ELT)) (-3893 (((-105)) 132 (|has| |#2| (-308)) ELT)) (-3740 (($ $ (-688)) 109 (-2547 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $) 107 (-2547 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 103 (-2547 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080) (-688)) 102 (-2547 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080))) 101 (-2547 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080)) 99 (-2547 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-955)) ELT) (($ $ (-1 |#2| |#2|) (-688)) 97 (|has| |#2| (-955)) ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#2| $) 28 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-1169 |#2|) $) 136 T ELT) (($ (-479)) 76 (OR (-2547 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (|has| |#2| (-955))) ELT) (($ (-344 (-479))) 73 (-2547 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) (($ |#2|) 68 (|has| |#2| (-1006)) ELT) (((-766) $) 17 (|has| |#2| (-548 (-766))) ELT)) (-3110 (((-688)) 94 (|has| |#2| (-955)) CONST)) (-1254 (((-83) $ $) 20 (|has| |#2| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 33 (|has| $ (-6 -3977)) ELT)) (-2645 (($) 79 (|has| |#2| (-23)) CONST)) (-2651 (($) 93 (|has| |#2| (-955)) CONST)) (-2654 (($ $ (-688)) 110 (-2547 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $) 108 (-2547 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 106 (-2547 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080) (-688)) 105 (-2547 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080))) 104 (-2547 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080)) 100 (-2547 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-955)) ELT) (($ $ (-1 |#2| |#2|) (-688)) 95 (|has| |#2| (-955)) ELT)) (-2551 (((-83) $ $) 125 (|has| |#2| (-750)) ELT)) (-2552 (((-83) $ $) 127 (|has| |#2| (-750)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#2| (-72)) ELT)) (-2669 (((-83) $ $) 126 (|has| |#2| (-750)) ELT)) (-2670 (((-83) $ $) 128 (|has| |#2| (-750)) ELT)) (-3931 (($ $ |#2|) 131 (|has| |#2| (-308)) ELT)) (-3819 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-3821 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-688)) 91 (|has| |#2| (-955)) ELT) (($ $ (-824)) 88 (|has| |#2| (-955)) ELT)) (* (($ $ $) 89 (|has| |#2| (-955)) ELT) (($ $ |#2|) 87 (|has| |#2| (-659)) ELT) (($ |#2| $) 86 (|has| |#2| (-659)) ELT) (($ (-479) $) 83 (|has| |#2| (-21)) ELT) (($ (-688) $) 81 (|has| |#2| (-23)) ELT) (($ (-824) $) 78 (|has| |#2| (-25)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-193 |#1| |#2|) (-111) (-688) (-1119)) (T -193)) +((-1456 (*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1119)) (-4 *1 (-193 *3 *4)))) (-3689 (*1 *1 *2) (-12 (-5 *2 (-824)) (-4 *1 (-193 *3 *4)) (-4 *4 (-955)) (-4 *4 (-1119)))) (-3818 (*1 *2 *1 *1) (-12 (-4 *1 (-193 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-955))))) +(-13 (-534 (-479) |t#2|) (-548 (-1169 |t#2|)) (-10 -8 (-6 -3977) (-15 -1456 ($ (-1169 |t#2|))) (IF (|has| |t#2| (-1006)) (-6 (-349 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-955)) (PROGN (-6 (-80 |t#2| |t#2|)) (-6 (-182 |t#2|)) (-6 (-323 |t#2|)) (-15 -3689 ($ (-824))) (-15 -3818 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-659)) (-6 (-578 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-314)) (-6 (-314)) |%noBranch|) (IF (|has| |t#2| (-144)) (-6 (-650 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3974)) (-6 -3974) |%noBranch|) (IF (|has| |t#2| (-750)) (-6 (-750)) |%noBranch|) (IF (|has| |t#2| (-711)) (-6 (-711)) |%noBranch|) (IF (|has| |t#2| (-308)) (-6 (-1177 |t#2|)) |%noBranch|))) +(((-21) OR (|has| |#2| (-955)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-955)) (|has| |#2| (-711)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-955)) (|has| |#2| (-711)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1006)) (|has| |#2| (-955)) (|has| |#2| (-750)) (|has| |#2| (-711)) (|has| |#2| (-659)) (|has| |#2| (-314)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-80 |#2| |#2|) OR (|has| |#2| (-955)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-102) OR (|has| |#2| (-955)) (|has| |#2| (-711)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-21))) ((-551 (-344 (-479))) -12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ((-551 (-479)) OR (|has| |#2| (-955)) (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006)))) ((-551 |#2|) |has| |#2| (-1006)) ((-548 (-766)) OR (|has| |#2| (-1006)) (|has| |#2| (-955)) (|has| |#2| (-750)) (|has| |#2| (-711)) (|has| |#2| (-659)) (|has| |#2| (-314)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-548 (-766))) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-548 (-1169 |#2|)) . T) ((-184 $) OR (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) (-12 (|has| |#2| (-188)) (|has| |#2| (-955)))) ((-182 |#2|) |has| |#2| (-955)) ((-188) -12 (|has| |#2| (-188)) (|has| |#2| (-955))) ((-187) OR (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) (-12 (|has| |#2| (-188)) (|has| |#2| (-955)))) ((-222 |#2|) |has| |#2| (-955)) ((-238 (-479) |#2|) . T) ((-240 (-479) |#2|) . T) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-314) |has| |#2| (-314)) ((-323 |#2|) |has| |#2| (-955)) ((-349 |#2|) |has| |#2| (-1006)) ((-423 |#2|) . T) ((-534 (-479) |#2|) . T) ((-448 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-584 (-479)) OR (|has| |#2| (-955)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-21))) ((-584 |#2|) OR (|has| |#2| (-955)) (|has| |#2| (-659)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-584 $) |has| |#2| (-955)) ((-586 (-479)) -12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ((-586 |#2|) OR (|has| |#2| (-955)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-586 $) |has| |#2| (-955)) ((-578 |#2|) OR (|has| |#2| (-659)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-576 (-479)) -12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ((-576 |#2|) |has| |#2| (-955)) ((-650 |#2|) OR (|has| |#2| (-308)) (|has| |#2| (-144))) ((-659) |has| |#2| (-955)) ((-710) |has| |#2| (-711)) ((-711) |has| |#2| (-711)) ((-712) |has| |#2| (-711)) ((-715) |has| |#2| (-711)) ((-750) OR (|has| |#2| (-750)) (|has| |#2| (-711))) ((-753) OR (|has| |#2| (-750)) (|has| |#2| (-711))) ((-800 $ (-1080)) OR (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) (-12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955)))) ((-803 (-1080)) -12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955))) ((-805 (-1080)) OR (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) (-12 (|has| |#2| (-803 (-1080))) (|has| |#2| (-955)))) ((-944 (-344 (-479))) -12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ((-944 (-479)) -12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) ((-944 |#2|) |has| |#2| (-1006)) ((-957 |#2|) OR (|has| |#2| (-955)) (|has| |#2| (-659)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-962 |#2|) OR (|has| |#2| (-955)) (|has| |#2| (-308)) (|has| |#2| (-144))) ((-955) |has| |#2| (-955)) ((-963) |has| |#2| (-955)) ((-1016) |has| |#2| (-955)) ((-1006) OR (|has| |#2| (-1006)) (|has| |#2| (-955)) (|has| |#2| (-750)) (|has| |#2| (-711)) (|has| |#2| (-659)) (|has| |#2| (-314)) (|has| |#2| (-308)) (|has| |#2| (-144)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1119) . T) ((-1177 |#2|) |has| |#2| (-308))) +((-2553 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3172 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3689 (($ (-824)) 63 (|has| |#2| (-955)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-2468 (($ $ $) 69 (|has| |#2| (-711)) ELT)) (-1300 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-102)) ELT)) (-3120 (((-688)) NIL (|has| |#2| (-314)) ELT)) (-3770 ((|#2| $ (-479) |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (-12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1006)) ELT)) (-3140 (((-479) $) NIL (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) ELT) (((-344 (-479)) $) NIL (-12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) ((|#2| $) 29 (|has| |#2| (-1006)) ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL (|has| |#2| (-955)) ELT) (((-626 |#2|) (-626 $)) NIL (|has| |#2| (-955)) ELT)) (-3449 (((-3 $ #1#) $) 59 (|has| |#2| (-955)) ELT)) (-2979 (($) NIL (|has| |#2| (-314)) ELT)) (-1564 ((|#2| $ (-479) |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ (-479)) 57 T ELT)) (-3170 (((-83) $) NIL (|has| |#2| (-711)) ELT)) (-2874 (((-579 |#2|) $) 14 (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) NIL (|has| |#2| (-955)) ELT)) (-2187 (((-479) $) 20 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#2| (-750)) ELT)) (-2593 (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#2| (-750)) ELT)) (-1937 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1997 (((-824) $) NIL (|has| |#2| (-314)) ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL (|has| |#2| (-955)) ELT) (((-626 |#2|) (-1169 $)) NIL (|has| |#2| (-955)) ELT)) (-3226 (((-1063) $) NIL (|has| |#2| (-1006)) ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-2387 (($ (-824)) NIL (|has| |#2| (-314)) ELT)) (-3227 (((-1024) $) NIL (|has| |#2| (-1006)) ELT)) (-3783 ((|#2| $) NIL (|has| (-479) (-750)) ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 24 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ (-479) |#2|) NIL T ELT) ((|#2| $ (-479)) 21 T ELT)) (-3818 ((|#2| $ $) NIL (|has| |#2| (-955)) ELT)) (-1456 (($ (-1169 |#2|)) 18 T ELT)) (-3893 (((-105)) NIL (|has| |#2| (-308)) ELT)) (-3740 (($ $ (-688)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-955)) ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL (|has| |#2| (-955)) ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-1169 |#2|) $) 9 T ELT) (($ (-479)) NIL (OR (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (|has| |#2| (-955))) ELT) (($ (-344 (-479))) NIL (-12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) (($ |#2|) 12 (|has| |#2| (-1006)) ELT) (((-766) $) NIL (|has| |#2| (-548 (-766))) ELT)) (-3110 (((-688)) NIL (|has| |#2| (-955)) CONST)) (-1254 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2645 (($) 37 (|has| |#2| (-23)) CONST)) (-2651 (($) 41 (|has| |#2| (-955)) CONST)) (-2654 (($ $ (-688)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-955)) ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL (|has| |#2| (-955)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-3041 (((-83) $ $) 28 (|has| |#2| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-2670 (((-83) $ $) 67 (|has| |#2| (-750)) ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3821 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-688)) NIL (|has| |#2| (-955)) ELT) (($ $ (-824)) NIL (|has| |#2| (-955)) ELT)) (* (($ $ $) 47 (|has| |#2| (-955)) ELT) (($ $ |#2|) 45 (|has| |#2| (-659)) ELT) (($ |#2| $) 46 (|has| |#2| (-659)) ELT) (($ (-479) $) NIL (|has| |#2| (-21)) ELT) (($ (-688) $) NIL (|has| |#2| (-23)) ELT) (($ (-824) $) NIL (|has| |#2| (-25)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-194 |#1| |#2|) (-193 |#1| |#2|) (-688) (-1119)) (T -194)) +NIL +((-3823 (((-194 |#1| |#3|) (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|) 21 T ELT)) (-3824 ((|#3| (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|) 23 T ELT)) (-3940 (((-194 |#1| |#3|) (-1 |#3| |#2|) (-194 |#1| |#2|)) 18 T ELT))) +(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3823 ((-194 |#1| |#3|) (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|)) (-15 -3824 (|#3| (-1 |#3| |#2| |#3|) (-194 |#1| |#2|) |#3|)) (-15 -3940 ((-194 |#1| |#3|) (-1 |#3| |#2|) (-194 |#1| |#2|)))) (-688) (-1119) (-1119)) (T -195)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-194 *5 *6)) (-14 *5 (-688)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-194 *5 *7)) (-5 *1 (-195 *5 *6 *7)))) (-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-194 *5 *6)) (-14 *5 (-688)) (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-195 *5 *6 *2)))) (-3823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-194 *6 *7)) (-14 *6 (-688)) (-4 *7 (-1119)) (-4 *5 (-1119)) (-5 *2 (-194 *6 *5)) (-5 *1 (-195 *6 *7 *5))))) +((-1460 (((-479) (-579 (-1063))) 36 T ELT) (((-479) (-1063)) 29 T ELT)) (-1459 (((-1175) (-579 (-1063))) 40 T ELT) (((-1175) (-1063)) 39 T ELT)) (-1457 (((-1063)) 16 T ELT)) (-1458 (((-1063) (-479) (-1063)) 23 T ELT)) (-3755 (((-579 (-1063)) (-579 (-1063)) (-479) (-1063)) 37 T ELT) (((-1063) (-1063) (-479) (-1063)) 35 T ELT)) (-2605 (((-579 (-1063)) (-579 (-1063))) 15 T ELT) (((-579 (-1063)) (-1063)) 11 T ELT))) +(((-196) (-10 -7 (-15 -2605 ((-579 (-1063)) (-1063))) (-15 -2605 ((-579 (-1063)) (-579 (-1063)))) (-15 -1457 ((-1063))) (-15 -1458 ((-1063) (-479) (-1063))) (-15 -3755 ((-1063) (-1063) (-479) (-1063))) (-15 -3755 ((-579 (-1063)) (-579 (-1063)) (-479) (-1063))) (-15 -1459 ((-1175) (-1063))) (-15 -1459 ((-1175) (-579 (-1063)))) (-15 -1460 ((-479) (-1063))) (-15 -1460 ((-479) (-579 (-1063)))))) (T -196)) +((-1460 (*1 *2 *3) (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-479)) (-5 *1 (-196)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-479)) (-5 *1 (-196)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-1175)) (-5 *1 (-196)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-196)))) (-3755 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-579 (-1063))) (-5 *3 (-479)) (-5 *4 (-1063)) (-5 *1 (-196)))) (-3755 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1063)) (-5 *3 (-479)) (-5 *1 (-196)))) (-1458 (*1 *2 *3 *2) (-12 (-5 *2 (-1063)) (-5 *3 (-479)) (-5 *1 (-196)))) (-1457 (*1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-196)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-196)))) (-2605 (*1 *2 *3) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-196)) (-5 *3 (-1063))))) +((** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 18 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-344 (-479)) $) 25 T ELT) (($ $ (-344 (-479))) NIL T ELT))) +(((-197 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-479))) (-15 * (|#1| |#1| (-344 (-479)))) (-15 * (|#1| (-344 (-479)) |#1|)) (-15 ** (|#1| |#1| (-688))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-824))) (-15 * (|#1| (-479) |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 * (|#1| (-824) |#1|))) (-198)) (T -197)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 52 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 (-479))) 56 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 53 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-344 (-479)) $) 55 T ELT) (($ $ (-344 (-479))) 54 T ELT))) (((-198) (-111)) (T -198)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-198)) (-5 *2 (-478)))) (-2464 (*1 *1 *1) (-4 *1 (-198)))) -(-13 (-242) (-38 (-343 (-478))) (-10 -8 (-15 ** ($ $ (-478))) (-15 -2464 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-242) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-649 (-343 (-478))) . T) ((-658) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 52 T ELT)) (-3773 (($ $) 63 T ELT)) (-3006 ((|#1| $ |#1|) 43 (|has| $ (-6 -3972)) ELT)) (-1457 (($ $ $) 59 (|has| $ (-6 -3972)) ELT)) (-1456 (($ $ $) 58 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 45 (|has| $ (-6 -3972)) ELT)) (-3700 (($) 7 T CONST)) (-1459 (($ $) 62 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 54 T ELT)) (-3008 (((-83) $ $) 46 (|has| |#1| (-1003)) ELT)) (-1458 (($ $) 61 T ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3011 (((-578 |#1|) $) 49 T ELT)) (-3504 (((-83) $) 53 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3774 ((|#1| $) 65 T ELT)) (-3159 (($ $) 64 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ #1#) 51 T ELT)) (-3010 (((-478) $ $) 48 T ELT)) (-3609 (((-83) $) 50 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3767 (($ $ $) 60 (|has| $ (-6 -3972)) ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) 55 T ELT)) (-3009 (((-83) $ $) 47 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-199 |#1|) (-111) (-1114)) (T -199)) -((-3774 (*1 *2 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114)))) (-3159 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114)))) (-1459 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114)))) (-1458 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114)))) (-3767 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-199 *2)) (-4 *2 (-1114)))) (-1457 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-199 *2)) (-4 *2 (-1114)))) (-1456 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-199 *2)) (-4 *2 (-1114))))) -(-13 (-916 |t#1|) (-10 -8 (-15 -3774 (|t#1| $)) (-15 -3159 ($ $)) (-15 -3773 ($ $)) (-15 -1459 ($ $)) (-15 -1458 ($ $)) (IF (|has| $ (-6 -3972)) (PROGN (-15 -3767 ($ $ $)) (-15 -1457 ($ $ $)) (-15 -1456 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-916 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) NIL T ELT)) (-3771 ((|#1| $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3761 (($ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) $) NIL (|has| |#1| (-749)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-1713 (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-2890 (($ $) 10 (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-3419 (((-83) $ (-687)) NIL T ELT)) (-3006 ((|#1| $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3763 (($ $ $) NIL (|has| $ (-6 -3972)) ELT)) (-3762 ((|#1| $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3765 ((|#1| $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3972)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) NIL (|has| $ (-6 -3972)) ELT)) (-1553 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3772 ((|#1| $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-3775 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2350 (($ $) NIL (|has| |#1| (-1003)) ELT)) (-1336 (($ $) 7 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3382 (($ |#1| $) NIL (|has| |#1| (-1003)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3383 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1559 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) NIL T ELT)) (-3420 (((-83) $) NIL T ELT)) (-3396 (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) (-1 (-83) |#1|) $) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) NIL T ELT)) (-3008 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3590 (($ (-687) |#1|) NIL T ELT)) (-3695 (((-83) $ (-687)) NIL T ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2837 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-3495 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3510 (($ |#1|) NIL T ELT)) (-3692 (((-83) $ (-687)) NIL T ELT)) (-3011 (((-578 |#1|) $) NIL T ELT)) (-3504 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3774 ((|#1| $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3585 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2286 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3421 (((-83) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) ((|#1| $ (-478) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-687) $ "count") 16 T ELT)) (-3010 (((-478) $ $) NIL T ELT)) (-1554 (($ $ (-1131 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-2287 (($ $ (-1131 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-1460 (($ (-578 |#1|)) 22 T ELT)) (-3609 (((-83) $) NIL T ELT)) (-3768 (($ $) NIL T ELT)) (-3766 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-3769 (((-687) $) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) NIL T ELT)) (-3767 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3778 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-578 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3922 (($ (-578 |#1|)) 17 T ELT) (((-578 |#1|) $) 18 T ELT) (((-765) $) 21 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) NIL T ELT)) (-3009 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) 14 (|has| $ (-6 -3971)) ELT))) -(((-200 |#1|) (-13 (-603 |#1|) (-423 (-578 |#1|)) (-10 -8 (-15 -1460 ($ (-578 |#1|))) (-15 -3776 ($ $ "unique")) (-15 -3776 ($ $ "sort")) (-15 -3776 ((-687) $ "count")))) (-749)) (T -200)) -((-1460 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-200 *3)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-200 *3)) (-4 *3 (-749)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-200 *3)) (-4 *3 (-749)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-687)) (-5 *1 (-200 *4)) (-4 *4 (-749))))) -((-1461 (((-3 (-687) "failed") |#1| |#1| (-687)) 40 T ELT))) -(((-201 |#1|) (-10 -7 (-15 -1461 ((-3 (-687) "failed") |#1| |#1| (-687)))) (-13 (-658) (-313) (-10 -7 (-15 ** (|#1| |#1| (-478)))))) (T -201)) -((-1461 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-687)) (-4 *3 (-13 (-658) (-313) (-10 -7 (-15 ** (*3 *3 (-478)))))) (-5 *1 (-201 *3))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3734 (($ $) 59 (|has| |#1| (-187)) ELT) (($ $ (-687)) 57 (|has| |#1| (-187)) ELT) (($ $ (-1075)) 55 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 53 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 52 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 51 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1 |#1| |#1|) (-687)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2650 (($ $) 58 (|has| |#1| (-187)) ELT) (($ $ (-687)) 56 (|has| |#1| (-187)) ELT) (($ $ (-1075)) 54 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 50 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 49 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 48 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1 |#1| |#1|) (-687)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-202 |#1|) (-111) (-954)) (T -202)) -NIL -(-13 (-80 |t#1| |t#1|) (-222 |t#1|) (-10 -7 (IF (|has| |t#1| (-187)) (-6 (-185 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-804 (-1075))) (-6 (-801 |t#1| (-1075))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-184 $) |has| |#1| (-187)) ((-185 |#1|) |has| |#1| (-187)) ((-187) |has| |#1| (-187)) ((-222 |#1|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) OR (-12 (|has| |#1| (-144)) (|has| |#1| (-804 (-1075)))) (-12 (|has| |#1| (-144)) (|has| |#1| (-187)))) ((-649 |#1|) OR (-12 (|has| |#1| (-144)) (|has| |#1| (-804 (-1075)))) (-12 (|has| |#1| (-144)) (|has| |#1| (-187)))) ((-799 $ (-1075)) |has| |#1| (-804 (-1075))) ((-801 |#1| (-1075)) |has| |#1| (-804 (-1075))) ((-804 (-1075)) |has| |#1| (-804 (-1075))) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-766 |#1|)) $) NIL T ELT)) (-3065 (((-1070 $) $ (-766 |#1|)) NIL T ELT) (((-1070 |#2|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-766 |#1|))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-3137 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-766 |#1|) $) NIL T ELT)) (-3732 (($ $ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1920 (($ $ (-578 (-478))) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1607 (($ $ |#2| (-194 (-3933 |#1|) (-687)) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3066 (($ (-1070 |#2|) (-766 |#1|)) NIL T ELT) (($ (-1070 $) (-766 |#1|)) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#2| (-194 (-3933 |#1|) (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-766 |#1|)) NIL T ELT)) (-2801 (((-194 (-3933 |#1|) (-687)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-1608 (($ (-1 (-194 (-3933 |#1|) (-687)) (-194 (-3933 |#1|) (-687))) $) NIL T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3064 (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-766 |#1|)) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#2| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-3443 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-766 |#1|) |#2|) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 |#2|)) NIL T ELT) (($ $ (-766 |#1|) $) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 $)) NIL T ELT)) (-3733 (($ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3734 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3924 (((-194 (-3933 |#1|) (-687)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-766 |#1|) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2798 ((|#2| $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-766 |#1|)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#2| (-489)) ELT)) (-3793 (((-578 |#2|) $) NIL T ELT)) (-3653 ((|#2| $ (-194 (-3933 |#1|) (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-203 |#1| |#2|) (-13 (-854 |#2| (-194 (-3933 |#1|) (-687)) (-766 |#1|)) (-10 -8 (-15 -1920 ($ $ (-578 (-478)))))) (-578 (-1075)) (-954)) (T -203)) -((-1920 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-203 *3 *4)) (-14 *3 (-578 (-1075))) (-4 *4 (-954))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1462 (((-1170) $) 17 T ELT)) (-1464 (((-156 (-205)) $) 11 T ELT)) (-1463 (($ (-156 (-205))) 12 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1465 (((-205) $) 7 T ELT)) (-3922 (((-765) $) 9 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 15 T ELT))) -(((-204) (-13 (-1003) (-10 -8 (-15 -1465 ((-205) $)) (-15 -1464 ((-156 (-205)) $)) (-15 -1463 ($ (-156 (-205)))) (-15 -1462 ((-1170) $))))) (T -204)) -((-1465 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-204)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204)))) (-1463 (*1 *1 *2) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-204))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1407 (((-578 (-767)) $) NIL T ELT)) (-3518 (((-439) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1409 (((-159) $) NIL T ELT)) (-2613 (((-83) $ (-439)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1466 (((-278) $) 7 T ELT)) (-1408 (((-578 (-83)) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (((-155) $) 8 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2501 (((-55) $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-205) (-13 (-158) (-547 (-155)) (-10 -8 (-15 -1466 ((-278) $))))) (T -205)) -((-1466 (*1 *2 *1) (-12 (-5 *2 (-278)) (-5 *1 (-205))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3776 (((-1080) $ (-687)) 14 T ELT)) (-3922 (((-765) $) 20 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 17 T ELT)) (-3933 (((-687) $) 11 T ELT))) -(((-206) (-13 (-1003) (-238 (-687) (-1080)) (-10 -8 (-15 -3933 ((-687) $))))) (T -206)) -((-3933 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-206))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3683 (($ (-823)) NIL (|has| |#4| (-954)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-2463 (($ $ $) NIL (|has| |#4| (-710)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| |#4| (-313)) ELT)) (-3764 ((|#4| $ (-478) |#4|) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1003)) ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1003))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1003))) ELT)) (-3137 ((|#4| $) NIL (|has| |#4| (-1003)) ELT) (((-478) $) NIL (-12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1003))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1003))) ELT)) (-2261 (((-2 (|:| |mat| (-625 |#4|)) (|:| |vec| (-1164 |#4|))) (-625 $) (-1164 $)) NIL (|has| |#4| (-954)) ELT) (((-625 |#4|) (-625 $)) NIL (|has| |#4| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954))) ELT)) (-3444 (((-3 $ #1#) $) NIL (|has| |#4| (-954)) ELT)) (-2975 (($) NIL (|has| |#4| (-313)) ELT)) (-1559 ((|#4| $ (-478) |#4|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#4| $ (-478)) NIL T ELT)) (-3168 (((-83) $) NIL (|has| |#4| (-710)) ELT)) (-2870 (((-578 |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) NIL (|has| |#4| (-954)) ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#4| (-749)) ELT)) (-2588 (((-578 |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#4| (-749)) ELT)) (-1932 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-1992 (((-823) $) NIL (|has| |#4| (-313)) ELT)) (-2262 (((-2 (|:| |mat| (-625 |#4|)) (|:| |vec| (-1164 |#4|))) (-1164 $) $) NIL (|has| |#4| (-954)) ELT) (((-625 |#4|) (-1164 $)) NIL (|has| |#4| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954))) ELT) (((-625 (-478)) (-1164 $)) NIL (-12 (|has| |#4| (-575 (-478))) (|has| |#4| (-954))) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-2382 (($ (-823)) NIL (|has| |#4| (-313)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 ((|#4| $) NIL (|has| (-478) (-749)) ELT)) (-2181 (($ $ |#4|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-2187 (((-578 |#4|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#4| $ (-478) |#4|) NIL T ELT) ((|#4| $ (-478)) 12 T ELT)) (-3812 ((|#4| $ $) NIL (|has| |#4| (-954)) ELT)) (-1451 (($ (-1164 |#4|)) NIL T ELT)) (-3887 (((-105)) NIL (|has| |#4| (-308)) ELT)) (-3734 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-954)) ELT) (($ $ (-1 |#4| |#4|) (-687)) NIL (|has| |#4| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954)))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954)))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) ELT)) (-1929 (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-1164 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1003)) ELT) (((-765) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#4| (-943 (-478))) (|has| |#4| (-1003))) (|has| |#4| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#4| (-943 (-343 (-478)))) (|has| |#4| (-1003))) ELT)) (-3107 (((-687)) NIL (|has| |#4| (-954)) CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL (|has| |#4| (-954)) CONST)) (-2650 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-954)) ELT) (($ $ (-1 |#4| |#4|) (-687)) NIL (|has| |#4| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954)))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954)))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#4| (-802 (-1075))) (|has| |#4| (-954))) (-12 (|has| |#4| (-804 (-1075))) (|has| |#4| (-954)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-954))) (-12 (|has| |#4| (-187)) (|has| |#4| (-954)))) ELT)) (-2546 (((-83) $ $) NIL (|has| |#4| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#4| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| |#4| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#4| (-749)) ELT)) (-3925 (($ $ |#4|) NIL (|has| |#4| (-308)) ELT)) (-3813 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL (|has| |#4| (-954)) ELT) (($ $ (-823)) NIL (|has| |#4| (-954)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-658)) ELT) (($ |#4| $) NIL (|has| |#4| (-658)) ELT) (($ $ $) NIL (|has| |#4| (-954)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-207 |#1| |#2| |#3| |#4|) (-13 (-193 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-823) (-954) (-1023 |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) (-585 |#2|)) (T -207)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3683 (($ (-823)) NIL (|has| |#3| (-954)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-2463 (($ $ $) NIL (|has| |#3| (-710)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| |#3| (-313)) ELT)) (-3764 ((|#3| $ (-478) |#3|) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1003)) ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003))) ELT)) (-3137 ((|#3| $) NIL (|has| |#3| (-1003)) ELT) (((-478) $) NIL (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003))) ELT)) (-2261 (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1164 |#3|))) (-625 $) (-1164 $)) NIL (|has| |#3| (-954)) ELT) (((-625 |#3|) (-625 $)) NIL (|has| |#3| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT)) (-3444 (((-3 $ #1#) $) NIL (|has| |#3| (-954)) ELT)) (-2975 (($) NIL (|has| |#3| (-313)) ELT)) (-1559 ((|#3| $ (-478) |#3|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#3| $ (-478)) NIL T ELT)) (-3168 (((-83) $) NIL (|has| |#3| (-710)) ELT)) (-2870 (((-578 |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) NIL (|has| |#3| (-954)) ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#3| (-749)) ELT)) (-2588 (((-578 |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#3| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#3| (-749)) ELT)) (-1932 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-1992 (((-823) $) NIL (|has| |#3| (-313)) ELT)) (-2262 (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1164 |#3|))) (-1164 $) $) NIL (|has| |#3| (-954)) ELT) (((-625 |#3|) (-1164 $)) NIL (|has| |#3| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-625 (-478)) (-1164 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-2382 (($ (-823)) NIL (|has| |#3| (-313)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 ((|#3| $) NIL (|has| (-478) (-749)) ELT)) (-2181 (($ $ |#3|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#3|))) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ (-245 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#3| (-1003))) ELT)) (-2187 (((-578 |#3|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#3| $ (-478) |#3|) NIL T ELT) ((|#3| $ (-478)) 11 T ELT)) (-3812 ((|#3| $ $) NIL (|has| |#3| (-954)) ELT)) (-1451 (($ (-1164 |#3|)) NIL T ELT)) (-3887 (((-105)) NIL (|has| |#3| (-308)) ELT)) (-3734 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-954)) ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL (|has| |#3| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954)))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954)))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) ELT)) (-1929 (((-687) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#3| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#3| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-1164 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1003)) ELT) (((-765) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) (|has| |#3| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003))) ELT)) (-3107 (((-687)) NIL (|has| |#3| (-954)) CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL (|has| |#3| (-954)) CONST)) (-2650 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-954)) ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL (|has| |#3| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954)))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954)))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#3| (-802 (-1075))) (|has| |#3| (-954))) (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-954))) (-12 (|has| |#3| (-187)) (|has| |#3| (-954)))) ELT)) (-2546 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-3925 (($ $ |#3|) NIL (|has| |#3| (-308)) ELT)) (-3813 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL (|has| |#3| (-954)) ELT) (($ $ (-823)) NIL (|has| |#3| (-954)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-658)) ELT) (($ |#3| $) NIL (|has| |#3| (-658)) ELT) (($ $ $) NIL (|has| |#3| (-954)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-208 |#1| |#2| |#3|) (-13 (-193 |#1| |#3|) (-585 |#2|)) (-687) (-954) (-585 |#2|)) (T -208)) -NIL -((-1471 (((-578 (-687)) $) 56 T ELT) (((-578 (-687)) $ |#3|) 59 T ELT)) (-1505 (((-687) $) 58 T ELT) (((-687) $ |#3|) 61 T ELT)) (-1467 (($ $) 76 T ELT)) (-3138 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3748 (((-687) $ |#3|) 43 T ELT) (((-687) $) 38 T ELT)) (-1506 (((-1 $ (-687)) |#3|) 15 T ELT) (((-1 $ (-687)) $) 88 T ELT)) (-1469 ((|#4| $) 69 T ELT)) (-1470 (((-83) $) 67 T ELT)) (-1468 (($ $) 75 T ELT)) (-3744 (($ $ (-578 (-245 $))) 111 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-578 |#4|) (-578 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-578 |#4|) (-578 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-578 |#3|) (-578 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-578 |#3|) (-578 |#2|)) 97 T ELT)) (-3734 (($ $ (-578 |#4|) (-578 (-687))) NIL T ELT) (($ $ |#4| (-687)) NIL T ELT) (($ $ (-578 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-1472 (((-578 |#3|) $) 86 T ELT)) (-3924 ((|#5| $) NIL T ELT) (((-687) $ |#4|) NIL T ELT) (((-578 (-687)) $ (-578 |#4|)) NIL T ELT) (((-687) $ |#3|) 49 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT))) -(((-209 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3744 (|#1| |#1| (-578 |#3|) (-578 |#2|))) (-15 -3744 (|#1| |#1| |#3| |#2|)) (-15 -3744 (|#1| |#1| (-578 |#3|) (-578 |#1|))) (-15 -3744 (|#1| |#1| |#3| |#1|)) (-15 -1506 ((-1 |#1| (-687)) |#1|)) (-15 -1467 (|#1| |#1|)) (-15 -1468 (|#1| |#1|)) (-15 -1469 (|#4| |#1|)) (-15 -1470 ((-83) |#1|)) (-15 -1505 ((-687) |#1| |#3|)) (-15 -1471 ((-578 (-687)) |#1| |#3|)) (-15 -1505 ((-687) |#1|)) (-15 -1471 ((-578 (-687)) |#1|)) (-15 -3924 ((-687) |#1| |#3|)) (-15 -3748 ((-687) |#1|)) (-15 -3748 ((-687) |#1| |#3|)) (-15 -1472 ((-578 |#3|) |#1|)) (-15 -1506 ((-1 |#1| (-687)) |#3|)) (-15 -3922 (|#1| |#3|)) (-15 -3138 ((-3 |#3| #1="failed") |#1|)) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3924 ((-578 (-687)) |#1| (-578 |#4|))) (-15 -3924 ((-687) |#1| |#4|)) (-15 -3922 (|#1| |#4|)) (-15 -3138 ((-3 |#4| #1#) |#1|)) (-15 -3744 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3744 (|#1| |#1| |#4| |#1|)) (-15 -3744 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3744 (|#1| |#1| |#4| |#2|)) (-15 -3744 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3744 (|#1| |#1| |#1| |#1|)) (-15 -3744 (|#1| |#1| (-245 |#1|))) (-15 -3744 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -3924 (|#5| |#1|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3922 (|#1| |#2|)) (-15 -3734 (|#1| |#1| |#4|)) (-15 -3734 (|#1| |#1| (-578 |#4|))) (-15 -3734 (|#1| |#1| |#4| (-687))) (-15 -3734 (|#1| |#1| (-578 |#4|) (-578 (-687)))) (-15 -3922 (|#1| (-478))) (-15 -3922 ((-765) |#1|))) (-210 |#2| |#3| |#4| |#5|) (-954) (-749) (-225 |#3|) (-710)) (T -209)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1471 (((-578 (-687)) $) 248 T ELT) (((-578 (-687)) $ |#2|) 246 T ELT)) (-1505 (((-687) $) 247 T ELT) (((-687) $ |#2|) 245 T ELT)) (-3063 (((-578 |#3|) $) 120 T ELT)) (-3065 (((-1070 $) $ |#3|) 135 T ELT) (((-1070 |#1|) $) 134 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 97 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 98 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 100 (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) 122 T ELT) (((-687) $ (-578 |#3|)) 121 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 110 (|has| |#1| (-814)) ELT)) (-3751 (($ $) 108 (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) 107 (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1="failed") (-578 (-1070 $)) (-1070 $)) 113 (|has| |#1| (-814)) ELT)) (-1467 (($ $) 241 T ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-343 (-478)) #2#) $) 175 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #2#) $) 173 (|has| |#1| (-943 (-478))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3137 ((|#1| $) 177 T ELT) (((-343 (-478)) $) 176 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 174 (|has| |#1| (-943 (-478))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-3732 (($ $ $ |#3|) 118 (|has| |#1| (-144)) ELT)) (-3935 (($ $) 168 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 146 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 145 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 144 T ELT) (((-625 |#1|) (-625 $)) 143 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3480 (($ $) 190 (|has| |#1| (-385)) ELT) (($ $ |#3|) 115 (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) 119 T ELT)) (-3699 (((-83) $) 106 (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| |#4| $) 186 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 94 (-12 (|has| |#3| (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 93 (-12 (|has| |#3| (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3748 (((-687) $ |#2|) 251 T ELT) (((-687) $) 250 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2400 (((-687) $) 183 T ELT)) (-3066 (($ (-1070 |#1|) |#3|) 127 T ELT) (($ (-1070 $) |#3|) 126 T ELT)) (-2802 (((-578 $) $) 136 T ELT)) (-3913 (((-83) $) 166 T ELT)) (-2874 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-687)) 129 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 128 T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ |#3|) 130 T ELT)) (-2801 ((|#4| $) 184 T ELT) (((-687) $ |#3|) 132 T ELT) (((-578 (-687)) $ (-578 |#3|)) 131 T ELT)) (-1608 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1506 (((-1 $ (-687)) |#2|) 253 T ELT) (((-1 $ (-687)) $) 240 (|has| |#1| (-188)) ELT)) (-3064 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 148 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 147 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 142 T ELT) (((-625 |#1|) (-1164 $)) 141 T ELT)) (-2875 (($ $) 163 T ELT)) (-3155 ((|#1| $) 162 T ELT)) (-1469 ((|#3| $) 243 T ELT)) (-1874 (($ (-578 $)) 104 (|has| |#1| (-385)) ELT) (($ $ $) 103 (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1470 (((-83) $) 244 T ELT)) (-2804 (((-3 (-578 $) #3#) $) 124 T ELT)) (-2803 (((-3 (-578 $) #3#) $) 125 T ELT)) (-2805 (((-3 (-2 (|:| |var| |#3|) (|:| -2383 (-687))) #3#) $) 123 T ELT)) (-1468 (($ $) 242 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1780 (((-83) $) 180 T ELT)) (-1779 ((|#1| $) 181 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 105 (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) 102 (|has| |#1| (-385)) ELT) (($ $ $) 101 (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 112 (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 111 (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) 109 (|has| |#1| (-814)) ELT)) (-3443 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-578 $) (-578 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-578 |#3|) (-578 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-578 |#3|) (-578 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-188)) ELT) (($ $ (-578 |#2|) (-578 $)) 238 (|has| |#1| (-188)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-188)) ELT) (($ $ (-578 |#2|) (-578 |#1|)) 236 (|has| |#1| (-188)) ELT)) (-3733 (($ $ |#3|) 117 (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 |#3|) (-578 (-687))) 49 T ELT) (($ $ |#3| (-687)) 48 T ELT) (($ $ (-578 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 259 T ELT) (($ $) 235 (|has| |#1| (-187)) ELT) (($ $ (-687)) 233 (|has| |#1| (-187)) ELT) (($ $ (-1075)) 231 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 229 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 228 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 227 (|has| |#1| (-804 (-1075))) ELT)) (-1472 (((-578 |#2|) $) 252 T ELT)) (-3924 ((|#4| $) 164 T ELT) (((-687) $ |#3|) 140 T ELT) (((-578 (-687)) $ (-578 |#3|)) 139 T ELT) (((-687) $ |#2|) 249 T ELT)) (-3948 (((-793 (-323)) $) 92 (-12 (|has| |#3| (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) 91 (-12 (|has| |#3| (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) 90 (-12 (|has| |#3| (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2798 ((|#1| $) 189 (|has| |#1| (-385)) ELT) (($ $ |#3|) 116 (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) 114 (-2542 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-343 (-478))) 88 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT) (($ $) 95 (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) 182 T ELT)) (-3653 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-687)) 138 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 137 T ELT)) (-2683 (((-627 $) $) 89 (OR (-2542 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) 37 T CONST)) (-1606 (($ $ $ (-687)) 187 (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 99 (|has| |#1| (-489)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-578 |#3|) (-578 (-687))) 52 T ELT) (($ $ |#3| (-687)) 51 T ELT) (($ $ (-578 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 257 T ELT) (($ $) 234 (|has| |#1| (-187)) ELT) (($ $ (-687)) 232 (|has| |#1| (-187)) ELT) (($ $ (-1075)) 230 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 226 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 225 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 224 (|has| |#1| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-210 |#1| |#2| |#3| |#4|) (-111) (-954) (-749) (-225 |t#2|) (-710)) (T -210)) -((-1506 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-1 *1 (-687))) (-4 *1 (-210 *4 *3 *5 *6)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-578 *4)))) (-3748 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-687)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-578 (-687))))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-687)))) (-1471 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-578 (-687))))) (-1505 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-83)))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-710)) (-4 *2 (-225 *4)))) (-1468 (*1 *1 *1) (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-954)) (-4 *3 (-749)) (-4 *4 (-225 *3)) (-4 *5 (-710)))) (-1467 (*1 *1 *1) (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-954)) (-4 *3 (-749)) (-4 *4 (-225 *3)) (-4 *5 (-710)))) (-1506 (*1 *2 *1) (-12 (-4 *3 (-188)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-1 *1 (-687))) (-4 *1 (-210 *3 *4 *5 *6))))) -(-13 (-854 |t#1| |t#4| |t#3|) (-182 |t#1|) (-943 |t#2|) (-10 -8 (-15 -1506 ((-1 $ (-687)) |t#2|)) (-15 -1472 ((-578 |t#2|) $)) (-15 -3748 ((-687) $ |t#2|)) (-15 -3748 ((-687) $)) (-15 -3924 ((-687) $ |t#2|)) (-15 -1471 ((-578 (-687)) $)) (-15 -1505 ((-687) $)) (-15 -1471 ((-578 (-687)) $ |t#2|)) (-15 -1505 ((-687) $ |t#2|)) (-15 -1470 ((-83) $)) (-15 -1469 (|t#3| $)) (-15 -1468 ($ $)) (-15 -1467 ($ $)) (IF (|has| |t#1| (-188)) (PROGN (-6 (-447 |t#2| |t#1|)) (-6 (-447 |t#2| $)) (-6 (-256 $)) (-15 -1506 ((-1 $ (-687)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 |#2|) . T) ((-550 |#3|) . T) ((-550 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-548 (-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-242) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-256 $) . T) ((-273 |#1| |#4|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-814)) (|has| |#1| (-385))) ((-447 |#2| |#1|) |has| |#1| (-188)) ((-447 |#2| $) |has| |#1| (-188)) ((-447 |#3| |#1|) . T) ((-447 |#3| $) . T) ((-447 $ $) . T) ((-489) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-658) . T) ((-799 $ (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-799 $ |#3|) . T) ((-802 (-1075)) |has| |#1| (-802 (-1075))) ((-802 |#3|) . T) ((-804 (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-804 |#3|) . T) ((-789 (-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) ((-854 |#1| |#4| |#3|) . T) ((-814) |has| |#1| (-814)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-943 |#2|) . T) ((-943 |#3|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) |has| |#1| (-814))) -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1478 ((|#1| $) 58 T ELT)) (-3301 ((|#1| $) 48 T ELT)) (-3700 (($) 7 T CONST)) (-2983 (($ $) 64 T ELT)) (-2279 (($ $) 52 T ELT)) (-3303 ((|#1| |#1| $) 50 T ELT)) (-3302 ((|#1| $) 49 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3809 (((-687) $) 65 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 43 T ELT)) (-1476 ((|#1| |#1| $) 56 T ELT)) (-1475 ((|#1| |#1| $) 55 T ELT)) (-3585 (($ |#1| $) 44 T ELT)) (-2583 (((-687) $) 59 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-2982 ((|#1| $) 66 T ELT)) (-1474 ((|#1| $) 54 T ELT)) (-1473 ((|#1| $) 53 T ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2985 ((|#1| |#1| $) 62 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-2984 ((|#1| $) 63 T ELT)) (-1479 (($) 61 T ELT) (($ (-578 |#1|)) 60 T ELT)) (-3300 (((-687) $) 47 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1477 ((|#1| $) 57 T ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-2981 ((|#1| $) 67 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-211 |#1|) (-111) (-1114)) (T -211)) -((-1479 (*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114)))) (-1479 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-4 *1 (-211 *3)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-211 *3)) (-4 *3 (-1114)) (-5 *2 (-687)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114)))) (-1476 (*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114)))) (-1475 (*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114))))) -(-13 (-1021 |t#1|) (-901 |t#1|) (-10 -8 (-15 -1479 ($)) (-15 -1479 ($ (-578 |t#1|))) (-15 -2583 ((-687) $)) (-15 -1478 (|t#1| $)) (-15 -1477 (|t#1| $)) (-15 -1476 (|t#1| |t#1| $)) (-15 -1475 (|t#1| |t#1| $)) (-15 -1474 (|t#1| $)) (-15 -1473 (|t#1| $)) (-15 -2279 ($ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-901 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1021 |#1|) . T) ((-1114) . T)) -((-1480 (((-1033 (-177)) (-785 |#1|) (-995 (-323)) (-995 (-323))) 75 T ELT) (((-1033 (-177)) (-785 |#1|) (-995 (-323)) (-995 (-323)) (-578 (-218))) 74 T ELT) (((-1033 (-177)) |#1| (-995 (-323)) (-995 (-323))) 65 T ELT) (((-1033 (-177)) |#1| (-995 (-323)) (-995 (-323)) (-578 (-218))) 64 T ELT) (((-1033 (-177)) (-782 |#1|) (-995 (-323))) 56 T ELT) (((-1033 (-177)) (-782 |#1|) (-995 (-323)) (-578 (-218))) 55 T ELT)) (-1487 (((-1168) (-785 |#1|) (-995 (-323)) (-995 (-323))) 78 T ELT) (((-1168) (-785 |#1|) (-995 (-323)) (-995 (-323)) (-578 (-218))) 77 T ELT) (((-1168) |#1| (-995 (-323)) (-995 (-323))) 68 T ELT) (((-1168) |#1| (-995 (-323)) (-995 (-323)) (-578 (-218))) 67 T ELT) (((-1168) (-782 |#1|) (-995 (-323))) 60 T ELT) (((-1168) (-782 |#1|) (-995 (-323)) (-578 (-218))) 59 T ELT) (((-1167) (-780 |#1|) (-995 (-323))) 47 T ELT) (((-1167) (-780 |#1|) (-995 (-323)) (-578 (-218))) 46 T ELT) (((-1167) |#1| (-995 (-323))) 38 T ELT) (((-1167) |#1| (-995 (-323)) (-578 (-218))) 36 T ELT))) -(((-212 |#1|) (-10 -7 (-15 -1487 ((-1167) |#1| (-995 (-323)) (-578 (-218)))) (-15 -1487 ((-1167) |#1| (-995 (-323)))) (-15 -1487 ((-1167) (-780 |#1|) (-995 (-323)) (-578 (-218)))) (-15 -1487 ((-1167) (-780 |#1|) (-995 (-323)))) (-15 -1487 ((-1168) (-782 |#1|) (-995 (-323)) (-578 (-218)))) (-15 -1487 ((-1168) (-782 |#1|) (-995 (-323)))) (-15 -1480 ((-1033 (-177)) (-782 |#1|) (-995 (-323)) (-578 (-218)))) (-15 -1480 ((-1033 (-177)) (-782 |#1|) (-995 (-323)))) (-15 -1487 ((-1168) |#1| (-995 (-323)) (-995 (-323)) (-578 (-218)))) (-15 -1487 ((-1168) |#1| (-995 (-323)) (-995 (-323)))) (-15 -1480 ((-1033 (-177)) |#1| (-995 (-323)) (-995 (-323)) (-578 (-218)))) (-15 -1480 ((-1033 (-177)) |#1| (-995 (-323)) (-995 (-323)))) (-15 -1487 ((-1168) (-785 |#1|) (-995 (-323)) (-995 (-323)) (-578 (-218)))) (-15 -1487 ((-1168) (-785 |#1|) (-995 (-323)) (-995 (-323)))) (-15 -1480 ((-1033 (-177)) (-785 |#1|) (-995 (-323)) (-995 (-323)) (-578 (-218)))) (-15 -1480 ((-1033 (-177)) (-785 |#1|) (-995 (-323)) (-995 (-323))))) (-13 (-548 (-467)) (-1003))) (T -212)) -((-1480 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-785 *5)) (-5 *4 (-995 (-323))) (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1033 (-177))) (-5 *1 (-212 *5)))) (-1480 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-785 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1033 (-177))) (-5 *1 (-212 *6)))) (-1487 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-785 *5)) (-5 *4 (-995 (-323))) (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1168)) (-5 *1 (-212 *5)))) (-1487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-785 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1168)) (-5 *1 (-212 *6)))) (-1480 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-995 (-323))) (-5 *2 (-1033 (-177))) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1003))))) (-1480 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1003))))) (-1487 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-995 (-323))) (-5 *2 (-1168)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1003))))) (-1487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1003))))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-782 *5)) (-5 *4 (-995 (-323))) (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1033 (-177))) (-5 *1 (-212 *5)))) (-1480 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1033 (-177))) (-5 *1 (-212 *6)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-782 *5)) (-5 *4 (-995 (-323))) (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1168)) (-5 *1 (-212 *5)))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1168)) (-5 *1 (-212 *6)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-780 *5)) (-5 *4 (-995 (-323))) (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1167)) (-5 *1 (-212 *5)))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-780 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1167)) (-5 *1 (-212 *6)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *4 (-995 (-323))) (-5 *2 (-1167)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1003))))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1167)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1003)))))) -((-1481 (((-1 (-847 (-177)) (-177) (-177)) (-1 (-847 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177) (-177))) 158 T ELT)) (-1480 (((-1033 (-177)) (-785 (-1 (-177) (-177) (-177))) (-992 (-323)) (-992 (-323))) 178 T ELT) (((-1033 (-177)) (-785 (-1 (-177) (-177) (-177))) (-992 (-323)) (-992 (-323)) (-578 (-218))) 176 T ELT) (((-1033 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-992 (-323)) (-992 (-323))) 181 T ELT) (((-1033 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-992 (-323)) (-992 (-323)) (-578 (-218))) 177 T ELT) (((-1033 (-177)) (-1 (-177) (-177) (-177)) (-992 (-323)) (-992 (-323))) 169 T ELT) (((-1033 (-177)) (-1 (-177) (-177) (-177)) (-992 (-323)) (-992 (-323)) (-578 (-218))) 168 T ELT) (((-1033 (-177)) (-1 (-847 (-177)) (-177)) (-992 (-323))) 150 T ELT) (((-1033 (-177)) (-1 (-847 (-177)) (-177)) (-992 (-323)) (-578 (-218))) 148 T ELT) (((-1033 (-177)) (-782 (-1 (-177) (-177))) (-992 (-323))) 149 T ELT) (((-1033 (-177)) (-782 (-1 (-177) (-177))) (-992 (-323)) (-578 (-218))) 146 T ELT)) (-1487 (((-1168) (-785 (-1 (-177) (-177) (-177))) (-992 (-323)) (-992 (-323))) 180 T ELT) (((-1168) (-785 (-1 (-177) (-177) (-177))) (-992 (-323)) (-992 (-323)) (-578 (-218))) 179 T ELT) (((-1168) (-1 (-847 (-177)) (-177) (-177)) (-992 (-323)) (-992 (-323))) 183 T ELT) (((-1168) (-1 (-847 (-177)) (-177) (-177)) (-992 (-323)) (-992 (-323)) (-578 (-218))) 182 T ELT) (((-1168) (-1 (-177) (-177) (-177)) (-992 (-323)) (-992 (-323))) 171 T ELT) (((-1168) (-1 (-177) (-177) (-177)) (-992 (-323)) (-992 (-323)) (-578 (-218))) 170 T ELT) (((-1168) (-1 (-847 (-177)) (-177)) (-992 (-323))) 156 T ELT) (((-1168) (-1 (-847 (-177)) (-177)) (-992 (-323)) (-578 (-218))) 155 T ELT) (((-1168) (-782 (-1 (-177) (-177))) (-992 (-323))) 154 T ELT) (((-1168) (-782 (-1 (-177) (-177))) (-992 (-323)) (-578 (-218))) 153 T ELT) (((-1167) (-780 (-1 (-177) (-177))) (-992 (-323))) 118 T ELT) (((-1167) (-780 (-1 (-177) (-177))) (-992 (-323)) (-578 (-218))) 117 T ELT) (((-1167) (-1 (-177) (-177)) (-992 (-323))) 112 T ELT) (((-1167) (-1 (-177) (-177)) (-992 (-323)) (-578 (-218))) 110 T ELT))) -(((-213) (-10 -7 (-15 -1487 ((-1167) (-1 (-177) (-177)) (-992 (-323)) (-578 (-218)))) (-15 -1487 ((-1167) (-1 (-177) (-177)) (-992 (-323)))) (-15 -1487 ((-1167) (-780 (-1 (-177) (-177))) (-992 (-323)) (-578 (-218)))) (-15 -1487 ((-1167) (-780 (-1 (-177) (-177))) (-992 (-323)))) (-15 -1487 ((-1168) (-782 (-1 (-177) (-177))) (-992 (-323)) (-578 (-218)))) (-15 -1487 ((-1168) (-782 (-1 (-177) (-177))) (-992 (-323)))) (-15 -1487 ((-1168) (-1 (-847 (-177)) (-177)) (-992 (-323)) (-578 (-218)))) (-15 -1487 ((-1168) (-1 (-847 (-177)) (-177)) (-992 (-323)))) (-15 -1480 ((-1033 (-177)) (-782 (-1 (-177) (-177))) (-992 (-323)) (-578 (-218)))) (-15 -1480 ((-1033 (-177)) (-782 (-1 (-177) (-177))) (-992 (-323)))) (-15 -1480 ((-1033 (-177)) (-1 (-847 (-177)) (-177)) (-992 (-323)) (-578 (-218)))) (-15 -1480 ((-1033 (-177)) (-1 (-847 (-177)) (-177)) (-992 (-323)))) (-15 -1487 ((-1168) (-1 (-177) (-177) (-177)) (-992 (-323)) (-992 (-323)) (-578 (-218)))) (-15 -1487 ((-1168) (-1 (-177) (-177) (-177)) (-992 (-323)) (-992 (-323)))) (-15 -1480 ((-1033 (-177)) (-1 (-177) (-177) (-177)) (-992 (-323)) (-992 (-323)) (-578 (-218)))) (-15 -1480 ((-1033 (-177)) (-1 (-177) (-177) (-177)) (-992 (-323)) (-992 (-323)))) (-15 -1487 ((-1168) (-1 (-847 (-177)) (-177) (-177)) (-992 (-323)) (-992 (-323)) (-578 (-218)))) (-15 -1487 ((-1168) (-1 (-847 (-177)) (-177) (-177)) (-992 (-323)) (-992 (-323)))) (-15 -1480 ((-1033 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-992 (-323)) (-992 (-323)) (-578 (-218)))) (-15 -1480 ((-1033 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-992 (-323)) (-992 (-323)))) (-15 -1487 ((-1168) (-785 (-1 (-177) (-177) (-177))) (-992 (-323)) (-992 (-323)) (-578 (-218)))) (-15 -1487 ((-1168) (-785 (-1 (-177) (-177) (-177))) (-992 (-323)) (-992 (-323)))) (-15 -1480 ((-1033 (-177)) (-785 (-1 (-177) (-177) (-177))) (-992 (-323)) (-992 (-323)) (-578 (-218)))) (-15 -1480 ((-1033 (-177)) (-785 (-1 (-177) (-177) (-177))) (-992 (-323)) (-992 (-323)))) (-15 -1481 ((-1 (-847 (-177)) (-177) (-177)) (-1 (-847 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177) (-177)))))) (T -213)) -((-1481 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177) (-177))) (-5 *3 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1480 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-780 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *2 (-1167)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-780 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1167)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1167)) (-5 *1 (-213)))) (-1487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1167)) (-5 *1 (-213))))) -((-1487 (((-1167) (-245 |#2|) (-1075) (-1075) (-578 (-218))) 102 T ELT))) -(((-214 |#1| |#2|) (-10 -7 (-15 -1487 ((-1167) (-245 |#2|) (-1075) (-1075) (-578 (-218))))) (-13 (-489) (-749) (-943 (-478))) (-357 |#1|)) (T -214)) -((-1487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-245 *7)) (-5 *4 (-1075)) (-5 *5 (-578 (-218))) (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-749) (-943 (-478)))) (-5 *2 (-1167)) (-5 *1 (-214 *6 *7))))) -((-1484 (((-478) (-478)) 71 T ELT)) (-1485 (((-478) (-478)) 72 T ELT)) (-1486 (((-177) (-177)) 73 T ELT)) (-1483 (((-1168) (-1 (-140 (-177)) (-140 (-177))) (-992 (-177)) (-992 (-177))) 70 T ELT)) (-1482 (((-1168) (-1 (-140 (-177)) (-140 (-177))) (-992 (-177)) (-992 (-177)) (-83)) 68 T ELT))) -(((-215) (-10 -7 (-15 -1482 ((-1168) (-1 (-140 (-177)) (-140 (-177))) (-992 (-177)) (-992 (-177)) (-83))) (-15 -1483 ((-1168) (-1 (-140 (-177)) (-140 (-177))) (-992 (-177)) (-992 (-177)))) (-15 -1484 ((-478) (-478))) (-15 -1485 ((-478) (-478))) (-15 -1486 ((-177) (-177))))) (T -215)) -((-1486 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-215)))) (-1485 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-215)))) (-1484 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-215)))) (-1483 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-992 (-177))) (-5 *2 (-1168)) (-5 *1 (-215)))) (-1482 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-992 (-177))) (-5 *5 (-83)) (-5 *2 (-1168)) (-5 *1 (-215))))) -((-3922 (((-995 (-323)) (-995 (-261 |#1|))) 16 T ELT))) -(((-216 |#1|) (-10 -7 (-15 -3922 ((-995 (-323)) (-995 (-261 |#1|))))) (-13 (-749) (-489) (-548 (-323)))) (T -216)) -((-3922 (*1 *2 *3) (-12 (-5 *3 (-995 (-261 *4))) (-4 *4 (-13 (-749) (-489) (-548 (-323)))) (-5 *2 (-995 (-323))) (-5 *1 (-216 *4))))) -((-1487 (((-1168) (-578 (-177)) (-578 (-177)) (-578 (-177)) (-578 (-218))) 23 T ELT) (((-1168) (-578 (-177)) (-578 (-177)) (-578 (-177))) 24 T ELT) (((-1167) (-578 (-847 (-177))) (-578 (-218))) 16 T ELT) (((-1167) (-578 (-847 (-177)))) 17 T ELT) (((-1167) (-578 (-177)) (-578 (-177)) (-578 (-218))) 20 T ELT) (((-1167) (-578 (-177)) (-578 (-177))) 21 T ELT))) -(((-217) (-10 -7 (-15 -1487 ((-1167) (-578 (-177)) (-578 (-177)))) (-15 -1487 ((-1167) (-578 (-177)) (-578 (-177)) (-578 (-218)))) (-15 -1487 ((-1167) (-578 (-847 (-177))))) (-15 -1487 ((-1167) (-578 (-847 (-177))) (-578 (-218)))) (-15 -1487 ((-1168) (-578 (-177)) (-578 (-177)) (-578 (-177)))) (-15 -1487 ((-1168) (-578 (-177)) (-578 (-177)) (-578 (-177)) (-578 (-218)))))) (T -217)) -((-1487 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-578 (-177))) (-5 *4 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-217)))) (-1487 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-177))) (-5 *2 (-1168)) (-5 *1 (-217)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *4 (-578 (-218))) (-5 *2 (-1167)) (-5 *1 (-217)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *2 (-1167)) (-5 *1 (-217)))) (-1487 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-177))) (-5 *4 (-578 (-218))) (-5 *2 (-1167)) (-5 *1 (-217)))) (-1487 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-177))) (-5 *2 (-1167)) (-5 *1 (-217))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3857 (($ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 24 T ELT)) (-1500 (($ (-823)) 81 T ELT)) (-1499 (($ (-823)) 80 T ELT)) (-1755 (($ (-578 (-323))) 87 T ELT)) (-1503 (($ (-323)) 66 T ELT)) (-1502 (($ (-823)) 82 T ELT)) (-1496 (($ (-83)) 33 T ELT)) (-3859 (($ (-1059)) 28 T ELT)) (-1495 (($ (-1059)) 29 T ELT)) (-1501 (($ (-1033 (-177))) 76 T ELT)) (-1911 (($ (-578 (-992 (-323)))) 72 T ELT)) (-1489 (($ (-578 (-992 (-323)))) 68 T ELT) (($ (-578 (-992 (-343 (-478))))) 71 T ELT)) (-1492 (($ (-323)) 38 T ELT) (($ (-776)) 42 T ELT)) (-1488 (((-83) (-578 $) (-1075)) 100 T ELT)) (-1504 (((-3 (-51) "failed") (-578 $) (-1075)) 102 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1491 (($ (-323)) 43 T ELT) (($ (-776)) 44 T ELT)) (-3205 (($ (-1 (-847 (-177)) (-847 (-177)))) 65 T ELT)) (-2248 (($ (-1 (-847 (-177)) (-847 (-177)))) 83 T ELT)) (-1490 (($ (-1 (-177) (-177))) 48 T ELT) (($ (-1 (-177) (-177) (-177))) 52 T ELT) (($ (-1 (-177) (-177) (-177) (-177))) 56 T ELT)) (-3922 (((-765) $) 93 T ELT)) (-1493 (($ (-83)) 34 T ELT) (($ (-578 (-992 (-323)))) 60 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1906 (($ (-83)) 35 T ELT)) (-3037 (((-83) $ $) 97 T ELT))) -(((-218) (-13 (-1003) (-10 -8 (-15 -1906 ($ (-83))) (-15 -1493 ($ (-83))) (-15 -3857 ($ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3859 ($ (-1059))) (-15 -1495 ($ (-1059))) (-15 -1496 ($ (-83))) (-15 -1493 ($ (-578 (-992 (-323))))) (-15 -3205 ($ (-1 (-847 (-177)) (-847 (-177))))) (-15 -1492 ($ (-323))) (-15 -1492 ($ (-776))) (-15 -1491 ($ (-323))) (-15 -1491 ($ (-776))) (-15 -1490 ($ (-1 (-177) (-177)))) (-15 -1490 ($ (-1 (-177) (-177) (-177)))) (-15 -1490 ($ (-1 (-177) (-177) (-177) (-177)))) (-15 -1503 ($ (-323))) (-15 -1489 ($ (-578 (-992 (-323))))) (-15 -1489 ($ (-578 (-992 (-343 (-478)))))) (-15 -1911 ($ (-578 (-992 (-323))))) (-15 -1501 ($ (-1033 (-177)))) (-15 -1499 ($ (-823))) (-15 -1500 ($ (-823))) (-15 -1502 ($ (-823))) (-15 -2248 ($ (-1 (-847 (-177)) (-847 (-177))))) (-15 -1755 ($ (-578 (-323)))) (-15 -1504 ((-3 (-51) "failed") (-578 $) (-1075))) (-15 -1488 ((-83) (-578 $) (-1075)))))) (T -218)) -((-1906 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) (-1493 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *1 (-218)))) (-3859 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-218)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-218)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) (-1493 (*1 *1 *2) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-218)))) (-3205 (*1 *1 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *1 (-218)))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218)))) (-1492 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-218)))) (-1491 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218)))) (-1491 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-218)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-218)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-218)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-218)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218)))) (-1489 (*1 *1 *2) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-218)))) (-1489 (*1 *1 *2) (-12 (-5 *2 (-578 (-992 (-343 (-478))))) (-5 *1 (-218)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-218)))) (-1501 (*1 *1 *2) (-12 (-5 *2 (-1033 (-177))) (-5 *1 (-218)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) (-1500 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) (-1502 (*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) (-2248 (*1 *1 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *1 (-218)))) (-1755 (*1 *1 *2) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-218)))) (-1504 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-218))) (-5 *4 (-1075)) (-5 *2 (-51)) (-5 *1 (-218)))) (-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-218))) (-5 *4 (-1075)) (-5 *2 (-83)) (-5 *1 (-218))))) -((-3857 (((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) (-578 (-218)) (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 25 T ELT)) (-1500 (((-823) (-578 (-218)) (-823)) 52 T ELT)) (-1499 (((-823) (-578 (-218)) (-823)) 51 T ELT)) (-3827 (((-578 (-323)) (-578 (-218)) (-578 (-323))) 68 T ELT)) (-1503 (((-323) (-578 (-218)) (-323)) 57 T ELT)) (-1502 (((-823) (-578 (-218)) (-823)) 53 T ELT)) (-1496 (((-83) (-578 (-218)) (-83)) 27 T ELT)) (-3859 (((-1059) (-578 (-218)) (-1059)) 19 T ELT)) (-1495 (((-1059) (-578 (-218)) (-1059)) 26 T ELT)) (-1501 (((-1033 (-177)) (-578 (-218))) 46 T ELT)) (-1911 (((-578 (-992 (-323))) (-578 (-218)) (-578 (-992 (-323)))) 40 T ELT)) (-1497 (((-776) (-578 (-218)) (-776)) 32 T ELT)) (-1498 (((-776) (-578 (-218)) (-776)) 33 T ELT)) (-2248 (((-1 (-847 (-177)) (-847 (-177))) (-578 (-218)) (-1 (-847 (-177)) (-847 (-177)))) 63 T ELT)) (-1494 (((-83) (-578 (-218)) (-83)) 14 T ELT)) (-1906 (((-83) (-578 (-218)) (-83)) 13 T ELT))) -(((-219) (-10 -7 (-15 -1906 ((-83) (-578 (-218)) (-83))) (-15 -1494 ((-83) (-578 (-218)) (-83))) (-15 -3857 ((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) (-578 (-218)) (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3859 ((-1059) (-578 (-218)) (-1059))) (-15 -1495 ((-1059) (-578 (-218)) (-1059))) (-15 -1496 ((-83) (-578 (-218)) (-83))) (-15 -1497 ((-776) (-578 (-218)) (-776))) (-15 -1498 ((-776) (-578 (-218)) (-776))) (-15 -1911 ((-578 (-992 (-323))) (-578 (-218)) (-578 (-992 (-323))))) (-15 -1499 ((-823) (-578 (-218)) (-823))) (-15 -1500 ((-823) (-578 (-218)) (-823))) (-15 -1501 ((-1033 (-177)) (-578 (-218)))) (-15 -1502 ((-823) (-578 (-218)) (-823))) (-15 -1503 ((-323) (-578 (-218)) (-323))) (-15 -2248 ((-1 (-847 (-177)) (-847 (-177))) (-578 (-218)) (-1 (-847 (-177)) (-847 (-177))))) (-15 -3827 ((-578 (-323)) (-578 (-218)) (-578 (-323)))))) (T -219)) -((-3827 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-323))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-2248 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1503 (*1 *2 *3 *2) (-12 (-5 *2 (-323)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1502 (*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-219)))) (-1500 (*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1499 (*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1911 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1498 (*1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1497 (*1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1496 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1495 (*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-3859 (*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-3857 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1494 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) (-1906 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) -((-1504 (((-3 |#1| "failed") (-578 (-218)) (-1075)) 17 T ELT))) -(((-220 |#1|) (-10 -7 (-15 -1504 ((-3 |#1| "failed") (-578 (-218)) (-1075)))) (-1114)) (T -220)) -((-1504 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-218))) (-5 *4 (-1075)) (-5 *1 (-220 *2)) (-4 *2 (-1114))))) -((-3734 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) 11 T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) 19 T ELT) (($ $ (-687)) NIL T ELT) (($ $) 16 T ELT)) (-2650 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-687)) 14 T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT))) -(((-221 |#1| |#2|) (-10 -7 (-15 -3734 (|#1| |#1|)) (-15 -2650 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-687))) (-15 -2650 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -2650 (|#1| |#1| (-1075))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -2650 (|#1| |#1| (-578 (-1075)))) (-15 -2650 (|#1| |#1| (-1075) (-687))) (-15 -2650 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -2650 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -2650 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|)))) (-222 |#2|) (-1114)) (T -221)) -NIL -((-3734 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 22 T ELT) (($ $ (-578 (-1075)) (-578 (-687))) 16 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 15 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 14 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075)) 12 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-687)) 10 (|has| |#1| (-187)) ELT) (($ $) 8 (|has| |#1| (-187)) ELT)) (-2650 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 20 T ELT) (($ $ (-578 (-1075)) (-578 (-687))) 19 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 18 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 17 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075)) 13 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-687)) 11 (|has| |#1| (-187)) ELT) (($ $) 9 (|has| |#1| (-187)) ELT))) -(((-222 |#1|) (-111) (-1114)) (T -222)) -((-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1114)))) (-3734 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *1 (-222 *4)) (-4 *4 (-1114)))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1114)))) (-2650 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *1 (-222 *4)) (-4 *4 (-1114))))) -(-13 (-1114) (-10 -8 (-15 -3734 ($ $ (-1 |t#1| |t#1|))) (-15 -3734 ($ $ (-1 |t#1| |t#1|) (-687))) (-15 -2650 ($ $ (-1 |t#1| |t#1|))) (-15 -2650 ($ $ (-1 |t#1| |t#1|) (-687))) (IF (|has| |t#1| (-187)) (-6 (-187)) |%noBranch|) (IF (|has| |t#1| (-804 (-1075))) (-6 (-804 (-1075))) |%noBranch|))) -(((-184 $) |has| |#1| (-187)) ((-187) |has| |#1| (-187)) ((-799 $ (-1075)) |has| |#1| (-804 (-1075))) ((-804 (-1075)) |has| |#1| (-804 (-1075))) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1471 (((-578 (-687)) $) NIL T ELT) (((-578 (-687)) $ |#2|) NIL T ELT)) (-1505 (((-687) $) NIL T ELT) (((-687) $ |#2|) NIL T ELT)) (-3063 (((-578 |#3|) $) NIL T ELT)) (-3065 (((-1070 $) $ |#3|) NIL T ELT) (((-1070 |#1|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 |#3|)) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-1467 (($ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1025 |#1| |#2|) #1#) $) 23 T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1025 |#1| |#2|) $) NIL T ELT)) (-3732 (($ $ $ |#3|) NIL (|has| |#1| (-144)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ |#3|) NIL (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| (-463 |#3|) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) ELT)) (-3748 (((-687) $ |#2|) NIL T ELT) (((-687) $) 10 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3066 (($ (-1070 |#1|) |#3|) NIL T ELT) (($ (-1070 $) |#3|) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-463 |#3|)) NIL T ELT) (($ $ |#3| (-687)) NIL T ELT) (($ $ (-578 |#3|) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ |#3|) NIL T ELT)) (-2801 (((-463 |#3|) $) NIL T ELT) (((-687) $ |#3|) NIL T ELT) (((-578 (-687)) $ (-578 |#3|)) NIL T ELT)) (-1608 (($ (-1 (-463 |#3|) (-463 |#3|)) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1506 (((-1 $ (-687)) |#2|) NIL T ELT) (((-1 $ (-687)) $) NIL (|has| |#1| (-188)) ELT)) (-3064 (((-3 |#3| #1#) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1469 ((|#3| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1470 (((-83) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| |#3|) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-1468 (($ $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-578 |#3|) (-578 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-578 |#3|) (-578 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 |#2|) (-578 $)) NIL (|has| |#1| (-188)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 |#2|) (-578 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3733 (($ $ |#3|) NIL (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 |#3|) (-578 (-687))) NIL T ELT) (($ $ |#3| (-687)) NIL T ELT) (($ $ (-578 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-1472 (((-578 |#2|) $) NIL T ELT)) (-3924 (((-463 |#3|) $) NIL T ELT) (((-687) $ |#3|) NIL T ELT) (((-578 (-687)) $ (-578 |#3|)) NIL T ELT) (((-687) $ |#2|) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467)))) ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ |#3|) NIL (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1025 |#1| |#2|)) 32 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-463 |#3|)) NIL T ELT) (($ $ |#3| (-687)) NIL T ELT) (($ $ (-578 |#3|) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-578 |#3|) (-578 (-687))) NIL T ELT) (($ $ |#3| (-687)) NIL T ELT) (($ $ (-578 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-223 |#1| |#2| |#3|) (-13 (-210 |#1| |#2| |#3| (-463 |#3|)) (-943 (-1025 |#1| |#2|))) (-954) (-749) (-225 |#2|)) (T -223)) -NIL -((-1505 (((-687) $) 37 T ELT)) (-3138 (((-3 |#2| "failed") $) 22 T ELT)) (-3137 ((|#2| $) 33 T ELT)) (-3734 (($ $ (-687)) 18 T ELT) (($ $) 14 T ELT)) (-3922 (((-765) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3037 (((-83) $ $) 26 T ELT)) (-2666 (((-83) $ $) 36 T ELT))) -(((-224 |#1| |#2|) (-10 -7 (-15 -1505 ((-687) |#1|)) (-15 -3922 (|#1| |#2|)) (-15 -3138 ((-3 |#2| "failed") |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3734 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-687))) (-15 -2666 ((-83) |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-225 |#2|) (-749)) (T -224)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-1505 (((-687) $) 26 T ELT)) (-3807 ((|#1| $) 27 T ELT)) (-3138 (((-3 |#1| "failed") $) 31 T ELT)) (-3137 ((|#1| $) 32 T ELT)) (-3748 (((-687) $) 28 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-1506 (($ |#1| (-687)) 29 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3734 (($ $ (-687)) 35 T ELT) (($ $) 33 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2650 (($ $ (-687)) 36 T ELT) (($ $) 34 T ELT)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT))) -(((-225 |#1|) (-111) (-749)) (T -225)) -((-1506 (*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-225 *2)) (-4 *2 (-749)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-749)) (-5 *2 (-687)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-749)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-749)) (-5 *2 (-687))))) -(-13 (-749) (-187) (-943 |t#1|) (-10 -8 (-15 -1506 ($ |t#1| (-687))) (-15 -3748 ((-687) $)) (-15 -3807 (|t#1| $)) (-15 -1505 ((-687) $)))) -(((-72) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-184 $) . T) ((-187) . T) ((-749) . T) ((-752) . T) ((-943 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1508 (((-578 (-478)) $) 28 T ELT)) (-3924 (((-687) $) 26 T ELT)) (-3922 (((-765) $) 32 T ELT) (($ (-578 (-478))) 22 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1507 (($ (-687)) 29 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 18 T ELT))) -(((-226) (-13 (-749) (-10 -8 (-15 -3922 ($ (-578 (-478)))) (-15 -3924 ((-687) $)) (-15 -1508 ((-578 (-478)) $)) (-15 -1507 ($ (-687)))))) (T -226)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-226)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-226)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-226)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-226))))) -((-3469 ((|#2| |#2|) 77 T ELT)) (-3615 ((|#2| |#2|) 65 T ELT)) (-1537 (((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-83))))) 123 T ELT)) (-3467 ((|#2| |#2|) 75 T ELT)) (-3614 ((|#2| |#2|) 63 T ELT)) (-3471 ((|#2| |#2|) 79 T ELT)) (-3613 ((|#2| |#2|) 67 T ELT)) (-3603 ((|#2|) 46 T ELT)) (-3571 (((-84) (-84)) 97 T ELT)) (-3918 ((|#2| |#2|) 61 T ELT)) (-1538 (((-83) |#2|) 146 T ELT)) (-1527 ((|#2| |#2|) 193 T ELT)) (-1515 ((|#2| |#2|) 169 T ELT)) (-1510 ((|#2|) 59 T ELT)) (-1509 ((|#2|) 58 T ELT)) (-1525 ((|#2| |#2|) 189 T ELT)) (-1513 ((|#2| |#2|) 165 T ELT)) (-1529 ((|#2| |#2|) 197 T ELT)) (-1517 ((|#2| |#2|) 173 T ELT)) (-1512 ((|#2| |#2|) 161 T ELT)) (-1511 ((|#2| |#2|) 163 T ELT)) (-1530 ((|#2| |#2|) 199 T ELT)) (-1518 ((|#2| |#2|) 175 T ELT)) (-1528 ((|#2| |#2|) 195 T ELT)) (-1516 ((|#2| |#2|) 171 T ELT)) (-1526 ((|#2| |#2|) 191 T ELT)) (-1514 ((|#2| |#2|) 167 T ELT)) (-1533 ((|#2| |#2|) 205 T ELT)) (-1521 ((|#2| |#2|) 181 T ELT)) (-1531 ((|#2| |#2|) 201 T ELT)) (-1519 ((|#2| |#2|) 177 T ELT)) (-1535 ((|#2| |#2|) 209 T ELT)) (-1523 ((|#2| |#2|) 185 T ELT)) (-1536 ((|#2| |#2|) 211 T ELT)) (-1524 ((|#2| |#2|) 187 T ELT)) (-1534 ((|#2| |#2|) 207 T ELT)) (-1522 ((|#2| |#2|) 183 T ELT)) (-1532 ((|#2| |#2|) 203 T ELT)) (-1520 ((|#2| |#2|) 179 T ELT)) (-3919 ((|#2| |#2|) 62 T ELT)) (-3472 ((|#2| |#2|) 80 T ELT)) (-3612 ((|#2| |#2|) 68 T ELT)) (-3470 ((|#2| |#2|) 78 T ELT)) (-3611 ((|#2| |#2|) 66 T ELT)) (-3468 ((|#2| |#2|) 76 T ELT)) (-3610 ((|#2| |#2|) 64 T ELT)) (-2236 (((-83) (-84)) 95 T ELT)) (-3475 ((|#2| |#2|) 83 T ELT)) (-3463 ((|#2| |#2|) 71 T ELT)) (-3473 ((|#2| |#2|) 81 T ELT)) (-3461 ((|#2| |#2|) 69 T ELT)) (-3477 ((|#2| |#2|) 85 T ELT)) (-3465 ((|#2| |#2|) 73 T ELT)) (-3478 ((|#2| |#2|) 86 T ELT)) (-3466 ((|#2| |#2|) 74 T ELT)) (-3476 ((|#2| |#2|) 84 T ELT)) (-3464 ((|#2| |#2|) 72 T ELT)) (-3474 ((|#2| |#2|) 82 T ELT)) (-3462 ((|#2| |#2|) 70 T ELT))) -(((-227 |#1| |#2|) (-10 -7 (-15 -3919 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3614 (|#2| |#2|)) (-15 -3610 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)) (-15 -3611 (|#2| |#2|)) (-15 -3613 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -3461 (|#2| |#2|)) (-15 -3462 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -3464 (|#2| |#2|)) (-15 -3465 (|#2| |#2|)) (-15 -3466 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -3468 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3470 (|#2| |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3472 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3475 (|#2| |#2|)) (-15 -3476 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3478 (|#2| |#2|)) (-15 -3603 (|#2|)) (-15 -2236 ((-83) (-84))) (-15 -3571 ((-84) (-84))) (-15 -1509 (|#2|)) (-15 -1510 (|#2|)) (-15 -1511 (|#2| |#2|)) (-15 -1512 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -1514 (|#2| |#2|)) (-15 -1515 (|#2| |#2|)) (-15 -1516 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -1518 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1525 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 ((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-83)))))) (-15 -1538 ((-83) |#2|))) (-489) (-13 (-357 |#1|) (-908))) (T -227)) -((-1538 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-227 *4 *3)) (-4 *3 (-13 (-357 *4) (-908))))) (-1537 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-578 (-2 (|:| |func| *2) (|:| |pole| (-83))))) (-4 *2 (-13 (-357 *4) (-908))) (-4 *4 (-489)) (-5 *1 (-227 *4 *2)))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1518 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1516 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1514 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1512 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-1510 (*1 *2) (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489)))) (-1509 (*1 *2) (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-227 *3 *4)) (-4 *4 (-13 (-357 *3) (-908))))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-357 *4) (-908))))) (-3603 (*1 *2) (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3465 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3464 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3611 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3615 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) -((-1541 (((-3 |#2| "failed") (-578 (-545 |#2|)) |#2| (-1075)) 151 T ELT)) (-1543 ((|#2| (-343 (-478)) |#2|) 49 T ELT)) (-1542 ((|#2| |#2| (-545 |#2|)) 144 T ELT)) (-1539 (((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-545 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1075)) 143 T ELT)) (-1540 ((|#2| |#2| (-1075)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2423 ((|#2| |#2| (-1075)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-228 |#1| |#2|) (-10 -7 (-15 -2423 (|#2| |#2|)) (-15 -2423 (|#2| |#2| (-1075))) (-15 -1539 ((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-545 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1075))) (-15 -1540 (|#2| |#2|)) (-15 -1540 (|#2| |#2| (-1075))) (-15 -1541 ((-3 |#2| "failed") (-578 (-545 |#2|)) |#2| (-1075))) (-15 -1542 (|#2| |#2| (-545 |#2|))) (-15 -1543 (|#2| (-343 (-478)) |#2|))) (-13 (-489) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1100) (-357 |#1|))) (T -228)) -((-1543 (*1 *2 *3 *2) (-12 (-5 *3 (-343 (-478))) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4))))) (-1542 (*1 *2 *2 *3) (-12 (-5 *3 (-545 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4))) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2)))) (-1541 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-578 (-545 *2))) (-5 *4 (-1075)) (-4 *2 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *5 *2)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *3))))) (-1539 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-578 (-545 *3))) (|:| |vals| (-578 *3)))) (-5 *1 (-228 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) (-2423 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4))))) (-2423 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *3)))))) -((-2956 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3469 ((|#3| |#3|) 142 T ELT)) (-2944 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3615 ((|#3| |#3|) 132 T ELT)) (-2954 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3467 ((|#3| |#3|) 140 T ELT)) (-2942 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3614 ((|#3| |#3|) 130 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3471 ((|#3| |#3|) 144 T ELT)) (-2946 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3613 ((|#3| |#3|) 134 T ELT)) (-2939 (((-3 |#3| #1#) |#3| (-687)) 41 T ELT)) (-2941 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3918 ((|#3| |#3|) 129 T ELT)) (-2940 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3919 ((|#3| |#3|) 128 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3472 ((|#3| |#3|) 145 T ELT)) (-2947 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3612 ((|#3| |#3|) 135 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3470 ((|#3| |#3|) 143 T ELT)) (-2945 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3611 ((|#3| |#3|) 133 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3468 ((|#3| |#3|) 141 T ELT)) (-2943 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3610 ((|#3| |#3|) 131 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3475 ((|#3| |#3|) 148 T ELT)) (-2950 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3463 ((|#3| |#3|) 152 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3473 ((|#3| |#3|) 146 T ELT)) (-2948 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3461 ((|#3| |#3|) 136 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3477 ((|#3| |#3|) 150 T ELT)) (-2952 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3465 ((|#3| |#3|) 138 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3478 ((|#3| |#3|) 151 T ELT)) (-2953 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3466 ((|#3| |#3|) 139 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3476 ((|#3| |#3|) 149 T ELT)) (-2951 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3464 ((|#3| |#3|) 153 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3474 ((|#3| |#3|) 147 T ELT)) (-2949 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3462 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-343 (-478))) 47 (|has| |#1| (-308)) ELT))) -(((-229 |#1| |#2| |#3|) (-13 (-889 |#3|) (-10 -7 (IF (|has| |#1| (-308)) (-15 ** (|#3| |#3| (-343 (-478)))) |%noBranch|) (-15 -3919 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3610 (|#3| |#3|)) (-15 -3615 (|#3| |#3|)) (-15 -3611 (|#3| |#3|)) (-15 -3613 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3462 (|#3| |#3|)) (-15 -3463 (|#3| |#3|)) (-15 -3464 (|#3| |#3|)) (-15 -3465 (|#3| |#3|)) (-15 -3466 (|#3| |#3|)) (-15 -3467 (|#3| |#3|)) (-15 -3468 (|#3| |#3|)) (-15 -3469 (|#3| |#3|)) (-15 -3470 (|#3| |#3|)) (-15 -3471 (|#3| |#3|)) (-15 -3472 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3475 (|#3| |#3|)) (-15 -3476 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)))) (-38 (-343 (-478))) (-1157 |#1|) (-1128 |#1| |#2|)) (T -229)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-343 (-478))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1157 *4)) (-5 *1 (-229 *4 *5 *2)) (-4 *2 (-1128 *4 *5)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3615 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3611 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3464 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3465 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1128 *3 *4))))) -((-2956 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3469 ((|#3| |#3|) 137 T ELT)) (-2944 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3615 ((|#3| |#3|) 125 T ELT)) (-2954 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3467 ((|#3| |#3|) 135 T ELT)) (-2942 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3614 ((|#3| |#3|) 123 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3471 ((|#3| |#3|) 139 T ELT)) (-2946 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3613 ((|#3| |#3|) 127 T ELT)) (-2939 (((-3 |#3| #1#) |#3| (-687)) 38 T ELT)) (-2941 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3918 ((|#3| |#3|) 111 T ELT)) (-2940 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3919 ((|#3| |#3|) 122 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3472 ((|#3| |#3|) 140 T ELT)) (-2947 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3612 ((|#3| |#3|) 128 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3470 ((|#3| |#3|) 138 T ELT)) (-2945 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3611 ((|#3| |#3|) 126 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3468 ((|#3| |#3|) 136 T ELT)) (-2943 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3610 ((|#3| |#3|) 124 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3475 ((|#3| |#3|) 143 T ELT)) (-2950 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3463 ((|#3| |#3|) 131 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3473 ((|#3| |#3|) 141 T ELT)) (-2948 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3461 ((|#3| |#3|) 129 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3477 ((|#3| |#3|) 145 T ELT)) (-2952 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3465 ((|#3| |#3|) 133 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3478 ((|#3| |#3|) 146 T ELT)) (-2953 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3466 ((|#3| |#3|) 134 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3476 ((|#3| |#3|) 144 T ELT)) (-2951 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3464 ((|#3| |#3|) 132 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3474 ((|#3| |#3|) 142 T ELT)) (-2949 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3462 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-343 (-478))) 44 (|has| |#1| (-308)) ELT))) -(((-230 |#1| |#2| |#3| |#4|) (-13 (-889 |#3|) (-10 -7 (IF (|has| |#1| (-308)) (-15 ** (|#3| |#3| (-343 (-478)))) |%noBranch|) (-15 -3919 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3610 (|#3| |#3|)) (-15 -3615 (|#3| |#3|)) (-15 -3611 (|#3| |#3|)) (-15 -3613 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3462 (|#3| |#3|)) (-15 -3463 (|#3| |#3|)) (-15 -3464 (|#3| |#3|)) (-15 -3465 (|#3| |#3|)) (-15 -3466 (|#3| |#3|)) (-15 -3467 (|#3| |#3|)) (-15 -3468 (|#3| |#3|)) (-15 -3469 (|#3| |#3|)) (-15 -3470 (|#3| |#3|)) (-15 -3471 (|#3| |#3|)) (-15 -3472 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3475 (|#3| |#3|)) (-15 -3476 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)))) (-38 (-343 (-478))) (-1126 |#1|) (-1149 |#1| |#2|) (-889 |#2|)) (T -230)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-343 (-478))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1126 *4)) (-5 *1 (-230 *4 *5 *2 *6)) (-4 *2 (-1149 *4 *5)) (-4 *6 (-889 *5)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3615 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3611 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3613 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3464 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3465 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4))))) -((-1546 (((-83) $) 20 T ELT)) (-1548 (((-1080) $) 9 T ELT)) (-3545 (((-3 (-439) #1="failed") $) 15 T ELT)) (-3544 (((-3 (-578 $) #1#) $) NIL T ELT)) (-1545 (((-3 (-439) #1#) $) 21 T ELT)) (-1547 (((-3 (-1005) #1#) $) 19 T ELT)) (-3929 (((-83) $) 17 T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1544 (((-83) $) 10 T ELT))) -(((-231) (-13 (-547 (-765)) (-10 -8 (-15 -1548 ((-1080) $)) (-15 -3929 ((-83) $)) (-15 -1547 ((-3 (-1005) #1="failed") $)) (-15 -1546 ((-83) $)) (-15 -1545 ((-3 (-439) #1#) $)) (-15 -1544 ((-83) $)) (-15 -3545 ((-3 (-439) #1#) $)) (-15 -3544 ((-3 (-578 $) #1#) $))))) (T -231)) -((-1548 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-231)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) (-1547 (*1 *2 *1) (|partial| -12 (-5 *2 (-1005)) (-5 *1 (-231)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) (-1545 (*1 *2 *1) (|partial| -12 (-5 *2 (-439)) (-5 *1 (-231)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) (-3545 (*1 *2 *1) (|partial| -12 (-5 *2 (-439)) (-5 *1 (-231)))) (-3544 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-231))) (-5 *1 (-231))))) -((-1550 (((-526) $) 10 T ELT)) (-1551 (((-516) $) 8 T ELT)) (-1549 (((-243) $) 12 T ELT)) (-1552 (($ (-516) (-526) (-243)) NIL T ELT)) (-3922 (((-765) $) 19 T ELT))) -(((-232) (-13 (-547 (-765)) (-10 -8 (-15 -1552 ($ (-516) (-526) (-243))) (-15 -1551 ((-516) $)) (-15 -1550 ((-526) $)) (-15 -1549 ((-243) $))))) (T -232)) -((-1552 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-516)) (-5 *3 (-526)) (-5 *4 (-243)) (-5 *1 (-232)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-232)))) (-1550 (*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-232)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-243)) (-5 *1 (-232))))) -((-3686 (($ (-1 (-83) |#2|) $) 24 T ELT)) (-1336 (($ $) 38 T ELT)) (-3382 (($ (-1 (-83) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3383 (($ |#2| $) 34 T ELT) (($ (-1 (-83) |#2|) $) 18 T ELT)) (-2837 (($ (-1 (-83) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2286 (($ |#2| $ (-478)) 20 T ELT) (($ $ $ (-478)) 22 T ELT)) (-2287 (($ $ (-478)) 11 T ELT) (($ $ (-1131 (-478))) 14 T ELT)) (-3767 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3778 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-578 $)) NIL T ELT))) -(((-233 |#1| |#2|) (-10 -7 (-15 -2837 (|#1| |#1| |#1|)) (-15 -3382 (|#1| |#2| |#1|)) (-15 -2837 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -3382 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3767 (|#1| |#1| |#1|)) (-15 -3767 (|#1| |#1| |#2|)) (-15 -2286 (|#1| |#1| |#1| (-478))) (-15 -2286 (|#1| |#2| |#1| (-478))) (-15 -2287 (|#1| |#1| (-1131 (-478)))) (-15 -2287 (|#1| |#1| (-478))) (-15 -3778 (|#1| (-578 |#1|))) (-15 -3778 (|#1| |#1| |#1|)) (-15 -3778 (|#1| |#2| |#1|)) (-15 -3778 (|#1| |#1| |#2|)) (-15 -3383 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3686 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3383 (|#1| |#2| |#1|)) (-15 -1336 (|#1| |#1|))) (-234 |#2|) (-1114)) (T -233)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) 44 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-1553 (($ (-1 (-83) |#1|) $) 94 T ELT)) (-3686 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-2350 (($ $) 92 (|has| |#1| (-1003)) ELT)) (-1336 (($ $) 84 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ (-1 (-83) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1003)) ELT)) (-3383 (($ |#1| $) 83 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 55 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) |#1|) 74 T ELT)) (-2182 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2837 (($ (-1 (-83) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3585 (($ |#1| $ (-478)) 97 T ELT) (($ $ $ (-478)) 96 T ELT)) (-2286 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2185 (((-578 (-478)) $) 50 T ELT)) (-2186 (((-83) (-478) $) 51 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2181 (($ $ |#1|) 45 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1131 (-478))) 75 T ELT)) (-1554 (($ $ (-478)) 100 T ELT) (($ $ (-1131 (-478))) 99 T ELT)) (-2287 (($ $ (-478)) 68 T ELT) (($ $ (-1131 (-478))) 67 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 76 T ELT)) (-3767 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3778 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-234 |#1|) (-111) (-1114)) (T -234)) -((-3767 (*1 *1 *1 *2) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)))) (-3767 (*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)))) (-1554 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) (-1554 (*1 *1 *1 *2) (-12 (-5 *2 (-1131 (-478))) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) (-3382 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) (-3585 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-234 *2)) (-4 *2 (-1114)))) (-3585 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) (-2837 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) (-1553 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) (-3382 (*1 *1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)) (-4 *2 (-1003)))) (-2350 (*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)) (-4 *2 (-1003)))) (-2837 (*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)) (-4 *2 (-749))))) -(-13 (-588 |t#1|) (-10 -8 (-6 -3972) (-15 -3767 ($ $ |t#1|)) (-15 -3767 ($ $ $)) (-15 -1554 ($ $ (-478))) (-15 -1554 ($ $ (-1131 (-478)))) (-15 -3382 ($ (-1 (-83) |t#1|) $)) (-15 -3585 ($ |t#1| $ (-478))) (-15 -3585 ($ $ $ (-478))) (-15 -2837 ($ (-1 (-83) |t#1| |t#1|) $ $)) (-15 -1553 ($ (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3382 ($ |t#1| $)) (-15 -2350 ($ $))) |%noBranch|) (IF (|has| |t#1| (-749)) (-15 -2837 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-198)) (-5 *2 (-479)))) (-2469 (*1 *1 *1) (-4 *1 (-198)))) +(-13 (-242) (-38 (-344 (-479))) (-10 -8 (-15 ** ($ $ (-479))) (-15 -2469 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-242) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-650 (-344 (-479))) . T) ((-659) . T) ((-957 (-344 (-479))) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 52 T ELT)) (-3779 (($ $) 63 T ELT)) (-3010 ((|#1| $ |#1|) 43 (|has| $ (-6 -3978)) ELT)) (-1462 (($ $ $) 59 (|has| $ (-6 -3978)) ELT)) (-1461 (($ $ $) 58 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 45 (|has| $ (-6 -3978)) ELT)) (-3706 (($) 7 T CONST)) (-1464 (($ $) 62 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 54 T ELT)) (-3012 (((-83) $ $) 46 (|has| |#1| (-1006)) ELT)) (-1463 (($ $) 61 T ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3015 (((-579 |#1|) $) 49 T ELT)) (-3509 (((-83) $) 53 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3780 ((|#1| $) 65 T ELT)) (-3162 (($ $) 64 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ #1#) 51 T ELT)) (-3014 (((-479) $ $) 48 T ELT)) (-3615 (((-83) $) 50 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3773 (($ $ $) 60 (|has| $ (-6 -3978)) ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) 55 T ELT)) (-3013 (((-83) $ $) 47 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-199 |#1|) (-111) (-1119)) (T -199)) +((-3780 (*1 *2 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119)))) (-3779 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119)))) (-1464 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119)))) (-1463 (*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119)))) (-3773 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-199 *2)) (-4 *2 (-1119)))) (-1462 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-199 *2)) (-4 *2 (-1119)))) (-1461 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-199 *2)) (-4 *2 (-1119))))) +(-13 (-917 |t#1|) (-10 -8 (-15 -3780 (|t#1| $)) (-15 -3162 ($ $)) (-15 -3779 ($ $)) (-15 -1464 ($ $)) (-15 -1463 ($ $)) (IF (|has| $ (-6 -3978)) (PROGN (-15 -3773 ($ $ $)) (-15 -1462 ($ $ $)) (-15 -1461 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-917 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) NIL T ELT)) (-3777 ((|#1| $) NIL T ELT)) (-3779 (($ $) NIL T ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3767 (($ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) $) NIL (|has| |#1| (-750)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-1718 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-2894 (($ $) 10 (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-3424 (((-83) $ (-688)) NIL T ELT)) (-3010 ((|#1| $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3769 (($ $ $) NIL (|has| $ (-6 -3978)) ELT)) (-3768 ((|#1| $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3771 ((|#1| $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -3978)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) NIL (|has| $ (-6 -3978)) ELT)) (-1558 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3778 ((|#1| $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-3781 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2355 (($ $) NIL (|has| |#1| (-1006)) ELT)) (-1341 (($ $) 7 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3387 (($ |#1| $) NIL (|has| |#1| (-1006)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3388 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1564 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) NIL T ELT)) (-3425 (((-83) $) NIL T ELT)) (-3401 (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) (-1 (-83) |#1|) $) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3596 (($ (-688) |#1|) NIL T ELT)) (-3701 (((-83) $ (-688)) NIL T ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-3500 (($ $ $) NIL (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3516 (($ |#1|) NIL T ELT)) (-3698 (((-83) $ (-688)) NIL T ELT)) (-3015 (((-579 |#1|) $) NIL T ELT)) (-3509 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3780 ((|#1| $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3591 (($ $ $ (-479)) NIL T ELT) (($ |#1| $ (-479)) NIL T ELT)) (-2291 (($ $ $ (-479)) NIL T ELT) (($ |#1| $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3426 (((-83) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT) ((|#1| $ (-479)) NIL T ELT) ((|#1| $ (-479) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-688) $ "count") 16 T ELT)) (-3014 (((-479) $ $) NIL T ELT)) (-1559 (($ $ (-1136 (-479))) NIL T ELT) (($ $ (-479)) NIL T ELT)) (-2292 (($ $ (-1136 (-479))) NIL T ELT) (($ $ (-479)) NIL T ELT)) (-1465 (($ (-579 |#1|)) 22 T ELT)) (-3615 (((-83) $) NIL T ELT)) (-3774 (($ $) NIL T ELT)) (-3772 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-3775 (((-688) $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) NIL T ELT)) (-3773 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3784 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-579 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3928 (($ (-579 |#1|)) 17 T ELT) (((-579 |#1|) $) 18 T ELT) (((-766) $) 21 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) 14 (|has| $ (-6 -3977)) ELT))) +(((-200 |#1|) (-13 (-604 |#1|) (-424 (-579 |#1|)) (-10 -8 (-15 -1465 ($ (-579 |#1|))) (-15 -3782 ($ $ "unique")) (-15 -3782 ($ $ "sort")) (-15 -3782 ((-688) $ "count")))) (-750)) (T -200)) +((-1465 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-200 *3)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-200 *3)) (-4 *3 (-750)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-200 *3)) (-4 *3 (-750)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-688)) (-5 *1 (-200 *4)) (-4 *4 (-750))))) +((-1466 (((-3 (-688) "failed") |#1| |#1| (-688)) 40 T ELT))) +(((-201 |#1|) (-10 -7 (-15 -1466 ((-3 (-688) "failed") |#1| |#1| (-688)))) (-13 (-659) (-314) (-10 -7 (-15 ** (|#1| |#1| (-479)))))) (T -201)) +((-1466 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-688)) (-4 *3 (-13 (-659) (-314) (-10 -7 (-15 ** (*3 *3 (-479)))))) (-5 *1 (-201 *3))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3740 (($ $) 59 (|has| |#1| (-187)) ELT) (($ $ (-688)) 57 (|has| |#1| (-187)) ELT) (($ $ (-1080)) 55 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 53 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 52 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 51 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1 |#1| |#1|) (-688)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2654 (($ $) 58 (|has| |#1| (-187)) ELT) (($ $ (-688)) 56 (|has| |#1| (-187)) ELT) (($ $ (-1080)) 54 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 50 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 49 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 48 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1 |#1| |#1|) (-688)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-202 |#1|) (-111) (-955)) (T -202)) +NIL +(-13 (-80 |t#1| |t#1|) (-222 |t#1|) (-10 -7 (IF (|has| |t#1| (-187)) (-6 (-185 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-805 (-1080))) (-6 (-802 |t#1| (-1080))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-548 (-766)) . T) ((-184 $) |has| |#1| (-187)) ((-185 |#1|) |has| |#1| (-187)) ((-187) |has| |#1| (-187)) ((-222 |#1|) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) OR (-12 (|has| |#1| (-144)) (|has| |#1| (-805 (-1080)))) (-12 (|has| |#1| (-144)) (|has| |#1| (-187)))) ((-650 |#1|) OR (-12 (|has| |#1| (-144)) (|has| |#1| (-805 (-1080)))) (-12 (|has| |#1| (-144)) (|has| |#1| (-187)))) ((-800 $ (-1080)) |has| |#1| (-805 (-1080))) ((-802 |#1| (-1080)) |has| |#1| (-805 (-1080))) ((-805 (-1080)) |has| |#1| (-805 (-1080))) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-767 |#1|)) $) NIL T ELT)) (-3068 (((-1075 $) $ (-767 |#1|)) NIL T ELT) (((-1075 |#2|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#2| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#2| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#2| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-767 |#1|))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#2| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#2| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-3 (-767 |#1|) #1#) $) NIL T ELT)) (-3140 ((|#2| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-767 |#1|) $) NIL T ELT)) (-3738 (($ $ $ (-767 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1925 (($ $ (-579 (-479))) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#2|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#2| (-386)) ELT) (($ $ (-767 |#1|)) NIL (|has| |#2| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#2| (-815)) ELT)) (-1612 (($ $ |#2| (-194 (-3939 |#1|) (-688)) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-767 |#1|) (-790 (-324))) (|has| |#2| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-767 |#1|) (-790 (-479))) (|has| |#2| (-790 (-479)))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3069 (($ (-1075 |#2|) (-767 |#1|)) NIL T ELT) (($ (-1075 $) (-767 |#1|)) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#2| (-194 (-3939 |#1|) (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-767 |#1|)) NIL T ELT)) (-2805 (((-194 (-3939 |#1|) (-688)) $) NIL T ELT) (((-688) $ (-767 |#1|)) NIL T ELT) (((-579 (-688)) $ (-579 (-767 |#1|))) NIL T ELT)) (-1613 (($ (-1 (-194 (-3939 |#1|) (-688)) (-194 (-3939 |#1|) (-688))) $) NIL T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3067 (((-3 (-767 |#1|) #1#) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) NIL (|has| |#2| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-767 |#1|)) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#2| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#2| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) NIL (|has| |#2| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#2| (-815)) ELT)) (-3448 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-767 |#1|) |#2|) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 |#2|)) NIL T ELT) (($ $ (-767 |#1|) $) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 $)) NIL T ELT)) (-3739 (($ $ (-767 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3740 (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|)) NIL T ELT)) (-3930 (((-194 (-3939 |#1|) (-688)) $) NIL T ELT) (((-688) $ (-767 |#1|)) NIL T ELT) (((-579 (-688)) $ (-579 (-767 |#1|))) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-767 |#1|) (-549 (-794 (-324)))) (|has| |#2| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-767 |#1|) (-549 (-794 (-479)))) (|has| |#2| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-767 |#1|) (-549 (-468))) (|has| |#2| (-549 (-468)))) ELT)) (-2802 ((|#2| $) NIL (|has| |#2| (-386)) ELT) (($ $ (-767 |#1|)) NIL (|has| |#2| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-767 |#1|)) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#2| (-490)) ELT)) (-3799 (((-579 |#2|) $) NIL T ELT)) (-3659 ((|#2| $ (-194 (-3939 |#1|) (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-815))) (|has| |#2| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#2| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#2| (-490)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-203 |#1| |#2|) (-13 (-855 |#2| (-194 (-3939 |#1|) (-688)) (-767 |#1|)) (-10 -8 (-15 -1925 ($ $ (-579 (-479)))))) (-579 (-1080)) (-955)) (T -203)) +((-1925 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-203 *3 *4)) (-14 *3 (-579 (-1080))) (-4 *4 (-955))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1467 (((-1175) $) 17 T ELT)) (-1469 (((-156 (-205)) $) 11 T ELT)) (-1468 (($ (-156 (-205))) 12 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1470 (((-205) $) 7 T ELT)) (-3928 (((-766) $) 9 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 15 T ELT))) +(((-204) (-13 (-1006) (-10 -8 (-15 -1470 ((-205) $)) (-15 -1469 ((-156 (-205)) $)) (-15 -1468 ($ (-156 (-205)))) (-15 -1467 ((-1175) $))))) (T -204)) +((-1470 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-204)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204)))) (-1468 (*1 *1 *2) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-204))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1412 (((-579 (-768)) $) NIL T ELT)) (-3524 (((-440) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1414 (((-159) $) NIL T ELT)) (-2618 (((-83) $ (-440)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1471 (((-278) $) 7 T ELT)) (-1413 (((-579 (-83)) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (((-155) $) 8 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2506 (((-55) $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-205) (-13 (-158) (-548 (-155)) (-10 -8 (-15 -1471 ((-278) $))))) (T -205)) +((-1471 (*1 *2 *1) (-12 (-5 *2 (-278)) (-5 *1 (-205))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3782 (((-1085) $ (-688)) 14 T ELT)) (-3928 (((-766) $) 20 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 17 T ELT)) (-3939 (((-688) $) 11 T ELT))) +(((-206) (-13 (-1006) (-238 (-688) (-1085)) (-10 -8 (-15 -3939 ((-688) $))))) (T -206)) +((-3939 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-206))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3689 (($ (-824)) NIL (|has| |#4| (-955)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-2468 (($ $ $) NIL (|has| |#4| (-711)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| |#4| (-314)) ELT)) (-3770 ((|#4| $ (-479) |#4|) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1006)) ELT) (((-3 (-479) #1#) $) NIL (-12 (|has| |#4| (-944 (-479))) (|has| |#4| (-1006))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (-12 (|has| |#4| (-944 (-344 (-479)))) (|has| |#4| (-1006))) ELT)) (-3140 ((|#4| $) NIL (|has| |#4| (-1006)) ELT) (((-479) $) NIL (-12 (|has| |#4| (-944 (-479))) (|has| |#4| (-1006))) ELT) (((-344 (-479)) $) NIL (-12 (|has| |#4| (-944 (-344 (-479)))) (|has| |#4| (-1006))) ELT)) (-2266 (((-2 (|:| |mat| (-626 |#4|)) (|:| |vec| (-1169 |#4|))) (-626 $) (-1169 $)) NIL (|has| |#4| (-955)) ELT) (((-626 |#4|) (-626 $)) NIL (|has| |#4| (-955)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| |#4| (-576 (-479))) (|has| |#4| (-955))) ELT) (((-626 (-479)) (-626 $)) NIL (-12 (|has| |#4| (-576 (-479))) (|has| |#4| (-955))) ELT)) (-3449 (((-3 $ #1#) $) NIL (|has| |#4| (-955)) ELT)) (-2979 (($) NIL (|has| |#4| (-314)) ELT)) (-1564 ((|#4| $ (-479) |#4|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#4| $ (-479)) NIL T ELT)) (-3170 (((-83) $) NIL (|has| |#4| (-711)) ELT)) (-2874 (((-579 |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) NIL (|has| |#4| (-955)) ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#4| (-750)) ELT)) (-2593 (((-579 |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#4| (-750)) ELT)) (-1937 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-1997 (((-824) $) NIL (|has| |#4| (-314)) ELT)) (-2267 (((-2 (|:| |mat| (-626 |#4|)) (|:| |vec| (-1169 |#4|))) (-1169 $) $) NIL (|has| |#4| (-955)) ELT) (((-626 |#4|) (-1169 $)) NIL (|has| |#4| (-955)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| |#4| (-576 (-479))) (|has| |#4| (-955))) ELT) (((-626 (-479)) (-1169 $)) NIL (-12 (|has| |#4| (-576 (-479))) (|has| |#4| (-955))) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-2387 (($ (-824)) NIL (|has| |#4| (-314)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 ((|#4| $) NIL (|has| (-479) (-750)) ELT)) (-2186 (($ $ |#4|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 |#4|) (-579 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-2192 (((-579 |#4|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#4| $ (-479) |#4|) NIL T ELT) ((|#4| $ (-479)) 12 T ELT)) (-3818 ((|#4| $ $) NIL (|has| |#4| (-955)) ELT)) (-1456 (($ (-1169 |#4|)) NIL T ELT)) (-3893 (((-105)) NIL (|has| |#4| (-308)) ELT)) (-3740 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-955)) ELT) (($ $ (-1 |#4| |#4|) (-688)) NIL (|has| |#4| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955)))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955)))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-955))) (-12 (|has| |#4| (-187)) (|has| |#4| (-955)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-955))) (-12 (|has| |#4| (-187)) (|has| |#4| (-955)))) ELT)) (-1934 (((-688) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-1169 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1006)) ELT) (((-766) $) NIL T ELT) (($ (-479)) NIL (OR (-12 (|has| |#4| (-944 (-479))) (|has| |#4| (-1006))) (|has| |#4| (-955))) ELT) (($ (-344 (-479))) NIL (-12 (|has| |#4| (-944 (-344 (-479)))) (|has| |#4| (-1006))) ELT)) (-3110 (((-688)) NIL (|has| |#4| (-955)) CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL (|has| |#4| (-955)) CONST)) (-2654 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-955)) ELT) (($ $ (-1 |#4| |#4|) (-688)) NIL (|has| |#4| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955)))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955)))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#4| (-803 (-1080))) (|has| |#4| (-955))) (-12 (|has| |#4| (-805 (-1080))) (|has| |#4| (-955)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-955))) (-12 (|has| |#4| (-187)) (|has| |#4| (-955)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-188)) (|has| |#4| (-955))) (-12 (|has| |#4| (-187)) (|has| |#4| (-955)))) ELT)) (-2551 (((-83) $ $) NIL (|has| |#4| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#4| (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| |#4| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#4| (-750)) ELT)) (-3931 (($ $ |#4|) NIL (|has| |#4| (-308)) ELT)) (-3819 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-688)) NIL (|has| |#4| (-955)) ELT) (($ $ (-824)) NIL (|has| |#4| (-955)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-479) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-824) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-659)) ELT) (($ |#4| $) NIL (|has| |#4| (-659)) ELT) (($ $ $) NIL (|has| |#4| (-955)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-207 |#1| |#2| |#3| |#4|) (-13 (-193 |#1| |#4|) (-586 |#2|) (-586 |#3|)) (-824) (-955) (-1027 |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) (-586 |#2|)) (T -207)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3689 (($ (-824)) NIL (|has| |#3| (-955)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-2468 (($ $ $) NIL (|has| |#3| (-711)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| |#3| (-314)) ELT)) (-3770 ((|#3| $ (-479) |#3|) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1006)) ELT) (((-3 (-479) #1#) $) NIL (-12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (-12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006))) ELT)) (-3140 ((|#3| $) NIL (|has| |#3| (-1006)) ELT) (((-479) $) NIL (-12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) ELT) (((-344 (-479)) $) NIL (-12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006))) ELT)) (-2266 (((-2 (|:| |mat| (-626 |#3|)) (|:| |vec| (-1169 |#3|))) (-626 $) (-1169 $)) NIL (|has| |#3| (-955)) ELT) (((-626 |#3|) (-626 $)) NIL (|has| |#3| (-955)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955))) ELT) (((-626 (-479)) (-626 $)) NIL (-12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955))) ELT)) (-3449 (((-3 $ #1#) $) NIL (|has| |#3| (-955)) ELT)) (-2979 (($) NIL (|has| |#3| (-314)) ELT)) (-1564 ((|#3| $ (-479) |#3|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#3| $ (-479)) NIL T ELT)) (-3170 (((-83) $) NIL (|has| |#3| (-711)) ELT)) (-2874 (((-579 |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) NIL (|has| |#3| (-955)) ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#3| (-750)) ELT)) (-2593 (((-579 |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#3| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#3| (-750)) ELT)) (-1937 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-1997 (((-824) $) NIL (|has| |#3| (-314)) ELT)) (-2267 (((-2 (|:| |mat| (-626 |#3|)) (|:| |vec| (-1169 |#3|))) (-1169 $) $) NIL (|has| |#3| (-955)) ELT) (((-626 |#3|) (-1169 $)) NIL (|has| |#3| (-955)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955))) ELT) (((-626 (-479)) (-1169 $)) NIL (-12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955))) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-2387 (($ (-824)) NIL (|has| |#3| (-314)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 ((|#3| $) NIL (|has| (-479) (-750)) ELT)) (-2186 (($ $ |#3|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#3|))) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ (-245 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ (-579 |#3|) (-579 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#3| (-1006))) ELT)) (-2192 (((-579 |#3|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#3| $ (-479) |#3|) NIL T ELT) ((|#3| $ (-479)) 11 T ELT)) (-3818 ((|#3| $ $) NIL (|has| |#3| (-955)) ELT)) (-1456 (($ (-1169 |#3|)) NIL T ELT)) (-3893 (((-105)) NIL (|has| |#3| (-308)) ELT)) (-3740 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-955)) ELT) (($ $ (-1 |#3| |#3|) (-688)) NIL (|has| |#3| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955)))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955)))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-955))) (-12 (|has| |#3| (-187)) (|has| |#3| (-955)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-955))) (-12 (|has| |#3| (-187)) (|has| |#3| (-955)))) ELT)) (-1934 (((-688) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#3| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#3| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-1169 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1006)) ELT) (((-766) $) NIL T ELT) (($ (-479)) NIL (OR (-12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) (|has| |#3| (-955))) ELT) (($ (-344 (-479))) NIL (-12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006))) ELT)) (-3110 (((-688)) NIL (|has| |#3| (-955)) CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL (|has| |#3| (-955)) CONST)) (-2654 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-955)) ELT) (($ $ (-1 |#3| |#3|) (-688)) NIL (|has| |#3| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955)))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955)))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#3| (-803 (-1080))) (|has| |#3| (-955))) (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-955))) (-12 (|has| |#3| (-187)) (|has| |#3| (-955)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-188)) (|has| |#3| (-955))) (-12 (|has| |#3| (-187)) (|has| |#3| (-955)))) ELT)) (-2551 (((-83) $ $) NIL (|has| |#3| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#3| (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| |#3| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#3| (-750)) ELT)) (-3931 (($ $ |#3|) NIL (|has| |#3| (-308)) ELT)) (-3819 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-688)) NIL (|has| |#3| (-955)) ELT) (($ $ (-824)) NIL (|has| |#3| (-955)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-479) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-824) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-659)) ELT) (($ |#3| $) NIL (|has| |#3| (-659)) ELT) (($ $ $) NIL (|has| |#3| (-955)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-208 |#1| |#2| |#3|) (-13 (-193 |#1| |#3|) (-586 |#2|)) (-688) (-955) (-586 |#2|)) (T -208)) +NIL +((-1476 (((-579 (-688)) $) 56 T ELT) (((-579 (-688)) $ |#3|) 59 T ELT)) (-1510 (((-688) $) 58 T ELT) (((-688) $ |#3|) 61 T ELT)) (-1472 (($ $) 76 T ELT)) (-3141 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 (-479) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3754 (((-688) $ |#3|) 43 T ELT) (((-688) $) 38 T ELT)) (-1511 (((-1 $ (-688)) |#3|) 15 T ELT) (((-1 $ (-688)) $) 88 T ELT)) (-1474 ((|#4| $) 69 T ELT)) (-1475 (((-83) $) 67 T ELT)) (-1473 (($ $) 75 T ELT)) (-3750 (($ $ (-579 (-245 $))) 111 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-579 |#4|) (-579 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-579 |#4|) (-579 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-579 |#3|) (-579 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-579 |#3|) (-579 |#2|)) 97 T ELT)) (-3740 (($ $ (-579 |#4|) (-579 (-688))) NIL T ELT) (($ $ |#4| (-688)) NIL T ELT) (($ $ (-579 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-1477 (((-579 |#3|) $) 86 T ELT)) (-3930 ((|#5| $) NIL T ELT) (((-688) $ |#4|) NIL T ELT) (((-579 (-688)) $ (-579 |#4|)) NIL T ELT) (((-688) $ |#3|) 49 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-344 (-479))) NIL T ELT) (($ $) NIL T ELT))) +(((-209 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -3928 (|#1| |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3750 (|#1| |#1| (-579 |#3|) (-579 |#2|))) (-15 -3750 (|#1| |#1| |#3| |#2|)) (-15 -3750 (|#1| |#1| (-579 |#3|) (-579 |#1|))) (-15 -3750 (|#1| |#1| |#3| |#1|)) (-15 -1511 ((-1 |#1| (-688)) |#1|)) (-15 -1472 (|#1| |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -1474 (|#4| |#1|)) (-15 -1475 ((-83) |#1|)) (-15 -1510 ((-688) |#1| |#3|)) (-15 -1476 ((-579 (-688)) |#1| |#3|)) (-15 -1510 ((-688) |#1|)) (-15 -1476 ((-579 (-688)) |#1|)) (-15 -3930 ((-688) |#1| |#3|)) (-15 -3754 ((-688) |#1|)) (-15 -3754 ((-688) |#1| |#3|)) (-15 -1477 ((-579 |#3|) |#1|)) (-15 -1511 ((-1 |#1| (-688)) |#3|)) (-15 -3928 (|#1| |#3|)) (-15 -3141 ((-3 |#3| #1="failed") |#1|)) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|) (-688))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3930 ((-579 (-688)) |#1| (-579 |#4|))) (-15 -3930 ((-688) |#1| |#4|)) (-15 -3928 (|#1| |#4|)) (-15 -3141 ((-3 |#4| #1#) |#1|)) (-15 -3750 (|#1| |#1| (-579 |#4|) (-579 |#1|))) (-15 -3750 (|#1| |#1| |#4| |#1|)) (-15 -3750 (|#1| |#1| (-579 |#4|) (-579 |#2|))) (-15 -3750 (|#1| |#1| |#4| |#2|)) (-15 -3750 (|#1| |#1| (-579 |#1|) (-579 |#1|))) (-15 -3750 (|#1| |#1| |#1| |#1|)) (-15 -3750 (|#1| |#1| (-245 |#1|))) (-15 -3750 (|#1| |#1| (-579 (-245 |#1|)))) (-15 -3930 (|#5| |#1|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3928 (|#1| |#2|)) (-15 -3740 (|#1| |#1| |#4|)) (-15 -3740 (|#1| |#1| (-579 |#4|))) (-15 -3740 (|#1| |#1| |#4| (-688))) (-15 -3740 (|#1| |#1| (-579 |#4|) (-579 (-688)))) (-15 -3928 (|#1| (-479))) (-15 -3928 ((-766) |#1|))) (-210 |#2| |#3| |#4| |#5|) (-955) (-750) (-225 |#3|) (-711)) (T -209)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1476 (((-579 (-688)) $) 248 T ELT) (((-579 (-688)) $ |#2|) 246 T ELT)) (-1510 (((-688) $) 247 T ELT) (((-688) $ |#2|) 245 T ELT)) (-3066 (((-579 |#3|) $) 120 T ELT)) (-3068 (((-1075 $) $ |#3|) 135 T ELT) (((-1075 |#1|) $) 134 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 97 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 98 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 100 (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) 122 T ELT) (((-688) $ (-579 |#3|)) 121 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 110 (|has| |#1| (-815)) ELT)) (-3757 (($ $) 108 (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) 107 (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1="failed") (-579 (-1075 $)) (-1075 $)) 113 (|has| |#1| (-815)) ELT)) (-1472 (($ $) 241 T ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-344 (-479)) #2#) $) 175 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #2#) $) 173 (|has| |#1| (-944 (-479))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3140 ((|#1| $) 177 T ELT) (((-344 (-479)) $) 176 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) 174 (|has| |#1| (-944 (-479))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-3738 (($ $ $ |#3|) 118 (|has| |#1| (-144)) ELT)) (-3941 (($ $) 168 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 146 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 145 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 144 T ELT) (((-626 |#1|) (-626 $)) 143 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3485 (($ $) 190 (|has| |#1| (-386)) ELT) (($ $ |#3|) 115 (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) 119 T ELT)) (-3705 (((-83) $) 106 (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| |#4| $) 186 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 94 (-12 (|has| |#3| (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 93 (-12 (|has| |#3| (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-3754 (((-688) $ |#2|) 251 T ELT) (((-688) $) 250 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2405 (((-688) $) 183 T ELT)) (-3069 (($ (-1075 |#1|) |#3|) 127 T ELT) (($ (-1075 $) |#3|) 126 T ELT)) (-2806 (((-579 $) $) 136 T ELT)) (-3919 (((-83) $) 166 T ELT)) (-2878 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-688)) 129 T ELT) (($ $ (-579 |#3|) (-579 (-688))) 128 T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ |#3|) 130 T ELT)) (-2805 ((|#4| $) 184 T ELT) (((-688) $ |#3|) 132 T ELT) (((-579 (-688)) $ (-579 |#3|)) 131 T ELT)) (-1613 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1511 (((-1 $ (-688)) |#2|) 253 T ELT) (((-1 $ (-688)) $) 240 (|has| |#1| (-188)) ELT)) (-3067 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 148 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 147 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 142 T ELT) (((-626 |#1|) (-1169 $)) 141 T ELT)) (-2879 (($ $) 163 T ELT)) (-3158 ((|#1| $) 162 T ELT)) (-1474 ((|#3| $) 243 T ELT)) (-1879 (($ (-579 $)) 104 (|has| |#1| (-386)) ELT) (($ $ $) 103 (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1475 (((-83) $) 244 T ELT)) (-2808 (((-3 (-579 $) #3#) $) 124 T ELT)) (-2807 (((-3 (-579 $) #3#) $) 125 T ELT)) (-2809 (((-3 (-2 (|:| |var| |#3|) (|:| -2388 (-688))) #3#) $) 123 T ELT)) (-1473 (($ $) 242 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1785 (((-83) $) 180 T ELT)) (-1784 ((|#1| $) 181 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 105 (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) 102 (|has| |#1| (-386)) ELT) (($ $ $) 101 (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 112 (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 111 (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) 109 (|has| |#1| (-815)) ELT)) (-3448 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-490)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-579 $) (-579 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-579 |#3|) (-579 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-579 |#3|) (-579 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-188)) ELT) (($ $ (-579 |#2|) (-579 $)) 238 (|has| |#1| (-188)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-188)) ELT) (($ $ (-579 |#2|) (-579 |#1|)) 236 (|has| |#1| (-188)) ELT)) (-3739 (($ $ |#3|) 117 (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 |#3|) (-579 (-688))) 49 T ELT) (($ $ |#3| (-688)) 48 T ELT) (($ $ (-579 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 259 T ELT) (($ $) 235 (|has| |#1| (-187)) ELT) (($ $ (-688)) 233 (|has| |#1| (-187)) ELT) (($ $ (-1080)) 231 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 229 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 228 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 227 (|has| |#1| (-805 (-1080))) ELT)) (-1477 (((-579 |#2|) $) 252 T ELT)) (-3930 ((|#4| $) 164 T ELT) (((-688) $ |#3|) 140 T ELT) (((-579 (-688)) $ (-579 |#3|)) 139 T ELT) (((-688) $ |#2|) 249 T ELT)) (-3954 (((-794 (-324)) $) 92 (-12 (|has| |#3| (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) 91 (-12 (|has| |#3| (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) 90 (-12 (|has| |#3| (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT)) (-2802 ((|#1| $) 189 (|has| |#1| (-386)) ELT) (($ $ |#3|) 116 (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) 114 (-2547 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-344 (-479))) 88 (OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ELT) (($ $) 95 (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) 182 T ELT)) (-3659 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-688)) 138 T ELT) (($ $ (-579 |#3|) (-579 (-688))) 137 T ELT)) (-2687 (((-628 $) $) 89 (OR (-2547 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) 37 T CONST)) (-1611 (($ $ $ (-688)) 187 (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 99 (|has| |#1| (-490)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-579 |#3|) (-579 (-688))) 52 T ELT) (($ $ |#3| (-688)) 51 T ELT) (($ $ (-579 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 257 T ELT) (($ $) 234 (|has| |#1| (-187)) ELT) (($ $ (-688)) 232 (|has| |#1| (-187)) ELT) (($ $ (-1080)) 230 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 226 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 225 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 224 (|has| |#1| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 172 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) 171 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-210 |#1| |#2| |#3| |#4|) (-111) (-955) (-750) (-225 |t#2|) (-711)) (T -210)) +((-1511 (*1 *2 *3) (-12 (-4 *4 (-955)) (-4 *3 (-750)) (-4 *5 (-225 *3)) (-4 *6 (-711)) (-5 *2 (-1 *1 (-688))) (-4 *1 (-210 *4 *3 *5 *6)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-579 *4)))) (-3754 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-955)) (-4 *3 (-750)) (-4 *5 (-225 *3)) (-4 *6 (-711)) (-5 *2 (-688)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-688)))) (-3930 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-955)) (-4 *3 (-750)) (-4 *5 (-225 *3)) (-4 *6 (-711)) (-5 *2 (-688)))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-579 (-688))))) (-1510 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-688)))) (-1476 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-955)) (-4 *3 (-750)) (-4 *5 (-225 *3)) (-4 *6 (-711)) (-5 *2 (-579 (-688))))) (-1510 (*1 *2 *1 *3) (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-955)) (-4 *3 (-750)) (-4 *5 (-225 *3)) (-4 *6 (-711)) (-5 *2 (-688)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-83)))) (-1474 (*1 *2 *1) (-12 (-4 *1 (-210 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *5 (-711)) (-4 *2 (-225 *4)))) (-1473 (*1 *1 *1) (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-955)) (-4 *3 (-750)) (-4 *4 (-225 *3)) (-4 *5 (-711)))) (-1472 (*1 *1 *1) (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-955)) (-4 *3 (-750)) (-4 *4 (-225 *3)) (-4 *5 (-711)))) (-1511 (*1 *2 *1) (-12 (-4 *3 (-188)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-1 *1 (-688))) (-4 *1 (-210 *3 *4 *5 *6))))) +(-13 (-855 |t#1| |t#4| |t#3|) (-182 |t#1|) (-944 |t#2|) (-10 -8 (-15 -1511 ((-1 $ (-688)) |t#2|)) (-15 -1477 ((-579 |t#2|) $)) (-15 -3754 ((-688) $ |t#2|)) (-15 -3754 ((-688) $)) (-15 -3930 ((-688) $ |t#2|)) (-15 -1476 ((-579 (-688)) $)) (-15 -1510 ((-688) $)) (-15 -1476 ((-579 (-688)) $ |t#2|)) (-15 -1510 ((-688) $ |t#2|)) (-15 -1475 ((-83) $)) (-15 -1474 (|t#3| $)) (-15 -1473 ($ $)) (-15 -1472 ($ $)) (IF (|has| |t#1| (-188)) (PROGN (-6 (-448 |t#2| |t#1|)) (-6 (-448 |t#2| $)) (-6 (-256 $)) (-15 -1511 ((-1 $ (-688)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-551 |#2|) . T) ((-551 |#3|) . T) ((-551 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-549 (-468)) -12 (|has| |#1| (-549 (-468))) (|has| |#3| (-549 (-468)))) ((-549 (-794 (-324))) -12 (|has| |#1| (-549 (-794 (-324)))) (|has| |#3| (-549 (-794 (-324))))) ((-549 (-794 (-479))) -12 (|has| |#1| (-549 (-794 (-479)))) (|has| |#3| (-549 (-794 (-479))))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-242) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-256 $) . T) ((-273 |#1| |#4|) . T) ((-323 |#1|) . T) ((-349 |#1|) . T) ((-386) OR (|has| |#1| (-815)) (|has| |#1| (-386))) ((-448 |#2| |#1|) |has| |#1| (-188)) ((-448 |#2| $) |has| |#1| (-188)) ((-448 |#3| |#1|) . T) ((-448 |#3| $) . T) ((-448 $ $) . T) ((-490) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 (-479)) |has| |#1| (-576 (-479))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-576 (-479)) |has| |#1| (-576 (-479))) ((-576 |#1|) . T) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-659) . T) ((-800 $ (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-800 $ |#3|) . T) ((-803 (-1080)) |has| |#1| (-803 (-1080))) ((-803 |#3|) . T) ((-805 (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-805 |#3|) . T) ((-790 (-324)) -12 (|has| |#1| (-790 (-324))) (|has| |#3| (-790 (-324)))) ((-790 (-479)) -12 (|has| |#1| (-790 (-479))) (|has| |#3| (-790 (-479)))) ((-855 |#1| |#4| |#3|) . T) ((-815) |has| |#1| (-815)) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-944 |#2|) . T) ((-944 |#3|) . T) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) |has| |#1| (-815))) +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1483 ((|#1| $) 58 T ELT)) (-3306 ((|#1| $) 48 T ELT)) (-3706 (($) 7 T CONST)) (-2987 (($ $) 64 T ELT)) (-2284 (($ $) 52 T ELT)) (-3308 ((|#1| |#1| $) 50 T ELT)) (-3307 ((|#1| $) 49 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3815 (((-688) $) 65 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 43 T ELT)) (-1481 ((|#1| |#1| $) 56 T ELT)) (-1480 ((|#1| |#1| $) 55 T ELT)) (-3591 (($ |#1| $) 44 T ELT)) (-2588 (((-688) $) 59 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-2986 ((|#1| $) 66 T ELT)) (-1479 ((|#1| $) 54 T ELT)) (-1478 ((|#1| $) 53 T ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2989 ((|#1| |#1| $) 62 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-2988 ((|#1| $) 63 T ELT)) (-1484 (($) 61 T ELT) (($ (-579 |#1|)) 60 T ELT)) (-3305 (((-688) $) 47 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1482 ((|#1| $) 57 T ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-2985 ((|#1| $) 67 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-211 |#1|) (-111) (-1119)) (T -211)) +((-1484 (*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119)))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-4 *1 (-211 *3)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-211 *3)) (-4 *3 (-1119)) (-5 *2 (-688)))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119)))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119)))) (-1481 (*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119)))) (-1480 (*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119)))) (-1478 (*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119)))) (-2284 (*1 *1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119))))) +(-13 (-1025 |t#1|) (-902 |t#1|) (-10 -8 (-15 -1484 ($)) (-15 -1484 ($ (-579 |t#1|))) (-15 -2588 ((-688) $)) (-15 -1483 (|t#1| $)) (-15 -1482 (|t#1| $)) (-15 -1481 (|t#1| |t#1| $)) (-15 -1480 (|t#1| |t#1| $)) (-15 -1479 (|t#1| $)) (-15 -1478 (|t#1| $)) (-15 -2284 ($ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-902 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1025 |#1|) . T) ((-1119) . T)) +((-1485 (((-1037 (-177)) (-786 |#1|) (-997 (-324)) (-997 (-324))) 75 T ELT) (((-1037 (-177)) (-786 |#1|) (-997 (-324)) (-997 (-324)) (-579 (-218))) 74 T ELT) (((-1037 (-177)) |#1| (-997 (-324)) (-997 (-324))) 65 T ELT) (((-1037 (-177)) |#1| (-997 (-324)) (-997 (-324)) (-579 (-218))) 64 T ELT) (((-1037 (-177)) (-783 |#1|) (-997 (-324))) 56 T ELT) (((-1037 (-177)) (-783 |#1|) (-997 (-324)) (-579 (-218))) 55 T ELT)) (-1492 (((-1173) (-786 |#1|) (-997 (-324)) (-997 (-324))) 78 T ELT) (((-1173) (-786 |#1|) (-997 (-324)) (-997 (-324)) (-579 (-218))) 77 T ELT) (((-1173) |#1| (-997 (-324)) (-997 (-324))) 68 T ELT) (((-1173) |#1| (-997 (-324)) (-997 (-324)) (-579 (-218))) 67 T ELT) (((-1173) (-783 |#1|) (-997 (-324))) 60 T ELT) (((-1173) (-783 |#1|) (-997 (-324)) (-579 (-218))) 59 T ELT) (((-1172) (-781 |#1|) (-997 (-324))) 47 T ELT) (((-1172) (-781 |#1|) (-997 (-324)) (-579 (-218))) 46 T ELT) (((-1172) |#1| (-997 (-324))) 38 T ELT) (((-1172) |#1| (-997 (-324)) (-579 (-218))) 36 T ELT))) +(((-212 |#1|) (-10 -7 (-15 -1492 ((-1172) |#1| (-997 (-324)) (-579 (-218)))) (-15 -1492 ((-1172) |#1| (-997 (-324)))) (-15 -1492 ((-1172) (-781 |#1|) (-997 (-324)) (-579 (-218)))) (-15 -1492 ((-1172) (-781 |#1|) (-997 (-324)))) (-15 -1492 ((-1173) (-783 |#1|) (-997 (-324)) (-579 (-218)))) (-15 -1492 ((-1173) (-783 |#1|) (-997 (-324)))) (-15 -1485 ((-1037 (-177)) (-783 |#1|) (-997 (-324)) (-579 (-218)))) (-15 -1485 ((-1037 (-177)) (-783 |#1|) (-997 (-324)))) (-15 -1492 ((-1173) |#1| (-997 (-324)) (-997 (-324)) (-579 (-218)))) (-15 -1492 ((-1173) |#1| (-997 (-324)) (-997 (-324)))) (-15 -1485 ((-1037 (-177)) |#1| (-997 (-324)) (-997 (-324)) (-579 (-218)))) (-15 -1485 ((-1037 (-177)) |#1| (-997 (-324)) (-997 (-324)))) (-15 -1492 ((-1173) (-786 |#1|) (-997 (-324)) (-997 (-324)) (-579 (-218)))) (-15 -1492 ((-1173) (-786 |#1|) (-997 (-324)) (-997 (-324)))) (-15 -1485 ((-1037 (-177)) (-786 |#1|) (-997 (-324)) (-997 (-324)) (-579 (-218)))) (-15 -1485 ((-1037 (-177)) (-786 |#1|) (-997 (-324)) (-997 (-324))))) (-13 (-549 (-468)) (-1006))) (T -212)) +((-1485 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-786 *5)) (-5 *4 (-997 (-324))) (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *5)))) (-1485 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-786 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *6)))) (-1492 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-786 *5)) (-5 *4 (-997 (-324))) (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1173)) (-5 *1 (-212 *5)))) (-1492 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-786 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1173)) (-5 *1 (-212 *6)))) (-1485 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-997 (-324))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *3)) (-4 *3 (-13 (-549 (-468)) (-1006))))) (-1485 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *3)) (-4 *3 (-13 (-549 (-468)) (-1006))))) (-1492 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-997 (-324))) (-5 *2 (-1173)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-549 (-468)) (-1006))))) (-1492 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-549 (-468)) (-1006))))) (-1485 (*1 *2 *3 *4) (-12 (-5 *3 (-783 *5)) (-5 *4 (-997 (-324))) (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *5)))) (-1485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *6)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-783 *5)) (-5 *4 (-997 (-324))) (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1173)) (-5 *1 (-212 *5)))) (-1492 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1173)) (-5 *1 (-212 *6)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-781 *5)) (-5 *4 (-997 (-324))) (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1172)) (-5 *1 (-212 *5)))) (-1492 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-781 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1172)) (-5 *1 (-212 *6)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-324))) (-5 *2 (-1172)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-549 (-468)) (-1006))))) (-1492 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-212 *3)) (-4 *3 (-13 (-549 (-468)) (-1006)))))) +((-1486 (((-1 (-848 (-177)) (-177) (-177)) (-1 (-848 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177) (-177))) 158 T ELT)) (-1485 (((-1037 (-177)) (-786 (-1 (-177) (-177) (-177))) (-994 (-324)) (-994 (-324))) 178 T ELT) (((-1037 (-177)) (-786 (-1 (-177) (-177) (-177))) (-994 (-324)) (-994 (-324)) (-579 (-218))) 176 T ELT) (((-1037 (-177)) (-1 (-848 (-177)) (-177) (-177)) (-994 (-324)) (-994 (-324))) 181 T ELT) (((-1037 (-177)) (-1 (-848 (-177)) (-177) (-177)) (-994 (-324)) (-994 (-324)) (-579 (-218))) 177 T ELT) (((-1037 (-177)) (-1 (-177) (-177) (-177)) (-994 (-324)) (-994 (-324))) 169 T ELT) (((-1037 (-177)) (-1 (-177) (-177) (-177)) (-994 (-324)) (-994 (-324)) (-579 (-218))) 168 T ELT) (((-1037 (-177)) (-1 (-848 (-177)) (-177)) (-994 (-324))) 150 T ELT) (((-1037 (-177)) (-1 (-848 (-177)) (-177)) (-994 (-324)) (-579 (-218))) 148 T ELT) (((-1037 (-177)) (-783 (-1 (-177) (-177))) (-994 (-324))) 149 T ELT) (((-1037 (-177)) (-783 (-1 (-177) (-177))) (-994 (-324)) (-579 (-218))) 146 T ELT)) (-1492 (((-1173) (-786 (-1 (-177) (-177) (-177))) (-994 (-324)) (-994 (-324))) 180 T ELT) (((-1173) (-786 (-1 (-177) (-177) (-177))) (-994 (-324)) (-994 (-324)) (-579 (-218))) 179 T ELT) (((-1173) (-1 (-848 (-177)) (-177) (-177)) (-994 (-324)) (-994 (-324))) 183 T ELT) (((-1173) (-1 (-848 (-177)) (-177) (-177)) (-994 (-324)) (-994 (-324)) (-579 (-218))) 182 T ELT) (((-1173) (-1 (-177) (-177) (-177)) (-994 (-324)) (-994 (-324))) 171 T ELT) (((-1173) (-1 (-177) (-177) (-177)) (-994 (-324)) (-994 (-324)) (-579 (-218))) 170 T ELT) (((-1173) (-1 (-848 (-177)) (-177)) (-994 (-324))) 156 T ELT) (((-1173) (-1 (-848 (-177)) (-177)) (-994 (-324)) (-579 (-218))) 155 T ELT) (((-1173) (-783 (-1 (-177) (-177))) (-994 (-324))) 154 T ELT) (((-1173) (-783 (-1 (-177) (-177))) (-994 (-324)) (-579 (-218))) 153 T ELT) (((-1172) (-781 (-1 (-177) (-177))) (-994 (-324))) 118 T ELT) (((-1172) (-781 (-1 (-177) (-177))) (-994 (-324)) (-579 (-218))) 117 T ELT) (((-1172) (-1 (-177) (-177)) (-994 (-324))) 112 T ELT) (((-1172) (-1 (-177) (-177)) (-994 (-324)) (-579 (-218))) 110 T ELT))) +(((-213) (-10 -7 (-15 -1492 ((-1172) (-1 (-177) (-177)) (-994 (-324)) (-579 (-218)))) (-15 -1492 ((-1172) (-1 (-177) (-177)) (-994 (-324)))) (-15 -1492 ((-1172) (-781 (-1 (-177) (-177))) (-994 (-324)) (-579 (-218)))) (-15 -1492 ((-1172) (-781 (-1 (-177) (-177))) (-994 (-324)))) (-15 -1492 ((-1173) (-783 (-1 (-177) (-177))) (-994 (-324)) (-579 (-218)))) (-15 -1492 ((-1173) (-783 (-1 (-177) (-177))) (-994 (-324)))) (-15 -1492 ((-1173) (-1 (-848 (-177)) (-177)) (-994 (-324)) (-579 (-218)))) (-15 -1492 ((-1173) (-1 (-848 (-177)) (-177)) (-994 (-324)))) (-15 -1485 ((-1037 (-177)) (-783 (-1 (-177) (-177))) (-994 (-324)) (-579 (-218)))) (-15 -1485 ((-1037 (-177)) (-783 (-1 (-177) (-177))) (-994 (-324)))) (-15 -1485 ((-1037 (-177)) (-1 (-848 (-177)) (-177)) (-994 (-324)) (-579 (-218)))) (-15 -1485 ((-1037 (-177)) (-1 (-848 (-177)) (-177)) (-994 (-324)))) (-15 -1492 ((-1173) (-1 (-177) (-177) (-177)) (-994 (-324)) (-994 (-324)) (-579 (-218)))) (-15 -1492 ((-1173) (-1 (-177) (-177) (-177)) (-994 (-324)) (-994 (-324)))) (-15 -1485 ((-1037 (-177)) (-1 (-177) (-177) (-177)) (-994 (-324)) (-994 (-324)) (-579 (-218)))) (-15 -1485 ((-1037 (-177)) (-1 (-177) (-177) (-177)) (-994 (-324)) (-994 (-324)))) (-15 -1492 ((-1173) (-1 (-848 (-177)) (-177) (-177)) (-994 (-324)) (-994 (-324)) (-579 (-218)))) (-15 -1492 ((-1173) (-1 (-848 (-177)) (-177) (-177)) (-994 (-324)) (-994 (-324)))) (-15 -1485 ((-1037 (-177)) (-1 (-848 (-177)) (-177) (-177)) (-994 (-324)) (-994 (-324)) (-579 (-218)))) (-15 -1485 ((-1037 (-177)) (-1 (-848 (-177)) (-177) (-177)) (-994 (-324)) (-994 (-324)))) (-15 -1492 ((-1173) (-786 (-1 (-177) (-177) (-177))) (-994 (-324)) (-994 (-324)) (-579 (-218)))) (-15 -1492 ((-1173) (-786 (-1 (-177) (-177) (-177))) (-994 (-324)) (-994 (-324)))) (-15 -1485 ((-1037 (-177)) (-786 (-1 (-177) (-177) (-177))) (-994 (-324)) (-994 (-324)) (-579 (-218)))) (-15 -1485 ((-1037 (-177)) (-786 (-1 (-177) (-177) (-177))) (-994 (-324)) (-994 (-324)))) (-15 -1486 ((-1 (-848 (-177)) (-177) (-177)) (-1 (-848 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177) (-177)))))) (T -213)) +((-1486 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-848 (-177)) (-177) (-177))) (-5 *3 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-786 (-1 (-177) (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-786 (-1 (-177) (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-786 (-1 (-177) (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-786 (-1 (-177) (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-848 (-177)) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-848 (-177)) (-177))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4) (-12 (-5 *3 (-783 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-848 (-177)) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-848 (-177)) (-177))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-783 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-781 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-781 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1172)) (-5 *1 (-213)))) (-1492 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-213))))) +((-1492 (((-1172) (-245 |#2|) (-1080) (-1080) (-579 (-218))) 102 T ELT))) +(((-214 |#1| |#2|) (-10 -7 (-15 -1492 ((-1172) (-245 |#2|) (-1080) (-1080) (-579 (-218))))) (-13 (-490) (-750) (-944 (-479))) (-358 |#1|)) (T -214)) +((-1492 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-245 *7)) (-5 *4 (-1080)) (-5 *5 (-579 (-218))) (-4 *7 (-358 *6)) (-4 *6 (-13 (-490) (-750) (-944 (-479)))) (-5 *2 (-1172)) (-5 *1 (-214 *6 *7))))) +((-1489 (((-479) (-479)) 71 T ELT)) (-1490 (((-479) (-479)) 72 T ELT)) (-1491 (((-177) (-177)) 73 T ELT)) (-1488 (((-1173) (-1 (-140 (-177)) (-140 (-177))) (-994 (-177)) (-994 (-177))) 70 T ELT)) (-1487 (((-1173) (-1 (-140 (-177)) (-140 (-177))) (-994 (-177)) (-994 (-177)) (-83)) 68 T ELT))) +(((-215) (-10 -7 (-15 -1487 ((-1173) (-1 (-140 (-177)) (-140 (-177))) (-994 (-177)) (-994 (-177)) (-83))) (-15 -1488 ((-1173) (-1 (-140 (-177)) (-140 (-177))) (-994 (-177)) (-994 (-177)))) (-15 -1489 ((-479) (-479))) (-15 -1490 ((-479) (-479))) (-15 -1491 ((-177) (-177))))) (T -215)) +((-1491 (*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-215)))) (-1490 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-215)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-215)))) (-1488 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-994 (-177))) (-5 *2 (-1173)) (-5 *1 (-215)))) (-1487 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-994 (-177))) (-5 *5 (-83)) (-5 *2 (-1173)) (-5 *1 (-215))))) +((-3928 (((-997 (-324)) (-997 (-261 |#1|))) 16 T ELT))) +(((-216 |#1|) (-10 -7 (-15 -3928 ((-997 (-324)) (-997 (-261 |#1|))))) (-13 (-750) (-490) (-549 (-324)))) (T -216)) +((-3928 (*1 *2 *3) (-12 (-5 *3 (-997 (-261 *4))) (-4 *4 (-13 (-750) (-490) (-549 (-324)))) (-5 *2 (-997 (-324))) (-5 *1 (-216 *4))))) +((-1492 (((-1173) (-579 (-177)) (-579 (-177)) (-579 (-177)) (-579 (-218))) 23 T ELT) (((-1173) (-579 (-177)) (-579 (-177)) (-579 (-177))) 24 T ELT) (((-1172) (-579 (-848 (-177))) (-579 (-218))) 16 T ELT) (((-1172) (-579 (-848 (-177)))) 17 T ELT) (((-1172) (-579 (-177)) (-579 (-177)) (-579 (-218))) 20 T ELT) (((-1172) (-579 (-177)) (-579 (-177))) 21 T ELT))) +(((-217) (-10 -7 (-15 -1492 ((-1172) (-579 (-177)) (-579 (-177)))) (-15 -1492 ((-1172) (-579 (-177)) (-579 (-177)) (-579 (-218)))) (-15 -1492 ((-1172) (-579 (-848 (-177))))) (-15 -1492 ((-1172) (-579 (-848 (-177))) (-579 (-218)))) (-15 -1492 ((-1173) (-579 (-177)) (-579 (-177)) (-579 (-177)))) (-15 -1492 ((-1173) (-579 (-177)) (-579 (-177)) (-579 (-177)) (-579 (-218)))))) (T -217)) +((-1492 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-579 (-177))) (-5 *4 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-217)))) (-1492 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-579 (-177))) (-5 *2 (-1173)) (-5 *1 (-217)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-848 (-177)))) (-5 *4 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-217)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-579 (-848 (-177)))) (-5 *2 (-1172)) (-5 *1 (-217)))) (-1492 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-579 (-177))) (-5 *4 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-217)))) (-1492 (*1 *2 *3 *3) (-12 (-5 *3 (-579 (-177))) (-5 *2 (-1172)) (-5 *1 (-217))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3863 (($ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 24 T ELT)) (-1505 (($ (-824)) 81 T ELT)) (-1504 (($ (-824)) 80 T ELT)) (-1760 (($ (-579 (-324))) 87 T ELT)) (-1508 (($ (-324)) 66 T ELT)) (-1507 (($ (-824)) 82 T ELT)) (-1501 (($ (-83)) 33 T ELT)) (-3865 (($ (-1063)) 28 T ELT)) (-1500 (($ (-1063)) 29 T ELT)) (-1506 (($ (-1037 (-177))) 76 T ELT)) (-1916 (($ (-579 (-994 (-324)))) 72 T ELT)) (-1494 (($ (-579 (-994 (-324)))) 68 T ELT) (($ (-579 (-994 (-344 (-479))))) 71 T ELT)) (-1497 (($ (-324)) 38 T ELT) (($ (-777)) 42 T ELT)) (-1493 (((-83) (-579 $) (-1080)) 100 T ELT)) (-1509 (((-3 (-51) "failed") (-579 $) (-1080)) 102 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1496 (($ (-324)) 43 T ELT) (($ (-777)) 44 T ELT)) (-3208 (($ (-1 (-848 (-177)) (-848 (-177)))) 65 T ELT)) (-2253 (($ (-1 (-848 (-177)) (-848 (-177)))) 83 T ELT)) (-1495 (($ (-1 (-177) (-177))) 48 T ELT) (($ (-1 (-177) (-177) (-177))) 52 T ELT) (($ (-1 (-177) (-177) (-177) (-177))) 56 T ELT)) (-3928 (((-766) $) 93 T ELT)) (-1498 (($ (-83)) 34 T ELT) (($ (-579 (-994 (-324)))) 60 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1911 (($ (-83)) 35 T ELT)) (-3041 (((-83) $ $) 97 T ELT))) +(((-218) (-13 (-1006) (-10 -8 (-15 -1911 ($ (-83))) (-15 -1498 ($ (-83))) (-15 -3863 ($ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3865 ($ (-1063))) (-15 -1500 ($ (-1063))) (-15 -1501 ($ (-83))) (-15 -1498 ($ (-579 (-994 (-324))))) (-15 -3208 ($ (-1 (-848 (-177)) (-848 (-177))))) (-15 -1497 ($ (-324))) (-15 -1497 ($ (-777))) (-15 -1496 ($ (-324))) (-15 -1496 ($ (-777))) (-15 -1495 ($ (-1 (-177) (-177)))) (-15 -1495 ($ (-1 (-177) (-177) (-177)))) (-15 -1495 ($ (-1 (-177) (-177) (-177) (-177)))) (-15 -1508 ($ (-324))) (-15 -1494 ($ (-579 (-994 (-324))))) (-15 -1494 ($ (-579 (-994 (-344 (-479)))))) (-15 -1916 ($ (-579 (-994 (-324))))) (-15 -1506 ($ (-1037 (-177)))) (-15 -1504 ($ (-824))) (-15 -1505 ($ (-824))) (-15 -1507 ($ (-824))) (-15 -2253 ($ (-1 (-848 (-177)) (-848 (-177))))) (-15 -1760 ($ (-579 (-324)))) (-15 -1509 ((-3 (-51) "failed") (-579 $) (-1080))) (-15 -1493 ((-83) (-579 $) (-1080)))))) (T -218)) +((-1911 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) (-1498 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) (-3863 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *1 (-218)))) (-3865 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-218)))) (-1500 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-218)))) (-1501 (*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) (-1498 (*1 *1 *2) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-218)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-1 (-848 (-177)) (-848 (-177)))) (-5 *1 (-218)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-218)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-218)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-218)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-218)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-218)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-218)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-218)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-218)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-218)))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-579 (-994 (-344 (-479))))) (-5 *1 (-218)))) (-1916 (*1 *1 *2) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-218)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-1037 (-177))) (-5 *1 (-218)))) (-1504 (*1 *1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-218)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-218)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-218)))) (-2253 (*1 *1 *2) (-12 (-5 *2 (-1 (-848 (-177)) (-848 (-177)))) (-5 *1 (-218)))) (-1760 (*1 *1 *2) (-12 (-5 *2 (-579 (-324))) (-5 *1 (-218)))) (-1509 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-579 (-218))) (-5 *4 (-1080)) (-5 *2 (-51)) (-5 *1 (-218)))) (-1493 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-218))) (-5 *4 (-1080)) (-5 *2 (-83)) (-5 *1 (-218))))) +((-3863 (((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) (-579 (-218)) (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 25 T ELT)) (-1505 (((-824) (-579 (-218)) (-824)) 52 T ELT)) (-1504 (((-824) (-579 (-218)) (-824)) 51 T ELT)) (-3833 (((-579 (-324)) (-579 (-218)) (-579 (-324))) 68 T ELT)) (-1508 (((-324) (-579 (-218)) (-324)) 57 T ELT)) (-1507 (((-824) (-579 (-218)) (-824)) 53 T ELT)) (-1501 (((-83) (-579 (-218)) (-83)) 27 T ELT)) (-3865 (((-1063) (-579 (-218)) (-1063)) 19 T ELT)) (-1500 (((-1063) (-579 (-218)) (-1063)) 26 T ELT)) (-1506 (((-1037 (-177)) (-579 (-218))) 46 T ELT)) (-1916 (((-579 (-994 (-324))) (-579 (-218)) (-579 (-994 (-324)))) 40 T ELT)) (-1502 (((-777) (-579 (-218)) (-777)) 32 T ELT)) (-1503 (((-777) (-579 (-218)) (-777)) 33 T ELT)) (-2253 (((-1 (-848 (-177)) (-848 (-177))) (-579 (-218)) (-1 (-848 (-177)) (-848 (-177)))) 63 T ELT)) (-1499 (((-83) (-579 (-218)) (-83)) 14 T ELT)) (-1911 (((-83) (-579 (-218)) (-83)) 13 T ELT))) +(((-219) (-10 -7 (-15 -1911 ((-83) (-579 (-218)) (-83))) (-15 -1499 ((-83) (-579 (-218)) (-83))) (-15 -3863 ((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) (-579 (-218)) (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3865 ((-1063) (-579 (-218)) (-1063))) (-15 -1500 ((-1063) (-579 (-218)) (-1063))) (-15 -1501 ((-83) (-579 (-218)) (-83))) (-15 -1502 ((-777) (-579 (-218)) (-777))) (-15 -1503 ((-777) (-579 (-218)) (-777))) (-15 -1916 ((-579 (-994 (-324))) (-579 (-218)) (-579 (-994 (-324))))) (-15 -1504 ((-824) (-579 (-218)) (-824))) (-15 -1505 ((-824) (-579 (-218)) (-824))) (-15 -1506 ((-1037 (-177)) (-579 (-218)))) (-15 -1507 ((-824) (-579 (-218)) (-824))) (-15 -1508 ((-324) (-579 (-218)) (-324))) (-15 -2253 ((-1 (-848 (-177)) (-848 (-177))) (-579 (-218)) (-1 (-848 (-177)) (-848 (-177))))) (-15 -3833 ((-579 (-324)) (-579 (-218)) (-579 (-324)))))) (T -219)) +((-3833 (*1 *2 *3 *2) (-12 (-5 *2 (-579 (-324))) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-2253 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-848 (-177)) (-848 (-177)))) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1508 (*1 *2 *3 *2) (-12 (-5 *2 (-324)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1507 (*1 *2 *3 *2) (-12 (-5 *2 (-824)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-219)))) (-1505 (*1 *2 *3 *2) (-12 (-5 *2 (-824)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1504 (*1 *2 *3 *2) (-12 (-5 *2 (-824)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1916 (*1 *2 *3 *2) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1503 (*1 *2 *3 *2) (-12 (-5 *2 (-777)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1502 (*1 *2 *3 *2) (-12 (-5 *2 (-777)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1501 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1500 (*1 *2 *3 *2) (-12 (-5 *2 (-1063)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-3865 (*1 *2 *3 *2) (-12 (-5 *2 (-1063)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-3863 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1499 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) (-1911 (*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) +((-1509 (((-3 |#1| "failed") (-579 (-218)) (-1080)) 17 T ELT))) +(((-220 |#1|) (-10 -7 (-15 -1509 ((-3 |#1| "failed") (-579 (-218)) (-1080)))) (-1119)) (T -220)) +((-1509 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-579 (-218))) (-5 *4 (-1080)) (-5 *1 (-220 *2)) (-4 *2 (-1119))))) +((-3740 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-688)) 11 T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) 19 T ELT) (($ $ (-688)) NIL T ELT) (($ $) 16 T ELT)) (-2654 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-688)) 14 T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $) NIL T ELT))) +(((-221 |#1| |#2|) (-10 -7 (-15 -3740 (|#1| |#1|)) (-15 -2654 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-688))) (-15 -2654 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -2654 (|#1| |#1| (-1080))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -2654 (|#1| |#1| (-579 (-1080)))) (-15 -2654 (|#1| |#1| (-1080) (-688))) (-15 -2654 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -2654 (|#1| |#1| (-1 |#2| |#2|) (-688))) (-15 -2654 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|) (-688))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|)))) (-222 |#2|) (-1119)) (T -221)) +NIL +((-3740 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 22 T ELT) (($ $ (-579 (-1080)) (-579 (-688))) 16 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 15 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 14 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080)) 12 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-688)) 10 (|has| |#1| (-187)) ELT) (($ $) 8 (|has| |#1| (-187)) ELT)) (-2654 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 20 T ELT) (($ $ (-579 (-1080)) (-579 (-688))) 19 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 18 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 17 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080)) 13 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-688)) 11 (|has| |#1| (-187)) ELT) (($ $) 9 (|has| |#1| (-187)) ELT))) +(((-222 |#1|) (-111) (-1119)) (T -222)) +((-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1119)))) (-3740 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-688)) (-4 *1 (-222 *4)) (-4 *4 (-1119)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1119)))) (-2654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-688)) (-4 *1 (-222 *4)) (-4 *4 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -3740 ($ $ (-1 |t#1| |t#1|))) (-15 -3740 ($ $ (-1 |t#1| |t#1|) (-688))) (-15 -2654 ($ $ (-1 |t#1| |t#1|))) (-15 -2654 ($ $ (-1 |t#1| |t#1|) (-688))) (IF (|has| |t#1| (-187)) (-6 (-187)) |%noBranch|) (IF (|has| |t#1| (-805 (-1080))) (-6 (-805 (-1080))) |%noBranch|))) +(((-184 $) |has| |#1| (-187)) ((-187) |has| |#1| (-187)) ((-800 $ (-1080)) |has| |#1| (-805 (-1080))) ((-805 (-1080)) |has| |#1| (-805 (-1080))) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1476 (((-579 (-688)) $) NIL T ELT) (((-579 (-688)) $ |#2|) NIL T ELT)) (-1510 (((-688) $) NIL T ELT) (((-688) $ |#2|) NIL T ELT)) (-3066 (((-579 |#3|) $) NIL T ELT)) (-3068 (((-1075 $) $ |#3|) NIL T ELT) (((-1075 |#1|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 |#3|)) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-1472 (($ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1029 |#1| |#2|) #1#) $) 23 T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1029 |#1| |#2|) $) NIL T ELT)) (-3738 (($ $ $ |#3|) NIL (|has| |#1| (-144)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT) (($ $ |#3|) NIL (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| (-464 |#3|) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| |#1| (-790 (-324))) (|has| |#3| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| |#1| (-790 (-479))) (|has| |#3| (-790 (-479)))) ELT)) (-3754 (((-688) $ |#2|) NIL T ELT) (((-688) $) 10 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3069 (($ (-1075 |#1|) |#3|) NIL T ELT) (($ (-1075 $) |#3|) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-464 |#3|)) NIL T ELT) (($ $ |#3| (-688)) NIL T ELT) (($ $ (-579 |#3|) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ |#3|) NIL T ELT)) (-2805 (((-464 |#3|) $) NIL T ELT) (((-688) $ |#3|) NIL T ELT) (((-579 (-688)) $ (-579 |#3|)) NIL T ELT)) (-1613 (($ (-1 (-464 |#3|) (-464 |#3|)) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1511 (((-1 $ (-688)) |#2|) NIL T ELT) (((-1 $ (-688)) $) NIL (|has| |#1| (-188)) ELT)) (-3067 (((-3 |#3| #1#) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1474 ((|#3| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1475 (((-83) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| |#3|) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-1473 (($ $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-815)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-579 |#3|) (-579 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-579 |#3|) (-579 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-188)) ELT) (($ $ (-579 |#2|) (-579 $)) NIL (|has| |#1| (-188)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-579 |#2|) (-579 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3739 (($ $ |#3|) NIL (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 |#3|) (-579 (-688))) NIL T ELT) (($ $ |#3| (-688)) NIL T ELT) (($ $ (-579 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT)) (-1477 (((-579 |#2|) $) NIL T ELT)) (-3930 (((-464 |#3|) $) NIL T ELT) (((-688) $ |#3|) NIL T ELT) (((-579 (-688)) $ (-579 |#3|)) NIL T ELT) (((-688) $ |#2|) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| |#1| (-549 (-794 (-324)))) (|has| |#3| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| |#1| (-549 (-794 (-479)))) (|has| |#3| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| |#1| (-549 (-468))) (|has| |#3| (-549 (-468)))) ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT) (($ $ |#3|) NIL (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1029 |#1| |#2|)) 32 T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-464 |#3|)) NIL T ELT) (($ $ |#3| (-688)) NIL T ELT) (($ $ (-579 |#3|) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-579 |#3|) (-579 (-688))) NIL T ELT) (($ $ |#3| (-688)) NIL T ELT) (($ $ (-579 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-223 |#1| |#2| |#3|) (-13 (-210 |#1| |#2| |#3| (-464 |#3|)) (-944 (-1029 |#1| |#2|))) (-955) (-750) (-225 |#2|)) (T -223)) +NIL +((-1510 (((-688) $) 37 T ELT)) (-3141 (((-3 |#2| "failed") $) 22 T ELT)) (-3140 ((|#2| $) 33 T ELT)) (-3740 (($ $ (-688)) 18 T ELT) (($ $) 14 T ELT)) (-3928 (((-766) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3041 (((-83) $ $) 26 T ELT)) (-2670 (((-83) $ $) 36 T ELT))) +(((-224 |#1| |#2|) (-10 -7 (-15 -1510 ((-688) |#1|)) (-15 -3928 (|#1| |#2|)) (-15 -3141 ((-3 |#2| "failed") |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3740 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-688))) (-15 -2670 ((-83) |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -3041 ((-83) |#1| |#1|))) (-225 |#2|) (-750)) (T -224)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-1510 (((-688) $) 26 T ELT)) (-3813 ((|#1| $) 27 T ELT)) (-3141 (((-3 |#1| "failed") $) 31 T ELT)) (-3140 ((|#1| $) 32 T ELT)) (-3754 (((-688) $) 28 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-1511 (($ |#1| (-688)) 29 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3740 (($ $ (-688)) 35 T ELT) (($ $) 33 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2654 (($ $ (-688)) 36 T ELT) (($ $) 34 T ELT)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT))) +(((-225 |#1|) (-111) (-750)) (T -225)) +((-1511 (*1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-225 *2)) (-4 *2 (-750)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-750)) (-5 *2 (-688)))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-750)))) (-1510 (*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-750)) (-5 *2 (-688))))) +(-13 (-750) (-187) (-944 |t#1|) (-10 -8 (-15 -1511 ($ |t#1| (-688))) (-15 -3754 ((-688) $)) (-15 -3813 (|t#1| $)) (-15 -1510 ((-688) $)))) +(((-72) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-184 $) . T) ((-187) . T) ((-750) . T) ((-753) . T) ((-944 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1513 (((-579 (-479)) $) 28 T ELT)) (-3930 (((-688) $) 26 T ELT)) (-3928 (((-766) $) 32 T ELT) (($ (-579 (-479))) 22 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1512 (($ (-688)) 29 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 11 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 18 T ELT))) +(((-226) (-13 (-750) (-10 -8 (-15 -3928 ($ (-579 (-479)))) (-15 -3930 ((-688) $)) (-15 -1513 ((-579 (-479)) $)) (-15 -1512 ($ (-688)))))) (T -226)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-226)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-226)))) (-1513 (*1 *2 *1) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-226)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-226))))) +((-3474 ((|#2| |#2|) 77 T ELT)) (-3621 ((|#2| |#2|) 65 T ELT)) (-1542 (((-3 |#2| "failed") |#2| (-579 (-2 (|:| |func| |#2|) (|:| |pole| (-83))))) 123 T ELT)) (-3472 ((|#2| |#2|) 75 T ELT)) (-3620 ((|#2| |#2|) 63 T ELT)) (-3476 ((|#2| |#2|) 79 T ELT)) (-3619 ((|#2| |#2|) 67 T ELT)) (-3609 ((|#2|) 46 T ELT)) (-3577 (((-84) (-84)) 97 T ELT)) (-3924 ((|#2| |#2|) 61 T ELT)) (-1543 (((-83) |#2|) 146 T ELT)) (-1532 ((|#2| |#2|) 193 T ELT)) (-1520 ((|#2| |#2|) 169 T ELT)) (-1515 ((|#2|) 59 T ELT)) (-1514 ((|#2|) 58 T ELT)) (-1530 ((|#2| |#2|) 189 T ELT)) (-1518 ((|#2| |#2|) 165 T ELT)) (-1534 ((|#2| |#2|) 197 T ELT)) (-1522 ((|#2| |#2|) 173 T ELT)) (-1517 ((|#2| |#2|) 161 T ELT)) (-1516 ((|#2| |#2|) 163 T ELT)) (-1535 ((|#2| |#2|) 199 T ELT)) (-1523 ((|#2| |#2|) 175 T ELT)) (-1533 ((|#2| |#2|) 195 T ELT)) (-1521 ((|#2| |#2|) 171 T ELT)) (-1531 ((|#2| |#2|) 191 T ELT)) (-1519 ((|#2| |#2|) 167 T ELT)) (-1538 ((|#2| |#2|) 205 T ELT)) (-1526 ((|#2| |#2|) 181 T ELT)) (-1536 ((|#2| |#2|) 201 T ELT)) (-1524 ((|#2| |#2|) 177 T ELT)) (-1540 ((|#2| |#2|) 209 T ELT)) (-1528 ((|#2| |#2|) 185 T ELT)) (-1541 ((|#2| |#2|) 211 T ELT)) (-1529 ((|#2| |#2|) 187 T ELT)) (-1539 ((|#2| |#2|) 207 T ELT)) (-1527 ((|#2| |#2|) 183 T ELT)) (-1537 ((|#2| |#2|) 203 T ELT)) (-1525 ((|#2| |#2|) 179 T ELT)) (-3925 ((|#2| |#2|) 62 T ELT)) (-3477 ((|#2| |#2|) 80 T ELT)) (-3618 ((|#2| |#2|) 68 T ELT)) (-3475 ((|#2| |#2|) 78 T ELT)) (-3617 ((|#2| |#2|) 66 T ELT)) (-3473 ((|#2| |#2|) 76 T ELT)) (-3616 ((|#2| |#2|) 64 T ELT)) (-2241 (((-83) (-84)) 95 T ELT)) (-3480 ((|#2| |#2|) 83 T ELT)) (-3468 ((|#2| |#2|) 71 T ELT)) (-3478 ((|#2| |#2|) 81 T ELT)) (-3466 ((|#2| |#2|) 69 T ELT)) (-3482 ((|#2| |#2|) 85 T ELT)) (-3470 ((|#2| |#2|) 73 T ELT)) (-3483 ((|#2| |#2|) 86 T ELT)) (-3471 ((|#2| |#2|) 74 T ELT)) (-3481 ((|#2| |#2|) 84 T ELT)) (-3469 ((|#2| |#2|) 72 T ELT)) (-3479 ((|#2| |#2|) 82 T ELT)) (-3467 ((|#2| |#2|) 70 T ELT))) +(((-227 |#1| |#2|) (-10 -7 (-15 -3925 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3620 (|#2| |#2|)) (-15 -3616 (|#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -3617 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -3618 (|#2| |#2|)) (-15 -3466 (|#2| |#2|)) (-15 -3467 (|#2| |#2|)) (-15 -3468 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3470 (|#2| |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3472 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3475 (|#2| |#2|)) (-15 -3476 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3478 (|#2| |#2|)) (-15 -3479 (|#2| |#2|)) (-15 -3480 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -3482 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3609 (|#2|)) (-15 -2241 ((-83) (-84))) (-15 -3577 ((-84) (-84))) (-15 -1514 (|#2|)) (-15 -1515 (|#2|)) (-15 -1516 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -1518 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1520 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1522 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1525 (|#2| |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 ((-3 |#2| "failed") |#2| (-579 (-2 (|:| |func| |#2|) (|:| |pole| (-83)))))) (-15 -1543 ((-83) |#2|))) (-490) (-13 (-358 |#1|) (-909))) (T -227)) +((-1543 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-227 *4 *3)) (-4 *3 (-13 (-358 *4) (-909))))) (-1542 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-579 (-2 (|:| |func| *2) (|:| |pole| (-83))))) (-4 *2 (-13 (-358 *4) (-909))) (-4 *4 (-490)) (-5 *1 (-227 *4 *2)))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1522 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1520 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1518 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1516 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-1515 (*1 *2) (-12 (-4 *2 (-13 (-358 *3) (-909))) (-5 *1 (-227 *3 *2)) (-4 *3 (-490)))) (-1514 (*1 *2) (-12 (-4 *2 (-13 (-358 *3) (-909))) (-5 *1 (-227 *3 *2)) (-4 *3 (-490)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-227 *3 *4)) (-4 *4 (-13 (-358 *3) (-909))))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-227 *4 *5)) (-4 *5 (-13 (-358 *4) (-909))))) (-3609 (*1 *2) (-12 (-4 *2 (-13 (-358 *3) (-909))) (-5 *1 (-227 *3 *2)) (-4 *3 (-490)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3616 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) +((-1546 (((-3 |#2| "failed") (-579 (-546 |#2|)) |#2| (-1080)) 151 T ELT)) (-1548 ((|#2| (-344 (-479)) |#2|) 49 T ELT)) (-1547 ((|#2| |#2| (-546 |#2|)) 144 T ELT)) (-1544 (((-2 (|:| |func| |#2|) (|:| |kers| (-579 (-546 |#2|))) (|:| |vals| (-579 |#2|))) |#2| (-1080)) 143 T ELT)) (-1545 ((|#2| |#2| (-1080)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2428 ((|#2| |#2| (-1080)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-228 |#1| |#2|) (-10 -7 (-15 -2428 (|#2| |#2|)) (-15 -2428 (|#2| |#2| (-1080))) (-15 -1544 ((-2 (|:| |func| |#2|) (|:| |kers| (-579 (-546 |#2|))) (|:| |vals| (-579 |#2|))) |#2| (-1080))) (-15 -1545 (|#2| |#2|)) (-15 -1545 (|#2| |#2| (-1080))) (-15 -1546 ((-3 |#2| "failed") (-579 (-546 |#2|)) |#2| (-1080))) (-15 -1547 (|#2| |#2| (-546 |#2|))) (-15 -1548 (|#2| (-344 (-479)) |#2|))) (-13 (-490) (-944 (-479)) (-576 (-479))) (-13 (-27) (-1105) (-358 |#1|))) (T -228)) +((-1548 (*1 *2 *3 *2) (-12 (-5 *3 (-344 (-479))) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4))))) (-1547 (*1 *2 *2 *3) (-12 (-5 *3 (-546 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4))) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *4 *2)))) (-1546 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-579 (-546 *2))) (-5 *4 (-1080)) (-4 *2 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *5 *2)))) (-1545 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *3))))) (-1544 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-579 (-546 *3))) (|:| |vals| (-579 *3)))) (-5 *1 (-228 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) (-2428 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4))))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *3)))))) +((-2960 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3474 ((|#3| |#3|) 142 T ELT)) (-2948 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3621 ((|#3| |#3|) 132 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3472 ((|#3| |#3|) 140 T ELT)) (-2946 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3620 ((|#3| |#3|) 130 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3476 ((|#3| |#3|) 144 T ELT)) (-2950 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3619 ((|#3| |#3|) 134 T ELT)) (-2943 (((-3 |#3| #1#) |#3| (-688)) 41 T ELT)) (-2945 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3924 ((|#3| |#3|) 129 T ELT)) (-2944 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3925 ((|#3| |#3|) 128 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3477 ((|#3| |#3|) 145 T ELT)) (-2951 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3618 ((|#3| |#3|) 135 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3475 ((|#3| |#3|) 143 T ELT)) (-2949 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3617 ((|#3| |#3|) 133 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3473 ((|#3| |#3|) 141 T ELT)) (-2947 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3616 ((|#3| |#3|) 131 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3480 ((|#3| |#3|) 148 T ELT)) (-2954 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3468 ((|#3| |#3|) 152 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3478 ((|#3| |#3|) 146 T ELT)) (-2952 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3466 ((|#3| |#3|) 136 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3482 ((|#3| |#3|) 150 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3470 ((|#3| |#3|) 138 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3483 ((|#3| |#3|) 151 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3471 ((|#3| |#3|) 139 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3481 ((|#3| |#3|) 149 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3469 ((|#3| |#3|) 153 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3479 ((|#3| |#3|) 147 T ELT)) (-2953 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3467 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-344 (-479))) 47 (|has| |#1| (-308)) ELT))) +(((-229 |#1| |#2| |#3|) (-13 (-890 |#3|) (-10 -7 (IF (|has| |#1| (-308)) (-15 ** (|#3| |#3| (-344 (-479)))) |%noBranch|) (-15 -3925 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -3616 (|#3| |#3|)) (-15 -3621 (|#3| |#3|)) (-15 -3617 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3466 (|#3| |#3|)) (-15 -3467 (|#3| |#3|)) (-15 -3468 (|#3| |#3|)) (-15 -3469 (|#3| |#3|)) (-15 -3470 (|#3| |#3|)) (-15 -3471 (|#3| |#3|)) (-15 -3472 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3475 (|#3| |#3|)) (-15 -3476 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)))) (-38 (-344 (-479))) (-1162 |#1|) (-1133 |#1| |#2|)) (T -229)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-344 (-479))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1162 *4)) (-5 *1 (-229 *4 *5 *2)) (-4 *2 (-1133 *4 *5)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3616 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) (-4 *2 (-1133 *3 *4))))) +((-2960 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3474 ((|#3| |#3|) 137 T ELT)) (-2948 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3621 ((|#3| |#3|) 125 T ELT)) (-2958 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3472 ((|#3| |#3|) 135 T ELT)) (-2946 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3620 ((|#3| |#3|) 123 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3476 ((|#3| |#3|) 139 T ELT)) (-2950 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3619 ((|#3| |#3|) 127 T ELT)) (-2943 (((-3 |#3| #1#) |#3| (-688)) 38 T ELT)) (-2945 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3924 ((|#3| |#3|) 111 T ELT)) (-2944 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3925 ((|#3| |#3|) 122 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3477 ((|#3| |#3|) 140 T ELT)) (-2951 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3618 ((|#3| |#3|) 128 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3475 ((|#3| |#3|) 138 T ELT)) (-2949 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3617 ((|#3| |#3|) 126 T ELT)) (-2959 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3473 ((|#3| |#3|) 136 T ELT)) (-2947 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3616 ((|#3| |#3|) 124 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3480 ((|#3| |#3|) 143 T ELT)) (-2954 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3468 ((|#3| |#3|) 131 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3478 ((|#3| |#3|) 141 T ELT)) (-2952 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3466 ((|#3| |#3|) 129 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3482 ((|#3| |#3|) 145 T ELT)) (-2956 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3470 ((|#3| |#3|) 133 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3483 ((|#3| |#3|) 146 T ELT)) (-2957 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3471 ((|#3| |#3|) 134 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3481 ((|#3| |#3|) 144 T ELT)) (-2955 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3469 ((|#3| |#3|) 132 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3479 ((|#3| |#3|) 142 T ELT)) (-2953 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3467 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-344 (-479))) 44 (|has| |#1| (-308)) ELT))) +(((-230 |#1| |#2| |#3| |#4|) (-13 (-890 |#3|) (-10 -7 (IF (|has| |#1| (-308)) (-15 ** (|#3| |#3| (-344 (-479)))) |%noBranch|) (-15 -3925 (|#3| |#3|)) (-15 -3924 (|#3| |#3|)) (-15 -3620 (|#3| |#3|)) (-15 -3616 (|#3| |#3|)) (-15 -3621 (|#3| |#3|)) (-15 -3617 (|#3| |#3|)) (-15 -3619 (|#3| |#3|)) (-15 -3618 (|#3| |#3|)) (-15 -3466 (|#3| |#3|)) (-15 -3467 (|#3| |#3|)) (-15 -3468 (|#3| |#3|)) (-15 -3469 (|#3| |#3|)) (-15 -3470 (|#3| |#3|)) (-15 -3471 (|#3| |#3|)) (-15 -3472 (|#3| |#3|)) (-15 -3473 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3475 (|#3| |#3|)) (-15 -3476 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3478 (|#3| |#3|)) (-15 -3479 (|#3| |#3|)) (-15 -3480 (|#3| |#3|)) (-15 -3481 (|#3| |#3|)) (-15 -3482 (|#3| |#3|)) (-15 -3483 (|#3| |#3|)))) (-38 (-344 (-479))) (-1131 |#1|) (-1154 |#1| |#2|) (-890 |#2|)) (T -230)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-344 (-479))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1131 *4)) (-5 *1 (-230 *4 *5 *2 *6)) (-4 *2 (-1154 *4 *5)) (-4 *6 (-890 *5)))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3616 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3467 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3468 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3475 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3476 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3478 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3479 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3480 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3482 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4))))) +((-1551 (((-83) $) 20 T ELT)) (-1553 (((-1085) $) 9 T ELT)) (-3551 (((-3 (-440) #1="failed") $) 15 T ELT)) (-3550 (((-3 (-579 $) #1#) $) NIL T ELT)) (-1550 (((-3 (-440) #1#) $) 21 T ELT)) (-1552 (((-3 (-1008) #1#) $) 19 T ELT)) (-3935 (((-83) $) 17 T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1549 (((-83) $) 10 T ELT))) +(((-231) (-13 (-548 (-766)) (-10 -8 (-15 -1553 ((-1085) $)) (-15 -3935 ((-83) $)) (-15 -1552 ((-3 (-1008) #1="failed") $)) (-15 -1551 ((-83) $)) (-15 -1550 ((-3 (-440) #1#) $)) (-15 -1549 ((-83) $)) (-15 -3551 ((-3 (-440) #1#) $)) (-15 -3550 ((-3 (-579 $) #1#) $))))) (T -231)) +((-1553 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-231)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) (-1552 (*1 *2 *1) (|partial| -12 (-5 *2 (-1008)) (-5 *1 (-231)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) (-1550 (*1 *2 *1) (|partial| -12 (-5 *2 (-440)) (-5 *1 (-231)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) (-3551 (*1 *2 *1) (|partial| -12 (-5 *2 (-440)) (-5 *1 (-231)))) (-3550 (*1 *2 *1) (|partial| -12 (-5 *2 (-579 (-231))) (-5 *1 (-231))))) +((-1555 (((-527) $) 10 T ELT)) (-1556 (((-517) $) 8 T ELT)) (-1554 (((-243) $) 12 T ELT)) (-1557 (($ (-517) (-527) (-243)) NIL T ELT)) (-3928 (((-766) $) 19 T ELT))) +(((-232) (-13 (-548 (-766)) (-10 -8 (-15 -1557 ($ (-517) (-527) (-243))) (-15 -1556 ((-517) $)) (-15 -1555 ((-527) $)) (-15 -1554 ((-243) $))))) (T -232)) +((-1557 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-517)) (-5 *3 (-527)) (-5 *4 (-243)) (-5 *1 (-232)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-232)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-527)) (-5 *1 (-232)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-243)) (-5 *1 (-232))))) +((-3692 (($ (-1 (-83) |#2|) $) 24 T ELT)) (-1341 (($ $) 38 T ELT)) (-3387 (($ (-1 (-83) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3388 (($ |#2| $) 34 T ELT) (($ (-1 (-83) |#2|) $) 18 T ELT)) (-2841 (($ (-1 (-83) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2291 (($ |#2| $ (-479)) 20 T ELT) (($ $ $ (-479)) 22 T ELT)) (-2292 (($ $ (-479)) 11 T ELT) (($ $ (-1136 (-479))) 14 T ELT)) (-3773 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3784 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-579 $)) NIL T ELT))) +(((-233 |#1| |#2|) (-10 -7 (-15 -2841 (|#1| |#1| |#1|)) (-15 -3387 (|#1| |#2| |#1|)) (-15 -2841 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -3387 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3773 (|#1| |#1| |#1|)) (-15 -3773 (|#1| |#1| |#2|)) (-15 -2291 (|#1| |#1| |#1| (-479))) (-15 -2291 (|#1| |#2| |#1| (-479))) (-15 -2292 (|#1| |#1| (-1136 (-479)))) (-15 -2292 (|#1| |#1| (-479))) (-15 -3784 (|#1| (-579 |#1|))) (-15 -3784 (|#1| |#1| |#1|)) (-15 -3784 (|#1| |#2| |#1|)) (-15 -3784 (|#1| |#1| |#2|)) (-15 -3388 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3692 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3388 (|#1| |#2| |#1|)) (-15 -1341 (|#1| |#1|))) (-234 |#2|) (-1119)) (T -233)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) 44 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ (-479) |#1|) 56 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-1558 (($ (-1 (-83) |#1|) $) 94 T ELT)) (-3692 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-2355 (($ $) 92 (|has| |#1| (-1006)) ELT)) (-1341 (($ $) 84 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ (-1 (-83) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1006)) ELT)) (-3388 (($ |#1| $) 83 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) 57 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 55 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) |#1|) 74 T ELT)) (-2187 (((-479) $) 47 (|has| (-479) (-750)) ELT)) (-2841 (($ (-1 (-83) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 48 (|has| (-479) (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3591 (($ |#1| $ (-479)) 97 T ELT) (($ $ $ (-479)) 96 T ELT)) (-2291 (($ |#1| $ (-479)) 66 T ELT) (($ $ $ (-479)) 65 T ELT)) (-2190 (((-579 (-479)) $) 50 T ELT)) (-2191 (((-83) (-479) $) 51 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 46 (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2186 (($ $ |#1|) 45 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ (-479) |#1|) 54 T ELT) ((|#1| $ (-479)) 53 T ELT) (($ $ (-1136 (-479))) 75 T ELT)) (-1559 (($ $ (-479)) 100 T ELT) (($ $ (-1136 (-479))) 99 T ELT)) (-2292 (($ $ (-479)) 68 T ELT) (($ $ (-1136 (-479))) 67 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 85 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 76 T ELT)) (-3773 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-3784 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-579 $)) 70 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-234 |#1|) (-111) (-1119)) (T -234)) +((-3773 (*1 *1 *1 *2) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)))) (-3773 (*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)))) (-1559 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) (-1559 (*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-479))) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) (-3387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) (-3591 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-234 *2)) (-4 *2 (-1119)))) (-3591 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) (-2841 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) (-1558 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) (-3387 (*1 *1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)) (-4 *2 (-1006)))) (-2355 (*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)) (-4 *2 (-1006)))) (-2841 (*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)) (-4 *2 (-750))))) +(-13 (-589 |t#1|) (-10 -8 (-6 -3978) (-15 -3773 ($ $ |t#1|)) (-15 -3773 ($ $ $)) (-15 -1559 ($ $ (-479))) (-15 -1559 ($ $ (-1136 (-479)))) (-15 -3387 ($ (-1 (-83) |t#1|) $)) (-15 -3591 ($ |t#1| $ (-479))) (-15 -3591 ($ $ $ (-479))) (-15 -2841 ($ (-1 (-83) |t#1| |t#1|) $ $)) (-15 -1558 ($ (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -3387 ($ |t#1| $)) (-15 -2355 ($ $))) |%noBranch|) (IF (|has| |t#1| (-750)) (-15 -2841 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 (-479) |#1|) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-534 (-479) |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-589 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) ((** (($ $ $) 10 T ELT))) (((-235 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-236)) (T -235)) NIL -((-3918 (($ $) 6 T ELT)) (-3919 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +((-3924 (($ $) 6 T ELT)) (-3925 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) (((-236) (-111)) (T -236)) -((** (*1 *1 *1 *1) (-4 *1 (-236))) (-3919 (*1 *1 *1) (-4 *1 (-236))) (-3918 (*1 *1 *1) (-4 *1 (-236)))) -(-13 (-10 -8 (-15 -3918 ($ $)) (-15 -3919 ($ $)) (-15 ** ($ $ $)))) -((-1558 (((-578 (-1055 |#1|)) (-1055 |#1|) |#1|) 35 T ELT)) (-1555 ((|#2| |#2| |#1|) 39 T ELT)) (-1557 ((|#2| |#2| |#1|) 41 T ELT)) (-1556 ((|#2| |#2| |#1|) 40 T ELT))) -(((-237 |#1| |#2|) (-10 -7 (-15 -1555 (|#2| |#2| |#1|)) (-15 -1556 (|#2| |#2| |#1|)) (-15 -1557 (|#2| |#2| |#1|)) (-15 -1558 ((-578 (-1055 |#1|)) (-1055 |#1|) |#1|))) (-308) (-1157 |#1|)) (T -237)) -((-1558 (*1 *2 *3 *4) (-12 (-4 *4 (-308)) (-5 *2 (-578 (-1055 *4))) (-5 *1 (-237 *4 *5)) (-5 *3 (-1055 *4)) (-4 *5 (-1157 *4)))) (-1557 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1157 *3)))) (-1556 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1157 *3)))) (-1555 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1157 *3))))) -((-3776 ((|#2| $ |#1|) 6 T ELT))) -(((-238 |#1| |#2|) (-111) (-1114) (-1114)) (T -238)) -((-3776 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *3 *2)) (-4 *3 (-1114)) (-4 *2 (-1114))))) -(-13 (-1114) (-10 -8 (-15 -3776 (|t#2| $ |t#1|)))) -(((-1114) . T)) -((-1559 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3094 ((|#3| $ |#2|) 10 T ELT))) -(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -1559 (|#3| |#1| |#2| |#3|)) (-15 -3094 (|#3| |#1| |#2|))) (-240 |#2| |#3|) (-1003) (-1114)) (T -239)) -NIL -((-3764 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3972)) ELT)) (-1559 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) 11 T ELT)) (-3776 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-240 |#1| |#2|) (-111) (-1003) (-1114)) (T -240)) -((-3776 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1114)))) (-3094 (*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1114)))) (-3764 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1114)))) (-1559 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1114))))) -(-13 (-238 |t#1| |t#2|) (-10 -8 (-15 -3776 (|t#2| $ |t#1| |t#2|)) (-15 -3094 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3972)) (PROGN (-15 -3764 (|t#2| $ |t#1| |t#2|)) (-15 -1559 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-238 |#1| |#2|) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 37 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 44 T ELT)) (-2045 (($ $) 41 T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2544 (($ $ $) 35 T ELT)) (-3818 (($ |#2| |#3|) 18 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2594 ((|#3| $) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 19 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2384 (((-3 $ #1#) $ $) NIL T ELT)) (-1590 (((-687) $) 36 T ELT)) (-3776 ((|#2| $ |#2|) 46 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 23 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2640 (($) 31 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-241 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-254) (-238 |#2| |#2|) (-10 -8 (-15 -2594 (|#3| $)) (-15 -3922 (|#2| $)) (-15 -3818 ($ |#2| |#3|)) (-15 -2384 ((-3 $ #1="failed") $ $)) (-15 -3444 ((-3 $ #1#) $)) (-15 -2464 ($ $)))) (-144) (-1140 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -241)) -((-3444 (*1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2594 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-23)) (-5 *1 (-241 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1140 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3922 (*1 *2 *1) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-241 *3 *2 *4 *5 *6 *7)) (-4 *3 (-144)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3818 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-241 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1140 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2384 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2464 (*1 *1 *1) (-12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +((** (*1 *1 *1 *1) (-4 *1 (-236))) (-3925 (*1 *1 *1) (-4 *1 (-236))) (-3924 (*1 *1 *1) (-4 *1 (-236)))) +(-13 (-10 -8 (-15 -3924 ($ $)) (-15 -3925 ($ $)) (-15 ** ($ $ $)))) +((-1563 (((-579 (-1059 |#1|)) (-1059 |#1|) |#1|) 35 T ELT)) (-1560 ((|#2| |#2| |#1|) 39 T ELT)) (-1562 ((|#2| |#2| |#1|) 41 T ELT)) (-1561 ((|#2| |#2| |#1|) 40 T ELT))) +(((-237 |#1| |#2|) (-10 -7 (-15 -1560 (|#2| |#2| |#1|)) (-15 -1561 (|#2| |#2| |#1|)) (-15 -1562 (|#2| |#2| |#1|)) (-15 -1563 ((-579 (-1059 |#1|)) (-1059 |#1|) |#1|))) (-308) (-1162 |#1|)) (T -237)) +((-1563 (*1 *2 *3 *4) (-12 (-4 *4 (-308)) (-5 *2 (-579 (-1059 *4))) (-5 *1 (-237 *4 *5)) (-5 *3 (-1059 *4)) (-4 *5 (-1162 *4)))) (-1562 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1162 *3)))) (-1561 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1162 *3)))) (-1560 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1162 *3))))) +((-3782 ((|#2| $ |#1|) 6 T ELT))) +(((-238 |#1| |#2|) (-111) (-1119) (-1119)) (T -238)) +((-3782 (*1 *2 *1 *3) (-12 (-4 *1 (-238 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -3782 (|t#2| $ |t#1|)))) +(((-1119) . T)) +((-1564 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3097 ((|#3| $ |#2|) 10 T ELT))) +(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -1564 (|#3| |#1| |#2| |#3|)) (-15 -3097 (|#3| |#1| |#2|))) (-240 |#2| |#3|) (-1006) (-1119)) (T -239)) +NIL +((-3770 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3978)) ELT)) (-1564 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) 11 T ELT)) (-3782 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-240 |#1| |#2|) (-111) (-1006) (-1119)) (T -240)) +((-3782 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1119)))) (-3097 (*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1119)))) (-3770 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1119)))) (-1564 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1119))))) +(-13 (-238 |t#1| |t#2|) (-10 -8 (-15 -3782 (|t#2| $ |t#1| |t#2|)) (-15 -3097 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3978)) (PROGN (-15 -3770 (|t#2| $ |t#1| |t#2|)) (-15 -1564 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-238 |#1| |#2|) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 37 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 44 T ELT)) (-2050 (($ $) 41 T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2549 (($ $ $) 35 T ELT)) (-3824 (($ |#2| |#3|) 18 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2599 ((|#3| $) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 19 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-2389 (((-3 $ #1#) $ $) NIL T ELT)) (-1595 (((-688) $) 36 T ELT)) (-3782 ((|#2| $ |#2|) 46 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 23 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2645 (($) 31 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-241 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-254) (-238 |#2| |#2|) (-10 -8 (-15 -2599 (|#3| $)) (-15 -3928 (|#2| $)) (-15 -3824 ($ |#2| |#3|)) (-15 -2389 ((-3 $ #1="failed") $ $)) (-15 -3449 ((-3 $ #1#) $)) (-15 -2469 ($ $)))) (-144) (-1145 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -241)) +((-3449 (*1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2599 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-23)) (-5 *1 (-241 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1145 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3928 (*1 *2 *1) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-241 *3 *2 *4 *5 *6 *7)) (-4 *3 (-144)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3824 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-241 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1145 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2389 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2469 (*1 *1 *1) (-12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-242) (-111)) (T -242)) NIL -(-13 (-954) (-80 $ $) (-10 -7 (-6 -3964))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-1567 (((-578 (-988)) $) 10 T ELT)) (-1565 (($ (-439) (-439) (-1005) $) 19 T ELT)) (-1563 (($ (-439) (-578 (-869)) $) 23 T ELT)) (-1561 (($) 25 T ELT)) (-1566 (((-627 (-1005)) (-439) (-439) $) 18 T ELT)) (-1564 (((-578 (-869)) (-439) $) 22 T ELT)) (-3541 (($) 7 T ELT)) (-1562 (($) 24 T ELT)) (-3922 (((-765) $) 29 T ELT)) (-1560 (($) 26 T ELT))) -(((-243) (-13 (-547 (-765)) (-10 -8 (-15 -3541 ($)) (-15 -1567 ((-578 (-988)) $)) (-15 -1566 ((-627 (-1005)) (-439) (-439) $)) (-15 -1565 ($ (-439) (-439) (-1005) $)) (-15 -1564 ((-578 (-869)) (-439) $)) (-15 -1563 ($ (-439) (-578 (-869)) $)) (-15 -1562 ($)) (-15 -1561 ($)) (-15 -1560 ($))))) (T -243)) -((-3541 (*1 *1) (-5 *1 (-243))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-578 (-988))) (-5 *1 (-243)))) (-1566 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-1005))) (-5 *1 (-243)))) (-1565 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1005)) (-5 *1 (-243)))) (-1564 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-578 (-869))) (-5 *1 (-243)))) (-1563 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-869))) (-5 *1 (-243)))) (-1562 (*1 *1) (-5 *1 (-243))) (-1561 (*1 *1) (-5 *1 (-243))) (-1560 (*1 *1) (-5 *1 (-243)))) -((-1571 (((-578 (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|)))) (|:| |geneigvec| (-578 (-625 (-343 (-850 |#1|))))))) (-625 (-343 (-850 |#1|)))) 103 T ELT)) (-1570 (((-578 (-625 (-343 (-850 |#1|)))) (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 |#1|)))))) (-625 (-343 (-850 |#1|)))) 98 T ELT) (((-578 (-625 (-343 (-850 |#1|)))) (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|))) (-625 (-343 (-850 |#1|))) (-687) (-687)) 42 T ELT)) (-1572 (((-578 (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 |#1|))))))) (-625 (-343 (-850 |#1|)))) 100 T ELT)) (-1569 (((-578 (-625 (-343 (-850 |#1|)))) (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|))) (-625 (-343 (-850 |#1|)))) 76 T ELT)) (-1568 (((-578 (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|)))) (-625 (-343 (-850 |#1|)))) 75 T ELT)) (-2429 (((-850 |#1|) (-625 (-343 (-850 |#1|)))) 56 T ELT) (((-850 |#1|) (-625 (-343 (-850 |#1|))) (-1075)) 57 T ELT))) -(((-244 |#1|) (-10 -7 (-15 -2429 ((-850 |#1|) (-625 (-343 (-850 |#1|))) (-1075))) (-15 -2429 ((-850 |#1|) (-625 (-343 (-850 |#1|))))) (-15 -1568 ((-578 (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|)))) (-625 (-343 (-850 |#1|))))) (-15 -1569 ((-578 (-625 (-343 (-850 |#1|)))) (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|))) (-625 (-343 (-850 |#1|))))) (-15 -1570 ((-578 (-625 (-343 (-850 |#1|)))) (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|))) (-625 (-343 (-850 |#1|))) (-687) (-687))) (-15 -1570 ((-578 (-625 (-343 (-850 |#1|)))) (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 |#1|)))))) (-625 (-343 (-850 |#1|))))) (-15 -1571 ((-578 (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|)))) (|:| |geneigvec| (-578 (-625 (-343 (-850 |#1|))))))) (-625 (-343 (-850 |#1|))))) (-15 -1572 ((-578 (-2 (|:| |eigval| (-3 (-343 (-850 |#1|)) (-1066 (-1075) (-850 |#1|)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 |#1|))))))) (-625 (-343 (-850 |#1|)))))) (-385)) (T -244)) -((-1572 (*1 *2 *3) (-12 (-4 *4 (-385)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-343 (-850 *4)) (-1066 (-1075) (-850 *4)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 *4)))))))) (-5 *1 (-244 *4)) (-5 *3 (-625 (-343 (-850 *4)))))) (-1571 (*1 *2 *3) (-12 (-4 *4 (-385)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-343 (-850 *4)) (-1066 (-1075) (-850 *4)))) (|:| |geneigvec| (-578 (-625 (-343 (-850 *4)))))))) (-5 *1 (-244 *4)) (-5 *3 (-625 (-343 (-850 *4)))))) (-1570 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-343 (-850 *5)) (-1066 (-1075) (-850 *5)))) (|:| |eigmult| (-687)) (|:| |eigvec| (-578 *4)))) (-4 *5 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *5))))) (-5 *1 (-244 *5)) (-5 *4 (-625 (-343 (-850 *5)))))) (-1570 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-343 (-850 *6)) (-1066 (-1075) (-850 *6)))) (-5 *5 (-687)) (-4 *6 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *6))))) (-5 *1 (-244 *6)) (-5 *4 (-625 (-343 (-850 *6)))))) (-1569 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-343 (-850 *5)) (-1066 (-1075) (-850 *5)))) (-4 *5 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *5))))) (-5 *1 (-244 *5)) (-5 *4 (-625 (-343 (-850 *5)))))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 *4)))) (-4 *4 (-385)) (-5 *2 (-578 (-3 (-343 (-850 *4)) (-1066 (-1075) (-850 *4))))) (-5 *1 (-244 *4)))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 *4)))) (-5 *2 (-850 *4)) (-5 *1 (-244 *4)) (-4 *4 (-385)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-343 (-850 *5)))) (-5 *4 (-1075)) (-5 *2 (-850 *5)) (-5 *1 (-244 *5)) (-4 *5 (-385))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-1578 (($ $) 12 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1587 (($ $ $) 95 (|has| |#1| (-250)) ELT)) (-3700 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-658))) CONST)) (-1576 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1574 (((-3 $ #1#) $) 62 (|has| |#1| (-658)) ELT)) (-3505 ((|#1| $) 11 T ELT)) (-3444 (((-3 $ #1#) $) 60 (|has| |#1| (-658)) ELT)) (-2392 (((-83) $) NIL (|has| |#1| (-658)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3506 ((|#1| $) 10 T ELT)) (-1577 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1575 (((-3 $ #1#) $) 61 (|has| |#1| (-658)) ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-2464 (($ $) 64 (OR (|has| |#1| (-308)) (|has| |#1| (-406))) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1573 (((-578 $) $) 85 (|has| |#1| (-489)) ELT)) (-3744 (($ $ $) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 $)) 28 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-1075) |#1|) 17 (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) 21 (|has| |#1| (-447 (-1075) |#1|)) ELT)) (-3207 (($ |#1| |#1|) 9 T ELT)) (-3887 (((-105)) 90 (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1075)) 87 (|has| |#1| (-802 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-802 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-802 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-802 (-1075))) ELT)) (-2990 (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2415 (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3922 (($ (-478)) NIL (|has| |#1| (-954)) ELT) (((-83) $) 37 (|has| |#1| (-1003)) ELT) (((-765) $) 36 (|has| |#1| (-1003)) ELT)) (-3107 (((-687)) 67 (|has| |#1| (-954)) CONST)) (-1249 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-2640 (($) 47 (|has| |#1| (-21)) CONST)) (-2647 (($) 57 (|has| |#1| (-658)) CONST)) (-2650 (($ $ (-1075)) NIL (|has| |#1| (-802 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-802 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-802 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-802 (-1075))) ELT)) (-3037 (($ |#1| |#1|) 8 T ELT) (((-83) $ $) 32 (|has| |#1| (-1003)) ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 92 (OR (|has| |#1| (-308)) (|has| |#1| (-406))) ELT)) (-3813 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3815 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-478)) NIL (|has| |#1| (-406)) ELT) (($ $ (-687)) NIL (|has| |#1| (-658)) ELT) (($ $ (-823)) NIL (|has| |#1| (-1013)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1013)) ELT) (($ |#1| $) 54 (|has| |#1| (-1013)) ELT) (($ $ $) 53 (|has| |#1| (-1013)) ELT) (($ (-478) $) 70 (|has| |#1| (-21)) ELT) (($ (-687) $) NIL (|has| |#1| (-21)) ELT) (($ (-823) $) NIL (|has| |#1| (-25)) ELT))) -(((-245 |#1|) (-13 (-1114) (-10 -8 (-15 -3037 ($ |#1| |#1|)) (-15 -3207 ($ |#1| |#1|)) (-15 -1578 ($ $)) (-15 -3506 (|#1| $)) (-15 -3505 (|#1| $)) (-15 -3934 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-447 (-1075) |#1|)) (-6 (-447 (-1075) |#1|)) |%noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-547 (-83))) (IF (|has| |#1| (-256 |#1|)) (PROGN (-15 -3744 ($ $ $)) (-15 -3744 ($ $ (-578 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3815 ($ |#1| $)) (-15 -3815 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1577 ($ $)) (-15 -1576 ($ $)) (-15 -3813 ($ |#1| $)) (-15 -3813 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-658)) (PROGN (-6 (-658)) (-15 -1575 ((-3 $ #1="failed") $)) (-15 -1574 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-406)) (PROGN (-6 (-406)) (-15 -1575 ((-3 $ #1#) $)) (-15 -1574 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-954)) (PROGN (-6 (-954)) (-6 (-80 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-649 |#1|)) |%noBranch|) (IF (|has| |#1| (-489)) (-15 -1573 ((-578 $) $)) |%noBranch|) (IF (|has| |#1| (-802 (-1075))) (-6 (-802 (-1075))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-6 (-1172 |#1|)) (-15 -3925 ($ $ $)) (-15 -2464 ($ $))) |%noBranch|) (IF (|has| |#1| (-250)) (-15 -1587 ($ $ $)) |%noBranch|))) (-1114)) (T -245)) -((-3037 (*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114)))) (-3207 (*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114)))) (-1578 (*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114)))) (-3506 (*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114)))) (-3505 (*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114)))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1114)) (-5 *1 (-245 *3)))) (-3744 (*1 *1 *1 *1) (-12 (-4 *2 (-256 *2)) (-4 *2 (-1003)) (-4 *2 (-1114)) (-5 *1 (-245 *2)))) (-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-245 *3))) (-4 *3 (-256 *3)) (-4 *3 (-1003)) (-4 *3 (-1114)) (-5 *1 (-245 *3)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1114)))) (-3815 (*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1114)))) (-1577 (*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1114)))) (-1576 (*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1114)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1114)))) (-3813 (*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1114)))) (-1575 (*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-658)) (-4 *2 (-1114)))) (-1574 (*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-658)) (-4 *2 (-1114)))) (-1573 (*1 *2 *1) (-12 (-5 *2 (-578 (-245 *3))) (-5 *1 (-245 *3)) (-4 *3 (-489)) (-4 *3 (-1114)))) (-1587 (*1 *1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-250)) (-4 *2 (-1114)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1013)) (-4 *2 (-1114)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1013)) (-4 *2 (-1114)))) (-3925 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1114))) (-12 (-5 *1 (-245 *2)) (-4 *2 (-406)) (-4 *2 (-1114))))) (-2464 (*1 *1 *1) (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1114))) (-12 (-5 *1 (-245 *2)) (-4 *2 (-406)) (-4 *2 (-1114)))))) -((-3934 (((-245 |#2|) (-1 |#2| |#1|) (-245 |#1|)) 14 T ELT))) -(((-246 |#1| |#2|) (-10 -7 (-15 -3934 ((-245 |#2|) (-1 |#2| |#1|) (-245 |#1|)))) (-1114) (-1114)) (T -246)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-245 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-245 *6)) (-5 *1 (-246 *5 *6))))) -((-2548 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3575 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2180 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) NIL T ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2182 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2183 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-2214 (((-578 |#1|) $) NIL T ELT)) (-2215 (((-83) |#1| $) NIL T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2185 (((-578 |#1|) $) NIL T ELT)) (-2186 (((-83) |#1| $) NIL T ELT)) (-3223 (((-1020) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-3777 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1449 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3922 (((-765) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1249 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-247 |#1| |#2|) (-13 (-1092 |#1| |#2|) (-10 -7 (-6 -3971))) (-1003) (-1003)) (T -247)) -NIL -((-1579 (((-258) (-1059) (-578 (-1059))) 17 T ELT) (((-258) (-1059) (-1059)) 16 T ELT) (((-258) (-578 (-1059))) 15 T ELT) (((-258) (-1059)) 14 T ELT))) -(((-248) (-10 -7 (-15 -1579 ((-258) (-1059))) (-15 -1579 ((-258) (-578 (-1059)))) (-15 -1579 ((-258) (-1059) (-1059))) (-15 -1579 ((-258) (-1059) (-578 (-1059)))))) (T -248)) -((-1579 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1059))) (-5 *3 (-1059)) (-5 *2 (-258)) (-5 *1 (-248)))) (-1579 (*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-258)) (-5 *1 (-248)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-258)) (-5 *1 (-248)))) (-1579 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-258)) (-5 *1 (-248))))) -((-1583 (((-578 (-545 $)) $) 27 T ELT)) (-1587 (($ $ (-245 $)) 78 T ELT) (($ $ (-578 (-245 $))) 140 T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT)) (-3138 (((-3 (-545 $) #1="failed") $) 128 T ELT)) (-3137 (((-545 $) $) 127 T ELT)) (-2553 (($ $) 17 T ELT) (($ (-578 $)) 54 T ELT)) (-1582 (((-578 (-84)) $) 35 T ELT)) (-3571 (((-84) (-84)) 89 T ELT)) (-2654 (((-83) $) 151 T ELT)) (-3934 (($ (-1 $ $) (-545 $)) 87 T ELT)) (-1585 (((-3 (-545 $) #1#) $) 95 T ELT)) (-2217 (($ (-84) $) 59 T ELT) (($ (-84) (-578 $)) 111 T ELT)) (-2613 (((-83) $ (-84)) 133 T ELT) (((-83) $ (-1075)) 132 T ELT)) (-2583 (((-687) $) 44 T ELT)) (-1581 (((-83) $ $) 57 T ELT) (((-83) $ (-1075)) 49 T ELT)) (-2655 (((-83) $) 149 T ELT)) (-3744 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT) (($ $ (-578 (-245 $))) 138 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ $))) 81 T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-1075) (-1 $ (-578 $))) 67 T ELT) (($ $ (-1075) (-1 $ $)) 72 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 80 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) 83 T ELT) (($ $ (-84) (-1 $ (-578 $))) 68 T ELT) (($ $ (-84) (-1 $ $)) 74 T ELT)) (-3776 (($ (-84) $) 60 T ELT) (($ (-84) $ $) 61 T ELT) (($ (-84) $ $ $) 62 T ELT) (($ (-84) $ $ $ $) 63 T ELT) (($ (-84) (-578 $)) 124 T ELT)) (-1586 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2570 (($ $) 15 T ELT) (($ (-578 $)) 53 T ELT)) (-2236 (((-83) (-84)) 21 T ELT))) -(((-249 |#1|) (-10 -7 (-15 -2654 ((-83) |#1|)) (-15 -2655 ((-83) |#1|)) (-15 -3744 (|#1| |#1| (-84) (-1 |#1| |#1|))) (-15 -3744 (|#1| |#1| (-84) (-1 |#1| (-578 |#1|)))) (-15 -3744 (|#1| |#1| (-578 (-84)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3744 (|#1| |#1| (-578 (-84)) (-578 (-1 |#1| |#1|)))) (-15 -3744 (|#1| |#1| (-1075) (-1 |#1| |#1|))) (-15 -3744 (|#1| |#1| (-1075) (-1 |#1| (-578 |#1|)))) (-15 -3744 (|#1| |#1| (-578 (-1075)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3744 (|#1| |#1| (-578 (-1075)) (-578 (-1 |#1| |#1|)))) (-15 -1581 ((-83) |#1| (-1075))) (-15 -1581 ((-83) |#1| |#1|)) (-15 -3934 (|#1| (-1 |#1| |#1|) (-545 |#1|))) (-15 -2217 (|#1| (-84) (-578 |#1|))) (-15 -2217 (|#1| (-84) |#1|)) (-15 -2613 ((-83) |#1| (-1075))) (-15 -2613 ((-83) |#1| (-84))) (-15 -2236 ((-83) (-84))) (-15 -3571 ((-84) (-84))) (-15 -1582 ((-578 (-84)) |#1|)) (-15 -1583 ((-578 (-545 |#1|)) |#1|)) (-15 -1585 ((-3 (-545 |#1|) #1="failed") |#1|)) (-15 -2583 ((-687) |#1|)) (-15 -1586 (|#1| |#1| |#1|)) (-15 -1586 (|#1| |#1|)) (-15 -2553 (|#1| (-578 |#1|))) (-15 -2553 (|#1| |#1|)) (-15 -2570 (|#1| (-578 |#1|))) (-15 -2570 (|#1| |#1|)) (-15 -1587 (|#1| |#1| (-578 (-545 |#1|)) (-578 |#1|))) (-15 -1587 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -1587 (|#1| |#1| (-245 |#1|))) (-15 -3776 (|#1| (-84) (-578 |#1|))) (-15 -3776 (|#1| (-84) |#1| |#1| |#1| |#1|)) (-15 -3776 (|#1| (-84) |#1| |#1| |#1|)) (-15 -3776 (|#1| (-84) |#1| |#1|)) (-15 -3776 (|#1| (-84) |#1|)) (-15 -3744 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3744 (|#1| |#1| |#1| |#1|)) (-15 -3744 (|#1| |#1| (-245 |#1|))) (-15 -3744 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -3744 (|#1| |#1| (-578 (-545 |#1|)) (-578 |#1|))) (-15 -3744 (|#1| |#1| (-545 |#1|) |#1|)) (-15 -3138 ((-3 (-545 |#1|) #1#) |#1|)) (-15 -3137 ((-545 |#1|) |#1|))) (-250)) (T -249)) -((-3571 (*1 *2 *2) (-12 (-5 *2 (-84)) (-5 *1 (-249 *3)) (-4 *3 (-250)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-249 *4)) (-4 *4 (-250))))) -((-2548 (((-83) $ $) 7 T ELT)) (-1583 (((-578 (-545 $)) $) 42 T ELT)) (-1587 (($ $ (-245 $)) 54 T ELT) (($ $ (-578 (-245 $))) 53 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 52 T ELT)) (-3138 (((-3 (-545 $) "failed") $) 67 T ELT)) (-3137 (((-545 $) $) 68 T ELT)) (-2553 (($ $) 49 T ELT) (($ (-578 $)) 48 T ELT)) (-1582 (((-578 (-84)) $) 41 T ELT)) (-3571 (((-84) (-84)) 40 T ELT)) (-2654 (((-83) $) 20 (|has| $ (-943 (-478))) ELT)) (-1580 (((-1070 $) (-545 $)) 23 (|has| $ (-954)) ELT)) (-3934 (($ (-1 $ $) (-545 $)) 34 T ELT)) (-1585 (((-3 (-545 $) "failed") $) 44 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1584 (((-578 (-545 $)) $) 43 T ELT)) (-2217 (($ (-84) $) 36 T ELT) (($ (-84) (-578 $)) 35 T ELT)) (-2613 (((-83) $ (-84)) 38 T ELT) (((-83) $ (-1075)) 37 T ELT)) (-2583 (((-687) $) 45 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1581 (((-83) $ $) 33 T ELT) (((-83) $ (-1075)) 32 T ELT)) (-2655 (((-83) $) 21 (|has| $ (-943 (-478))) ELT)) (-3744 (($ $ (-545 $) $) 65 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 64 T ELT) (($ $ (-578 (-245 $))) 63 T ELT) (($ $ (-245 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-578 $) (-578 $)) 60 T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ $))) 31 T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ (-578 $)))) 30 T ELT) (($ $ (-1075) (-1 $ (-578 $))) 29 T ELT) (($ $ (-1075) (-1 $ $)) 28 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 27 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) 26 T ELT) (($ $ (-84) (-1 $ (-578 $))) 25 T ELT) (($ $ (-84) (-1 $ $)) 24 T ELT)) (-3776 (($ (-84) $) 59 T ELT) (($ (-84) $ $) 58 T ELT) (($ (-84) $ $ $) 57 T ELT) (($ (-84) $ $ $ $) 56 T ELT) (($ (-84) (-578 $)) 55 T ELT)) (-1586 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3167 (($ $) 22 (|has| $ (-954)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-545 $)) 66 T ELT)) (-2570 (($ $) 51 T ELT) (($ (-578 $)) 50 T ELT)) (-2236 (((-83) (-84)) 39 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) +(-13 (-955) (-80 $ $) (-10 -7 (-6 -3970))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-659) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-1572 (((-579 (-990)) $) 10 T ELT)) (-1570 (($ (-440) (-440) (-1008) $) 19 T ELT)) (-1568 (($ (-440) (-579 (-870)) $) 23 T ELT)) (-1566 (($) 25 T ELT)) (-1571 (((-628 (-1008)) (-440) (-440) $) 18 T ELT)) (-1569 (((-579 (-870)) (-440) $) 22 T ELT)) (-3547 (($) 7 T ELT)) (-1567 (($) 24 T ELT)) (-3928 (((-766) $) 29 T ELT)) (-1565 (($) 26 T ELT))) +(((-243) (-13 (-548 (-766)) (-10 -8 (-15 -3547 ($)) (-15 -1572 ((-579 (-990)) $)) (-15 -1571 ((-628 (-1008)) (-440) (-440) $)) (-15 -1570 ($ (-440) (-440) (-1008) $)) (-15 -1569 ((-579 (-870)) (-440) $)) (-15 -1568 ($ (-440) (-579 (-870)) $)) (-15 -1567 ($)) (-15 -1566 ($)) (-15 -1565 ($))))) (T -243)) +((-3547 (*1 *1) (-5 *1 (-243))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-579 (-990))) (-5 *1 (-243)))) (-1571 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-1008))) (-5 *1 (-243)))) (-1570 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1008)) (-5 *1 (-243)))) (-1569 (*1 *2 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-579 (-870))) (-5 *1 (-243)))) (-1568 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-579 (-870))) (-5 *1 (-243)))) (-1567 (*1 *1) (-5 *1 (-243))) (-1566 (*1 *1) (-5 *1 (-243))) (-1565 (*1 *1) (-5 *1 (-243)))) +((-1576 (((-579 (-2 (|:| |eigval| (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|)))) (|:| |geneigvec| (-579 (-626 (-344 (-851 |#1|))))))) (-626 (-344 (-851 |#1|)))) 103 T ELT)) (-1575 (((-579 (-626 (-344 (-851 |#1|)))) (-2 (|:| |eigval| (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|)))) (|:| |eigmult| (-688)) (|:| |eigvec| (-579 (-626 (-344 (-851 |#1|)))))) (-626 (-344 (-851 |#1|)))) 98 T ELT) (((-579 (-626 (-344 (-851 |#1|)))) (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|))) (-626 (-344 (-851 |#1|))) (-688) (-688)) 42 T ELT)) (-1577 (((-579 (-2 (|:| |eigval| (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|)))) (|:| |eigmult| (-688)) (|:| |eigvec| (-579 (-626 (-344 (-851 |#1|))))))) (-626 (-344 (-851 |#1|)))) 100 T ELT)) (-1574 (((-579 (-626 (-344 (-851 |#1|)))) (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|))) (-626 (-344 (-851 |#1|)))) 76 T ELT)) (-1573 (((-579 (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|)))) (-626 (-344 (-851 |#1|)))) 75 T ELT)) (-2434 (((-851 |#1|) (-626 (-344 (-851 |#1|)))) 56 T ELT) (((-851 |#1|) (-626 (-344 (-851 |#1|))) (-1080)) 57 T ELT))) +(((-244 |#1|) (-10 -7 (-15 -2434 ((-851 |#1|) (-626 (-344 (-851 |#1|))) (-1080))) (-15 -2434 ((-851 |#1|) (-626 (-344 (-851 |#1|))))) (-15 -1573 ((-579 (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|)))) (-626 (-344 (-851 |#1|))))) (-15 -1574 ((-579 (-626 (-344 (-851 |#1|)))) (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|))) (-626 (-344 (-851 |#1|))))) (-15 -1575 ((-579 (-626 (-344 (-851 |#1|)))) (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|))) (-626 (-344 (-851 |#1|))) (-688) (-688))) (-15 -1575 ((-579 (-626 (-344 (-851 |#1|)))) (-2 (|:| |eigval| (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|)))) (|:| |eigmult| (-688)) (|:| |eigvec| (-579 (-626 (-344 (-851 |#1|)))))) (-626 (-344 (-851 |#1|))))) (-15 -1576 ((-579 (-2 (|:| |eigval| (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|)))) (|:| |geneigvec| (-579 (-626 (-344 (-851 |#1|))))))) (-626 (-344 (-851 |#1|))))) (-15 -1577 ((-579 (-2 (|:| |eigval| (-3 (-344 (-851 |#1|)) (-1070 (-1080) (-851 |#1|)))) (|:| |eigmult| (-688)) (|:| |eigvec| (-579 (-626 (-344 (-851 |#1|))))))) (-626 (-344 (-851 |#1|)))))) (-386)) (T -244)) +((-1577 (*1 *2 *3) (-12 (-4 *4 (-386)) (-5 *2 (-579 (-2 (|:| |eigval| (-3 (-344 (-851 *4)) (-1070 (-1080) (-851 *4)))) (|:| |eigmult| (-688)) (|:| |eigvec| (-579 (-626 (-344 (-851 *4)))))))) (-5 *1 (-244 *4)) (-5 *3 (-626 (-344 (-851 *4)))))) (-1576 (*1 *2 *3) (-12 (-4 *4 (-386)) (-5 *2 (-579 (-2 (|:| |eigval| (-3 (-344 (-851 *4)) (-1070 (-1080) (-851 *4)))) (|:| |geneigvec| (-579 (-626 (-344 (-851 *4)))))))) (-5 *1 (-244 *4)) (-5 *3 (-626 (-344 (-851 *4)))))) (-1575 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-344 (-851 *5)) (-1070 (-1080) (-851 *5)))) (|:| |eigmult| (-688)) (|:| |eigvec| (-579 *4)))) (-4 *5 (-386)) (-5 *2 (-579 (-626 (-344 (-851 *5))))) (-5 *1 (-244 *5)) (-5 *4 (-626 (-344 (-851 *5)))))) (-1575 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-344 (-851 *6)) (-1070 (-1080) (-851 *6)))) (-5 *5 (-688)) (-4 *6 (-386)) (-5 *2 (-579 (-626 (-344 (-851 *6))))) (-5 *1 (-244 *6)) (-5 *4 (-626 (-344 (-851 *6)))))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-344 (-851 *5)) (-1070 (-1080) (-851 *5)))) (-4 *5 (-386)) (-5 *2 (-579 (-626 (-344 (-851 *5))))) (-5 *1 (-244 *5)) (-5 *4 (-626 (-344 (-851 *5)))))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-626 (-344 (-851 *4)))) (-4 *4 (-386)) (-5 *2 (-579 (-3 (-344 (-851 *4)) (-1070 (-1080) (-851 *4))))) (-5 *1 (-244 *4)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-626 (-344 (-851 *4)))) (-5 *2 (-851 *4)) (-5 *1 (-244 *4)) (-4 *4 (-386)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-344 (-851 *5)))) (-5 *4 (-1080)) (-5 *2 (-851 *5)) (-5 *1 (-244 *5)) (-4 *5 (-386))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3172 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-1583 (($ $) 12 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1592 (($ $ $) 95 (|has| |#1| (-250)) ELT)) (-3706 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-1581 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1579 (((-3 $ #1#) $) 62 (|has| |#1| (-659)) ELT)) (-3510 ((|#1| $) 11 T ELT)) (-3449 (((-3 $ #1#) $) 60 (|has| |#1| (-659)) ELT)) (-2397 (((-83) $) NIL (|has| |#1| (-659)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3511 ((|#1| $) 10 T ELT)) (-1582 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1580 (((-3 $ #1#) $) 61 (|has| |#1| (-659)) ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-2469 (($ $) 64 (OR (|has| |#1| (-308)) (|has| |#1| (-407))) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1578 (((-579 $) $) 85 (|has| |#1| (-490)) ELT)) (-3750 (($ $ $) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 $)) 28 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-1080) |#1|) 17 (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) 21 (|has| |#1| (-448 (-1080) |#1|)) ELT)) (-3210 (($ |#1| |#1|) 9 T ELT)) (-3893 (((-105)) 90 (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1080)) 87 (|has| |#1| (-803 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-803 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-803 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-803 (-1080))) ELT)) (-2994 (($ $ $) NIL (|has| |#1| (-407)) ELT)) (-2420 (($ $ $) NIL (|has| |#1| (-407)) ELT)) (-3928 (($ (-479)) NIL (|has| |#1| (-955)) ELT) (((-83) $) 37 (|has| |#1| (-1006)) ELT) (((-766) $) 36 (|has| |#1| (-1006)) ELT)) (-3110 (((-688)) 67 (|has| |#1| (-955)) CONST)) (-1254 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-2645 (($) 47 (|has| |#1| (-21)) CONST)) (-2651 (($) 57 (|has| |#1| (-659)) CONST)) (-2654 (($ $ (-1080)) NIL (|has| |#1| (-803 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-803 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-803 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-803 (-1080))) ELT)) (-3041 (($ |#1| |#1|) 8 T ELT) (((-83) $ $) 32 (|has| |#1| (-1006)) ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 92 (OR (|has| |#1| (-308)) (|has| |#1| (-407))) ELT)) (-3819 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3821 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-479)) NIL (|has| |#1| (-407)) ELT) (($ $ (-688)) NIL (|has| |#1| (-659)) ELT) (($ $ (-824)) NIL (|has| |#1| (-1016)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1016)) ELT) (($ |#1| $) 54 (|has| |#1| (-1016)) ELT) (($ $ $) 53 (|has| |#1| (-1016)) ELT) (($ (-479) $) 70 (|has| |#1| (-21)) ELT) (($ (-688) $) NIL (|has| |#1| (-21)) ELT) (($ (-824) $) NIL (|has| |#1| (-25)) ELT))) +(((-245 |#1|) (-13 (-1119) (-10 -8 (-15 -3041 ($ |#1| |#1|)) (-15 -3210 ($ |#1| |#1|)) (-15 -1583 ($ $)) (-15 -3511 (|#1| $)) (-15 -3510 (|#1| $)) (-15 -3940 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-448 (-1080) |#1|)) (-6 (-448 (-1080) |#1|)) |%noBranch|) (IF (|has| |#1| (-1006)) (PROGN (-6 (-1006)) (-6 (-548 (-83))) (IF (|has| |#1| (-256 |#1|)) (PROGN (-15 -3750 ($ $ $)) (-15 -3750 ($ $ (-579 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3821 ($ |#1| $)) (-15 -3821 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1582 ($ $)) (-15 -1581 ($ $)) (-15 -3819 ($ |#1| $)) (-15 -3819 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1016)) (PROGN (-6 (-1016)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -1580 ((-3 $ #1="failed") $)) (-15 -1579 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-407)) (PROGN (-6 (-407)) (-15 -1580 ((-3 $ #1#) $)) (-15 -1579 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-955)) (PROGN (-6 (-955)) (-6 (-80 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-650 |#1|)) |%noBranch|) (IF (|has| |#1| (-490)) (-15 -1578 ((-579 $) $)) |%noBranch|) (IF (|has| |#1| (-803 (-1080))) (-6 (-803 (-1080))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-6 (-1177 |#1|)) (-15 -3931 ($ $ $)) (-15 -2469 ($ $))) |%noBranch|) (IF (|has| |#1| (-250)) (-15 -1592 ($ $ $)) |%noBranch|))) (-1119)) (T -245)) +((-3041 (*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119)))) (-3210 (*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119)))) (-1583 (*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119)))) (-3511 (*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119)))) (-3510 (*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119)))) (-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-245 *3)))) (-3750 (*1 *1 *1 *1) (-12 (-4 *2 (-256 *2)) (-4 *2 (-1006)) (-4 *2 (-1119)) (-5 *1 (-245 *2)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-245 *3))) (-4 *3 (-256 *3)) (-4 *3 (-1006)) (-4 *3 (-1119)) (-5 *1 (-245 *3)))) (-3821 (*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1119)))) (-3821 (*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1119)))) (-1582 (*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-1581 (*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-3819 (*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-3819 (*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) (-1580 (*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-659)) (-4 *2 (-1119)))) (-1579 (*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-659)) (-4 *2 (-1119)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-579 (-245 *3))) (-5 *1 (-245 *3)) (-4 *3 (-490)) (-4 *3 (-1119)))) (-1592 (*1 *1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-250)) (-4 *2 (-1119)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1016)) (-4 *2 (-1119)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1016)) (-4 *2 (-1119)))) (-3931 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1119))) (-12 (-5 *1 (-245 *2)) (-4 *2 (-407)) (-4 *2 (-1119))))) (-2469 (*1 *1 *1) (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1119))) (-12 (-5 *1 (-245 *2)) (-4 *2 (-407)) (-4 *2 (-1119)))))) +((-3940 (((-245 |#2|) (-1 |#2| |#1|) (-245 |#1|)) 14 T ELT))) +(((-246 |#1| |#2|) (-10 -7 (-15 -3940 ((-245 |#2|) (-1 |#2| |#1|) (-245 |#1|)))) (-1119) (-1119)) (T -246)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-245 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-245 *6)) (-5 *1 (-246 *5 *6))))) +((-2553 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3581 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2185 (((-1175) $ |#1| |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) NIL T ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-2219 (((-579 |#1|) $) NIL T ELT)) (-2220 (((-83) |#1| $) NIL T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2190 (((-579 |#1|) $) NIL T ELT)) (-2191 (((-83) |#1| $) NIL T ELT)) (-3227 (((-1024) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-3783 ((|#2| $) NIL (|has| |#1| (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1454 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3928 (((-766) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-548 (-766)))) ELT)) (-1254 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-247 |#1| |#2|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -3977))) (-1006) (-1006)) (T -247)) +NIL +((-1584 (((-258) (-1063) (-579 (-1063))) 17 T ELT) (((-258) (-1063) (-1063)) 16 T ELT) (((-258) (-579 (-1063))) 15 T ELT) (((-258) (-1063)) 14 T ELT))) +(((-248) (-10 -7 (-15 -1584 ((-258) (-1063))) (-15 -1584 ((-258) (-579 (-1063)))) (-15 -1584 ((-258) (-1063) (-1063))) (-15 -1584 ((-258) (-1063) (-579 (-1063)))))) (T -248)) +((-1584 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-1063))) (-5 *3 (-1063)) (-5 *2 (-258)) (-5 *1 (-248)))) (-1584 (*1 *2 *3 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-258)) (-5 *1 (-248)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-258)) (-5 *1 (-248)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-258)) (-5 *1 (-248))))) +((-1588 (((-579 (-546 $)) $) 27 T ELT)) (-1592 (($ $ (-245 $)) 78 T ELT) (($ $ (-579 (-245 $))) 140 T ELT) (($ $ (-579 (-546 $)) (-579 $)) NIL T ELT)) (-3141 (((-3 (-546 $) #1="failed") $) 128 T ELT)) (-3140 (((-546 $) $) 127 T ELT)) (-2558 (($ $) 17 T ELT) (($ (-579 $)) 54 T ELT)) (-1587 (((-579 (-84)) $) 35 T ELT)) (-3577 (((-84) (-84)) 89 T ELT)) (-2658 (((-83) $) 151 T ELT)) (-3940 (($ (-1 $ $) (-546 $)) 87 T ELT)) (-1590 (((-3 (-546 $) #1#) $) 95 T ELT)) (-2222 (($ (-84) $) 59 T ELT) (($ (-84) (-579 $)) 111 T ELT)) (-2618 (((-83) $ (-84)) 133 T ELT) (((-83) $ (-1080)) 132 T ELT)) (-2588 (((-688) $) 44 T ELT)) (-1586 (((-83) $ $) 57 T ELT) (((-83) $ (-1080)) 49 T ELT)) (-2659 (((-83) $) 149 T ELT)) (-3750 (($ $ (-546 $) $) NIL T ELT) (($ $ (-579 (-546 $)) (-579 $)) NIL T ELT) (($ $ (-579 (-245 $))) 138 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ $))) 81 T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ (-579 $)))) NIL T ELT) (($ $ (-1080) (-1 $ (-579 $))) 67 T ELT) (($ $ (-1080) (-1 $ $)) 72 T ELT) (($ $ (-579 (-84)) (-579 (-1 $ $))) 80 T ELT) (($ $ (-579 (-84)) (-579 (-1 $ (-579 $)))) 83 T ELT) (($ $ (-84) (-1 $ (-579 $))) 68 T ELT) (($ $ (-84) (-1 $ $)) 74 T ELT)) (-3782 (($ (-84) $) 60 T ELT) (($ (-84) $ $) 61 T ELT) (($ (-84) $ $ $) 62 T ELT) (($ (-84) $ $ $ $) 63 T ELT) (($ (-84) (-579 $)) 124 T ELT)) (-1591 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2575 (($ $) 15 T ELT) (($ (-579 $)) 53 T ELT)) (-2241 (((-83) (-84)) 21 T ELT))) +(((-249 |#1|) (-10 -7 (-15 -2658 ((-83) |#1|)) (-15 -2659 ((-83) |#1|)) (-15 -3750 (|#1| |#1| (-84) (-1 |#1| |#1|))) (-15 -3750 (|#1| |#1| (-84) (-1 |#1| (-579 |#1|)))) (-15 -3750 (|#1| |#1| (-579 (-84)) (-579 (-1 |#1| (-579 |#1|))))) (-15 -3750 (|#1| |#1| (-579 (-84)) (-579 (-1 |#1| |#1|)))) (-15 -3750 (|#1| |#1| (-1080) (-1 |#1| |#1|))) (-15 -3750 (|#1| |#1| (-1080) (-1 |#1| (-579 |#1|)))) (-15 -3750 (|#1| |#1| (-579 (-1080)) (-579 (-1 |#1| (-579 |#1|))))) (-15 -3750 (|#1| |#1| (-579 (-1080)) (-579 (-1 |#1| |#1|)))) (-15 -1586 ((-83) |#1| (-1080))) (-15 -1586 ((-83) |#1| |#1|)) (-15 -3940 (|#1| (-1 |#1| |#1|) (-546 |#1|))) (-15 -2222 (|#1| (-84) (-579 |#1|))) (-15 -2222 (|#1| (-84) |#1|)) (-15 -2618 ((-83) |#1| (-1080))) (-15 -2618 ((-83) |#1| (-84))) (-15 -2241 ((-83) (-84))) (-15 -3577 ((-84) (-84))) (-15 -1587 ((-579 (-84)) |#1|)) (-15 -1588 ((-579 (-546 |#1|)) |#1|)) (-15 -1590 ((-3 (-546 |#1|) #1="failed") |#1|)) (-15 -2588 ((-688) |#1|)) (-15 -1591 (|#1| |#1| |#1|)) (-15 -1591 (|#1| |#1|)) (-15 -2558 (|#1| (-579 |#1|))) (-15 -2558 (|#1| |#1|)) (-15 -2575 (|#1| (-579 |#1|))) (-15 -2575 (|#1| |#1|)) (-15 -1592 (|#1| |#1| (-579 (-546 |#1|)) (-579 |#1|))) (-15 -1592 (|#1| |#1| (-579 (-245 |#1|)))) (-15 -1592 (|#1| |#1| (-245 |#1|))) (-15 -3782 (|#1| (-84) (-579 |#1|))) (-15 -3782 (|#1| (-84) |#1| |#1| |#1| |#1|)) (-15 -3782 (|#1| (-84) |#1| |#1| |#1|)) (-15 -3782 (|#1| (-84) |#1| |#1|)) (-15 -3782 (|#1| (-84) |#1|)) (-15 -3750 (|#1| |#1| (-579 |#1|) (-579 |#1|))) (-15 -3750 (|#1| |#1| |#1| |#1|)) (-15 -3750 (|#1| |#1| (-245 |#1|))) (-15 -3750 (|#1| |#1| (-579 (-245 |#1|)))) (-15 -3750 (|#1| |#1| (-579 (-546 |#1|)) (-579 |#1|))) (-15 -3750 (|#1| |#1| (-546 |#1|) |#1|)) (-15 -3141 ((-3 (-546 |#1|) #1#) |#1|)) (-15 -3140 ((-546 |#1|) |#1|))) (-250)) (T -249)) +((-3577 (*1 *2 *2) (-12 (-5 *2 (-84)) (-5 *1 (-249 *3)) (-4 *3 (-250)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-249 *4)) (-4 *4 (-250))))) +((-2553 (((-83) $ $) 7 T ELT)) (-1588 (((-579 (-546 $)) $) 42 T ELT)) (-1592 (($ $ (-245 $)) 54 T ELT) (($ $ (-579 (-245 $))) 53 T ELT) (($ $ (-579 (-546 $)) (-579 $)) 52 T ELT)) (-3141 (((-3 (-546 $) "failed") $) 67 T ELT)) (-3140 (((-546 $) $) 68 T ELT)) (-2558 (($ $) 49 T ELT) (($ (-579 $)) 48 T ELT)) (-1587 (((-579 (-84)) $) 41 T ELT)) (-3577 (((-84) (-84)) 40 T ELT)) (-2658 (((-83) $) 20 (|has| $ (-944 (-479))) ELT)) (-1585 (((-1075 $) (-546 $)) 23 (|has| $ (-955)) ELT)) (-3940 (($ (-1 $ $) (-546 $)) 34 T ELT)) (-1590 (((-3 (-546 $) "failed") $) 44 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1589 (((-579 (-546 $)) $) 43 T ELT)) (-2222 (($ (-84) $) 36 T ELT) (($ (-84) (-579 $)) 35 T ELT)) (-2618 (((-83) $ (-84)) 38 T ELT) (((-83) $ (-1080)) 37 T ELT)) (-2588 (((-688) $) 45 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1586 (((-83) $ $) 33 T ELT) (((-83) $ (-1080)) 32 T ELT)) (-2659 (((-83) $) 21 (|has| $ (-944 (-479))) ELT)) (-3750 (($ $ (-546 $) $) 65 T ELT) (($ $ (-579 (-546 $)) (-579 $)) 64 T ELT) (($ $ (-579 (-245 $))) 63 T ELT) (($ $ (-245 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-579 $) (-579 $)) 60 T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ $))) 31 T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ (-579 $)))) 30 T ELT) (($ $ (-1080) (-1 $ (-579 $))) 29 T ELT) (($ $ (-1080) (-1 $ $)) 28 T ELT) (($ $ (-579 (-84)) (-579 (-1 $ $))) 27 T ELT) (($ $ (-579 (-84)) (-579 (-1 $ (-579 $)))) 26 T ELT) (($ $ (-84) (-1 $ (-579 $))) 25 T ELT) (($ $ (-84) (-1 $ $)) 24 T ELT)) (-3782 (($ (-84) $) 59 T ELT) (($ (-84) $ $) 58 T ELT) (($ (-84) $ $ $) 57 T ELT) (($ (-84) $ $ $ $) 56 T ELT) (($ (-84) (-579 $)) 55 T ELT)) (-1591 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3169 (($ $) 22 (|has| $ (-955)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-546 $)) 66 T ELT)) (-2575 (($ $) 51 T ELT) (($ (-579 $)) 50 T ELT)) (-2241 (((-83) (-84)) 39 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) (((-250) (-111)) (T -250)) -((-3776 (*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3776 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3776 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3776 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3776 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 *1)) (-4 *1 (-250)))) (-1587 (*1 *1 *1 *2) (-12 (-5 *2 (-245 *1)) (-4 *1 (-250)))) (-1587 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-245 *1))) (-4 *1 (-250)))) (-1587 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-545 *1))) (-5 *3 (-578 *1)) (-4 *1 (-250)))) (-2570 (*1 *1 *1) (-4 *1 (-250))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-250)))) (-2553 (*1 *1 *1) (-4 *1 (-250))) (-2553 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-250)))) (-1586 (*1 *1 *1) (-4 *1 (-250))) (-1586 (*1 *1 *1 *1) (-4 *1 (-250))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-687)))) (-1585 (*1 *2 *1) (|partial| -12 (-5 *2 (-545 *1)) (-4 *1 (-250)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-578 (-545 *1))) (-4 *1 (-250)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-578 (-545 *1))) (-4 *1 (-250)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-578 (-84))))) (-3571 (*1 *2 *2) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-2236 (*1 *2 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) (-2613 (*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) (-2613 (*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1075)) (-5 *2 (-83)))) (-2217 (*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-2217 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 *1)) (-4 *1 (-250)))) (-3934 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-545 *1)) (-4 *1 (-250)))) (-1581 (*1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-83)))) (-1581 (*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1075)) (-5 *2 (-83)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-250)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-250)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-250)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-250)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-250)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-250)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-545 *1)) (-4 *1 (-954)) (-4 *1 (-250)) (-5 *2 (-1070 *1)))) (-3167 (*1 *1 *1) (-12 (-4 *1 (-954)) (-4 *1 (-250)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-943 (-478))) (-4 *1 (-250)) (-5 *2 (-83)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-943 (-478))) (-4 *1 (-250)) (-5 *2 (-83))))) -(-13 (-1003) (-943 (-545 $)) (-447 (-545 $) $) (-256 $) (-10 -8 (-15 -3776 ($ (-84) $)) (-15 -3776 ($ (-84) $ $)) (-15 -3776 ($ (-84) $ $ $)) (-15 -3776 ($ (-84) $ $ $ $)) (-15 -3776 ($ (-84) (-578 $))) (-15 -1587 ($ $ (-245 $))) (-15 -1587 ($ $ (-578 (-245 $)))) (-15 -1587 ($ $ (-578 (-545 $)) (-578 $))) (-15 -2570 ($ $)) (-15 -2570 ($ (-578 $))) (-15 -2553 ($ $)) (-15 -2553 ($ (-578 $))) (-15 -1586 ($ $)) (-15 -1586 ($ $ $)) (-15 -2583 ((-687) $)) (-15 -1585 ((-3 (-545 $) "failed") $)) (-15 -1584 ((-578 (-545 $)) $)) (-15 -1583 ((-578 (-545 $)) $)) (-15 -1582 ((-578 (-84)) $)) (-15 -3571 ((-84) (-84))) (-15 -2236 ((-83) (-84))) (-15 -2613 ((-83) $ (-84))) (-15 -2613 ((-83) $ (-1075))) (-15 -2217 ($ (-84) $)) (-15 -2217 ($ (-84) (-578 $))) (-15 -3934 ($ (-1 $ $) (-545 $))) (-15 -1581 ((-83) $ $)) (-15 -1581 ((-83) $ (-1075))) (-15 -3744 ($ $ (-578 (-1075)) (-578 (-1 $ $)))) (-15 -3744 ($ $ (-578 (-1075)) (-578 (-1 $ (-578 $))))) (-15 -3744 ($ $ (-1075) (-1 $ (-578 $)))) (-15 -3744 ($ $ (-1075) (-1 $ $))) (-15 -3744 ($ $ (-578 (-84)) (-578 (-1 $ $)))) (-15 -3744 ($ $ (-578 (-84)) (-578 (-1 $ (-578 $))))) (-15 -3744 ($ $ (-84) (-1 $ (-578 $)))) (-15 -3744 ($ $ (-84) (-1 $ $))) (IF (|has| $ (-954)) (PROGN (-15 -1580 ((-1070 $) (-545 $))) (-15 -3167 ($ $))) |%noBranch|) (IF (|has| $ (-943 (-478))) (PROGN (-15 -2655 ((-83) $)) (-15 -2654 ((-83) $))) |%noBranch|))) -(((-72) . T) ((-550 (-545 $)) . T) ((-547 (-765)) . T) ((-256 $) . T) ((-447 (-545 $) $) . T) ((-447 $ $) . T) ((-943 (-545 $)) . T) ((-1003) . T) ((-1114) . T)) -((-3934 ((|#2| (-1 |#2| |#1|) (-1059) (-545 |#1|)) 18 T ELT))) -(((-251 |#1| |#2|) (-10 -7 (-15 -3934 (|#2| (-1 |#2| |#1|) (-1059) (-545 |#1|)))) (-250) (-1114)) (T -251)) -((-3934 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1059)) (-5 *5 (-545 *6)) (-4 *6 (-250)) (-4 *2 (-1114)) (-5 *1 (-251 *6 *2))))) -((-3934 ((|#2| (-1 |#2| |#1|) (-545 |#1|)) 17 T ELT))) -(((-252 |#1| |#2|) (-10 -7 (-15 -3934 (|#2| (-1 |#2| |#1|) (-545 |#1|)))) (-250) (-250)) (T -252)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-545 *5)) (-4 *5 (-250)) (-4 *2 (-250)) (-5 *1 (-252 *5 *2))))) -((-1591 (((-83) $ $) 14 T ELT)) (-2544 (($ $ $) 18 T ELT)) (-2543 (($ $ $) 17 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 50 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 67 T ELT)) (-3125 (($ $ $) 25 T ELT) (($ (-578 $)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3443 (((-3 $ #1#) $ $) 21 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 55 T ELT))) -(((-253 |#1|) (-10 -7 (-15 -1588 ((-3 (-578 |#1|) #1="failed") (-578 |#1|) |#1|)) (-15 -1589 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1589 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2391 |#1|)) |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -1591 ((-83) |#1| |#1|)) (-15 -2721 ((-627 (-578 |#1|)) (-578 |#1|) |#1|)) (-15 -2722 ((-2 (|:| -3930 (-578 |#1|)) (|:| -2391 |#1|)) (-578 |#1|))) (-15 -3125 (|#1| (-578 |#1|))) (-15 -3125 (|#1| |#1| |#1|)) (-15 -3443 ((-3 |#1| #1#) |#1| |#1|))) (-254)) (T -253)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3700 (($) 22 T CONST)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-1588 (((-3 (-578 $) "failed") (-578 $) $) 65 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-3782 (*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3782 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3782 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3782 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-579 *1)) (-4 *1 (-250)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-245 *1)) (-4 *1 (-250)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-245 *1))) (-4 *1 (-250)))) (-1592 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-546 *1))) (-5 *3 (-579 *1)) (-4 *1 (-250)))) (-2575 (*1 *1 *1) (-4 *1 (-250))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-250)))) (-2558 (*1 *1 *1) (-4 *1 (-250))) (-2558 (*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-250)))) (-1591 (*1 *1 *1) (-4 *1 (-250))) (-1591 (*1 *1 *1 *1) (-4 *1 (-250))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-688)))) (-1590 (*1 *2 *1) (|partial| -12 (-5 *2 (-546 *1)) (-4 *1 (-250)))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-579 (-546 *1))) (-4 *1 (-250)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-579 (-546 *1))) (-4 *1 (-250)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-579 (-84))))) (-3577 (*1 *2 *2) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-2241 (*1 *2 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) (-2618 (*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) (-2618 (*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1080)) (-5 *2 (-83)))) (-2222 (*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) (-2222 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-579 *1)) (-4 *1 (-250)))) (-3940 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-546 *1)) (-4 *1 (-250)))) (-1586 (*1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-83)))) (-1586 (*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1080)) (-5 *2 (-83)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-579 (-1 *1 *1))) (-4 *1 (-250)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-579 (-1 *1 (-579 *1)))) (-4 *1 (-250)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-1 *1 (-579 *1))) (-4 *1 (-250)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-84))) (-5 *3 (-579 (-1 *1 *1))) (-4 *1 (-250)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-84))) (-5 *3 (-579 (-1 *1 (-579 *1)))) (-4 *1 (-250)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 (-579 *1))) (-4 *1 (-250)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-546 *1)) (-4 *1 (-955)) (-4 *1 (-250)) (-5 *2 (-1075 *1)))) (-3169 (*1 *1 *1) (-12 (-4 *1 (-955)) (-4 *1 (-250)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-944 (-479))) (-4 *1 (-250)) (-5 *2 (-83)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-944 (-479))) (-4 *1 (-250)) (-5 *2 (-83))))) +(-13 (-1006) (-944 (-546 $)) (-448 (-546 $) $) (-256 $) (-10 -8 (-15 -3782 ($ (-84) $)) (-15 -3782 ($ (-84) $ $)) (-15 -3782 ($ (-84) $ $ $)) (-15 -3782 ($ (-84) $ $ $ $)) (-15 -3782 ($ (-84) (-579 $))) (-15 -1592 ($ $ (-245 $))) (-15 -1592 ($ $ (-579 (-245 $)))) (-15 -1592 ($ $ (-579 (-546 $)) (-579 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-579 $))) (-15 -2558 ($ $)) (-15 -2558 ($ (-579 $))) (-15 -1591 ($ $)) (-15 -1591 ($ $ $)) (-15 -2588 ((-688) $)) (-15 -1590 ((-3 (-546 $) "failed") $)) (-15 -1589 ((-579 (-546 $)) $)) (-15 -1588 ((-579 (-546 $)) $)) (-15 -1587 ((-579 (-84)) $)) (-15 -3577 ((-84) (-84))) (-15 -2241 ((-83) (-84))) (-15 -2618 ((-83) $ (-84))) (-15 -2618 ((-83) $ (-1080))) (-15 -2222 ($ (-84) $)) (-15 -2222 ($ (-84) (-579 $))) (-15 -3940 ($ (-1 $ $) (-546 $))) (-15 -1586 ((-83) $ $)) (-15 -1586 ((-83) $ (-1080))) (-15 -3750 ($ $ (-579 (-1080)) (-579 (-1 $ $)))) (-15 -3750 ($ $ (-579 (-1080)) (-579 (-1 $ (-579 $))))) (-15 -3750 ($ $ (-1080) (-1 $ (-579 $)))) (-15 -3750 ($ $ (-1080) (-1 $ $))) (-15 -3750 ($ $ (-579 (-84)) (-579 (-1 $ $)))) (-15 -3750 ($ $ (-579 (-84)) (-579 (-1 $ (-579 $))))) (-15 -3750 ($ $ (-84) (-1 $ (-579 $)))) (-15 -3750 ($ $ (-84) (-1 $ $))) (IF (|has| $ (-955)) (PROGN (-15 -1585 ((-1075 $) (-546 $))) (-15 -3169 ($ $))) |%noBranch|) (IF (|has| $ (-944 (-479))) (PROGN (-15 -2659 ((-83) $)) (-15 -2658 ((-83) $))) |%noBranch|))) +(((-72) . T) ((-551 (-546 $)) . T) ((-548 (-766)) . T) ((-256 $) . T) ((-448 (-546 $) $) . T) ((-448 $ $) . T) ((-944 (-546 $)) . T) ((-1006) . T) ((-1119) . T)) +((-3940 ((|#2| (-1 |#2| |#1|) (-1063) (-546 |#1|)) 18 T ELT))) +(((-251 |#1| |#2|) (-10 -7 (-15 -3940 (|#2| (-1 |#2| |#1|) (-1063) (-546 |#1|)))) (-250) (-1119)) (T -251)) +((-3940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1063)) (-5 *5 (-546 *6)) (-4 *6 (-250)) (-4 *2 (-1119)) (-5 *1 (-251 *6 *2))))) +((-3940 ((|#2| (-1 |#2| |#1|) (-546 |#1|)) 17 T ELT))) +(((-252 |#1| |#2|) (-10 -7 (-15 -3940 (|#2| (-1 |#2| |#1|) (-546 |#1|)))) (-250) (-250)) (T -252)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-546 *5)) (-4 *5 (-250)) (-4 *2 (-250)) (-5 *1 (-252 *5 *2))))) +((-1596 (((-83) $ $) 14 T ELT)) (-2549 (($ $ $) 18 T ELT)) (-2548 (($ $ $) 17 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 50 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 67 T ELT)) (-3128 (($ $ $) 25 T ELT) (($ (-579 $)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3448 (((-3 $ #1#) $ $) 21 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 55 T ELT))) +(((-253 |#1|) (-10 -7 (-15 -1593 ((-3 (-579 |#1|) #1="failed") (-579 |#1|) |#1|)) (-15 -1594 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1594 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2396 |#1|)) |#1| |#1|)) (-15 -2549 (|#1| |#1| |#1|)) (-15 -2548 (|#1| |#1| |#1|)) (-15 -1596 ((-83) |#1| |#1|)) (-15 -2725 ((-628 (-579 |#1|)) (-579 |#1|) |#1|)) (-15 -2726 ((-2 (|:| -3936 (-579 |#1|)) (|:| -2396 |#1|)) (-579 |#1|))) (-15 -3128 (|#1| (-579 |#1|))) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3448 ((-3 |#1| #1#) |#1| |#1|))) (-254)) (T -253)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3706 (($) 22 T CONST)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-1593 (((-3 (-579 $) "failed") (-579 $) $) 65 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-254) (-111)) (T -254)) -((-1591 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-83)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-687)))) (-2860 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-254)))) (-2543 (*1 *1 *1 *1) (-4 *1 (-254))) (-2544 (*1 *1 *1 *1) (-4 *1 (-254))) (-1589 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2391 *1))) (-4 *1 (-254)))) (-1589 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-254)))) (-1588 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-254))))) -(-13 (-825) (-10 -8 (-15 -1591 ((-83) $ $)) (-15 -1590 ((-687) $)) (-15 -2860 ((-2 (|:| -1956 $) (|:| -2883 $)) $ $)) (-15 -2543 ($ $ $)) (-15 -2544 ($ $ $)) (-15 -1589 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $)) (-15 -1589 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1588 ((-3 (-578 $) "failed") (-578 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3744 (($ $ (-578 |#2|) (-578 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-245 |#2|)) 11 T ELT) (($ $ (-578 (-245 |#2|))) NIL T ELT))) -(((-255 |#1| |#2|) (-10 -7 (-15 -3744 (|#1| |#1| (-578 (-245 |#2|)))) (-15 -3744 (|#1| |#1| (-245 |#2|))) (-15 -3744 (|#1| |#1| |#2| |#2|)) (-15 -3744 (|#1| |#1| (-578 |#2|) (-578 |#2|)))) (-256 |#2|) (-1003)) (T -255)) -NIL -((-3744 (($ $ (-578 |#1|) (-578 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-245 |#1|)) 13 T ELT) (($ $ (-578 (-245 |#1|))) 12 T ELT))) -(((-256 |#1|) (-111) (-1003)) (T -256)) -((-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-245 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1003)))) (-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-245 *3))) (-4 *1 (-256 *3)) (-4 *3 (-1003))))) -(-13 (-447 |t#1| |t#1|) (-10 -8 (-15 -3744 ($ $ (-245 |t#1|))) (-15 -3744 ($ $ (-578 (-245 |t#1|)))))) -(((-447 |#1| |#1|) . T)) -((-3744 ((|#1| (-1 |#1| (-478)) (-1077 (-343 (-478)))) 26 T ELT))) -(((-257 |#1|) (-10 -7 (-15 -3744 (|#1| (-1 |#1| (-478)) (-1077 (-343 (-478)))))) (-38 (-343 (-478)))) (T -257)) -((-3744 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-478))) (-5 *4 (-1077 (-343 (-478)))) (-5 *1 (-257 *2)) (-4 *2 (-38 (-343 (-478))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 7 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 9 T ELT))) -(((-258) (-1003)) (T -258)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3483 (((-478) $) 13 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3061 (((-1035) $) 10 T ELT)) (-3922 (((-765) $) 20 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-259) (-13 (-986) (-10 -8 (-15 -3061 ((-1035) $)) (-15 -3483 ((-478) $))))) (T -259)) -((-3061 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-259)))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-259))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 60 T ELT)) (-3110 (((-1151 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-814)) ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-814)) ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-733)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-1151 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-943 (-1075))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-943 (-478))) ELT) (((-3 (-1145 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3137 (((-1151 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1075) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-943 (-478))) ELT) (((-1145 |#2| |#3| |#4|) $) NIL T ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-1151 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1164 (-1151 |#1| |#2| |#3| |#4|)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-1151 |#1| |#2| |#3| |#4|)) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-477)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3168 (((-83) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-789 (-323))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL T ELT)) (-2979 (((-1151 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3422 (((-627 $) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-1052)) ELT)) (-3169 (((-83) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-733)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-3934 (($ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3760 (((-3 (-743 |#2|) #1#) $) 80 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-1151 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1164 (-1151 |#1| |#2| |#3| |#4|)))) (-1164 $) $) NIL T ELT) (((-625 (-1151 |#1| |#2| |#3| |#4|)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-254)) ELT)) (-3111 (((-1151 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-814)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3744 (($ $ (-578 (-1151 |#1| |#2| |#3| |#4|)) (-578 (-1151 |#1| |#2| |#3| |#4|))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-256 (-1151 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-256 (-1151 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-245 (-1151 |#1| |#2| |#3| |#4|))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-256 (-1151 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-578 (-245 (-1151 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-256 (-1151 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-578 (-1075)) (-578 (-1151 |#1| |#2| |#3| |#4|))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-447 (-1075) (-1151 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1075) (-1151 |#1| |#2| |#3| |#4|)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-447 (-1075) (-1151 |#1| |#2| |#3| |#4|))) ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ $ (-1151 |#1| |#2| |#3| |#4|)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-238 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-804 (-1075))) ELT) (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-187)) ELT)) (-2976 (($ $) NIL T ELT)) (-2978 (((-1151 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3948 (((-793 (-478)) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-926)) ELT) (((-177) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-926)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-1151 |#1| |#2| |#3| |#4|) (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-1151 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1075)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-943 (-1075))) ELT) (($ (-1145 |#2| |#3| |#4|)) 37 T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1151 |#1| |#2| |#3| |#4|) (-814))) (|has| (-1151 |#1| |#2| |#3| |#4|) (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-3112 (((-1151 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-477)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3360 (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-733)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-804 (-1075))) ELT) (($ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-187)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| (-1151 |#1| |#2| |#3| |#4|) (-749)) ELT)) (-3925 (($ $ $) 35 T ELT) (($ (-1151 |#1| |#2| |#3| |#4|) (-1151 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-1151 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1151 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-260 |#1| |#2| |#3| |#4|) (-13 (-897 (-1151 |#1| |#2| |#3| |#4|)) (-943 (-1145 |#2| |#3| |#4|)) (-10 -8 (-15 -3760 ((-3 (-743 |#2|) "failed") $)) (-15 -3922 ($ (-1145 |#2| |#3| |#4|))))) (-13 (-943 (-478)) (-575 (-478)) (-385)) (-13 (-27) (-1100) (-357 |#1|)) (-1075) |#2|) (T -260)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1145 *4 *5 *6)) (-4 *4 (-13 (-27) (-1100) (-357 *3))) (-14 *5 (-1075)) (-14 *6 *4) (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) (-5 *1 (-260 *3 *4 *5 *6)))) (-3760 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) (-5 *2 (-743 *4)) (-5 *1 (-260 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1100) (-357 *3))) (-14 *5 (-1075)) (-14 *6 *4)))) -((-2548 (((-83) $ $) NIL T ELT)) (-1199 (((-578 $) $ (-1075)) NIL (|has| |#1| (-489)) ELT) (((-578 $) $) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-1070 $) (-1075)) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-1070 $)) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-850 $)) NIL (|has| |#1| (-489)) ELT)) (-1200 (($ $ (-1075)) NIL (|has| |#1| (-489)) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-1070 $) (-1075)) NIL (|has| |#1| (-489)) ELT) (($ (-1070 $)) NIL (|has| |#1| (-489)) ELT) (($ (-850 $)) NIL (|has| |#1| (-489)) ELT)) (-3170 (((-83) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-3063 (((-578 (-1075)) $) 365 T ELT)) (-3065 (((-343 (-1070 $)) $ (-545 $)) NIL (|has| |#1| (-489)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-1583 (((-578 (-545 $)) $) NIL T ELT)) (-3469 (($ $) 170 (|has| |#1| (-489)) ELT)) (-3615 (($ $) 146 (|has| |#1| (-489)) ELT)) (-1355 (($ $ (-995 $)) 231 (|has| |#1| (-489)) ELT) (($ $ (-1075)) 227 (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-1587 (($ $ (-245 $)) NIL T ELT) (($ $ (-578 (-245 $))) 383 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 438 T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 305 (-12 (|has| |#1| (-385)) (|has| |#1| (-489))) ELT)) (-3751 (($ $) NIL (|has| |#1| (-489)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-489)) ELT)) (-3018 (($ $) NIL (|has| |#1| (-489)) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3467 (($ $) 166 (|has| |#1| (-489)) ELT)) (-3614 (($ $) 142 (|has| |#1| (-489)) ELT)) (-1592 (($ $ (-478)) 68 (|has| |#1| (-489)) ELT)) (-3471 (($ $) 174 (|has| |#1| (-489)) ELT)) (-3613 (($ $) 150 (|has| |#1| (-489)) ELT)) (-3700 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) (|has| |#1| (-1013))) CONST)) (-1201 (((-578 $) $ (-1075)) NIL (|has| |#1| (-489)) ELT) (((-578 $) $) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-1070 $) (-1075)) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-1070 $)) NIL (|has| |#1| (-489)) ELT) (((-578 $) (-850 $)) NIL (|has| |#1| (-489)) ELT)) (-3165 (($ $ (-1075)) NIL (|has| |#1| (-489)) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-1070 $) (-1075)) 133 (|has| |#1| (-489)) ELT) (($ (-1070 $)) NIL (|has| |#1| (-489)) ELT) (($ (-850 $)) NIL (|has| |#1| (-489)) ELT)) (-3138 (((-3 (-545 $) #1#) $) 18 T ELT) (((-3 (-1075) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-850 |#1|)) #1#) $) NIL (|has| |#1| (-489)) ELT) (((-3 (-850 |#1|) #1#) $) NIL (|has| |#1| (-954)) ELT) (((-3 (-343 (-478)) #1#) $) 48 (OR (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3137 (((-545 $) $) 12 T ELT) (((-1075) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-850 |#1|)) $) NIL (|has| |#1| (-489)) ELT) (((-850 |#1|) $) NIL (|has| |#1| (-954)) ELT) (((-343 (-478)) $) 316 (OR (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-2261 (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 124 (|has| |#1| (-954)) ELT) (((-625 |#1|) (-625 $)) 114 (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT)) (-3818 (($ $) 95 (|has| |#1| (-489)) ELT)) (-3444 (((-3 $ #1#) $) NIL (|has| |#1| (-1013)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3920 (($ $ (-995 $)) 235 (|has| |#1| (-489)) ELT) (($ $ (-1075)) 233 (|has| |#1| (-489)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-489)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3363 (($ $ $) 201 (|has| |#1| (-489)) ELT)) (-3603 (($) 136 (|has| |#1| (-489)) ELT)) (-1352 (($ $ $) 221 (|has| |#1| (-489)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 389 (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 396 (|has| |#1| (-789 (-323))) ELT)) (-2553 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1582 (((-578 (-84)) $) NIL T ELT)) (-3571 (((-84) (-84)) 275 T ELT)) (-2392 (((-83) $) 27 (|has| |#1| (-1013)) ELT)) (-2654 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-2977 (($ $) 73 (|has| |#1| (-954)) ELT)) (-2979 (((-1025 |#1| (-545 $)) $) 90 (|has| |#1| (-954)) ELT)) (-1593 (((-83) $) 49 (|has| |#1| (-489)) ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-489)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-489)) ELT)) (-1580 (((-1070 $) (-545 $)) 276 (|has| $ (-954)) ELT)) (-3934 (($ (-1 $ $) (-545 $)) 434 T ELT)) (-1585 (((-3 (-545 $) #1#) $) NIL T ELT)) (-3918 (($ $) 140 (|has| |#1| (-489)) ELT)) (-2239 (($ $) 246 (|has| |#1| (-489)) ELT)) (-2262 (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL (|has| |#1| (-954)) ELT) (((-625 |#1|) (-1164 $)) NIL (|has| |#1| (-954)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-625 (-478)) (-1164 $)) NIL (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-489)) ELT) (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1584 (((-578 (-545 $)) $) 51 T ELT)) (-2217 (($ (-84) $) NIL T ELT) (($ (-84) (-578 $)) 439 T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL (|has| |#1| (-1013)) ELT)) (-2806 (((-3 (-2 (|:| |val| $) (|:| -2383 (-478))) #1#) $) NIL (|has| |#1| (-954)) ELT)) (-2803 (((-3 (-578 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1777 (((-3 (-2 (|:| -3930 (-478)) (|:| |var| (-545 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2805 (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) #1#) $) NIL (|has| |#1| (-1013)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) #1#) $ (-84)) NIL (|has| |#1| (-954)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) #1#) $ (-1075)) NIL (|has| |#1| (-954)) ELT)) (-2613 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1075)) 53 T ELT)) (-2464 (($ $) NIL (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT)) (-2813 (($ $ (-1075)) 250 (|has| |#1| (-489)) ELT) (($ $ (-995 $)) 252 (|has| |#1| (-489)) ELT)) (-2583 (((-687) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) 45 T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 298 (|has| |#1| (-489)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-489)) ELT) (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-1581 (((-83) $ $) NIL T ELT) (((-83) $ (-1075)) NIL T ELT)) (-1356 (($ $ (-1075)) 225 (|has| |#1| (-489)) ELT) (($ $) 223 (|has| |#1| (-489)) ELT)) (-1350 (($ $) 217 (|has| |#1| (-489)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 303 (-12 (|has| |#1| (-385)) (|has| |#1| (-489))) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-489)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-489)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-489)) ELT)) (-3919 (($ $) 138 (|has| |#1| (-489)) ELT)) (-2655 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-3744 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) 433 T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-1075) (-1 $ (-578 $))) NIL T ELT) (($ $ (-1075) (-1 $ $)) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 376 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-578 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-548 (-467))) ELT) (($ $) NIL (|has| |#1| (-548 (-467))) ELT) (($ $ (-84) $ (-1075)) 363 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-84)) (-578 $) (-1075)) 362 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ $))) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ (-578 $)))) NIL (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687) (-1 $ (-578 $))) NIL (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687) (-1 $ $)) NIL (|has| |#1| (-954)) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-489)) ELT)) (-2237 (($ $) 238 (|has| |#1| (-489)) ELT)) (-3776 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-1586 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2238 (($ $) 248 (|has| |#1| (-489)) ELT)) (-3362 (($ $) 199 (|has| |#1| (-489)) ELT)) (-3734 (($ $ (-1075)) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-954)) ELT)) (-2976 (($ $) 74 (|has| |#1| (-489)) ELT)) (-2978 (((-1025 |#1| (-545 $)) $) 92 (|has| |#1| (-489)) ELT)) (-3167 (($ $) 314 (|has| $ (-954)) ELT)) (-3472 (($ $) 176 (|has| |#1| (-489)) ELT)) (-3612 (($ $) 152 (|has| |#1| (-489)) ELT)) (-3470 (($ $) 172 (|has| |#1| (-489)) ELT)) (-3611 (($ $) 148 (|has| |#1| (-489)) ELT)) (-3468 (($ $) 168 (|has| |#1| (-489)) ELT)) (-3610 (($ $) 144 (|has| |#1| (-489)) ELT)) (-3948 (((-793 (-478)) $) NIL (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| |#1| (-548 (-793 (-323)))) ELT) (($ (-341 $)) NIL (|has| |#1| (-489)) ELT) (((-467) $) 360 (|has| |#1| (-548 (-467))) ELT)) (-2990 (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-2415 (($ $ $) NIL (|has| |#1| (-406)) ELT)) (-3922 (((-765) $) 432 T ELT) (($ (-545 $)) 423 T ELT) (($ (-1075)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478)))) ELT) (($ (-1025 |#1| (-545 $))) 94 (|has| |#1| (-954)) ELT) (($ (-343 |#1|)) NIL (|has| |#1| (-489)) ELT) (($ (-850 (-343 |#1|))) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-850 (-343 |#1|)))) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-850 |#1|))) NIL (|has| |#1| (-489)) ELT) (($ (-850 |#1|)) NIL (|has| |#1| (-954)) ELT) (($ (-478)) 36 (OR (|has| |#1| (-943 (-478))) (|has| |#1| (-954))) ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-489)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL (|has| |#1| (-954)) CONST)) (-2570 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3083 (($ $ $) 219 (|has| |#1| (-489)) ELT)) (-3366 (($ $ $) 205 (|has| |#1| (-489)) ELT)) (-3368 (($ $ $) 209 (|has| |#1| (-489)) ELT)) (-3365 (($ $ $) 203 (|has| |#1| (-489)) ELT)) (-3367 (($ $ $) 207 (|has| |#1| (-489)) ELT)) (-2236 (((-83) (-84)) 10 T ELT)) (-1249 (((-83) $ $) 85 T ELT)) (-3475 (($ $) 182 (|has| |#1| (-489)) ELT)) (-3463 (($ $) 158 (|has| |#1| (-489)) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) 178 (|has| |#1| (-489)) ELT)) (-3461 (($ $) 154 (|has| |#1| (-489)) ELT)) (-3477 (($ $) 186 (|has| |#1| (-489)) ELT)) (-3465 (($ $) 162 (|has| |#1| (-489)) ELT)) (-1778 (($ (-1075) $) NIL T ELT) (($ (-1075) $ $) NIL T ELT) (($ (-1075) $ $ $) NIL T ELT) (($ (-1075) $ $ $ $) NIL T ELT) (($ (-1075) (-578 $)) NIL T ELT)) (-3370 (($ $) 213 (|has| |#1| (-489)) ELT)) (-3369 (($ $) 211 (|has| |#1| (-489)) ELT)) (-3478 (($ $) 188 (|has| |#1| (-489)) ELT)) (-3466 (($ $) 164 (|has| |#1| (-489)) ELT)) (-3476 (($ $) 184 (|has| |#1| (-489)) ELT)) (-3464 (($ $) 160 (|has| |#1| (-489)) ELT)) (-3474 (($ $) 180 (|has| |#1| (-489)) ELT)) (-3462 (($ $) 156 (|has| |#1| (-489)) ELT)) (-3360 (($ $) 191 (|has| |#1| (-489)) ELT)) (-2640 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) CONST)) (-2241 (($ $) 242 (|has| |#1| (-489)) ELT)) (-2647 (($) 25 (|has| |#1| (-1013)) CONST)) (-3364 (($ $) 193 (|has| |#1| (-489)) ELT) (($ $ $) 195 (|has| |#1| (-489)) ELT)) (-2242 (($ $) 240 (|has| |#1| (-489)) ELT)) (-2650 (($ $ (-1075)) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-954)) ELT)) (-2240 (($ $) 244 (|has| |#1| (-489)) ELT)) (-3361 (($ $ $) 197 (|has| |#1| (-489)) ELT)) (-3037 (((-83) $ $) 87 T ELT)) (-3925 (($ (-1025 |#1| (-545 $)) (-1025 |#1| (-545 $))) 105 (|has| |#1| (-489)) ELT) (($ $ $) 44 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT)) (-3813 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (-3815 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-489)) ELT) (($ $ (-343 (-478))) 311 (|has| |#1| (-489)) ELT) (($ $ (-478)) 79 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT) (($ $ (-687)) 75 (|has| |#1| (-1013)) ELT) (($ $ (-823)) 83 (|has| |#1| (-1013)) ELT)) (* (($ (-343 (-478)) $) NIL (|has| |#1| (-489)) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-489)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT) (($ |#1| $) NIL (|has| |#1| (-954)) ELT) (($ $ $) 38 (|has| |#1| (-1013)) ELT) (($ (-478) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (($ (-687) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT) (($ (-823) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954)))) ELT))) -(((-261 |#1|) (-13 (-357 |#1|) (-10 -8 (IF (|has| |#1| (-489)) (PROGN (-6 (-29 |#1|)) (-6 (-1100)) (-6 (-131)) (-6 (-564)) (-6 (-1039)) (-15 -3818 ($ $)) (-15 -1593 ((-83) $)) (-15 -1592 ($ $ (-478))) (IF (|has| |#1| (-385)) (PROGN (-15 -2687 ((-341 (-1070 $)) (-1070 $))) (-15 -2688 ((-341 (-1070 $)) (-1070 $)))) |%noBranch|) (IF (|has| |#1| (-943 (-478))) (-6 (-943 (-48))) |%noBranch|)) |%noBranch|))) (-1003)) (T -261)) -((-3818 (*1 *1 *1) (-12 (-5 *1 (-261 *2)) (-4 *2 (-489)) (-4 *2 (-1003)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-261 *3)) (-4 *3 (-489)) (-4 *3 (-1003)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-261 *3)) (-4 *3 (-489)) (-4 *3 (-1003)))) (-2687 (*1 *2 *3) (-12 (-5 *2 (-341 (-1070 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-385)) (-4 *4 (-489)) (-4 *4 (-1003)))) (-2688 (*1 *2 *3) (-12 (-5 *2 (-341 (-1070 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1070 *1)) (-4 *4 (-385)) (-4 *4 (-489)) (-4 *4 (-1003))))) -((-3934 (((-261 |#2|) (-1 |#2| |#1|) (-261 |#1|)) 13 T ELT))) -(((-262 |#1| |#2|) (-10 -7 (-15 -3934 ((-261 |#2|) (-1 |#2| |#1|) (-261 |#1|)))) (-1003) (-1003)) (T -262)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-261 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-261 *6)) (-5 *1 (-262 *5 *6))))) -((-3705 (((-51) |#2| (-245 |#2|) (-687)) 40 T ELT) (((-51) |#2| (-245 |#2|)) 32 T ELT) (((-51) |#2| (-687)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1075)) 26 T ELT)) (-3794 (((-51) |#2| (-245 |#2|) (-343 (-478))) 59 T ELT) (((-51) |#2| (-245 |#2|)) 56 T ELT) (((-51) |#2| (-343 (-478))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1075)) 55 T ELT)) (-3758 (((-51) |#2| (-245 |#2|) (-343 (-478))) 54 T ELT) (((-51) |#2| (-245 |#2|)) 51 T ELT) (((-51) |#2| (-343 (-478))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1075)) 50 T ELT)) (-3755 (((-51) |#2| (-245 |#2|) (-478)) 47 T ELT) (((-51) |#2| (-245 |#2|)) 44 T ELT) (((-51) |#2| (-478)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1075)) 43 T ELT))) -(((-263 |#1| |#2|) (-10 -7 (-15 -3705 ((-51) (-1075))) (-15 -3705 ((-51) |#2|)) (-15 -3705 ((-51) |#2| (-687))) (-15 -3705 ((-51) |#2| (-245 |#2|))) (-15 -3705 ((-51) |#2| (-245 |#2|) (-687))) (-15 -3755 ((-51) (-1075))) (-15 -3755 ((-51) |#2|)) (-15 -3755 ((-51) |#2| (-478))) (-15 -3755 ((-51) |#2| (-245 |#2|))) (-15 -3755 ((-51) |#2| (-245 |#2|) (-478))) (-15 -3758 ((-51) (-1075))) (-15 -3758 ((-51) |#2|)) (-15 -3758 ((-51) |#2| (-343 (-478)))) (-15 -3758 ((-51) |#2| (-245 |#2|))) (-15 -3758 ((-51) |#2| (-245 |#2|) (-343 (-478)))) (-15 -3794 ((-51) (-1075))) (-15 -3794 ((-51) |#2|)) (-15 -3794 ((-51) |#2| (-343 (-478)))) (-15 -3794 ((-51) |#2| (-245 |#2|))) (-15 -3794 ((-51) |#2| (-245 |#2|) (-343 (-478))))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1100) (-357 |#1|))) (T -263)) -((-3794 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-5 *5 (-343 (-478))) (-4 *3 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *4 (-343 (-478))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1100) (-357 *4))))) (-3758 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-5 *5 (-343 (-478))) (-4 *3 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *4 (-343 (-478))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) (-3758 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1100) (-357 *4))))) (-3755 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-385) (-943 *5) (-575 *5))) (-5 *5 (-478)) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-4 *5 (-13 (-385) (-943 *4) (-575 *4))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1100) (-357 *4))))) (-3705 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-5 *5 (-687)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1100) (-357 *4)))))) -((-1594 (((-51) |#2| (-84) (-245 |#2|) (-578 |#2|)) 89 T ELT) (((-51) |#2| (-84) (-245 |#2|) (-245 |#2|)) 85 T ELT) (((-51) |#2| (-84) (-245 |#2|) |#2|) 87 T ELT) (((-51) (-245 |#2|) (-84) (-245 |#2|) |#2|) 88 T ELT) (((-51) (-578 |#2|) (-578 (-84)) (-245 |#2|) (-578 (-245 |#2|))) 81 T ELT) (((-51) (-578 |#2|) (-578 (-84)) (-245 |#2|) (-578 |#2|)) 83 T ELT) (((-51) (-578 (-245 |#2|)) (-578 (-84)) (-245 |#2|) (-578 |#2|)) 84 T ELT) (((-51) (-578 (-245 |#2|)) (-578 (-84)) (-245 |#2|) (-578 (-245 |#2|))) 82 T ELT) (((-51) (-245 |#2|) (-84) (-245 |#2|) (-578 |#2|)) 90 T ELT) (((-51) (-245 |#2|) (-84) (-245 |#2|) (-245 |#2|)) 86 T ELT))) -(((-264 |#1| |#2|) (-10 -7 (-15 -1594 ((-51) (-245 |#2|) (-84) (-245 |#2|) (-245 |#2|))) (-15 -1594 ((-51) (-245 |#2|) (-84) (-245 |#2|) (-578 |#2|))) (-15 -1594 ((-51) (-578 (-245 |#2|)) (-578 (-84)) (-245 |#2|) (-578 (-245 |#2|)))) (-15 -1594 ((-51) (-578 (-245 |#2|)) (-578 (-84)) (-245 |#2|) (-578 |#2|))) (-15 -1594 ((-51) (-578 |#2|) (-578 (-84)) (-245 |#2|) (-578 |#2|))) (-15 -1594 ((-51) (-578 |#2|) (-578 (-84)) (-245 |#2|) (-578 (-245 |#2|)))) (-15 -1594 ((-51) (-245 |#2|) (-84) (-245 |#2|) |#2|)) (-15 -1594 ((-51) |#2| (-84) (-245 |#2|) |#2|)) (-15 -1594 ((-51) |#2| (-84) (-245 |#2|) (-245 |#2|))) (-15 -1594 ((-51) |#2| (-84) (-245 |#2|) (-578 |#2|)))) (-13 (-489) (-548 (-467))) (-357 |#1|)) (T -264)) -((-1594 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-5 *6 (-578 *3)) (-4 *3 (-357 *7)) (-4 *7 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *3)))) (-1594 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-1594 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-1594 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-245 *5)) (-5 *4 (-84)) (-4 *5 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *5)))) (-1594 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-84))) (-5 *6 (-578 (-245 *8))) (-4 *8 (-357 *7)) (-5 *5 (-245 *8)) (-4 *7 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) (-1594 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-84))) (-5 *5 (-245 *7)) (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) (-1594 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 (-245 *8))) (-5 *4 (-578 (-84))) (-5 *5 (-245 *8)) (-5 *6 (-578 *8)) (-4 *8 (-357 *7)) (-4 *7 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) (-1594 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 (-245 *7))) (-5 *4 (-578 (-84))) (-5 *5 (-245 *7)) (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) (-1594 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-578 *7)) (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) (-1594 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-245 *6)) (-5 *4 (-84)) (-4 *6 (-357 *5)) (-4 *5 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *6))))) -((-1596 (((-1110 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-177) (-478) (-1059)) 67 T ELT) (((-1110 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-177) (-478)) 68 T ELT) (((-1110 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-1 (-177) (-177)) (-478) (-1059)) 64 T ELT) (((-1110 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-1 (-177) (-177)) (-478)) 65 T ELT)) (-1595 (((-1 (-177) (-177)) (-177)) 66 T ELT))) -(((-265) (-10 -7 (-15 -1595 ((-1 (-177) (-177)) (-177))) (-15 -1596 ((-1110 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-1 (-177) (-177)) (-478))) (-15 -1596 ((-1110 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-1 (-177) (-177)) (-478) (-1059))) (-15 -1596 ((-1110 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-177) (-478))) (-15 -1596 ((-1110 (-831)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-177) (-478) (-1059))))) (T -265)) -((-1596 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) (-5 *6 (-177)) (-5 *7 (-478)) (-5 *8 (-1059)) (-5 *2 (-1110 (-831))) (-5 *1 (-265)))) (-1596 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) (-5 *6 (-177)) (-5 *7 (-478)) (-5 *2 (-1110 (-831))) (-5 *1 (-265)))) (-1596 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) (-5 *6 (-478)) (-5 *7 (-1059)) (-5 *2 (-1110 (-831))) (-5 *1 (-265)))) (-1596 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) (-5 *6 (-478)) (-5 *2 (-1110 (-831))) (-5 *1 (-265)))) (-1595 (*1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-265)) (-5 *3 (-177))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 26 T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-343 (-478))) NIL T ELT) (($ $ (-343 (-478)) (-343 (-478))) NIL T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) 20 T ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-687) (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) NIL T ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) 36 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3168 (((-83) $) NIL T ELT)) (-2873 (((-83) $) NIL T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-343 (-478)) $) NIL T ELT) (((-343 (-478)) $ (-343 (-478))) 16 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-343 (-478))) NIL T ELT) (($ $ (-985) (-343 (-478))) NIL T ELT) (($ $ (-578 (-985)) (-578 (-343 (-478)))) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-343 (-478))) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-1597 (((-343 (-478)) $) 17 T ELT)) (-3072 (($ (-1145 |#1| |#2| |#3|)) 11 T ELT)) (-2383 (((-1145 |#1| |#2| |#3|) $) 12 T ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-343 (-478))) NIL T ELT) (($ $ $) NIL (|has| (-343 (-478)) (-1013)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3924 (((-343 (-478)) $) NIL T ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) 10 T ELT)) (-3922 (((-765) $) 42 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-343 (-478))) 34 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-3749 ((|#1| $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-343 (-478))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 28 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 37 T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-266 |#1| |#2| |#3|) (-13 (-1147 |#1|) (-709) (-10 -8 (-15 -3072 ($ (-1145 |#1| |#2| |#3|))) (-15 -2383 ((-1145 |#1| |#2| |#3|) $)) (-15 -1597 ((-343 (-478)) $)))) (-308) (-1075) |#1|) (T -266)) -((-3072 (*1 *1 *2) (-12 (-5 *2 (-1145 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1075)) (-14 *5 *3) (-5 *1 (-266 *3 *4 *5)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-1145 *3 *4 *5)) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1075)) (-14 *5 *3))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1075)) (-14 *5 *3)))) -((-2992 (((-2 (|:| -2383 (-687)) (|:| -3930 |#1|) (|:| |radicand| (-578 |#1|))) (-341 |#1|) (-687)) 35 T ELT)) (-3918 (((-578 (-2 (|:| -3930 (-687)) (|:| |logand| |#1|))) (-341 |#1|)) 40 T ELT))) -(((-267 |#1|) (-10 -7 (-15 -2992 ((-2 (|:| -2383 (-687)) (|:| -3930 |#1|) (|:| |radicand| (-578 |#1|))) (-341 |#1|) (-687))) (-15 -3918 ((-578 (-2 (|:| -3930 (-687)) (|:| |logand| |#1|))) (-341 |#1|)))) (-489)) (T -267)) -((-3918 (*1 *2 *3) (-12 (-5 *3 (-341 *4)) (-4 *4 (-489)) (-5 *2 (-578 (-2 (|:| -3930 (-687)) (|:| |logand| *4)))) (-5 *1 (-267 *4)))) (-2992 (*1 *2 *3 *4) (-12 (-5 *3 (-341 *5)) (-4 *5 (-489)) (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *5) (|:| |radicand| (-578 *5)))) (-5 *1 (-267 *5)) (-5 *4 (-687))))) -((-3063 (((-578 |#2|) (-1070 |#4|)) 45 T ELT)) (-1602 ((|#3| (-478)) 48 T ELT)) (-1600 (((-1070 |#4|) (-1070 |#3|)) 30 T ELT)) (-1601 (((-1070 |#4|) (-1070 |#4|) (-478)) 67 T ELT)) (-1599 (((-1070 |#3|) (-1070 |#4|)) 21 T ELT)) (-3924 (((-578 (-687)) (-1070 |#4|) (-578 |#2|)) 41 T ELT)) (-1598 (((-1070 |#3|) (-1070 |#4|) (-578 |#2|) (-578 |#3|)) 35 T ELT))) -(((-268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1598 ((-1070 |#3|) (-1070 |#4|) (-578 |#2|) (-578 |#3|))) (-15 -3924 ((-578 (-687)) (-1070 |#4|) (-578 |#2|))) (-15 -3063 ((-578 |#2|) (-1070 |#4|))) (-15 -1599 ((-1070 |#3|) (-1070 |#4|))) (-15 -1600 ((-1070 |#4|) (-1070 |#3|))) (-15 -1601 ((-1070 |#4|) (-1070 |#4|) (-478))) (-15 -1602 (|#3| (-478)))) (-710) (-749) (-954) (-854 |#3| |#1| |#2|)) (T -268)) -((-1602 (*1 *2 *3) (-12 (-5 *3 (-478)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-954)) (-5 *1 (-268 *4 *5 *2 *6)) (-4 *6 (-854 *2 *4 *5)))) (-1601 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *7)) (-5 *3 (-478)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-5 *1 (-268 *4 *5 *6 *7)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-1070 *6)) (-4 *6 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-1070 *7)) (-5 *1 (-268 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-5 *2 (-1070 *6)) (-5 *1 (-268 *4 *5 *6 *7)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-1070 *7)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-5 *2 (-578 *5)) (-5 *1 (-268 *4 *5 *6 *7)))) (-3924 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *8)) (-5 *4 (-578 *6)) (-4 *6 (-749)) (-4 *8 (-854 *7 *5 *6)) (-4 *5 (-710)) (-4 *7 (-954)) (-5 *2 (-578 (-687))) (-5 *1 (-268 *5 *6 *7 *8)))) (-1598 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 *8)) (-4 *7 (-749)) (-4 *8 (-954)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-5 *2 (-1070 *8)) (-5 *1 (-268 *6 *7 *8 *9))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 19 T ELT)) (-3750 (((-578 (-2 (|:| |gen| |#1|) (|:| -3919 (-478)))) $) 21 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3117 (((-687) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-2281 ((|#1| $ (-478)) NIL T ELT)) (-1605 (((-478) $ (-478)) NIL T ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2272 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1604 (($ (-1 (-478) (-478)) $) 11 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1603 (($ $ $) NIL (|has| (-478) (-709)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3653 (((-478) |#1| $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 30 (|has| |#1| (-749)) ELT)) (-3813 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3815 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ (-478) |#1|) 28 T ELT))) -(((-269 |#1|) (-13 (-21) (-649 (-478)) (-270 |#1| (-478)) (-10 -7 (IF (|has| |#1| (-749)) (-6 (-749)) |%noBranch|))) (-1003)) (T -269)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3750 (((-578 (-2 (|:| |gen| |#1|) (|:| -3919 |#2|))) $) 33 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3117 (((-687) $) 34 T ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#1| "failed") $) 38 T ELT)) (-3137 ((|#1| $) 39 T ELT)) (-2281 ((|#1| $ (-478)) 31 T ELT)) (-1605 ((|#2| $ (-478)) 32 T ELT)) (-2272 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1604 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1603 (($ $ $) 27 (|has| |#2| (-709)) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3653 ((|#2| |#1| $) 30 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3815 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) -(((-270 |#1| |#2|) (-111) (-1003) (-102)) (T -270)) -((-3815 (*1 *1 *2 *1) (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-102)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-102)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-102)) (-5 *2 (-687)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-102)) (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 *4)))))) (-1605 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-270 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-102)))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-270 *2 *4)) (-4 *4 (-102)) (-4 *2 (-1003)))) (-3653 (*1 *2 *3 *1) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-102)))) (-1604 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-102)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-102)))) (-1603 (*1 *1 *1 *1) (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-102)) (-4 *3 (-709))))) -(-13 (-102) (-943 |t#1|) (-10 -8 (-15 -3815 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3117 ((-687) $)) (-15 -3750 ((-578 (-2 (|:| |gen| |t#1|) (|:| -3919 |t#2|))) $)) (-15 -1605 (|t#2| $ (-478))) (-15 -2281 (|t#1| $ (-478))) (-15 -3653 (|t#2| |t#1| $)) (-15 -1604 ($ (-1 |t#2| |t#2|) $)) (-15 -2272 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-709)) (-15 -1603 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-943 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3750 (((-578 (-2 (|:| |gen| |#1|) (|:| -3919 (-687)))) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3117 (((-687) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-2281 ((|#1| $ (-478)) NIL T ELT)) (-1605 (((-687) $ (-478)) NIL T ELT)) (-2272 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1604 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1603 (($ $ $) NIL (|has| (-687) (-709)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3653 (((-687) |#1| $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-687) |#1|) NIL T ELT))) -(((-271 |#1|) (-270 |#1| (-687)) (-1003)) (T -271)) -NIL -((-3480 (($ $) 72 T ELT)) (-1607 (($ $ |#2| |#3| $) 14 T ELT)) (-1608 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1780 (((-83) $) 42 T ELT)) (-1779 ((|#2| $) 44 T ELT)) (-3443 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2798 ((|#2| $) 68 T ELT)) (-3793 (((-578 |#2|) $) 56 T ELT)) (-1606 (($ $ $ (-687)) 37 T ELT)) (-3925 (($ $ |#2|) 60 T ELT))) -(((-272 |#1| |#2| |#3|) (-10 -7 (-15 -3480 (|#1| |#1|)) (-15 -2798 (|#2| |#1|)) (-15 -3443 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1606 (|#1| |#1| |#1| (-687))) (-15 -1607 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1608 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3793 ((-578 |#2|) |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -1780 ((-83) |#1|)) (-15 -3443 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3925 (|#1| |#1| |#2|))) (-273 |#2| |#3|) (-954) (-709)) (T -272)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 (-478) #1="failed") $) 106 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 104 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3137 (((-478) $) 105 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 103 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 102 T ELT)) (-3935 (($ $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3480 (($ $) 90 (|has| |#1| (-385)) ELT)) (-1607 (($ $ |#1| |#2| $) 94 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2400 (((-687) $) 97 T ELT)) (-3913 (((-83) $) 79 T ELT)) (-2874 (($ |#1| |#2|) 78 T ELT)) (-2801 ((|#2| $) 96 T ELT)) (-1608 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2875 (($ $) 82 T ELT)) (-3155 ((|#1| $) 83 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1780 (((-83) $) 100 T ELT)) (-1779 ((|#1| $) 99 T ELT)) (-3443 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-489)) ELT)) (-3924 ((|#2| $) 81 T ELT)) (-2798 ((|#1| $) 91 (|has| |#1| (-385)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 T ELT) (($ (-343 (-478))) 74 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT)) (-3793 (((-578 |#1|) $) 98 T ELT)) (-3653 ((|#1| $ |#2|) 76 T ELT)) (-2683 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-1606 (($ $ $ (-687)) 93 (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-273 |#1| |#2|) (-111) (-954) (-709)) (T -273)) -((-1780 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-83)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-578 *3)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-687)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-1608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) (-1607 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) (-1606 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *3 (-144)))) (-3443 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-489)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)) (-4 *2 (-385)))) (-3480 (*1 *1 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-385))))) -(-13 (-47 |t#1| |t#2|) (-348 |t#1|) (-10 -8 (-15 -1780 ((-83) $)) (-15 -1779 (|t#1| $)) (-15 -3793 ((-578 |t#1|) $)) (-15 -2400 ((-687) $)) (-15 -2801 (|t#2| $)) (-15 -1608 ($ (-1 |t#2| |t#2|) $)) (-15 -1607 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-144)) (-15 -1606 ($ $ $ (-687))) |%noBranch|) (IF (|has| |t#1| (-489)) (-15 -3443 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-385)) (PROGN (-15 -2798 (|t#1| $)) (-15 -3480 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-242) |has| |#1| (-489)) ((-348 |#1|) . T) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-1968 (((-83) (-83)) NIL T ELT)) (-3764 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1553 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-2350 (($ $) NIL (|has| |#1| (-1003)) ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3382 (($ |#1| $) NIL (|has| |#1| (-1003)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) NIL T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT)) (-1969 (($ $ (-478)) NIL T ELT)) (-1970 (((-687) $) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) |#1|) NIL T ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2837 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3585 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2286 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1971 (($ (-578 |#1|)) NIL T ELT)) (-3777 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-1554 (($ $ (-1131 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) NIL T ELT)) (-3767 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3778 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-274 |#1|) (-13 (-19 |#1|) (-234 |#1|) (-10 -8 (-15 -1971 ($ (-578 |#1|))) (-15 -1970 ((-687) $)) (-15 -1969 ($ $ (-478))) (-15 -1968 ((-83) (-83))))) (-1114)) (T -274)) -((-1971 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-274 *3)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-274 *3)) (-4 *3 (-1114)))) (-1969 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-274 *3)) (-4 *3 (-1114)))) (-1968 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-274 *3)) (-4 *3 (-1114))))) -((-3908 (((-83) $) 47 T ELT)) (-3905 (((-687)) 23 T ELT)) (-3307 ((|#2| $) 51 T ELT) (($ $ (-823)) 123 T ELT)) (-3117 (((-687)) 124 T ELT)) (-1775 (($ (-1164 |#2|)) 20 T ELT)) (-1993 (((-83) $) 136 T ELT)) (-3113 ((|#2| $) 53 T ELT) (($ $ (-823)) 120 T ELT)) (-1996 (((-1070 |#2|) $) NIL T ELT) (((-1070 $) $ (-823)) 111 T ELT)) (-1610 (((-1070 |#2|) $) 95 T ELT)) (-1609 (((-1070 |#2|) $) 91 T ELT) (((-3 (-1070 |#2|) "failed") $ $) 88 T ELT)) (-1611 (($ $ (-1070 |#2|)) 58 T ELT)) (-3906 (((-736 (-823))) 30 T ELT) (((-823)) 48 T ELT)) (-3887 (((-105)) 27 T ELT)) (-3924 (((-736 (-823)) $) 32 T ELT) (((-823) $) 139 T ELT)) (-1612 (($) 130 T ELT)) (-3205 (((-1164 |#2|) $) NIL T ELT) (((-625 |#2|) (-1164 $)) 42 T ELT)) (-2683 (($ $) NIL T ELT) (((-627 $) $) 100 T ELT)) (-3909 (((-83) $) 45 T ELT))) -(((-275 |#1| |#2|) (-10 -7 (-15 -2683 ((-627 |#1|) |#1|)) (-15 -3117 ((-687))) (-15 -2683 (|#1| |#1|)) (-15 -1609 ((-3 (-1070 |#2|) "failed") |#1| |#1|)) (-15 -1609 ((-1070 |#2|) |#1|)) (-15 -1610 ((-1070 |#2|) |#1|)) (-15 -1611 (|#1| |#1| (-1070 |#2|))) (-15 -1993 ((-83) |#1|)) (-15 -1612 (|#1|)) (-15 -3307 (|#1| |#1| (-823))) (-15 -3113 (|#1| |#1| (-823))) (-15 -1996 ((-1070 |#1|) |#1| (-823))) (-15 -3307 (|#2| |#1|)) (-15 -3113 (|#2| |#1|)) (-15 -3924 ((-823) |#1|)) (-15 -3906 ((-823))) (-15 -1996 ((-1070 |#2|) |#1|)) (-15 -1775 (|#1| (-1164 |#2|))) (-15 -3205 ((-625 |#2|) (-1164 |#1|))) (-15 -3205 ((-1164 |#2|) |#1|)) (-15 -3905 ((-687))) (-15 -3906 ((-736 (-823)))) (-15 -3924 ((-736 (-823)) |#1|)) (-15 -3908 ((-83) |#1|)) (-15 -3909 ((-83) |#1|)) (-15 -3887 ((-105)))) (-276 |#2|) (-308)) (T -275)) -((-3887 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-105)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3906 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-736 (-823))) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3905 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3906 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-823)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3117 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-3908 (((-83) $) 111 T ELT)) (-3905 (((-687)) 107 T ELT)) (-3307 ((|#1| $) 159 T ELT) (($ $ (-823)) 156 (|has| |#1| (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) 141 (|has| |#1| (-313)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3117 (((-687)) 131 (|has| |#1| (-313)) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#1| "failed") $) 118 T ELT)) (-3137 ((|#1| $) 119 T ELT)) (-1775 (($ (-1164 |#1|)) 165 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-313)) ELT)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2975 (($) 128 (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-2814 (($) 143 (|has| |#1| (-313)) ELT)) (-1663 (((-83) $) 144 (|has| |#1| (-313)) ELT)) (-1747 (($ $ (-687)) 104 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) 103 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3699 (((-83) $) 86 T ELT)) (-3748 (((-823) $) 146 (|has| |#1| (-313)) ELT) (((-736 (-823)) $) 101 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2392 (((-83) $) 40 T ELT)) (-1995 (($) 154 (|has| |#1| (-313)) ELT)) (-1993 (((-83) $) 153 (|has| |#1| (-313)) ELT)) (-3113 ((|#1| $) 160 T ELT) (($ $ (-823)) 157 (|has| |#1| (-313)) ELT)) (-3422 (((-627 $) $) 132 (|has| |#1| (-313)) ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1996 (((-1070 |#1|) $) 164 T ELT) (((-1070 $) $ (-823)) 158 (|has| |#1| (-313)) ELT)) (-1992 (((-823) $) 129 (|has| |#1| (-313)) ELT)) (-1610 (((-1070 |#1|) $) 150 (|has| |#1| (-313)) ELT)) (-1609 (((-1070 |#1|) $) 149 (|has| |#1| (-313)) ELT) (((-3 (-1070 |#1|) "failed") $ $) 148 (|has| |#1| (-313)) ELT)) (-1611 (($ $ (-1070 |#1|)) 151 (|has| |#1| (-313)) ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 85 T ELT)) (-3423 (($) 133 (|has| |#1| (-313)) CONST)) (-2382 (($ (-823)) 130 (|has| |#1| (-313)) ELT)) (-3907 (((-83) $) 110 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2391 (($) 152 (|has| |#1| (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) 140 (|has| |#1| (-313)) ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-3906 (((-736 (-823))) 108 T ELT) (((-823)) 162 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-1748 (((-687) $) 145 (|has| |#1| (-313)) ELT) (((-3 (-687) "failed") $ $) 102 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3887 (((-105)) 116 T ELT)) (-3734 (($ $ (-687)) 136 (|has| |#1| (-313)) ELT) (($ $) 134 (|has| |#1| (-313)) ELT)) (-3924 (((-736 (-823)) $) 109 T ELT) (((-823) $) 161 T ELT)) (-3167 (((-1070 |#1|)) 163 T ELT)) (-1657 (($) 142 (|has| |#1| (-313)) ELT)) (-1612 (($) 155 (|has| |#1| (-313)) ELT)) (-3205 (((-1164 |#1|) $) 167 T ELT) (((-625 |#1|) (-1164 $)) 166 T ELT)) (-2684 (((-3 (-1164 $) "failed") (-625 $)) 139 (|has| |#1| (-313)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2683 (($ $) 138 (|has| |#1| (-313)) ELT) (((-627 $) $) 100 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-1994 (((-1164 $)) 169 T ELT) (((-1164 $) (-823)) 168 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-3909 (((-83) $) 112 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3904 (($ $) 106 (|has| |#1| (-313)) ELT) (($ $ (-687)) 105 (|has| |#1| (-313)) ELT)) (-2650 (($ $ (-687)) 137 (|has| |#1| (-313)) ELT) (($ $) 135 (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +((-1596 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-83)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-688)))) (-2864 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-254)))) (-2548 (*1 *1 *1 *1) (-4 *1 (-254))) (-2549 (*1 *1 *1 *1) (-4 *1 (-254))) (-1594 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2396 *1))) (-4 *1 (-254)))) (-1594 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-254)))) (-1593 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-579 *1)) (-4 *1 (-254))))) +(-13 (-826) (-10 -8 (-15 -1596 ((-83) $ $)) (-15 -1595 ((-688) $)) (-15 -2864 ((-2 (|:| -1961 $) (|:| -2887 $)) $ $)) (-15 -2548 ($ $ $)) (-15 -2549 ($ $ $)) (-15 -1594 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $)) (-15 -1594 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1593 ((-3 (-579 $) "failed") (-579 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-242) . T) ((-386) . T) ((-490) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-578 $) . T) ((-650 $) . T) ((-659) . T) ((-826) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3750 (($ $ (-579 |#2|) (-579 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-245 |#2|)) 11 T ELT) (($ $ (-579 (-245 |#2|))) NIL T ELT))) +(((-255 |#1| |#2|) (-10 -7 (-15 -3750 (|#1| |#1| (-579 (-245 |#2|)))) (-15 -3750 (|#1| |#1| (-245 |#2|))) (-15 -3750 (|#1| |#1| |#2| |#2|)) (-15 -3750 (|#1| |#1| (-579 |#2|) (-579 |#2|)))) (-256 |#2|) (-1006)) (T -255)) +NIL +((-3750 (($ $ (-579 |#1|) (-579 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-245 |#1|)) 13 T ELT) (($ $ (-579 (-245 |#1|))) 12 T ELT))) +(((-256 |#1|) (-111) (-1006)) (T -256)) +((-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-245 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1006)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-245 *3))) (-4 *1 (-256 *3)) (-4 *3 (-1006))))) +(-13 (-448 |t#1| |t#1|) (-10 -8 (-15 -3750 ($ $ (-245 |t#1|))) (-15 -3750 ($ $ (-579 (-245 |t#1|)))))) +(((-448 |#1| |#1|) . T)) +((-3750 ((|#1| (-1 |#1| (-479)) (-1082 (-344 (-479)))) 26 T ELT))) +(((-257 |#1|) (-10 -7 (-15 -3750 (|#1| (-1 |#1| (-479)) (-1082 (-344 (-479)))))) (-38 (-344 (-479)))) (T -257)) +((-3750 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-479))) (-5 *4 (-1082 (-344 (-479)))) (-5 *1 (-257 *2)) (-4 *2 (-38 (-344 (-479))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 7 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 9 T ELT))) +(((-258) (-1006)) (T -258)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3488 (((-479) $) 13 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3190 (((-1039) $) 10 T ELT)) (-3928 (((-766) $) 20 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-259) (-13 (-988) (-10 -8 (-15 -3190 ((-1039) $)) (-15 -3488 ((-479) $))))) (T -259)) +((-3190 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-259)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-259))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 60 T ELT)) (-3113 (((-1156 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-815)) ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-815)) ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-734)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-1156 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-944 (-1080))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-944 (-479))) ELT) (((-3 (-479) #1#) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-944 (-479))) ELT) (((-3 (-1150 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3140 (((-1156 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1080) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-944 (-479))) ELT) (((-479) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-944 (-479))) ELT) (((-1150 |#2| |#3| |#4|) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-1156 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1169 (-1156 |#1| |#2| |#3| |#4|)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-1156 |#1| |#2| |#3| |#4|)) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-478)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-790 (-324))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-1156 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3427 (((-628 $) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-1056)) ELT)) (-3171 (((-83) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-734)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-750)) ELT)) (-3940 (($ (-1 (-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3766 (((-3 (-744 |#2|) #1#) $) 80 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-1156 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1169 (-1156 |#1| |#2| |#3| |#4|)))) (-1169 $) $) NIL T ELT) (((-626 (-1156 |#1| |#2| |#3| |#4|)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-254)) ELT)) (-3114 (((-1156 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-815)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-3750 (($ $ (-579 (-1156 |#1| |#2| |#3| |#4|)) (-579 (-1156 |#1| |#2| |#3| |#4|))) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-256 (-1156 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-256 (-1156 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-245 (-1156 |#1| |#2| |#3| |#4|))) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-256 (-1156 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-579 (-245 (-1156 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-256 (-1156 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-579 (-1080)) (-579 (-1156 |#1| |#2| |#3| |#4|))) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-448 (-1080) (-1156 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1080) (-1156 |#1| |#2| |#3| |#4|)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-448 (-1080) (-1156 |#1| |#2| |#3| |#4|))) ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ $ (-1156 |#1| |#2| |#3| |#4|)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-238 (-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $ (-1 (-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-805 (-1080))) ELT) (($ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-187)) ELT) (($ $ (-688)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-187)) ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-1156 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3954 (((-794 (-479)) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-549 (-794 (-324)))) ELT) (((-468) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-549 (-468))) ELT) (((-324) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-927)) ELT) (((-177) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-927)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| (-1156 |#1| |#2| |#3| |#4|) (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-1156 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1080)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-944 (-1080))) ELT) (($ (-1150 |#2| |#3| |#4|)) 37 T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1156 |#1| |#2| |#3| |#4|) (-815))) (|has| (-1156 |#1| |#2| |#3| |#4|) (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-3115 (((-1156 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-478)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3365 (($ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-734)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1 (-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-805 (-1080))) ELT) (($ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-187)) ELT) (($ $ (-688)) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-187)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-1156 |#1| |#2| |#3| |#4|) (-750)) ELT)) (-3931 (($ $ $) 35 T ELT) (($ (-1156 |#1| |#2| |#3| |#4|) (-1156 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ (-1156 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1156 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-260 |#1| |#2| |#3| |#4|) (-13 (-898 (-1156 |#1| |#2| |#3| |#4|)) (-944 (-1150 |#2| |#3| |#4|)) (-10 -8 (-15 -3766 ((-3 (-744 |#2|) "failed") $)) (-15 -3928 ($ (-1150 |#2| |#3| |#4|))))) (-13 (-944 (-479)) (-576 (-479)) (-386)) (-13 (-27) (-1105) (-358 |#1|)) (-1080) |#2|) (T -260)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-358 *3))) (-14 *5 (-1080)) (-14 *6 *4) (-4 *3 (-13 (-944 (-479)) (-576 (-479)) (-386))) (-5 *1 (-260 *3 *4 *5 *6)))) (-3766 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-944 (-479)) (-576 (-479)) (-386))) (-5 *2 (-744 *4)) (-5 *1 (-260 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-358 *3))) (-14 *5 (-1080)) (-14 *6 *4)))) +((-2553 (((-83) $ $) NIL T ELT)) (-1204 (((-579 $) $ (-1080)) NIL (|has| |#1| (-490)) ELT) (((-579 $) $) NIL (|has| |#1| (-490)) ELT) (((-579 $) (-1075 $) (-1080)) NIL (|has| |#1| (-490)) ELT) (((-579 $) (-1075 $)) NIL (|has| |#1| (-490)) ELT) (((-579 $) (-851 $)) NIL (|has| |#1| (-490)) ELT)) (-1205 (($ $ (-1080)) NIL (|has| |#1| (-490)) ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ (-1075 $) (-1080)) NIL (|has| |#1| (-490)) ELT) (($ (-1075 $)) NIL (|has| |#1| (-490)) ELT) (($ (-851 $)) NIL (|has| |#1| (-490)) ELT)) (-3172 (((-83) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT)) (-3066 (((-579 (-1080)) $) 365 T ELT)) (-3068 (((-344 (-1075 $)) $ (-546 $)) NIL (|has| |#1| (-490)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-1588 (((-579 (-546 $)) $) NIL T ELT)) (-3474 (($ $) 170 (|has| |#1| (-490)) ELT)) (-3621 (($ $) 146 (|has| |#1| (-490)) ELT)) (-1360 (($ $ (-997 $)) 231 (|has| |#1| (-490)) ELT) (($ $ (-1080)) 227 (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT)) (-1592 (($ $ (-245 $)) NIL T ELT) (($ $ (-579 (-245 $))) 383 T ELT) (($ $ (-579 (-546 $)) (-579 $)) 438 T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 305 (-12 (|has| |#1| (-386)) (|has| |#1| (-490))) ELT)) (-3757 (($ $) NIL (|has| |#1| (-490)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-490)) ELT)) (-3022 (($ $) NIL (|has| |#1| (-490)) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3472 (($ $) 166 (|has| |#1| (-490)) ELT)) (-3620 (($ $) 142 (|has| |#1| (-490)) ELT)) (-1597 (($ $ (-479)) 68 (|has| |#1| (-490)) ELT)) (-3476 (($ $) 174 (|has| |#1| (-490)) ELT)) (-3619 (($ $) 150 (|has| |#1| (-490)) ELT)) (-3706 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) (|has| |#1| (-1016))) CONST)) (-1206 (((-579 $) $ (-1080)) NIL (|has| |#1| (-490)) ELT) (((-579 $) $) NIL (|has| |#1| (-490)) ELT) (((-579 $) (-1075 $) (-1080)) NIL (|has| |#1| (-490)) ELT) (((-579 $) (-1075 $)) NIL (|has| |#1| (-490)) ELT) (((-579 $) (-851 $)) NIL (|has| |#1| (-490)) ELT)) (-3167 (($ $ (-1080)) NIL (|has| |#1| (-490)) ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ (-1075 $) (-1080)) 133 (|has| |#1| (-490)) ELT) (($ (-1075 $)) NIL (|has| |#1| (-490)) ELT) (($ (-851 $)) NIL (|has| |#1| (-490)) ELT)) (-3141 (((-3 (-546 $) #1#) $) 18 T ELT) (((-3 (-1080) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-851 |#1|)) #1#) $) NIL (|has| |#1| (-490)) ELT) (((-3 (-851 |#1|) #1#) $) NIL (|has| |#1| (-955)) ELT) (((-3 (-344 (-479)) #1#) $) 48 (OR (-12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-3140 (((-546 $) $) 12 T ELT) (((-1080) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-851 |#1|)) $) NIL (|has| |#1| (-490)) ELT) (((-851 |#1|) $) NIL (|has| |#1| (-955)) ELT) (((-344 (-479)) $) 316 (OR (-12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-490)) ELT)) (-2266 (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 124 (|has| |#1| (-955)) ELT) (((-626 |#1|) (-626 $)) 114 (|has| |#1| (-955)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ELT) (((-626 (-479)) (-626 $)) NIL (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ELT)) (-3824 (($ $) 95 (|has| |#1| (-490)) ELT)) (-3449 (((-3 $ #1#) $) NIL (|has| |#1| (-1016)) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-490)) ELT)) (-3926 (($ $ (-997 $)) 235 (|has| |#1| (-490)) ELT) (($ $ (-1080)) 233 (|has| |#1| (-490)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-490)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3368 (($ $ $) 201 (|has| |#1| (-490)) ELT)) (-3609 (($) 136 (|has| |#1| (-490)) ELT)) (-1357 (($ $ $) 221 (|has| |#1| (-490)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 389 (|has| |#1| (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 396 (|has| |#1| (-790 (-324))) ELT)) (-2558 (($ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1587 (((-579 (-84)) $) NIL T ELT)) (-3577 (((-84) (-84)) 275 T ELT)) (-2397 (((-83) $) 27 (|has| |#1| (-1016)) ELT)) (-2658 (((-83) $) NIL (|has| $ (-944 (-479))) ELT)) (-2981 (($ $) 73 (|has| |#1| (-955)) ELT)) (-2983 (((-1029 |#1| (-546 $)) $) 90 (|has| |#1| (-955)) ELT)) (-1598 (((-83) $) 49 (|has| |#1| (-490)) ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-490)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-490)) ELT)) (-1585 (((-1075 $) (-546 $)) 276 (|has| $ (-955)) ELT)) (-3940 (($ (-1 $ $) (-546 $)) 434 T ELT)) (-1590 (((-3 (-546 $) #1#) $) NIL T ELT)) (-3924 (($ $) 140 (|has| |#1| (-490)) ELT)) (-2244 (($ $) 246 (|has| |#1| (-490)) ELT)) (-2267 (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL (|has| |#1| (-955)) ELT) (((-626 |#1|) (-1169 $)) NIL (|has| |#1| (-955)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ELT) (((-626 (-479)) (-1169 $)) NIL (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-490)) ELT) (($ $ $) NIL (|has| |#1| (-490)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1589 (((-579 (-546 $)) $) 51 T ELT)) (-2222 (($ (-84) $) NIL T ELT) (($ (-84) (-579 $)) 439 T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL (|has| |#1| (-1016)) ELT)) (-2810 (((-3 (-2 (|:| |val| $) (|:| -2388 (-479))) #1#) $) NIL (|has| |#1| (-955)) ELT)) (-2807 (((-3 (-579 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1782 (((-3 (-2 (|:| -3936 (-479)) (|:| |var| (-546 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2809 (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) #1#) $) NIL (|has| |#1| (-1016)) ELT) (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) #1#) $ (-84)) NIL (|has| |#1| (-955)) ELT) (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) #1#) $ (-1080)) NIL (|has| |#1| (-955)) ELT)) (-2618 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1080)) 53 T ELT)) (-2469 (($ $) NIL (OR (|has| |#1| (-407)) (|has| |#1| (-490))) ELT)) (-2817 (($ $ (-1080)) 250 (|has| |#1| (-490)) ELT) (($ $ (-997 $)) 252 (|has| |#1| (-490)) ELT)) (-2588 (((-688) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) 45 T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 298 (|has| |#1| (-490)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-490)) ELT) (($ $ $) NIL (|has| |#1| (-490)) ELT)) (-1586 (((-83) $ $) NIL T ELT) (((-83) $ (-1080)) NIL T ELT)) (-1361 (($ $ (-1080)) 225 (|has| |#1| (-490)) ELT) (($ $) 223 (|has| |#1| (-490)) ELT)) (-1355 (($ $) 217 (|has| |#1| (-490)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 303 (-12 (|has| |#1| (-386)) (|has| |#1| (-490))) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-490)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-490)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-490)) ELT)) (-3925 (($ $) 138 (|has| |#1| (-490)) ELT)) (-2659 (((-83) $) NIL (|has| $ (-944 (-479))) ELT)) (-3750 (($ $ (-546 $) $) NIL T ELT) (($ $ (-579 (-546 $)) (-579 $)) 433 T ELT) (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ $))) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ (-579 $)))) NIL T ELT) (($ $ (-1080) (-1 $ (-579 $))) NIL T ELT) (($ $ (-1080) (-1 $ $)) NIL T ELT) (($ $ (-579 (-84)) (-579 (-1 $ $))) 376 T ELT) (($ $ (-579 (-84)) (-579 (-1 $ (-579 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-579 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-549 (-468))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-549 (-468))) ELT) (($ $) NIL (|has| |#1| (-549 (-468))) ELT) (($ $ (-84) $ (-1080)) 363 (|has| |#1| (-549 (-468))) ELT) (($ $ (-579 (-84)) (-579 $) (-1080)) 362 (|has| |#1| (-549 (-468))) ELT) (($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ $))) NIL (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ (-579 $)))) NIL (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688) (-1 $ (-579 $))) NIL (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688) (-1 $ $)) NIL (|has| |#1| (-955)) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-490)) ELT)) (-2242 (($ $) 238 (|has| |#1| (-490)) ELT)) (-3782 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-579 $)) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-1591 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2243 (($ $) 248 (|has| |#1| (-490)) ELT)) (-3367 (($ $) 199 (|has| |#1| (-490)) ELT)) (-3740 (($ $ (-1080)) NIL (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-955)) ELT)) (-2980 (($ $) 74 (|has| |#1| (-490)) ELT)) (-2982 (((-1029 |#1| (-546 $)) $) 92 (|has| |#1| (-490)) ELT)) (-3169 (($ $) 314 (|has| $ (-955)) ELT)) (-3477 (($ $) 176 (|has| |#1| (-490)) ELT)) (-3618 (($ $) 152 (|has| |#1| (-490)) ELT)) (-3475 (($ $) 172 (|has| |#1| (-490)) ELT)) (-3617 (($ $) 148 (|has| |#1| (-490)) ELT)) (-3473 (($ $) 168 (|has| |#1| (-490)) ELT)) (-3616 (($ $) 144 (|has| |#1| (-490)) ELT)) (-3954 (((-794 (-479)) $) NIL (|has| |#1| (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| |#1| (-549 (-794 (-324)))) ELT) (($ (-342 $)) NIL (|has| |#1| (-490)) ELT) (((-468) $) 360 (|has| |#1| (-549 (-468))) ELT)) (-2994 (($ $ $) NIL (|has| |#1| (-407)) ELT)) (-2420 (($ $ $) NIL (|has| |#1| (-407)) ELT)) (-3928 (((-766) $) 432 T ELT) (($ (-546 $)) 423 T ELT) (($ (-1080)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479)))) ELT) (($ (-1029 |#1| (-546 $))) 94 (|has| |#1| (-955)) ELT) (($ (-344 |#1|)) NIL (|has| |#1| (-490)) ELT) (($ (-851 (-344 |#1|))) NIL (|has| |#1| (-490)) ELT) (($ (-344 (-851 (-344 |#1|)))) NIL (|has| |#1| (-490)) ELT) (($ (-344 (-851 |#1|))) NIL (|has| |#1| (-490)) ELT) (($ (-851 |#1|)) NIL (|has| |#1| (-955)) ELT) (($ (-479)) 36 (OR (|has| |#1| (-944 (-479))) (|has| |#1| (-955))) ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-490)) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL (|has| |#1| (-955)) CONST)) (-2575 (($ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3086 (($ $ $) 219 (|has| |#1| (-490)) ELT)) (-3371 (($ $ $) 205 (|has| |#1| (-490)) ELT)) (-3373 (($ $ $) 209 (|has| |#1| (-490)) ELT)) (-3370 (($ $ $) 203 (|has| |#1| (-490)) ELT)) (-3372 (($ $ $) 207 (|has| |#1| (-490)) ELT)) (-2241 (((-83) (-84)) 10 T ELT)) (-1254 (((-83) $ $) 85 T ELT)) (-3480 (($ $) 182 (|has| |#1| (-490)) ELT)) (-3468 (($ $) 158 (|has| |#1| (-490)) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) 178 (|has| |#1| (-490)) ELT)) (-3466 (($ $) 154 (|has| |#1| (-490)) ELT)) (-3482 (($ $) 186 (|has| |#1| (-490)) ELT)) (-3470 (($ $) 162 (|has| |#1| (-490)) ELT)) (-1783 (($ (-1080) $) NIL T ELT) (($ (-1080) $ $) NIL T ELT) (($ (-1080) $ $ $) NIL T ELT) (($ (-1080) $ $ $ $) NIL T ELT) (($ (-1080) (-579 $)) NIL T ELT)) (-3375 (($ $) 213 (|has| |#1| (-490)) ELT)) (-3374 (($ $) 211 (|has| |#1| (-490)) ELT)) (-3483 (($ $) 188 (|has| |#1| (-490)) ELT)) (-3471 (($ $) 164 (|has| |#1| (-490)) ELT)) (-3481 (($ $) 184 (|has| |#1| (-490)) ELT)) (-3469 (($ $) 160 (|has| |#1| (-490)) ELT)) (-3479 (($ $) 180 (|has| |#1| (-490)) ELT)) (-3467 (($ $) 156 (|has| |#1| (-490)) ELT)) (-3365 (($ $) 191 (|has| |#1| (-490)) ELT)) (-2645 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) CONST)) (-2246 (($ $) 242 (|has| |#1| (-490)) ELT)) (-2651 (($) 25 (|has| |#1| (-1016)) CONST)) (-3369 (($ $) 193 (|has| |#1| (-490)) ELT) (($ $ $) 195 (|has| |#1| (-490)) ELT)) (-2247 (($ $) 240 (|has| |#1| (-490)) ELT)) (-2654 (($ $ (-1080)) NIL (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-955)) ELT)) (-2245 (($ $) 244 (|has| |#1| (-490)) ELT)) (-3366 (($ $ $) 197 (|has| |#1| (-490)) ELT)) (-3041 (((-83) $ $) 87 T ELT)) (-3931 (($ (-1029 |#1| (-546 $)) (-1029 |#1| (-546 $))) 105 (|has| |#1| (-490)) ELT) (($ $ $) 44 (OR (|has| |#1| (-407)) (|has| |#1| (-490))) ELT)) (-3819 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT)) (-3821 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-490)) ELT) (($ $ (-344 (-479))) 311 (|has| |#1| (-490)) ELT) (($ $ (-479)) 79 (OR (|has| |#1| (-407)) (|has| |#1| (-490))) ELT) (($ $ (-688)) 75 (|has| |#1| (-1016)) ELT) (($ $ (-824)) 83 (|has| |#1| (-1016)) ELT)) (* (($ (-344 (-479)) $) NIL (|has| |#1| (-490)) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-490)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT) (($ |#1| $) NIL (|has| |#1| (-955)) ELT) (($ $ $) 38 (|has| |#1| (-1016)) ELT) (($ (-479) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT) (($ (-688) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT) (($ (-824) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955)))) ELT))) +(((-261 |#1|) (-13 (-358 |#1|) (-10 -8 (IF (|has| |#1| (-490)) (PROGN (-6 (-29 |#1|)) (-6 (-1105)) (-6 (-131)) (-6 (-565)) (-6 (-1043)) (-15 -3824 ($ $)) (-15 -1598 ((-83) $)) (-15 -1597 ($ $ (-479))) (IF (|has| |#1| (-386)) (PROGN (-15 -2691 ((-342 (-1075 $)) (-1075 $))) (-15 -2692 ((-342 (-1075 $)) (-1075 $)))) |%noBranch|) (IF (|has| |#1| (-944 (-479))) (-6 (-944 (-48))) |%noBranch|)) |%noBranch|))) (-1006)) (T -261)) +((-3824 (*1 *1 *1) (-12 (-5 *1 (-261 *2)) (-4 *2 (-490)) (-4 *2 (-1006)))) (-1598 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-261 *3)) (-4 *3 (-490)) (-4 *3 (-1006)))) (-1597 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-261 *3)) (-4 *3 (-490)) (-4 *3 (-1006)))) (-2691 (*1 *2 *3) (-12 (-5 *2 (-342 (-1075 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1075 *1)) (-4 *4 (-386)) (-4 *4 (-490)) (-4 *4 (-1006)))) (-2692 (*1 *2 *3) (-12 (-5 *2 (-342 (-1075 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1075 *1)) (-4 *4 (-386)) (-4 *4 (-490)) (-4 *4 (-1006))))) +((-3940 (((-261 |#2|) (-1 |#2| |#1|) (-261 |#1|)) 13 T ELT))) +(((-262 |#1| |#2|) (-10 -7 (-15 -3940 ((-261 |#2|) (-1 |#2| |#1|) (-261 |#1|)))) (-1006) (-1006)) (T -262)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-261 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-261 *6)) (-5 *1 (-262 *5 *6))))) +((-3711 (((-51) |#2| (-245 |#2|) (-688)) 40 T ELT) (((-51) |#2| (-245 |#2|)) 32 T ELT) (((-51) |#2| (-688)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1080)) 26 T ELT)) (-3800 (((-51) |#2| (-245 |#2|) (-344 (-479))) 59 T ELT) (((-51) |#2| (-245 |#2|)) 56 T ELT) (((-51) |#2| (-344 (-479))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1080)) 55 T ELT)) (-3764 (((-51) |#2| (-245 |#2|) (-344 (-479))) 54 T ELT) (((-51) |#2| (-245 |#2|)) 51 T ELT) (((-51) |#2| (-344 (-479))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1080)) 50 T ELT)) (-3761 (((-51) |#2| (-245 |#2|) (-479)) 47 T ELT) (((-51) |#2| (-245 |#2|)) 44 T ELT) (((-51) |#2| (-479)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1080)) 43 T ELT))) +(((-263 |#1| |#2|) (-10 -7 (-15 -3711 ((-51) (-1080))) (-15 -3711 ((-51) |#2|)) (-15 -3711 ((-51) |#2| (-688))) (-15 -3711 ((-51) |#2| (-245 |#2|))) (-15 -3711 ((-51) |#2| (-245 |#2|) (-688))) (-15 -3761 ((-51) (-1080))) (-15 -3761 ((-51) |#2|)) (-15 -3761 ((-51) |#2| (-479))) (-15 -3761 ((-51) |#2| (-245 |#2|))) (-15 -3761 ((-51) |#2| (-245 |#2|) (-479))) (-15 -3764 ((-51) (-1080))) (-15 -3764 ((-51) |#2|)) (-15 -3764 ((-51) |#2| (-344 (-479)))) (-15 -3764 ((-51) |#2| (-245 |#2|))) (-15 -3764 ((-51) |#2| (-245 |#2|) (-344 (-479)))) (-15 -3800 ((-51) (-1080))) (-15 -3800 ((-51) |#2|)) (-15 -3800 ((-51) |#2| (-344 (-479)))) (-15 -3800 ((-51) |#2| (-245 |#2|))) (-15 -3800 ((-51) |#2| (-245 |#2|) (-344 (-479))))) (-13 (-386) (-944 (-479)) (-576 (-479))) (-13 (-27) (-1105) (-358 |#1|))) (T -263)) +((-3800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-5 *5 (-344 (-479))) (-4 *3 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-344 (-479))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-358 *4))))) (-3764 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-5 *5 (-344 (-479))) (-4 *3 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3764 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3764 (*1 *2 *3 *4) (-12 (-5 *4 (-344 (-479))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-358 *4))))) (-3761 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-386) (-944 *5) (-576 *5))) (-5 *5 (-479)) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *4 (-479)) (-4 *5 (-13 (-386) (-944 *4) (-576 *4))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-358 *4))))) (-3711 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-245 *3)) (-5 *5 (-688)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *4 (-688)) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) (-3711 (*1 *2 *3) (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-358 *4)))))) +((-1599 (((-51) |#2| (-84) (-245 |#2|) (-579 |#2|)) 89 T ELT) (((-51) |#2| (-84) (-245 |#2|) (-245 |#2|)) 85 T ELT) (((-51) |#2| (-84) (-245 |#2|) |#2|) 87 T ELT) (((-51) (-245 |#2|) (-84) (-245 |#2|) |#2|) 88 T ELT) (((-51) (-579 |#2|) (-579 (-84)) (-245 |#2|) (-579 (-245 |#2|))) 81 T ELT) (((-51) (-579 |#2|) (-579 (-84)) (-245 |#2|) (-579 |#2|)) 83 T ELT) (((-51) (-579 (-245 |#2|)) (-579 (-84)) (-245 |#2|) (-579 |#2|)) 84 T ELT) (((-51) (-579 (-245 |#2|)) (-579 (-84)) (-245 |#2|) (-579 (-245 |#2|))) 82 T ELT) (((-51) (-245 |#2|) (-84) (-245 |#2|) (-579 |#2|)) 90 T ELT) (((-51) (-245 |#2|) (-84) (-245 |#2|) (-245 |#2|)) 86 T ELT))) +(((-264 |#1| |#2|) (-10 -7 (-15 -1599 ((-51) (-245 |#2|) (-84) (-245 |#2|) (-245 |#2|))) (-15 -1599 ((-51) (-245 |#2|) (-84) (-245 |#2|) (-579 |#2|))) (-15 -1599 ((-51) (-579 (-245 |#2|)) (-579 (-84)) (-245 |#2|) (-579 (-245 |#2|)))) (-15 -1599 ((-51) (-579 (-245 |#2|)) (-579 (-84)) (-245 |#2|) (-579 |#2|))) (-15 -1599 ((-51) (-579 |#2|) (-579 (-84)) (-245 |#2|) (-579 |#2|))) (-15 -1599 ((-51) (-579 |#2|) (-579 (-84)) (-245 |#2|) (-579 (-245 |#2|)))) (-15 -1599 ((-51) (-245 |#2|) (-84) (-245 |#2|) |#2|)) (-15 -1599 ((-51) |#2| (-84) (-245 |#2|) |#2|)) (-15 -1599 ((-51) |#2| (-84) (-245 |#2|) (-245 |#2|))) (-15 -1599 ((-51) |#2| (-84) (-245 |#2|) (-579 |#2|)))) (-13 (-490) (-549 (-468))) (-358 |#1|)) (T -264)) +((-1599 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-5 *6 (-579 *3)) (-4 *3 (-358 *7)) (-4 *7 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *3)))) (-1599 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-358 *6)) (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-1599 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-358 *6)) (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) (-1599 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-245 *5)) (-5 *4 (-84)) (-4 *5 (-358 *6)) (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *5)))) (-1599 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 (-84))) (-5 *6 (-579 (-245 *8))) (-4 *8 (-358 *7)) (-5 *5 (-245 *8)) (-4 *7 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) (-1599 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-579 *7)) (-5 *4 (-579 (-84))) (-5 *5 (-245 *7)) (-4 *7 (-358 *6)) (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) (-1599 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-579 (-245 *8))) (-5 *4 (-579 (-84))) (-5 *5 (-245 *8)) (-5 *6 (-579 *8)) (-4 *8 (-358 *7)) (-4 *7 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) (-1599 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-579 (-245 *7))) (-5 *4 (-579 (-84))) (-5 *5 (-245 *7)) (-4 *7 (-358 *6)) (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) (-1599 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-579 *7)) (-4 *7 (-358 *6)) (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) (-1599 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-245 *6)) (-5 *4 (-84)) (-4 *6 (-358 *5)) (-4 *5 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *6))))) +((-1601 (((-1115 (-832)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-177) (-479) (-1063)) 67 T ELT) (((-1115 (-832)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-177) (-479)) 68 T ELT) (((-1115 (-832)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-1 (-177) (-177)) (-479) (-1063)) 64 T ELT) (((-1115 (-832)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-1 (-177) (-177)) (-479)) 65 T ELT)) (-1600 (((-1 (-177) (-177)) (-177)) 66 T ELT))) +(((-265) (-10 -7 (-15 -1600 ((-1 (-177) (-177)) (-177))) (-15 -1601 ((-1115 (-832)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-1 (-177) (-177)) (-479))) (-15 -1601 ((-1115 (-832)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-1 (-177) (-177)) (-479) (-1063))) (-15 -1601 ((-1115 (-832)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-177) (-479))) (-15 -1601 ((-1115 (-832)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-177) (-479) (-1063))))) (T -265)) +((-1601 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) (-5 *6 (-177)) (-5 *7 (-479)) (-5 *8 (-1063)) (-5 *2 (-1115 (-832))) (-5 *1 (-265)))) (-1601 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) (-5 *6 (-177)) (-5 *7 (-479)) (-5 *2 (-1115 (-832))) (-5 *1 (-265)))) (-1601 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) (-5 *6 (-479)) (-5 *7 (-1063)) (-5 *2 (-1115 (-832))) (-5 *1 (-265)))) (-1601 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) (-5 *6 (-479)) (-5 *2 (-1115 (-832))) (-5 *1 (-265)))) (-1600 (*1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-265)) (-5 *3 (-177))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 26 T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-344 (-479))) NIL T ELT) (($ $ (-344 (-479)) (-344 (-479))) NIL T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|))) $) 20 T ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-688) (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|)))) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) 36 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3170 (((-83) $) NIL T ELT)) (-2877 (((-83) $) NIL T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-344 (-479)) $) NIL T ELT) (((-344 (-479)) $ (-344 (-479))) 16 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-344 (-479))) NIL T ELT) (($ $ (-987) (-344 (-479))) NIL T ELT) (($ $ (-579 (-987)) (-579 (-344 (-479)))) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3924 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3794 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-344 (-479))) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-1602 (((-344 (-479)) $) 17 T ELT)) (-3075 (($ (-1150 |#1| |#2| |#3|)) 11 T ELT)) (-2388 (((-1150 |#1| |#2| |#3|) $) 12 T ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-344 (-479))) NIL T ELT) (($ $ $) NIL (|has| (-344 (-479)) (-1016)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT)) (-3930 (((-344 (-479)) $) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) 10 T ELT)) (-3928 (((-766) $) 42 T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-344 (-479))) 34 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-3755 ((|#1| $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-344 (-479))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 28 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 37 T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-266 |#1| |#2| |#3|) (-13 (-1152 |#1|) (-710) (-10 -8 (-15 -3075 ($ (-1150 |#1| |#2| |#3|))) (-15 -2388 ((-1150 |#1| |#2| |#3|) $)) (-15 -1602 ((-344 (-479)) $)))) (-308) (-1080) |#1|) (T -266)) +((-3075 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1080)) (-14 *5 *3) (-5 *1 (-266 *3 *4 *5)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1150 *3 *4 *5)) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1080)) (-14 *5 *3))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1080)) (-14 *5 *3)))) +((-2996 (((-2 (|:| -2388 (-688)) (|:| -3936 |#1|) (|:| |radicand| (-579 |#1|))) (-342 |#1|) (-688)) 35 T ELT)) (-3924 (((-579 (-2 (|:| -3936 (-688)) (|:| |logand| |#1|))) (-342 |#1|)) 40 T ELT))) +(((-267 |#1|) (-10 -7 (-15 -2996 ((-2 (|:| -2388 (-688)) (|:| -3936 |#1|) (|:| |radicand| (-579 |#1|))) (-342 |#1|) (-688))) (-15 -3924 ((-579 (-2 (|:| -3936 (-688)) (|:| |logand| |#1|))) (-342 |#1|)))) (-490)) (T -267)) +((-3924 (*1 *2 *3) (-12 (-5 *3 (-342 *4)) (-4 *4 (-490)) (-5 *2 (-579 (-2 (|:| -3936 (-688)) (|:| |logand| *4)))) (-5 *1 (-267 *4)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-342 *5)) (-4 *5 (-490)) (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *5) (|:| |radicand| (-579 *5)))) (-5 *1 (-267 *5)) (-5 *4 (-688))))) +((-3066 (((-579 |#2|) (-1075 |#4|)) 45 T ELT)) (-1607 ((|#3| (-479)) 48 T ELT)) (-1605 (((-1075 |#4|) (-1075 |#3|)) 30 T ELT)) (-1606 (((-1075 |#4|) (-1075 |#4|) (-479)) 67 T ELT)) (-1604 (((-1075 |#3|) (-1075 |#4|)) 21 T ELT)) (-3930 (((-579 (-688)) (-1075 |#4|) (-579 |#2|)) 41 T ELT)) (-1603 (((-1075 |#3|) (-1075 |#4|) (-579 |#2|) (-579 |#3|)) 35 T ELT))) +(((-268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1603 ((-1075 |#3|) (-1075 |#4|) (-579 |#2|) (-579 |#3|))) (-15 -3930 ((-579 (-688)) (-1075 |#4|) (-579 |#2|))) (-15 -3066 ((-579 |#2|) (-1075 |#4|))) (-15 -1604 ((-1075 |#3|) (-1075 |#4|))) (-15 -1605 ((-1075 |#4|) (-1075 |#3|))) (-15 -1606 ((-1075 |#4|) (-1075 |#4|) (-479))) (-15 -1607 (|#3| (-479)))) (-711) (-750) (-955) (-855 |#3| |#1| |#2|)) (T -268)) +((-1607 (*1 *2 *3) (-12 (-5 *3 (-479)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-955)) (-5 *1 (-268 *4 *5 *2 *6)) (-4 *6 (-855 *2 *4 *5)))) (-1606 (*1 *2 *2 *3) (-12 (-5 *2 (-1075 *7)) (-5 *3 (-479)) (-4 *7 (-855 *6 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) (-5 *1 (-268 *4 *5 *6 *7)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-1075 *6)) (-4 *6 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-1075 *7)) (-5 *1 (-268 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-1075 *7)) (-4 *7 (-855 *6 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) (-5 *2 (-1075 *6)) (-5 *1 (-268 *4 *5 *6 *7)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-1075 *7)) (-4 *7 (-855 *6 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) (-5 *2 (-579 *5)) (-5 *1 (-268 *4 *5 *6 *7)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-1075 *8)) (-5 *4 (-579 *6)) (-4 *6 (-750)) (-4 *8 (-855 *7 *5 *6)) (-4 *5 (-711)) (-4 *7 (-955)) (-5 *2 (-579 (-688))) (-5 *1 (-268 *5 *6 *7 *8)))) (-1603 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1075 *9)) (-5 *4 (-579 *7)) (-5 *5 (-579 *8)) (-4 *7 (-750)) (-4 *8 (-955)) (-4 *9 (-855 *8 *6 *7)) (-4 *6 (-711)) (-5 *2 (-1075 *8)) (-5 *1 (-268 *6 *7 *8 *9))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 19 T ELT)) (-3756 (((-579 (-2 (|:| |gen| |#1|) (|:| -3925 (-479)))) $) 21 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3120 (((-688) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-2286 ((|#1| $ (-479)) NIL T ELT)) (-1610 (((-479) $ (-479)) NIL T ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2277 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1609 (($ (-1 (-479) (-479)) $) 11 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1608 (($ $ $) NIL (|has| (-479) (-710)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3659 (((-479) |#1| $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 30 (|has| |#1| (-750)) ELT)) (-3819 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3821 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ (-479)) NIL T ELT) (($ (-479) |#1|) 28 T ELT))) +(((-269 |#1|) (-13 (-21) (-650 (-479)) (-270 |#1| (-479)) (-10 -7 (IF (|has| |#1| (-750)) (-6 (-750)) |%noBranch|))) (-1006)) (T -269)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3756 (((-579 (-2 (|:| |gen| |#1|) (|:| -3925 |#2|))) $) 33 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3120 (((-688) $) 34 T ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#1| "failed") $) 38 T ELT)) (-3140 ((|#1| $) 39 T ELT)) (-2286 ((|#1| $ (-479)) 31 T ELT)) (-1610 ((|#2| $ (-479)) 32 T ELT)) (-2277 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1609 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1608 (($ $ $) 27 (|has| |#2| (-710)) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-3659 ((|#2| |#1| $) 30 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3821 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) +(((-270 |#1| |#2|) (-111) (-1006) (-102)) (T -270)) +((-3821 (*1 *1 *2 *1) (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-102)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-102)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-102)) (-5 *2 (-688)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-102)) (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 *4)))))) (-1610 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-270 *4 *2)) (-4 *4 (-1006)) (-4 *2 (-102)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-270 *2 *4)) (-4 *4 (-102)) (-4 *2 (-1006)))) (-3659 (*1 *2 *3 *1) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-102)))) (-1609 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-102)))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-102)))) (-1608 (*1 *1 *1 *1) (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-102)) (-4 *3 (-710))))) +(-13 (-102) (-944 |t#1|) (-10 -8 (-15 -3821 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3120 ((-688) $)) (-15 -3756 ((-579 (-2 (|:| |gen| |t#1|) (|:| -3925 |t#2|))) $)) (-15 -1610 (|t#2| $ (-479))) (-15 -2286 (|t#1| $ (-479))) (-15 -3659 (|t#2| |t#1| $)) (-15 -1609 ($ (-1 |t#2| |t#2|) $)) (-15 -2277 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-710)) (-15 -1608 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-944 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3756 (((-579 (-2 (|:| |gen| |#1|) (|:| -3925 (-688)))) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3120 (((-688) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-2286 ((|#1| $ (-479)) NIL T ELT)) (-1610 (((-688) $ (-479)) NIL T ELT)) (-2277 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1609 (($ (-1 (-688) (-688)) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1608 (($ $ $) NIL (|has| (-688) (-710)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3659 (((-688) |#1| $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-688) |#1|) NIL T ELT))) +(((-271 |#1|) (-270 |#1| (-688)) (-1006)) (T -271)) +NIL +((-3485 (($ $) 72 T ELT)) (-1612 (($ $ |#2| |#3| $) 14 T ELT)) (-1613 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1785 (((-83) $) 42 T ELT)) (-1784 ((|#2| $) 44 T ELT)) (-3448 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2802 ((|#2| $) 68 T ELT)) (-3799 (((-579 |#2|) $) 56 T ELT)) (-1611 (($ $ $ (-688)) 37 T ELT)) (-3931 (($ $ |#2|) 60 T ELT))) +(((-272 |#1| |#2| |#3|) (-10 -7 (-15 -3485 (|#1| |#1|)) (-15 -2802 (|#2| |#1|)) (-15 -3448 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1611 (|#1| |#1| |#1| (-688))) (-15 -1612 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1613 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3799 ((-579 |#2|) |#1|)) (-15 -1784 (|#2| |#1|)) (-15 -1785 ((-83) |#1|)) (-15 -3448 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3931 (|#1| |#1| |#2|))) (-273 |#2| |#3|) (-955) (-710)) (T -272)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 68 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 69 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 71 (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 (-479) #1="failed") $) 106 (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) 104 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3140 (((-479) $) 105 (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) 103 (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 102 T ELT)) (-3941 (($ $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3485 (($ $) 90 (|has| |#1| (-386)) ELT)) (-1612 (($ $ |#1| |#2| $) 94 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2405 (((-688) $) 97 T ELT)) (-3919 (((-83) $) 79 T ELT)) (-2878 (($ |#1| |#2|) 78 T ELT)) (-2805 ((|#2| $) 96 T ELT)) (-1613 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2879 (($ $) 82 T ELT)) (-3158 ((|#1| $) 83 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1785 (((-83) $) 100 T ELT)) (-1784 ((|#1| $) 99 T ELT)) (-3448 (((-3 $ "failed") $ $) 67 (|has| |#1| (-490)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-490)) ELT)) (-3930 ((|#2| $) 81 T ELT)) (-2802 ((|#1| $) 91 (|has| |#1| (-386)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 66 (|has| |#1| (-490)) ELT) (($ |#1|) 64 T ELT) (($ (-344 (-479))) 74 (OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ELT)) (-3799 (((-579 |#1|) $) 98 T ELT)) (-3659 ((|#1| $ |#2|) 76 T ELT)) (-2687 (((-628 $) $) 65 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-1611 (($ $ $ (-688)) 93 (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 70 (|has| |#1| (-490)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-344 (-479)) $) 73 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 72 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-273 |#1| |#2|) (-111) (-955) (-710)) (T -273)) +((-1785 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-83)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-579 *3)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-688)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) (-1613 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)))) (-1612 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)))) (-1611 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-4 *3 (-144)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-273 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)) (-4 *2 (-490)))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955)) (-4 *2 (-386)))) (-3485 (*1 *1 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)) (-4 *2 (-386))))) +(-13 (-47 |t#1| |t#2|) (-349 |t#1|) (-10 -8 (-15 -1785 ((-83) $)) (-15 -1784 (|t#1| $)) (-15 -3799 ((-579 |t#1|) $)) (-15 -2405 ((-688) $)) (-15 -2805 (|t#2| $)) (-15 -1613 ($ (-1 |t#2| |t#2|) $)) (-15 -1612 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-144)) (-15 -1611 ($ $ $ (-688))) |%noBranch|) (IF (|has| |t#1| (-490)) (-15 -3448 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-386)) (PROGN (-15 -2802 (|t#1| $)) (-15 -3485 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-490)) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-551 $) |has| |#1| (-490)) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-242) |has| |#1| (-490)) ((-349 |#1|) . T) ((-490) |has| |#1| (-490)) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) |has| |#1| (-490)) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) |has| |#1| (-490)) ((-659) . T) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-750)) ELT)) (-1973 (((-83) (-83)) NIL T ELT)) (-3770 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1558 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-2355 (($ $) NIL (|has| |#1| (-1006)) ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3387 (($ |#1| $) NIL (|has| |#1| (-1006)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) NIL T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) NIL T ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT)) (-1974 (($ $ (-479)) NIL T ELT)) (-1975 (((-688) $) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) |#1|) NIL T ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3591 (($ $ $ (-479)) NIL T ELT) (($ |#1| $ (-479)) NIL T ELT)) (-2291 (($ |#1| $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1976 (($ (-579 |#1|)) NIL T ELT)) (-3783 ((|#1| $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) |#1|) NIL T ELT) ((|#1| $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-1559 (($ $ (-1136 (-479))) NIL T ELT) (($ $ (-479)) NIL T ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) NIL T ELT)) (-3773 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3784 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-274 |#1|) (-13 (-19 |#1|) (-234 |#1|) (-10 -8 (-15 -1976 ($ (-579 |#1|))) (-15 -1975 ((-688) $)) (-15 -1974 ($ $ (-479))) (-15 -1973 ((-83) (-83))))) (-1119)) (T -274)) +((-1976 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-274 *3)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-274 *3)) (-4 *3 (-1119)))) (-1974 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-274 *3)) (-4 *3 (-1119)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-274 *3)) (-4 *3 (-1119))))) +((-3914 (((-83) $) 47 T ELT)) (-3911 (((-688)) 23 T ELT)) (-3312 ((|#2| $) 51 T ELT) (($ $ (-824)) 123 T ELT)) (-3120 (((-688)) 124 T ELT)) (-1780 (($ (-1169 |#2|)) 20 T ELT)) (-1998 (((-83) $) 136 T ELT)) (-3116 ((|#2| $) 53 T ELT) (($ $ (-824)) 120 T ELT)) (-2001 (((-1075 |#2|) $) NIL T ELT) (((-1075 $) $ (-824)) 111 T ELT)) (-1615 (((-1075 |#2|) $) 95 T ELT)) (-1614 (((-1075 |#2|) $) 91 T ELT) (((-3 (-1075 |#2|) "failed") $ $) 88 T ELT)) (-1616 (($ $ (-1075 |#2|)) 58 T ELT)) (-3912 (((-737 (-824))) 30 T ELT) (((-824)) 48 T ELT)) (-3893 (((-105)) 27 T ELT)) (-3930 (((-737 (-824)) $) 32 T ELT) (((-824) $) 139 T ELT)) (-1617 (($) 130 T ELT)) (-3208 (((-1169 |#2|) $) NIL T ELT) (((-626 |#2|) (-1169 $)) 42 T ELT)) (-2687 (($ $) NIL T ELT) (((-628 $) $) 100 T ELT)) (-3915 (((-83) $) 45 T ELT))) +(((-275 |#1| |#2|) (-10 -7 (-15 -2687 ((-628 |#1|) |#1|)) (-15 -3120 ((-688))) (-15 -2687 (|#1| |#1|)) (-15 -1614 ((-3 (-1075 |#2|) "failed") |#1| |#1|)) (-15 -1614 ((-1075 |#2|) |#1|)) (-15 -1615 ((-1075 |#2|) |#1|)) (-15 -1616 (|#1| |#1| (-1075 |#2|))) (-15 -1998 ((-83) |#1|)) (-15 -1617 (|#1|)) (-15 -3312 (|#1| |#1| (-824))) (-15 -3116 (|#1| |#1| (-824))) (-15 -2001 ((-1075 |#1|) |#1| (-824))) (-15 -3312 (|#2| |#1|)) (-15 -3116 (|#2| |#1|)) (-15 -3930 ((-824) |#1|)) (-15 -3912 ((-824))) (-15 -2001 ((-1075 |#2|) |#1|)) (-15 -1780 (|#1| (-1169 |#2|))) (-15 -3208 ((-626 |#2|) (-1169 |#1|))) (-15 -3208 ((-1169 |#2|) |#1|)) (-15 -3911 ((-688))) (-15 -3912 ((-737 (-824)))) (-15 -3930 ((-737 (-824)) |#1|)) (-15 -3914 ((-83) |#1|)) (-15 -3915 ((-83) |#1|)) (-15 -3893 ((-105)))) (-276 |#2|) (-308)) (T -275)) +((-3893 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-105)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3912 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-737 (-824))) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3911 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-688)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3912 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-824)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) (-3120 (*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-688)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-3914 (((-83) $) 111 T ELT)) (-3911 (((-688)) 107 T ELT)) (-3312 ((|#1| $) 159 T ELT) (($ $ (-824)) 156 (|has| |#1| (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) 141 (|has| |#1| (-314)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3120 (((-688)) 131 (|has| |#1| (-314)) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#1| "failed") $) 118 T ELT)) (-3140 ((|#1| $) 119 T ELT)) (-1780 (($ (-1169 |#1|)) 165 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2979 (($) 128 (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-2818 (($) 143 (|has| |#1| (-314)) ELT)) (-1668 (((-83) $) 144 (|has| |#1| (-314)) ELT)) (-1752 (($ $ (-688)) 104 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT) (($ $) 103 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3705 (((-83) $) 86 T ELT)) (-3754 (((-824) $) 146 (|has| |#1| (-314)) ELT) (((-737 (-824)) $) 101 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-2397 (((-83) $) 40 T ELT)) (-2000 (($) 154 (|has| |#1| (-314)) ELT)) (-1998 (((-83) $) 153 (|has| |#1| (-314)) ELT)) (-3116 ((|#1| $) 160 T ELT) (($ $ (-824)) 157 (|has| |#1| (-314)) ELT)) (-3427 (((-628 $) $) 132 (|has| |#1| (-314)) ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 65 T ELT)) (-2001 (((-1075 |#1|) $) 164 T ELT) (((-1075 $) $ (-824)) 158 (|has| |#1| (-314)) ELT)) (-1997 (((-824) $) 129 (|has| |#1| (-314)) ELT)) (-1615 (((-1075 |#1|) $) 150 (|has| |#1| (-314)) ELT)) (-1614 (((-1075 |#1|) $) 149 (|has| |#1| (-314)) ELT) (((-3 (-1075 |#1|) "failed") $ $) 148 (|has| |#1| (-314)) ELT)) (-1616 (($ $ (-1075 |#1|)) 151 (|has| |#1| (-314)) ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 85 T ELT)) (-3428 (($) 133 (|has| |#1| (-314)) CONST)) (-2387 (($ (-824)) 130 (|has| |#1| (-314)) ELT)) (-3913 (((-83) $) 110 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2396 (($) 152 (|has| |#1| (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) 140 (|has| |#1| (-314)) ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-3912 (((-737 (-824))) 108 T ELT) (((-824)) 162 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-1753 (((-688) $) 145 (|has| |#1| (-314)) ELT) (((-3 (-688) "failed") $ $) 102 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3893 (((-105)) 116 T ELT)) (-3740 (($ $ (-688)) 136 (|has| |#1| (-314)) ELT) (($ $) 134 (|has| |#1| (-314)) ELT)) (-3930 (((-737 (-824)) $) 109 T ELT) (((-824) $) 161 T ELT)) (-3169 (((-1075 |#1|)) 163 T ELT)) (-1662 (($) 142 (|has| |#1| (-314)) ELT)) (-1617 (($) 155 (|has| |#1| (-314)) ELT)) (-3208 (((-1169 |#1|) $) 167 T ELT) (((-626 |#1|) (-1169 $)) 166 T ELT)) (-2688 (((-3 (-1169 $) "failed") (-626 $)) 139 (|has| |#1| (-314)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2687 (($ $) 138 (|has| |#1| (-314)) ELT) (((-628 $) $) 100 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-1999 (((-1169 $)) 169 T ELT) (((-1169 $) (-824)) 168 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-3915 (((-83) $) 112 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3910 (($ $) 106 (|has| |#1| (-314)) ELT) (($ $ (-688)) 105 (|has| |#1| (-314)) ELT)) (-2654 (($ $ (-688)) 137 (|has| |#1| (-314)) ELT) (($ $) 135 (|has| |#1| (-314)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) (((-276 |#1|) (-111) (-308)) (T -276)) -((-1994 (*1 *2) (-12 (-4 *3 (-308)) (-5 *2 (-1164 *1)) (-4 *1 (-276 *3)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-823)) (-4 *4 (-308)) (-5 *2 (-1164 *1)) (-4 *1 (-276 *4)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1164 *3)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-276 *4)) (-4 *4 (-308)) (-5 *2 (-625 *4)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-308)) (-4 *1 (-276 *3)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1070 *3)))) (-3167 (*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1070 *3)))) (-3906 (*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-823)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-823)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) (-1996 (*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-4 *4 (-313)) (-4 *4 (-308)) (-5 *2 (-1070 *1)) (-4 *1 (-276 *4)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) (-3307 (*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) (-1612 (*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) (-1995 (*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-83)))) (-2391 (*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) (-1611 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-313)) (-4 *1 (-276 *3)) (-4 *3 (-308)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1070 *3)))) (-1609 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1070 *3)))) (-1609 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1070 *3))))) -(-13 (-1183 |t#1|) (-943 |t#1|) (-10 -8 (-15 -1994 ((-1164 $))) (-15 -1994 ((-1164 $) (-823))) (-15 -3205 ((-1164 |t#1|) $)) (-15 -3205 ((-625 |t#1|) (-1164 $))) (-15 -1775 ($ (-1164 |t#1|))) (-15 -1996 ((-1070 |t#1|) $)) (-15 -3167 ((-1070 |t#1|))) (-15 -3906 ((-823))) (-15 -3924 ((-823) $)) (-15 -3113 (|t#1| $)) (-15 -3307 (|t#1| $)) (IF (|has| |t#1| (-313)) (PROGN (-6 (-295)) (-15 -1996 ((-1070 $) $ (-823))) (-15 -3113 ($ $ (-823))) (-15 -3307 ($ $ (-823))) (-15 -1612 ($)) (-15 -1995 ($)) (-15 -1993 ((-83) $)) (-15 -2391 ($)) (-15 -1611 ($ $ (-1070 |t#1|))) (-15 -1610 ((-1070 |t#1|) $)) (-15 -1609 ((-1070 |t#1|) $)) (-15 -1609 ((-3 (-1070 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-313)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-184 $) |has| |#1| (-313)) ((-188) |has| |#1| (-313)) ((-187) |has| |#1| (-313)) ((-198) . T) ((-242) . T) ((-254) . T) ((-1183 |#1|) . T) ((-308) . T) ((-338) OR (|has| |#1| (-313)) (|has| |#1| (-116))) ((-313) |has| |#1| (-313)) ((-295) |has| |#1| (-313)) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 |#1|) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) . T) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1052) |has| |#1| (-313)) ((-1114) . T) ((-1119) . T) ((-1172 |#1|) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-1613 (((-83) $) 13 T ELT)) (-3614 (($ |#1|) 10 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3610 (($ |#1|) 12 T ELT)) (-3922 (((-765) $) 19 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2218 ((|#1| $) 14 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 21 T ELT))) -(((-277 |#1|) (-13 (-749) (-10 -8 (-15 -3614 ($ |#1|)) (-15 -3610 ($ |#1|)) (-15 -1613 ((-83) $)) (-15 -2218 (|#1| $)))) (-749)) (T -277)) -((-3614 (*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) (-3610 (*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-277 *3)) (-4 *3 (-749)))) (-2218 (*1 *2 *1) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1614 (((-439) $) 20 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1615 (((-862 (-687)) $) 18 T ELT)) (-1617 (((-206) $) 7 T ELT)) (-3922 (((-765) $) 26 T ELT)) (-2188 (((-862 (-156 (-110))) $) 16 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1616 (((-578 (-775 (-1080) (-687))) $) 12 T ELT)) (-3037 (((-83) $ $) 22 T ELT))) -(((-278) (-13 (-1003) (-10 -8 (-15 -1617 ((-206) $)) (-15 -1616 ((-578 (-775 (-1080) (-687))) $)) (-15 -1615 ((-862 (-687)) $)) (-15 -2188 ((-862 (-156 (-110))) $)) (-15 -1614 ((-439) $))))) (T -278)) -((-1617 (*1 *2 *1) (-12 (-5 *2 (-206)) (-5 *1 (-278)))) (-1616 (*1 *2 *1) (-12 (-5 *2 (-578 (-775 (-1080) (-687)))) (-5 *1 (-278)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-862 (-687))) (-5 *1 (-278)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-862 (-156 (-110)))) (-5 *1 (-278)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-278))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3818 (($ $) 34 T ELT)) (-1620 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1618 (((-1164 |#4|) $) 133 T ELT)) (-1952 (((-349 |#2| (-343 |#2|) |#3| |#4|) $) 32 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (((-3 |#4| #1#) $) 37 T ELT)) (-1619 (((-1164 |#4|) $) 125 T ELT)) (-1621 (($ (-349 |#2| (-343 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-478)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3412 (((-2 (|:| -2318 (-349 |#2| (-343 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3922 (((-765) $) 18 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 15 T CONST)) (-3037 (((-83) $ $) 21 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 26 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 24 T ELT))) -(((-279 |#1| |#2| |#3| |#4|) (-13 (-282 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1619 ((-1164 |#4|) $)) (-15 -1618 ((-1164 |#4|) $)))) (-308) (-1140 |#1|) (-1140 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -279)) -((-1619 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-1164 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5)))) (-1618 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-1164 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5))))) -((-3934 (((-279 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-279 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-280 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3934 ((-279 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-279 |#1| |#2| |#3| |#4|)))) (-308) (-1140 |#1|) (-1140 (-343 |#2|)) (-287 |#1| |#2| |#3|) (-308) (-1140 |#5|) (-1140 (-343 |#6|)) (-287 |#5| |#6| |#7|)) (T -280)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-279 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *9 (-308)) (-4 *10 (-1140 *9)) (-4 *11 (-1140 (-343 *10))) (-5 *2 (-279 *9 *10 *11 *12)) (-5 *1 (-280 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-287 *9 *10 *11))))) -((-1620 (((-83) $) 14 T ELT))) -(((-281 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1620 ((-83) |#1|))) (-282 |#2| |#3| |#4| |#5|) (-308) (-1140 |#2|) (-1140 (-343 |#3|)) (-287 |#2| |#3| |#4|)) (T -281)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3818 (($ $) 34 T ELT)) (-1620 (((-83) $) 33 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1952 (((-349 |#2| (-343 |#2|) |#3| |#4|) $) 40 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2391 (((-3 |#4| "failed") $) 32 T ELT)) (-1621 (($ (-349 |#2| (-343 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-478)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3412 (((-2 (|:| -2318 (-349 |#2| (-343 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT))) -(((-282 |#1| |#2| |#3| |#4|) (-111) (-308) (-1140 |t#1|) (-1140 (-343 |t#2|)) (-287 |t#1| |t#2| |t#3|)) (T -282)) -((-1952 (*1 *2 *1) (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-349 *4 (-343 *4) *5 *6)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-349 *4 (-343 *4) *5 *6)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-4 *3 (-308)) (-4 *1 (-282 *3 *4 *5 *6)))) (-1621 (*1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-4 *1 (-282 *3 *4 *5 *2)) (-4 *2 (-287 *3 *4 *5)))) (-1621 (*1 *1 *2 *2) (-12 (-4 *2 (-308)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-343 *3))) (-4 *1 (-282 *2 *3 *4 *5)) (-4 *5 (-287 *2 *3 *4)))) (-1621 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-478)) (-4 *2 (-308)) (-4 *4 (-1140 *2)) (-4 *5 (-1140 (-343 *4))) (-4 *1 (-282 *2 *4 *5 *6)) (-4 *6 (-287 *2 *4 *5)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-2 (|:| -2318 (-349 *4 (-343 *4) *5 *6)) (|:| |principalPart| *6))))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-282 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-343 *3))) (-4 *5 (-287 *2 *3 *4)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-83)))) (-2391 (*1 *2 *1) (|partial| -12 (-4 *1 (-282 *3 *4 *5 *2)) (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-4 *2 (-287 *3 *4 *5)))) (-1621 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-308)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-343 *3))) (-4 *1 (-282 *4 *3 *5 *2)) (-4 *2 (-287 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -1952 ((-349 |t#2| (-343 |t#2|) |t#3| |t#4|) $)) (-15 -1621 ($ (-349 |t#2| (-343 |t#2|) |t#3| |t#4|))) (-15 -1621 ($ |t#4|)) (-15 -1621 ($ |t#1| |t#1|)) (-15 -1621 ($ |t#1| |t#1| (-478))) (-15 -3412 ((-2 (|:| -2318 (-349 |t#2| (-343 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3818 ($ $)) (-15 -1620 ((-83) $)) (-15 -2391 ((-3 |t#4| "failed") $)) (-15 -1621 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-1003) . T) ((-1114) . T)) -((-3744 (($ $ (-1075) |#2|) NIL T ELT) (($ $ (-578 (-1075)) (-578 |#2|)) 20 T ELT) (($ $ (-578 (-245 |#2|))) 15 T ELT) (($ $ (-245 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL T ELT)) (-3776 (($ $ |#2|) 11 T ELT))) -(((-283 |#1| |#2|) (-10 -7 (-15 -3776 (|#1| |#1| |#2|)) (-15 -3744 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3744 (|#1| |#1| |#2| |#2|)) (-15 -3744 (|#1| |#1| (-245 |#2|))) (-15 -3744 (|#1| |#1| (-578 (-245 |#2|)))) (-15 -3744 (|#1| |#1| (-578 (-1075)) (-578 |#2|))) (-15 -3744 (|#1| |#1| (-1075) |#2|))) (-284 |#2|) (-1003)) (T -283)) -NIL -((-3934 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3744 (($ $ (-1075) |#1|) 17 (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) 16 (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 15 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 14 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 12 (|has| |#1| (-256 |#1|)) ELT)) (-3776 (($ $ |#1|) 11 (|has| |#1| (-238 |#1| |#1|)) ELT))) -(((-284 |#1|) (-111) (-1003)) (T -284)) -((-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1003))))) -(-13 (-10 -8 (-15 -3934 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-238 |t#1| |t#1|)) (-6 (-238 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-256 |t#1|)) (-6 (-256 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-447 (-1075) |t#1|)) (-6 (-447 (-1075) |t#1|)) |%noBranch|))) -(((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-447 (-1075) |#1|) |has| |#1| (-447 (-1075) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-1114) |has| |#1| (-238 |#1| |#1|))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-810 |#1|) #1#) $) NIL T ELT)) (-3137 (((-810 |#1|) $) NIL T ELT)) (-1775 (($ (-1164 (-810 |#1|))) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1663 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT) (($ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1993 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3113 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 (-810 |#1|)) $) NIL T ELT) (((-1070 $) $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1992 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1610 (((-1070 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1609 (((-1070 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-1070 (-810 |#1|)) #1#) $ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1611 (($ $ (-1070 (-810 |#1|))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-810 |#1|) (-313)) CONST)) (-2382 (($ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3907 (((-83) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3167 (((-1070 (-810 |#1|))) NIL T ELT)) (-1657 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1612 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3205 (((-1164 (-810 |#1|)) $) NIL T ELT) (((-625 (-810 |#1|)) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-810 |#1|)) NIL T ELT)) (-2683 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-627 $) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT) (((-1164 $) (-823)) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3904 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT) (($ (-810 |#1|) $) NIL T ELT))) -(((-285 |#1| |#2|) (-276 (-810 |#1|)) (-823) (-823)) (T -285)) -NIL -((-1630 (((-2 (|:| |num| (-1164 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1775 (($ (-1164 (-343 |#3|)) (-1164 $)) NIL T ELT) (($ (-1164 (-343 |#3|))) NIL T ELT) (($ (-1164 |#3|) |#3|) 172 T ELT)) (-1635 (((-1164 $) (-1164 $)) 156 T ELT)) (-1622 (((-578 (-578 |#2|))) 126 T ELT)) (-1647 (((-83) |#2| |#2|) 76 T ELT)) (-3480 (($ $) 148 T ELT)) (-3354 (((-687)) 171 T ELT)) (-1636 (((-1164 $) (-1164 $)) 219 T ELT)) (-1623 (((-578 (-850 |#2|)) (-1075)) 115 T ELT)) (-1639 (((-83) $) 168 T ELT)) (-1638 (((-83) $) 27 T ELT) (((-83) $ |#2|) 31 T ELT) (((-83) $ |#3|) 223 T ELT)) (-1625 (((-3 |#3| #1="failed")) 52 T ELT)) (-1649 (((-687)) 183 T ELT)) (-3776 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1626 (((-3 |#3| #1#)) 71 T ELT)) (-3734 (($ $ (-1 (-343 |#3|) (-343 |#3|))) NIL T ELT) (($ $ (-1 (-343 |#3|) (-343 |#3|)) (-687)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-1637 (((-1164 $) (-1164 $)) 162 T ELT)) (-1624 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1648 (((-83)) 34 T ELT))) -(((-286 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -1622 ((-578 (-578 |#2|)))) (-15 -1623 ((-578 (-850 |#2|)) (-1075))) (-15 -1624 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1625 ((-3 |#3| #1="failed"))) (-15 -1626 ((-3 |#3| #1#))) (-15 -3776 (|#2| |#1| |#2| |#2|)) (-15 -3480 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1638 ((-83) |#1| |#3|)) (-15 -1638 ((-83) |#1| |#2|)) (-15 -1775 (|#1| (-1164 |#3|) |#3|)) (-15 -1630 ((-2 (|:| |num| (-1164 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1635 ((-1164 |#1|) (-1164 |#1|))) (-15 -1636 ((-1164 |#1|) (-1164 |#1|))) (-15 -1637 ((-1164 |#1|) (-1164 |#1|))) (-15 -1638 ((-83) |#1|)) (-15 -1639 ((-83) |#1|)) (-15 -1647 ((-83) |#2| |#2|)) (-15 -1648 ((-83))) (-15 -1649 ((-687))) (-15 -3354 ((-687))) (-15 -3734 (|#1| |#1| (-1 (-343 |#3|) (-343 |#3|)) (-687))) (-15 -3734 (|#1| |#1| (-1 (-343 |#3|) (-343 |#3|)))) (-15 -1775 (|#1| (-1164 (-343 |#3|)))) (-15 -1775 (|#1| (-1164 (-343 |#3|)) (-1164 |#1|)))) (-287 |#2| |#3| |#4|) (-1119) (-1140 |#2|) (-1140 (-343 |#3|))) (T -286)) -((-3354 (*1 *2) (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) (-5 *2 (-687)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) (-1649 (*1 *2) (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) (-5 *2 (-687)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) (-1648 (*1 *2) (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) (-5 *2 (-83)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) (-1647 (*1 *2 *3 *3) (-12 (-4 *3 (-1119)) (-4 *5 (-1140 *3)) (-4 *6 (-1140 (-343 *5))) (-5 *2 (-83)) (-5 *1 (-286 *4 *3 *5 *6)) (-4 *4 (-287 *3 *5 *6)))) (-1626 (*1 *2) (|partial| -12 (-4 *4 (-1119)) (-4 *5 (-1140 (-343 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) (-1625 (*1 *2) (|partial| -12 (-4 *4 (-1119)) (-4 *5 (-1140 (-343 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *5 (-1119)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-5 *2 (-578 (-850 *5))) (-5 *1 (-286 *4 *5 *6 *7)) (-4 *4 (-287 *5 *6 *7)))) (-1622 (*1 *2) (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1630 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 111 (|has| (-343 |#2|) (-308)) ELT)) (-2045 (($ $) 112 (|has| (-343 |#2|) (-308)) ELT)) (-2043 (((-83) $) 114 (|has| (-343 |#2|) (-308)) ELT)) (-1765 (((-625 (-343 |#2|)) (-1164 $)) 58 T ELT) (((-625 (-343 |#2|))) 74 T ELT)) (-3307 (((-343 |#2|) $) 64 T ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) 164 (|has| (-343 |#2|) (-295)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 131 (|has| (-343 |#2|) (-308)) ELT)) (-3947 (((-341 $) $) 132 (|has| (-343 |#2|) (-308)) ELT)) (-1591 (((-83) $ $) 122 (|has| (-343 |#2|) (-308)) ELT)) (-3117 (((-687)) 105 (|has| (-343 |#2|) (-313)) ELT)) (-1644 (((-83)) 239 T ELT)) (-1643 (((-83) |#1|) 238 T ELT) (((-83) |#2|) 237 T ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 (-478) #1="failed") $) 191 (|has| (-343 |#2|) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 189 (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-3 (-343 |#2|) #1#) $) 186 T ELT)) (-3137 (((-478) $) 190 (|has| (-343 |#2|) (-943 (-478))) ELT) (((-343 (-478)) $) 188 (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-343 |#2|) $) 187 T ELT)) (-1775 (($ (-1164 (-343 |#2|)) (-1164 $)) 60 T ELT) (($ (-1164 (-343 |#2|))) 77 T ELT) (($ (-1164 |#2|) |#2|) 221 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-343 |#2|) (-295)) ELT)) (-2544 (($ $ $) 126 (|has| (-343 |#2|) (-308)) ELT)) (-1764 (((-625 (-343 |#2|)) $ (-1164 $)) 65 T ELT) (((-625 (-343 |#2|)) $) 72 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 183 (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 182 (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1164 (-343 |#2|)))) (-625 $) (-1164 $)) 181 T ELT) (((-625 (-343 |#2|)) (-625 $)) 180 T ELT)) (-1635 (((-1164 $) (-1164 $)) 227 T ELT)) (-3818 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-343 |#3|)) 172 (|has| (-343 |#2|) (-308)) ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-1622 (((-578 (-578 |#1|))) 208 (|has| |#1| (-313)) ELT)) (-1647 (((-83) |#1| |#1|) 243 T ELT)) (-3090 (((-823)) 66 T ELT)) (-2975 (($) 108 (|has| (-343 |#2|) (-313)) ELT)) (-1642 (((-83)) 236 T ELT)) (-1641 (((-83) |#1|) 235 T ELT) (((-83) |#2|) 234 T ELT)) (-2543 (($ $ $) 125 (|has| (-343 |#2|) (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 120 (|has| (-343 |#2|) (-308)) ELT)) (-3480 (($ $) 214 T ELT)) (-2814 (($) 166 (|has| (-343 |#2|) (-295)) ELT)) (-1663 (((-83) $) 167 (|has| (-343 |#2|) (-295)) ELT)) (-1747 (($ $ (-687)) 158 (|has| (-343 |#2|) (-295)) ELT) (($ $) 157 (|has| (-343 |#2|) (-295)) ELT)) (-3699 (((-83) $) 133 (|has| (-343 |#2|) (-308)) ELT)) (-3748 (((-823) $) 169 (|has| (-343 |#2|) (-295)) ELT) (((-736 (-823)) $) 155 (|has| (-343 |#2|) (-295)) ELT)) (-2392 (((-83) $) 40 T ELT)) (-3354 (((-687)) 246 T ELT)) (-1636 (((-1164 $) (-1164 $)) 228 T ELT)) (-3113 (((-343 |#2|) $) 63 T ELT)) (-1623 (((-578 (-850 |#1|)) (-1075)) 209 (|has| |#1| (-308)) ELT)) (-3422 (((-627 $) $) 159 (|has| (-343 |#2|) (-295)) ELT)) (-1588 (((-3 (-578 $) #2="failed") (-578 $) $) 129 (|has| (-343 |#2|) (-308)) ELT)) (-1996 ((|#3| $) 56 (|has| (-343 |#2|) (-308)) ELT)) (-1992 (((-823) $) 107 (|has| (-343 |#2|) (-313)) ELT)) (-3060 ((|#3| $) 173 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 185 (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 184 (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1164 (-343 |#2|)))) (-1164 $) $) 179 T ELT) (((-625 (-343 |#2|)) (-1164 $)) 178 T ELT)) (-1874 (($ (-578 $)) 118 (|has| (-343 |#2|) (-308)) ELT) (($ $ $) 117 (|has| (-343 |#2|) (-308)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1631 (((-625 (-343 |#2|))) 223 T ELT)) (-1633 (((-625 (-343 |#2|))) 225 T ELT)) (-2464 (($ $) 134 (|has| (-343 |#2|) (-308)) ELT)) (-1628 (($ (-1164 |#2|) |#2|) 219 T ELT)) (-1632 (((-625 (-343 |#2|))) 224 T ELT)) (-1634 (((-625 (-343 |#2|))) 226 T ELT)) (-1627 (((-2 (|:| |num| (-625 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1629 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1640 (((-1164 $)) 232 T ELT)) (-3894 (((-1164 $)) 233 T ELT)) (-1639 (((-83) $) 231 T ELT)) (-1638 (((-83) $) 230 T ELT) (((-83) $ |#1|) 217 T ELT) (((-83) $ |#2|) 216 T ELT)) (-3423 (($) 160 (|has| (-343 |#2|) (-295)) CONST)) (-2382 (($ (-823)) 106 (|has| (-343 |#2|) (-313)) ELT)) (-1625 (((-3 |#2| "failed")) 211 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1649 (((-687)) 245 T ELT)) (-2391 (($) 177 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 119 (|has| (-343 |#2|) (-308)) ELT)) (-3125 (($ (-578 $)) 116 (|has| (-343 |#2|) (-308)) ELT) (($ $ $) 115 (|has| (-343 |#2|) (-308)) ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) 163 (|has| (-343 |#2|) (-295)) ELT)) (-3708 (((-341 $) $) 130 (|has| (-343 |#2|) (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-343 |#2|) (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 127 (|has| (-343 |#2|) (-308)) ELT)) (-3443 (((-3 $ "failed") $ $) 110 (|has| (-343 |#2|) (-308)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 121 (|has| (-343 |#2|) (-308)) ELT)) (-1590 (((-687) $) 123 (|has| (-343 |#2|) (-308)) ELT)) (-3776 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1626 (((-3 |#2| "failed")) 212 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 124 (|has| (-343 |#2|) (-308)) ELT)) (-3733 (((-343 |#2|) (-1164 $)) 59 T ELT) (((-343 |#2|)) 73 T ELT)) (-1748 (((-687) $) 168 (|has| (-343 |#2|) (-295)) ELT) (((-3 (-687) "failed") $ $) 156 (|has| (-343 |#2|) (-295)) ELT)) (-3734 (($ $ (-1 (-343 |#2|) (-343 |#2|))) 142 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) 141 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-578 (-1075)) (-578 (-687))) 147 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-2542 (|has| (-343 |#2|) (-804 (-1075))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-1075) (-687)) 146 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-2542 (|has| (-343 |#2|) (-804 (-1075))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-578 (-1075))) 145 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-2542 (|has| (-343 |#2|) (-804 (-1075))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-1075)) 143 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-2542 (|has| (-343 |#2|) (-804 (-1075))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-687)) 153 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-187))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-188))) (-2542 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) 151 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-187))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-188))) (-2542 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-2390 (((-625 (-343 |#2|)) (-1164 $) (-1 (-343 |#2|) (-343 |#2|))) 171 (|has| (-343 |#2|) (-308)) ELT)) (-3167 ((|#3|) 176 T ELT)) (-1657 (($) 165 (|has| (-343 |#2|) (-295)) ELT)) (-3205 (((-1164 (-343 |#2|)) $ (-1164 $)) 62 T ELT) (((-625 (-343 |#2|)) (-1164 $) (-1164 $)) 61 T ELT) (((-1164 (-343 |#2|)) $) 79 T ELT) (((-625 (-343 |#2|)) (-1164 $)) 78 T ELT)) (-3948 (((-1164 (-343 |#2|)) $) 76 T ELT) (($ (-1164 (-343 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-2684 (((-3 (-1164 $) "failed") (-625 $)) 162 (|has| (-343 |#2|) (-295)) ELT)) (-1637 (((-1164 $) (-1164 $)) 229 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 |#2|)) 49 T ELT) (($ (-343 (-478))) 104 (OR (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-943 (-343 (-478))))) ELT) (($ $) 109 (|has| (-343 |#2|) (-308)) ELT)) (-2683 (($ $) 161 (|has| (-343 |#2|) (-295)) ELT) (((-627 $) $) 55 (|has| (-343 |#2|) (-116)) ELT)) (-2429 ((|#3| $) 57 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1646 (((-83)) 242 T ELT)) (-1645 (((-83) |#1|) 241 T ELT) (((-83) |#2|) 240 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-1994 (((-1164 $)) 80 T ELT)) (-2044 (((-83) $ $) 113 (|has| (-343 |#2|) (-308)) ELT)) (-1624 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1648 (((-83)) 244 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1 (-343 |#2|) (-343 |#2|))) 140 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) 139 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 150 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-2542 (|has| (-343 |#2|) (-804 (-1075))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-1075) (-687)) 149 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-2542 (|has| (-343 |#2|) (-804 (-1075))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-578 (-1075))) 148 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-2542 (|has| (-343 |#2|) (-804 (-1075))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-1075)) 144 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-2542 (|has| (-343 |#2|) (-804 (-1075))) (|has| (-343 |#2|) (-308)))) ELT) (($ $ (-687)) 154 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-187))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-188))) (-2542 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) 152 (OR (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-187))) (-2542 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-188))) (-2542 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 138 (|has| (-343 |#2|) (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 135 (|has| (-343 |#2|) (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 |#2|)) 51 T ELT) (($ (-343 |#2|) $) 50 T ELT) (($ (-343 (-478)) $) 137 (|has| (-343 |#2|) (-308)) ELT) (($ $ (-343 (-478))) 136 (|has| (-343 |#2|) (-308)) ELT))) -(((-287 |#1| |#2| |#3|) (-111) (-1119) (-1140 |t#1|) (-1140 (-343 |t#2|))) (T -287)) -((-3354 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-687)))) (-1649 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-687)))) (-1648 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1647 (*1 *2 *3 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1646 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1645 (*1 *2 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1645 (*1 *2 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-343 *3))) (-5 *2 (-83)))) (-1644 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1643 (*1 *2 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1643 (*1 *2 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-343 *3))) (-5 *2 (-83)))) (-1642 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1641 (*1 *2 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1641 (*1 *2 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-343 *3))) (-5 *2 (-83)))) (-3894 (*1 *2) (-12 (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5)))) (-1640 (*1 *2) (-12 (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1637 (*1 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))))) (-1634 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-625 (-343 *4))))) (-1633 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-625 (-343 *4))))) (-1632 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-625 (-343 *4))))) (-1631 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-625 (-343 *4))))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-2 (|:| |num| (-1164 *4)) (|:| |den| *4))))) (-1775 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1140 *4)) (-4 *4 (-1119)) (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1140 (-343 *3))))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-2 (|:| |num| (-1164 *4)) (|:| |den| *4))))) (-1628 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1140 *4)) (-4 *4 (-1119)) (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1140 (-343 *3))))) (-1627 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) (-5 *2 (-2 (|:| |num| (-625 *5)) (|:| |den| *5))))) (-1638 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) (-1638 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-343 *3))) (-5 *2 (-83)))) (-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))))) (-3480 (*1 *1 *1) (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-343 *3))))) (-3776 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-343 *3))))) (-1626 (*1 *2) (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1119)) (-4 *4 (-1140 (-343 *2))) (-4 *2 (-1140 *3)))) (-1625 (*1 *2) (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1119)) (-4 *4 (-1140 (-343 *2))) (-4 *2 (-1140 *3)))) (-1624 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-1119)) (-4 *6 (-1140 (-343 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-287 *4 *5 *6)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) (-4 *4 (-308)) (-5 *2 (-578 (-850 *4))))) (-1622 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) (-4 *3 (-313)) (-5 *2 (-578 (-578 *3)))))) -(-13 (-656 (-343 |t#2|) |t#3|) (-10 -8 (-15 -3354 ((-687))) (-15 -1649 ((-687))) (-15 -1648 ((-83))) (-15 -1647 ((-83) |t#1| |t#1|)) (-15 -1646 ((-83))) (-15 -1645 ((-83) |t#1|)) (-15 -1645 ((-83) |t#2|)) (-15 -1644 ((-83))) (-15 -1643 ((-83) |t#1|)) (-15 -1643 ((-83) |t#2|)) (-15 -1642 ((-83))) (-15 -1641 ((-83) |t#1|)) (-15 -1641 ((-83) |t#2|)) (-15 -3894 ((-1164 $))) (-15 -1640 ((-1164 $))) (-15 -1639 ((-83) $)) (-15 -1638 ((-83) $)) (-15 -1637 ((-1164 $) (-1164 $))) (-15 -1636 ((-1164 $) (-1164 $))) (-15 -1635 ((-1164 $) (-1164 $))) (-15 -1634 ((-625 (-343 |t#2|)))) (-15 -1633 ((-625 (-343 |t#2|)))) (-15 -1632 ((-625 (-343 |t#2|)))) (-15 -1631 ((-625 (-343 |t#2|)))) (-15 -1630 ((-2 (|:| |num| (-1164 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1775 ($ (-1164 |t#2|) |t#2|)) (-15 -1629 ((-2 (|:| |num| (-1164 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1628 ($ (-1164 |t#2|) |t#2|)) (-15 -1627 ((-2 (|:| |num| (-625 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1638 ((-83) $ |t#1|)) (-15 -1638 ((-83) $ |t#2|)) (-15 -3734 ($ $ (-1 |t#2| |t#2|))) (-15 -3480 ($ $)) (-15 -3776 (|t#1| $ |t#1| |t#1|)) (-15 -1626 ((-3 |t#2| "failed"))) (-15 -1625 ((-3 |t#2| "failed"))) (-15 -1624 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-308)) (-15 -1623 ((-578 (-850 |t#1|)) (-1075))) |%noBranch|) (IF (|has| |t#1| (-313)) (-15 -1622 ((-578 (-578 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-38 (-343 |#2|)) . T) ((-38 $) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-80 (-343 |#2|) (-343 |#2|)) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-116))) ((-118) |has| (-343 |#2|) (-118)) ((-550 (-343 (-478))) OR (|has| (-343 |#2|) (-943 (-343 (-478)))) (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-550 (-343 |#2|)) . T) ((-550 (-478)) . T) ((-550 $) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-547 (-765)) . T) ((-144) . T) ((-548 |#3|) . T) ((-184 $) OR (|has| (-343 |#2|) (-295)) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308)))) ((-182 (-343 |#2|)) |has| (-343 |#2|) (-308)) ((-188) OR (|has| (-343 |#2|) (-295)) (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308)))) ((-187) OR (|has| (-343 |#2|) (-295)) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308)))) ((-222 (-343 |#2|)) |has| (-343 |#2|) (-308)) ((-198) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-242) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-254) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-308) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-338) |has| (-343 |#2|) (-295)) ((-313) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-313))) ((-295) |has| (-343 |#2|) (-295)) ((-315 (-343 |#2|) |#3|) . T) ((-346 (-343 |#2|) |#3|) . T) ((-322 (-343 |#2|)) . T) ((-348 (-343 |#2|)) . T) ((-385) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-489) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-583 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-583 (-343 |#2|)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-585 (-343 |#2|)) . T) ((-585 (-478)) |has| (-343 |#2|) (-575 (-478))) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-577 (-343 |#2|)) . T) ((-577 $) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-575 (-343 |#2|)) . T) ((-575 (-478)) |has| (-343 |#2|) (-575 (-478))) ((-649 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-649 (-343 |#2|)) . T) ((-649 $) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-656 (-343 |#2|) |#3|) . T) ((-658) . T) ((-799 $ (-1075)) OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075))))) ((-802 (-1075)) -12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) ((-804 (-1075)) OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075))))) ((-825) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-943 (-343 (-478))) |has| (-343 |#2|) (-943 (-343 (-478)))) ((-943 (-343 |#2|)) . T) ((-943 (-478)) |has| (-343 |#2|) (-943 (-478))) ((-956 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-956 (-343 |#2|)) . T) ((-956 $) . T) ((-961 (-343 (-478))) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308))) ((-961 (-343 |#2|)) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1052) |has| (-343 |#2|) (-295)) ((-1114) . T) ((-1119) OR (|has| (-343 |#2|) (-295)) (|has| (-343 |#2|) (-308)))) -((-3934 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-288 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3934 (|#8| (-1 |#5| |#1|) |#4|))) (-1119) (-1140 |#1|) (-1140 (-343 |#2|)) (-287 |#1| |#2| |#3|) (-1119) (-1140 |#5|) (-1140 (-343 |#6|)) (-287 |#5| |#6| |#7|)) (T -288)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1119)) (-4 *8 (-1119)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-4 *9 (-1140 *8)) (-4 *2 (-287 *8 *9 *10)) (-5 *1 (-288 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-287 *5 *6 *7)) (-4 *10 (-1140 (-343 *9)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-810 |#1|) #1#) $) NIL T ELT)) (-3137 (((-810 |#1|) $) NIL T ELT)) (-1775 (($ (-1164 (-810 |#1|))) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1663 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT) (($ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1993 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3113 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 (-810 |#1|)) $) NIL T ELT) (((-1070 $) $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1992 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1610 (((-1070 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1609 (((-1070 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-1070 (-810 |#1|)) #1#) $ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1611 (($ $ (-1070 (-810 |#1|))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-810 |#1|) (-313)) CONST)) (-2382 (($ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3907 (((-83) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1650 (((-862 (-1020))) NIL T ELT)) (-2391 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3167 (((-1070 (-810 |#1|))) NIL T ELT)) (-1657 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1612 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3205 (((-1164 (-810 |#1|)) $) NIL T ELT) (((-625 (-810 |#1|)) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-810 |#1|)) NIL T ELT)) (-2683 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-627 $) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT) (((-1164 $) (-823)) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3904 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT) (($ (-810 |#1|) $) NIL T ELT))) -(((-289 |#1| |#2|) (-13 (-276 (-810 |#1|)) (-10 -7 (-15 -1650 ((-862 (-1020)))))) (-823) (-823)) (T -289)) -((-1650 (*1 *2) (-12 (-5 *2 (-862 (-1020))) (-5 *1 (-289 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 58 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) 56 (|has| |#1| (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) 139 T ELT)) (-3137 ((|#1| $) 111 T ELT)) (-1775 (($ (-1164 |#1|)) 128 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) 122 (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) 155 (|has| |#1| (-313)) ELT)) (-1663 (((-83) $) 65 (|has| |#1| (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) 60 (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2392 (((-83) $) 62 T ELT)) (-1995 (($) 157 (|has| |#1| (-313)) ELT)) (-1993 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-3113 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 |#1|) $) 115 T ELT) (((-1070 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1992 (((-823) $) 165 (|has| |#1| (-313)) ELT)) (-1610 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1609 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1070 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1611 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 172 T ELT)) (-3423 (($) NIL (|has| |#1| (-313)) CONST)) (-2382 (($ (-823)) 94 (|has| |#1| (-313)) ELT)) (-3907 (((-83) $) 142 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1650 (((-862 (-1020))) 57 T ELT)) (-2391 (($) 153 (|has| |#1| (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) 117 (|has| |#1| (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) 88 T ELT) (((-823)) 89 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) 156 (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) 149 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3167 (((-1070 |#1|)) 120 T ELT)) (-1657 (($) 154 (|has| |#1| (-313)) ELT)) (-1612 (($) 162 (|has| |#1| (-313)) ELT)) (-3205 (((-1164 |#1|) $) 76 T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3922 (((-765) $) 168 T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2683 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3107 (((-687)) 150 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) 141 T ELT) (((-1164 $) (-823)) 96 T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) 66 T CONST)) (-2647 (($) 101 T CONST)) (-3904 (($ $) 105 (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 64 T ELT)) (-3925 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3813 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 84 T ELT)) (** (($ $ (-823)) 174 T ELT) (($ $ (-687)) 175 T ELT) (($ $ (-478)) 173 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) -(((-290 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1650 ((-862 (-1020)))))) (-295) (-1070 |#1|)) (T -290)) -((-1650 (*1 *2) (-12 (-5 *2 (-862 (-1020))) (-5 *1 (-290 *3 *4)) (-4 *3 (-295)) (-14 *4 (-1070 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| |#1| (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-1775 (($ (-1164 |#1|)) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) NIL (|has| |#1| (-313)) ELT)) (-1663 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) NIL (|has| |#1| (-313)) ELT)) (-1993 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-3113 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 |#1|) $) NIL T ELT) (((-1070 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1992 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-1610 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1609 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1070 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1611 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| |#1| (-313)) CONST)) (-2382 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3907 (((-83) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1650 (((-862 (-1020))) NIL T ELT)) (-2391 (($) NIL (|has| |#1| (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| |#1| (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3167 (((-1070 |#1|)) NIL T ELT)) (-1657 (($) NIL (|has| |#1| (-313)) ELT)) (-1612 (($) NIL (|has| |#1| (-313)) ELT)) (-3205 (((-1164 |#1|) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2683 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT) (((-1164 $) (-823)) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3904 (($ $) NIL (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-291 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1650 ((-862 (-1020)))))) (-295) (-823)) (T -291)) -((-1650 (*1 *2) (-12 (-5 *2 (-862 (-1020))) (-5 *1 (-291 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) -((-1660 (((-687) (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020)))))) 61 T ELT)) (-1651 (((-862 (-1020)) (-1070 |#1|)) 112 T ELT)) (-1652 (((-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))) (-1070 |#1|)) 103 T ELT)) (-1653 (((-625 |#1|) (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020)))))) 113 T ELT)) (-1654 (((-3 (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))) "failed") (-823)) 13 T ELT)) (-1655 (((-3 (-1070 |#1|) (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020)))))) (-823)) 18 T ELT))) -(((-292 |#1|) (-10 -7 (-15 -1651 ((-862 (-1020)) (-1070 |#1|))) (-15 -1652 ((-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))) (-1070 |#1|))) (-15 -1653 ((-625 |#1|) (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))))) (-15 -1660 ((-687) (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))))) (-15 -1654 ((-3 (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))) "failed") (-823))) (-15 -1655 ((-3 (-1070 |#1|) (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020)))))) (-823)))) (-295)) (T -292)) -((-1655 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-3 (-1070 *4) (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020))))))) (-5 *1 (-292 *4)) (-4 *4 (-295)))) (-1654 (*1 *2 *3) (|partial| -12 (-5 *3 (-823)) (-5 *2 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) (-5 *1 (-292 *4)) (-4 *4 (-295)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) (-4 *4 (-295)) (-5 *2 (-687)) (-5 *1 (-292 *4)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) (-4 *4 (-295)) (-5 *2 (-625 *4)) (-5 *1 (-292 *4)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) (-5 *2 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) (-5 *1 (-292 *4)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) (-5 *2 (-862 (-1020))) (-5 *1 (-292 *4))))) -((-3922 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-293 |#1| |#2| |#3|) (-10 -7 (-15 -3922 (|#3| |#1|)) (-15 -3922 (|#1| |#3|))) (-276 |#2|) (-295) (-276 |#2|)) (T -293)) -((-3922 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *2 *4 *3)) (-4 *3 (-276 *4)))) (-3922 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *3 *4 *2)) (-4 *3 (-276 *4))))) -((-1663 (((-83) $) 65 T ELT)) (-3748 (((-736 (-823)) $) 26 T ELT) (((-823) $) 69 T ELT)) (-3422 (((-627 $) $) 21 T ELT)) (-3423 (($) 9 T CONST)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 120 T ELT)) (-1748 (((-3 (-687) #1="failed") $ $) 98 T ELT) (((-687) $) 84 T ELT)) (-3734 (($ $) 8 T ELT) (($ $ (-687)) NIL T ELT)) (-1657 (($) 58 T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) 41 T ELT)) (-2683 (((-627 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-294 |#1|) (-10 -7 (-15 -3748 ((-823) |#1|)) (-15 -1748 ((-687) |#1|)) (-15 -1663 ((-83) |#1|)) (-15 -1657 (|#1|)) (-15 -2684 ((-3 (-1164 |#1|) #1="failed") (-625 |#1|))) (-15 -2683 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1|)) (-15 -3423 (|#1|) -3928) (-15 -3422 ((-627 |#1|) |#1|)) (-15 -1748 ((-3 (-687) #1#) |#1| |#1|)) (-15 -3748 ((-736 (-823)) |#1|)) (-15 -2683 ((-627 |#1|) |#1|)) (-15 -2689 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)))) (-295)) (T -294)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) 110 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3117 (((-687)) 120 T ELT)) (-3700 (($) 22 T CONST)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2975 (($) 123 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-2814 (($) 108 T ELT)) (-1663 (((-83) $) 107 T ELT)) (-1747 (($ $) 94 T ELT) (($ $ (-687)) 93 T ELT)) (-3699 (((-83) $) 86 T ELT)) (-3748 (((-736 (-823)) $) 96 T ELT) (((-823) $) 105 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3422 (((-627 $) $) 119 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1992 (((-823) $) 122 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 85 T ELT)) (-3423 (($) 118 T CONST)) (-2382 (($ (-823)) 121 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) 111 T ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-1748 (((-3 (-687) "failed") $ $) 95 T ELT) (((-687) $) 106 T ELT)) (-3734 (($ $) 117 T ELT) (($ $ (-687)) 115 T ELT)) (-1657 (($) 109 T ELT)) (-2684 (((-3 (-1164 $) "failed") (-625 $)) 112 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT)) (-2683 (((-627 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $) 116 T ELT) (($ $ (-687)) 114 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 80 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) +((-1999 (*1 *2) (-12 (-4 *3 (-308)) (-5 *2 (-1169 *1)) (-4 *1 (-276 *3)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-824)) (-4 *4 (-308)) (-5 *2 (-1169 *1)) (-4 *1 (-276 *4)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1169 *3)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-276 *4)) (-4 *4 (-308)) (-5 *2 (-626 *4)))) (-1780 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-308)) (-4 *1 (-276 *3)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1075 *3)))) (-3169 (*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1075 *3)))) (-3912 (*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-824)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-824)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) (-2001 (*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-4 *4 (-314)) (-4 *4 (-308)) (-5 *2 (-1075 *1)) (-4 *1 (-276 *4)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-824)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)))) (-3312 (*1 *1 *1 *2) (-12 (-5 *2 (-824)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)))) (-1617 (*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-314)) (-4 *2 (-308)))) (-2000 (*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-314)) (-4 *2 (-308)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)) (-5 *2 (-83)))) (-2396 (*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-314)) (-4 *2 (-308)))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1075 *3)) (-4 *3 (-314)) (-4 *1 (-276 *3)) (-4 *3 (-308)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)) (-5 *2 (-1075 *3)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)) (-5 *2 (-1075 *3)))) (-1614 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)) (-5 *2 (-1075 *3))))) +(-13 (-1188 |t#1|) (-944 |t#1|) (-10 -8 (-15 -1999 ((-1169 $))) (-15 -1999 ((-1169 $) (-824))) (-15 -3208 ((-1169 |t#1|) $)) (-15 -3208 ((-626 |t#1|) (-1169 $))) (-15 -1780 ($ (-1169 |t#1|))) (-15 -2001 ((-1075 |t#1|) $)) (-15 -3169 ((-1075 |t#1|))) (-15 -3912 ((-824))) (-15 -3930 ((-824) $)) (-15 -3116 (|t#1| $)) (-15 -3312 (|t#1| $)) (IF (|has| |t#1| (-314)) (PROGN (-6 (-295)) (-15 -2001 ((-1075 $) $ (-824))) (-15 -3116 ($ $ (-824))) (-15 -3312 ($ $ (-824))) (-15 -1617 ($)) (-15 -2000 ($)) (-15 -1998 ((-83) $)) (-15 -2396 ($)) (-15 -1616 ($ $ (-1075 |t#1|))) (-15 -1615 ((-1075 |t#1|) $)) (-15 -1614 ((-1075 |t#1|) $)) (-15 -1614 ((-3 (-1075 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-314)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-184 $) |has| |#1| (-314)) ((-188) |has| |#1| (-314)) ((-187) |has| |#1| (-314)) ((-198) . T) ((-242) . T) ((-254) . T) ((-1188 |#1|) . T) ((-308) . T) ((-339) OR (|has| |#1| (-314)) (|has| |#1| (-116))) ((-314) |has| |#1| (-314)) ((-295) |has| |#1| (-314)) ((-386) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 |#1|) . T) ((-578 $) . T) ((-650 (-344 (-479))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-826) . T) ((-944 |#1|) . T) ((-957 (-344 (-479))) . T) ((-957 |#1|) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 |#1|) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1056) |has| |#1| (-314)) ((-1119) . T) ((-1124) . T) ((-1177 |#1|) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-1618 (((-83) $) 13 T ELT)) (-3620 (($ |#1|) 10 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3616 (($ |#1|) 12 T ELT)) (-3928 (((-766) $) 19 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2223 ((|#1| $) 14 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 21 T ELT))) +(((-277 |#1|) (-13 (-750) (-10 -8 (-15 -3620 ($ |#1|)) (-15 -3616 ($ |#1|)) (-15 -1618 ((-83) $)) (-15 -2223 (|#1| $)))) (-750)) (T -277)) +((-3620 (*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-750)))) (-3616 (*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-750)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-277 *3)) (-4 *3 (-750)))) (-2223 (*1 *2 *1) (-12 (-5 *1 (-277 *2)) (-4 *2 (-750))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1619 (((-440) $) 20 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1620 (((-863 (-688)) $) 18 T ELT)) (-1622 (((-206) $) 7 T ELT)) (-3928 (((-766) $) 26 T ELT)) (-2193 (((-863 (-156 (-110))) $) 16 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1621 (((-579 (-776 (-1085) (-688))) $) 12 T ELT)) (-3041 (((-83) $ $) 22 T ELT))) +(((-278) (-13 (-1006) (-10 -8 (-15 -1622 ((-206) $)) (-15 -1621 ((-579 (-776 (-1085) (-688))) $)) (-15 -1620 ((-863 (-688)) $)) (-15 -2193 ((-863 (-156 (-110))) $)) (-15 -1619 ((-440) $))))) (T -278)) +((-1622 (*1 *2 *1) (-12 (-5 *2 (-206)) (-5 *1 (-278)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-579 (-776 (-1085) (-688)))) (-5 *1 (-278)))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-863 (-688))) (-5 *1 (-278)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-863 (-156 (-110)))) (-5 *1 (-278)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-278))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3824 (($ $) 34 T ELT)) (-1625 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1623 (((-1169 |#4|) $) 133 T ELT)) (-1957 (((-350 |#2| (-344 |#2|) |#3| |#4|) $) 32 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (((-3 |#4| #1#) $) 37 T ELT)) (-1624 (((-1169 |#4|) $) 125 T ELT)) (-1626 (($ (-350 |#2| (-344 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-479)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3417 (((-2 (|:| -2323 (-350 |#2| (-344 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3928 (((-766) $) 18 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 15 T CONST)) (-3041 (((-83) $ $) 21 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 26 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 24 T ELT))) +(((-279 |#1| |#2| |#3| |#4|) (-13 (-282 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1624 ((-1169 |#4|) $)) (-15 -1623 ((-1169 |#4|) $)))) (-308) (-1145 |#1|) (-1145 (-344 |#2|)) (-287 |#1| |#2| |#3|)) (T -279)) +((-1624 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-1169 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5)))) (-1623 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-1169 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5))))) +((-3940 (((-279 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-279 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-280 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3940 ((-279 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-279 |#1| |#2| |#3| |#4|)))) (-308) (-1145 |#1|) (-1145 (-344 |#2|)) (-287 |#1| |#2| |#3|) (-308) (-1145 |#5|) (-1145 (-344 |#6|)) (-287 |#5| |#6| |#7|)) (T -280)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-279 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *9 (-308)) (-4 *10 (-1145 *9)) (-4 *11 (-1145 (-344 *10))) (-5 *2 (-279 *9 *10 *11 *12)) (-5 *1 (-280 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-287 *9 *10 *11))))) +((-1625 (((-83) $) 14 T ELT))) +(((-281 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1625 ((-83) |#1|))) (-282 |#2| |#3| |#4| |#5|) (-308) (-1145 |#2|) (-1145 (-344 |#3|)) (-287 |#2| |#3| |#4|)) (T -281)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3824 (($ $) 34 T ELT)) (-1625 (((-83) $) 33 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1957 (((-350 |#2| (-344 |#2|) |#3| |#4|) $) 40 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2396 (((-3 |#4| "failed") $) 32 T ELT)) (-1626 (($ (-350 |#2| (-344 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-479)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3417 (((-2 (|:| -2323 (-350 |#2| (-344 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT))) +(((-282 |#1| |#2| |#3| |#4|) (-111) (-308) (-1145 |t#1|) (-1145 (-344 |t#2|)) (-287 |t#1| |t#2| |t#3|)) (T -282)) +((-1957 (*1 *2 *1) (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-350 *4 (-344 *4) *5 *6)))) (-1626 (*1 *1 *2) (-12 (-5 *2 (-350 *4 (-344 *4) *5 *6)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 *3 *4 *5)) (-4 *3 (-308)) (-4 *1 (-282 *3 *4 *5 *6)))) (-1626 (*1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-4 *1 (-282 *3 *4 *5 *2)) (-4 *2 (-287 *3 *4 *5)))) (-1626 (*1 *1 *2 *2) (-12 (-4 *2 (-308)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-344 *3))) (-4 *1 (-282 *2 *3 *4 *5)) (-4 *5 (-287 *2 *3 *4)))) (-1626 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-479)) (-4 *2 (-308)) (-4 *4 (-1145 *2)) (-4 *5 (-1145 (-344 *4))) (-4 *1 (-282 *2 *4 *5 *6)) (-4 *6 (-287 *2 *4 *5)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-2 (|:| -2323 (-350 *4 (-344 *4) *5 *6)) (|:| |principalPart| *6))))) (-3824 (*1 *1 *1) (-12 (-4 *1 (-282 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-344 *3))) (-4 *5 (-287 *2 *3 *4)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-83)))) (-2396 (*1 *2 *1) (|partial| -12 (-4 *1 (-282 *3 *4 *5 *2)) (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-4 *2 (-287 *3 *4 *5)))) (-1626 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-308)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-344 *3))) (-4 *1 (-282 *4 *3 *5 *2)) (-4 *2 (-287 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1957 ((-350 |t#2| (-344 |t#2|) |t#3| |t#4|) $)) (-15 -1626 ($ (-350 |t#2| (-344 |t#2|) |t#3| |t#4|))) (-15 -1626 ($ |t#4|)) (-15 -1626 ($ |t#1| |t#1|)) (-15 -1626 ($ |t#1| |t#1| (-479))) (-15 -3417 ((-2 (|:| -2323 (-350 |t#2| (-344 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3824 ($ $)) (-15 -1625 ((-83) $)) (-15 -2396 ((-3 |t#4| "failed") $)) (-15 -1626 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-1006) . T) ((-1119) . T)) +((-3750 (($ $ (-1080) |#2|) NIL T ELT) (($ $ (-579 (-1080)) (-579 |#2|)) 20 T ELT) (($ $ (-579 (-245 |#2|))) 15 T ELT) (($ $ (-245 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL T ELT)) (-3782 (($ $ |#2|) 11 T ELT))) +(((-283 |#1| |#2|) (-10 -7 (-15 -3782 (|#1| |#1| |#2|)) (-15 -3750 (|#1| |#1| (-579 |#2|) (-579 |#2|))) (-15 -3750 (|#1| |#1| |#2| |#2|)) (-15 -3750 (|#1| |#1| (-245 |#2|))) (-15 -3750 (|#1| |#1| (-579 (-245 |#2|)))) (-15 -3750 (|#1| |#1| (-579 (-1080)) (-579 |#2|))) (-15 -3750 (|#1| |#1| (-1080) |#2|))) (-284 |#2|) (-1006)) (T -283)) +NIL +((-3940 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3750 (($ $ (-1080) |#1|) 17 (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) 16 (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-579 (-245 |#1|))) 15 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 14 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 12 (|has| |#1| (-256 |#1|)) ELT)) (-3782 (($ $ |#1|) 11 (|has| |#1| (-238 |#1| |#1|)) ELT))) +(((-284 |#1|) (-111) (-1006)) (T -284)) +((-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1006))))) +(-13 (-10 -8 (-15 -3940 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-238 |t#1| |t#1|)) (-6 (-238 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-256 |t#1|)) (-6 (-256 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-448 (-1080) |t#1|)) (-6 (-448 (-1080) |t#1|)) |%noBranch|))) +(((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-448 (-1080) |#1|) |has| |#1| (-448 (-1080) |#1|)) ((-448 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-1119) |has| |#1| (-238 |#1| |#1|))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 (((-811 |#1|) $) NIL T ELT) (($ $ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-811 |#1|) #1#) $) NIL T ELT)) (-3140 (((-811 |#1|) $) NIL T ELT)) (-1780 (($ (-1169 (-811 |#1|))) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1668 (((-83) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT) (($ $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1998 (((-83) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3116 (((-811 |#1|) $) NIL T ELT) (($ $ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 (-811 |#1|)) $) NIL T ELT) (((-1075 $) $ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1997 (((-824) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1615 (((-1075 (-811 |#1|)) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1614 (((-1075 (-811 |#1|)) $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-3 (-1075 (-811 |#1|)) #1#) $ $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1616 (($ $ (-1075 (-811 |#1|))) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-811 |#1|) (-314)) CONST)) (-2387 (($ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) NIL T ELT) (((-824)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-3 (-688) #1#) $ $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| (-811 |#1|) (-314)) ELT) (($ $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-3169 (((-1075 (-811 |#1|))) NIL T ELT)) (-1662 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1617 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3208 (((-1169 (-811 |#1|)) $) NIL T ELT) (((-626 (-811 |#1|)) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-811 |#1|)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-628 $) $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT) (((-1169 $) (-824)) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3910 (($ $) NIL (|has| (-811 |#1|) (-314)) ELT) (($ $ (-688)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| (-811 |#1|) (-314)) ELT) (($ $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT) (($ $ (-811 |#1|)) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ (-811 |#1|)) NIL T ELT) (($ (-811 |#1|) $) NIL T ELT))) +(((-285 |#1| |#2|) (-276 (-811 |#1|)) (-824) (-824)) (T -285)) +NIL +((-1635 (((-2 (|:| |num| (-1169 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1780 (($ (-1169 (-344 |#3|)) (-1169 $)) NIL T ELT) (($ (-1169 (-344 |#3|))) NIL T ELT) (($ (-1169 |#3|) |#3|) 172 T ELT)) (-1640 (((-1169 $) (-1169 $)) 156 T ELT)) (-1627 (((-579 (-579 |#2|))) 126 T ELT)) (-1652 (((-83) |#2| |#2|) 76 T ELT)) (-3485 (($ $) 148 T ELT)) (-3359 (((-688)) 171 T ELT)) (-1641 (((-1169 $) (-1169 $)) 219 T ELT)) (-1628 (((-579 (-851 |#2|)) (-1080)) 115 T ELT)) (-1644 (((-83) $) 168 T ELT)) (-1643 (((-83) $) 27 T ELT) (((-83) $ |#2|) 31 T ELT) (((-83) $ |#3|) 223 T ELT)) (-1630 (((-3 |#3| #1="failed")) 52 T ELT)) (-1654 (((-688)) 183 T ELT)) (-3782 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1631 (((-3 |#3| #1#)) 71 T ELT)) (-3740 (($ $ (-1 (-344 |#3|) (-344 |#3|))) NIL T ELT) (($ $ (-1 (-344 |#3|) (-344 |#3|)) (-688)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $) NIL T ELT)) (-1642 (((-1169 $) (-1169 $)) 162 T ELT)) (-1629 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1653 (((-83)) 34 T ELT))) +(((-286 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3740 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -1627 ((-579 (-579 |#2|)))) (-15 -1628 ((-579 (-851 |#2|)) (-1080))) (-15 -1629 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1630 ((-3 |#3| #1="failed"))) (-15 -1631 ((-3 |#3| #1#))) (-15 -3782 (|#2| |#1| |#2| |#2|)) (-15 -3485 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1643 ((-83) |#1| |#3|)) (-15 -1643 ((-83) |#1| |#2|)) (-15 -1780 (|#1| (-1169 |#3|) |#3|)) (-15 -1635 ((-2 (|:| |num| (-1169 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1640 ((-1169 |#1|) (-1169 |#1|))) (-15 -1641 ((-1169 |#1|) (-1169 |#1|))) (-15 -1642 ((-1169 |#1|) (-1169 |#1|))) (-15 -1643 ((-83) |#1|)) (-15 -1644 ((-83) |#1|)) (-15 -1652 ((-83) |#2| |#2|)) (-15 -1653 ((-83))) (-15 -1654 ((-688))) (-15 -3359 ((-688))) (-15 -3740 (|#1| |#1| (-1 (-344 |#3|) (-344 |#3|)) (-688))) (-15 -3740 (|#1| |#1| (-1 (-344 |#3|) (-344 |#3|)))) (-15 -1780 (|#1| (-1169 (-344 |#3|)))) (-15 -1780 (|#1| (-1169 (-344 |#3|)) (-1169 |#1|)))) (-287 |#2| |#3| |#4|) (-1124) (-1145 |#2|) (-1145 (-344 |#3|))) (T -286)) +((-3359 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-5 *2 (-688)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) (-1654 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-5 *2 (-688)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) (-1653 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-5 *2 (-83)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) (-1652 (*1 *2 *3 *3) (-12 (-4 *3 (-1124)) (-4 *5 (-1145 *3)) (-4 *6 (-1145 (-344 *5))) (-5 *2 (-83)) (-5 *1 (-286 *4 *3 *5 *6)) (-4 *4 (-287 *3 *5 *6)))) (-1631 (*1 *2) (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1145 (-344 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) (-1630 (*1 *2) (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1145 (-344 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-4 *5 (-1124)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-5 *2 (-579 (-851 *5))) (-5 *1 (-286 *4 *5 *6 *7)) (-4 *4 (-287 *5 *6 *7)))) (-1627 (*1 *2) (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-5 *2 (-579 (-579 *4))) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1635 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 111 (|has| (-344 |#2|) (-308)) ELT)) (-2050 (($ $) 112 (|has| (-344 |#2|) (-308)) ELT)) (-2048 (((-83) $) 114 (|has| (-344 |#2|) (-308)) ELT)) (-1770 (((-626 (-344 |#2|)) (-1169 $)) 58 T ELT) (((-626 (-344 |#2|))) 74 T ELT)) (-3312 (((-344 |#2|) $) 64 T ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) 164 (|has| (-344 |#2|) (-295)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 131 (|has| (-344 |#2|) (-308)) ELT)) (-3953 (((-342 $) $) 132 (|has| (-344 |#2|) (-308)) ELT)) (-1596 (((-83) $ $) 122 (|has| (-344 |#2|) (-308)) ELT)) (-3120 (((-688)) 105 (|has| (-344 |#2|) (-314)) ELT)) (-1649 (((-83)) 239 T ELT)) (-1648 (((-83) |#1|) 238 T ELT) (((-83) |#2|) 237 T ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 (-479) #1="failed") $) 191 (|has| (-344 |#2|) (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) 189 (|has| (-344 |#2|) (-944 (-344 (-479)))) ELT) (((-3 (-344 |#2|) #1#) $) 186 T ELT)) (-3140 (((-479) $) 190 (|has| (-344 |#2|) (-944 (-479))) ELT) (((-344 (-479)) $) 188 (|has| (-344 |#2|) (-944 (-344 (-479)))) ELT) (((-344 |#2|) $) 187 T ELT)) (-1780 (($ (-1169 (-344 |#2|)) (-1169 $)) 60 T ELT) (($ (-1169 (-344 |#2|))) 77 T ELT) (($ (-1169 |#2|) |#2|) 221 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-344 |#2|) (-295)) ELT)) (-2549 (($ $ $) 126 (|has| (-344 |#2|) (-308)) ELT)) (-1769 (((-626 (-344 |#2|)) $ (-1169 $)) 65 T ELT) (((-626 (-344 |#2|)) $) 72 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 183 (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 182 (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-344 |#2|))) (|:| |vec| (-1169 (-344 |#2|)))) (-626 $) (-1169 $)) 181 T ELT) (((-626 (-344 |#2|)) (-626 $)) 180 T ELT)) (-1640 (((-1169 $) (-1169 $)) 227 T ELT)) (-3824 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-344 |#3|)) 172 (|has| (-344 |#2|) (-308)) ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-1627 (((-579 (-579 |#1|))) 208 (|has| |#1| (-314)) ELT)) (-1652 (((-83) |#1| |#1|) 243 T ELT)) (-3093 (((-824)) 66 T ELT)) (-2979 (($) 108 (|has| (-344 |#2|) (-314)) ELT)) (-1647 (((-83)) 236 T ELT)) (-1646 (((-83) |#1|) 235 T ELT) (((-83) |#2|) 234 T ELT)) (-2548 (($ $ $) 125 (|has| (-344 |#2|) (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 120 (|has| (-344 |#2|) (-308)) ELT)) (-3485 (($ $) 214 T ELT)) (-2818 (($) 166 (|has| (-344 |#2|) (-295)) ELT)) (-1668 (((-83) $) 167 (|has| (-344 |#2|) (-295)) ELT)) (-1752 (($ $ (-688)) 158 (|has| (-344 |#2|) (-295)) ELT) (($ $) 157 (|has| (-344 |#2|) (-295)) ELT)) (-3705 (((-83) $) 133 (|has| (-344 |#2|) (-308)) ELT)) (-3754 (((-824) $) 169 (|has| (-344 |#2|) (-295)) ELT) (((-737 (-824)) $) 155 (|has| (-344 |#2|) (-295)) ELT)) (-2397 (((-83) $) 40 T ELT)) (-3359 (((-688)) 246 T ELT)) (-1641 (((-1169 $) (-1169 $)) 228 T ELT)) (-3116 (((-344 |#2|) $) 63 T ELT)) (-1628 (((-579 (-851 |#1|)) (-1080)) 209 (|has| |#1| (-308)) ELT)) (-3427 (((-628 $) $) 159 (|has| (-344 |#2|) (-295)) ELT)) (-1593 (((-3 (-579 $) #2="failed") (-579 $) $) 129 (|has| (-344 |#2|) (-308)) ELT)) (-2001 ((|#3| $) 56 (|has| (-344 |#2|) (-308)) ELT)) (-1997 (((-824) $) 107 (|has| (-344 |#2|) (-314)) ELT)) (-3064 ((|#3| $) 173 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 185 (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 184 (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-344 |#2|))) (|:| |vec| (-1169 (-344 |#2|)))) (-1169 $) $) 179 T ELT) (((-626 (-344 |#2|)) (-1169 $)) 178 T ELT)) (-1879 (($ (-579 $)) 118 (|has| (-344 |#2|) (-308)) ELT) (($ $ $) 117 (|has| (-344 |#2|) (-308)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1636 (((-626 (-344 |#2|))) 223 T ELT)) (-1638 (((-626 (-344 |#2|))) 225 T ELT)) (-2469 (($ $) 134 (|has| (-344 |#2|) (-308)) ELT)) (-1633 (($ (-1169 |#2|) |#2|) 219 T ELT)) (-1637 (((-626 (-344 |#2|))) 224 T ELT)) (-1639 (((-626 (-344 |#2|))) 226 T ELT)) (-1632 (((-2 (|:| |num| (-626 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1634 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1645 (((-1169 $)) 232 T ELT)) (-3900 (((-1169 $)) 233 T ELT)) (-1644 (((-83) $) 231 T ELT)) (-1643 (((-83) $) 230 T ELT) (((-83) $ |#1|) 217 T ELT) (((-83) $ |#2|) 216 T ELT)) (-3428 (($) 160 (|has| (-344 |#2|) (-295)) CONST)) (-2387 (($ (-824)) 106 (|has| (-344 |#2|) (-314)) ELT)) (-1630 (((-3 |#2| "failed")) 211 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1654 (((-688)) 245 T ELT)) (-2396 (($) 177 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 119 (|has| (-344 |#2|) (-308)) ELT)) (-3128 (($ (-579 $)) 116 (|has| (-344 |#2|) (-308)) ELT) (($ $ $) 115 (|has| (-344 |#2|) (-308)) ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) 163 (|has| (-344 |#2|) (-295)) ELT)) (-3714 (((-342 $) $) 130 (|has| (-344 |#2|) (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-344 |#2|) (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 127 (|has| (-344 |#2|) (-308)) ELT)) (-3448 (((-3 $ "failed") $ $) 110 (|has| (-344 |#2|) (-308)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 121 (|has| (-344 |#2|) (-308)) ELT)) (-1595 (((-688) $) 123 (|has| (-344 |#2|) (-308)) ELT)) (-3782 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1631 (((-3 |#2| "failed")) 212 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 124 (|has| (-344 |#2|) (-308)) ELT)) (-3739 (((-344 |#2|) (-1169 $)) 59 T ELT) (((-344 |#2|)) 73 T ELT)) (-1753 (((-688) $) 168 (|has| (-344 |#2|) (-295)) ELT) (((-3 (-688) "failed") $ $) 156 (|has| (-344 |#2|) (-295)) ELT)) (-3740 (($ $ (-1 (-344 |#2|) (-344 |#2|))) 142 (|has| (-344 |#2|) (-308)) ELT) (($ $ (-1 (-344 |#2|) (-344 |#2|)) (-688)) 141 (|has| (-344 |#2|) (-308)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-579 (-1080)) (-579 (-688))) 147 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-2547 (|has| (-344 |#2|) (-805 (-1080))) (|has| (-344 |#2|) (-308)))) ELT) (($ $ (-1080) (-688)) 146 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-2547 (|has| (-344 |#2|) (-805 (-1080))) (|has| (-344 |#2|) (-308)))) ELT) (($ $ (-579 (-1080))) 145 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-2547 (|has| (-344 |#2|) (-805 (-1080))) (|has| (-344 |#2|) (-308)))) ELT) (($ $ (-1080)) 143 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-2547 (|has| (-344 |#2|) (-805 (-1080))) (|has| (-344 |#2|) (-308)))) ELT) (($ $ (-688)) 153 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-187))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-188))) (-2547 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT) (($ $) 151 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-187))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-188))) (-2547 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT)) (-2395 (((-626 (-344 |#2|)) (-1169 $) (-1 (-344 |#2|) (-344 |#2|))) 171 (|has| (-344 |#2|) (-308)) ELT)) (-3169 ((|#3|) 176 T ELT)) (-1662 (($) 165 (|has| (-344 |#2|) (-295)) ELT)) (-3208 (((-1169 (-344 |#2|)) $ (-1169 $)) 62 T ELT) (((-626 (-344 |#2|)) (-1169 $) (-1169 $)) 61 T ELT) (((-1169 (-344 |#2|)) $) 79 T ELT) (((-626 (-344 |#2|)) (-1169 $)) 78 T ELT)) (-3954 (((-1169 (-344 |#2|)) $) 76 T ELT) (($ (-1169 (-344 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-2688 (((-3 (-1169 $) "failed") (-626 $)) 162 (|has| (-344 |#2|) (-295)) ELT)) (-1642 (((-1169 $) (-1169 $)) 229 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 |#2|)) 49 T ELT) (($ (-344 (-479))) 104 (OR (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-944 (-344 (-479))))) ELT) (($ $) 109 (|has| (-344 |#2|) (-308)) ELT)) (-2687 (($ $) 161 (|has| (-344 |#2|) (-295)) ELT) (((-628 $) $) 55 (|has| (-344 |#2|) (-116)) ELT)) (-2434 ((|#3| $) 57 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1651 (((-83)) 242 T ELT)) (-1650 (((-83) |#1|) 241 T ELT) (((-83) |#2|) 240 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-1999 (((-1169 $)) 80 T ELT)) (-2049 (((-83) $ $) 113 (|has| (-344 |#2|) (-308)) ELT)) (-1629 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1653 (((-83)) 244 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1 (-344 |#2|) (-344 |#2|))) 140 (|has| (-344 |#2|) (-308)) ELT) (($ $ (-1 (-344 |#2|) (-344 |#2|)) (-688)) 139 (|has| (-344 |#2|) (-308)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 150 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-2547 (|has| (-344 |#2|) (-805 (-1080))) (|has| (-344 |#2|) (-308)))) ELT) (($ $ (-1080) (-688)) 149 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-2547 (|has| (-344 |#2|) (-805 (-1080))) (|has| (-344 |#2|) (-308)))) ELT) (($ $ (-579 (-1080))) 148 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-2547 (|has| (-344 |#2|) (-805 (-1080))) (|has| (-344 |#2|) (-308)))) ELT) (($ $ (-1080)) 144 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-2547 (|has| (-344 |#2|) (-805 (-1080))) (|has| (-344 |#2|) (-308)))) ELT) (($ $ (-688)) 154 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-187))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-188))) (-2547 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT) (($ $) 152 (OR (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-187))) (-2547 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-188))) (-2547 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 138 (|has| (-344 |#2|) (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 135 (|has| (-344 |#2|) (-308)) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 |#2|)) 51 T ELT) (($ (-344 |#2|) $) 50 T ELT) (($ (-344 (-479)) $) 137 (|has| (-344 |#2|) (-308)) ELT) (($ $ (-344 (-479))) 136 (|has| (-344 |#2|) (-308)) ELT))) +(((-287 |#1| |#2| |#3|) (-111) (-1124) (-1145 |t#1|) (-1145 (-344 |t#2|))) (T -287)) +((-3359 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-688)))) (-1654 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-688)))) (-1653 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1652 (*1 *2 *3 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1651 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1650 (*1 *2 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1650 (*1 *2 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-344 *3))) (-5 *2 (-83)))) (-1649 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1648 (*1 *2 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1648 (*1 *2 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-344 *3))) (-5 *2 (-83)))) (-1647 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1646 (*1 *2 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1646 (*1 *2 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-344 *3))) (-5 *2 (-83)))) (-3900 (*1 *2) (-12 (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5)))) (-1645 (*1 *2) (-12 (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))))) (-1639 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-626 (-344 *4))))) (-1638 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-626 (-344 *4))))) (-1637 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-626 (-344 *4))))) (-1636 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-626 (-344 *4))))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-2 (|:| |num| (-1169 *4)) (|:| |den| *4))))) (-1780 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1145 *4)) (-4 *4 (-1124)) (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1145 (-344 *3))))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-2 (|:| |num| (-1169 *4)) (|:| |den| *4))))) (-1633 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1145 *4)) (-4 *4 (-1124)) (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1145 (-344 *3))))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-5 *2 (-2 (|:| |num| (-626 *5)) (|:| |den| *5))))) (-1643 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) (-1643 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-344 *3))) (-5 *2 (-83)))) (-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))))) (-3485 (*1 *1 *1) (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-344 *3))))) (-3782 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-344 *3))))) (-1631 (*1 *2) (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1124)) (-4 *4 (-1145 (-344 *2))) (-4 *2 (-1145 *3)))) (-1630 (*1 *2) (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1124)) (-4 *4 (-1145 (-344 *2))) (-4 *2 (-1145 *3)))) (-1629 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-1124)) (-4 *6 (-1145 (-344 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-287 *4 *5 *6)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-4 *4 (-308)) (-5 *2 (-579 (-851 *4))))) (-1627 (*1 *2) (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-4 *3 (-314)) (-5 *2 (-579 (-579 *3)))))) +(-13 (-657 (-344 |t#2|) |t#3|) (-10 -8 (-15 -3359 ((-688))) (-15 -1654 ((-688))) (-15 -1653 ((-83))) (-15 -1652 ((-83) |t#1| |t#1|)) (-15 -1651 ((-83))) (-15 -1650 ((-83) |t#1|)) (-15 -1650 ((-83) |t#2|)) (-15 -1649 ((-83))) (-15 -1648 ((-83) |t#1|)) (-15 -1648 ((-83) |t#2|)) (-15 -1647 ((-83))) (-15 -1646 ((-83) |t#1|)) (-15 -1646 ((-83) |t#2|)) (-15 -3900 ((-1169 $))) (-15 -1645 ((-1169 $))) (-15 -1644 ((-83) $)) (-15 -1643 ((-83) $)) (-15 -1642 ((-1169 $) (-1169 $))) (-15 -1641 ((-1169 $) (-1169 $))) (-15 -1640 ((-1169 $) (-1169 $))) (-15 -1639 ((-626 (-344 |t#2|)))) (-15 -1638 ((-626 (-344 |t#2|)))) (-15 -1637 ((-626 (-344 |t#2|)))) (-15 -1636 ((-626 (-344 |t#2|)))) (-15 -1635 ((-2 (|:| |num| (-1169 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1780 ($ (-1169 |t#2|) |t#2|)) (-15 -1634 ((-2 (|:| |num| (-1169 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1633 ($ (-1169 |t#2|) |t#2|)) (-15 -1632 ((-2 (|:| |num| (-626 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1643 ((-83) $ |t#1|)) (-15 -1643 ((-83) $ |t#2|)) (-15 -3740 ($ $ (-1 |t#2| |t#2|))) (-15 -3485 ($ $)) (-15 -3782 (|t#1| $ |t#1| |t#1|)) (-15 -1631 ((-3 |t#2| "failed"))) (-15 -1630 ((-3 |t#2| "failed"))) (-15 -1629 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-308)) (-15 -1628 ((-579 (-851 |t#1|)) (-1080))) |%noBranch|) (IF (|has| |t#1| (-314)) (-15 -1627 ((-579 (-579 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-38 (-344 |#2|)) . T) ((-38 $) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-80 (-344 |#2|) (-344 |#2|)) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-116))) ((-118) |has| (-344 |#2|) (-118)) ((-551 (-344 (-479))) OR (|has| (-344 |#2|) (-944 (-344 (-479)))) (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-551 (-344 |#2|)) . T) ((-551 (-479)) . T) ((-551 $) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-548 (-766)) . T) ((-144) . T) ((-549 |#3|) . T) ((-184 $) OR (|has| (-344 |#2|) (-295)) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308)))) ((-182 (-344 |#2|)) |has| (-344 |#2|) (-308)) ((-188) OR (|has| (-344 |#2|) (-295)) (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308)))) ((-187) OR (|has| (-344 |#2|) (-295)) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308)))) ((-222 (-344 |#2|)) |has| (-344 |#2|) (-308)) ((-198) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-242) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-254) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-308) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-339) |has| (-344 |#2|) (-295)) ((-314) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-314))) ((-295) |has| (-344 |#2|) (-295)) ((-316 (-344 |#2|) |#3|) . T) ((-347 (-344 |#2|) |#3|) . T) ((-323 (-344 |#2|)) . T) ((-349 (-344 |#2|)) . T) ((-386) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-490) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-584 (-344 (-479))) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-584 (-344 |#2|)) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-344 (-479))) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-586 (-344 |#2|)) . T) ((-586 (-479)) |has| (-344 |#2|) (-576 (-479))) ((-586 $) . T) ((-578 (-344 (-479))) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-578 (-344 |#2|)) . T) ((-578 $) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-576 (-344 |#2|)) . T) ((-576 (-479)) |has| (-344 |#2|) (-576 (-479))) ((-650 (-344 (-479))) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-650 (-344 |#2|)) . T) ((-650 $) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-657 (-344 |#2|) |#3|) . T) ((-659) . T) ((-800 $ (-1080)) OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080))))) ((-803 (-1080)) -12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) ((-805 (-1080)) OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080))))) ((-826) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-944 (-344 (-479))) |has| (-344 |#2|) (-944 (-344 (-479)))) ((-944 (-344 |#2|)) . T) ((-944 (-479)) |has| (-344 |#2|) (-944 (-479))) ((-957 (-344 (-479))) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-957 (-344 |#2|)) . T) ((-957 $) . T) ((-962 (-344 (-479))) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308))) ((-962 (-344 |#2|)) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1056) |has| (-344 |#2|) (-295)) ((-1119) . T) ((-1124) OR (|has| (-344 |#2|) (-295)) (|has| (-344 |#2|) (-308)))) +((-3940 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-288 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3940 (|#8| (-1 |#5| |#1|) |#4|))) (-1124) (-1145 |#1|) (-1145 (-344 |#2|)) (-287 |#1| |#2| |#3|) (-1124) (-1145 |#5|) (-1145 (-344 |#6|)) (-287 |#5| |#6| |#7|)) (T -288)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1124)) (-4 *8 (-1124)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-4 *9 (-1145 *8)) (-4 *2 (-287 *8 *9 *10)) (-5 *1 (-288 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-287 *5 *6 *7)) (-4 *10 (-1145 (-344 *9)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 (((-811 |#1|) $) NIL T ELT) (($ $ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-811 |#1|) #1#) $) NIL T ELT)) (-3140 (((-811 |#1|) $) NIL T ELT)) (-1780 (($ (-1169 (-811 |#1|))) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1668 (((-83) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT) (($ $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1998 (((-83) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3116 (((-811 |#1|) $) NIL T ELT) (($ $ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 (-811 |#1|)) $) NIL T ELT) (((-1075 $) $ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1997 (((-824) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1615 (((-1075 (-811 |#1|)) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1614 (((-1075 (-811 |#1|)) $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-3 (-1075 (-811 |#1|)) #1#) $ $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1616 (($ $ (-1075 (-811 |#1|))) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-811 |#1|) (-314)) CONST)) (-2387 (($ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1655 (((-863 (-1024))) NIL T ELT)) (-2396 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) NIL T ELT) (((-824)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-3 (-688) #1#) $ $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| (-811 |#1|) (-314)) ELT) (($ $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-3169 (((-1075 (-811 |#1|))) NIL T ELT)) (-1662 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1617 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3208 (((-1169 (-811 |#1|)) $) NIL T ELT) (((-626 (-811 |#1|)) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-811 |#1|)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-628 $) $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT) (((-1169 $) (-824)) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3910 (($ $) NIL (|has| (-811 |#1|) (-314)) ELT) (($ $ (-688)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| (-811 |#1|) (-314)) ELT) (($ $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT) (($ $ (-811 |#1|)) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ (-811 |#1|)) NIL T ELT) (($ (-811 |#1|) $) NIL T ELT))) +(((-289 |#1| |#2|) (-13 (-276 (-811 |#1|)) (-10 -7 (-15 -1655 ((-863 (-1024)))))) (-824) (-824)) (T -289)) +((-1655 (*1 *2) (-12 (-5 *2 (-863 (-1024))) (-5 *1 (-289 *3 *4)) (-14 *3 (-824)) (-14 *4 (-824))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 58 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT) (($ $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) 56 (|has| |#1| (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| |#1| (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) 139 T ELT)) (-3140 ((|#1| $) 111 T ELT)) (-1780 (($ (-1169 |#1|)) 128 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) 122 (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) 155 (|has| |#1| (-314)) ELT)) (-1668 (((-83) $) 65 (|has| |#1| (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) 60 (|has| |#1| (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-2397 (((-83) $) 62 T ELT)) (-2000 (($) 157 (|has| |#1| (-314)) ELT)) (-1998 (((-83) $) NIL (|has| |#1| (-314)) ELT)) (-3116 ((|#1| $) NIL T ELT) (($ $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 |#1|) $) 115 T ELT) (((-1075 $) $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1997 (((-824) $) 165 (|has| |#1| (-314)) ELT)) (-1615 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT)) (-1614 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-1075 |#1|) #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-1616 (($ $ (-1075 |#1|)) NIL (|has| |#1| (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 172 T ELT)) (-3428 (($) NIL (|has| |#1| (-314)) CONST)) (-2387 (($ (-824)) 94 (|has| |#1| (-314)) ELT)) (-3913 (((-83) $) 142 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1655 (((-863 (-1024))) 57 T ELT)) (-2396 (($) 153 (|has| |#1| (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) 117 (|has| |#1| (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) 88 T ELT) (((-824)) 89 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) 156 (|has| |#1| (-314)) ELT) (((-3 (-688) #1#) $ $) 149 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-3169 (((-1075 |#1|)) 120 T ELT)) (-1662 (($) 154 (|has| |#1| (-314)) ELT)) (-1617 (($) 162 (|has| |#1| (-314)) ELT)) (-3208 (((-1169 |#1|) $) 76 T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| |#1| (-314)) ELT)) (-3928 (((-766) $) 168 T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2687 (($ $) NIL (|has| |#1| (-314)) ELT) (((-628 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3110 (((-688)) 150 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) 141 T ELT) (((-1169 $) (-824)) 96 T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) 66 T CONST)) (-2651 (($) 101 T CONST)) (-3910 (($ $) 105 (|has| |#1| (-314)) ELT) (($ $ (-688)) NIL (|has| |#1| (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3041 (((-83) $ $) 64 T ELT)) (-3931 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3819 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 84 T ELT)) (** (($ $ (-824)) 174 T ELT) (($ $ (-688)) 175 T ELT) (($ $ (-479)) 173 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT))) +(((-290 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1655 ((-863 (-1024)))))) (-295) (-1075 |#1|)) (T -290)) +((-1655 (*1 *2) (-12 (-5 *2 (-863 (-1024))) (-5 *1 (-290 *3 *4)) (-4 *3 (-295)) (-14 *4 (-1075 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT) (($ $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| |#1| (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| |#1| (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-1780 (($ (-1169 |#1|)) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) NIL (|has| |#1| (-314)) ELT)) (-1668 (((-83) $) NIL (|has| |#1| (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) NIL (|has| |#1| (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) NIL (|has| |#1| (-314)) ELT)) (-1998 (((-83) $) NIL (|has| |#1| (-314)) ELT)) (-3116 ((|#1| $) NIL T ELT) (($ $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 |#1|) $) NIL T ELT) (((-1075 $) $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1997 (((-824) $) NIL (|has| |#1| (-314)) ELT)) (-1615 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT)) (-1614 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-1075 |#1|) #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-1616 (($ $ (-1075 |#1|)) NIL (|has| |#1| (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| |#1| (-314)) CONST)) (-2387 (($ (-824)) NIL (|has| |#1| (-314)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1655 (((-863 (-1024))) NIL T ELT)) (-2396 (($) NIL (|has| |#1| (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| |#1| (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) NIL T ELT) (((-824)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-688) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-3169 (((-1075 |#1|)) NIL T ELT)) (-1662 (($) NIL (|has| |#1| (-314)) ELT)) (-1617 (($) NIL (|has| |#1| (-314)) ELT)) (-3208 (((-1169 |#1|) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| |#1| (-314)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2687 (($ $) NIL (|has| |#1| (-314)) ELT) (((-628 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT) (((-1169 $) (-824)) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3910 (($ $) NIL (|has| |#1| (-314)) ELT) (($ $ (-688)) NIL (|has| |#1| (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-291 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1655 ((-863 (-1024)))))) (-295) (-824)) (T -291)) +((-1655 (*1 *2) (-12 (-5 *2 (-863 (-1024))) (-5 *1 (-291 *3 *4)) (-4 *3 (-295)) (-14 *4 (-824))))) +((-1665 (((-688) (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024)))))) 61 T ELT)) (-1656 (((-863 (-1024)) (-1075 |#1|)) 112 T ELT)) (-1657 (((-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))) (-1075 |#1|)) 103 T ELT)) (-1658 (((-626 |#1|) (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024)))))) 113 T ELT)) (-1659 (((-3 (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))) "failed") (-824)) 13 T ELT)) (-1660 (((-3 (-1075 |#1|) (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024)))))) (-824)) 18 T ELT))) +(((-292 |#1|) (-10 -7 (-15 -1656 ((-863 (-1024)) (-1075 |#1|))) (-15 -1657 ((-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))) (-1075 |#1|))) (-15 -1658 ((-626 |#1|) (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))))) (-15 -1665 ((-688) (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))))) (-15 -1659 ((-3 (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))) "failed") (-824))) (-15 -1660 ((-3 (-1075 |#1|) (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024)))))) (-824)))) (-295)) (T -292)) +((-1660 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-3 (-1075 *4) (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024))))))) (-5 *1 (-292 *4)) (-4 *4 (-295)))) (-1659 (*1 *2 *3) (|partial| -12 (-5 *3 (-824)) (-5 *2 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) (-5 *1 (-292 *4)) (-4 *4 (-295)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) (-4 *4 (-295)) (-5 *2 (-688)) (-5 *1 (-292 *4)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) (-4 *4 (-295)) (-5 *2 (-626 *4)) (-5 *1 (-292 *4)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) (-5 *2 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) (-5 *1 (-292 *4)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) (-5 *2 (-863 (-1024))) (-5 *1 (-292 *4))))) +((-3928 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-293 |#1| |#2| |#3|) (-10 -7 (-15 -3928 (|#3| |#1|)) (-15 -3928 (|#1| |#3|))) (-276 |#2|) (-295) (-276 |#2|)) (T -293)) +((-3928 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *2 *4 *3)) (-4 *3 (-276 *4)))) (-3928 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *3 *4 *2)) (-4 *3 (-276 *4))))) +((-1668 (((-83) $) 65 T ELT)) (-3754 (((-737 (-824)) $) 26 T ELT) (((-824) $) 69 T ELT)) (-3427 (((-628 $) $) 21 T ELT)) (-3428 (($) 9 T CONST)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 120 T ELT)) (-1753 (((-3 (-688) #1="failed") $ $) 98 T ELT) (((-688) $) 84 T ELT)) (-3740 (($ $) 8 T ELT) (($ $ (-688)) NIL T ELT)) (-1662 (($) 58 T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) 41 T ELT)) (-2687 (((-628 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-294 |#1|) (-10 -7 (-15 -3754 ((-824) |#1|)) (-15 -1753 ((-688) |#1|)) (-15 -1668 ((-83) |#1|)) (-15 -1662 (|#1|)) (-15 -2688 ((-3 (-1169 |#1|) #1="failed") (-626 |#1|))) (-15 -2687 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1|)) (-15 -3428 (|#1|) -3934) (-15 -3427 ((-628 |#1|) |#1|)) (-15 -1753 ((-3 (-688) #1#) |#1| |#1|)) (-15 -3754 ((-737 (-824)) |#1|)) (-15 -2687 ((-628 |#1|) |#1|)) (-15 -2693 ((-1075 |#1|) (-1075 |#1|) (-1075 |#1|)))) (-295)) (T -294)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) 110 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3120 (((-688)) 120 T ELT)) (-3706 (($) 22 T CONST)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2979 (($) 123 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-2818 (($) 108 T ELT)) (-1668 (((-83) $) 107 T ELT)) (-1752 (($ $) 94 T ELT) (($ $ (-688)) 93 T ELT)) (-3705 (((-83) $) 86 T ELT)) (-3754 (((-737 (-824)) $) 96 T ELT) (((-824) $) 105 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3427 (((-628 $) $) 119 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 65 T ELT)) (-1997 (((-824) $) 122 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 85 T ELT)) (-3428 (($) 118 T CONST)) (-2387 (($ (-824)) 121 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) 111 T ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-1753 (((-3 (-688) "failed") $ $) 95 T ELT) (((-688) $) 106 T ELT)) (-3740 (($ $) 117 T ELT) (($ $ (-688)) 115 T ELT)) (-1662 (($) 109 T ELT)) (-2688 (((-3 (-1169 $) "failed") (-626 $)) 112 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT)) (-2687 (((-628 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $) 116 T ELT) (($ $ (-688)) 114 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 80 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT))) (((-295) (-111)) (T -295)) -((-2683 (*1 *1 *1) (-4 *1 (-295))) (-2684 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-295)) (-5 *2 (-1164 *1)))) (-1659 (*1 *2) (-12 (-4 *1 (-295)) (-5 *2 (-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-478)) (-5 *2 (-1087 (-823) (-687))))) (-1657 (*1 *1) (-4 *1 (-295))) (-2814 (*1 *1) (-4 *1 (-295))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-83)))) (-1748 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-687)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-823)))) (-1656 (*1 *2) (-12 (-4 *1 (-295)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-338) (-313) (-1052) (-188) (-10 -8 (-15 -2683 ($ $)) (-15 -2684 ((-3 (-1164 $) "failed") (-625 $))) (-15 -1659 ((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478)))))) (-15 -1658 ((-1087 (-823) (-687)) (-478))) (-15 -1657 ($)) (-15 -2814 ($)) (-15 -1663 ((-83) $)) (-15 -1748 ((-687) $)) (-15 -3748 ((-823) $)) (-15 -1656 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-116) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-184 $) . T) ((-188) . T) ((-187) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-338) . T) ((-313) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1052) . T) ((-1114) . T) ((-1119) . T)) -((-3895 (((-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) |#1|) 55 T ELT)) (-3894 (((-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))) 53 T ELT))) -(((-296 |#1| |#2| |#3|) (-10 -7 (-15 -3894 ((-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))))) (-15 -3895 ((-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) |#1|))) (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $)))) (-1140 |#1|) (-346 |#1| |#2|)) (T -296)) -((-3895 (*1 *2 *3) (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *4 (-1140 *3)) (-5 *2 (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-3894 (*1 *2) (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *4 (-1140 *3)) (-5 *2 (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1660 (((-687)) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-810 |#1|) #1#) $) NIL T ELT)) (-3137 (((-810 |#1|) $) NIL T ELT)) (-1775 (($ (-1164 (-810 |#1|))) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1663 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT) (($ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1993 (((-83) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3113 (((-810 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 (-810 |#1|)) $) NIL T ELT) (((-1070 $) $ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1992 (((-823) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1610 (((-1070 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1609 (((-1070 (-810 |#1|)) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-1070 (-810 |#1|)) #1#) $ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1611 (($ $ (-1070 (-810 |#1|))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-810 |#1|) (-313)) CONST)) (-2382 (($ (-823)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3907 (((-83) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1662 (((-1164 (-578 (-2 (|:| -3379 (-810 |#1|)) (|:| -2382 (-1020)))))) NIL T ELT)) (-1661 (((-625 (-810 |#1|))) NIL T ELT)) (-2391 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3167 (((-1070 (-810 |#1|))) NIL T ELT)) (-1657 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-1612 (($) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3205 (((-1164 (-810 |#1|)) $) NIL T ELT) (((-625 (-810 |#1|)) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-810 |#1|)) NIL T ELT)) (-2683 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (((-627 $) $) NIL (OR (|has| (-810 |#1|) (-116)) (|has| (-810 |#1|) (-313))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT) (((-1164 $) (-823)) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3904 (($ $) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| (-810 |#1|) (-313)) ELT) (($ $) NIL (|has| (-810 |#1|) (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-810 |#1|)) NIL T ELT) (($ (-810 |#1|) $) NIL T ELT))) -(((-297 |#1| |#2|) (-13 (-276 (-810 |#1|)) (-10 -7 (-15 -1662 ((-1164 (-578 (-2 (|:| -3379 (-810 |#1|)) (|:| -2382 (-1020))))))) (-15 -1661 ((-625 (-810 |#1|)))) (-15 -1660 ((-687))))) (-823) (-823)) (T -297)) -((-1662 (*1 *2) (-12 (-5 *2 (-1164 (-578 (-2 (|:| -3379 (-810 *3)) (|:| -2382 (-1020)))))) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-1661 (*1 *2) (-12 (-5 *2 (-625 (-810 *3))) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-1660 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823))))) -((-2548 (((-83) $ $) 72 T ELT)) (-3170 (((-83) $) 87 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 ((|#1| $) 105 T ELT) (($ $ (-823)) 103 (|has| |#1| (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) 168 (|has| |#1| (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1660 (((-687)) 102 T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) 185 (|has| |#1| (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) 126 T ELT)) (-3137 ((|#1| $) 104 T ELT)) (-1775 (($ (-1164 |#1|)) 70 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) 180 (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) 169 (|has| |#1| (-313)) ELT)) (-1663 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) 112 (|has| |#1| (-313)) ELT)) (-1993 (((-83) $) 198 (|has| |#1| (-313)) ELT)) (-3113 ((|#1| $) 107 T ELT) (($ $ (-823)) 106 (|has| |#1| (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 |#1|) $) 212 T ELT) (((-1070 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1992 (((-823) $) 146 (|has| |#1| (-313)) ELT)) (-1610 (((-1070 |#1|) $) 86 (|has| |#1| (-313)) ELT)) (-1609 (((-1070 |#1|) $) 83 (|has| |#1| (-313)) ELT) (((-3 (-1070 |#1|) #1#) $ $) 95 (|has| |#1| (-313)) ELT)) (-1611 (($ $ (-1070 |#1|)) 82 (|has| |#1| (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 216 T ELT)) (-3423 (($) NIL (|has| |#1| (-313)) CONST)) (-2382 (($ (-823)) 148 (|has| |#1| (-313)) ELT)) (-3907 (((-83) $) 122 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1662 (((-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020)))))) 96 T ELT)) (-1661 (((-625 |#1|)) 100 T ELT)) (-2391 (($) 109 (|has| |#1| (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) 171 (|has| |#1| (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) NIL T ELT) (((-823)) 172 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) 74 T ELT)) (-3167 (((-1070 |#1|)) 173 T ELT)) (-1657 (($) 145 (|has| |#1| (-313)) ELT)) (-1612 (($) NIL (|has| |#1| (-313)) ELT)) (-3205 (((-1164 |#1|) $) 120 T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3922 (((-765) $) 138 T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2683 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3107 (((-687)) 178 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) 195 T ELT) (((-1164 $) (-823)) 115 T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) 184 T CONST)) (-2647 (($) 159 T CONST)) (-3904 (($ $) 121 (|has| |#1| (-313)) ELT) (($ $ (-687)) 113 (|has| |#1| (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 206 T ELT)) (-3925 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3813 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3815 (($ $ $) 202 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 151 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) -(((-298 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1662 ((-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))))) (-15 -1661 ((-625 |#1|))) (-15 -1660 ((-687))))) (-295) (-3 (-1070 |#1|) (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))))) (T -298)) -((-1662 (*1 *2) (-12 (-5 *2 (-1164 (-578 (-2 (|:| -3379 *3) (|:| -2382 (-1020)))))) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1070 *3) *2)))) (-1661 (*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1070 *3) (-1164 (-578 (-2 (|:| -3379 *3) (|:| -2382 (-1020))))))))) (-1660 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1070 *3) (-1164 (-578 (-2 (|:| -3379 *3) (|:| -2382 (-1020)))))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| |#1| (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1660 (((-687)) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-1775 (($ (-1164 |#1|)) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) NIL (|has| |#1| (-313)) ELT)) (-1663 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) NIL (|has| |#1| (-313)) ELT)) (-1993 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-3113 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 |#1|) $) NIL T ELT) (((-1070 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1992 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-1610 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1609 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1070 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1611 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| |#1| (-313)) CONST)) (-2382 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3907 (((-83) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1662 (((-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020)))))) NIL T ELT)) (-1661 (((-625 |#1|)) NIL T ELT)) (-2391 (($) NIL (|has| |#1| (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| |#1| (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3167 (((-1070 |#1|)) NIL T ELT)) (-1657 (($) NIL (|has| |#1| (-313)) ELT)) (-1612 (($) NIL (|has| |#1| (-313)) ELT)) (-3205 (((-1164 |#1|) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2683 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT) (((-1164 $) (-823)) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3904 (($ $) NIL (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-299 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1662 ((-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))))) (-15 -1661 ((-625 |#1|))) (-15 -1660 ((-687))))) (-295) (-823)) (T -299)) -((-1662 (*1 *2) (-12 (-5 *2 (-1164 (-578 (-2 (|:| -3379 *3) (|:| -2382 (-1020)))))) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823)))) (-1661 (*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823)))) (-1660 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) 130 (|has| |#1| (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) 156 (|has| |#1| (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) 104 T ELT)) (-3137 ((|#1| $) 101 T ELT)) (-1775 (($ (-1164 |#1|)) 96 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) 93 (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) 52 (|has| |#1| (-313)) ELT)) (-1663 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) 131 (|has| |#1| (-313)) ELT)) (-1993 (((-83) $) 85 (|has| |#1| (-313)) ELT)) (-3113 ((|#1| $) 48 T ELT) (($ $ (-823)) 53 (|has| |#1| (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 |#1|) $) 76 T ELT) (((-1070 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1992 (((-823) $) 108 (|has| |#1| (-313)) ELT)) (-1610 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1609 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1070 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1611 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| |#1| (-313)) CONST)) (-2382 (($ (-823)) 106 (|has| |#1| (-313)) ELT)) (-3907 (((-83) $) 158 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($) 45 (|has| |#1| (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) 125 (|has| |#1| (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) NIL T ELT) (((-823)) 155 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) 68 T ELT)) (-3167 (((-1070 |#1|)) 99 T ELT)) (-1657 (($) 136 (|has| |#1| (-313)) ELT)) (-1612 (($) NIL (|has| |#1| (-313)) ELT)) (-3205 (((-1164 |#1|) $) 64 T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3922 (((-765) $) 154 T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2683 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3107 (((-687)) 160 T CONST)) (-1249 (((-83) $ $) 162 T ELT)) (-1994 (((-1164 $)) 120 T ELT) (((-1164 $) (-823)) 59 T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) 122 T CONST)) (-2647 (($) 40 T CONST)) (-3904 (($ $) 79 (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 118 T ELT)) (-3925 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3813 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3815 (($ $ $) 114 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 54 T ELT) (($ $ (-478)) 139 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) -(((-300 |#1| |#2|) (-276 |#1|) (-295) (-1070 |#1|)) (T -300)) -NIL -((-1678 (((-862 (-1070 |#1|)) (-1070 |#1|)) 49 T ELT)) (-2975 (((-1070 |#1|) (-823) (-823)) 159 T ELT) (((-1070 |#1|) (-823)) 155 T ELT)) (-1663 (((-83) (-1070 |#1|)) 110 T ELT)) (-1665 (((-823) (-823)) 85 T ELT)) (-1666 (((-823) (-823)) 94 T ELT)) (-1664 (((-823) (-823)) 83 T ELT)) (-1993 (((-83) (-1070 |#1|)) 114 T ELT)) (-1673 (((-3 (-1070 |#1|) #1="failed") (-1070 |#1|)) 139 T ELT)) (-1676 (((-3 (-1070 |#1|) #1#) (-1070 |#1|)) 144 T ELT)) (-1675 (((-3 (-1070 |#1|) #1#) (-1070 |#1|)) 143 T ELT)) (-1674 (((-3 (-1070 |#1|) #1#) (-1070 |#1|)) 142 T ELT)) (-1672 (((-3 (-1070 |#1|) #1#) (-1070 |#1|)) 134 T ELT)) (-1677 (((-1070 |#1|) (-1070 |#1|)) 71 T ELT)) (-1668 (((-1070 |#1|) (-823)) 149 T ELT)) (-1671 (((-1070 |#1|) (-823)) 152 T ELT)) (-1670 (((-1070 |#1|) (-823)) 151 T ELT)) (-1669 (((-1070 |#1|) (-823)) 150 T ELT)) (-1667 (((-1070 |#1|) (-823)) 147 T ELT))) -(((-301 |#1|) (-10 -7 (-15 -1663 ((-83) (-1070 |#1|))) (-15 -1993 ((-83) (-1070 |#1|))) (-15 -1664 ((-823) (-823))) (-15 -1665 ((-823) (-823))) (-15 -1666 ((-823) (-823))) (-15 -1667 ((-1070 |#1|) (-823))) (-15 -1668 ((-1070 |#1|) (-823))) (-15 -1669 ((-1070 |#1|) (-823))) (-15 -1670 ((-1070 |#1|) (-823))) (-15 -1671 ((-1070 |#1|) (-823))) (-15 -1672 ((-3 (-1070 |#1|) #1="failed") (-1070 |#1|))) (-15 -1673 ((-3 (-1070 |#1|) #1#) (-1070 |#1|))) (-15 -1674 ((-3 (-1070 |#1|) #1#) (-1070 |#1|))) (-15 -1675 ((-3 (-1070 |#1|) #1#) (-1070 |#1|))) (-15 -1676 ((-3 (-1070 |#1|) #1#) (-1070 |#1|))) (-15 -2975 ((-1070 |#1|) (-823))) (-15 -2975 ((-1070 |#1|) (-823) (-823))) (-15 -1677 ((-1070 |#1|) (-1070 |#1|))) (-15 -1678 ((-862 (-1070 |#1|)) (-1070 |#1|)))) (-295)) (T -301)) -((-1678 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-862 (-1070 *4))) (-5 *1 (-301 *4)) (-5 *3 (-1070 *4)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-2975 (*1 *2 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1676 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1675 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1674 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1673 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1672 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1666 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295)))) (-1665 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295)))) (-1664 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4))))) -((-1679 ((|#1| (-1070 |#2|)) 60 T ELT))) -(((-302 |#1| |#2|) (-10 -7 (-15 -1679 (|#1| (-1070 |#2|)))) (-13 (-338) (-10 -7 (-15 -3922 (|#1| |#2|)) (-15 -1992 ((-823) |#1|)) (-15 -1994 ((-1164 |#1|) (-823))) (-15 -3904 (|#1| |#1|)))) (-295)) (T -302)) -((-1679 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) (-4 *2 (-13 (-338) (-10 -7 (-15 -3922 (*2 *4)) (-15 -1992 ((-823) *2)) (-15 -1994 ((-1164 *2) (-823))) (-15 -3904 (*2 *2))))) (-5 *1 (-302 *2 *4))))) -((-2685 (((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|) 40 T ELT))) -(((-303 |#1| |#2| |#3|) (-10 -7 (-15 -2685 ((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|))) (-295) (-1140 |#1|) (-1140 |#2|)) (T -303)) -((-2685 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-295)) (-5 *1 (-303 *4 *5 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| |#1| (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-1775 (($ (-1164 |#1|)) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) NIL (|has| |#1| (-313)) ELT)) (-1663 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) NIL (|has| |#1| (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) NIL (|has| |#1| (-313)) ELT)) (-1993 (((-83) $) NIL (|has| |#1| (-313)) ELT)) (-3113 ((|#1| $) NIL T ELT) (($ $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 |#1|) $) NIL T ELT) (((-1070 $) $ (-823)) NIL (|has| |#1| (-313)) ELT)) (-1992 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-1610 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT)) (-1609 (((-1070 |#1|) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-1070 |#1|) #1#) $ $) NIL (|has| |#1| (-313)) ELT)) (-1611 (($ $ (-1070 |#1|)) NIL (|has| |#1| (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| |#1| (-313)) CONST)) (-2382 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3907 (((-83) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($) NIL (|has| |#1| (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| |#1| (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) NIL (|has| |#1| (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3167 (((-1070 |#1|)) NIL T ELT)) (-1657 (($) NIL (|has| |#1| (-313)) ELT)) (-1612 (($) NIL (|has| |#1| (-313)) ELT)) (-3205 (((-1164 |#1|) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| |#1| (-313)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2683 (($ $) NIL (|has| |#1| (-313)) ELT) (((-627 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT) (((-1164 $) (-823)) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3904 (($ $) NIL (|has| |#1| (-313)) ELT) (($ $ (-687)) NIL (|has| |#1| (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| |#1| (-313)) ELT) (($ $) NIL (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-304 |#1| |#2|) (-276 |#1|) (-295) (-823)) (T -304)) -NIL -((-2231 (((-83) (-578 (-850 |#1|))) 41 T ELT)) (-2233 (((-578 (-850 |#1|)) (-578 (-850 |#1|))) 53 T ELT)) (-2232 (((-3 (-578 (-850 |#1|)) "failed") (-578 (-850 |#1|))) 48 T ELT))) -(((-305 |#1| |#2|) (-10 -7 (-15 -2231 ((-83) (-578 (-850 |#1|)))) (-15 -2232 ((-3 (-578 (-850 |#1|)) "failed") (-578 (-850 |#1|)))) (-15 -2233 ((-578 (-850 |#1|)) (-578 (-850 |#1|))))) (-385) (-578 (-1075))) (T -305)) -((-2233 (*1 *2 *2) (-12 (-5 *2 (-578 (-850 *3))) (-4 *3 (-385)) (-5 *1 (-305 *3 *4)) (-14 *4 (-578 (-1075))))) (-2232 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-850 *3))) (-4 *3 (-385)) (-5 *1 (-305 *3 *4)) (-14 *4 (-578 (-1075))))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-385)) (-5 *2 (-83)) (-5 *1 (-305 *4 *5)) (-14 *5 (-578 (-1075)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2392 (((-83) $) 17 T ELT)) (-2281 ((|#1| $ (-478)) NIL T ELT)) (-2282 (((-478) $ (-478)) NIL T ELT)) (-2272 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2273 (($ (-1 (-478) (-478)) $) 26 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 28 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1762 (((-578 (-2 (|:| |gen| |#1|) (|:| -3919 (-478)))) $) 30 T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2415 (($ $ $) NIL T ELT)) (-3922 (((-765) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2647 (($) 7 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ |#1| (-478)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-306 |#1|) (-13 (-406) (-943 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-478))) (-15 -3117 ((-687) $)) (-15 -2282 ((-478) $ (-478))) (-15 -2281 (|#1| $ (-478))) (-15 -2273 ($ (-1 (-478) (-478)) $)) (-15 -2272 ($ (-1 |#1| |#1|) $)) (-15 -1762 ((-578 (-2 (|:| |gen| |#1|) (|:| -3919 (-478)))) $)))) (-1003)) (T -306)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-306 *2)) (-4 *2 (-1003)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-306 *3)) (-4 *3 (-1003)))) (-2282 (*1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-306 *3)) (-4 *3 (-1003)))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-306 *2)) (-4 *2 (-1003)))) (-2273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-478) (-478))) (-5 *1 (-306 *3)) (-4 *3 (-1003)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-306 *3)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 (-478))))) (-5 *1 (-306 *3)) (-4 *3 (-1003))))) -((-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 13 T ELT)) (-2045 (($ $) 14 T ELT)) (-3947 (((-341 $) $) 31 T ELT)) (-3699 (((-83) $) 27 T ELT)) (-2464 (($ $) 19 T ELT)) (-3125 (($ $ $) 22 T ELT) (($ (-578 $)) NIL T ELT)) (-3708 (((-341 $) $) 32 T ELT)) (-3443 (((-3 $ "failed") $ $) 21 T ELT)) (-1590 (((-687) $) 25 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 36 T ELT)) (-2044 (((-83) $ $) 16 T ELT)) (-3925 (($ $ $) 34 T ELT))) -(((-307 |#1|) (-10 -7 (-15 -3925 (|#1| |#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -3699 ((-83) |#1|)) (-15 -3947 ((-341 |#1|) |#1|)) (-15 -3708 ((-341 |#1|) |#1|)) (-15 -2860 ((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|)) (-15 -1590 ((-687) |#1|)) (-15 -3125 (|#1| (-578 |#1|))) (-15 -3125 (|#1| |#1| |#1|)) (-15 -2044 ((-83) |#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -2046 ((-2 (|:| -1755 |#1|) (|:| -3958 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3443 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3700 (($) 22 T CONST)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-3699 (((-83) $) 86 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 85 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 80 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) +((-2687 (*1 *1 *1) (-4 *1 (-295))) (-2688 (*1 *2 *3) (|partial| -12 (-5 *3 (-626 *1)) (-4 *1 (-295)) (-5 *2 (-1169 *1)))) (-1664 (*1 *2) (-12 (-4 *1 (-295)) (-5 *2 (-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-479)) (-5 *2 (-1092 (-824) (-688))))) (-1662 (*1 *1) (-4 *1 (-295))) (-2818 (*1 *1) (-4 *1 (-295))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-83)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-688)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-824)))) (-1661 (*1 *2) (-12 (-4 *1 (-295)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-339) (-314) (-1056) (-188) (-10 -8 (-15 -2687 ($ $)) (-15 -2688 ((-3 (-1169 $) "failed") (-626 $))) (-15 -1664 ((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479)))))) (-15 -1663 ((-1092 (-824) (-688)) (-479))) (-15 -1662 ($)) (-15 -2818 ($)) (-15 -1668 ((-83) $)) (-15 -1753 ((-688) $)) (-15 -3754 ((-824) $)) (-15 -1661 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 $ $) . T) ((-102) . T) ((-116) . T) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-184 $) . T) ((-188) . T) ((-187) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-339) . T) ((-314) . T) ((-386) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 $) . T) ((-650 (-344 (-479))) . T) ((-650 $) . T) ((-659) . T) ((-826) . T) ((-957 (-344 (-479))) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1056) . T) ((-1119) . T) ((-1124) . T)) +((-3901 (((-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) |#1|) 55 T ELT)) (-3900 (((-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|)))) 53 T ELT))) +(((-296 |#1| |#2| |#3|) (-10 -7 (-15 -3900 ((-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))))) (-15 -3901 ((-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) |#1|))) (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $)))) (-1145 |#1|) (-347 |#1| |#2|)) (T -296)) +((-3901 (*1 *2 *3) (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *4 (-1145 *3)) (-5 *2 (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-347 *3 *4)))) (-3900 (*1 *2) (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *4 (-1145 *3)) (-5 *2 (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-347 *3 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 (((-811 |#1|) $) NIL T ELT) (($ $ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1665 (((-688)) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-811 |#1|) #1#) $) NIL T ELT)) (-3140 (((-811 |#1|) $) NIL T ELT)) (-1780 (($ (-1169 (-811 |#1|))) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1668 (((-83) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT) (($ $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1998 (((-83) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3116 (((-811 |#1|) $) NIL T ELT) (($ $ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 (-811 |#1|)) $) NIL T ELT) (((-1075 $) $ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1997 (((-824) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1615 (((-1075 (-811 |#1|)) $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1614 (((-1075 (-811 |#1|)) $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-3 (-1075 (-811 |#1|)) #1#) $ $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1616 (($ $ (-1075 (-811 |#1|))) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-811 |#1|) (-314)) CONST)) (-2387 (($ (-824)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1667 (((-1169 (-579 (-2 (|:| -3384 (-811 |#1|)) (|:| -2387 (-1024)))))) NIL T ELT)) (-1666 (((-626 (-811 |#1|))) NIL T ELT)) (-2396 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) NIL T ELT) (((-824)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-3 (-688) #1#) $ $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| (-811 |#1|) (-314)) ELT) (($ $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-3169 (((-1075 (-811 |#1|))) NIL T ELT)) (-1662 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-1617 (($) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3208 (((-1169 (-811 |#1|)) $) NIL T ELT) (((-626 (-811 |#1|)) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-811 |#1|)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-811 |#1|) (-314)) ELT) (((-628 $) $) NIL (OR (|has| (-811 |#1|) (-116)) (|has| (-811 |#1|) (-314))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT) (((-1169 $) (-824)) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3910 (($ $) NIL (|has| (-811 |#1|) (-314)) ELT) (($ $ (-688)) NIL (|has| (-811 |#1|) (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| (-811 |#1|) (-314)) ELT) (($ $) NIL (|has| (-811 |#1|) (-314)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT) (($ $ (-811 |#1|)) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ (-811 |#1|)) NIL T ELT) (($ (-811 |#1|) $) NIL T ELT))) +(((-297 |#1| |#2|) (-13 (-276 (-811 |#1|)) (-10 -7 (-15 -1667 ((-1169 (-579 (-2 (|:| -3384 (-811 |#1|)) (|:| -2387 (-1024))))))) (-15 -1666 ((-626 (-811 |#1|)))) (-15 -1665 ((-688))))) (-824) (-824)) (T -297)) +((-1667 (*1 *2) (-12 (-5 *2 (-1169 (-579 (-2 (|:| -3384 (-811 *3)) (|:| -2387 (-1024)))))) (-5 *1 (-297 *3 *4)) (-14 *3 (-824)) (-14 *4 (-824)))) (-1666 (*1 *2) (-12 (-5 *2 (-626 (-811 *3))) (-5 *1 (-297 *3 *4)) (-14 *3 (-824)) (-14 *4 (-824)))) (-1665 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-297 *3 *4)) (-14 *3 (-824)) (-14 *4 (-824))))) +((-2553 (((-83) $ $) 72 T ELT)) (-3172 (((-83) $) 87 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 ((|#1| $) 105 T ELT) (($ $ (-824)) 103 (|has| |#1| (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) 168 (|has| |#1| (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1665 (((-688)) 102 T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) 185 (|has| |#1| (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) 126 T ELT)) (-3140 ((|#1| $) 104 T ELT)) (-1780 (($ (-1169 |#1|)) 70 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) 180 (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) 169 (|has| |#1| (-314)) ELT)) (-1668 (((-83) $) NIL (|has| |#1| (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) NIL (|has| |#1| (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) 112 (|has| |#1| (-314)) ELT)) (-1998 (((-83) $) 198 (|has| |#1| (-314)) ELT)) (-3116 ((|#1| $) 107 T ELT) (($ $ (-824)) 106 (|has| |#1| (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 |#1|) $) 212 T ELT) (((-1075 $) $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1997 (((-824) $) 146 (|has| |#1| (-314)) ELT)) (-1615 (((-1075 |#1|) $) 86 (|has| |#1| (-314)) ELT)) (-1614 (((-1075 |#1|) $) 83 (|has| |#1| (-314)) ELT) (((-3 (-1075 |#1|) #1#) $ $) 95 (|has| |#1| (-314)) ELT)) (-1616 (($ $ (-1075 |#1|)) 82 (|has| |#1| (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 216 T ELT)) (-3428 (($) NIL (|has| |#1| (-314)) CONST)) (-2387 (($ (-824)) 148 (|has| |#1| (-314)) ELT)) (-3913 (((-83) $) 122 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1667 (((-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024)))))) 96 T ELT)) (-1666 (((-626 |#1|)) 100 T ELT)) (-2396 (($) 109 (|has| |#1| (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) 171 (|has| |#1| (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) NIL T ELT) (((-824)) 172 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-688) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) 74 T ELT)) (-3169 (((-1075 |#1|)) 173 T ELT)) (-1662 (($) 145 (|has| |#1| (-314)) ELT)) (-1617 (($) NIL (|has| |#1| (-314)) ELT)) (-3208 (((-1169 |#1|) $) 120 T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| |#1| (-314)) ELT)) (-3928 (((-766) $) 138 T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2687 (($ $) NIL (|has| |#1| (-314)) ELT) (((-628 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3110 (((-688)) 178 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) 195 T ELT) (((-1169 $) (-824)) 115 T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) 184 T CONST)) (-2651 (($) 159 T CONST)) (-3910 (($ $) 121 (|has| |#1| (-314)) ELT) (($ $ (-688)) 113 (|has| |#1| (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3041 (((-83) $ $) 206 T ELT)) (-3931 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3819 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3821 (($ $ $) 202 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 151 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT))) +(((-298 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1667 ((-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))))) (-15 -1666 ((-626 |#1|))) (-15 -1665 ((-688))))) (-295) (-3 (-1075 |#1|) (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))))) (T -298)) +((-1667 (*1 *2) (-12 (-5 *2 (-1169 (-579 (-2 (|:| -3384 *3) (|:| -2387 (-1024)))))) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1075 *3) *2)))) (-1666 (*1 *2) (-12 (-5 *2 (-626 *3)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1075 *3) (-1169 (-579 (-2 (|:| -3384 *3) (|:| -2387 (-1024))))))))) (-1665 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1075 *3) (-1169 (-579 (-2 (|:| -3384 *3) (|:| -2387 (-1024)))))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT) (($ $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| |#1| (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1665 (((-688)) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| |#1| (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-1780 (($ (-1169 |#1|)) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) NIL (|has| |#1| (-314)) ELT)) (-1668 (((-83) $) NIL (|has| |#1| (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) NIL (|has| |#1| (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) NIL (|has| |#1| (-314)) ELT)) (-1998 (((-83) $) NIL (|has| |#1| (-314)) ELT)) (-3116 ((|#1| $) NIL T ELT) (($ $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 |#1|) $) NIL T ELT) (((-1075 $) $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1997 (((-824) $) NIL (|has| |#1| (-314)) ELT)) (-1615 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT)) (-1614 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-1075 |#1|) #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-1616 (($ $ (-1075 |#1|)) NIL (|has| |#1| (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| |#1| (-314)) CONST)) (-2387 (($ (-824)) NIL (|has| |#1| (-314)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1667 (((-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024)))))) NIL T ELT)) (-1666 (((-626 |#1|)) NIL T ELT)) (-2396 (($) NIL (|has| |#1| (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| |#1| (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) NIL T ELT) (((-824)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-688) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-3169 (((-1075 |#1|)) NIL T ELT)) (-1662 (($) NIL (|has| |#1| (-314)) ELT)) (-1617 (($) NIL (|has| |#1| (-314)) ELT)) (-3208 (((-1169 |#1|) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| |#1| (-314)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2687 (($ $) NIL (|has| |#1| (-314)) ELT) (((-628 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT) (((-1169 $) (-824)) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3910 (($ $) NIL (|has| |#1| (-314)) ELT) (($ $ (-688)) NIL (|has| |#1| (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-299 |#1| |#2|) (-13 (-276 |#1|) (-10 -7 (-15 -1667 ((-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))))) (-15 -1666 ((-626 |#1|))) (-15 -1665 ((-688))))) (-295) (-824)) (T -299)) +((-1667 (*1 *2) (-12 (-5 *2 (-1169 (-579 (-2 (|:| -3384 *3) (|:| -2387 (-1024)))))) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-824)))) (-1666 (*1 *2) (-12 (-5 *2 (-626 *3)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-824)))) (-1665 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-824))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT) (($ $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) 130 (|has| |#1| (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) 156 (|has| |#1| (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) 104 T ELT)) (-3140 ((|#1| $) 101 T ELT)) (-1780 (($ (-1169 |#1|)) 96 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) 93 (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) 52 (|has| |#1| (-314)) ELT)) (-1668 (((-83) $) NIL (|has| |#1| (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) NIL (|has| |#1| (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) 131 (|has| |#1| (-314)) ELT)) (-1998 (((-83) $) 85 (|has| |#1| (-314)) ELT)) (-3116 ((|#1| $) 48 T ELT) (($ $ (-824)) 53 (|has| |#1| (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 |#1|) $) 76 T ELT) (((-1075 $) $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1997 (((-824) $) 108 (|has| |#1| (-314)) ELT)) (-1615 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT)) (-1614 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-1075 |#1|) #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-1616 (($ $ (-1075 |#1|)) NIL (|has| |#1| (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| |#1| (-314)) CONST)) (-2387 (($ (-824)) 106 (|has| |#1| (-314)) ELT)) (-3913 (((-83) $) 158 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($) 45 (|has| |#1| (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) 125 (|has| |#1| (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) NIL T ELT) (((-824)) 155 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-688) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) 68 T ELT)) (-3169 (((-1075 |#1|)) 99 T ELT)) (-1662 (($) 136 (|has| |#1| (-314)) ELT)) (-1617 (($) NIL (|has| |#1| (-314)) ELT)) (-3208 (((-1169 |#1|) $) 64 T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| |#1| (-314)) ELT)) (-3928 (((-766) $) 154 T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2687 (($ $) NIL (|has| |#1| (-314)) ELT) (((-628 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3110 (((-688)) 160 T CONST)) (-1254 (((-83) $ $) 162 T ELT)) (-1999 (((-1169 $)) 120 T ELT) (((-1169 $) (-824)) 59 T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) 122 T CONST)) (-2651 (($) 40 T CONST)) (-3910 (($ $) 79 (|has| |#1| (-314)) ELT) (($ $ (-688)) NIL (|has| |#1| (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3041 (((-83) $ $) 118 T ELT)) (-3931 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3819 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3821 (($ $ $) 114 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 54 T ELT) (($ $ (-479)) 139 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT))) +(((-300 |#1| |#2|) (-276 |#1|) (-295) (-1075 |#1|)) (T -300)) +NIL +((-1683 (((-863 (-1075 |#1|)) (-1075 |#1|)) 49 T ELT)) (-2979 (((-1075 |#1|) (-824) (-824)) 159 T ELT) (((-1075 |#1|) (-824)) 155 T ELT)) (-1668 (((-83) (-1075 |#1|)) 110 T ELT)) (-1670 (((-824) (-824)) 85 T ELT)) (-1671 (((-824) (-824)) 94 T ELT)) (-1669 (((-824) (-824)) 83 T ELT)) (-1998 (((-83) (-1075 |#1|)) 114 T ELT)) (-1678 (((-3 (-1075 |#1|) #1="failed") (-1075 |#1|)) 139 T ELT)) (-1681 (((-3 (-1075 |#1|) #1#) (-1075 |#1|)) 144 T ELT)) (-1680 (((-3 (-1075 |#1|) #1#) (-1075 |#1|)) 143 T ELT)) (-1679 (((-3 (-1075 |#1|) #1#) (-1075 |#1|)) 142 T ELT)) (-1677 (((-3 (-1075 |#1|) #1#) (-1075 |#1|)) 134 T ELT)) (-1682 (((-1075 |#1|) (-1075 |#1|)) 71 T ELT)) (-1673 (((-1075 |#1|) (-824)) 149 T ELT)) (-1676 (((-1075 |#1|) (-824)) 152 T ELT)) (-1675 (((-1075 |#1|) (-824)) 151 T ELT)) (-1674 (((-1075 |#1|) (-824)) 150 T ELT)) (-1672 (((-1075 |#1|) (-824)) 147 T ELT))) +(((-301 |#1|) (-10 -7 (-15 -1668 ((-83) (-1075 |#1|))) (-15 -1998 ((-83) (-1075 |#1|))) (-15 -1669 ((-824) (-824))) (-15 -1670 ((-824) (-824))) (-15 -1671 ((-824) (-824))) (-15 -1672 ((-1075 |#1|) (-824))) (-15 -1673 ((-1075 |#1|) (-824))) (-15 -1674 ((-1075 |#1|) (-824))) (-15 -1675 ((-1075 |#1|) (-824))) (-15 -1676 ((-1075 |#1|) (-824))) (-15 -1677 ((-3 (-1075 |#1|) #1="failed") (-1075 |#1|))) (-15 -1678 ((-3 (-1075 |#1|) #1#) (-1075 |#1|))) (-15 -1679 ((-3 (-1075 |#1|) #1#) (-1075 |#1|))) (-15 -1680 ((-3 (-1075 |#1|) #1#) (-1075 |#1|))) (-15 -1681 ((-3 (-1075 |#1|) #1#) (-1075 |#1|))) (-15 -2979 ((-1075 |#1|) (-824))) (-15 -2979 ((-1075 |#1|) (-824) (-824))) (-15 -1682 ((-1075 |#1|) (-1075 |#1|))) (-15 -1683 ((-863 (-1075 |#1|)) (-1075 |#1|)))) (-295)) (T -301)) +((-1683 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-863 (-1075 *4))) (-5 *1 (-301 *4)) (-5 *3 (-1075 *4)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-2979 (*1 *2 *3 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1681 (*1 *2 *2) (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1680 (*1 *2 *2) (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1679 (*1 *2 *2) (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1678 (*1 *2 *2) (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1677 (*1 *2 *2) (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) (-1671 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-301 *3)) (-4 *3 (-295)))) (-1670 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-301 *3)) (-4 *3 (-295)))) (-1669 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-301 *3)) (-4 *3 (-295)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4))))) +((-1684 ((|#1| (-1075 |#2|)) 60 T ELT))) +(((-302 |#1| |#2|) (-10 -7 (-15 -1684 (|#1| (-1075 |#2|)))) (-13 (-339) (-10 -7 (-15 -3928 (|#1| |#2|)) (-15 -1997 ((-824) |#1|)) (-15 -1999 ((-1169 |#1|) (-824))) (-15 -3910 (|#1| |#1|)))) (-295)) (T -302)) +((-1684 (*1 *2 *3) (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) (-4 *2 (-13 (-339) (-10 -7 (-15 -3928 (*2 *4)) (-15 -1997 ((-824) *2)) (-15 -1999 ((-1169 *2) (-824))) (-15 -3910 (*2 *2))))) (-5 *1 (-302 *2 *4))))) +((-2689 (((-3 (-579 |#3|) "failed") (-579 |#3|) |#3|) 40 T ELT))) +(((-303 |#1| |#2| |#3|) (-10 -7 (-15 -2689 ((-3 (-579 |#3|) "failed") (-579 |#3|) |#3|))) (-295) (-1145 |#1|) (-1145 |#2|)) (T -303)) +((-2689 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-295)) (-5 *1 (-303 *4 *5 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 ((|#1| $) NIL T ELT) (($ $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| |#1| (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| |#1| (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-1780 (($ (-1169 |#1|)) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) NIL (|has| |#1| (-314)) ELT)) (-1668 (((-83) $) NIL (|has| |#1| (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT) (($ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) NIL (|has| |#1| (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) NIL (|has| |#1| (-314)) ELT)) (-1998 (((-83) $) NIL (|has| |#1| (-314)) ELT)) (-3116 ((|#1| $) NIL T ELT) (($ $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 |#1|) $) NIL T ELT) (((-1075 $) $ (-824)) NIL (|has| |#1| (-314)) ELT)) (-1997 (((-824) $) NIL (|has| |#1| (-314)) ELT)) (-1615 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT)) (-1614 (((-1075 |#1|) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-1075 |#1|) #1#) $ $) NIL (|has| |#1| (-314)) ELT)) (-1616 (($ $ (-1075 |#1|)) NIL (|has| |#1| (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| |#1| (-314)) CONST)) (-2387 (($ (-824)) NIL (|has| |#1| (-314)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($) NIL (|has| |#1| (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| |#1| (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) NIL T ELT) (((-824)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) NIL (|has| |#1| (-314)) ELT) (((-3 (-688) #1#) $ $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-3169 (((-1075 |#1|)) NIL T ELT)) (-1662 (($) NIL (|has| |#1| (-314)) ELT)) (-1617 (($) NIL (|has| |#1| (-314)) ELT)) (-3208 (((-1169 |#1|) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| |#1| (-314)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2687 (($ $) NIL (|has| |#1| (-314)) ELT) (((-628 $) $) NIL (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT) (((-1169 $) (-824)) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3910 (($ $) NIL (|has| |#1| (-314)) ELT) (($ $ (-688)) NIL (|has| |#1| (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| |#1| (-314)) ELT) (($ $) NIL (|has| |#1| (-314)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-304 |#1| |#2|) (-276 |#1|) (-295) (-824)) (T -304)) +NIL +((-2236 (((-83) (-579 (-851 |#1|))) 41 T ELT)) (-2238 (((-579 (-851 |#1|)) (-579 (-851 |#1|))) 53 T ELT)) (-2237 (((-3 (-579 (-851 |#1|)) "failed") (-579 (-851 |#1|))) 48 T ELT))) +(((-305 |#1| |#2|) (-10 -7 (-15 -2236 ((-83) (-579 (-851 |#1|)))) (-15 -2237 ((-3 (-579 (-851 |#1|)) "failed") (-579 (-851 |#1|)))) (-15 -2238 ((-579 (-851 |#1|)) (-579 (-851 |#1|))))) (-386) (-579 (-1080))) (T -305)) +((-2238 (*1 *2 *2) (-12 (-5 *2 (-579 (-851 *3))) (-4 *3 (-386)) (-5 *1 (-305 *3 *4)) (-14 *4 (-579 (-1080))))) (-2237 (*1 *2 *2) (|partial| -12 (-5 *2 (-579 (-851 *3))) (-4 *3 (-386)) (-5 *1 (-305 *3 *4)) (-14 *4 (-579 (-1080))))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-386)) (-5 *2 (-83)) (-5 *1 (-305 *4 *5)) (-14 *5 (-579 (-1080)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2397 (((-83) $) 17 T ELT)) (-2286 ((|#1| $ (-479)) NIL T ELT)) (-2287 (((-479) $ (-479)) NIL T ELT)) (-2277 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2278 (($ (-1 (-479) (-479)) $) 26 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 28 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1767 (((-579 (-2 (|:| |gen| |#1|) (|:| -3925 (-479)))) $) 30 T ELT)) (-2994 (($ $ $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-3928 (((-766) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2651 (($) 7 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT) (($ |#1| (-479)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-306 |#1|) (-13 (-407) (-944 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-479))) (-15 -3120 ((-688) $)) (-15 -2287 ((-479) $ (-479))) (-15 -2286 (|#1| $ (-479))) (-15 -2278 ($ (-1 (-479) (-479)) $)) (-15 -2277 ($ (-1 |#1| |#1|) $)) (-15 -1767 ((-579 (-2 (|:| |gen| |#1|) (|:| -3925 (-479)))) $)))) (-1006)) (T -306)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1006)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1006)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-306 *2)) (-4 *2 (-1006)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-306 *3)) (-4 *3 (-1006)))) (-2287 (*1 *2 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-306 *3)) (-4 *3 (-1006)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *1 (-306 *2)) (-4 *2 (-1006)))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-479) (-479))) (-5 *1 (-306 *3)) (-4 *3 (-1006)))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-306 *3)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 (-479))))) (-5 *1 (-306 *3)) (-4 *3 (-1006))))) +((-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 13 T ELT)) (-2050 (($ $) 14 T ELT)) (-3953 (((-342 $) $) 31 T ELT)) (-3705 (((-83) $) 27 T ELT)) (-2469 (($ $) 19 T ELT)) (-3128 (($ $ $) 22 T ELT) (($ (-579 $)) NIL T ELT)) (-3714 (((-342 $) $) 32 T ELT)) (-3448 (((-3 $ "failed") $ $) 21 T ELT)) (-1595 (((-688) $) 25 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 36 T ELT)) (-2049 (((-83) $ $) 16 T ELT)) (-3931 (($ $ $) 34 T ELT))) +(((-307 |#1|) (-10 -7 (-15 -3931 (|#1| |#1| |#1|)) (-15 -2469 (|#1| |#1|)) (-15 -3705 ((-83) |#1|)) (-15 -3953 ((-342 |#1|) |#1|)) (-15 -3714 ((-342 |#1|) |#1|)) (-15 -2864 ((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|)) (-15 -1595 ((-688) |#1|)) (-15 -3128 (|#1| (-579 |#1|))) (-15 -3128 (|#1| |#1| |#1|)) (-15 -2049 ((-83) |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -2051 ((-2 (|:| -1760 |#1|) (|:| -3964 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3706 (($) 22 T CONST)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-3705 (((-83) $) 86 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 65 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 85 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 80 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT))) (((-308) (-111)) (T -308)) -((-3925 (*1 *1 *1 *1) (-4 *1 (-308)))) -(-13 (-254) (-1119) (-198) (-10 -8 (-15 -3925 ($ $ $)) (-6 -3969) (-6 -3963))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-1680 ((|#1| $ |#1|) 35 T ELT)) (-1684 (($ $ (-1059)) 23 T ELT)) (-3595 (((-3 |#1| "failed") $) 34 T ELT)) (-1681 ((|#1| $) 32 T ELT)) (-1685 (($ (-331)) 22 T ELT) (($ (-331) (-1059)) 21 T ELT)) (-3518 (((-331) $) 25 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1682 (((-1059) $) 26 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 20 T ELT)) (-1683 (($ $) 24 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 19 T ELT))) -(((-309 |#1|) (-13 (-310 (-331) |#1|) (-10 -8 (-15 -3595 ((-3 |#1| "failed") $)))) (-1003)) (T -309)) -((-3595 (*1 *2 *1) (|partial| -12 (-5 *1 (-309 *2)) (-4 *2 (-1003))))) -((-2548 (((-83) $ $) 7 T ELT)) (-1680 ((|#2| $ |#2|) 17 T ELT)) (-1684 (($ $ (-1059)) 22 T ELT)) (-1681 ((|#2| $) 18 T ELT)) (-1685 (($ |#1|) 24 T ELT) (($ |#1| (-1059)) 23 T ELT)) (-3518 ((|#1| $) 20 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1682 (((-1059) $) 19 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1683 (($ $) 21 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-310 |#1| |#2|) (-111) (-1003) (-1003)) (T -310)) -((-1685 (*1 *1 *2) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1685 (*1 *1 *2 *3) (-12 (-5 *3 (-1059)) (-4 *1 (-310 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) (-1684 (*1 *1 *1 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-310 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-1683 (*1 *1 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1059)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-1680 (*1 *2 *1 *2) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) -(-13 (-1003) (-10 -8 (-15 -1685 ($ |t#1|)) (-15 -1685 ($ |t#1| (-1059))) (-15 -1684 ($ $ (-1059))) (-15 -1683 ($ $)) (-15 -3518 (|t#1| $)) (-15 -1682 ((-1059) $)) (-15 -1681 (|t#2| $)) (-15 -1680 (|t#2| $ |t#2|)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-3204 (((-1164 (-625 |#2|)) (-1164 $)) 67 T ELT)) (-1771 (((-625 |#2|) (-1164 $)) 139 T ELT)) (-1710 ((|#2| $) 36 T ELT)) (-1769 (((-625 |#2|) $ (-1164 $)) 142 T ELT)) (-2386 (((-3 $ #1="failed") $) 89 T ELT)) (-1708 ((|#2| $) 39 T ELT)) (-1688 (((-1070 |#2|) $) 98 T ELT)) (-1773 ((|#2| (-1164 $)) 122 T ELT)) (-1706 (((-1070 |#2|) $) 32 T ELT)) (-1700 (((-83)) 116 T ELT)) (-1775 (($ (-1164 |#2|) (-1164 $)) 132 T ELT)) (-3444 (((-3 $ #1#) $) 93 T ELT)) (-1693 (((-83)) 111 T ELT)) (-1691 (((-83)) 106 T ELT)) (-1695 (((-83)) 58 T ELT)) (-1772 (((-625 |#2|) (-1164 $)) 137 T ELT)) (-1711 ((|#2| $) 35 T ELT)) (-1770 (((-625 |#2|) $ (-1164 $)) 141 T ELT)) (-2387 (((-3 $ #1#) $) 87 T ELT)) (-1709 ((|#2| $) 38 T ELT)) (-1689 (((-1070 |#2|) $) 97 T ELT)) (-1774 ((|#2| (-1164 $)) 120 T ELT)) (-1707 (((-1070 |#2|) $) 30 T ELT)) (-1701 (((-83)) 115 T ELT)) (-1692 (((-83)) 108 T ELT)) (-1694 (((-83)) 56 T ELT)) (-1696 (((-83)) 103 T ELT)) (-1699 (((-83)) 117 T ELT)) (-3205 (((-1164 |#2|) $ (-1164 $)) NIL T ELT) (((-625 |#2|) (-1164 $) (-1164 $)) 128 T ELT)) (-1705 (((-83)) 113 T ELT)) (-1690 (((-578 (-1164 |#2|))) 102 T ELT)) (-1703 (((-83)) 114 T ELT)) (-1704 (((-83)) 112 T ELT)) (-1702 (((-83)) 51 T ELT)) (-1698 (((-83)) 118 T ELT))) -(((-311 |#1| |#2|) (-10 -7 (-15 -1688 ((-1070 |#2|) |#1|)) (-15 -1689 ((-1070 |#2|) |#1|)) (-15 -1690 ((-578 (-1164 |#2|)))) (-15 -2386 ((-3 |#1| #1="failed") |#1|)) (-15 -2387 ((-3 |#1| #1#) |#1|)) (-15 -3444 ((-3 |#1| #1#) |#1|)) (-15 -1691 ((-83))) (-15 -1692 ((-83))) (-15 -1693 ((-83))) (-15 -1694 ((-83))) (-15 -1695 ((-83))) (-15 -1696 ((-83))) (-15 -1698 ((-83))) (-15 -1699 ((-83))) (-15 -1700 ((-83))) (-15 -1701 ((-83))) (-15 -1702 ((-83))) (-15 -1703 ((-83))) (-15 -1704 ((-83))) (-15 -1705 ((-83))) (-15 -1706 ((-1070 |#2|) |#1|)) (-15 -1707 ((-1070 |#2|) |#1|)) (-15 -1771 ((-625 |#2|) (-1164 |#1|))) (-15 -1772 ((-625 |#2|) (-1164 |#1|))) (-15 -1773 (|#2| (-1164 |#1|))) (-15 -1774 (|#2| (-1164 |#1|))) (-15 -1775 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3205 ((-625 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3205 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -1708 (|#2| |#1|)) (-15 -1709 (|#2| |#1|)) (-15 -1710 (|#2| |#1|)) (-15 -1711 (|#2| |#1|)) (-15 -1769 ((-625 |#2|) |#1| (-1164 |#1|))) (-15 -1770 ((-625 |#2|) |#1| (-1164 |#1|))) (-15 -3204 ((-1164 (-625 |#2|)) (-1164 |#1|)))) (-312 |#2|) (-144)) (T -311)) -((-1705 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1704 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1703 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1702 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1701 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1700 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1699 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1698 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1696 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1695 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1694 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1693 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1692 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1691 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1690 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-578 (-1164 *4))) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1755 (((-3 $ "failed")) 47 (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3204 (((-1164 (-625 |#1|)) (-1164 $)) 88 T ELT)) (-1712 (((-1164 $)) 91 T ELT)) (-3700 (($) 22 T CONST)) (-1889 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) "failed")) 50 (|has| |#1| (-489)) ELT)) (-1686 (((-3 $ "failed")) 48 (|has| |#1| (-489)) ELT)) (-1771 (((-625 |#1|) (-1164 $)) 75 T ELT)) (-1710 ((|#1| $) 84 T ELT)) (-1769 (((-625 |#1|) $ (-1164 $)) 86 T ELT)) (-2386 (((-3 $ "failed") $) 55 (|has| |#1| (-489)) ELT)) (-2389 (($ $ (-823)) 36 T ELT)) (-1708 ((|#1| $) 82 T ELT)) (-1688 (((-1070 |#1|) $) 52 (|has| |#1| (-489)) ELT)) (-1773 ((|#1| (-1164 $)) 77 T ELT)) (-1706 (((-1070 |#1|) $) 73 T ELT)) (-1700 (((-83)) 67 T ELT)) (-1775 (($ (-1164 |#1|) (-1164 $)) 79 T ELT)) (-3444 (((-3 $ "failed") $) 57 (|has| |#1| (-489)) ELT)) (-3090 (((-823)) 90 T ELT)) (-1697 (((-83)) 64 T ELT)) (-2413 (($ $ (-823)) 43 T ELT)) (-1693 (((-83)) 60 T ELT)) (-1691 (((-83)) 58 T ELT)) (-1695 (((-83)) 62 T ELT)) (-1890 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) "failed")) 51 (|has| |#1| (-489)) ELT)) (-1687 (((-3 $ "failed")) 49 (|has| |#1| (-489)) ELT)) (-1772 (((-625 |#1|) (-1164 $)) 76 T ELT)) (-1711 ((|#1| $) 85 T ELT)) (-1770 (((-625 |#1|) $ (-1164 $)) 87 T ELT)) (-2387 (((-3 $ "failed") $) 56 (|has| |#1| (-489)) ELT)) (-2388 (($ $ (-823)) 37 T ELT)) (-1709 ((|#1| $) 83 T ELT)) (-1689 (((-1070 |#1|) $) 53 (|has| |#1| (-489)) ELT)) (-1774 ((|#1| (-1164 $)) 78 T ELT)) (-1707 (((-1070 |#1|) $) 74 T ELT)) (-1701 (((-83)) 68 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1692 (((-83)) 59 T ELT)) (-1694 (((-83)) 61 T ELT)) (-1696 (((-83)) 63 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1699 (((-83)) 66 T ELT)) (-3205 (((-1164 |#1|) $ (-1164 $)) 81 T ELT) (((-625 |#1|) (-1164 $) (-1164 $)) 80 T ELT)) (-1875 (((-578 (-850 |#1|)) (-1164 $)) 89 T ELT)) (-2415 (($ $ $) 33 T ELT)) (-1705 (((-83)) 72 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-1690 (((-578 (-1164 |#1|))) 54 (|has| |#1| (-489)) ELT)) (-2416 (($ $ $ $) 34 T ELT)) (-1703 (((-83)) 70 T ELT)) (-2414 (($ $ $) 32 T ELT)) (-1704 (((-83)) 71 T ELT)) (-1702 (((-83)) 69 T ELT)) (-1698 (((-83)) 65 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +((-3931 (*1 *1 *1 *1) (-4 *1 (-308)))) +(-13 (-254) (-1124) (-198) (-10 -8 (-15 -3931 ($ $ $)) (-6 -3975) (-6 -3969))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-386) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 $) . T) ((-650 (-344 (-479))) . T) ((-650 $) . T) ((-659) . T) ((-826) . T) ((-957 (-344 (-479))) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-1685 ((|#1| $ |#1|) 35 T ELT)) (-1689 (($ $ (-1063)) 23 T ELT)) (-3601 (((-3 |#1| "failed") $) 34 T ELT)) (-1686 ((|#1| $) 32 T ELT)) (-1690 (($ (-332)) 22 T ELT) (($ (-332) (-1063)) 21 T ELT)) (-3524 (((-332) $) 25 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1687 (((-1063) $) 26 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 20 T ELT)) (-1688 (($ $) 24 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 19 T ELT))) +(((-309 |#1|) (-13 (-310 (-332) |#1|) (-10 -8 (-15 -3601 ((-3 |#1| "failed") $)))) (-1006)) (T -309)) +((-3601 (*1 *2 *1) (|partial| -12 (-5 *1 (-309 *2)) (-4 *2 (-1006))))) +((-2553 (((-83) $ $) 7 T ELT)) (-1685 ((|#2| $ |#2|) 17 T ELT)) (-1689 (($ $ (-1063)) 22 T ELT)) (-1686 ((|#2| $) 18 T ELT)) (-1690 (($ |#1|) 24 T ELT) (($ |#1| (-1063)) 23 T ELT)) (-3524 ((|#1| $) 20 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1687 (((-1063) $) 19 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1688 (($ $) 21 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-310 |#1| |#2|) (-111) (-1006) (-1006)) (T -310)) +((-1690 (*1 *1 *2) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-1690 (*1 *1 *2 *3) (-12 (-5 *3 (-1063)) (-4 *1 (-310 *2 *4)) (-4 *2 (-1006)) (-4 *4 (-1006)))) (-1689 (*1 *1 *1 *2) (-12 (-5 *2 (-1063)) (-4 *1 (-310 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-1688 (*1 *1 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-1063)))) (-1686 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-1685 (*1 *2 *1 *2) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) +(-13 (-1006) (-10 -8 (-15 -1690 ($ |t#1|)) (-15 -1690 ($ |t#1| (-1063))) (-15 -1689 ($ $ (-1063))) (-15 -1688 ($ $)) (-15 -3524 (|t#1| $)) (-15 -1687 ((-1063) $)) (-15 -1686 (|t#2| $)) (-15 -1685 (|t#2| $ |t#2|)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-3207 (((-1169 (-626 |#2|)) (-1169 $)) 67 T ELT)) (-1776 (((-626 |#2|) (-1169 $)) 139 T ELT)) (-1715 ((|#2| $) 36 T ELT)) (-1774 (((-626 |#2|) $ (-1169 $)) 142 T ELT)) (-2391 (((-3 $ #1="failed") $) 89 T ELT)) (-1713 ((|#2| $) 39 T ELT)) (-1693 (((-1075 |#2|) $) 98 T ELT)) (-1778 ((|#2| (-1169 $)) 122 T ELT)) (-1711 (((-1075 |#2|) $) 32 T ELT)) (-1705 (((-83)) 116 T ELT)) (-1780 (($ (-1169 |#2|) (-1169 $)) 132 T ELT)) (-3449 (((-3 $ #1#) $) 93 T ELT)) (-1698 (((-83)) 111 T ELT)) (-1696 (((-83)) 106 T ELT)) (-1700 (((-83)) 58 T ELT)) (-1777 (((-626 |#2|) (-1169 $)) 137 T ELT)) (-1716 ((|#2| $) 35 T ELT)) (-1775 (((-626 |#2|) $ (-1169 $)) 141 T ELT)) (-2392 (((-3 $ #1#) $) 87 T ELT)) (-1714 ((|#2| $) 38 T ELT)) (-1694 (((-1075 |#2|) $) 97 T ELT)) (-1779 ((|#2| (-1169 $)) 120 T ELT)) (-1712 (((-1075 |#2|) $) 30 T ELT)) (-1706 (((-83)) 115 T ELT)) (-1697 (((-83)) 108 T ELT)) (-1699 (((-83)) 56 T ELT)) (-1701 (((-83)) 103 T ELT)) (-1704 (((-83)) 117 T ELT)) (-3208 (((-1169 |#2|) $ (-1169 $)) NIL T ELT) (((-626 |#2|) (-1169 $) (-1169 $)) 128 T ELT)) (-1710 (((-83)) 113 T ELT)) (-1695 (((-579 (-1169 |#2|))) 102 T ELT)) (-1708 (((-83)) 114 T ELT)) (-1709 (((-83)) 112 T ELT)) (-1707 (((-83)) 51 T ELT)) (-1703 (((-83)) 118 T ELT))) +(((-311 |#1| |#2|) (-10 -7 (-15 -1693 ((-1075 |#2|) |#1|)) (-15 -1694 ((-1075 |#2|) |#1|)) (-15 -1695 ((-579 (-1169 |#2|)))) (-15 -2391 ((-3 |#1| #1="failed") |#1|)) (-15 -2392 ((-3 |#1| #1#) |#1|)) (-15 -3449 ((-3 |#1| #1#) |#1|)) (-15 -1696 ((-83))) (-15 -1697 ((-83))) (-15 -1698 ((-83))) (-15 -1699 ((-83))) (-15 -1700 ((-83))) (-15 -1701 ((-83))) (-15 -1703 ((-83))) (-15 -1704 ((-83))) (-15 -1705 ((-83))) (-15 -1706 ((-83))) (-15 -1707 ((-83))) (-15 -1708 ((-83))) (-15 -1709 ((-83))) (-15 -1710 ((-83))) (-15 -1711 ((-1075 |#2|) |#1|)) (-15 -1712 ((-1075 |#2|) |#1|)) (-15 -1776 ((-626 |#2|) (-1169 |#1|))) (-15 -1777 ((-626 |#2|) (-1169 |#1|))) (-15 -1778 (|#2| (-1169 |#1|))) (-15 -1779 (|#2| (-1169 |#1|))) (-15 -1780 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -3208 ((-626 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -3208 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1713 (|#2| |#1|)) (-15 -1714 (|#2| |#1|)) (-15 -1715 (|#2| |#1|)) (-15 -1716 (|#2| |#1|)) (-15 -1774 ((-626 |#2|) |#1| (-1169 |#1|))) (-15 -1775 ((-626 |#2|) |#1| (-1169 |#1|))) (-15 -3207 ((-1169 (-626 |#2|)) (-1169 |#1|)))) (-312 |#2|) (-144)) (T -311)) +((-1710 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1706 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1705 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1704 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1703 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1701 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1700 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1699 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1698 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1697 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1696 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) (-1695 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-579 (-1169 *4))) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1760 (((-3 $ "failed")) 47 (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3207 (((-1169 (-626 |#1|)) (-1169 $)) 88 T ELT)) (-1717 (((-1169 $)) 91 T ELT)) (-3706 (($) 22 T CONST)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) "failed")) 50 (|has| |#1| (-490)) ELT)) (-1691 (((-3 $ "failed")) 48 (|has| |#1| (-490)) ELT)) (-1776 (((-626 |#1|) (-1169 $)) 75 T ELT)) (-1715 ((|#1| $) 84 T ELT)) (-1774 (((-626 |#1|) $ (-1169 $)) 86 T ELT)) (-2391 (((-3 $ "failed") $) 55 (|has| |#1| (-490)) ELT)) (-2394 (($ $ (-824)) 36 T ELT)) (-1713 ((|#1| $) 82 T ELT)) (-1693 (((-1075 |#1|) $) 52 (|has| |#1| (-490)) ELT)) (-1778 ((|#1| (-1169 $)) 77 T ELT)) (-1711 (((-1075 |#1|) $) 73 T ELT)) (-1705 (((-83)) 67 T ELT)) (-1780 (($ (-1169 |#1|) (-1169 $)) 79 T ELT)) (-3449 (((-3 $ "failed") $) 57 (|has| |#1| (-490)) ELT)) (-3093 (((-824)) 90 T ELT)) (-1702 (((-83)) 64 T ELT)) (-2418 (($ $ (-824)) 43 T ELT)) (-1698 (((-83)) 60 T ELT)) (-1696 (((-83)) 58 T ELT)) (-1700 (((-83)) 62 T ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) "failed")) 51 (|has| |#1| (-490)) ELT)) (-1692 (((-3 $ "failed")) 49 (|has| |#1| (-490)) ELT)) (-1777 (((-626 |#1|) (-1169 $)) 76 T ELT)) (-1716 ((|#1| $) 85 T ELT)) (-1775 (((-626 |#1|) $ (-1169 $)) 87 T ELT)) (-2392 (((-3 $ "failed") $) 56 (|has| |#1| (-490)) ELT)) (-2393 (($ $ (-824)) 37 T ELT)) (-1714 ((|#1| $) 83 T ELT)) (-1694 (((-1075 |#1|) $) 53 (|has| |#1| (-490)) ELT)) (-1779 ((|#1| (-1169 $)) 78 T ELT)) (-1712 (((-1075 |#1|) $) 74 T ELT)) (-1706 (((-83)) 68 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1697 (((-83)) 59 T ELT)) (-1699 (((-83)) 61 T ELT)) (-1701 (((-83)) 63 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1704 (((-83)) 66 T ELT)) (-3208 (((-1169 |#1|) $ (-1169 $)) 81 T ELT) (((-626 |#1|) (-1169 $) (-1169 $)) 80 T ELT)) (-1880 (((-579 (-851 |#1|)) (-1169 $)) 89 T ELT)) (-2420 (($ $ $) 33 T ELT)) (-1710 (((-83)) 72 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-1695 (((-579 (-1169 |#1|))) 54 (|has| |#1| (-490)) ELT)) (-2421 (($ $ $ $) 34 T ELT)) (-1708 (((-83)) 70 T ELT)) (-2419 (($ $ $) 32 T ELT)) (-1709 (((-83)) 71 T ELT)) (-1707 (((-83)) 69 T ELT)) (-1703 (((-83)) 65 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 38 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) (((-312 |#1|) (-111) (-144)) (T -312)) -((-1712 (*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1164 *1)) (-4 *1 (-312 *3)))) (-3090 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-823)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-578 (-850 *4))))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-1164 (-625 *4))))) (-1770 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1769 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1710 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-3205 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-1164 *4)))) (-3205 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-144)) (-4 *1 (-312 *4)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1070 *3)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1070 *3)))) (-1705 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1704 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1703 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1702 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1701 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1700 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1699 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1698 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1697 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1696 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1695 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1694 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1693 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1692 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1691 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-3444 (*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) (-2387 (*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) (-2386 (*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) (-1690 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-578 (-1164 *3))))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-1070 *3)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-1070 *3)))) (-1890 (*1 *2) (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1994 (-578 *1)))) (-4 *1 (-312 *3)))) (-1889 (*1 *2) (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1994 (-578 *1)))) (-4 *1 (-312 *3)))) (-1687 (*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144)))) (-1686 (*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144)))) (-1755 (*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144))))) -(-13 (-676 |t#1|) (-10 -8 (-15 -1712 ((-1164 $))) (-15 -3090 ((-823))) (-15 -1875 ((-578 (-850 |t#1|)) (-1164 $))) (-15 -3204 ((-1164 (-625 |t#1|)) (-1164 $))) (-15 -1770 ((-625 |t#1|) $ (-1164 $))) (-15 -1769 ((-625 |t#1|) $ (-1164 $))) (-15 -1711 (|t#1| $)) (-15 -1710 (|t#1| $)) (-15 -1709 (|t#1| $)) (-15 -1708 (|t#1| $)) (-15 -3205 ((-1164 |t#1|) $ (-1164 $))) (-15 -3205 ((-625 |t#1|) (-1164 $) (-1164 $))) (-15 -1775 ($ (-1164 |t#1|) (-1164 $))) (-15 -1774 (|t#1| (-1164 $))) (-15 -1773 (|t#1| (-1164 $))) (-15 -1772 ((-625 |t#1|) (-1164 $))) (-15 -1771 ((-625 |t#1|) (-1164 $))) (-15 -1707 ((-1070 |t#1|) $)) (-15 -1706 ((-1070 |t#1|) $)) (-15 -1705 ((-83))) (-15 -1704 ((-83))) (-15 -1703 ((-83))) (-15 -1702 ((-83))) (-15 -1701 ((-83))) (-15 -1700 ((-83))) (-15 -1699 ((-83))) (-15 -1698 ((-83))) (-15 -1697 ((-83))) (-15 -1696 ((-83))) (-15 -1695 ((-83))) (-15 -1694 ((-83))) (-15 -1693 ((-83))) (-15 -1692 ((-83))) (-15 -1691 ((-83))) (IF (|has| |t#1| (-489)) (PROGN (-15 -3444 ((-3 $ "failed") $)) (-15 -2387 ((-3 $ "failed") $)) (-15 -2386 ((-3 $ "failed") $)) (-15 -1690 ((-578 (-1164 |t#1|)))) (-15 -1689 ((-1070 |t#1|) $)) (-15 -1688 ((-1070 |t#1|) $)) (-15 -1890 ((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) "failed"))) (-15 -1889 ((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) "failed"))) (-15 -1687 ((-3 $ "failed"))) (-15 -1686 ((-3 $ "failed"))) (-15 -1755 ((-3 $ "failed"))) (-6 -3968)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-652) . T) ((-676 |#1|) . T) ((-678) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3117 (((-687)) 20 T ELT)) (-2975 (($) 17 T ELT)) (-1992 (((-823) $) 18 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2382 (($ (-823)) 19 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-313) (-111)) (T -313)) -((-3117 (*1 *2) (-12 (-4 *1 (-313)) (-5 *2 (-687)))) (-2382 (*1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-313)))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-823)))) (-2975 (*1 *1) (-4 *1 (-313)))) -(-13 (-1003) (-10 -8 (-15 -3117 ((-687))) (-15 -2382 ($ (-823))) (-15 -1992 ((-823) $)) (-15 -2975 ($)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-1765 (((-625 |#2|) (-1164 $)) 45 T ELT)) (-1775 (($ (-1164 |#2|) (-1164 $)) 39 T ELT)) (-1764 (((-625 |#2|) $ (-1164 $)) 47 T ELT)) (-3733 ((|#2| (-1164 $)) 13 T ELT)) (-3205 (((-1164 |#2|) $ (-1164 $)) NIL T ELT) (((-625 |#2|) (-1164 $) (-1164 $)) 27 T ELT))) -(((-314 |#1| |#2| |#3|) (-10 -7 (-15 -1765 ((-625 |#2|) (-1164 |#1|))) (-15 -3733 (|#2| (-1164 |#1|))) (-15 -1775 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3205 ((-625 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3205 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -1764 ((-625 |#2|) |#1| (-1164 |#1|)))) (-315 |#2| |#3|) (-144) (-1140 |#2|)) (T -314)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1765 (((-625 |#1|) (-1164 $)) 58 T ELT)) (-3307 ((|#1| $) 64 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-1775 (($ (-1164 |#1|) (-1164 $)) 60 T ELT)) (-1764 (((-625 |#1|) $ (-1164 $)) 65 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3090 (((-823)) 66 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3113 ((|#1| $) 63 T ELT)) (-1996 ((|#2| $) 56 (|has| |#1| (-308)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3733 ((|#1| (-1164 $)) 59 T ELT)) (-3205 (((-1164 |#1|) $ (-1164 $)) 62 T ELT) (((-625 |#1|) (-1164 $) (-1164 $)) 61 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2683 (((-627 $) $) 55 (|has| |#1| (-116)) ELT)) (-2429 ((|#2| $) 57 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-315 |#1| |#2|) (-111) (-144) (-1140 |t#1|)) (T -315)) -((-3090 (*1 *2) (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) (-5 *2 (-823)))) (-1764 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-144)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-144)))) (-3205 (*1 *2 *1 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *4)))) (-3205 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)))) (-1775 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-144)) (-4 *1 (-315 *4 *5)) (-4 *5 (-1140 *4)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *2 *4)) (-4 *4 (-1140 *2)) (-4 *2 (-144)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)))) (-2429 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1140 *3)))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-144)) (-4 *3 (-308)) (-4 *2 (-1140 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3090 ((-823))) (-15 -1764 ((-625 |t#1|) $ (-1164 $))) (-15 -3307 (|t#1| $)) (-15 -3113 (|t#1| $)) (-15 -3205 ((-1164 |t#1|) $ (-1164 $))) (-15 -3205 ((-625 |t#1|) (-1164 $) (-1164 $))) (-15 -1775 ($ (-1164 |t#1|) (-1164 $))) (-15 -3733 (|t#1| (-1164 $))) (-15 -1765 ((-625 |t#1|) (-1164 $))) (-15 -2429 (|t#2| $)) (IF (|has| |t#1| (-308)) (-15 -1996 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-1715 (((-83) (-1 (-83) |#2| |#2|) $) NIL T ELT) (((-83) $) 18 T ELT)) (-1713 (($ (-1 (-83) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2890 (($ (-1 (-83) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2280 (($ $) 25 T ELT)) (-3396 (((-478) (-1 (-83) |#2|) $) NIL T ELT) (((-478) |#2| $) 11 T ELT) (((-478) |#2| $ (-478)) NIL T ELT)) (-3495 (($ (-1 (-83) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-316 |#1| |#2|) (-10 -7 (-15 -1713 (|#1| |#1|)) (-15 -1713 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -1715 ((-83) |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3396 ((-478) |#2| |#1| (-478))) (-15 -3396 ((-478) |#2| |#1|)) (-15 -3396 ((-478) (-1 (-83) |#2|) |#1|)) (-15 -1715 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -2890 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -2280 (|#1| |#1|)) (-15 -3495 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|))) (-317 |#2|) (-1114)) (T -316)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) 44 (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3972)) ELT) (($ $) 97 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3972))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-2279 (($ $) 99 (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) 109 T ELT)) (-1336 (($ $) 84 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#1| $) 83 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 55 T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) 106 T ELT) (((-478) |#1| $) 105 (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) 104 (|has| |#1| (-1003)) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) |#1|) 74 T ELT)) (-2182 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2185 (((-578 (-478)) $) 50 T ELT)) (-2186 (((-83) (-478) $) 51 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2181 (($ $ |#1|) 45 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1131 (-478))) 75 T ELT)) (-2287 (($ $ (-478)) 68 T ELT) (($ $ (-1131 (-478))) 67 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1714 (($ $ $ (-478)) 100 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 76 T ELT)) (-3778 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) 93 (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-317 |#1|) (-111) (-1114)) (T -317)) -((-3495 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1114)))) (-2280 (*1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1114)))) (-2890 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1114)))) (-1715 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *1 (-317 *4)) (-4 *4 (-1114)) (-5 *2 (-83)))) (-3396 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1114)) (-5 *2 (-478)))) (-3396 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-478)))) (-3396 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-317 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)))) (-3495 (*1 *1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1114)) (-4 *2 (-749)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1114)) (-4 *2 (-749)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-317 *3)) (-4 *3 (-1114)) (-4 *3 (-749)) (-5 *2 (-83)))) (-1714 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (|has| *1 (-6 -3972)) (-4 *1 (-317 *3)) (-4 *3 (-1114)))) (-2279 (*1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-317 *2)) (-4 *2 (-1114)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (|has| *1 (-6 -3972)) (-4 *1 (-317 *3)) (-4 *3 (-1114)))) (-1713 (*1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-317 *2)) (-4 *2 (-1114)) (-4 *2 (-749))))) -(-13 (-588 |t#1|) (-10 -8 (-6 -3971) (-15 -3495 ($ (-1 (-83) |t#1| |t#1|) $ $)) (-15 -2280 ($ $)) (-15 -2890 ($ (-1 (-83) |t#1| |t#1|) $)) (-15 -1715 ((-83) (-1 (-83) |t#1| |t#1|) $)) (-15 -3396 ((-478) (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3396 ((-478) |t#1| $)) (-15 -3396 ((-478) |t#1| $ (-478)))) |%noBranch|) (IF (|has| |t#1| (-749)) (PROGN (-6 (-749)) (-15 -3495 ($ $ $)) (-15 -2890 ($ $)) (-15 -1715 ((-83) $))) |%noBranch|) (IF (|has| $ (-6 -3972)) (PROGN (-15 -1714 ($ $ $ (-478))) (-15 -2279 ($ $)) (-15 -1713 ($ (-1 (-83) |t#1| |t#1|) $)) (IF (|has| |t#1| (-749)) (-15 -1713 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-1003) OR (|has| |#1| (-1003)) (|has| |#1| (-749))) ((-1114) . T)) -((-3817 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3818 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3934 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-318 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3818 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3817 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1114) (-317 |#1|) (-1114) (-317 |#3|)) (T -318)) -((-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1114)) (-4 *5 (-1114)) (-4 *2 (-317 *5)) (-5 *1 (-318 *6 *4 *5 *2)) (-4 *4 (-317 *6)))) (-3818 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1114)) (-4 *2 (-1114)) (-5 *1 (-318 *5 *4 *2 *6)) (-4 *4 (-317 *5)) (-4 *6 (-317 *2)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-4 *2 (-317 *6)) (-5 *1 (-318 *5 *4 *6 *2)) (-4 *4 (-317 *5))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3910 (((-578 |#1|) $) 42 T ELT)) (-3923 (($ $ (-687)) 43 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3915 (((-1189 |#1| |#2|) (-1189 |#1| |#2|) $) 46 T ELT)) (-3912 (($ $) 44 T ELT)) (-3916 (((-1189 |#1| |#2|) (-1189 |#1| |#2|) $) 47 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3744 (($ $ |#1| $) 41 T ELT) (($ $ (-578 |#1|) (-578 $)) 40 T ELT)) (-3924 (((-687) $) 48 T ELT)) (-3507 (($ $ $) 39 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1180 |#1| |#2|) $) 50 T ELT) (((-1189 |#1| |#2|) $) 49 T ELT)) (-3930 ((|#2| (-1189 |#1| |#2|) $) 52 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-1716 (($ (-609 |#1|)) 45 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#2|) 38 (|has| |#2| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-319 |#1| |#2|) (-111) (-749) (-144)) (T -319)) -((-3930 (*1 *2 *3 *1) (-12 (-5 *3 (-1189 *4 *2)) (-4 *1 (-319 *4 *2)) (-4 *4 (-749)) (-4 *2 (-144)))) (-3922 (*1 *1 *2) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-1180 *3 *4)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-1189 *3 *4)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-687)))) (-3916 (*1 *2 *2 *1) (-12 (-5 *2 (-1189 *3 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3915 (*1 *2 *2 *1) (-12 (-5 *2 (-1189 *3 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-4 *1 (-319 *3 *4)) (-4 *4 (-144)))) (-3912 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-578 *3)))) (-3744 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-749)) (-4 *5 (-144))))) -(-13 (-569 |t#2|) (-10 -8 (-15 -3930 (|t#2| (-1189 |t#1| |t#2|) $)) (-15 -3922 ($ |t#1|)) (-15 -3922 ((-1180 |t#1| |t#2|) $)) (-15 -3922 ((-1189 |t#1| |t#2|) $)) (-15 -3924 ((-687) $)) (-15 -3916 ((-1189 |t#1| |t#2|) (-1189 |t#1| |t#2|) $)) (-15 -3915 ((-1189 |t#1| |t#2|) (-1189 |t#1| |t#2|) $)) (-15 -1716 ($ (-609 |t#1|))) (-15 -3912 ($ $)) (-15 -3923 ($ $ (-687))) (-15 -3910 ((-578 |t#1|) $)) (-15 -3744 ($ $ |t#1| $)) (-15 -3744 ($ $ (-578 |t#1|) (-578 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#2|) . T) ((-585 |#2|) . T) ((-569 |#2|) . T) ((-577 |#2|) . T) ((-649 |#2|) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-1003) . T) ((-1114) . T)) -((-1719 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 40 T ELT)) (-1717 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 13 T ELT)) (-1718 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 33 T ELT))) -(((-320 |#1| |#2|) (-10 -7 (-15 -1717 (|#2| (-1 (-83) |#1| |#1|) |#2|)) (-15 -1718 (|#2| (-1 (-83) |#1| |#1|) |#2|)) (-15 -1719 (|#2| (-1 (-83) |#1| |#1|) |#2|))) (-1114) (-13 (-317 |#1|) (-10 -7 (-6 -3972)))) (T -320)) -((-1719 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-320 *4 *2)) (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3972)))))) (-1718 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-320 *4 *2)) (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3972)))))) (-1717 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-320 *4 *2)) (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3972))))))) -((-2261 (((-625 |#2|) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 22 T ELT) (((-625 (-478)) (-625 $)) 14 T ELT))) -(((-321 |#1| |#2|) (-10 -7 (-15 -2261 ((-625 (-478)) (-625 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-625 |#2|) (-625 |#1|)))) (-322 |#2|) (-954)) (T -321)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-2261 (((-625 |#1|) (-625 $)) 35 T ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 34 T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 46 (|has| |#1| (-575 (-478))) ELT) (((-625 (-478)) (-625 $)) 45 (|has| |#1| (-575 (-478))) ELT)) (-2262 (((-625 |#1|) (-1164 $)) 37 T ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 36 T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 44 (|has| |#1| (-575 (-478))) ELT) (((-625 (-478)) (-1164 $)) 43 (|has| |#1| (-575 (-478))) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-322 |#1|) (-111) (-954)) (T -322)) -NIL -(-13 (-575 |t#1|) (-10 -7 (IF (|has| |t#1| (-575 (-478))) (-6 (-575 (-478))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 16 T ELT)) (-3110 (((-478) $) 44 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3747 (($ $) 120 T ELT)) (-3469 (($ $) 81 T ELT)) (-3615 (($ $) 72 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-3018 (($ $) 28 T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3467 (($ $) 79 T ELT)) (-3614 (($ $) 67 T ELT)) (-3599 (((-478) $) 60 T ELT)) (-2421 (($ $ (-478)) 55 T ELT)) (-3471 (($ $) NIL T ELT)) (-3613 (($ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3108 (($ $) 122 T ELT)) (-3138 (((-3 (-478) #1#) $) 217 T ELT) (((-3 (-343 (-478)) #1#) $) 213 T ELT)) (-3137 (((-478) $) 215 T ELT) (((-343 (-478)) $) 211 T ELT)) (-2544 (($ $ $) NIL T ELT)) (-1728 (((-478) $ $) 110 T ELT)) (-3444 (((-3 $ #1#) $) 125 T ELT)) (-1727 (((-343 (-478)) $ (-687)) 218 T ELT) (((-343 (-478)) $ (-687) (-687)) 210 T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-1751 (((-823)) 106 T ELT) (((-823) (-823)) 107 (|has| $ (-6 -3962)) ELT)) (-3168 (((-83) $) 38 T ELT)) (-3603 (($) 22 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL T ELT)) (-1720 (((-1170) (-687)) 177 T ELT)) (-1721 (((-1170)) 182 T ELT) (((-1170) (-687)) 183 T ELT)) (-1723 (((-1170)) 184 T ELT) (((-1170) (-687)) 185 T ELT)) (-1722 (((-1170)) 180 T ELT) (((-1170) (-687)) 181 T ELT)) (-3748 (((-478) $) 50 T ELT)) (-2392 (((-83) $) 21 T ELT)) (-2992 (($ $ (-478)) NIL T ELT)) (-2423 (($ $) 32 T ELT)) (-3113 (($ $) NIL T ELT)) (-3169 (((-83) $) 18 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL (-12 (-2540 (|has| $ (-6 -3954))) (-2540 (|has| $ (-6 -3962)))) ELT)) (-2838 (($ $ $) NIL T ELT) (($) NIL (-12 (-2540 (|has| $ (-6 -3954))) (-2540 (|has| $ (-6 -3962)))) ELT)) (-1753 (((-478) $) 112 T ELT)) (-1726 (($) 90 T ELT) (($ $) 97 T ELT)) (-1725 (($) 96 T ELT) (($ $) 98 T ELT)) (-3918 (($ $) 84 T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 127 T ELT)) (-1750 (((-823) (-478)) 27 (|has| $ (-6 -3962)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) 41 T ELT)) (-3111 (($ $) 119 T ELT)) (-3234 (($ (-478) (-478)) 115 T ELT) (($ (-478) (-478) (-823)) 116 T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2383 (((-478) $) 113 T ELT)) (-1724 (($) 99 T ELT)) (-3919 (($ $) 78 T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-2595 (((-823)) 108 T ELT) (((-823) (-823)) 109 (|has| $ (-6 -3962)) ELT)) (-3734 (($ $) 126 T ELT) (($ $ (-687)) NIL T ELT)) (-1749 (((-823) (-478)) 31 (|has| $ (-6 -3962)) ELT)) (-3472 (($ $) NIL T ELT)) (-3612 (($ $) NIL T ELT)) (-3470 (($ $) NIL T ELT)) (-3611 (($ $) NIL T ELT)) (-3468 (($ $) 80 T ELT)) (-3610 (($ $) 71 T ELT)) (-3948 (((-323) $) 202 T ELT) (((-177) $) 204 T ELT) (((-793 (-323)) $) NIL T ELT) (((-1059) $) 188 T ELT) (((-467) $) 200 T ELT) (($ (-177)) 209 T ELT)) (-3922 (((-765) $) 192 T ELT) (($ (-478)) 214 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-478)) 214 T ELT) (($ (-343 (-478))) NIL T ELT) (((-177) $) 205 T ELT)) (-3107 (((-687)) NIL T CONST)) (-3112 (($ $) 121 T ELT)) (-1752 (((-823)) 42 T ELT) (((-823) (-823)) 62 (|has| $ (-6 -3962)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2675 (((-823)) 111 T ELT)) (-3475 (($ $) 87 T ELT)) (-3463 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3473 (($ $) 85 T ELT)) (-3461 (($ $) 20 T ELT)) (-3477 (($ $) NIL T ELT)) (-3465 (($ $) NIL T ELT)) (-3478 (($ $) NIL T ELT)) (-3466 (($ $) NIL T ELT)) (-3476 (($ $) NIL T ELT)) (-3464 (($ $) NIL T ELT)) (-3474 (($ $) 86 T ELT)) (-3462 (($ $) 33 T ELT)) (-3360 (($ $) 39 T ELT)) (-2640 (($) 17 T CONST)) (-2647 (($) 24 T CONST)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2546 (((-83) $ $) 189 T ELT)) (-2547 (((-83) $ $) 26 T ELT)) (-3037 (((-83) $ $) 37 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 43 T ELT)) (-3925 (($ $ $) 29 T ELT) (($ $ (-478)) 23 T ELT)) (-3813 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3815 (($ $ $) 54 T ELT)) (** (($ $ (-823)) 65 T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 91 T ELT) (($ $ (-343 (-478))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-823) $) 61 T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) -(((-323) (-13 (-340) (-188) (-548 (-1059)) (-547 (-177)) (-1100) (-548 (-467)) (-552 (-177)) (-10 -8 (-15 -3925 ($ $ (-478))) (-15 ** ($ $ $)) (-15 -2423 ($ $)) (-15 -1728 ((-478) $ $)) (-15 -2421 ($ $ (-478))) (-15 -1727 ((-343 (-478)) $ (-687))) (-15 -1727 ((-343 (-478)) $ (-687) (-687))) (-15 -1726 ($)) (-15 -1725 ($)) (-15 -1724 ($)) (-15 -3463 ($ $ $)) (-15 -1726 ($ $)) (-15 -1725 ($ $)) (-15 -1723 ((-1170))) (-15 -1723 ((-1170) (-687))) (-15 -1722 ((-1170))) (-15 -1722 ((-1170) (-687))) (-15 -1721 ((-1170))) (-15 -1721 ((-1170) (-687))) (-15 -1720 ((-1170) (-687))) (-6 -3962) (-6 -3954)))) (T -323)) -((** (*1 *1 *1 *1) (-5 *1 (-323))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) (-2423 (*1 *1 *1) (-5 *1 (-323))) (-1728 (*1 *2 *1 *1) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) (-2421 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) (-1727 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-323)))) (-1727 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-323)))) (-1726 (*1 *1) (-5 *1 (-323))) (-1725 (*1 *1) (-5 *1 (-323))) (-1724 (*1 *1) (-5 *1 (-323))) (-3463 (*1 *1 *1 *1) (-5 *1 (-323))) (-1726 (*1 *1 *1) (-5 *1 (-323))) (-1725 (*1 *1 *1) (-5 *1 (-323))) (-1723 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-323)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-323)))) (-1722 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-323)))) (-1722 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-323)))) (-1721 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-323)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-323)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-323))))) -((-1729 (((-578 (-245 (-850 (-140 |#1|)))) (-245 (-343 (-850 (-140 (-478))))) |#1|) 52 T ELT) (((-578 (-245 (-850 (-140 |#1|)))) (-343 (-850 (-140 (-478)))) |#1|) 51 T ELT) (((-578 (-578 (-245 (-850 (-140 |#1|))))) (-578 (-245 (-343 (-850 (-140 (-478)))))) |#1|) 48 T ELT) (((-578 (-578 (-245 (-850 (-140 |#1|))))) (-578 (-343 (-850 (-140 (-478))))) |#1|) 42 T ELT)) (-1730 (((-578 (-578 (-140 |#1|))) (-578 (-343 (-850 (-140 (-478))))) (-578 (-1075)) |#1|) 30 T ELT) (((-578 (-140 |#1|)) (-343 (-850 (-140 (-478)))) |#1|) 18 T ELT))) -(((-324 |#1|) (-10 -7 (-15 -1729 ((-578 (-578 (-245 (-850 (-140 |#1|))))) (-578 (-343 (-850 (-140 (-478))))) |#1|)) (-15 -1729 ((-578 (-578 (-245 (-850 (-140 |#1|))))) (-578 (-245 (-343 (-850 (-140 (-478)))))) |#1|)) (-15 -1729 ((-578 (-245 (-850 (-140 |#1|)))) (-343 (-850 (-140 (-478)))) |#1|)) (-15 -1729 ((-578 (-245 (-850 (-140 |#1|)))) (-245 (-343 (-850 (-140 (-478))))) |#1|)) (-15 -1730 ((-578 (-140 |#1|)) (-343 (-850 (-140 (-478)))) |#1|)) (-15 -1730 ((-578 (-578 (-140 |#1|))) (-578 (-343 (-850 (-140 (-478))))) (-578 (-1075)) |#1|))) (-13 (-308) (-748))) (T -324)) -((-1730 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-343 (-850 (-140 (-478)))))) (-5 *4 (-578 (-1075))) (-5 *2 (-578 (-578 (-140 *5)))) (-5 *1 (-324 *5)) (-4 *5 (-13 (-308) (-748))))) (-1730 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-140 (-478))))) (-5 *2 (-578 (-140 *4))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-343 (-850 (-140 (-478)))))) (-5 *2 (-578 (-245 (-850 (-140 *4))))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-140 (-478))))) (-5 *2 (-578 (-245 (-850 (-140 *4))))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-245 (-343 (-850 (-140 (-478))))))) (-5 *2 (-578 (-578 (-245 (-850 (-140 *4)))))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 (-140 (-478)))))) (-5 *2 (-578 (-578 (-245 (-850 (-140 *4)))))) (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748)))))) -((-3549 (((-578 (-245 (-850 |#1|))) (-245 (-343 (-850 (-478)))) |#1|) 47 T ELT) (((-578 (-245 (-850 |#1|))) (-343 (-850 (-478))) |#1|) 46 T ELT) (((-578 (-578 (-245 (-850 |#1|)))) (-578 (-245 (-343 (-850 (-478))))) |#1|) 43 T ELT) (((-578 (-578 (-245 (-850 |#1|)))) (-578 (-343 (-850 (-478)))) |#1|) 37 T ELT)) (-1731 (((-578 |#1|) (-343 (-850 (-478))) |#1|) 20 T ELT) (((-578 (-578 |#1|)) (-578 (-343 (-850 (-478)))) (-578 (-1075)) |#1|) 30 T ELT))) -(((-325 |#1|) (-10 -7 (-15 -3549 ((-578 (-578 (-245 (-850 |#1|)))) (-578 (-343 (-850 (-478)))) |#1|)) (-15 -3549 ((-578 (-578 (-245 (-850 |#1|)))) (-578 (-245 (-343 (-850 (-478))))) |#1|)) (-15 -3549 ((-578 (-245 (-850 |#1|))) (-343 (-850 (-478))) |#1|)) (-15 -3549 ((-578 (-245 (-850 |#1|))) (-245 (-343 (-850 (-478)))) |#1|)) (-15 -1731 ((-578 (-578 |#1|)) (-578 (-343 (-850 (-478)))) (-578 (-1075)) |#1|)) (-15 -1731 ((-578 |#1|) (-343 (-850 (-478))) |#1|))) (-13 (-748) (-308))) (T -325)) -((-1731 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-478)))) (-5 *2 (-578 *4)) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) (-1731 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-343 (-850 (-478))))) (-5 *4 (-578 (-1075))) (-5 *2 (-578 (-578 *5))) (-5 *1 (-325 *5)) (-4 *5 (-13 (-748) (-308))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-343 (-850 (-478))))) (-5 *2 (-578 (-245 (-850 *4)))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-478)))) (-5 *2 (-578 (-245 (-850 *4)))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-245 (-343 (-850 (-478)))))) (-5 *2 (-578 (-578 (-245 (-850 *4))))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 (-478))))) (-5 *2 (-578 (-578 (-245 (-850 *4))))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3750 (((-578 (-775 |#2| |#1|)) $) NIL T ELT)) (-1295 (((-3 $ "failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-2874 (($ |#1| |#2|) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1967 ((|#2| $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 34 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 12 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-326 |#1| |#2|) (-13 (-80 |#1| |#1|) (-442 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-144)) (-6 (-649 |#1|)) |%noBranch|))) (-954) (-752)) (T -326)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) 29 T ELT)) (-3137 ((|#2| $) 31 T ELT)) (-3935 (($ $) NIL T ELT)) (-2400 (((-687) $) 13 T ELT)) (-2802 (((-578 $) $) 23 T ELT)) (-3913 (((-83) $) NIL T ELT)) (-3914 (($ |#2| |#1|) 21 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1732 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2875 ((|#2| $) 18 T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3793 (((-578 |#1|) $) 20 T ELT)) (-3653 ((|#1| $ |#2|) 54 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 32 T CONST)) (-2646 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-327 |#1| |#2|) (-13 (-328 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-954) (-749)) (T -327)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-327 *3 *2)) (-4 *3 (-954)) (-4 *2 (-749))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#2| "failed") $) 54 T ELT)) (-3137 ((|#2| $) 55 T ELT)) (-3935 (($ $) 40 T ELT)) (-2400 (((-687) $) 44 T ELT)) (-2802 (((-578 $) $) 45 T ELT)) (-3913 (((-83) $) 48 T ELT)) (-3914 (($ |#2| |#1|) 49 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1732 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-2875 ((|#2| $) 43 T ELT)) (-3155 ((|#1| $) 42 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3793 (((-578 |#1|) $) 46 T ELT)) (-3653 ((|#1| $ |#2|) 51 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2646 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) -(((-328 |#1| |#2|) (-111) (-954) (-1003)) (T -328)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1003)))) (-3653 (*1 *2 *1 *3) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-954)))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)))) (-3914 (*1 *1 *2 *3) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1003)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-83)))) (-2646 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-578 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-578 *3)))) (-2802 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-578 *1)) (-4 *1 (-328 *3 *4)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-687)))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1003)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-954)))) (-1732 (*1 *2 *1) (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1003))))) -(-13 (-80 |t#1| |t#1|) (-943 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3653 (|t#1| $ |t#2|)) (-15 -3934 ($ (-1 |t#1| |t#1|) $)) (-15 -3914 ($ |t#2| |t#1|)) (-15 -3913 ((-83) $)) (-15 -2646 ((-578 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3793 ((-578 |t#1|) $)) (-15 -2802 ((-578 $) $)) (-15 -2400 ((-687) $)) (-15 -2875 (|t#2| $)) (-15 -3155 (|t#1| $)) (-15 -1732 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3935 ($ $)) (IF (|has| |t#1| (-144)) (-6 (-649 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 |#2|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-943 |#2|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3117 (((-687) $) 40 T ELT)) (-3700 (($) 23 T CONST)) (-3915 (((-3 $ "failed") $ $) 43 T ELT)) (-3138 (((-3 |#1| "failed") $) 51 T ELT)) (-3137 ((|#1| $) 52 T ELT)) (-3444 (((-3 $ "failed") $) 20 T ELT)) (-1733 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2392 (((-83) $) 22 T ELT)) (-2281 ((|#1| $ (-478)) 37 T ELT)) (-2282 (((-687) $ (-478)) 38 T ELT)) (-2511 (($ $ $) 29 (|has| |#1| (-749)) ELT)) (-2838 (($ $ $) 30 (|has| |#1| (-749)) ELT)) (-2272 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2273 (($ (-1 (-687) (-687)) $) 36 T ELT)) (-3916 (((-3 $ "failed") $ $) 44 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1734 (($ $ $) 45 T ELT)) (-1735 (($ $ $) 46 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1762 (((-578 (-2 (|:| |gen| |#1|) (|:| -3919 (-687)))) $) 39 T ELT)) (-2860 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2647 (($) 24 T CONST)) (-2546 (((-83) $ $) 31 (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) 33 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 32 (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 34 (|has| |#1| (-749)) ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 21 T ELT) (($ |#1| (-687)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-329 |#1|) (-111) (-1003)) (T -329)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-329 *2)) (-4 *2 (-1003)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) (-1734 (*1 *1 *1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) (-3916 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) (-3915 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) (-2860 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1003)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-329 *3)))) (-1733 (*1 *2 *1 *1) (-12 (-4 *3 (-1003)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-329 *3)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-1003)) (-5 *2 (-687)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-1003)) (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 (-687))))))) (-2282 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-329 *4)) (-4 *4 (-1003)) (-5 *2 (-687)))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-329 *2)) (-4 *2 (-1003)))) (-2273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-687) (-687))) (-4 *1 (-329 *3)) (-4 *3 (-1003)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3)) (-4 *3 (-1003))))) -(-13 (-658) (-943 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-687))) (-15 -1735 ($ $ $)) (-15 -1734 ($ $ $)) (-15 -3916 ((-3 $ "failed") $ $)) (-15 -3915 ((-3 $ "failed") $ $)) (-15 -2860 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1733 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3117 ((-687) $)) (-15 -1762 ((-578 (-2 (|:| |gen| |t#1|) (|:| -3919 (-687)))) $)) (-15 -2282 ((-687) $ (-478))) (-15 -2281 (|t#1| $ (-478))) (-15 -2273 ($ (-1 (-687) (-687)) $)) (-15 -2272 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|))) -(((-72) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-658) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-943 |#1|) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687) $) 74 T ELT)) (-3700 (($) NIL T CONST)) (-3915 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3138 (((-3 |#1| #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-1733 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2392 (((-83) $) 17 T ELT)) (-2281 ((|#1| $ (-478)) NIL T ELT)) (-2282 (((-687) $ (-478)) NIL T ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2272 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2273 (($ (-1 (-687) (-687)) $) 37 T ELT)) (-3916 (((-3 $ #1#) $ $) 60 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1734 (($ $ $) 28 T ELT)) (-1735 (($ $ $) 26 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1762 (((-578 (-2 (|:| |gen| |#1|) (|:| -3919 (-687)))) $) 34 T ELT)) (-2860 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3922 (((-765) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2647 (($) 7 T CONST)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 83 (|has| |#1| (-749)) ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ |#1| (-687)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-330 |#1|) (-329 |#1|) (-1003)) (T -330)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-1736 (((-83) $) 25 T ELT)) (-1737 (((-83) $) 22 T ELT)) (-3590 (($ (-1059) (-1059) (-1059)) 26 T ELT)) (-3518 (((-1059) $) 16 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1741 (($ (-1059) (-1059) (-1059)) 14 T ELT)) (-1739 (((-1059) $) 17 T ELT)) (-1738 (((-83) $) 18 T ELT)) (-1740 (((-1059) $) 15 T ELT)) (-3922 (((-765) $) 12 T ELT) (($ (-1059)) 13 T ELT) (((-1059) $) 9 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 7 T ELT))) -(((-331) (-332)) (T -331)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-1736 (((-83) $) 20 T ELT)) (-1737 (((-83) $) 21 T ELT)) (-3590 (($ (-1059) (-1059) (-1059)) 19 T ELT)) (-3518 (((-1059) $) 24 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1741 (($ (-1059) (-1059) (-1059)) 26 T ELT)) (-1739 (((-1059) $) 23 T ELT)) (-1738 (((-83) $) 22 T ELT)) (-1740 (((-1059) $) 25 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-1059)) 28 T ELT) (((-1059) $) 27 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-332) (-111)) (T -332)) -((-1741 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-332)))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1059)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1059)))) (-1739 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1059)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83)))) (-3590 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-332))))) -(-13 (-1003) (-423 (-1059)) (-10 -8 (-15 -1741 ($ (-1059) (-1059) (-1059))) (-15 -1740 ((-1059) $)) (-15 -3518 ((-1059) $)) (-15 -1739 ((-1059) $)) (-15 -1738 ((-83) $)) (-15 -1737 ((-83) $)) (-15 -1736 ((-83) $)) (-15 -3590 ($ (-1059) (-1059) (-1059))))) -(((-72) . T) ((-550 (-1059)) . T) ((-547 (-765)) . T) ((-547 (-1059)) . T) ((-423 (-1059)) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ "failed") $ $) NIL T ELT)) (-1742 (((-765) $) 64 T ELT)) (-3700 (($) NIL T CONST)) (-2389 (($ $ (-823)) NIL T ELT)) (-2413 (($ $ (-823)) NIL T ELT)) (-2388 (($ $ (-823)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($ (-687)) 38 T ELT)) (-3887 (((-687)) 18 T ELT)) (-1743 (((-765) $) 66 T ELT)) (-2415 (($ $ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2416 (($ $ $ $) NIL T ELT)) (-2414 (($ $ $) NIL T ELT)) (-2640 (($) 24 T CONST)) (-3037 (((-83) $ $) 41 T ELT)) (-3813 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3815 (($ $ $) 51 T ELT)) (** (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-333 |#1| |#2| |#3|) (-13 (-676 |#3|) (-10 -8 (-15 -3887 ((-687))) (-15 -1743 ((-765) $)) (-15 -1742 ((-765) $)) (-15 -2391 ($ (-687))))) (-687) (-687) (-144)) (T -333)) -((-3887 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144)))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687)) (-4 *5 (-144)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687)) (-4 *5 (-144)))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144))))) -((-3748 (((-687) (-279 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-334 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3748 ((-687) (-279 |#1| |#2| |#3| |#4|)))) (-13 (-313) (-308)) (-1140 |#1|) (-1140 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -334)) -((-3748 (*1 *2 *3) (-12 (-5 *3 (-279 *4 *5 *6 *7)) (-4 *4 (-13 (-313) (-308))) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) (-4 *7 (-287 *4 *5 *6)) (-5 *2 (-687)) (-5 *1 (-334 *4 *5 *6 *7))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1745 ((|#2| $) 38 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1746 (($ (-343 |#2|)) 93 T ELT)) (-1744 (((-578 (-2 (|:| -2383 (-687)) (|:| -3749 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3734 (($ $ (-687)) 36 T ELT) (($ $) 34 T ELT)) (-3948 (((-343 |#2|) $) 49 T ELT)) (-3507 (($ (-578 (-2 (|:| -2383 (-687)) (|:| -3749 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3922 (((-765) $) 131 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2650 (($ $ (-687)) 37 T ELT) (($ $) 35 T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3815 (($ |#2| $) 41 T ELT))) -(((-335 |#1| |#2|) (-13 (-1003) (-187) (-548 (-343 |#2|)) (-10 -8 (-15 -3815 ($ |#2| $)) (-15 -1746 ($ (-343 |#2|))) (-15 -1745 (|#2| $)) (-15 -1744 ((-578 (-2 (|:| -2383 (-687)) (|:| -3749 |#2|) (|:| |num| |#2|))) $)) (-15 -3507 ($ (-578 (-2 (|:| -2383 (-687)) (|:| -3749 |#2|) (|:| |num| |#2|))))))) (-13 (-308) (-118)) (-1140 |#1|)) (T -335)) -((-3815 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *2)) (-4 *2 (-1140 *3)))) (-1746 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *4)))) (-1745 (*1 *2 *1) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-335 *3 *2)) (-4 *3 (-13 (-308) (-118))))) (-1744 (*1 *2 *1) (-12 (-4 *3 (-13 (-308) (-118))) (-5 *2 (-578 (-2 (|:| -2383 (-687)) (|:| -3749 *4) (|:| |num| *4)))) (-5 *1 (-335 *3 *4)) (-4 *4 (-1140 *3)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -2383 (-687)) (|:| -3749 *4) (|:| |num| *4)))) (-4 *4 (-1140 *3)) (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *4))))) -((-2548 (((-83) $ $) 10 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 16 (|has| |#1| (-789 (-323))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 15 (|has| |#1| (-789 (-478))) ELT)) (-3222 (((-1059) $) 14 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-3223 (((-1020) $) 13 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-3922 (((-765) $) 12 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-1249 (((-83) $ $) 11 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT)) (-3037 (((-83) $ $) 9 (OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ELT))) -(((-336 |#1|) (-111) (-1114)) (T -336)) -NIL -(-13 (-1114) (-10 -7 (IF (|has| |t#1| (-789 (-478))) (-6 (-789 (-478))) |%noBranch|) (IF (|has| |t#1| (-789 (-323))) (-6 (-789 (-323))) |%noBranch|))) -(((-72) OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ((-547 (-765)) OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-1003) OR (|has| |#1| (-789 (-478))) (|has| |#1| (-789 (-323)))) ((-1114) . T)) -((-1747 (($ $) 10 T ELT) (($ $ (-687)) 12 T ELT))) -(((-337 |#1|) (-10 -7 (-15 -1747 (|#1| |#1| (-687))) (-15 -1747 (|#1| |#1|))) (-338)) (T -337)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3700 (($) 22 T CONST)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-1747 (($ $) 94 T ELT) (($ $ (-687)) 93 T ELT)) (-3699 (((-83) $) 86 T ELT)) (-3748 (((-736 (-823)) $) 96 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 85 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-1748 (((-3 (-687) "failed") $ $) 95 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT)) (-2683 (((-627 $) $) 97 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 80 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) -(((-338) (-111)) (T -338)) -((-3748 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-736 (-823))))) (-1748 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-338)) (-5 *2 (-687)))) (-1747 (*1 *1 *1) (-4 *1 (-338))) (-1747 (*1 *1 *1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-687))))) -(-13 (-308) (-116) (-10 -8 (-15 -3748 ((-736 (-823)) $)) (-15 -1748 ((-3 (-687) "failed") $ $)) (-15 -1747 ($ $)) (-15 -1747 ($ $ (-687))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-116) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) . T)) -((-3234 (($ (-478) (-478)) 11 T ELT) (($ (-478) (-478) (-823)) NIL T ELT)) (-2595 (((-823)) 19 T ELT) (((-823) (-823)) NIL T ELT))) -(((-339 |#1|) (-10 -7 (-15 -2595 ((-823) (-823))) (-15 -2595 ((-823))) (-15 -3234 (|#1| (-478) (-478) (-823))) (-15 -3234 (|#1| (-478) (-478)))) (-340)) (T -339)) -((-2595 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-339 *3)) (-4 *3 (-340)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-339 *3)) (-4 *3 (-340))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3110 (((-478) $) 105 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-3747 (($ $) 103 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-3018 (($ $) 113 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3599 (((-478) $) 130 T ELT)) (-3700 (($) 22 T CONST)) (-3108 (($ $) 102 T ELT)) (-3138 (((-3 (-478) #1="failed") $) 118 T ELT) (((-3 (-343 (-478)) #1#) $) 115 T ELT)) (-3137 (((-478) $) 119 T ELT) (((-343 (-478)) $) 116 T ELT)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-3699 (((-83) $) 86 T ELT)) (-1751 (((-823)) 146 T ELT) (((-823) (-823)) 143 (|has| $ (-6 -3962)) ELT)) (-3168 (((-83) $) 128 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 109 T ELT)) (-3748 (((-478) $) 152 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 112 T ELT)) (-3113 (($ $) 108 T ELT)) (-3169 (((-83) $) 129 T ELT)) (-1588 (((-3 (-578 $) #2="failed") (-578 $) $) 65 T ELT)) (-2511 (($ $ $) 122 T ELT) (($) 140 (-12 (-2540 (|has| $ (-6 -3962))) (-2540 (|has| $ (-6 -3954)))) ELT)) (-2838 (($ $ $) 123 T ELT) (($) 139 (-12 (-2540 (|has| $ (-6 -3962))) (-2540 (|has| $ (-6 -3954)))) ELT)) (-1753 (((-478) $) 149 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 85 T ELT)) (-1750 (((-823) (-478)) 142 (|has| $ (-6 -3962)) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3109 (($ $) 104 T ELT)) (-3111 (($ $) 106 T ELT)) (-3234 (($ (-478) (-478)) 154 T ELT) (($ (-478) (-478) (-823)) 153 T ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-2383 (((-478) $) 150 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-2595 (((-823)) 147 T ELT) (((-823) (-823)) 144 (|has| $ (-6 -3962)) ELT)) (-1749 (((-823) (-478)) 141 (|has| $ (-6 -3962)) ELT)) (-3948 (((-323) $) 121 T ELT) (((-177) $) 120 T ELT) (((-793 (-323)) $) 110 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ (-478)) 117 T ELT) (($ (-343 (-478))) 114 T ELT)) (-3107 (((-687)) 37 T CONST)) (-3112 (($ $) 107 T ELT)) (-1752 (((-823)) 148 T ELT) (((-823) (-823)) 145 (|has| $ (-6 -3962)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2675 (((-823)) 151 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-3360 (($ $) 131 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2546 (((-83) $ $) 124 T ELT)) (-2547 (((-83) $ $) 126 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 125 T ELT)) (-2666 (((-83) $ $) 127 T ELT)) (-3925 (($ $ $) 80 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT) (($ $ (-343 (-478))) 111 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) -(((-340) (-111)) (T -340)) -((-3234 (*1 *1 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-340)))) (-3234 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-823)) (-4 *1 (-340)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) (-2675 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) (-1752 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) (-2595 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) (-1751 (*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) (-1752 (*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3962)) (-4 *1 (-340)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3962)) (-4 *1 (-340)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3962)) (-4 *1 (-340)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-478)) (|has| *1 (-6 -3962)) (-4 *1 (-340)) (-5 *2 (-823)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-478)) (|has| *1 (-6 -3962)) (-4 *1 (-340)) (-5 *2 (-823)))) (-2511 (*1 *1) (-12 (-4 *1 (-340)) (-2540 (|has| *1 (-6 -3962))) (-2540 (|has| *1 (-6 -3954))))) (-2838 (*1 *1) (-12 (-4 *1 (-340)) (-2540 (|has| *1 (-6 -3962))) (-2540 (|has| *1 (-6 -3954)))))) -(-13 (-965) (-10 -8 (-6 -3746) (-15 -3234 ($ (-478) (-478))) (-15 -3234 ($ (-478) (-478) (-823))) (-15 -3748 ((-478) $)) (-15 -2675 ((-823))) (-15 -2383 ((-478) $)) (-15 -1753 ((-478) $)) (-15 -1752 ((-823))) (-15 -2595 ((-823))) (-15 -1751 ((-823))) (IF (|has| $ (-6 -3962)) (PROGN (-15 -1752 ((-823) (-823))) (-15 -2595 ((-823) (-823))) (-15 -1751 ((-823) (-823))) (-15 -1750 ((-823) (-478))) (-15 -1749 ((-823) (-478)))) |%noBranch|) (IF (|has| $ (-6 -3954)) |%noBranch| (IF (|has| $ (-6 -3962)) |%noBranch| (PROGN (-15 -2511 ($)) (-15 -2838 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-548 (-177)) . T) ((-548 (-323)) . T) ((-548 (-793 (-323))) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-789 (-323)) . T) ((-825) . T) ((-908) . T) ((-926) . T) ((-965) . T) ((-943 (-343 (-478))) . T) ((-943 (-478)) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 59 T ELT)) (-1754 (($ $) 77 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 189 T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) 48 T ELT)) (-1755 ((|#1| $) 16 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| |#1| (-1119)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-1119)) ELT)) (-1757 (($ |#1| (-478)) 42 T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 73 T ELT)) (-3444 (((-3 $ #1#) $) 163 T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) 84 (|has| |#1| (-477)) ELT)) (-3004 (((-83) $) 80 (|has| |#1| (-477)) ELT)) (-3003 (((-343 (-478)) $) 82 (|has| |#1| (-477)) ELT)) (-1758 (($ |#1| (-478)) 44 T ELT)) (-3699 (((-83) $) 209 (|has| |#1| (-1119)) ELT)) (-2392 (((-83) $) 61 T ELT)) (-1817 (((-687) $) 51 T ELT)) (-1759 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-478)) 174 T ELT)) (-2281 ((|#1| $ (-478)) 173 T ELT)) (-1760 (((-478) $ (-478)) 172 T ELT)) (-1763 (($ |#1| (-478)) 41 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1814 (($ |#1| (-578 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-478))))) 78 T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1761 (($ |#1| (-478)) 43 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) 190 (|has| |#1| (-385)) ELT)) (-1756 (($ |#1| (-478) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1762 (((-578 (-2 (|:| -3708 |#1|) (|:| -2383 (-478)))) $) 72 T ELT)) (-1935 (((-578 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-478)))) $) 12 T ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-1119)) ELT)) (-3443 (((-3 $ #1#) $ $) 175 T ELT)) (-2383 (((-478) $) 166 T ELT)) (-3939 ((|#1| $) 74 T ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 99 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) 105 (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) |#1|) NIL (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) $) NIL (|has| |#1| (-447 (-1075) $)) ELT) (($ $ (-578 (-1075)) (-578 $)) 106 (|has| |#1| (-447 (-1075) $)) ELT) (($ $ (-578 (-245 $))) 102 (|has| |#1| (-256 $)) ELT) (($ $ (-245 $)) NIL (|has| |#1| (-256 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-256 $)) ELT) (($ $ (-578 $) (-578 $)) NIL (|has| |#1| (-256 $)) ELT)) (-3776 (($ $ |#1|) 91 (|has| |#1| (-238 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-238 $ $)) ELT)) (-3734 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-3948 (((-467) $) 39 (|has| |#1| (-548 (-467))) ELT) (((-323) $) 112 (|has| |#1| (-926)) ELT) (((-177) $) 118 (|has| |#1| (-926)) ELT)) (-3922 (((-765) $) 145 T ELT) (($ (-478)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT)) (-3107 (((-687)) 66 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2640 (($) 53 T CONST)) (-2647 (($) 52 T CONST)) (-2650 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) 158 T ELT)) (-3813 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 179 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 124 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-341 |#1|) (-13 (-489) (-182 |#1|) (-38 |#1|) (-284 |#1|) (-348 |#1|) (-10 -8 (-15 -3939 (|#1| $)) (-15 -2383 ((-478) $)) (-15 -1814 ($ |#1| (-578 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-478)))))) (-15 -1935 ((-578 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-478)))) $)) (-15 -1763 ($ |#1| (-478))) (-15 -1762 ((-578 (-2 (|:| -3708 |#1|) (|:| -2383 (-478)))) $)) (-15 -1761 ($ |#1| (-478))) (-15 -1760 ((-478) $ (-478))) (-15 -2281 (|#1| $ (-478))) (-15 -1759 ((-3 #1# #2# #3# #4#) $ (-478))) (-15 -1817 ((-687) $)) (-15 -1758 ($ |#1| (-478))) (-15 -1757 ($ |#1| (-478))) (-15 -1756 ($ |#1| (-478) (-3 #1# #2# #3# #4#))) (-15 -1755 (|#1| $)) (-15 -1754 ($ $)) (-15 -3934 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-385)) (-6 (-385)) |%noBranch|) (IF (|has| |#1| (-926)) (-6 (-926)) |%noBranch|) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |#1| (-477)) (PROGN (-15 -3004 ((-83) $)) (-15 -3003 ((-343 (-478)) $)) (-15 -3005 ((-3 (-343 (-478)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-238 $ $)) (-6 (-238 $ $)) |%noBranch|) (IF (|has| |#1| (-256 $)) (-6 (-256 $)) |%noBranch|) (IF (|has| |#1| (-447 (-1075) $)) (-6 (-447 (-1075) $)) |%noBranch|))) (-489)) (T -341)) -((-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-489)) (-5 *1 (-341 *3)))) (-3939 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-1814 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-478))))) (-4 *2 (-489)) (-5 *1 (-341 *2)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-478))))) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-1763 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3708 *3) (|:| -2383 (-478))))) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-1761 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1760 (*1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1759 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-341 *4)) (-4 *4 (-489)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) (-1758 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1757 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1756 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1755 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-1754 (*1 *1 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489)))) (-3005 (*1 *2 *1) (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489))))) -((-3934 (((-341 |#2|) (-1 |#2| |#1|) (-341 |#1|)) 20 T ELT))) -(((-342 |#1| |#2|) (-10 -7 (-15 -3934 ((-341 |#2|) (-1 |#2| |#1|) (-341 |#1|)))) (-489) (-489)) (T -342)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-341 *5)) (-4 *5 (-489)) (-4 *6 (-489)) (-5 *2 (-341 *6)) (-5 *1 (-342 *5 *6))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 13 T ELT)) (-3110 ((|#1| $) 21 (|has| |#1| (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| |#1| (-733)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1075) #1#) $) NIL (|has| |#1| (-943 (-1075))) ELT) (((-3 (-343 (-478)) #1#) $) 54 (|has| |#1| (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT)) (-3137 ((|#1| $) 15 T ELT) (((-1075) $) NIL (|has| |#1| (-943 (-1075))) ELT) (((-343 (-478)) $) 51 (|has| |#1| (-943 (-478))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) 32 T ELT)) (-2975 (($) NIL (|has| |#1| (-477)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3168 (((-83) $) NIL (|has| |#1| (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| |#1| (-789 (-323))) ELT)) (-2392 (((-83) $) 38 T ELT)) (-2977 (($ $) NIL T ELT)) (-2979 ((|#1| $) 55 T ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-1052)) ELT)) (-3169 (((-83) $) 22 (|has| |#1| (-733)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| |#1| (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 82 T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL (|has| |#1| (-254)) ELT)) (-3111 ((|#1| $) 26 (|has| |#1| (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 133 (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 128 (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) NIL (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) |#1|) NIL (|has| |#1| (-447 (-1075) |#1|)) ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-2976 (($ $) NIL T ELT)) (-2978 ((|#1| $) 57 T ELT)) (-3948 (((-793 (-478)) $) NIL (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| |#1| (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT) (((-323) $) NIL (|has| |#1| (-926)) ELT) (((-177) $) NIL (|has| |#1| (-926)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) 112 (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1075)) NIL (|has| |#1| (-943 (-1075))) ELT)) (-2683 (((-627 $) $) 92 (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) 93 T CONST)) (-3112 ((|#1| $) 24 (|has| |#1| (-477)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3360 (($ $) NIL (|has| |#1| (-733)) ELT)) (-2640 (($) 28 T CONST)) (-2647 (($) 8 T CONST)) (-2650 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 48 T ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3925 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3813 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3815 (($ $ $) 35 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 122 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-343 |#1|) (-13 (-897 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3958)) (IF (|has| |#1| (-385)) (IF (|has| |#1| (-6 -3969)) (-6 -3958) |%noBranch|) |%noBranch|) |%noBranch|))) (-489)) (T -343)) -NIL -((-3934 (((-343 |#2|) (-1 |#2| |#1|) (-343 |#1|)) 13 T ELT))) -(((-344 |#1| |#2|) (-10 -7 (-15 -3934 ((-343 |#2|) (-1 |#2| |#1|) (-343 |#1|)))) (-489) (-489)) (T -344)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-343 *5)) (-4 *5 (-489)) (-4 *6 (-489)) (-5 *2 (-343 *6)) (-5 *1 (-344 *5 *6))))) -((-1765 (((-625 |#2|) (-1164 $)) NIL T ELT) (((-625 |#2|)) 18 T ELT)) (-1775 (($ (-1164 |#2|) (-1164 $)) NIL T ELT) (($ (-1164 |#2|)) 24 T ELT)) (-1764 (((-625 |#2|) $ (-1164 $)) NIL T ELT) (((-625 |#2|) $) 40 T ELT)) (-1996 ((|#3| $) 69 T ELT)) (-3733 ((|#2| (-1164 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3205 (((-1164 |#2|) $ (-1164 $)) NIL T ELT) (((-625 |#2|) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 |#2|) $) 22 T ELT) (((-625 |#2|) (-1164 $)) 38 T ELT)) (-3948 (((-1164 |#2|) $) 11 T ELT) (($ (-1164 |#2|)) 13 T ELT)) (-2429 ((|#3| $) 55 T ELT))) -(((-345 |#1| |#2| |#3|) (-10 -7 (-15 -1764 ((-625 |#2|) |#1|)) (-15 -3733 (|#2|)) (-15 -1765 ((-625 |#2|))) (-15 -3948 (|#1| (-1164 |#2|))) (-15 -3948 ((-1164 |#2|) |#1|)) (-15 -1775 (|#1| (-1164 |#2|))) (-15 -3205 ((-625 |#2|) (-1164 |#1|))) (-15 -3205 ((-1164 |#2|) |#1|)) (-15 -1996 (|#3| |#1|)) (-15 -2429 (|#3| |#1|)) (-15 -1765 ((-625 |#2|) (-1164 |#1|))) (-15 -3733 (|#2| (-1164 |#1|))) (-15 -1775 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3205 ((-625 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3205 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -1764 ((-625 |#2|) |#1| (-1164 |#1|)))) (-346 |#2| |#3|) (-144) (-1140 |#2|)) (T -345)) -((-1765 (*1 *2) (-12 (-4 *4 (-144)) (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)) (-5 *1 (-345 *3 *4 *5)) (-4 *3 (-346 *4 *5)))) (-3733 (*1 *2) (-12 (-4 *4 (-1140 *2)) (-4 *2 (-144)) (-5 *1 (-345 *3 *2 *4)) (-4 *3 (-346 *2 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1765 (((-625 |#1|) (-1164 $)) 58 T ELT) (((-625 |#1|)) 74 T ELT)) (-3307 ((|#1| $) 64 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-1775 (($ (-1164 |#1|) (-1164 $)) 60 T ELT) (($ (-1164 |#1|)) 77 T ELT)) (-1764 (((-625 |#1|) $ (-1164 $)) 65 T ELT) (((-625 |#1|) $) 72 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3090 (((-823)) 66 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3113 ((|#1| $) 63 T ELT)) (-1996 ((|#2| $) 56 (|has| |#1| (-308)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3733 ((|#1| (-1164 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3205 (((-1164 |#1|) $ (-1164 $)) 62 T ELT) (((-625 |#1|) (-1164 $) (-1164 $)) 61 T ELT) (((-1164 |#1|) $) 79 T ELT) (((-625 |#1|) (-1164 $)) 78 T ELT)) (-3948 (((-1164 |#1|) $) 76 T ELT) (($ (-1164 |#1|)) 75 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2683 (((-627 $) $) 55 (|has| |#1| (-116)) ELT)) (-2429 ((|#2| $) 57 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-1994 (((-1164 $)) 80 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-346 |#1| |#2|) (-111) (-144) (-1140 |t#1|)) (T -346)) -((-1994 (*1 *2) (-12 (-4 *3 (-144)) (-4 *4 (-1140 *3)) (-5 *2 (-1164 *1)) (-4 *1 (-346 *3 *4)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) (-5 *2 (-1164 *3)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-144)) (-4 *1 (-346 *3 *4)) (-4 *4 (-1140 *3)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) (-5 *2 (-1164 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-144)) (-4 *1 (-346 *3 *4)) (-4 *4 (-1140 *3)))) (-1765 (*1 *2) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) (-5 *2 (-625 *3)))) (-3733 (*1 *2) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-144)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) (-5 *2 (-625 *3))))) -(-13 (-315 |t#1| |t#2|) (-10 -8 (-15 -1994 ((-1164 $))) (-15 -3205 ((-1164 |t#1|) $)) (-15 -3205 ((-625 |t#1|) (-1164 $))) (-15 -1775 ($ (-1164 |t#1|))) (-15 -3948 ((-1164 |t#1|) $)) (-15 -3948 ($ (-1164 |t#1|))) (-15 -1765 ((-625 |t#1|))) (-15 -3733 (|t#1|)) (-15 -1764 ((-625 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-315 |#1| |#2|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3138 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) 27 T ELT) (((-3 (-478) #1#) $) 19 T ELT)) (-3137 ((|#2| $) NIL T ELT) (((-343 (-478)) $) 24 T ELT) (((-478) $) 14 T ELT)) (-3922 (($ |#2|) NIL T ELT) (($ (-343 (-478))) 22 T ELT) (($ (-478)) 11 T ELT))) -(((-347 |#1| |#2|) (-10 -7 (-15 -3922 (|#1| (-478))) (-15 -3138 ((-3 (-478) #1="failed") |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3922 (|#1| |#2|))) (-348 |#2|) (-1114)) (T -347)) -NIL -((-3138 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-343 (-478)) #1#) $) 16 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) 13 (|has| |#1| (-943 (-478))) ELT)) (-3137 ((|#1| $) 8 T ELT) (((-343 (-478)) $) 17 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 14 (|has| |#1| (-943 (-478))) ELT)) (-3922 (($ |#1|) 6 T ELT) (($ (-343 (-478))) 15 (|has| |#1| (-943 (-343 (-478)))) ELT) (($ (-478)) 12 (|has| |#1| (-943 (-478))) ELT))) -(((-348 |#1|) (-111) (-1114)) (T -348)) -NIL -(-13 (-943 |t#1|) (-10 -7 (IF (|has| |t#1| (-943 (-478))) (-6 (-943 (-478))) |%noBranch|) (IF (|has| |t#1| (-943 (-343 (-478)))) (-6 (-943 (-343 (-478)))) |%noBranch|))) -(((-550 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-550 (-478)) |has| |#1| (-943 (-478))) ((-550 |#1|) . T) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ "failed") $) NIL T ELT)) (-1766 ((|#4| (-687) (-1164 |#4|)) 55 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2979 (((-1164 |#4|) $) 15 T ELT)) (-3113 ((|#2| $) 53 T ELT)) (-1767 (($ $) 156 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 103 T ELT)) (-1952 (($ (-1164 |#4|)) 102 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2978 ((|#1| $) 16 T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2415 (($ $ $) NIL T ELT)) (-3922 (((-765) $) 147 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 |#4|) $) 140 T ELT)) (-2647 (($) 11 T CONST)) (-3037 (((-83) $ $) 39 T ELT)) (-3925 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-349 |#1| |#2| |#3| |#4|) (-13 (-406) (-10 -8 (-15 -1952 ($ (-1164 |#4|))) (-15 -1994 ((-1164 |#4|) $)) (-15 -3113 (|#2| $)) (-15 -2979 ((-1164 |#4|) $)) (-15 -2978 (|#1| $)) (-15 -1767 ($ $)) (-15 -1766 (|#4| (-687) (-1164 |#4|))))) (-254) (-897 |#1|) (-1140 |#2|) (-13 (-346 |#2| |#3|) (-943 |#2|))) (T -349)) -((-1952 (*1 *1 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))) (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-4 *3 (-254)) (-5 *1 (-349 *3 *4 *5 *6)))) (-1994 (*1 *2 *1) (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *6)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))))) (-3113 (*1 *2 *1) (-12 (-4 *4 (-1140 *2)) (-4 *2 (-897 *3)) (-5 *1 (-349 *3 *2 *4 *5)) (-4 *3 (-254)) (-4 *5 (-13 (-346 *2 *4) (-943 *2))))) (-2979 (*1 *2 *1) (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *6)) (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))))) (-2978 (*1 *2 *1) (-12 (-4 *3 (-897 *2)) (-4 *4 (-1140 *3)) (-4 *2 (-254)) (-5 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-13 (-346 *3 *4) (-943 *3))))) (-1767 (*1 *1 *1) (-12 (-4 *2 (-254)) (-4 *3 (-897 *2)) (-4 *4 (-1140 *3)) (-5 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-13 (-346 *3 *4) (-943 *3))))) (-1766 (*1 *2 *3 *4) (-12 (-5 *3 (-687)) (-5 *4 (-1164 *2)) (-4 *5 (-254)) (-4 *6 (-897 *5)) (-4 *2 (-13 (-346 *6 *7) (-943 *6))) (-5 *1 (-349 *5 *6 *7 *2)) (-4 *7 (-1140 *6))))) -((-3934 (((-349 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-349 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-350 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3934 ((-349 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-349 |#1| |#2| |#3| |#4|)))) (-254) (-897 |#1|) (-1140 |#2|) (-13 (-346 |#2| |#3|) (-943 |#2|)) (-254) (-897 |#5|) (-1140 |#6|) (-13 (-346 |#6| |#7|) (-943 |#6|))) (T -350)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-349 *5 *6 *7 *8)) (-4 *5 (-254)) (-4 *6 (-897 *5)) (-4 *7 (-1140 *6)) (-4 *8 (-13 (-346 *6 *7) (-943 *6))) (-4 *9 (-254)) (-4 *10 (-897 *9)) (-4 *11 (-1140 *10)) (-5 *2 (-349 *9 *10 *11 *12)) (-5 *1 (-350 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-346 *10 *11) (-943 *10)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ "failed") $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3113 ((|#2| $) 69 T ELT)) (-1768 (($ (-1164 |#4|)) 27 T ELT) (($ (-349 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-943 |#2|)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 37 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 |#4|) $) 28 T ELT)) (-2647 (($) 26 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ $ $) 80 T ELT))) -(((-351 |#1| |#2| |#3| |#4| |#5|) (-13 (-658) (-10 -8 (-15 -1994 ((-1164 |#4|) $)) (-15 -3113 (|#2| $)) (-15 -1768 ($ (-1164 |#4|))) (IF (|has| |#4| (-943 |#2|)) (-15 -1768 ($ (-349 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-254) (-897 |#1|) (-1140 |#2|) (-346 |#2| |#3|) (-1164 |#4|)) (T -351)) -((-1994 (*1 *2 *1) (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *6)) (-5 *1 (-351 *3 *4 *5 *6 *7)) (-4 *6 (-346 *4 *5)) (-14 *7 *2))) (-3113 (*1 *2 *1) (-12 (-4 *4 (-1140 *2)) (-4 *2 (-897 *3)) (-5 *1 (-351 *3 *2 *4 *5 *6)) (-4 *3 (-254)) (-4 *5 (-346 *2 *4)) (-14 *6 (-1164 *5)))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-1164 *6)) (-4 *6 (-346 *4 *5)) (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-4 *3 (-254)) (-5 *1 (-351 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1768 (*1 *1 *2) (-12 (-5 *2 (-349 *3 *4 *5 *6)) (-4 *6 (-943 *4)) (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-4 *6 (-346 *4 *5)) (-14 *7 (-1164 *6)) (-5 *1 (-351 *3 *4 *5 *6 *7))))) -((-3934 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-352 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#3| (-1 |#4| |#2|) |#1|))) (-354 |#2|) (-144) (-354 |#4|) (-144)) (T -352)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-354 *6)) (-5 *1 (-352 *4 *5 *2 *6)) (-4 *4 (-354 *5))))) -((-1755 (((-3 $ #1="failed")) 99 T ELT)) (-3204 (((-1164 (-625 |#2|)) (-1164 $)) NIL T ELT) (((-1164 (-625 |#2|))) 104 T ELT)) (-1889 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) 97 T ELT)) (-1686 (((-3 $ #1#)) 96 T ELT)) (-1771 (((-625 |#2|) (-1164 $)) NIL T ELT) (((-625 |#2|)) 115 T ELT)) (-1769 (((-625 |#2|) $ (-1164 $)) NIL T ELT) (((-625 |#2|) $) 123 T ELT)) (-1883 (((-1070 (-850 |#2|))) 64 T ELT)) (-1773 ((|#2| (-1164 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1775 (($ (-1164 |#2|) (-1164 $)) NIL T ELT) (($ (-1164 |#2|)) 125 T ELT)) (-1890 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) 95 T ELT)) (-1687 (((-3 $ #1#)) 87 T ELT)) (-1772 (((-625 |#2|) (-1164 $)) NIL T ELT) (((-625 |#2|)) 113 T ELT)) (-1770 (((-625 |#2|) $ (-1164 $)) NIL T ELT) (((-625 |#2|) $) 121 T ELT)) (-1887 (((-1070 (-850 |#2|))) 63 T ELT)) (-1774 ((|#2| (-1164 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3205 (((-1164 |#2|) $ (-1164 $)) NIL T ELT) (((-625 |#2|) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 |#2|) $) 124 T ELT) (((-625 |#2|) (-1164 $)) 133 T ELT)) (-3948 (((-1164 |#2|) $) 109 T ELT) (($ (-1164 |#2|)) 111 T ELT)) (-1875 (((-578 (-850 |#2|)) (-1164 $)) NIL T ELT) (((-578 (-850 |#2|))) 107 T ELT)) (-2525 (($ (-625 |#2|) $) 103 T ELT))) -(((-353 |#1| |#2|) (-10 -7 (-15 -2525 (|#1| (-625 |#2|) |#1|)) (-15 -1883 ((-1070 (-850 |#2|)))) (-15 -1887 ((-1070 (-850 |#2|)))) (-15 -1769 ((-625 |#2|) |#1|)) (-15 -1770 ((-625 |#2|) |#1|)) (-15 -1771 ((-625 |#2|))) (-15 -1772 ((-625 |#2|))) (-15 -1773 (|#2|)) (-15 -1774 (|#2|)) (-15 -3948 (|#1| (-1164 |#2|))) (-15 -3948 ((-1164 |#2|) |#1|)) (-15 -1775 (|#1| (-1164 |#2|))) (-15 -1875 ((-578 (-850 |#2|)))) (-15 -3204 ((-1164 (-625 |#2|)))) (-15 -3205 ((-625 |#2|) (-1164 |#1|))) (-15 -3205 ((-1164 |#2|) |#1|)) (-15 -1755 ((-3 |#1| #1="failed"))) (-15 -1686 ((-3 |#1| #1#))) (-15 -1687 ((-3 |#1| #1#))) (-15 -1889 ((-3 (-2 (|:| |particular| |#1|) (|:| -1994 (-578 |#1|))) #1#))) (-15 -1890 ((-3 (-2 (|:| |particular| |#1|) (|:| -1994 (-578 |#1|))) #1#))) (-15 -1771 ((-625 |#2|) (-1164 |#1|))) (-15 -1772 ((-625 |#2|) (-1164 |#1|))) (-15 -1773 (|#2| (-1164 |#1|))) (-15 -1774 (|#2| (-1164 |#1|))) (-15 -1775 (|#1| (-1164 |#2|) (-1164 |#1|))) (-15 -3205 ((-625 |#2|) (-1164 |#1|) (-1164 |#1|))) (-15 -3205 ((-1164 |#2|) |#1| (-1164 |#1|))) (-15 -1769 ((-625 |#2|) |#1| (-1164 |#1|))) (-15 -1770 ((-625 |#2|) |#1| (-1164 |#1|))) (-15 -3204 ((-1164 (-625 |#2|)) (-1164 |#1|))) (-15 -1875 ((-578 (-850 |#2|)) (-1164 |#1|)))) (-354 |#2|) (-144)) (T -353)) -((-3204 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1164 (-625 *4))) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1875 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-578 (-850 *4))) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1774 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-353 *3 *2)) (-4 *3 (-354 *2)))) (-1773 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-353 *3 *2)) (-4 *3 (-354 *2)))) (-1772 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-625 *4)) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1771 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-625 *4)) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1887 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1070 (-850 *4))) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4)))) (-1883 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1070 (-850 *4))) (-5 *1 (-353 *3 *4)) (-4 *3 (-354 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1755 (((-3 $ #1="failed")) 47 (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3204 (((-1164 (-625 |#1|)) (-1164 $)) 88 T ELT) (((-1164 (-625 |#1|))) 114 T ELT)) (-1712 (((-1164 $)) 91 T ELT)) (-3700 (($) 22 T CONST)) (-1889 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) 50 (|has| |#1| (-489)) ELT)) (-1686 (((-3 $ #1#)) 48 (|has| |#1| (-489)) ELT)) (-1771 (((-625 |#1|) (-1164 $)) 75 T ELT) (((-625 |#1|)) 106 T ELT)) (-1710 ((|#1| $) 84 T ELT)) (-1769 (((-625 |#1|) $ (-1164 $)) 86 T ELT) (((-625 |#1|) $) 104 T ELT)) (-2386 (((-3 $ #1#) $) 55 (|has| |#1| (-489)) ELT)) (-1883 (((-1070 (-850 |#1|))) 102 (|has| |#1| (-308)) ELT)) (-2389 (($ $ (-823)) 36 T ELT)) (-1708 ((|#1| $) 82 T ELT)) (-1688 (((-1070 |#1|) $) 52 (|has| |#1| (-489)) ELT)) (-1773 ((|#1| (-1164 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1706 (((-1070 |#1|) $) 73 T ELT)) (-1700 (((-83)) 67 T ELT)) (-1775 (($ (-1164 |#1|) (-1164 $)) 79 T ELT) (($ (-1164 |#1|)) 112 T ELT)) (-3444 (((-3 $ #1#) $) 57 (|has| |#1| (-489)) ELT)) (-3090 (((-823)) 90 T ELT)) (-1697 (((-83)) 64 T ELT)) (-2413 (($ $ (-823)) 43 T ELT)) (-1693 (((-83)) 60 T ELT)) (-1691 (((-83)) 58 T ELT)) (-1695 (((-83)) 62 T ELT)) (-1890 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) 51 (|has| |#1| (-489)) ELT)) (-1687 (((-3 $ #1#)) 49 (|has| |#1| (-489)) ELT)) (-1772 (((-625 |#1|) (-1164 $)) 76 T ELT) (((-625 |#1|)) 107 T ELT)) (-1711 ((|#1| $) 85 T ELT)) (-1770 (((-625 |#1|) $ (-1164 $)) 87 T ELT) (((-625 |#1|) $) 105 T ELT)) (-2387 (((-3 $ #1#) $) 56 (|has| |#1| (-489)) ELT)) (-1887 (((-1070 (-850 |#1|))) 103 (|has| |#1| (-308)) ELT)) (-2388 (($ $ (-823)) 37 T ELT)) (-1709 ((|#1| $) 83 T ELT)) (-1689 (((-1070 |#1|) $) 53 (|has| |#1| (-489)) ELT)) (-1774 ((|#1| (-1164 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1707 (((-1070 |#1|) $) 74 T ELT)) (-1701 (((-83)) 68 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1692 (((-83)) 59 T ELT)) (-1694 (((-83)) 61 T ELT)) (-1696 (((-83)) 63 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1699 (((-83)) 66 T ELT)) (-3776 ((|#1| $ (-478)) 118 T ELT)) (-3205 (((-1164 |#1|) $ (-1164 $)) 81 T ELT) (((-625 |#1|) (-1164 $) (-1164 $)) 80 T ELT) (((-1164 |#1|) $) 116 T ELT) (((-625 |#1|) (-1164 $)) 115 T ELT)) (-3948 (((-1164 |#1|) $) 111 T ELT) (($ (-1164 |#1|)) 110 T ELT)) (-1875 (((-578 (-850 |#1|)) (-1164 $)) 89 T ELT) (((-578 (-850 |#1|))) 113 T ELT)) (-2415 (($ $ $) 33 T ELT)) (-1705 (((-83)) 72 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-1994 (((-1164 $)) 117 T ELT)) (-1690 (((-578 (-1164 |#1|))) 54 (|has| |#1| (-489)) ELT)) (-2416 (($ $ $ $) 34 T ELT)) (-1703 (((-83)) 70 T ELT)) (-2525 (($ (-625 |#1|) $) 101 T ELT)) (-2414 (($ $ $) 32 T ELT)) (-1704 (((-83)) 71 T ELT)) (-1702 (((-83)) 69 T ELT)) (-1698 (((-83)) 65 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-354 |#1|) (-111) (-144)) (T -354)) -((-1994 (*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1164 *1)) (-4 *1 (-354 *3)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1164 *3)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-354 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) (-3204 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1164 (-625 *3))))) (-1875 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-578 (-850 *3))))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-144)) (-4 *1 (-354 *3)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1164 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-144)) (-4 *1 (-354 *3)))) (-1774 (*1 *2) (-12 (-4 *1 (-354 *2)) (-4 *2 (-144)))) (-1773 (*1 *2) (-12 (-4 *1 (-354 *2)) (-4 *2 (-144)))) (-1772 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3)))) (-1771 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3)))) (-1887 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-4 *3 (-308)) (-5 *2 (-1070 (-850 *3))))) (-1883 (*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-4 *3 (-308)) (-5 *2 (-1070 (-850 *3))))) (-2525 (*1 *1 *2 *1) (-12 (-5 *2 (-625 *3)) (-4 *1 (-354 *3)) (-4 *3 (-144))))) -(-13 (-312 |t#1|) (-238 (-478) |t#1|) (-10 -8 (-15 -1994 ((-1164 $))) (-15 -3205 ((-1164 |t#1|) $)) (-15 -3205 ((-625 |t#1|) (-1164 $))) (-15 -3204 ((-1164 (-625 |t#1|)))) (-15 -1875 ((-578 (-850 |t#1|)))) (-15 -1775 ($ (-1164 |t#1|))) (-15 -3948 ((-1164 |t#1|) $)) (-15 -3948 ($ (-1164 |t#1|))) (-15 -1774 (|t#1|)) (-15 -1773 (|t#1|)) (-15 -1772 ((-625 |t#1|))) (-15 -1771 ((-625 |t#1|))) (-15 -1770 ((-625 |t#1|) $)) (-15 -1769 ((-625 |t#1|) $)) (IF (|has| |t#1| (-308)) (PROGN (-15 -1887 ((-1070 (-850 |t#1|)))) (-15 -1883 ((-1070 (-850 |t#1|))))) |%noBranch|) (-15 -2525 ($ (-625 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-238 (-478) |#1|) . T) ((-312 |#1|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-652) . T) ((-676 |#1|) . T) ((-678) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-3115 (((-341 |#1|) (-341 |#1|) (-1 (-341 |#1|) |#1|)) 28 T ELT)) (-1776 (((-341 |#1|) (-341 |#1|) (-341 |#1|)) 17 T ELT))) -(((-355 |#1|) (-10 -7 (-15 -3115 ((-341 |#1|) (-341 |#1|) (-1 (-341 |#1|) |#1|))) (-15 -1776 ((-341 |#1|) (-341 |#1|) (-341 |#1|)))) (-489)) (T -355)) -((-1776 (*1 *2 *2 *2) (-12 (-5 *2 (-341 *3)) (-4 *3 (-489)) (-5 *1 (-355 *3)))) (-3115 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-341 *4) *4)) (-4 *4 (-489)) (-5 *2 (-341 *4)) (-5 *1 (-355 *4))))) -((-3063 (((-578 (-1075)) $) 81 T ELT)) (-3065 (((-343 (-1070 $)) $ (-545 $)) 313 T ELT)) (-1587 (($ $ (-245 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) 277 T ELT)) (-3138 (((-3 (-545 $) #1="failed") $) NIL T ELT) (((-3 (-1075) #1#) $) 84 T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-343 (-850 |#2|)) #1#) $) 363 T ELT) (((-3 (-850 |#2|) #1#) $) 275 T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3137 (((-545 $) $) NIL T ELT) (((-1075) $) 28 T ELT) (((-478) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-343 (-850 |#2|)) $) 345 T ELT) (((-850 |#2|) $) 272 T ELT) (((-343 (-478)) $) NIL T ELT)) (-3571 (((-84) (-84)) 47 T ELT)) (-2977 (($ $) 99 T ELT)) (-1585 (((-3 (-545 $) #1#) $) 268 T ELT)) (-1584 (((-578 (-545 $)) $) 269 T ELT)) (-2804 (((-3 (-578 $) #1#) $) 287 T ELT)) (-2806 (((-3 (-2 (|:| |val| $) (|:| -2383 (-478))) #1#) $) 294 T ELT)) (-2803 (((-3 (-578 $) #1#) $) 285 T ELT)) (-1777 (((-3 (-2 (|:| -3930 (-478)) (|:| |var| (-545 $))) #1#) $) 304 T ELT)) (-2805 (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) #1#) $ (-84)) 255 T ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) #1#) $ (-1075)) 257 T ELT)) (-1780 (((-83) $) 17 T ELT)) (-1779 ((|#2| $) 19 T ELT)) (-3744 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) 276 T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ (-578 $)))) 109 T ELT) (($ $ (-1075) (-1 $ (-578 $))) NIL T ELT) (($ $ (-1075) (-1 $ $)) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-578 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT) (($ $ (-1075)) 62 T ELT) (($ $ (-578 (-1075))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-84) $ (-1075)) 65 T ELT) (($ $ (-578 (-84)) (-578 $) (-1075)) 72 T ELT) (($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ $))) 120 T ELT) (($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ (-578 $)))) 282 T ELT) (($ $ (-1075) (-687) (-1 $ (-578 $))) 105 T ELT) (($ $ (-1075) (-687) (-1 $ $)) 104 T ELT)) (-3776 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-578 $)) 119 T ELT)) (-3734 (($ $ (-1075)) 278 T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT)) (-2976 (($ $) 324 T ELT)) (-3948 (((-793 (-478)) $) 297 T ELT) (((-793 (-323)) $) 301 T ELT) (($ (-341 $)) 359 T ELT) (((-467) $) NIL T ELT)) (-3922 (((-765) $) 279 T ELT) (($ (-545 $)) 93 T ELT) (($ (-1075)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1025 |#2| (-545 $))) NIL T ELT) (($ (-343 |#2|)) 329 T ELT) (($ (-850 (-343 |#2|))) 368 T ELT) (($ (-343 (-850 (-343 |#2|)))) 341 T ELT) (($ (-343 (-850 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-850 |#2|)) 216 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) 373 T ELT)) (-3107 (((-687)) 88 T CONST)) (-2236 (((-83) (-84)) 42 T ELT)) (-1778 (($ (-1075) $) 31 T ELT) (($ (-1075) $ $) 32 T ELT) (($ (-1075) $ $ $) 33 T ELT) (($ (-1075) $ $ $ $) 34 T ELT) (($ (-1075) (-578 $)) 39 T ELT)) (* (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT))) -(((-356 |#1| |#2|) (-10 -7 (-15 * (|#1| (-823) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3138 ((-3 (-343 (-478)) #1="failed") |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3922 (|#1| (-478))) (-15 -3107 ((-687)) -3928) (-15 * (|#1| |#2| |#1|)) (-15 -3948 ((-467) |#1|)) (-15 -3922 (|#1| (-850 |#2|))) (-15 -3138 ((-3 (-850 |#2|) #1#) |#1|)) (-15 -3137 ((-850 |#2|) |#1|)) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075))) (-15 * (|#1| |#1| |#2|)) (-15 -3922 (|#1| |#1|)) (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 -3922 (|#1| (-343 (-850 |#2|)))) (-15 -3138 ((-3 (-343 (-850 |#2|)) #1#) |#1|)) (-15 -3137 ((-343 (-850 |#2|)) |#1|)) (-15 -3065 ((-343 (-1070 |#1|)) |#1| (-545 |#1|))) (-15 -3922 (|#1| (-343 (-850 (-343 |#2|))))) (-15 -3922 (|#1| (-850 (-343 |#2|)))) (-15 -3922 (|#1| (-343 |#2|))) (-15 -2976 (|#1| |#1|)) (-15 -3948 (|#1| (-341 |#1|))) (-15 -3744 (|#1| |#1| (-1075) (-687) (-1 |#1| |#1|))) (-15 -3744 (|#1| |#1| (-1075) (-687) (-1 |#1| (-578 |#1|)))) (-15 -3744 (|#1| |#1| (-578 (-1075)) (-578 (-687)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3744 (|#1| |#1| (-578 (-1075)) (-578 (-687)) (-578 (-1 |#1| |#1|)))) (-15 -2806 ((-3 (-2 (|:| |val| |#1|) (|:| -2383 (-478))) #1#) |#1|)) (-15 -2805 ((-3 (-2 (|:| |var| (-545 |#1|)) (|:| -2383 (-478))) #1#) |#1| (-1075))) (-15 -2805 ((-3 (-2 (|:| |var| (-545 |#1|)) (|:| -2383 (-478))) #1#) |#1| (-84))) (-15 -2977 (|#1| |#1|)) (-15 -3922 (|#1| (-1025 |#2| (-545 |#1|)))) (-15 -1777 ((-3 (-2 (|:| -3930 (-478)) (|:| |var| (-545 |#1|))) #1#) |#1|)) (-15 -2803 ((-3 (-578 |#1|) #1#) |#1|)) (-15 -2805 ((-3 (-2 (|:| |var| (-545 |#1|)) (|:| -2383 (-478))) #1#) |#1|)) (-15 -2804 ((-3 (-578 |#1|) #1#) |#1|)) (-15 -3744 (|#1| |#1| (-578 (-84)) (-578 |#1|) (-1075))) (-15 -3744 (|#1| |#1| (-84) |#1| (-1075))) (-15 -3744 (|#1| |#1|)) (-15 -3744 (|#1| |#1| (-578 (-1075)))) (-15 -3744 (|#1| |#1| (-1075))) (-15 -1778 (|#1| (-1075) (-578 |#1|))) (-15 -1778 (|#1| (-1075) |#1| |#1| |#1| |#1|)) (-15 -1778 (|#1| (-1075) |#1| |#1| |#1|)) (-15 -1778 (|#1| (-1075) |#1| |#1|)) (-15 -1778 (|#1| (-1075) |#1|)) (-15 -3063 ((-578 (-1075)) |#1|)) (-15 -1779 (|#2| |#1|)) (-15 -1780 ((-83) |#1|)) (-15 -3922 (|#1| |#2|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3948 ((-793 (-323)) |#1|)) (-15 -3948 ((-793 (-478)) |#1|)) (-15 -3922 (|#1| (-1075))) (-15 -3138 ((-3 (-1075) #1#) |#1|)) (-15 -3137 ((-1075) |#1|)) (-15 -3744 (|#1| |#1| (-84) (-1 |#1| |#1|))) (-15 -3744 (|#1| |#1| (-84) (-1 |#1| (-578 |#1|)))) (-15 -3744 (|#1| |#1| (-578 (-84)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3744 (|#1| |#1| (-578 (-84)) (-578 (-1 |#1| |#1|)))) (-15 -3744 (|#1| |#1| (-1075) (-1 |#1| |#1|))) (-15 -3744 (|#1| |#1| (-1075) (-1 |#1| (-578 |#1|)))) (-15 -3744 (|#1| |#1| (-578 (-1075)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3744 (|#1| |#1| (-578 (-1075)) (-578 (-1 |#1| |#1|)))) (-15 -2236 ((-83) (-84))) (-15 -3571 ((-84) (-84))) (-15 -1584 ((-578 (-545 |#1|)) |#1|)) (-15 -1585 ((-3 (-545 |#1|) #1#) |#1|)) (-15 -1587 (|#1| |#1| (-578 (-545 |#1|)) (-578 |#1|))) (-15 -1587 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -1587 (|#1| |#1| (-245 |#1|))) (-15 -3776 (|#1| (-84) (-578 |#1|))) (-15 -3776 (|#1| (-84) |#1| |#1| |#1| |#1|)) (-15 -3776 (|#1| (-84) |#1| |#1| |#1|)) (-15 -3776 (|#1| (-84) |#1| |#1|)) (-15 -3776 (|#1| (-84) |#1|)) (-15 -3744 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3744 (|#1| |#1| |#1| |#1|)) (-15 -3744 (|#1| |#1| (-245 |#1|))) (-15 -3744 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -3744 (|#1| |#1| (-578 (-545 |#1|)) (-578 |#1|))) (-15 -3744 (|#1| |#1| (-545 |#1|) |#1|)) (-15 -3922 (|#1| (-545 |#1|))) (-15 -3138 ((-3 (-545 |#1|) #1#) |#1|)) (-15 -3137 ((-545 |#1|) |#1|)) (-15 -3922 ((-765) |#1|))) (-357 |#2|) (-1003)) (T -356)) -((-3571 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *4 (-1003)) (-5 *1 (-356 *3 *4)) (-4 *3 (-357 *4)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *5 (-1003)) (-5 *2 (-83)) (-5 *1 (-356 *4 *5)) (-4 *4 (-357 *5)))) (-3107 (*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-687)) (-5 *1 (-356 *3 *4)) (-4 *3 (-357 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 129 (|has| |#1| (-25)) ELT)) (-3063 (((-578 (-1075)) $) 220 T ELT)) (-3065 (((-343 (-1070 $)) $ (-545 $)) 188 (|has| |#1| (-489)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 160 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 161 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 163 (|has| |#1| (-489)) ELT)) (-1583 (((-578 (-545 $)) $) 42 T ELT)) (-1295 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1587 (($ $ (-245 $)) 54 T ELT) (($ $ (-578 (-245 $))) 53 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 52 T ELT)) (-3751 (($ $) 180 (|has| |#1| (-489)) ELT)) (-3947 (((-341 $) $) 181 (|has| |#1| (-489)) ELT)) (-1591 (((-83) $ $) 171 (|has| |#1| (-489)) ELT)) (-3700 (($) 117 (OR (|has| |#1| (-1013)) (|has| |#1| (-25))) CONST)) (-3138 (((-3 (-545 $) #1="failed") $) 67 T ELT) (((-3 (-1075) #1#) $) 233 T ELT) (((-3 (-478) #1#) $) 227 (|has| |#1| (-943 (-478))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-343 (-850 |#1|)) #1#) $) 186 (|has| |#1| (-489)) ELT) (((-3 (-850 |#1|) #1#) $) 136 (|has| |#1| (-954)) ELT) (((-3 (-343 (-478)) #1#) $) 111 (OR (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3137 (((-545 $) $) 68 T ELT) (((-1075) $) 234 T ELT) (((-478) $) 226 (|has| |#1| (-943 (-478))) ELT) ((|#1| $) 225 T ELT) (((-343 (-850 |#1|)) $) 187 (|has| |#1| (-489)) ELT) (((-850 |#1|) $) 137 (|has| |#1| (-954)) ELT) (((-343 (-478)) $) 112 (OR (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2544 (($ $ $) 175 (|has| |#1| (-489)) ELT)) (-2261 (((-625 (-478)) (-625 $)) 153 (-2542 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 152 (-2542 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 151 (|has| |#1| (-954)) ELT) (((-625 |#1|) (-625 $)) 150 (|has| |#1| (-954)) ELT)) (-3444 (((-3 $ "failed") $) 119 (|has| |#1| (-1013)) ELT)) (-2543 (($ $ $) 174 (|has| |#1| (-489)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 169 (|has| |#1| (-489)) ELT)) (-3699 (((-83) $) 182 (|has| |#1| (-489)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 229 (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 228 (|has| |#1| (-789 (-323))) ELT)) (-2553 (($ $) 49 T ELT) (($ (-578 $)) 48 T ELT)) (-1582 (((-578 (-84)) $) 41 T ELT)) (-3571 (((-84) (-84)) 40 T ELT)) (-2392 (((-83) $) 118 (|has| |#1| (-1013)) ELT)) (-2654 (((-83) $) 20 (|has| $ (-943 (-478))) ELT)) (-2977 (($ $) 203 (|has| |#1| (-954)) ELT)) (-2979 (((-1025 |#1| (-545 $)) $) 204 (|has| |#1| (-954)) ELT)) (-1588 (((-3 (-578 $) #2="failed") (-578 $) $) 178 (|has| |#1| (-489)) ELT)) (-1580 (((-1070 $) (-545 $)) 23 (|has| $ (-954)) ELT)) (-3934 (($ (-1 $ $) (-545 $)) 34 T ELT)) (-1585 (((-3 (-545 $) "failed") $) 44 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 155 (-2542 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 154 (-2542 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 149 (|has| |#1| (-954)) ELT) (((-625 |#1|) (-1164 $)) 148 (|has| |#1| (-954)) ELT)) (-1874 (($ (-578 $)) 167 (|has| |#1| (-489)) ELT) (($ $ $) 166 (|has| |#1| (-489)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-1584 (((-578 (-545 $)) $) 43 T ELT)) (-2217 (($ (-84) $) 36 T ELT) (($ (-84) (-578 $)) 35 T ELT)) (-2804 (((-3 (-578 $) "failed") $) 209 (|has| |#1| (-1013)) ELT)) (-2806 (((-3 (-2 (|:| |val| $) (|:| -2383 (-478))) "failed") $) 200 (|has| |#1| (-954)) ELT)) (-2803 (((-3 (-578 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1777 (((-3 (-2 (|:| -3930 (-478)) (|:| |var| (-545 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2805 (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) "failed") $) 208 (|has| |#1| (-1013)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) "failed") $ (-84)) 202 (|has| |#1| (-954)) ELT) (((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) "failed") $ (-1075)) 201 (|has| |#1| (-954)) ELT)) (-2613 (((-83) $ (-84)) 38 T ELT) (((-83) $ (-1075)) 37 T ELT)) (-2464 (($ $) 121 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT)) (-2583 (((-687) $) 45 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1780 (((-83) $) 222 T ELT)) (-1779 ((|#1| $) 221 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 168 (|has| |#1| (-489)) ELT)) (-3125 (($ (-578 $)) 165 (|has| |#1| (-489)) ELT) (($ $ $) 164 (|has| |#1| (-489)) ELT)) (-1581 (((-83) $ $) 33 T ELT) (((-83) $ (-1075)) 32 T ELT)) (-3708 (((-341 $) $) 179 (|has| |#1| (-489)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-489)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 176 (|has| |#1| (-489)) ELT)) (-3443 (((-3 $ "failed") $ $) 159 (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 170 (|has| |#1| (-489)) ELT)) (-2655 (((-83) $) 21 (|has| $ (-943 (-478))) ELT)) (-3744 (($ $ (-545 $) $) 65 T ELT) (($ $ (-578 (-545 $)) (-578 $)) 64 T ELT) (($ $ (-578 (-245 $))) 63 T ELT) (($ $ (-245 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-578 $) (-578 $)) 60 T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ $))) 31 T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ (-578 $)))) 30 T ELT) (($ $ (-1075) (-1 $ (-578 $))) 29 T ELT) (($ $ (-1075) (-1 $ $)) 28 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) 27 T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) 26 T ELT) (($ $ (-84) (-1 $ (-578 $))) 25 T ELT) (($ $ (-84) (-1 $ $)) 24 T ELT) (($ $ (-1075)) 214 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1075))) 213 (|has| |#1| (-548 (-467))) ELT) (($ $) 212 (|has| |#1| (-548 (-467))) ELT) (($ $ (-84) $ (-1075)) 211 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-84)) (-578 $) (-1075)) 210 (|has| |#1| (-548 (-467))) ELT) (($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ $))) 199 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ (-578 $)))) 198 (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687) (-1 $ (-578 $))) 197 (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687) (-1 $ $)) 196 (|has| |#1| (-954)) ELT)) (-1590 (((-687) $) 172 (|has| |#1| (-489)) ELT)) (-3776 (($ (-84) $) 59 T ELT) (($ (-84) $ $) 58 T ELT) (($ (-84) $ $ $) 57 T ELT) (($ (-84) $ $ $ $) 56 T ELT) (($ (-84) (-578 $)) 55 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 173 (|has| |#1| (-489)) ELT)) (-1586 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3734 (($ $ (-1075)) 146 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075))) 144 (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687)) 143 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 142 (|has| |#1| (-954)) ELT)) (-2976 (($ $) 193 (|has| |#1| (-489)) ELT)) (-2978 (((-1025 |#1| (-545 $)) $) 194 (|has| |#1| (-489)) ELT)) (-3167 (($ $) 22 (|has| $ (-954)) ELT)) (-3948 (((-793 (-478)) $) 231 (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) 230 (|has| |#1| (-548 (-793 (-323)))) ELT) (($ (-341 $)) 195 (|has| |#1| (-489)) ELT) (((-467) $) 113 (|has| |#1| (-548 (-467))) ELT)) (-2990 (($ $ $) 124 (|has| |#1| (-406)) ELT)) (-2415 (($ $ $) 125 (|has| |#1| (-406)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-545 $)) 66 T ELT) (($ (-1075)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1025 |#1| (-545 $))) 205 (|has| |#1| (-954)) ELT) (($ (-343 |#1|)) 191 (|has| |#1| (-489)) ELT) (($ (-850 (-343 |#1|))) 190 (|has| |#1| (-489)) ELT) (($ (-343 (-850 (-343 |#1|)))) 189 (|has| |#1| (-489)) ELT) (($ (-343 (-850 |#1|))) 185 (|has| |#1| (-489)) ELT) (($ $) 158 (|has| |#1| (-489)) ELT) (($ (-850 |#1|)) 135 (|has| |#1| (-954)) ELT) (($ (-343 (-478))) 110 (OR (|has| |#1| (-489)) (-12 (|has| |#1| (-943 (-478))) (|has| |#1| (-489))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ (-478)) 109 (OR (|has| |#1| (-954)) (|has| |#1| (-943 (-478)))) ELT)) (-2683 (((-627 $) $) 156 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 138 (|has| |#1| (-954)) CONST)) (-2570 (($ $) 51 T ELT) (($ (-578 $)) 50 T ELT)) (-2236 (((-83) (-84)) 39 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 162 (|has| |#1| (-489)) ELT)) (-1778 (($ (-1075) $) 219 T ELT) (($ (-1075) $ $) 218 T ELT) (($ (-1075) $ $ $) 217 T ELT) (($ (-1075) $ $ $ $) 216 T ELT) (($ (-1075) (-578 $)) 215 T ELT)) (-2640 (($) 128 (|has| |#1| (-25)) CONST)) (-2647 (($) 116 (|has| |#1| (-1013)) CONST)) (-2650 (($ $ (-1075)) 145 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075))) 141 (|has| |#1| (-954)) ELT) (($ $ (-1075) (-687)) 140 (|has| |#1| (-954)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 139 (|has| |#1| (-954)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ (-1025 |#1| (-545 $)) (-1025 |#1| (-545 $))) 192 (|has| |#1| (-489)) ELT) (($ $ $) 122 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT)) (-3813 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3815 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-478)) 123 (OR (|has| |#1| (-406)) (|has| |#1| (-489))) ELT) (($ $ (-687)) 120 (|has| |#1| (-1013)) ELT) (($ $ (-823)) 115 (|has| |#1| (-1013)) ELT)) (* (($ (-343 (-478)) $) 184 (|has| |#1| (-489)) ELT) (($ $ (-343 (-478))) 183 (|has| |#1| (-489)) ELT) (($ $ |#1|) 157 (|has| |#1| (-144)) ELT) (($ |#1| $) 147 (|has| |#1| (-954)) ELT) (($ (-478) $) 132 (|has| |#1| (-21)) ELT) (($ (-687) $) 130 (|has| |#1| (-25)) ELT) (($ (-823) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1013)) ELT))) -(((-357 |#1|) (-111) (-1003)) (T -357)) -((-1780 (*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1003)) (-5 *2 (-83)))) (-1779 (*1 *2 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1003)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1003)) (-5 *2 (-578 (-1075))))) (-1778 (*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003)))) (-1778 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003)))) (-1778 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003)))) (-1778 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-578 *1)) (-4 *1 (-357 *4)) (-4 *4 (-1003)))) (-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003)) (-4 *3 (-548 (-467))))) (-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1075))) (-4 *1 (-357 *3)) (-4 *3 (-1003)) (-4 *3 (-548 (-467))))) (-3744 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1003)) (-4 *2 (-548 (-467))))) (-3744 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1075)) (-4 *1 (-357 *4)) (-4 *4 (-1003)) (-4 *4 (-548 (-467))))) (-3744 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 *1)) (-5 *4 (-1075)) (-4 *1 (-357 *5)) (-4 *5 (-1003)) (-4 *5 (-548 (-467))))) (-2804 (*1 *2 *1) (|partial| -12 (-4 *3 (-1013)) (-4 *3 (-1003)) (-5 *2 (-578 *1)) (-4 *1 (-357 *3)))) (-2805 (*1 *2 *1) (|partial| -12 (-4 *3 (-1013)) (-4 *3 (-1003)) (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2383 (-478)))) (-4 *1 (-357 *3)))) (-2803 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1003)) (-5 *2 (-578 *1)) (-4 *1 (-357 *3)))) (-1777 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1003)) (-5 *2 (-2 (|:| -3930 (-478)) (|:| |var| (-545 *1)))) (-4 *1 (-357 *3)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-1025 *3 (-545 *1))) (-4 *3 (-954)) (-4 *3 (-1003)) (-4 *1 (-357 *3)))) (-2979 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *3 (-1003)) (-5 *2 (-1025 *3 (-545 *1))) (-4 *1 (-357 *3)))) (-2977 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1003)) (-4 *2 (-954)))) (-2805 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-84)) (-4 *4 (-954)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2383 (-478)))) (-4 *1 (-357 *4)))) (-2805 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1075)) (-4 *4 (-954)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2383 (-478)))) (-4 *1 (-357 *4)))) (-2806 (*1 *2 *1) (|partial| -12 (-4 *3 (-954)) (-4 *3 (-1003)) (-5 *2 (-2 (|:| |val| *1) (|:| -2383 (-478)))) (-4 *1 (-357 *3)))) (-3744 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-578 (-687))) (-5 *4 (-578 (-1 *1 *1))) (-4 *1 (-357 *5)) (-4 *5 (-1003)) (-4 *5 (-954)))) (-3744 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-578 (-687))) (-5 *4 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-357 *5)) (-4 *5 (-1003)) (-4 *5 (-954)))) (-3744 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-687)) (-5 *4 (-1 *1 (-578 *1))) (-4 *1 (-357 *5)) (-4 *5 (-1003)) (-4 *5 (-954)))) (-3744 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1075)) (-5 *3 (-687)) (-5 *4 (-1 *1 *1)) (-4 *1 (-357 *5)) (-4 *5 (-1003)) (-4 *5 (-954)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-341 *1)) (-4 *1 (-357 *3)) (-4 *3 (-489)) (-4 *3 (-1003)))) (-2978 (*1 *2 *1) (-12 (-4 *3 (-489)) (-4 *3 (-1003)) (-5 *2 (-1025 *3 (-545 *1))) (-4 *1 (-357 *3)))) (-2976 (*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1003)) (-4 *2 (-489)))) (-3925 (*1 *1 *2 *2) (-12 (-5 *2 (-1025 *3 (-545 *1))) (-4 *3 (-489)) (-4 *3 (-1003)) (-4 *1 (-357 *3)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-343 *3)) (-4 *3 (-489)) (-4 *3 (-1003)) (-4 *1 (-357 *3)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-850 (-343 *3))) (-4 *3 (-489)) (-4 *3 (-1003)) (-4 *1 (-357 *3)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-343 (-850 (-343 *3)))) (-4 *3 (-489)) (-4 *3 (-1003)) (-4 *1 (-357 *3)))) (-3065 (*1 *2 *1 *3) (-12 (-5 *3 (-545 *1)) (-4 *1 (-357 *4)) (-4 *4 (-1003)) (-4 *4 (-489)) (-5 *2 (-343 (-1070 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-357 *3)) (-4 *3 (-1003)) (-4 *3 (-1013))))) -(-13 (-250) (-943 (-1075)) (-787 |t#1|) (-336 |t#1|) (-348 |t#1|) (-10 -8 (-15 -1780 ((-83) $)) (-15 -1779 (|t#1| $)) (-15 -3063 ((-578 (-1075)) $)) (-15 -1778 ($ (-1075) $)) (-15 -1778 ($ (-1075) $ $)) (-15 -1778 ($ (-1075) $ $ $)) (-15 -1778 ($ (-1075) $ $ $ $)) (-15 -1778 ($ (-1075) (-578 $))) (IF (|has| |t#1| (-548 (-467))) (PROGN (-6 (-548 (-467))) (-15 -3744 ($ $ (-1075))) (-15 -3744 ($ $ (-578 (-1075)))) (-15 -3744 ($ $)) (-15 -3744 ($ $ (-84) $ (-1075))) (-15 -3744 ($ $ (-578 (-84)) (-578 $) (-1075)))) |%noBranch|) (IF (|has| |t#1| (-1013)) (PROGN (-6 (-658)) (-15 ** ($ $ (-687))) (-15 -2804 ((-3 (-578 $) "failed") $)) (-15 -2805 ((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-406)) (-6 (-406)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2803 ((-3 (-578 $) "failed") $)) (-15 -1777 ((-3 (-2 (|:| -3930 (-478)) (|:| |var| (-545 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-954)) (PROGN (-6 (-954)) (-6 (-943 (-850 |t#1|))) (-6 (-802 (-1075))) (-6 (-322 |t#1|)) (-15 -3922 ($ (-1025 |t#1| (-545 $)))) (-15 -2979 ((-1025 |t#1| (-545 $)) $)) (-15 -2977 ($ $)) (-15 -2805 ((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) "failed") $ (-84))) (-15 -2805 ((-3 (-2 (|:| |var| (-545 $)) (|:| -2383 (-478))) "failed") $ (-1075))) (-15 -2806 ((-3 (-2 (|:| |val| $) (|:| -2383 (-478))) "failed") $)) (-15 -3744 ($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ $)))) (-15 -3744 ($ $ (-578 (-1075)) (-578 (-687)) (-578 (-1 $ (-578 $))))) (-15 -3744 ($ $ (-1075) (-687) (-1 $ (-578 $)))) (-15 -3744 ($ $ (-1075) (-687) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-6 (-308)) (-6 (-943 (-343 (-850 |t#1|)))) (-15 -3948 ($ (-341 $))) (-15 -2978 ((-1025 |t#1| (-545 $)) $)) (-15 -2976 ($ $)) (-15 -3925 ($ (-1025 |t#1| (-545 $)) (-1025 |t#1| (-545 $)))) (-15 -3922 ($ (-343 |t#1|))) (-15 -3922 ($ (-850 (-343 |t#1|)))) (-15 -3922 ($ (-343 (-850 (-343 |t#1|))))) (-15 -3065 ((-343 (-1070 $)) $ (-545 $))) (IF (|has| |t#1| (-943 (-478))) (-6 (-943 (-343 (-478)))) |%noBranch|)) |%noBranch|))) -(((-21) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-343 (-478))) |has| |#1| (-489)) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-489)) ((-80 |#1| |#1|) |has| |#1| (-144)) ((-80 $ $) |has| |#1| (-489)) ((-102) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-489))) ((-550 (-343 (-850 |#1|))) |has| |#1| (-489)) ((-550 (-478)) OR (|has| |#1| (-954)) (|has| |#1| (-943 (-478))) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-550 (-545 $)) . T) ((-550 (-850 |#1|)) |has| |#1| (-954)) ((-550 (-1075)) . T) ((-550 |#1|) . T) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) |has| |#1| (-489)) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478)))) ((-198) |has| |#1| (-489)) ((-242) |has| |#1| (-489)) ((-254) |has| |#1| (-489)) ((-256 $) . T) ((-250) . T) ((-308) |has| |#1| (-489)) ((-322 |#1|) |has| |#1| (-954)) ((-336 |#1|) . T) ((-348 |#1|) . T) ((-385) |has| |#1| (-489)) ((-406) |has| |#1| (-406)) ((-447 (-545 $) $) . T) ((-447 $ $) . T) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-489)) ((-583 (-478)) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-583 |#1|) OR (|has| |#1| (-954)) (|has| |#1| (-144))) ((-583 $) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-585 (-343 (-478))) |has| |#1| (-489)) ((-585 (-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ((-585 |#1|) OR (|has| |#1| (-954)) (|has| |#1| (-144))) ((-585 $) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-577 (-343 (-478))) |has| |#1| (-489)) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-575 (-478)) -12 (|has| |#1| (-575 (-478))) (|has| |#1| (-954))) ((-575 |#1|) |has| |#1| (-954)) ((-649 (-343 (-478))) |has| |#1| (-489)) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) OR (|has| |#1| (-1013)) (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-406)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-799 $ (-1075)) |has| |#1| (-954)) ((-802 (-1075)) |has| |#1| (-954)) ((-804 (-1075)) |has| |#1| (-954)) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-787 |#1|) . T) ((-825) |has| |#1| (-489)) ((-943 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (-12 (|has| |#1| (-489)) (|has| |#1| (-943 (-478))))) ((-943 (-343 (-850 |#1|))) |has| |#1| (-489)) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 (-545 $)) . T) ((-943 (-850 |#1|)) |has| |#1| (-954)) ((-943 (-1075)) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) |has| |#1| (-489)) ((-956 |#1|) |has| |#1| (-144)) ((-956 $) |has| |#1| (-489)) ((-961 (-343 (-478))) |has| |#1| (-489)) ((-961 |#1|) |has| |#1| (-144)) ((-961 $) |has| |#1| (-489)) ((-954) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-962) OR (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-954)) (|has| |#1| (-489)) (|has| |#1| (-406)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-1003) . T) ((-1114) . T) ((-1119) |has| |#1| (-489))) -((-3934 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-358 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#4| (-1 |#3| |#1|) |#2|))) (-954) (-357 |#1|) (-954) (-357 |#3|)) (T -358)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-357 *6)) (-5 *1 (-358 *5 *4 *6 *2)) (-4 *4 (-357 *5))))) -((-1784 ((|#2| |#2|) 182 T ELT)) (-1781 (((-3 (|:| |%expansion| (-260 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-83)) 60 T ELT))) -(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1781 ((-3 (|:| |%expansion| (-260 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-83))) (-15 -1784 (|#2| |#2|))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1100) (-357 |#1|)) (-1075) |#2|) (T -359)) -((-1784 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-359 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1100) (-357 *3))) (-14 *4 (-1075)) (-14 *5 *2))) (-1781 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (|:| |%expansion| (-260 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059)))))) (-5 *1 (-359 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) (-14 *6 (-1075)) (-14 *7 *3)))) -((-1784 ((|#2| |#2|) 105 T ELT)) (-1782 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-83) (-1059)) 52 T ELT)) (-1783 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-83) (-1059)) 169 T ELT))) -(((-360 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1782 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-83) (-1059))) (-15 -1783 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059))))) |#2| (-83) (-1059))) (-15 -1784 (|#2| |#2|))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1100) (-357 |#1|) (-10 -8 (-15 -3922 ($ |#3|)))) (-748) (-13 (-1143 |#2| |#3|) (-308) (-1100) (-10 -8 (-15 -3734 ($ $)) (-15 -3788 ($ $)))) (-889 |#4|) (-1075)) (T -360)) -((-1784 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-4 *2 (-13 (-27) (-1100) (-357 *3) (-10 -8 (-15 -3922 ($ *4))))) (-4 *4 (-748)) (-4 *5 (-13 (-1143 *2 *4) (-308) (-1100) (-10 -8 (-15 -3734 ($ $)) (-15 -3788 ($ $))))) (-5 *1 (-360 *3 *2 *4 *5 *6 *7)) (-4 *6 (-889 *5)) (-14 *7 (-1075)))) (-1783 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-83)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-4 *3 (-13 (-27) (-1100) (-357 *6) (-10 -8 (-15 -3922 ($ *7))))) (-4 *7 (-748)) (-4 *8 (-13 (-1143 *3 *7) (-308) (-1100) (-10 -8 (-15 -3734 ($ $)) (-15 -3788 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059)))))) (-5 *1 (-360 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1059)) (-4 *9 (-889 *8)) (-14 *10 (-1075)))) (-1782 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-83)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-4 *3 (-13 (-27) (-1100) (-357 *6) (-10 -8 (-15 -3922 ($ *7))))) (-4 *7 (-748)) (-4 *8 (-13 (-1143 *3 *7) (-308) (-1100) (-10 -8 (-15 -3734 ($ $)) (-15 -3788 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059)))))) (-5 *1 (-360 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1059)) (-4 *9 (-889 *8)) (-14 *10 (-1075))))) -((-1785 (($) 51 T ELT)) (-3214 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3216 (($ $ $) 46 T ELT)) (-3215 (((-83) $ $) 35 T ELT)) (-3117 (((-687)) 55 T ELT)) (-3219 (($ (-578 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2975 (($) 66 T ELT)) (-3221 (((-83) $ $) 15 T ELT)) (-2511 ((|#2| $) 77 T ELT)) (-2838 ((|#2| $) 75 T ELT)) (-1992 (((-823) $) 70 T ELT)) (-3218 (($ $ $) 42 T ELT)) (-2382 (($ (-823)) 60 T ELT)) (-3217 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) NIL T ELT) (((-687) |#2| $) 31 T ELT)) (-3507 (($ (-578 |#2|)) 27 T ELT)) (-1786 (($ $) 53 T ELT)) (-3922 (((-765) $) 40 T ELT)) (-1787 (((-687) $) 24 T ELT)) (-3220 (($ (-578 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3037 (((-83) $ $) 19 T ELT))) -(((-361 |#1| |#2|) (-10 -7 (-15 -3117 ((-687))) (-15 -2382 (|#1| (-823))) (-15 -1992 ((-823) |#1|)) (-15 -2975 (|#1|)) (-15 -2511 (|#2| |#1|)) (-15 -2838 (|#2| |#1|)) (-15 -1785 (|#1|)) (-15 -1786 (|#1| |#1|)) (-15 -1787 ((-687) |#1|)) (-15 -3037 ((-83) |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -3221 ((-83) |#1| |#1|)) (-15 -3220 (|#1|)) (-15 -3220 (|#1| (-578 |#2|))) (-15 -3219 (|#1|)) (-15 -3219 (|#1| (-578 |#2|))) (-15 -3218 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#2|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -3215 ((-83) |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| |#2|)) (-15 -3214 (|#1| |#2| |#1|)) (-15 -3507 (|#1| (-578 |#2|))) (-15 -1929 ((-687) |#2| |#1|)) (-15 -1929 ((-687) (-1 (-83) |#2|) |#1|))) (-362 |#2|) (-1003)) (T -361)) -((-3117 (*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-687)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))) -((-2548 (((-83) $ $) 19 T ELT)) (-1785 (($) 71 (|has| |#1| (-313)) ELT)) (-3214 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3216 (($ $ $) 82 T ELT)) (-3215 (((-83) $ $) 83 T ELT)) (-3117 (((-687)) 65 (|has| |#1| (-313)) ELT)) (-3219 (($ (-578 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1553 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-1336 (($ $) 62 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ |#1| $) 51 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3383 (($ |#1| $) 61 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3971)) ELT)) (-2975 (($) 68 (|has| |#1| (-313)) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3221 (((-83) $ $) 74 T ELT)) (-2511 ((|#1| $) 69 (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2838 ((|#1| $) 70 (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-1992 (((-823) $) 67 (|has| |#1| (-313)) ELT)) (-3222 (((-1059) $) 22 T ELT)) (-3218 (($ $ $) 79 T ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT)) (-2382 (($ (-823)) 66 (|has| |#1| (-313)) ELT)) (-3223 (((-1020) $) 21 T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3217 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1449 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 54 T ELT)) (-1786 (($ $) 72 (|has| |#1| (-313)) ELT)) (-3922 (((-765) $) 17 T ELT)) (-1787 (((-687) $) 73 T ELT)) (-3220 (($ (-578 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1249 (((-83) $ $) 20 T ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-362 |#1|) (-111) (-1003)) (T -362)) -((-1787 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1003)) (-5 *2 (-687)))) (-1786 (*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1003)) (-4 *2 (-313)))) (-1785 (*1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-313)) (-4 *2 (-1003)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1003)) (-4 *2 (-749)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1003)) (-4 *2 (-749))))) -(-13 (-181 |t#1|) (-1001 |t#1|) (-10 -8 (-6 -3971) (-15 -1787 ((-687) $)) (IF (|has| |t#1| (-313)) (PROGN (-6 (-313)) (-15 -1786 ($ $)) (-15 -1785 ($))) |%noBranch|) (IF (|has| |t#1| (-749)) (PROGN (-15 -2838 (|t#1| $)) (-15 -2511 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-547 (-765)) . T) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-181 |#1|) . T) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-313) |has| |#1| (-313)) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1001 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-3817 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3818 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3934 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-363 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3818 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3817 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1003) (-362 |#1|) (-1003) (-362 |#3|)) (T -363)) -((-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-362 *5)) (-5 *1 (-363 *6 *4 *5 *2)) (-4 *4 (-362 *6)))) (-3818 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-363 *5 *4 *2 *6)) (-4 *4 (-362 *5)) (-4 *6 (-362 *2)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-362 *6)) (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-362 *5))))) -((-1788 (((-513 |#2|) |#2| (-1075)) 36 T ELT)) (-2082 (((-513 |#2|) |#2| (-1075)) 21 T ELT)) (-2131 ((|#2| |#2| (-1075)) 26 T ELT))) -(((-364 |#1| |#2|) (-10 -7 (-15 -2082 ((-513 |#2|) |#2| (-1075))) (-15 -1788 ((-513 |#2|) |#2| (-1075))) (-15 -2131 (|#2| |#2| (-1075)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1100) (-29 |#1|))) (T -364)) -((-2131 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-364 *4 *2)) (-4 *2 (-13 (-1100) (-29 *4))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-364 *5 *3)) (-4 *3 (-13 (-1100) (-29 *5))))) (-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-364 *5 *3)) (-4 *3 (-13 (-1100) (-29 *5)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1790 (($ |#2| |#1|) 37 T ELT)) (-1789 (($ |#2| |#1|) 35 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-277 |#2|)) 25 T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 10 T CONST)) (-2647 (($) 16 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 36 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-365 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3958)) (IF (|has| |#1| (-6 -3958)) (-6 -3958) |%noBranch|) |%noBranch|) (-15 -3922 ($ |#1|)) (-15 -3922 ($ (-277 |#2|))) (-15 -1790 ($ |#2| |#1|)) (-15 -1789 ($ |#2| |#1|)))) (-13 (-144) (-38 (-343 (-478)))) (-13 (-749) (-21))) (T -365)) -((-3922 (*1 *1 *2) (-12 (-5 *1 (-365 *2 *3)) (-4 *2 (-13 (-144) (-38 (-343 (-478))))) (-4 *3 (-13 (-749) (-21))))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-277 *4)) (-4 *4 (-13 (-749) (-21))) (-5 *1 (-365 *3 *4)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))))) (-1790 (*1 *1 *2 *3) (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))) (-4 *2 (-13 (-749) (-21))))) (-1789 (*1 *1 *2 *3) (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))) (-4 *2 (-13 (-749) (-21)))))) -((-3788 (((-3 |#2| (-578 |#2|)) |#2| (-1075)) 115 T ELT))) -(((-366 |#1| |#2|) (-10 -7 (-15 -3788 ((-3 |#2| (-578 |#2|)) |#2| (-1075)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1100) (-864) (-29 |#1|))) (T -366)) -((-3788 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 *3 (-578 *3))) (-5 *1 (-366 *5 *3)) (-4 *3 (-13 (-1100) (-864) (-29 *5)))))) -((-3363 ((|#2| |#2| |#2|) 31 T ELT)) (-3571 (((-84) (-84)) 43 T ELT)) (-1792 ((|#2| |#2|) 63 T ELT)) (-1791 ((|#2| |#2|) 66 T ELT)) (-3362 ((|#2| |#2|) 30 T ELT)) (-3366 ((|#2| |#2| |#2|) 33 T ELT)) (-3368 ((|#2| |#2| |#2|) 35 T ELT)) (-3365 ((|#2| |#2| |#2|) 32 T ELT)) (-3367 ((|#2| |#2| |#2|) 34 T ELT)) (-2236 (((-83) (-84)) 41 T ELT)) (-3370 ((|#2| |#2|) 37 T ELT)) (-3369 ((|#2| |#2|) 36 T ELT)) (-3360 ((|#2| |#2|) 25 T ELT)) (-3364 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3361 ((|#2| |#2| |#2|) 29 T ELT))) -(((-367 |#1| |#2|) (-10 -7 (-15 -2236 ((-83) (-84))) (-15 -3571 ((-84) (-84))) (-15 -3360 (|#2| |#2|)) (-15 -3364 (|#2| |#2|)) (-15 -3364 (|#2| |#2| |#2|)) (-15 -3361 (|#2| |#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -3363 (|#2| |#2| |#2|)) (-15 -3365 (|#2| |#2| |#2|)) (-15 -3366 (|#2| |#2| |#2|)) (-15 -3367 (|#2| |#2| |#2|)) (-15 -3368 (|#2| |#2| |#2|)) (-15 -3369 (|#2| |#2|)) (-15 -3370 (|#2| |#2|)) (-15 -1791 (|#2| |#2|)) (-15 -1792 (|#2| |#2|))) (-489) (-357 |#1|)) (T -367)) -((-1792 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-1791 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3370 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3369 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3368 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3367 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3366 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3365 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3363 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3362 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3361 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3364 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3364 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3360 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-367 *3 *4)) (-4 *4 (-357 *3)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-367 *4 *5)) (-4 *5 (-357 *4))))) -((-2814 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1070 |#2|)) (|:| |pol2| (-1070 |#2|)) (|:| |prim| (-1070 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1070 |#2|))) (|:| |prim| (-1070 |#2|))) (-578 |#2|)) 65 T ELT))) -(((-368 |#1| |#2|) (-10 -7 (-15 -2814 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1070 |#2|))) (|:| |prim| (-1070 |#2|))) (-578 |#2|))) (IF (|has| |#2| (-27)) (-15 -2814 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1070 |#2|)) (|:| |pol2| (-1070 |#2|)) (|:| |prim| (-1070 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-489) (-118)) (-357 |#1|)) (T -368)) -((-2814 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-489) (-118))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1070 *3)) (|:| |pol2| (-1070 *3)) (|:| |prim| (-1070 *3)))) (-5 *1 (-368 *4 *3)) (-4 *3 (-27)) (-4 *3 (-357 *4)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-357 *4)) (-4 *4 (-13 (-489) (-118))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-578 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-368 *4 *5))))) -((-1794 (((-1170)) 18 T ELT)) (-1793 (((-1070 (-343 (-478))) |#2| (-545 |#2|)) 40 T ELT) (((-343 (-478)) |#2|) 27 T ELT))) -(((-369 |#1| |#2|) (-10 -7 (-15 -1793 ((-343 (-478)) |#2|)) (-15 -1793 ((-1070 (-343 (-478))) |#2| (-545 |#2|))) (-15 -1794 ((-1170)))) (-13 (-489) (-943 (-478))) (-357 |#1|)) (T -369)) -((-1794 (*1 *2) (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *2 (-1170)) (-5 *1 (-369 *3 *4)) (-4 *4 (-357 *3)))) (-1793 (*1 *2 *3 *4) (-12 (-5 *4 (-545 *3)) (-4 *3 (-357 *5)) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-1070 (-343 (-478)))) (-5 *1 (-369 *5 *3)))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-369 *4 *3)) (-4 *3 (-357 *4))))) -((-3621 (((-83) $) 33 T ELT)) (-1795 (((-83) $) 35 T ELT)) (-3239 (((-83) $) 36 T ELT)) (-1797 (((-83) $) 39 T ELT)) (-1799 (((-83) $) 34 T ELT)) (-1798 (((-83) $) 38 T ELT)) (-3922 (((-765) $) 20 T ELT) (($ (-1059)) 32 T ELT) (($ (-1075)) 30 T ELT) (((-1075) $) 24 T ELT) (((-1005) $) 23 T ELT)) (-1796 (((-83) $) 37 T ELT)) (-3037 (((-83) $ $) 17 T ELT))) -(((-370) (-13 (-547 (-765)) (-10 -8 (-15 -3922 ($ (-1059))) (-15 -3922 ($ (-1075))) (-15 -3922 ((-1075) $)) (-15 -3922 ((-1005) $)) (-15 -3621 ((-83) $)) (-15 -1799 ((-83) $)) (-15 -3239 ((-83) $)) (-15 -1798 ((-83) $)) (-15 -1797 ((-83) $)) (-15 -1796 ((-83) $)) (-15 -1795 ((-83) $)) (-15 -3037 ((-83) $ $))))) (T -370)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-370)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-370)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-370)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-370)))) (-3621 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) (-3037 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) -((-1801 (((-3 (-341 (-1070 (-343 (-478)))) #1="failed") |#3|) 71 T ELT)) (-1800 (((-341 |#3|) |#3|) 34 T ELT)) (-1803 (((-3 (-341 (-1070 (-48))) #1#) |#3|) 29 (|has| |#2| (-943 (-48))) ELT)) (-1802 (((-3 (|:| |overq| (-1070 (-343 (-478)))) (|:| |overan| (-1070 (-48))) (|:| -2619 (-83))) |#3|) 37 T ELT))) -(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -1800 ((-341 |#3|) |#3|)) (-15 -1801 ((-3 (-341 (-1070 (-343 (-478)))) #1="failed") |#3|)) (-15 -1802 ((-3 (|:| |overq| (-1070 (-343 (-478)))) (|:| |overan| (-1070 (-48))) (|:| -2619 (-83))) |#3|)) (IF (|has| |#2| (-943 (-48))) (-15 -1803 ((-3 (-341 (-1070 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-489) (-943 (-478))) (-357 |#1|) (-1140 |#2|)) (T -371)) -((-1803 (*1 *2 *3) (|partial| -12 (-4 *5 (-943 (-48))) (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-341 (-1070 (-48)))) (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1140 *5)))) (-1802 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-3 (|:| |overq| (-1070 (-343 (-478)))) (|:| |overan| (-1070 (-48))) (|:| -2619 (-83)))) (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1140 *5)))) (-1801 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-341 (-1070 (-343 (-478))))) (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1140 *5)))) (-1800 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-341 *3)) (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1140 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1813 (((-3 (|:| |fst| (-370)) (|:| -3886 #1="void")) $) 11 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1810 (($) 35 T ELT)) (-1807 (($) 41 T ELT)) (-1808 (($) 37 T ELT)) (-1805 (($) 39 T ELT)) (-1809 (($) 36 T ELT)) (-1806 (($) 38 T ELT)) (-1804 (($) 40 T ELT)) (-1811 (((-83) $) 8 T ELT)) (-1812 (((-578 (-850 (-478))) $) 19 T ELT)) (-3507 (($ (-3 (|:| |fst| (-370)) (|:| -3886 #1#)) (-578 (-1075)) (-83)) 29 T ELT) (($ (-3 (|:| |fst| (-370)) (|:| -3886 #1#)) (-578 (-850 (-478))) (-83)) 30 T ELT)) (-3922 (((-765) $) 24 T ELT) (($ (-370)) 32 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-372) (-13 (-1003) (-10 -8 (-15 -3922 ($ (-370))) (-15 -1813 ((-3 (|:| |fst| (-370)) (|:| -3886 #1="void")) $)) (-15 -1812 ((-578 (-850 (-478))) $)) (-15 -1811 ((-83) $)) (-15 -3507 ($ (-3 (|:| |fst| (-370)) (|:| -3886 #1#)) (-578 (-1075)) (-83))) (-15 -3507 ($ (-3 (|:| |fst| (-370)) (|:| -3886 #1#)) (-578 (-850 (-478))) (-83))) (-15 -1810 ($)) (-15 -1809 ($)) (-15 -1808 ($)) (-15 -1807 ($)) (-15 -1806 ($)) (-15 -1805 ($)) (-15 -1804 ($))))) (T -372)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-372)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3886 #1="void"))) (-5 *1 (-372)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-578 (-850 (-478)))) (-5 *1 (-372)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372)))) (-3507 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) (-5 *3 (-578 (-1075))) (-5 *4 (-83)) (-5 *1 (-372)))) (-3507 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) (-5 *3 (-578 (-850 (-478)))) (-5 *4 (-83)) (-5 *1 (-372)))) (-1810 (*1 *1) (-5 *1 (-372))) (-1809 (*1 *1) (-5 *1 (-372))) (-1808 (*1 *1) (-5 *1 (-372))) (-1807 (*1 *1) (-5 *1 (-372))) (-1806 (*1 *1) (-5 *1 (-372))) (-1805 (*1 *1) (-5 *1 (-372))) (-1804 (*1 *1) (-5 *1 (-372)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3518 (((-1075) $) 8 T ELT)) (-3222 (((-1059) $) 17 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 11 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 14 T ELT))) -(((-373 |#1|) (-13 (-1003) (-10 -8 (-15 -3518 ((-1075) $)))) (-1075)) (T -373)) -((-3518 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-373 *3)) (-14 *3 *2)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3298 (((-1016) $) 7 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 9 T ELT))) -(((-374) (-13 (-1003) (-10 -8 (-15 -3298 ((-1016) $))))) (T -374)) -((-3298 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-374))))) -((-1819 (((-83)) 18 T ELT)) (-1820 (((-83) (-83)) 19 T ELT)) (-1821 (((-83)) 14 T ELT)) (-1822 (((-83) (-83)) 15 T ELT)) (-1824 (((-83)) 16 T ELT)) (-1825 (((-83) (-83)) 17 T ELT)) (-1816 (((-823) (-823)) 22 T ELT) (((-823)) 21 T ELT)) (-1817 (((-687) (-578 (-2 (|:| -3708 |#1|) (|:| -3924 (-478))))) 52 T ELT)) (-1815 (((-823) (-823)) 24 T ELT) (((-823)) 23 T ELT)) (-1818 (((-2 (|:| -2558 (-478)) (|:| -1762 (-578 |#1|))) |#1|) 94 T ELT)) (-1814 (((-341 |#1|) (-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| |#1|) (|:| -2377 (-478))))))) 176 T ELT)) (-3710 (((-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| |#1|) (|:| -2377 (-478)))))) |#1| (-83)) 209 T ELT)) (-3709 (((-341 |#1|) |#1| (-687) (-687)) 224 T ELT) (((-341 |#1|) |#1| (-578 (-687)) (-687)) 221 T ELT) (((-341 |#1|) |#1| (-578 (-687))) 223 T ELT) (((-341 |#1|) |#1| (-687)) 222 T ELT) (((-341 |#1|) |#1|) 220 T ELT)) (-1836 (((-3 |#1| #1="failed") (-823) |#1| (-578 (-687)) (-687) (-83)) 226 T ELT) (((-3 |#1| #1#) (-823) |#1| (-578 (-687)) (-687)) 227 T ELT) (((-3 |#1| #1#) (-823) |#1| (-578 (-687))) 229 T ELT) (((-3 |#1| #1#) (-823) |#1| (-687)) 228 T ELT) (((-3 |#1| #1#) (-823) |#1|) 230 T ELT)) (-3708 (((-341 |#1|) |#1| (-687) (-687)) 219 T ELT) (((-341 |#1|) |#1| (-578 (-687)) (-687)) 215 T ELT) (((-341 |#1|) |#1| (-578 (-687))) 217 T ELT) (((-341 |#1|) |#1| (-687)) 216 T ELT) (((-341 |#1|) |#1|) 214 T ELT)) (-1823 (((-83) |#1|) 43 T ELT)) (-1835 (((-668 (-687)) (-578 (-2 (|:| -3708 |#1|) (|:| -3924 (-478))))) 99 T ELT)) (-1826 (((-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| |#1|) (|:| -2377 (-478)))))) |#1| (-83) (-999 (-687)) (-687)) 213 T ELT))) -(((-375 |#1|) (-10 -7 (-15 -1814 ((-341 |#1|) (-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| |#1|) (|:| -2377 (-478)))))))) (-15 -1835 ((-668 (-687)) (-578 (-2 (|:| -3708 |#1|) (|:| -3924 (-478)))))) (-15 -1815 ((-823))) (-15 -1815 ((-823) (-823))) (-15 -1816 ((-823))) (-15 -1816 ((-823) (-823))) (-15 -1817 ((-687) (-578 (-2 (|:| -3708 |#1|) (|:| -3924 (-478)))))) (-15 -1818 ((-2 (|:| -2558 (-478)) (|:| -1762 (-578 |#1|))) |#1|)) (-15 -1819 ((-83))) (-15 -1820 ((-83) (-83))) (-15 -1821 ((-83))) (-15 -1822 ((-83) (-83))) (-15 -1823 ((-83) |#1|)) (-15 -1824 ((-83))) (-15 -1825 ((-83) (-83))) (-15 -3708 ((-341 |#1|) |#1|)) (-15 -3708 ((-341 |#1|) |#1| (-687))) (-15 -3708 ((-341 |#1|) |#1| (-578 (-687)))) (-15 -3708 ((-341 |#1|) |#1| (-578 (-687)) (-687))) (-15 -3708 ((-341 |#1|) |#1| (-687) (-687))) (-15 -3709 ((-341 |#1|) |#1|)) (-15 -3709 ((-341 |#1|) |#1| (-687))) (-15 -3709 ((-341 |#1|) |#1| (-578 (-687)))) (-15 -3709 ((-341 |#1|) |#1| (-578 (-687)) (-687))) (-15 -3709 ((-341 |#1|) |#1| (-687) (-687))) (-15 -1836 ((-3 |#1| #1="failed") (-823) |#1|)) (-15 -1836 ((-3 |#1| #1#) (-823) |#1| (-687))) (-15 -1836 ((-3 |#1| #1#) (-823) |#1| (-578 (-687)))) (-15 -1836 ((-3 |#1| #1#) (-823) |#1| (-578 (-687)) (-687))) (-15 -1836 ((-3 |#1| #1#) (-823) |#1| (-578 (-687)) (-687) (-83))) (-15 -3710 ((-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| |#1|) (|:| -2377 (-478)))))) |#1| (-83))) (-15 -1826 ((-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| |#1|) (|:| -2377 (-478)))))) |#1| (-83) (-999 (-687)) (-687)))) (-1140 (-478))) (T -375)) -((-1826 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-83)) (-5 *5 (-999 (-687))) (-5 *6 (-687)) (-5 *2 (-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| *3) (|:| -2377 (-478))))))) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3710 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 (-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| *3) (|:| -2377 (-478))))))) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1836 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *6 (-83)) (-5 *1 (-375 *2)) (-4 *2 (-1140 (-478))))) (-1836 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *1 (-375 *2)) (-4 *2 (-1140 (-478))))) (-1836 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *1 (-375 *2)) (-4 *2 (-1140 (-478))))) (-1836 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-823)) (-5 *4 (-687)) (-5 *1 (-375 *2)) (-4 *2 (-1140 (-478))))) (-1836 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-823)) (-5 *1 (-375 *2)) (-4 *2 (-1140 (-478))))) (-3709 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3709 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3709 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-687))) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3709 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3708 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3708 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-687))) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-3708 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1824 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1823 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1821 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1819 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1818 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2558 (-478)) (|:| -1762 (-578 *3)))) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1817 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3708 *4) (|:| -3924 (-478))))) (-4 *4 (-1140 (-478))) (-5 *2 (-687)) (-5 *1 (-375 *4)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1816 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1815 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1815 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3708 *4) (|:| -3924 (-478))))) (-4 *4 (-1140 (-478))) (-5 *2 (-668 (-687))) (-5 *1 (-375 *4)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| *4) (|:| -2377 (-478))))))) (-4 *4 (-1140 (-478))) (-5 *2 (-341 *4)) (-5 *1 (-375 *4))))) -((-1830 (((-478) |#2|) 52 T ELT) (((-478) |#2| (-687)) 51 T ELT)) (-1829 (((-478) |#2|) 64 T ELT)) (-1831 ((|#3| |#2|) 26 T ELT)) (-3113 ((|#3| |#2| (-823)) 15 T ELT)) (-3809 ((|#3| |#2|) 16 T ELT)) (-1832 ((|#3| |#2|) 9 T ELT)) (-2583 ((|#3| |#2|) 10 T ELT)) (-1828 ((|#3| |#2| (-823)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1827 (((-478) |#2|) 66 T ELT))) -(((-376 |#1| |#2| |#3|) (-10 -7 (-15 -1827 ((-478) |#2|)) (-15 -1828 (|#3| |#2|)) (-15 -1828 (|#3| |#2| (-823))) (-15 -1829 ((-478) |#2|)) (-15 -1830 ((-478) |#2| (-687))) (-15 -1830 ((-478) |#2|)) (-15 -3113 (|#3| |#2| (-823))) (-15 -1831 (|#3| |#2|)) (-15 -1832 (|#3| |#2|)) (-15 -2583 (|#3| |#2|)) (-15 -3809 (|#3| |#2|))) (-954) (-1140 |#1|) (-13 (-340) (-943 |#1|) (-308) (-1100) (-236))) (T -376)) -((-3809 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-2583 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-1832 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-1831 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-3113 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-4 *5 (-954)) (-4 *2 (-13 (-340) (-943 *5) (-308) (-1100) (-236))) (-5 *1 (-376 *5 *3 *2)) (-4 *3 (-1140 *5)))) (-1830 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1140 *4)) (-4 *5 (-13 (-340) (-943 *4) (-308) (-1100) (-236))))) (-1830 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *5 *3 *6)) (-4 *3 (-1140 *5)) (-4 *6 (-13 (-340) (-943 *5) (-308) (-1100) (-236))))) (-1829 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1140 *4)) (-4 *5 (-13 (-340) (-943 *4) (-308) (-1100) (-236))))) (-1828 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-4 *5 (-954)) (-4 *2 (-13 (-340) (-943 *5) (-308) (-1100) (-236))) (-5 *1 (-376 *5 *3 *2)) (-4 *3 (-1140 *5)))) (-1828 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4)))) (-1827 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1140 *4)) (-4 *5 (-13 (-340) (-943 *4) (-308) (-1100) (-236)))))) -((-3331 ((|#2| (-1164 |#1|)) 42 T ELT)) (-1834 ((|#2| |#2| |#1|) 58 T ELT)) (-1833 ((|#2| |#2| |#1|) 49 T ELT)) (-2280 ((|#2| |#2|) 44 T ELT)) (-3154 (((-83) |#2|) 32 T ELT)) (-1837 (((-578 |#2|) (-823) (-341 |#2|)) 21 T ELT)) (-1836 ((|#2| (-823) (-341 |#2|)) 25 T ELT)) (-1835 (((-668 (-687)) (-341 |#2|)) 29 T ELT))) -(((-377 |#1| |#2|) (-10 -7 (-15 -3154 ((-83) |#2|)) (-15 -3331 (|#2| (-1164 |#1|))) (-15 -2280 (|#2| |#2|)) (-15 -1833 (|#2| |#2| |#1|)) (-15 -1834 (|#2| |#2| |#1|)) (-15 -1835 ((-668 (-687)) (-341 |#2|))) (-15 -1836 (|#2| (-823) (-341 |#2|))) (-15 -1837 ((-578 |#2|) (-823) (-341 |#2|)))) (-954) (-1140 |#1|)) (T -377)) -((-1837 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-341 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-954)) (-5 *2 (-578 *6)) (-5 *1 (-377 *5 *6)))) (-1836 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-341 *2)) (-4 *2 (-1140 *5)) (-5 *1 (-377 *5 *2)) (-4 *5 (-954)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-341 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-954)) (-5 *2 (-668 (-687))) (-5 *1 (-377 *4 *5)))) (-1834 (*1 *2 *2 *3) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1140 *3)))) (-1833 (*1 *2 *2 *3) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1140 *3)))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1140 *3)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-954)) (-4 *2 (-1140 *4)) (-5 *1 (-377 *4 *2)))) (-3154 (*1 *2 *3) (-12 (-4 *4 (-954)) (-5 *2 (-83)) (-5 *1 (-377 *4 *3)) (-4 *3 (-1140 *4))))) -((-1840 (((-687)) 59 T ELT)) (-1844 (((-687)) 29 (|has| |#1| (-340)) ELT) (((-687) (-687)) 28 (|has| |#1| (-340)) ELT)) (-1843 (((-478) |#1|) 25 (|has| |#1| (-340)) ELT)) (-1842 (((-478) |#1|) 27 (|has| |#1| (-340)) ELT)) (-1839 (((-687)) 58 T ELT) (((-687) (-687)) 57 T ELT)) (-1838 ((|#1| (-687) (-478)) 37 T ELT)) (-1841 (((-1170)) 61 T ELT))) -(((-378 |#1|) (-10 -7 (-15 -1838 (|#1| (-687) (-478))) (-15 -1839 ((-687) (-687))) (-15 -1839 ((-687))) (-15 -1840 ((-687))) (-15 -1841 ((-1170))) (IF (|has| |#1| (-340)) (PROGN (-15 -1842 ((-478) |#1|)) (-15 -1843 ((-478) |#1|)) (-15 -1844 ((-687) (-687))) (-15 -1844 ((-687)))) |%noBranch|)) (-954)) (T -378)) -((-1844 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) (-1843 (*1 *2 *3) (-12 (-5 *2 (-478)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) (-1842 (*1 *2 *3) (-12 (-5 *2 (-478)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) (-1841 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) (-1840 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) (-1839 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) (-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-687)) (-5 *4 (-478)) (-5 *1 (-378 *2)) (-4 *2 (-954))))) -((-1845 (((-578 (-478)) (-478)) 76 T ELT)) (-3699 (((-83) (-140 (-478))) 84 T ELT)) (-3708 (((-341 (-140 (-478))) (-140 (-478))) 75 T ELT))) -(((-379) (-10 -7 (-15 -3708 ((-341 (-140 (-478))) (-140 (-478)))) (-15 -1845 ((-578 (-478)) (-478))) (-15 -3699 ((-83) (-140 (-478)))))) (T -379)) -((-3699 (*1 *2 *3) (-12 (-5 *3 (-140 (-478))) (-5 *2 (-83)) (-5 *1 (-379)))) (-1845 (*1 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-379)) (-5 *3 (-478)))) (-3708 (*1 *2 *3) (-12 (-5 *2 (-341 (-140 (-478)))) (-5 *1 (-379)) (-5 *3 (-140 (-478)))))) -((-2927 ((|#4| |#4| (-578 |#4|)) 20 (|has| |#1| (-308)) ELT)) (-2233 (((-578 |#4|) (-578 |#4|) (-1059) (-1059)) 46 T ELT) (((-578 |#4|) (-578 |#4|) (-1059)) 45 T ELT) (((-578 |#4|) (-578 |#4|)) 34 T ELT))) -(((-380 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2233 ((-578 |#4|) (-578 |#4|))) (-15 -2233 ((-578 |#4|) (-578 |#4|) (-1059))) (-15 -2233 ((-578 |#4|) (-578 |#4|) (-1059) (-1059))) (IF (|has| |#1| (-308)) (-15 -2927 (|#4| |#4| (-578 |#4|))) |%noBranch|)) (-385) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -380)) -((-2927 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-308)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *2)))) (-2233 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1059)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *7)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1059)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *7)))) (-2233 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-380 *3 *4 *5 *6))))) -((-1846 ((|#4| |#4| (-578 |#4|)) 82 T ELT)) (-1847 (((-578 |#4|) (-578 |#4|) (-1059) (-1059)) 22 T ELT) (((-578 |#4|) (-578 |#4|) (-1059)) 21 T ELT) (((-578 |#4|) (-578 |#4|)) 13 T ELT))) -(((-381 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1846 (|#4| |#4| (-578 |#4|))) (-15 -1847 ((-578 |#4|) (-578 |#4|))) (-15 -1847 ((-578 |#4|) (-578 |#4|) (-1059))) (-15 -1847 ((-578 |#4|) (-578 |#4|) (-1059) (-1059)))) (-254) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -381)) -((-1847 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1059)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *7)))) (-1847 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1059)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *7)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-381 *3 *4 *5 *6)))) (-1846 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *2))))) -((-1849 (((-578 (-578 |#4|)) (-578 |#4|) (-83)) 90 T ELT) (((-578 (-578 |#4|)) (-578 |#4|)) 89 T ELT) (((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-83)) 83 T ELT) (((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|)) 84 T ELT)) (-1848 (((-578 (-578 |#4|)) (-578 |#4|) (-83)) 56 T ELT) (((-578 (-578 |#4|)) (-578 |#4|)) 78 T ELT))) -(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1848 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -1848 ((-578 (-578 |#4|)) (-578 |#4|) (-83))) (-15 -1849 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|))) (-15 -1849 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-83))) (-15 -1849 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -1849 ((-578 (-578 |#4|)) (-578 |#4|) (-83)))) (-13 (-254) (-118)) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -382)) -((-1849 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-1849 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-1849 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-1848 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) -((-1873 (((-687) |#4|) 12 T ELT)) (-1861 (((-578 (-2 (|:| |totdeg| (-687)) (|:| -1986 |#4|))) |#4| (-687) (-578 (-2 (|:| |totdeg| (-687)) (|:| -1986 |#4|)))) 39 T ELT)) (-1863 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1862 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1851 ((|#4| |#4| (-578 |#4|)) 54 T ELT)) (-1859 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|)) 96 T ELT)) (-1866 (((-1170) |#4|) 59 T ELT)) (-1869 (((-1170) (-578 |#4|)) 69 T ELT)) (-1867 (((-478) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-478) (-478) (-478)) 66 T ELT)) (-1870 (((-1170) (-478)) 110 T ELT)) (-1864 (((-578 |#4|) (-578 |#4|)) 104 T ELT)) (-1872 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-687)) (|:| -1986 |#4|)) |#4| (-687)) 31 T ELT)) (-1865 (((-478) |#4|) 109 T ELT)) (-1860 ((|#4| |#4|) 37 T ELT)) (-1852 (((-578 |#4|) (-578 |#4|) (-478) (-478)) 74 T ELT)) (-1868 (((-478) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-478) (-478) (-478) (-478)) 123 T ELT)) (-1871 (((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1853 (((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1858 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1857 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1854 (((-83) |#2| |#2|) 75 T ELT)) (-1856 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1855 (((-83) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1850 ((|#4| |#4| (-578 |#4|)) 97 T ELT))) -(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1850 (|#4| |#4| (-578 |#4|))) (-15 -1851 (|#4| |#4| (-578 |#4|))) (-15 -1852 ((-578 |#4|) (-578 |#4|) (-478) (-478))) (-15 -1853 ((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1854 ((-83) |#2| |#2|)) (-15 -1855 ((-83) |#2| |#2| |#2| |#2|)) (-15 -1856 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1857 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1858 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1859 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|))) (-15 -1860 (|#4| |#4|)) (-15 -1861 ((-578 (-2 (|:| |totdeg| (-687)) (|:| -1986 |#4|))) |#4| (-687) (-578 (-2 (|:| |totdeg| (-687)) (|:| -1986 |#4|))))) (-15 -1862 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1863 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1864 ((-578 |#4|) (-578 |#4|))) (-15 -1865 ((-478) |#4|)) (-15 -1866 ((-1170) |#4|)) (-15 -1867 ((-478) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-478) (-478) (-478))) (-15 -1868 ((-478) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-478) (-478) (-478) (-478))) (-15 -1869 ((-1170) (-578 |#4|))) (-15 -1870 ((-1170) (-478))) (-15 -1871 ((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1872 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-687)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-687)) (|:| -1986 |#4|)) |#4| (-687))) (-15 -1873 ((-687) |#4|))) (-385) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -383)) -((-1873 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-687)) (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1872 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-687)) (|:| -1986 *4))) (-5 *5 (-687)) (-4 *4 (-854 *6 *7 *8)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-383 *6 *7 *8 *4)))) (-1871 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-710)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-478)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1170)) (-5 *1 (-383 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1170)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1868 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-687)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-710)) (-4 *4 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-749)) (-5 *1 (-383 *5 *6 *7 *4)))) (-1867 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-687)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-710)) (-4 *4 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-749)) (-5 *1 (-383 *5 *6 *7 *4)))) (-1866 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1170)) (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1865 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-478)) (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1863 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-687)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-710)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1862 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-710)) (-4 *2 (-854 *4 *5 *6)) (-5 *1 (-383 *4 *5 *6 *2)) (-4 *4 (-385)) (-4 *6 (-749)))) (-1861 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-2 (|:| |totdeg| (-687)) (|:| -1986 *3)))) (-5 *4 (-687)) (-4 *3 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-383 *5 *6 *7 *3)))) (-1860 (*1 *2 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *2)) (-4 *2 (-854 *3 *4 *5)))) (-1859 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-383 *5 *6 *7 *3)))) (-1858 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-687)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-710)) (-4 *6 (-854 *4 *3 *5)) (-4 *4 (-385)) (-4 *5 (-749)) (-5 *1 (-383 *4 *3 *5 *6)))) (-1857 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-687)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-710)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1856 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-710)) (-4 *3 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *3)))) (-1855 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-385)) (-4 *3 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-383 *4 *3 *5 *6)) (-4 *6 (-854 *4 *3 *5)))) (-1854 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *3 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-383 *4 *3 *5 *6)) (-4 *6 (-854 *4 *3 *5)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-710)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1852 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-478)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *7)))) (-1851 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *2)))) (-1850 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *2))))) -((-1874 (($ $ $) 14 T ELT) (($ (-578 $)) 21 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 45 T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) 22 T ELT))) -(((-384 |#1|) (-10 -7 (-15 -2689 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -1874 (|#1| (-578 |#1|))) (-15 -1874 (|#1| |#1| |#1|)) (-15 -3125 (|#1| (-578 |#1|))) (-15 -3125 (|#1| |#1| |#1|))) (-385)) (T -384)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-385) (-111)) (T -385)) -((-3125 (*1 *1 *1 *1) (-4 *1 (-385))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-385)))) (-1874 (*1 *1 *1 *1) (-4 *1 (-385))) (-1874 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-385)))) (-2689 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-385))))) -(-13 (-489) (-10 -8 (-15 -3125 ($ $ $)) (-15 -3125 ($ (-578 $))) (-15 -1874 ($ $ $)) (-15 -1874 ($ (-578 $))) (-15 -2689 ((-1070 $) (-1070 $) (-1070 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1755 (((-3 $ #1="failed")) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1295 (((-3 $ #1#) $ $) NIL T ELT)) (-3204 (((-1164 (-625 (-343 (-850 |#1|)))) (-1164 $)) NIL T ELT) (((-1164 (-625 (-343 (-850 |#1|))))) NIL T ELT)) (-1712 (((-1164 $)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-1889 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL T ELT)) (-1686 (((-3 $ #1#)) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1771 (((-625 (-343 (-850 |#1|))) (-1164 $)) NIL T ELT) (((-625 (-343 (-850 |#1|)))) NIL T ELT)) (-1710 (((-343 (-850 |#1|)) $) NIL T ELT)) (-1769 (((-625 (-343 (-850 |#1|))) $ (-1164 $)) NIL T ELT) (((-625 (-343 (-850 |#1|))) $) NIL T ELT)) (-2386 (((-3 $ #1#) $) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1883 (((-1070 (-850 (-343 (-850 |#1|))))) NIL (|has| (-343 (-850 |#1|)) (-308)) ELT) (((-1070 (-343 (-850 |#1|)))) 89 (|has| |#1| (-489)) ELT)) (-2389 (($ $ (-823)) NIL T ELT)) (-1708 (((-343 (-850 |#1|)) $) NIL T ELT)) (-1688 (((-1070 (-343 (-850 |#1|))) $) 87 (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1773 (((-343 (-850 |#1|)) (-1164 $)) NIL T ELT) (((-343 (-850 |#1|))) NIL T ELT)) (-1706 (((-1070 (-343 (-850 |#1|))) $) NIL T ELT)) (-1700 (((-83)) NIL T ELT)) (-1775 (($ (-1164 (-343 (-850 |#1|))) (-1164 $)) 111 T ELT) (($ (-1164 (-343 (-850 |#1|)))) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-3090 (((-823)) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-2413 (($ $ (-823)) NIL T ELT)) (-1693 (((-83)) NIL T ELT)) (-1691 (((-83)) NIL T ELT)) (-1695 (((-83)) NIL T ELT)) (-1890 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL T ELT)) (-1687 (((-3 $ #1#)) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1772 (((-625 (-343 (-850 |#1|))) (-1164 $)) NIL T ELT) (((-625 (-343 (-850 |#1|)))) NIL T ELT)) (-1711 (((-343 (-850 |#1|)) $) NIL T ELT)) (-1770 (((-625 (-343 (-850 |#1|))) $ (-1164 $)) NIL T ELT) (((-625 (-343 (-850 |#1|))) $) NIL T ELT)) (-2387 (((-3 $ #1#) $) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1887 (((-1070 (-850 (-343 (-850 |#1|))))) NIL (|has| (-343 (-850 |#1|)) (-308)) ELT) (((-1070 (-343 (-850 |#1|)))) 88 (|has| |#1| (-489)) ELT)) (-2388 (($ $ (-823)) NIL T ELT)) (-1709 (((-343 (-850 |#1|)) $) NIL T ELT)) (-1689 (((-1070 (-343 (-850 |#1|))) $) 84 (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-1774 (((-343 (-850 |#1|)) (-1164 $)) NIL T ELT) (((-343 (-850 |#1|))) NIL T ELT)) (-1707 (((-1070 (-343 (-850 |#1|))) $) NIL T ELT)) (-1701 (((-83)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1692 (((-83)) NIL T ELT)) (-1694 (((-83)) NIL T ELT)) (-1696 (((-83)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1877 (((-343 (-850 |#1|)) $ $) 75 (|has| |#1| (-489)) ELT)) (-1881 (((-343 (-850 |#1|)) $) 74 (|has| |#1| (-489)) ELT)) (-1880 (((-343 (-850 |#1|)) $) 101 (|has| |#1| (-489)) ELT)) (-1882 (((-1070 (-343 (-850 |#1|))) $) 93 (|has| |#1| (-489)) ELT)) (-1876 (((-343 (-850 |#1|))) 76 (|has| |#1| (-489)) ELT)) (-1879 (((-343 (-850 |#1|)) $ $) 64 (|has| |#1| (-489)) ELT)) (-1885 (((-343 (-850 |#1|)) $) 63 (|has| |#1| (-489)) ELT)) (-1884 (((-343 (-850 |#1|)) $) 100 (|has| |#1| (-489)) ELT)) (-1886 (((-1070 (-343 (-850 |#1|))) $) 92 (|has| |#1| (-489)) ELT)) (-1878 (((-343 (-850 |#1|))) 73 (|has| |#1| (-489)) ELT)) (-1888 (($) 107 T ELT) (($ (-1075)) 115 T ELT) (($ (-1164 (-1075))) 114 T ELT) (($ (-1164 $)) 102 T ELT) (($ (-1075) (-1164 $)) 113 T ELT) (($ (-1164 (-1075)) (-1164 $)) 112 T ELT)) (-1699 (((-83)) NIL T ELT)) (-3776 (((-343 (-850 |#1|)) $ (-478)) NIL T ELT)) (-3205 (((-1164 (-343 (-850 |#1|))) $ (-1164 $)) 104 T ELT) (((-625 (-343 (-850 |#1|))) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 (-343 (-850 |#1|))) $) 44 T ELT) (((-625 (-343 (-850 |#1|))) (-1164 $)) NIL T ELT)) (-3948 (((-1164 (-343 (-850 |#1|))) $) NIL T ELT) (($ (-1164 (-343 (-850 |#1|)))) 41 T ELT)) (-1875 (((-578 (-850 (-343 (-850 |#1|)))) (-1164 $)) NIL T ELT) (((-578 (-850 (-343 (-850 |#1|))))) NIL T ELT) (((-578 (-850 |#1|)) (-1164 $)) 105 (|has| |#1| (-489)) ELT) (((-578 (-850 |#1|))) 106 (|has| |#1| (-489)) ELT)) (-2415 (($ $ $) NIL T ELT)) (-1705 (((-83)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-1164 (-343 (-850 |#1|)))) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) 66 T ELT)) (-1690 (((-578 (-1164 (-343 (-850 |#1|))))) NIL (|has| (-343 (-850 |#1|)) (-489)) ELT)) (-2416 (($ $ $ $) NIL T ELT)) (-1703 (((-83)) NIL T ELT)) (-2525 (($ (-625 (-343 (-850 |#1|))) $) NIL T ELT)) (-2414 (($ $ $) NIL T ELT)) (-1704 (((-83)) NIL T ELT)) (-1702 (((-83)) NIL T ELT)) (-1698 (((-83)) NIL T ELT)) (-2640 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-343 (-850 |#1|))) NIL T ELT) (($ (-343 (-850 |#1|)) $) NIL T ELT) (($ (-1042 |#2| (-343 (-850 |#1|))) $) NIL T ELT))) -(((-386 |#1| |#2| |#3| |#4|) (-13 (-354 (-343 (-850 |#1|))) (-585 (-1042 |#2| (-343 (-850 |#1|)))) (-10 -8 (-15 -3922 ($ (-1164 (-343 (-850 |#1|))))) (-15 -1890 ((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1="failed"))) (-15 -1889 ((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#))) (-15 -1888 ($)) (-15 -1888 ($ (-1075))) (-15 -1888 ($ (-1164 (-1075)))) (-15 -1888 ($ (-1164 $))) (-15 -1888 ($ (-1075) (-1164 $))) (-15 -1888 ($ (-1164 (-1075)) (-1164 $))) (IF (|has| |#1| (-489)) (PROGN (-15 -1887 ((-1070 (-343 (-850 |#1|))))) (-15 -1886 ((-1070 (-343 (-850 |#1|))) $)) (-15 -1885 ((-343 (-850 |#1|)) $)) (-15 -1884 ((-343 (-850 |#1|)) $)) (-15 -1883 ((-1070 (-343 (-850 |#1|))))) (-15 -1882 ((-1070 (-343 (-850 |#1|))) $)) (-15 -1881 ((-343 (-850 |#1|)) $)) (-15 -1880 ((-343 (-850 |#1|)) $)) (-15 -1879 ((-343 (-850 |#1|)) $ $)) (-15 -1878 ((-343 (-850 |#1|)))) (-15 -1877 ((-343 (-850 |#1|)) $ $)) (-15 -1876 ((-343 (-850 |#1|)))) (-15 -1875 ((-578 (-850 |#1|)) (-1164 $))) (-15 -1875 ((-578 (-850 |#1|))))) |%noBranch|))) (-144) (-823) (-578 (-1075)) (-1164 (-625 |#1|))) (T -386)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1164 (-343 (-850 *3)))) (-4 *3 (-144)) (-14 *6 (-1164 (-625 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))))) (-1890 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-386 *3 *4 *5 *6)) (|:| -1994 (-578 (-386 *3 *4 *5 *6))))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1889 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-386 *3 *4 *5 *6)) (|:| -1994 (-578 (-386 *3 *4 *5 *6))))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1888 (*1 *1) (-12 (-5 *1 (-386 *2 *3 *4 *5)) (-4 *2 (-144)) (-14 *3 (-823)) (-14 *4 (-578 (-1075))) (-14 *5 (-1164 (-625 *2))))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 *2)) (-14 *6 (-1164 (-625 *3))))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-1164 (-1075))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-1164 (-386 *3 *4 *5 *6))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1888 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1164 (-386 *4 *5 *6 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-823)) (-14 *6 (-578 *2)) (-14 *7 (-1164 (-625 *4))))) (-1888 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-1075))) (-5 *3 (-1164 (-386 *4 *5 *6 *7))) (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-823)) (-14 *6 (-578 (-1075))) (-14 *7 (-1164 (-625 *4))))) (-1887 (*1 *2) (-12 (-5 *2 (-1070 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-1070 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1883 (*1 *2) (-12 (-5 *2 (-1070 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-1070 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1879 (*1 *2 *1 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1878 (*1 *2) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1877 (*1 *2 *1 *1) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1876 (*1 *2) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-1164 (-386 *4 *5 *6 *7))) (-5 *2 (-578 (-850 *4))) (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-489)) (-4 *4 (-144)) (-14 *5 (-823)) (-14 *6 (-578 (-1075))) (-14 *7 (-1164 (-625 *4))))) (-1875 (*1 *2) (-12 (-5 *2 (-578 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 19 T ELT)) (-3063 (((-578 (-766 |#1|)) $) 88 T ELT)) (-3065 (((-1070 $) $ (-766 |#1|)) 53 T ELT) (((-1070 |#2|) $) 140 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2800 (((-687) $) 28 T ELT) (((-687) $ (-578 (-766 |#1|))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-3137 ((|#2| $) 49 T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-766 |#1|) $) NIL T ELT)) (-3732 (($ $ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1920 (($ $ (-578 (-478))) 95 T ELT)) (-3935 (($ $) 81 T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1607 (($ $ |#2| |#3| $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) 66 T ELT)) (-3066 (($ (-1070 |#2|) (-766 |#1|)) 145 T ELT) (($ (-1070 $) (-766 |#1|)) 59 T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) 69 T ELT)) (-2874 (($ |#2| |#3|) 36 T ELT) (($ $ (-766 |#1|) (-687)) 38 T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-766 |#1|)) NIL T ELT)) (-2801 ((|#3| $) NIL T ELT) (((-687) $ (-766 |#1|)) 57 T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) 64 T ELT)) (-1608 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3064 (((-3 (-766 |#1|) #1#) $) 46 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#2| $) 48 T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-766 |#1|)) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) 47 T ELT)) (-1779 ((|#2| $) 138 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) 151 (|has| |#2| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-3443 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-766 |#1|) |#2|) 102 T ELT) (($ $ (-578 (-766 |#1|)) (-578 |#2|)) 108 T ELT) (($ $ (-766 |#1|) $) 100 T ELT) (($ $ (-578 (-766 |#1|)) (-578 $)) 126 T ELT)) (-3733 (($ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3734 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) 60 T ELT)) (-3924 ((|#3| $) 80 T ELT) (((-687) $ (-766 |#1|)) 43 T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) 63 T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-766 |#1|) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2798 ((|#2| $) 147 (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3922 (((-765) $) 175 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-766 |#1|)) 40 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#2| (-489)) ELT)) (-3793 (((-578 |#2|) $) NIL T ELT)) (-3653 ((|#2| $ |#3|) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 32 T CONST)) (-2650 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#2|) 77 (|has| |#2| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 133 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 131 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) -(((-387 |#1| |#2| |#3|) (-13 (-854 |#2| |#3| (-766 |#1|)) (-10 -8 (-15 -1920 ($ $ (-578 (-478)))))) (-578 (-1075)) (-954) (-193 (-3933 |#1|) (-687))) (T -387)) -((-1920 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-14 *3 (-578 (-1075))) (-5 *1 (-387 *3 *4 *5)) (-4 *4 (-954)) (-4 *5 (-193 (-3933 *3) (-687)))))) -((-1894 (((-83) |#1| (-578 |#2|)) 90 T ELT)) (-1892 (((-3 (-1164 (-578 |#2|)) #1="failed") (-687) |#1| (-578 |#2|)) 99 T ELT)) (-1893 (((-3 (-578 |#2|) #1#) |#2| |#1| (-1164 (-578 |#2|))) 101 T ELT)) (-2019 ((|#2| |#2| |#1|) 35 T ELT)) (-1891 (((-687) |#2| (-578 |#2|)) 26 T ELT))) -(((-388 |#1| |#2|) (-10 -7 (-15 -2019 (|#2| |#2| |#1|)) (-15 -1891 ((-687) |#2| (-578 |#2|))) (-15 -1892 ((-3 (-1164 (-578 |#2|)) #1="failed") (-687) |#1| (-578 |#2|))) (-15 -1893 ((-3 (-578 |#2|) #1#) |#2| |#1| (-1164 (-578 |#2|)))) (-15 -1894 ((-83) |#1| (-578 |#2|)))) (-254) (-1140 |#1|)) (T -388)) -((-1894 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-1140 *3)) (-4 *3 (-254)) (-5 *2 (-83)) (-5 *1 (-388 *3 *5)))) (-1893 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1164 (-578 *3))) (-4 *4 (-254)) (-5 *2 (-578 *3)) (-5 *1 (-388 *4 *3)) (-4 *3 (-1140 *4)))) (-1892 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-687)) (-4 *4 (-254)) (-4 *6 (-1140 *4)) (-5 *2 (-1164 (-578 *6))) (-5 *1 (-388 *4 *6)) (-5 *5 (-578 *6)))) (-1891 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-254)) (-5 *2 (-687)) (-5 *1 (-388 *5 *3)))) (-2019 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-388 *3 *2)) (-4 *2 (-1140 *3))))) -((-3708 (((-341 |#5|) |#5|) 24 T ELT))) -(((-389 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3708 ((-341 |#5|) |#5|))) (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ "failed") (-1075))))) (-710) (-489) (-489) (-854 |#4| |#2| |#1|)) (T -389)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ "failed") (-1075)))))) (-4 *5 (-710)) (-4 *7 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-389 *4 *5 *6 *7 *3)) (-4 *6 (-489)) (-4 *3 (-854 *7 *5 *4))))) -((-2681 ((|#3|) 43 T ELT)) (-2689 (((-1070 |#4|) (-1070 |#4|) (-1070 |#4|)) 34 T ELT))) -(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2689 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -2681 (|#3|))) (-710) (-749) (-814) (-854 |#3| |#1| |#2|)) (T -390)) -((-2681 (*1 *2) (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-814)) (-5 *1 (-390 *3 *4 *2 *5)) (-4 *5 (-854 *2 *3 *4)))) (-2689 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-814)) (-5 *1 (-390 *3 *4 *5 *6))))) -((-3708 (((-341 (-1070 |#1|)) (-1070 |#1|)) 43 T ELT))) -(((-391 |#1|) (-10 -7 (-15 -3708 ((-341 (-1070 |#1|)) (-1070 |#1|)))) (-254)) (T -391)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-254)) (-5 *2 (-341 (-1070 *4))) (-5 *1 (-391 *4)) (-5 *3 (-1070 *4))))) -((-3705 (((-51) |#2| (-1075) (-245 |#2|) (-1131 (-687))) 44 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|) (-1131 (-687))) 43 T ELT) (((-51) |#2| (-1075) (-245 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|)) 29 T ELT)) (-3794 (((-51) |#2| (-1075) (-245 |#2|) (-1131 (-343 (-478))) (-343 (-478))) 88 T ELT) (((-51) (-1 |#2| (-343 (-478))) (-245 |#2|) (-1131 (-343 (-478))) (-343 (-478))) 87 T ELT) (((-51) |#2| (-1075) (-245 |#2|) (-1131 (-478))) 86 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|) (-1131 (-478))) 85 T ELT) (((-51) |#2| (-1075) (-245 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|)) 79 T ELT)) (-3758 (((-51) |#2| (-1075) (-245 |#2|) (-1131 (-343 (-478))) (-343 (-478))) 74 T ELT) (((-51) (-1 |#2| (-343 (-478))) (-245 |#2|) (-1131 (-343 (-478))) (-343 (-478))) 72 T ELT)) (-3755 (((-51) |#2| (-1075) (-245 |#2|) (-1131 (-478))) 51 T ELT) (((-51) (-1 |#2| (-478)) (-245 |#2|) (-1131 (-478))) 50 T ELT))) -(((-392 |#1| |#2|) (-10 -7 (-15 -3705 ((-51) (-1 |#2| (-478)) (-245 |#2|))) (-15 -3705 ((-51) |#2| (-1075) (-245 |#2|))) (-15 -3705 ((-51) (-1 |#2| (-478)) (-245 |#2|) (-1131 (-687)))) (-15 -3705 ((-51) |#2| (-1075) (-245 |#2|) (-1131 (-687)))) (-15 -3755 ((-51) (-1 |#2| (-478)) (-245 |#2|) (-1131 (-478)))) (-15 -3755 ((-51) |#2| (-1075) (-245 |#2|) (-1131 (-478)))) (-15 -3758 ((-51) (-1 |#2| (-343 (-478))) (-245 |#2|) (-1131 (-343 (-478))) (-343 (-478)))) (-15 -3758 ((-51) |#2| (-1075) (-245 |#2|) (-1131 (-343 (-478))) (-343 (-478)))) (-15 -3794 ((-51) (-1 |#2| (-478)) (-245 |#2|))) (-15 -3794 ((-51) |#2| (-1075) (-245 |#2|))) (-15 -3794 ((-51) (-1 |#2| (-478)) (-245 |#2|) (-1131 (-478)))) (-15 -3794 ((-51) |#2| (-1075) (-245 |#2|) (-1131 (-478)))) (-15 -3794 ((-51) (-1 |#2| (-343 (-478))) (-245 |#2|) (-1131 (-343 (-478))) (-343 (-478)))) (-15 -3794 ((-51) |#2| (-1075) (-245 |#2|) (-1131 (-343 (-478))) (-343 (-478))))) (-13 (-489) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1100) (-357 |#1|))) (T -392)) -((-3794 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-343 (-478)))) (-5 *7 (-343 (-478))) (-4 *3 (-13 (-27) (-1100) (-357 *8))) (-4 *8 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *8 *3)))) (-3794 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-343 (-478)))) (-5 *4 (-245 *8)) (-5 *5 (-1131 (-343 (-478)))) (-5 *6 (-343 (-478))) (-4 *8 (-13 (-27) (-1100) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *8)))) (-3794 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-478))) (-4 *3 (-13 (-27) (-1100) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *3)))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1131 (-478))) (-4 *7 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *7)))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *3)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-478))) (-5 *4 (-245 *6)) (-4 *6 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *5 *6)))) (-3758 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-343 (-478)))) (-5 *7 (-343 (-478))) (-4 *3 (-13 (-27) (-1100) (-357 *8))) (-4 *8 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *8 *3)))) (-3758 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-343 (-478)))) (-5 *4 (-245 *8)) (-5 *5 (-1131 (-343 (-478)))) (-5 *6 (-343 (-478))) (-4 *8 (-13 (-27) (-1100) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *8)))) (-3755 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-478))) (-4 *3 (-13 (-27) (-1100) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *3)))) (-3755 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1131 (-478))) (-4 *7 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *7)))) (-3705 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-687))) (-4 *3 (-13 (-27) (-1100) (-357 *7))) (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *7 *3)))) (-3705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1131 (-687))) (-4 *7 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *7)))) (-3705 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *6 *3)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-478))) (-5 *4 (-245 *6)) (-4 *6 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) (-5 *1 (-392 *5 *6))))) -((-2019 ((|#2| |#2| |#1|) 15 T ELT)) (-1896 (((-578 |#2|) |#2| (-578 |#2|) |#1| (-823)) 82 T ELT)) (-1895 (((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-823)) 71 T ELT))) -(((-393 |#1| |#2|) (-10 -7 (-15 -1895 ((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-823))) (-15 -1896 ((-578 |#2|) |#2| (-578 |#2|) |#1| (-823))) (-15 -2019 (|#2| |#2| |#1|))) (-254) (-1140 |#1|)) (T -393)) -((-2019 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-393 *3 *2)) (-4 *2 (-1140 *3)))) (-1896 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-578 *3)) (-5 *5 (-823)) (-4 *3 (-1140 *4)) (-4 *4 (-254)) (-5 *1 (-393 *4 *3)))) (-1895 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-823)) (-4 *5 (-254)) (-4 *3 (-1140 *5)) (-5 *2 (-2 (|:| |plist| (-578 *3)) (|:| |modulo| *5))) (-5 *1 (-393 *5 *3)) (-5 *4 (-578 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 28 T ELT)) (-3683 (($ |#3|) 25 T ELT)) (-1295 (((-3 $ "failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) 32 T ELT)) (-1897 (($ |#2| |#4| $) 33 T ELT)) (-2874 (($ |#2| (-645 |#3| |#4| |#5|)) 24 T ELT)) (-2875 (((-645 |#3| |#4| |#5|) $) 15 T ELT)) (-1899 ((|#3| $) 19 T ELT)) (-1900 ((|#4| $) 17 T ELT)) (-3155 ((|#2| $) 29 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1898 (($ |#2| |#3| |#4|) 26 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 36 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 34 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-394 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-649 |#6|) (-649 |#2|) (-10 -8 (-15 -3155 (|#2| $)) (-15 -2875 ((-645 |#3| |#4| |#5|) $)) (-15 -1900 (|#4| $)) (-15 -1899 (|#3| $)) (-15 -3935 ($ $)) (-15 -2874 ($ |#2| (-645 |#3| |#4| |#5|))) (-15 -3683 ($ |#3|)) (-15 -1898 ($ |#2| |#3| |#4|)) (-15 -1897 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-578 (-1075)) (-144) (-749) (-193 (-3933 |#1|) (-687)) (-1 (-83) (-2 (|:| -2382 |#3|) (|:| -2383 |#4|)) (-2 (|:| -2382 |#3|) (|:| -2383 |#4|))) (-854 |#2| |#4| (-766 |#1|))) (T -394)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) (-4 *6 (-193 (-3933 *3) (-687))) (-14 *7 (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *6)) (-2 (|:| -2382 *5) (|:| -2383 *6)))) (-5 *1 (-394 *3 *4 *5 *6 *7 *2)) (-4 *5 (-749)) (-4 *2 (-854 *4 *6 (-766 *3))))) (-3155 (*1 *2 *1) (-12 (-14 *3 (-578 (-1075))) (-4 *5 (-193 (-3933 *3) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2382 *4) (|:| -2383 *5)) (-2 (|:| -2382 *4) (|:| -2383 *5)))) (-4 *2 (-144)) (-5 *1 (-394 *3 *2 *4 *5 *6 *7)) (-4 *4 (-749)) (-4 *7 (-854 *2 *5 (-766 *3))))) (-2875 (*1 *2 *1) (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) (-4 *6 (-193 (-3933 *3) (-687))) (-14 *7 (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *6)) (-2 (|:| -2382 *5) (|:| -2383 *6)))) (-5 *2 (-645 *5 *6 *7)) (-5 *1 (-394 *3 *4 *5 *6 *7 *8)) (-4 *5 (-749)) (-4 *8 (-854 *4 *6 (-766 *3))))) (-1900 (*1 *2 *1) (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) (-14 *6 (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *2)) (-2 (|:| -2382 *5) (|:| -2383 *2)))) (-4 *2 (-193 (-3933 *3) (-687))) (-5 *1 (-394 *3 *4 *5 *2 *6 *7)) (-4 *5 (-749)) (-4 *7 (-854 *4 *2 (-766 *3))))) (-1899 (*1 *2 *1) (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) (-4 *5 (-193 (-3933 *3) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2382 *2) (|:| -2383 *5)) (-2 (|:| -2382 *2) (|:| -2383 *5)))) (-4 *2 (-749)) (-5 *1 (-394 *3 *4 *2 *5 *6 *7)) (-4 *7 (-854 *4 *5 (-766 *3))))) (-3935 (*1 *1 *1) (-12 (-14 *2 (-578 (-1075))) (-4 *3 (-144)) (-4 *5 (-193 (-3933 *2) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2382 *4) (|:| -2383 *5)) (-2 (|:| -2382 *4) (|:| -2383 *5)))) (-5 *1 (-394 *2 *3 *4 *5 *6 *7)) (-4 *4 (-749)) (-4 *7 (-854 *3 *5 (-766 *2))))) (-2874 (*1 *1 *2 *3) (-12 (-5 *3 (-645 *5 *6 *7)) (-4 *5 (-749)) (-4 *6 (-193 (-3933 *4) (-687))) (-14 *7 (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *6)) (-2 (|:| -2382 *5) (|:| -2383 *6)))) (-14 *4 (-578 (-1075))) (-4 *2 (-144)) (-5 *1 (-394 *4 *2 *5 *6 *7 *8)) (-4 *8 (-854 *2 *6 (-766 *4))))) (-3683 (*1 *1 *2) (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) (-4 *5 (-193 (-3933 *3) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2382 *2) (|:| -2383 *5)) (-2 (|:| -2382 *2) (|:| -2383 *5)))) (-5 *1 (-394 *3 *4 *2 *5 *6 *7)) (-4 *2 (-749)) (-4 *7 (-854 *4 *5 (-766 *3))))) (-1898 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-578 (-1075))) (-4 *2 (-144)) (-4 *4 (-193 (-3933 *5) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2382 *3) (|:| -2383 *4)) (-2 (|:| -2382 *3) (|:| -2383 *4)))) (-5 *1 (-394 *5 *2 *3 *4 *6 *7)) (-4 *3 (-749)) (-4 *7 (-854 *2 *4 (-766 *5))))) (-1897 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-578 (-1075))) (-4 *2 (-144)) (-4 *3 (-193 (-3933 *4) (-687))) (-14 *6 (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *3)) (-2 (|:| -2382 *5) (|:| -2383 *3)))) (-5 *1 (-394 *4 *2 *5 *3 *6 *7)) (-4 *5 (-749)) (-4 *7 (-854 *2 *3 (-766 *4)))))) -((-1901 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-395 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1901 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-710) (-749) (-489) (-854 |#3| |#1| |#2|) (-13 (-943 (-343 (-478))) (-308) (-10 -8 (-15 -3922 ($ |#4|)) (-15 -2979 (|#4| $)) (-15 -2978 (|#4| $))))) (T -395)) -((-1901 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-749)) (-4 *5 (-710)) (-4 *6 (-489)) (-4 *7 (-854 *6 *5 *3)) (-5 *1 (-395 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-943 (-343 (-478))) (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $)))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3063 (((-578 |#3|) $) 41 T ELT)) (-2889 (((-83) $) NIL T ELT)) (-2880 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3686 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2885 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ #1="failed") (-578 |#4|)) 49 T ELT)) (-3137 (($ (-578 |#4|)) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-3383 (($ |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#4|) $) 18 (|has| $ (-6 -3971)) ELT)) (-3161 ((|#3| $) 47 T ELT)) (-2588 (((-578 |#4|) $) 14 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 26 (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2895 (((-578 |#3|) $) NIL T ELT)) (-2894 (((-83) |#3| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1337 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 39 T ELT)) (-3541 (($) 17 T ELT)) (-1929 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 16 T ELT)) (-3948 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT) (($ (-578 |#4|)) 51 T ELT)) (-3507 (($ (-578 |#4|)) 13 T ELT)) (-2891 (($ $ |#3|) NIL T ELT)) (-2893 (($ $ |#3|) NIL T ELT)) (-2892 (($ $ |#3|) NIL T ELT)) (-3922 (((-765) $) 38 T ELT) (((-578 |#4|) $) 50 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 30 T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-396 |#1| |#2| |#3| |#4|) (-13 (-882 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3948 ($ (-578 |#4|))) (-6 -3971) (-6 -3972))) (-954) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -396)) -((-3948 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-396 *3 *4 *5 *6))))) -((-2640 (($) 11 T CONST)) (-2647 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-397 |#1| |#2| |#3|) (-10 -7 (-15 -2647 (|#1|) -3928) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2640 (|#1|) -3928)) (-398 |#2| |#3|) (-144) (-23)) (T -397)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3138 (((-3 |#1| "failed") $) 30 T ELT)) (-3137 ((|#1| $) 31 T ELT)) (-3920 (($ $ $) 27 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3924 ((|#2| $) 23 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 22 T CONST)) (-2647 (($) 28 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-398 |#1| |#2|) (-111) (-144) (-23)) (T -398)) -((-2647 (*1 *1) (-12 (-4 *1 (-398 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3920 (*1 *1 *1 *1) (-12 (-4 *1 (-398 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23))))) -(-13 (-403 |t#1| |t#2|) (-943 |t#1|) (-10 -8 (-15 -2647 ($) -3928) (-15 -3920 ($ $ $)))) -(((-72) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-403 |#1| |#2|) . T) ((-943 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-1902 (((-1164 (-1164 (-478))) (-1164 (-1164 (-478))) (-823)) 26 T ELT)) (-1903 (((-1164 (-1164 (-478))) (-823)) 21 T ELT))) -(((-399) (-10 -7 (-15 -1902 ((-1164 (-1164 (-478))) (-1164 (-1164 (-478))) (-823))) (-15 -1903 ((-1164 (-1164 (-478))) (-823))))) (T -399)) -((-1903 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1164 (-1164 (-478)))) (-5 *1 (-399)))) (-1902 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 (-1164 (-478)))) (-5 *3 (-823)) (-5 *1 (-399))))) -((-2751 (((-478) (-478)) 32 T ELT) (((-478)) 24 T ELT)) (-2755 (((-478) (-478)) 28 T ELT) (((-478)) 20 T ELT)) (-2753 (((-478) (-478)) 30 T ELT) (((-478)) 22 T ELT)) (-1905 (((-83) (-83)) 14 T ELT) (((-83)) 12 T ELT)) (-1904 (((-83) (-83)) 13 T ELT) (((-83)) 11 T ELT)) (-1906 (((-83) (-83)) 26 T ELT) (((-83)) 17 T ELT))) -(((-400) (-10 -7 (-15 -1904 ((-83))) (-15 -1905 ((-83))) (-15 -1904 ((-83) (-83))) (-15 -1905 ((-83) (-83))) (-15 -1906 ((-83))) (-15 -2753 ((-478))) (-15 -2755 ((-478))) (-15 -2751 ((-478))) (-15 -1906 ((-83) (-83))) (-15 -2753 ((-478) (-478))) (-15 -2755 ((-478) (-478))) (-15 -2751 ((-478) (-478))))) (T -400)) -((-2751 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-2755 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-2753 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-1906 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-2751 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-2755 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-2753 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) (-1906 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-1905 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-1905 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) (-1904 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3827 (((-578 (-323)) $) 34 T ELT) (((-578 (-323)) $ (-578 (-323))) 145 T ELT)) (-1911 (((-578 (-992 (-323))) $) 16 T ELT) (((-578 (-992 (-323))) $ (-578 (-992 (-323)))) 142 T ELT)) (-1908 (((-578 (-578 (-847 (-177)))) (-578 (-578 (-847 (-177)))) (-578 (-776))) 58 T ELT)) (-1912 (((-578 (-578 (-847 (-177)))) $) 137 T ELT)) (-3682 (((-1170) $ (-847 (-177)) (-776)) 162 T ELT)) (-1913 (($ $) 136 T ELT) (($ (-578 (-578 (-847 (-177))))) 148 T ELT) (($ (-578 (-578 (-847 (-177)))) (-578 (-776)) (-578 (-776)) (-578 (-823))) 147 T ELT) (($ (-578 (-578 (-847 (-177)))) (-578 (-776)) (-578 (-776)) (-578 (-823)) (-578 (-218))) 149 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3836 (((-478) $) 110 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1914 (($) 146 T ELT)) (-1907 (((-578 (-177)) (-578 (-578 (-847 (-177))))) 89 T ELT)) (-1910 (((-1170) $ (-578 (-847 (-177))) (-776) (-776) (-823)) 154 T ELT) (((-1170) $ (-847 (-177))) 156 T ELT) (((-1170) $ (-847 (-177)) (-776) (-776) (-823)) 155 T ELT)) (-3922 (((-765) $) 168 T ELT) (($ (-578 (-578 (-847 (-177))))) 163 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1909 (((-1170) $ (-847 (-177))) 161 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-401) (-13 (-1003) (-10 -8 (-15 -1914 ($)) (-15 -1913 ($ $)) (-15 -1913 ($ (-578 (-578 (-847 (-177)))))) (-15 -1913 ($ (-578 (-578 (-847 (-177)))) (-578 (-776)) (-578 (-776)) (-578 (-823)))) (-15 -1913 ($ (-578 (-578 (-847 (-177)))) (-578 (-776)) (-578 (-776)) (-578 (-823)) (-578 (-218)))) (-15 -1912 ((-578 (-578 (-847 (-177)))) $)) (-15 -3836 ((-478) $)) (-15 -1911 ((-578 (-992 (-323))) $)) (-15 -1911 ((-578 (-992 (-323))) $ (-578 (-992 (-323))))) (-15 -3827 ((-578 (-323)) $)) (-15 -3827 ((-578 (-323)) $ (-578 (-323)))) (-15 -1910 ((-1170) $ (-578 (-847 (-177))) (-776) (-776) (-823))) (-15 -1910 ((-1170) $ (-847 (-177)))) (-15 -1910 ((-1170) $ (-847 (-177)) (-776) (-776) (-823))) (-15 -1909 ((-1170) $ (-847 (-177)))) (-15 -3682 ((-1170) $ (-847 (-177)) (-776))) (-15 -3922 ($ (-578 (-578 (-847 (-177)))))) (-15 -3922 ((-765) $)) (-15 -1908 ((-578 (-578 (-847 (-177)))) (-578 (-578 (-847 (-177)))) (-578 (-776)))) (-15 -1907 ((-578 (-177)) (-578 (-578 (-847 (-177))))))))) (T -401)) -((-3922 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-401)))) (-1914 (*1 *1) (-5 *1 (-401))) (-1913 (*1 *1 *1) (-5 *1 (-401))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) (-1913 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) (-5 *4 (-578 (-823))) (-5 *1 (-401)))) (-1913 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) (-5 *4 (-578 (-823))) (-5 *5 (-578 (-218))) (-5 *1 (-401)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-401)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-401)))) (-1911 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-401)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-401)))) (-3827 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-401)))) (-1910 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *2 (-1170)) (-5 *1 (-401)))) (-1910 (*1 *2 *1 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-1170)) (-5 *1 (-401)))) (-1910 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-847 (-177))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *2 (-1170)) (-5 *1 (-401)))) (-1909 (*1 *2 *1 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-1170)) (-5 *1 (-401)))) (-3682 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-847 (-177))) (-5 *4 (-776)) (-5 *2 (-1170)) (-5 *1 (-401)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) (-1908 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) (-5 *1 (-401)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-578 (-177))) (-5 *1 (-401))))) -((-3813 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-402 |#1| |#2| |#3|) (-10 -7 (-15 -3813 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|))) (-403 |#2| |#3|) (-144) (-23)) (T -402)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3924 ((|#2| $) 23 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 22 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) -(((-403 |#1| |#2|) (-111) (-144) (-23)) (T -403)) -((-3924 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *2)) (-4 *3 (-144)) (-4 *2 (-23)))) (-2640 (*1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3815 (*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3813 (*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23))))) -(-13 (-1003) (-10 -8 (-15 -3924 (|t#2| $)) (-15 -2640 ($) -3928) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3813 ($ $)) (-15 -3815 ($ $ $)) (-15 -3813 ($ $ $)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-1916 (((-3 (-578 (-414 |#1| |#2|)) "failed") (-578 (-414 |#1| |#2|)) (-578 (-766 |#1|))) 135 T ELT)) (-1915 (((-578 (-578 (-203 |#1| |#2|))) (-578 (-203 |#1| |#2|)) (-578 (-766 |#1|))) 132 T ELT)) (-1917 (((-2 (|:| |dpolys| (-578 (-203 |#1| |#2|))) (|:| |coords| (-578 (-478)))) (-578 (-203 |#1| |#2|)) (-578 (-766 |#1|))) 87 T ELT))) -(((-404 |#1| |#2| |#3|) (-10 -7 (-15 -1915 ((-578 (-578 (-203 |#1| |#2|))) (-578 (-203 |#1| |#2|)) (-578 (-766 |#1|)))) (-15 -1916 ((-3 (-578 (-414 |#1| |#2|)) "failed") (-578 (-414 |#1| |#2|)) (-578 (-766 |#1|)))) (-15 -1917 ((-2 (|:| |dpolys| (-578 (-203 |#1| |#2|))) (|:| |coords| (-578 (-478)))) (-578 (-203 |#1| |#2|)) (-578 (-766 |#1|))))) (-578 (-1075)) (-385) (-385)) (T -404)) -((-1917 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-766 *5))) (-14 *5 (-578 (-1075))) (-4 *6 (-385)) (-5 *2 (-2 (|:| |dpolys| (-578 (-203 *5 *6))) (|:| |coords| (-578 (-478))))) (-5 *1 (-404 *5 *6 *7)) (-5 *3 (-578 (-203 *5 *6))) (-4 *7 (-385)))) (-1916 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-414 *4 *5))) (-5 *3 (-578 (-766 *4))) (-14 *4 (-578 (-1075))) (-4 *5 (-385)) (-5 *1 (-404 *4 *5 *6)) (-4 *6 (-385)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-766 *5))) (-14 *5 (-578 (-1075))) (-4 *6 (-385)) (-5 *2 (-578 (-578 (-203 *5 *6)))) (-5 *1 (-404 *5 *6 *7)) (-5 *3 (-578 (-203 *5 *6))) (-4 *7 (-385))))) -((-3444 (((-3 $ "failed") $) 11 T ELT)) (-2990 (($ $ $) 22 T ELT)) (-2415 (($ $ $) 23 T ELT)) (-3925 (($ $ $) 9 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 21 T ELT))) -(((-405 |#1|) (-10 -7 (-15 -2415 (|#1| |#1| |#1|)) (-15 -2990 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 -3925 (|#1| |#1| |#1|)) (-15 -3444 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-687))) (-15 ** (|#1| |#1| (-823)))) (-406)) (T -405)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3700 (($) 23 T CONST)) (-3444 (((-3 $ "failed") $) 20 T ELT)) (-2392 (((-83) $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 30 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2990 (($ $ $) 27 T ELT)) (-2415 (($ $ $) 26 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2647 (($) 24 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 29 T ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 21 T ELT) (($ $ (-478)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-406) (-111)) (T -406)) -((-2464 (*1 *1 *1) (-4 *1 (-406))) (-3925 (*1 *1 *1 *1) (-4 *1 (-406))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-478)))) (-2990 (*1 *1 *1 *1) (-4 *1 (-406))) (-2415 (*1 *1 *1 *1) (-4 *1 (-406)))) -(-13 (-658) (-10 -8 (-15 -2464 ($ $)) (-15 -3925 ($ $ $)) (-15 ** ($ $ (-478))) (-6 -3968) (-15 -2990 ($ $ $)) (-15 -2415 ($ $ $)))) -(((-72) . T) ((-547 (-765)) . T) ((-658) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) 18 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-343 (-478))) NIL T ELT) (($ $ (-343 (-478)) (-343 (-478))) NIL T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) NIL T ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-687) (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) NIL T ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2873 (((-83) $) NIL T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-343 (-478)) $) NIL T ELT) (((-343 (-478)) $ (-343 (-478))) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-343 (-478))) NIL T ELT) (($ $ (-985) (-343 (-478))) NIL T ELT) (($ $ (-578 (-985)) (-578 (-343 (-478)))) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3788 (($ $) 29 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) 35 (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT) (($ $ (-1161 |#2|)) 30 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-343 (-478))) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-343 (-478))) NIL T ELT) (($ $ $) NIL (|has| (-343 (-478)) (-1013)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1075)) 28 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1161 |#2|)) 16 T ELT)) (-3924 (((-343 (-478)) $) NIL T ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1161 |#2|)) NIL T ELT) (($ (-1145 |#1| |#2| |#3|)) 9 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-343 (-478))) NIL T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-3749 ((|#1| $) 21 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-343 (-478))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1161 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-407 |#1| |#2| |#3|) (-13 (-1147 |#1|) (-799 $ (-1161 |#2|)) (-10 -8 (-15 -3922 ($ (-1161 |#2|))) (-15 -3922 ($ (-1145 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3788 ($ $ (-1161 |#2|))) |%noBranch|))) (-954) (-1075) |#1|) (T -407)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-1145 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1075)) (-14 *5 *3) (-5 *1 (-407 *3 *4 *5)))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-407 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) -((-2548 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3575 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2180 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) NIL T ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2182 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2183 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-2214 (((-578 |#1|) $) NIL T ELT)) (-2215 (((-83) |#1| $) NIL T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2185 (((-578 |#1|) $) NIL T ELT)) (-2186 (((-83) |#1| $) NIL T ELT)) (-3223 (((-1020) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-3777 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1449 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3922 (((-765) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1249 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-408 |#1| |#2| |#3| |#4|) (-1092 |#1| |#2|) (-1003) (-1003) (-1092 |#1| |#2|) |#2|) (T -408)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |#4|)))) (-578 |#4|)) NIL T ELT)) (-3658 (((-578 $) (-578 |#4|)) NIL T ELT)) (-3063 (((-578 |#3|) $) NIL T ELT)) (-2889 (((-83) $) NIL T ELT)) (-2880 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3669 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3664 ((|#4| |#4| $) NIL T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3686 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2885 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3665 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ #1#) (-578 |#4|)) NIL T ELT)) (-3137 (($ (-578 |#4|)) NIL T ELT)) (-3775 (((-3 $ #1#) $) 45 T ELT)) (-3661 ((|#4| |#4| $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-3383 (($ |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3670 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3659 ((|#4| |#4| $) NIL T ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3971)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#4|)) (|:| -1685 (-578 |#4|))) $) NIL T ELT)) (-2870 (((-578 |#4|) $) 18 (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3161 ((|#3| $) 38 T ELT)) (-2588 (((-578 |#4|) $) 19 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2895 (((-578 |#3|) $) NIL T ELT)) (-2894 (((-83) |#3| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3774 (((-3 |#4| #1#) $) 42 T ELT)) (-3673 (((-578 |#4|) $) NIL T ELT)) (-3667 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3662 ((|#4| |#4| $) NIL T ELT)) (-3675 (((-83) $ $) NIL T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3668 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3663 ((|#4| |#4| $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 (((-3 |#4| #1#) $) 40 T ELT)) (-1337 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3655 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3745 (($ $ |#4|) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 17 T ELT)) (-3541 (($) 14 T ELT)) (-3924 (((-687) $) NIL T ELT)) (-1929 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 13 T ELT)) (-3948 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) 22 T ELT)) (-2891 (($ $ |#3|) 49 T ELT)) (-2893 (($ $ |#3|) 51 T ELT)) (-3660 (($ $) NIL T ELT)) (-2892 (($ $ |#3|) NIL T ELT)) (-3922 (((-765) $) 35 T ELT) (((-578 |#4|) $) 46 T ELT)) (-3654 (((-687) $) NIL (|has| |#3| (-313)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3666 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 |#3|) $) NIL T ELT)) (-3909 (((-83) |#3| $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-409 |#1| |#2| |#3| |#4|) (-1109 |#1| |#2| |#3| |#4|) (-489) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -409)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3603 (($) 17 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3948 (((-323) $) 21 T ELT) (((-177) $) 24 T ELT) (((-343 (-1070 (-478))) $) 18 T ELT) (((-467) $) 53 T ELT)) (-3922 (((-765) $) 51 T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (((-177) $) 23 T ELT) (((-323) $) 20 T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2640 (($) 37 T CONST)) (-2647 (($) 8 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) -(((-410) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))) (-926) (-547 (-177)) (-547 (-323)) (-548 (-343 (-1070 (-478)))) (-548 (-467)) (-10 -8 (-15 -3603 ($))))) (T -410)) -((-3603 (*1 *1) (-5 *1 (-410)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3505 (((-1035) $) 12 T ELT)) (-3506 (((-1035) $) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-411) (-13 (-986) (-10 -8 (-15 -3506 ((-1035) $)) (-15 -3505 ((-1035) $))))) (T -411)) -((-3506 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-411)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-411))))) -((-2548 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3575 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2180 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) NIL T ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2182 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2183 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-2214 (((-578 |#1|) $) 13 T ELT)) (-2215 (((-83) |#1| $) NIL T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2185 (((-578 |#1|) $) NIL T ELT)) (-2186 (((-83) |#1| $) NIL T ELT)) (-3223 (((-1020) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-3777 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) 19 T ELT)) (-3776 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1449 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3922 (((-765) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1249 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 11 (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3933 (((-687) $) 15 (|has| $ (-6 -3971)) ELT))) -(((-412 |#1| |#2| |#3|) (-13 (-1092 |#1| |#2|) (-10 -7 (-6 -3971))) (-1003) (-1003) (-1059)) (T -412)) -NIL -((-1918 (((-478) (-478) (-478)) 19 T ELT)) (-1919 (((-83) (-478) (-478) (-478) (-478)) 28 T ELT)) (-3434 (((-1164 (-578 (-478))) (-687) (-687)) 42 T ELT))) -(((-413) (-10 -7 (-15 -1918 ((-478) (-478) (-478))) (-15 -1919 ((-83) (-478) (-478) (-478) (-478))) (-15 -3434 ((-1164 (-578 (-478))) (-687) (-687))))) (T -413)) -((-3434 (*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1164 (-578 (-478)))) (-5 *1 (-413)))) (-1919 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-83)) (-5 *1 (-413)))) (-1918 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-413))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-766 |#1|)) $) NIL T ELT)) (-3065 (((-1070 $) $ (-766 |#1|)) NIL T ELT) (((-1070 |#2|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-766 |#1|))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-3137 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-766 |#1|) $) NIL T ELT)) (-3732 (($ $ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1920 (($ $ (-578 (-478))) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1607 (($ $ |#2| (-415 (-3933 |#1|) (-687)) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3066 (($ (-1070 |#2|) (-766 |#1|)) NIL T ELT) (($ (-1070 $) (-766 |#1|)) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#2| (-415 (-3933 |#1|) (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-766 |#1|)) NIL T ELT)) (-2801 (((-415 (-3933 |#1|) (-687)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-1608 (($ (-1 (-415 (-3933 |#1|) (-687)) (-415 (-3933 |#1|) (-687))) $) NIL T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3064 (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-766 |#1|)) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#2| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-3443 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-766 |#1|) |#2|) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 |#2|)) NIL T ELT) (($ $ (-766 |#1|) $) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 $)) NIL T ELT)) (-3733 (($ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3734 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3924 (((-415 (-3933 |#1|) (-687)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-766 |#1|) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2798 ((|#2| $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-766 |#1|)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#2| (-489)) ELT)) (-3793 (((-578 |#2|) $) NIL T ELT)) (-3653 ((|#2| $ (-415 (-3933 |#1|) (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-414 |#1| |#2|) (-13 (-854 |#2| (-415 (-3933 |#1|) (-687)) (-766 |#1|)) (-10 -8 (-15 -1920 ($ $ (-578 (-478)))))) (-578 (-1075)) (-954)) (T -414)) -((-1920 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-414 *3 *4)) (-14 *3 (-578 (-1075))) (-4 *4 (-954))))) -((-2548 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3170 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3683 (($ (-823)) NIL (|has| |#2| (-954)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-2463 (($ $ $) NIL (|has| |#2| (-710)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-102)) ELT)) (-3117 (((-687)) NIL (|has| |#2| (-313)) ELT)) (-3764 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1003)) ELT)) (-3137 (((-478) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) ((|#2| $) NIL (|has| |#2| (-1003)) ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-625 $)) NIL (|has| |#2| (-954)) ELT)) (-3444 (((-3 $ #1#) $) NIL (|has| |#2| (-954)) ELT)) (-2975 (($) NIL (|has| |#2| (-313)) ELT)) (-1559 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ (-478)) 11 T ELT)) (-3168 (((-83) $) NIL (|has| |#2| (-710)) ELT)) (-2870 (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) NIL (|has| |#2| (-954)) ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-2588 (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-1932 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1992 (((-823) $) NIL (|has| |#2| (-313)) ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-1164 $)) NIL (|has| |#2| (-954)) ELT)) (-3222 (((-1059) $) NIL (|has| |#2| (-1003)) ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-2382 (($ (-823)) NIL (|has| |#2| (-313)) ELT)) (-3223 (((-1020) $) NIL (|has| |#2| (-1003)) ELT)) (-3777 ((|#2| $) NIL (|has| (-478) (-749)) ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-478)) NIL T ELT)) (-3812 ((|#2| $ $) NIL (|has| |#2| (-954)) ELT)) (-1451 (($ (-1164 |#2|)) NIL T ELT)) (-3887 (((-105)) NIL (|has| |#2| (-308)) ELT)) (-3734 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-1164 |#2|) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (|has| |#2| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) (($ |#2|) NIL (|has| |#2| (-1003)) ELT) (((-765) $) NIL (|has| |#2| (-547 (-765))) ELT)) (-3107 (((-687)) NIL (|has| |#2| (-954)) CONST)) (-1249 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2640 (($) NIL (|has| |#2| (-23)) CONST)) (-2647 (($) NIL (|has| |#2| (-954)) CONST)) (-2650 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2666 (((-83) $ $) 17 (|has| |#2| (-749)) ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3815 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-687)) NIL (|has| |#2| (-954)) ELT) (($ $ (-823)) NIL (|has| |#2| (-954)) ELT)) (* (($ $ $) NIL (|has| |#2| (-954)) ELT) (($ $ |#2|) NIL (|has| |#2| (-658)) ELT) (($ |#2| $) NIL (|has| |#2| (-658)) ELT) (($ (-478) $) NIL (|has| |#2| (-21)) ELT) (($ (-687) $) NIL (|has| |#2| (-23)) ELT) (($ (-823) $) NIL (|has| |#2| (-25)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-415 |#1| |#2|) (-193 |#1| |#2|) (-687) (-710)) (T -415)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-1921 (((-578 (-778)) $) 16 T ELT)) (-3518 (((-439) $) 14 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1922 (($ (-439) (-578 (-778))) 12 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 23 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-416) (-13 (-986) (-10 -8 (-15 -1922 ($ (-439) (-578 (-778)))) (-15 -3518 ((-439) $)) (-15 -1921 ((-578 (-778)) $))))) (T -416)) -((-1922 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-778))) (-5 *1 (-416)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-416)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-578 (-778))) (-5 *1 (-416))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3700 (($) NIL T CONST)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2837 (($ $ $) 48 T ELT)) (-3495 (($ $ $) 47 T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2838 ((|#1| $) 40 T ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 41 T ELT)) (-3585 (($ |#1| $) 18 T ELT)) (-1923 (($ (-578 |#1|)) 19 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1259 ((|#1| $) 34 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) 11 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 45 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 29 (|has| $ (-6 -3971)) ELT))) -(((-417 |#1|) (-13 (-874 |#1|) (-10 -8 (-15 -1923 ($ (-578 |#1|))))) (-749)) (T -417)) -((-1923 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-417 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3818 (($ $) 71 T ELT)) (-1620 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1952 (((-349 |#2| (-343 |#2|) |#3| |#4|) $) 45 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (((-3 |#4| #1#) $) 117 T ELT)) (-1621 (($ (-349 |#2| (-343 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-478)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3412 (((-2 (|:| -2318 (-349 |#2| (-343 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3922 (((-765) $) 110 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 32 T CONST)) (-3037 (((-83) $ $) 121 T ELT)) (-3813 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 72 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 77 T ELT))) -(((-418 |#1| |#2| |#3| |#4|) (-282 |#1| |#2| |#3| |#4|) (-308) (-1140 |#1|) (-1140 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -418)) -NIL -((-1927 (((-478) (-578 (-478))) 53 T ELT)) (-1924 ((|#1| (-578 |#1|)) 94 T ELT)) (-1926 (((-578 |#1|) (-578 |#1|)) 95 T ELT)) (-1925 (((-578 |#1|) (-578 |#1|)) 97 T ELT)) (-3125 ((|#1| (-578 |#1|)) 96 T ELT)) (-2798 (((-578 (-478)) (-578 |#1|)) 56 T ELT))) -(((-419 |#1|) (-10 -7 (-15 -3125 (|#1| (-578 |#1|))) (-15 -1924 (|#1| (-578 |#1|))) (-15 -1925 ((-578 |#1|) (-578 |#1|))) (-15 -1926 ((-578 |#1|) (-578 |#1|))) (-15 -2798 ((-578 (-478)) (-578 |#1|))) (-15 -1927 ((-478) (-578 (-478))))) (-1140 (-478))) (T -419)) -((-1927 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-478)) (-5 *1 (-419 *4)) (-4 *4 (-1140 *2)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1140 (-478))) (-5 *2 (-578 (-478))) (-5 *1 (-419 *4)))) (-1926 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1140 (-478))) (-5 *1 (-419 *3)))) (-1925 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1140 (-478))) (-5 *1 (-419 *3)))) (-1924 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-419 *2)) (-4 *2 (-1140 (-478))))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-419 *2)) (-4 *2 (-1140 (-478)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 (((-478) $) NIL (|has| (-478) (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| (-478) (-733)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL (|has| (-478) (-943 (-1075))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-3137 (((-478) $) NIL T ELT) (((-1075) $) NIL (|has| (-478) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-478) (-477)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3168 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-478) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-478) (-789 (-323))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL T ELT)) (-2979 (((-478) $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| (-478) (-1052)) ELT)) (-3169 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-3934 (($ (-1 (-478) (-478)) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL T ELT) (((-625 (-478)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-478) (-1052)) CONST)) (-1928 (($ (-343 (-478))) 9 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL (|has| (-478) (-254)) ELT) (((-343 (-478)) $) NIL T ELT)) (-3111 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3744 (($ $ (-578 (-478)) (-578 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-478) (-478)) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-245 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-245 (-478)))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-1075)) (-578 (-478))) NIL (|has| (-478) (-447 (-1075) (-478))) ELT) (($ $ (-1075) (-478)) NIL (|has| (-478) (-447 (-1075) (-478))) ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ $ (-478)) NIL (|has| (-478) (-238 (-478) (-478))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2976 (($ $) NIL T ELT)) (-2978 (((-478) $) NIL T ELT)) (-3948 (((-793 (-478)) $) NIL (|has| (-478) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-478) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-478) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-478) (-926)) ELT) (((-177) $) NIL (|has| (-478) (-926)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-478) (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 8 T ELT) (($ (-478)) NIL T ELT) (($ (-1075)) NIL (|has| (-478) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL T ELT) (((-910 16) $) 10 T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-478) (-814))) (|has| (-478) (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-3112 (((-478) $) NIL (|has| (-478) (-477)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3360 (($ $) NIL (|has| (-478) (-733)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3925 (($ $ $) NIL T ELT) (($ (-478) (-478)) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ (-478)) NIL T ELT))) -(((-420) (-13 (-897 (-478)) (-547 (-343 (-478))) (-547 (-910 16)) (-10 -8 (-15 -3109 ((-343 (-478)) $)) (-15 -1928 ($ (-343 (-478))))))) (T -420)) -((-3109 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-420)))) (-1928 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-420))))) -((-2588 (((-578 |#2|) $) 31 T ELT)) (-3225 (((-83) |#2| $) 39 T ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) 26 T ELT)) (-3744 (($ $ (-578 (-245 |#2|))) 13 T ELT) (($ $ (-245 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) 30 T ELT) (((-687) |#2| $) 37 T ELT)) (-3922 (((-765) $) 45 T ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) 23 T ELT)) (-3037 (((-83) $ $) 35 T ELT)) (-3933 (((-687) $) 18 T ELT))) -(((-421 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -3744 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3744 (|#1| |#1| |#2| |#2|)) (-15 -3744 (|#1| |#1| (-245 |#2|))) (-15 -3744 (|#1| |#1| (-578 (-245 |#2|)))) (-15 -3225 ((-83) |#2| |#1|)) (-15 -1929 ((-687) |#2| |#1|)) (-15 -2588 ((-578 |#2|) |#1|)) (-15 -1929 ((-687) (-1 (-83) |#2|) |#1|)) (-15 -1930 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1931 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3933 ((-687) |#1|))) (-422 |#2|) (-1114)) (T -421)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3700 (($) 7 T CONST)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-422 |#1|) (-111) (-1114)) (T -422)) -((-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-422 *3)) (-4 *3 (-1114)))) (-1932 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3972)) (-4 *1 (-422 *3)) (-4 *3 (-1114)))) (-1931 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3971)) (-4 *1 (-422 *4)) (-4 *4 (-1114)) (-5 *2 (-83)))) (-1930 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3971)) (-4 *1 (-422 *4)) (-4 *4 (-1114)) (-5 *2 (-83)))) (-1929 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3971)) (-4 *1 (-422 *4)) (-4 *4 (-1114)) (-5 *2 (-687)))) (-2870 (*1 *2 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-422 *3)) (-4 *3 (-1114)) (-5 *2 (-578 *3)))) (-2588 (*1 *2 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-422 *3)) (-4 *3 (-1114)) (-5 *2 (-578 *3)))) (-1929 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-422 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-687)))) (-3225 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-422 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-83))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-547 (-765))) (-6 (-547 (-765))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |t#1| (-1003)) (IF (|has| |t#1| (-256 |t#1|)) (-6 (-256 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3934 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3972)) (-15 -1932 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3971)) (PROGN (-15 -1931 ((-83) (-1 (-83) |t#1|) $)) (-15 -1930 ((-83) (-1 (-83) |t#1|) $)) (-15 -1929 ((-687) (-1 (-83) |t#1|) $)) (-15 -2870 ((-578 |t#1|) $)) (-15 -2588 ((-578 |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -1929 ((-687) |t#1| $)) (-15 -3225 ((-83) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-3922 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-423 |#1|) (-111) (-1114)) (T -423)) -NIL -(-13 (-547 |t#1|) (-550 |t#1|)) -(((-550 |#1|) . T) ((-547 |#1|) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1933 (($ (-1059)) 8 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 15 T ELT) (((-1059) $) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT))) -(((-424) (-13 (-1003) (-547 (-1059)) (-10 -8 (-15 -1933 ($ (-1059)))))) (T -424)) -((-1933 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-424))))) -((-3469 (($ $) 15 T ELT)) (-3467 (($ $) 24 T ELT)) (-3471 (($ $) 12 T ELT)) (-3472 (($ $) 10 T ELT)) (-3470 (($ $) 17 T ELT)) (-3468 (($ $) 22 T ELT))) -(((-425 |#1|) (-10 -7 (-15 -3468 (|#1| |#1|)) (-15 -3470 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3469 (|#1| |#1|))) (-426)) (T -425)) -NIL -((-3469 (($ $) 11 T ELT)) (-3467 (($ $) 10 T ELT)) (-3471 (($ $) 9 T ELT)) (-3472 (($ $) 8 T ELT)) (-3470 (($ $) 7 T ELT)) (-3468 (($ $) 6 T ELT))) -(((-426) (-111)) (T -426)) -((-3469 (*1 *1 *1) (-4 *1 (-426))) (-3467 (*1 *1 *1) (-4 *1 (-426))) (-3471 (*1 *1 *1) (-4 *1 (-426))) (-3472 (*1 *1 *1) (-4 *1 (-426))) (-3470 (*1 *1 *1) (-4 *1 (-426))) (-3468 (*1 *1 *1) (-4 *1 (-426)))) -(-13 (-10 -8 (-15 -3468 ($ $)) (-15 -3470 ($ $)) (-15 -3472 ($ $)) (-15 -3471 ($ $)) (-15 -3467 ($ $)) (-15 -3469 ($ $)))) -((-3708 (((-341 |#4|) |#4| (-1 (-341 |#2|) |#2|)) 54 T ELT))) -(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3708 ((-341 |#4|) |#4| (-1 (-341 |#2|) |#2|)))) (-308) (-1140 |#1|) (-13 (-308) (-118) (-656 |#1| |#2|)) (-1140 |#3|)) (T -427)) -((-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) (-4 *7 (-13 (-308) (-118) (-656 *5 *6))) (-5 *2 (-341 *3)) (-5 *1 (-427 *5 *6 *7 *3)) (-4 *3 (-1140 *7))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1199 (((-578 $) (-1070 $) (-1075)) NIL T ELT) (((-578 $) (-1070 $)) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT)) (-1200 (($ (-1070 $) (-1075)) NIL T ELT) (($ (-1070 $)) NIL T ELT) (($ (-850 $)) NIL T ELT)) (-3170 (((-83) $) 39 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1934 (((-83) $ $) 72 T ELT)) (-1583 (((-578 (-545 $)) $) 49 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1587 (($ $ (-245 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-3018 (($ $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-1201 (((-578 $) (-1070 $) (-1075)) NIL T ELT) (((-578 $) (-1070 $)) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT)) (-3165 (($ (-1070 $) (-1075)) NIL T ELT) (($ (-1070 $)) NIL T ELT) (($ (-850 $)) NIL T ELT)) (-3138 (((-3 (-545 $) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3137 (((-545 $) $) NIL T ELT) (((-478) $) NIL T ELT) (((-343 (-478)) $) 54 T ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-343 (-478)))) (|:| |vec| (-1164 (-343 (-478))))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-343 (-478))) (-625 $)) NIL T ELT)) (-3818 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-2553 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1582 (((-578 (-84)) $) NIL T ELT)) (-3571 (((-84) (-84)) NIL T ELT)) (-2392 (((-83) $) 42 T ELT)) (-2654 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-2979 (((-1025 (-478) (-545 $)) $) 37 T ELT)) (-2992 (($ $ (-478)) NIL T ELT)) (-3113 (((-1070 $) (-1070 $) (-545 $)) 86 T ELT) (((-1070 $) (-1070 $) (-578 (-545 $))) 61 T ELT) (($ $ (-545 $)) 75 T ELT) (($ $ (-578 (-545 $))) 76 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1580 (((-1070 $) (-545 $)) 73 (|has| $ (-954)) ELT)) (-3934 (($ (-1 $ $) (-545 $)) NIL T ELT)) (-1585 (((-3 (-545 $) #1#) $) NIL T ELT)) (-2262 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL T ELT) (((-625 (-478)) (-1164 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-343 (-478)))) (|:| |vec| (-1164 (-343 (-478))))) (-1164 $) $) NIL T ELT) (((-625 (-343 (-478))) (-1164 $)) NIL T ELT)) (-1874 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1584 (((-578 (-545 $)) $) NIL T ELT)) (-2217 (($ (-84) $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2613 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1075)) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-2583 (((-687) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1581 (((-83) $ $) NIL T ELT) (((-83) $ (-1075)) NIL T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2655 (((-83) $) NIL (|has| $ (-943 (-478))) ELT)) (-3744 (($ $ (-545 $) $) NIL T ELT) (($ $ (-578 (-545 $)) (-578 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-1075) (-1 $ (-578 $))) NIL T ELT) (($ $ (-1075) (-1 $ $)) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ $))) NIL T ELT) (($ $ (-578 (-84)) (-578 (-1 $ (-578 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-578 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-578 $)) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1586 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3734 (($ $) 36 T ELT) (($ $ (-687)) NIL T ELT)) (-2978 (((-1025 (-478) (-545 $)) $) 20 T ELT)) (-3167 (($ $) NIL (|has| $ (-954)) ELT)) (-3948 (((-323) $) 100 T ELT) (((-177) $) 108 T ELT) (((-140 (-323)) $) 116 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-545 $)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-1025 (-478) (-545 $))) 21 T ELT)) (-3107 (((-687)) NIL T CONST)) (-2570 (($ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-2236 (((-83) (-84)) 92 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2640 (($) 10 T CONST)) (-2647 (($) 22 T CONST)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) 24 T ELT)) (-3925 (($ $ $) 44 T ELT)) (-3813 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-343 (-478))) NIL T ELT) (($ $ (-478)) 47 T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-478) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-823) $) NIL T ELT))) -(((-428) (-13 (-250) (-27) (-943 (-478)) (-943 (-343 (-478))) (-575 (-478)) (-926) (-575 (-343 (-478))) (-118) (-548 (-140 (-323))) (-188) (-550 (-1025 (-478) (-545 $))) (-10 -8 (-15 -2979 ((-1025 (-478) (-545 $)) $)) (-15 -2978 ((-1025 (-478) (-545 $)) $)) (-15 -3818 ($ $)) (-15 -1934 ((-83) $ $)) (-15 -3113 ((-1070 $) (-1070 $) (-545 $))) (-15 -3113 ((-1070 $) (-1070 $) (-578 (-545 $)))) (-15 -3113 ($ $ (-545 $))) (-15 -3113 ($ $ (-578 (-545 $))))))) (T -428)) -((-2979 (*1 *2 *1) (-12 (-5 *2 (-1025 (-478) (-545 (-428)))) (-5 *1 (-428)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-1025 (-478) (-545 (-428)))) (-5 *1 (-428)))) (-3818 (*1 *1 *1) (-5 *1 (-428))) (-1934 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-428)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-428))) (-5 *3 (-545 (-428))) (-5 *1 (-428)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-428))) (-5 *3 (-578 (-545 (-428)))) (-5 *1 (-428)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-545 (-428))) (-5 *1 (-428)))) (-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-545 (-428)))) (-5 *1 (-428))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) 43 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) 39 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 38 T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) |#1|) 22 T ELT)) (-2182 (((-478) $) 18 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) 40 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) 16 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) 20 T ELT)) (-3776 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) 42 T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 14 T ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 25 T ELT)) (-3778 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) 12 (|has| $ (-6 -3971)) ELT))) -(((-429 |#1| |#2|) (-19 |#1|) (-1114) (-478)) (T -429)) -NIL -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3764 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1241 (($ $ (-478) (-429 |#1| |#3|)) NIL T ELT)) (-1240 (($ $ (-478) (-429 |#1| |#2|)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3093 (((-429 |#1| |#3|) $ (-478)) NIL T ELT)) (-1559 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-3094 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL T ELT)) (-3096 (((-687) $) NIL T ELT)) (-3590 (($ (-687) (-687) |#1|) NIL T ELT)) (-3095 (((-687) $) NIL T ELT)) (-3100 (((-478) $) NIL T ELT)) (-3098 (((-478) $) NIL T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3099 (((-478) $) NIL T ELT)) (-3097 (((-478) $) NIL T ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-2181 (($ $ |#1|) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3092 (((-429 |#1| |#2|) $ (-478)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-430 |#1| |#2| |#3|) (-57 |#1| (-429 |#1| |#3|) (-429 |#1| |#2|)) (-1114) (-478) (-478)) (T -430)) -NIL -((-1936 (((-578 (-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-687) (-687)) 32 T ELT)) (-1935 (((-578 (-1070 |#1|)) |#1| (-687) (-687) (-687)) 43 T ELT)) (-2059 (((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-578 |#3|) (-578 (-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-687)) 107 T ELT))) -(((-431 |#1| |#2| |#3|) (-10 -7 (-15 -1935 ((-578 (-1070 |#1|)) |#1| (-687) (-687) (-687))) (-15 -1936 ((-578 (-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-687) (-687))) (-15 -2059 ((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) (-578 |#3|) (-578 (-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) (-687)))) (-295) (-1140 |#1|) (-1140 |#2|)) (T -431)) -((-2059 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-2 (|:| -1994 (-625 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-625 *7))))) (-5 *5 (-687)) (-4 *8 (-1140 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-295)) (-5 *2 (-2 (|:| -1994 (-625 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-625 *7)))) (-5 *1 (-431 *6 *7 *8)))) (-1936 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-687)) (-4 *5 (-295)) (-4 *6 (-1140 *5)) (-5 *2 (-578 (-2 (|:| -1994 (-625 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-625 *6))))) (-5 *1 (-431 *5 *6 *7)) (-5 *3 (-2 (|:| -1994 (-625 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-625 *6)))) (-4 *7 (-1140 *6)))) (-1935 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-687)) (-4 *3 (-295)) (-4 *5 (-1140 *3)) (-5 *2 (-578 (-1070 *3))) (-5 *1 (-431 *3 *5 *6)) (-4 *6 (-1140 *5))))) -((-1942 (((-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))) 70 T ELT)) (-1937 ((|#1| (-625 |#1|) |#1| (-687)) 24 T ELT)) (-1939 (((-687) (-687) (-687)) 34 T ELT)) (-1941 (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 50 T ELT)) (-1940 (((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|) 58 T ELT) (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 55 T ELT)) (-1938 ((|#1| (-625 |#1|) (-625 |#1|) |#1| (-478)) 28 T ELT)) (-3306 ((|#1| (-625 |#1|)) 18 T ELT))) -(((-432 |#1| |#2| |#3|) (-10 -7 (-15 -3306 (|#1| (-625 |#1|))) (-15 -1937 (|#1| (-625 |#1|) |#1| (-687))) (-15 -1938 (|#1| (-625 |#1|) (-625 |#1|) |#1| (-478))) (-15 -1939 ((-687) (-687) (-687))) (-15 -1940 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -1940 ((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|)) (-15 -1941 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -1942 ((-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|))) (-2 (|:| -1994 (-625 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-625 |#1|)))))) (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $)))) (-1140 |#1|) (-346 |#1| |#2|)) (T -432)) -((-1942 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1941 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1940 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1940 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1939 (*1 *2 *2 *2) (-12 (-5 *2 (-687)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *4 (-1140 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) (-1938 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-625 *2)) (-5 *4 (-478)) (-4 *2 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *5 (-1140 *2)) (-5 *1 (-432 *2 *5 *6)) (-4 *6 (-346 *2 *5)))) (-1937 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-625 *2)) (-5 *4 (-687)) (-4 *2 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *5 (-1140 *2)) (-5 *1 (-432 *2 *5 *6)) (-4 *6 (-346 *2 *5)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *4 (-1140 *2)) (-4 *2 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-5 *1 (-432 *2 *4 *5)) (-4 *5 (-346 *2 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) 44 T ELT)) (-3299 (($ $ $) 41 T ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) $) NIL (|has| (-83) (-749)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-1713 (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| (-83) (-749))) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3972)) ELT)) (-2890 (($ $) NIL (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-3764 (((-83) $ (-1131 (-478)) (-83)) NIL (|has| $ (-6 -3972)) ELT) (((-83) $ (-478) (-83)) 43 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-3383 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-83) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-3818 (((-83) (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-1559 (((-83) $ (-478) (-83)) NIL (|has| $ (-6 -3972)) ELT)) (-3094 (((-83) $ (-478)) NIL T ELT)) (-3396 (((-478) (-83) $ (-478)) NIL (|has| (-83) (-1003)) ELT) (((-478) (-83) $) NIL (|has| (-83) (-1003)) ELT) (((-478) (-1 (-83) (-83)) $) NIL T ELT)) (-2870 (((-578 (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-2541 (($ $ $) 39 T ELT)) (-2540 (($ $) NIL T ELT)) (-1283 (($ $ $) NIL T ELT)) (-3590 (($ (-687) (-83)) 27 T ELT)) (-1284 (($ $ $) NIL T ELT)) (-2182 (((-478) $) 8 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL T ELT)) (-3495 (($ $ $) NIL (|has| (-83) (-749)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT)) (-2588 (((-578 (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL T ELT)) (-1932 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-83) (-83) (-83)) $ $) 36 T ELT) (($ (-1 (-83) (-83)) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2286 (($ $ $ (-478)) NIL T ELT) (($ (-83) $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 (((-83) $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 (-83) "failed") (-1 (-83) (-83)) $) NIL T ELT)) (-2181 (($ $ (-83)) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-83)) (-578 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT) (($ $ (-83) (-83)) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT) (($ $ (-245 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT) (($ $ (-578 (-245 (-83)))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT)) (-2187 (((-578 (-83)) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) 29 T ELT)) (-3776 (($ $ (-1131 (-478))) NIL T ELT) (((-83) $ (-478)) 22 T ELT) (((-83) $ (-478) (-83)) NIL T ELT)) (-2287 (($ $ (-1131 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-1929 (((-687) (-83) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-83) (-1003))) ELT) (((-687) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 30 T ELT)) (-3948 (((-467) $) NIL (|has| (-83) (-548 (-467))) ELT)) (-3507 (($ (-578 (-83))) NIL T ELT)) (-3778 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-83) $) NIL T ELT) (($ $ (-83)) NIL T ELT)) (-3922 (((-765) $) 26 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3971)) ELT)) (-2542 (($ $ $) 37 T ELT)) (-2293 (($ $ $) 46 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 31 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 32 T ELT)) (-2294 (($ $ $) 45 T ELT)) (-3933 (((-687) $) 13 (|has| $ (-6 -3971)) ELT))) -(((-433 |#1|) (-94) (-478)) (T -433)) -NIL -((-1944 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1070 |#4|)) 35 T ELT)) (-1943 (((-1070 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1070 |#4|)) 22 T ELT)) (-1945 (((-3 (-625 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-625 (-1070 |#4|))) 46 T ELT)) (-1946 (((-1070 (-1070 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1943 (|#2| (-1 |#1| |#4|) (-1070 |#4|))) (-15 -1943 ((-1070 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1944 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1070 |#4|))) (-15 -1945 ((-3 (-625 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-625 (-1070 |#4|)))) (-15 -1946 ((-1070 (-1070 |#4|)) (-1 |#4| |#1|) |#3|))) (-954) (-1140 |#1|) (-1140 |#2|) (-954)) (T -434)) -((-1946 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *6 (-1140 *5)) (-5 *2 (-1070 (-1070 *7))) (-5 *1 (-434 *5 *6 *4 *7)) (-4 *4 (-1140 *6)))) (-1945 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-625 (-1070 *8))) (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-1140 *5)) (-5 *2 (-625 *6)) (-5 *1 (-434 *5 *6 *7 *8)) (-4 *7 (-1140 *6)))) (-1944 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1070 *7)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *2 (-1140 *5)) (-5 *1 (-434 *5 *2 *6 *7)) (-4 *6 (-1140 *2)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *4 (-1140 *5)) (-5 *2 (-1070 *7)) (-5 *1 (-434 *5 *4 *6 *7)) (-4 *6 (-1140 *4)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1070 *7)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *2 (-1140 *5)) (-5 *1 (-434 *5 *2 *6 *7)) (-4 *6 (-1140 *2))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1947 (((-1170) $) 25 T ELT)) (-3776 (((-1059) $ (-1075)) 30 T ELT)) (-3593 (((-1170) $) 20 T ELT)) (-3922 (((-765) $) 27 T ELT) (($ (-1059)) 26 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 12 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 10 T ELT))) -(((-435) (-13 (-749) (-550 (-1059)) (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 ((-1170) $)) (-15 -1947 ((-1170) $))))) (T -435)) -((-3776 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1059)) (-5 *1 (-435)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-435)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-435))))) -((-3717 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3715 ((|#1| |#4|) 10 T ELT)) (-3716 ((|#3| |#4|) 17 T ELT))) -(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3715 (|#1| |#4|)) (-15 -3716 (|#3| |#4|)) (-15 -3717 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-489) (-897 |#1|) (-317 |#1|) (-317 |#2|)) (T -436)) -((-3717 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-436 *4 *5 *6 *3)) (-4 *6 (-317 *4)) (-4 *3 (-317 *5)))) (-3716 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-4 *2 (-317 *4)) (-5 *1 (-436 *4 *5 *2 *3)) (-4 *3 (-317 *5)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-436 *2 *4 *5 *3)) (-4 *5 (-317 *2)) (-4 *3 (-317 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1957 (((-83) $ (-578 |#3|)) 127 T ELT) (((-83) $) 128 T ELT)) (-3170 (((-83) $) 178 T ELT)) (-1949 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-578 |#3|)) 122 T ELT)) (-1948 (((-1066 (-578 (-850 |#1|)) (-578 (-245 (-850 |#1|)))) (-578 |#4|)) 171 (|has| |#3| (-548 (-1075))) ELT)) (-1956 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2392 (((-83) $) 177 T ELT)) (-1953 (($ $) 132 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3218 (($ $ $) 99 T ELT) (($ (-578 $)) 101 T ELT)) (-1958 (((-83) |#4| $) 130 T ELT)) (-1959 (((-83) $ $) 82 T ELT)) (-1952 (($ (-578 |#4|)) 106 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1951 (($ (-578 |#4|)) 175 T ELT)) (-1950 (((-83) $) 176 T ELT)) (-2233 (($ $) 85 T ELT)) (-2676 (((-578 |#4|) $) 73 T ELT)) (-1955 (((-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|)) NIL T ELT)) (-1960 (((-83) |#4| $) 89 T ELT)) (-3887 (((-478) $ (-578 |#3|)) 134 T ELT) (((-478) $) 135 T ELT)) (-3922 (((-765) $) 174 T ELT) (($ (-578 |#4|)) 102 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1954 (($ (-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3037 (((-83) $ $) 84 T ELT)) (-3815 (($ $ $) 109 T ELT)) (** (($ $ (-687)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-437 |#1| |#2| |#3| |#4|) (-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-687))) (-15 -3815 ($ $ $)) (-15 -2392 ((-83) $)) (-15 -3170 ((-83) $)) (-15 -1960 ((-83) |#4| $)) (-15 -1959 ((-83) $ $)) (-15 -1958 ((-83) |#4| $)) (-15 -1957 ((-83) $ (-578 |#3|))) (-15 -1957 ((-83) $)) (-15 -3218 ($ $ $)) (-15 -3218 ($ (-578 $))) (-15 -1956 ($ $ $)) (-15 -1956 ($ $ |#4|)) (-15 -2233 ($ $)) (-15 -1955 ((-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|))) (-15 -1954 ($ (-2 (|:| |mval| (-625 |#1|)) (|:| |invmval| (-625 |#1|)) (|:| |genIdeal| $)))) (-15 -3887 ((-478) $ (-578 |#3|))) (-15 -3887 ((-478) $)) (-15 -1953 ($ $)) (-15 -1952 ($ (-578 |#4|))) (-15 -1951 ($ (-578 |#4|))) (-15 -1950 ((-83) $)) (-15 -2676 ((-578 |#4|) $)) (-15 -3922 ($ (-578 |#4|))) (-15 -1949 ($ $ |#4|)) (-15 -1949 ($ $ |#4| (-578 |#3|))) (IF (|has| |#3| (-548 (-1075))) (-15 -1948 ((-1066 (-578 (-850 |#1|)) (-578 (-245 (-850 |#1|)))) (-578 |#4|))) |%noBranch|))) (-308) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -437)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3815 (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-2392 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3170 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-1960 (*1 *2 *3 *1) (-12 (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1959 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-1958 (*1 *2 *3 *1) (-12 (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6)))) (-1957 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) (-1957 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3218 (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-578 (-437 *3 *4 *5 *6))) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-1956 (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-1956 (*1 *1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *2)) (-4 *2 (-854 *3 *4 *5)))) (-2233 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-1955 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) (-5 *2 (-2 (|:| |mval| (-625 *4)) (|:| |invmval| (-625 *4)) (|:| |genIdeal| (-437 *4 *5 *6 *7)))) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) (-1954 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-625 *3)) (|:| |invmval| (-625 *3)) (|:| |genIdeal| (-437 *3 *4 *5 *6)))) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3887 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) (-5 *2 (-478)) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) (-3887 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-478)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-1953 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-1952 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)))) (-1950 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-2676 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *6)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)))) (-1949 (*1 *1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *2)) (-4 *2 (-854 *3 *4 *5)))) (-1949 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) (-5 *1 (-437 *4 *5 *6 *2)) (-4 *2 (-854 *4 *5 *6)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *6 (-548 (-1075))) (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1066 (-578 (-850 *4)) (-578 (-245 (-850 *4))))) (-5 *1 (-437 *4 *5 *6 *7))))) -((-1961 (((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) 178 T ELT)) (-1962 (((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) 179 T ELT)) (-1963 (((-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) 129 T ELT)) (-3699 (((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) NIL T ELT)) (-1964 (((-578 (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) 181 T ELT)) (-1965 (((-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-578 (-766 |#1|))) 197 T ELT))) -(((-438 |#1| |#2|) (-10 -7 (-15 -1961 ((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -1962 ((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -3699 ((-83) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -1963 ((-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -1964 ((-578 (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478))))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))))) (-15 -1965 ((-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-437 (-343 (-478)) (-194 |#2| (-687)) (-766 |#1|) (-203 |#1| (-343 (-478)))) (-578 (-766 |#1|))))) (-578 (-1075)) (-687)) (T -438)) -((-1965 (*1 *2 *2 *3) (-12 (-5 *2 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) (-5 *3 (-578 (-766 *4))) (-14 *4 (-578 (-1075))) (-14 *5 (-687)) (-5 *1 (-438 *4 *5)))) (-1964 (*1 *2 *3) (-12 (-14 *4 (-578 (-1075))) (-14 *5 (-687)) (-5 *2 (-578 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478)))))) (-5 *1 (-438 *4 *5)) (-5 *3 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))))) (-1963 (*1 *2 *2) (-12 (-5 *2 (-437 (-343 (-478)) (-194 *4 (-687)) (-766 *3) (-203 *3 (-343 (-478))))) (-14 *3 (-578 (-1075))) (-14 *4 (-687)) (-5 *1 (-438 *3 *4)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) (-14 *4 (-578 (-1075))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5)))) (-1962 (*1 *2 *3) (-12 (-5 *3 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) (-14 *4 (-578 (-1075))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) (-14 *4 (-578 (-1075))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1966 (($) 6 T ELT)) (-3922 (((-765) $) 10 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-439) (-13 (-1003) (-10 -8 (-15 -1966 ($))))) (T -439)) -((-1966 (*1 *1) (-5 *1 (-439)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3750 (((-578 (-775 |#2| |#1|)) $) 12 T ELT)) (-1295 (((-3 $ "failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-2874 (($ |#1| |#2|) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1967 ((|#2| $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 16 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3815 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 26 T ELT))) -(((-440 |#1| |#2|) (-13 (-21) (-442 |#1| |#2|)) (-21) (-752)) (T -440)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 17 T ELT)) (-3750 (((-578 (-775 |#2| |#1|)) $) 14 T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) 44 T ELT)) (-2874 (($ |#1| |#2|) 41 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-1967 ((|#2| $) NIL T ELT)) (-3155 ((|#1| $) 45 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 13 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3815 (($ $ $) 31 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 40 T ELT))) -(((-441 |#1| |#2|) (-13 (-23) (-442 |#1| |#2|)) (-23) (-752)) (T -441)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3750 (((-578 (-775 |#2| |#1|)) $) 15 T ELT)) (-3935 (($ $) 16 T ELT)) (-2874 (($ |#1| |#2|) 19 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-1967 ((|#2| $) 17 T ELT)) (-3155 ((|#1| $) 18 T ELT)) (-3222 (((-1059) $) 14 (-12 (|has| |#2| (-1003)) (|has| |#1| (-1003))) ELT)) (-3223 (((-1020) $) 13 (-12 (|has| |#2| (-1003)) (|has| |#1| (-1003))) ELT)) (-3922 (((-765) $) 12 (-12 (|has| |#2| (-1003)) (|has| |#1| (-1003))) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-442 |#1| |#2|) (-111) (-72) (-752)) (T -442)) -((-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-442 *3 *4)) (-4 *3 (-72)) (-4 *4 (-752)))) (-2874 (*1 *1 *2 *3) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-72)) (-4 *3 (-752)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *3 (-752)) (-4 *2 (-72)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-442 *3 *2)) (-4 *3 (-72)) (-4 *2 (-752)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-72)) (-4 *3 (-752)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-442 *3 *4)) (-4 *3 (-72)) (-4 *4 (-752)) (-5 *2 (-578 (-775 *4 *3)))))) -(-13 (-72) (-10 -8 (IF (|has| |t#1| (-1003)) (IF (|has| |t#2| (-1003)) (-6 (-1003)) |%noBranch|) |%noBranch|) (-15 -3934 ($ (-1 |t#1| |t#1|) $)) (-15 -2874 ($ |t#1| |t#2|)) (-15 -3155 (|t#1| $)) (-15 -1967 (|t#2| $)) (-15 -3935 ($ $)) (-15 -3750 ((-578 (-775 |t#2| |t#1|)) $)))) -(((-72) . T) ((-547 (-765)) -12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ((-1003) -12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3750 (((-578 (-775 |#2| |#1|)) $) 36 T ELT)) (-3935 (($ $) 33 T ELT)) (-2874 (($ |#1| |#2|) 30 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-1967 ((|#2| $) 35 T ELT)) (-3155 ((|#1| $) 34 T ELT)) (-3222 (((-1059) $) NIL (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ELT)) (-3223 (((-1020) $) NIL (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ELT)) (-3922 (((-765) $) 28 (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 21 T ELT))) -(((-443 |#1| |#2|) (-442 |#1| |#2|) (-72) (-752)) (T -443)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3750 (((-578 (-775 |#2| |#1|)) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-3168 (((-83) $) NIL T ELT)) (-2874 (($ |#1| |#2|) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1967 ((|#2| $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 23 T ELT)) (-3815 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT))) -(((-444 |#1| |#2|) (-13 (-709) (-442 |#1| |#2|)) (-709) (-752)) (T -444)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3750 (((-578 (-775 |#2| |#1|)) $) NIL T ELT)) (-2463 (($ $ $) 24 T ELT)) (-1295 (((-3 $ "failed") $ $) 20 T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-3168 (((-83) $) NIL T ELT)) (-2874 (($ |#1| |#2|) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1967 ((|#2| $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT))) -(((-445 |#1| |#2|) (-13 (-710) (-442 |#1| |#2|)) (-710) (-749)) (T -445)) -NIL -((-3744 (($ $ (-578 |#2|) (-578 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -3744 (|#1| |#1| |#2| |#3|)) (-15 -3744 (|#1| |#1| (-578 |#2|) (-578 |#3|)))) (-447 |#2| |#3|) (-1003) (-1114)) (T -446)) -NIL -((-3744 (($ $ (-578 |#1|) (-578 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-447 |#1| |#2|) (-111) (-1003) (-1114)) (T -447)) -((-3744 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *5)) (-4 *1 (-447 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1114)))) (-3744 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1114))))) -(-13 (-10 -8 (-15 -3744 ($ $ |t#1| |t#2|)) (-15 -3744 ($ $ (-578 |t#1|) (-578 |t#2|))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 17 T ELT)) (-3750 (((-578 (-2 (|:| |gen| |#1|) (|:| -3919 |#2|))) $) 19 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3117 (((-687) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-2281 ((|#1| $ (-478)) 24 T ELT)) (-1605 ((|#2| $ (-478)) 22 T ELT)) (-2272 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1604 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1603 (($ $ $) 55 (|has| |#2| (-709)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3653 ((|#2| |#1| $) 51 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 11 T CONST)) (-3037 (((-83) $ $) 30 T ELT)) (-3815 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-448 |#1| |#2| |#3|) (-270 |#1| |#2|) (-1003) (-102) |#2|) (T -448)) -NIL -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-1968 (((-83) (-83)) 32 T ELT)) (-3764 ((|#1| $ (-478) |#1|) 42 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1553 (($ (-1 (-83) |#1|) $) 79 T ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-2350 (($ $) 83 (|has| |#1| (-1003)) ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3382 (($ |#1| $) NIL (|has| |#1| (-1003)) ELT) (($ (-1 (-83) |#1|) $) 66 T ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) NIL T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT)) (-1969 (($ $ (-478)) 19 T ELT)) (-1970 (((-687) $) 13 T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) |#1|) 31 T ELT)) (-2182 (((-478) $) 29 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2837 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 57 T ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) 28 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3585 (($ $ $ (-478)) 75 T ELT) (($ |#1| $ (-478)) 59 T ELT)) (-2286 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1971 (($ (-578 |#1|)) 43 T ELT)) (-3777 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) 24 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 62 T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) 21 T ELT)) (-3776 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) 55 T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-1554 (($ $ (-1131 (-478))) 73 T ELT) (($ $ (-478)) 67 T ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) 63 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 53 T ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) NIL T ELT)) (-3767 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3778 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) 22 (|has| $ (-6 -3971)) ELT))) -(((-449 |#1| |#2|) (-13 (-19 |#1|) (-234 |#1|) (-10 -8 (-15 -1971 ($ (-578 |#1|))) (-15 -1970 ((-687) $)) (-15 -1969 ($ $ (-478))) (-15 -1968 ((-83) (-83))))) (-1114) (-478)) (T -449)) -((-1971 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-449 *3 *4)) (-14 *4 (-478)))) (-1970 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1114)) (-14 *4 (-478)))) (-1969 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1114)) (-14 *4 *2))) (-1968 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1114)) (-14 *4 (-478))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1973 (((-1035) $) 12 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1972 (((-1035) $) 14 T ELT)) (-3898 (((-1035) $) 10 T ELT)) (-3922 (((-765) $) 20 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-450) (-13 (-986) (-10 -8 (-15 -3898 ((-1035) $)) (-15 -1973 ((-1035) $)) (-15 -1972 ((-1035) $))))) (T -450)) -((-3898 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-450)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-450)))) (-1972 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-450))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 (((-511 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-511 |#1|) #1#) $) NIL T ELT)) (-3137 (((-511 |#1|) $) NIL T ELT)) (-1775 (($ (-1164 (-511 |#1|))) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-511 |#1|) (-313)) ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1663 (((-83) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1747 (($ $ (-687)) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT) (($ $) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-823) $) NIL (|has| (-511 |#1|) (-313)) ELT) (((-736 (-823)) $) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1993 (((-83) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3113 (((-511 |#1|) $) NIL T ELT) (($ $ (-823)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3422 (((-627 $) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 (-511 |#1|)) $) NIL T ELT) (((-1070 $) $ (-823)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1992 (((-823) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1610 (((-1070 (-511 |#1|)) $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1609 (((-1070 (-511 |#1|)) $) NIL (|has| (-511 |#1|) (-313)) ELT) (((-3 (-1070 (-511 |#1|)) #1#) $ $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1611 (($ $ (-1070 (-511 |#1|))) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-511 |#1|) (-313)) CONST)) (-2382 (($ (-823)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3907 (((-83) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-736 (-823))) NIL T ELT) (((-823)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-687) $) NIL (|has| (-511 |#1|) (-313)) ELT) (((-3 (-687) #1#) $ $) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $ (-687)) NIL (|has| (-511 |#1|) (-313)) ELT) (($ $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3924 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-3167 (((-1070 (-511 |#1|))) NIL T ELT)) (-1657 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-1612 (($) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3205 (((-1164 (-511 |#1|)) $) NIL T ELT) (((-625 (-511 |#1|)) (-1164 $)) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-511 |#1|)) NIL T ELT)) (-2683 (($ $) NIL (|has| (-511 |#1|) (-313)) ELT) (((-627 $) $) NIL (OR (|has| (-511 |#1|) (-116)) (|has| (-511 |#1|) (-313))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT) (((-1164 $) (-823)) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3904 (($ $) NIL (|has| (-511 |#1|) (-313)) ELT) (($ $ (-687)) NIL (|has| (-511 |#1|) (-313)) ELT)) (-2650 (($ $ (-687)) NIL (|has| (-511 |#1|) (-313)) ELT) (($ $) NIL (|has| (-511 |#1|) (-313)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT) (($ $ (-511 |#1|)) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-511 |#1|)) NIL T ELT) (($ (-511 |#1|) $) NIL T ELT))) -(((-451 |#1| |#2|) (-276 (-511 |#1|)) (-823) (-823)) (T -451)) -NIL -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3764 ((|#1| $ (-478) (-478) |#1|) 51 T ELT)) (-1241 (($ $ (-478) |#4|) NIL T ELT)) (-1240 (($ $ (-478) |#5|) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3093 ((|#4| $ (-478)) NIL T ELT)) (-1559 ((|#1| $ (-478) (-478) |#1|) 50 T ELT)) (-3094 ((|#1| $ (-478) (-478)) 45 T ELT)) (-2870 (((-578 |#1|) $) NIL T ELT)) (-3096 (((-687) $) 33 T ELT)) (-3590 (($ (-687) (-687) |#1|) 30 T ELT)) (-3095 (((-687) $) 38 T ELT)) (-3100 (((-478) $) 31 T ELT)) (-3098 (((-478) $) 32 T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3099 (((-478) $) 37 T ELT)) (-3097 (((-478) $) 39 T ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3222 (((-1059) $) 55 (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-2181 (($ $ |#1|) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 16 T ELT)) (-3541 (($) 18 T ELT)) (-3776 ((|#1| $ (-478) (-478)) 48 T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3092 ((|#5| $ (-478)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-452 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1114) (-478) (-478) (-317 |#1|) (-317 |#1|)) (T -452)) -NIL -((-3091 ((|#4| |#4|) 38 T ELT)) (-3090 (((-687) |#4|) 45 T ELT)) (-3089 (((-687) |#4|) 46 T ELT)) (-3088 (((-578 |#3|) |#4|) 57 (|has| |#3| (-6 -3972)) ELT)) (-3566 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1974 ((|#4| |#4|) 61 T ELT)) (-3305 ((|#1| |#4|) 60 T ELT))) -(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3091 (|#4| |#4|)) (-15 -3090 ((-687) |#4|)) (-15 -3089 ((-687) |#4|)) (IF (|has| |#3| (-6 -3972)) (-15 -3088 ((-578 |#3|) |#4|)) |%noBranch|) (-15 -3305 (|#1| |#4|)) (-15 -1974 (|#4| |#4|)) (-15 -3566 ((-3 |#4| "failed") |#4|))) (-308) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|)) (T -453)) -((-3566 (*1 *2 *2) (|partial| -12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-1974 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-3305 (*1 *2 *3) (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-308)) (-5 *1 (-453 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) (-3088 (*1 *2 *3) (-12 (|has| *6 (-6 -3972)) (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-578 *6)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3089 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3090 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) -((-3091 ((|#8| |#4|) 20 T ELT)) (-3088 (((-578 |#3|) |#4|) 29 (|has| |#7| (-6 -3972)) ELT)) (-3566 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-454 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3091 (|#8| |#4|)) (-15 -3566 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3972)) (-15 -3088 ((-578 |#3|) |#4|)) |%noBranch|)) (-489) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|) (-897 |#1|) (-317 |#5|) (-317 |#5|) (-622 |#5| |#6| |#7|)) (T -454)) -((-3088 (*1 *2 *3) (-12 (|has| *9 (-6 -3972)) (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-4 *7 (-897 *4)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7)) (-5 *2 (-578 *6)) (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-622 *4 *5 *6)) (-4 *10 (-622 *7 *8 *9)))) (-3566 (*1 *2 *3) (|partial| -12 (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-4 *7 (-897 *4)) (-4 *2 (-622 *7 *8 *9)) (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-622 *4 *5 *6)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7)))) (-3091 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-4 *7 (-897 *4)) (-4 *2 (-622 *7 *8 *9)) (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-622 *4 *5 *6)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3814 (($ (-687) (-687)) NIL T ELT)) (-2332 (($ $ $) NIL T ELT)) (-3391 (($ (-531 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3102 (((-83) $) NIL T ELT)) (-2331 (($ $ (-478) (-478)) 21 T ELT)) (-2330 (($ $ (-478) (-478)) NIL T ELT)) (-2329 (($ $ (-478) (-478) (-478) (-478)) NIL T ELT)) (-2334 (($ $) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-2328 (($ $ (-478) (-478) $) NIL T ELT)) (-3764 ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) NIL T ELT)) (-1241 (($ $ (-478) (-531 |#1| |#3|)) NIL T ELT)) (-1240 (($ $ (-478) (-531 |#1| |#2|)) NIL T ELT)) (-3310 (($ (-687) |#1|) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3091 (($ $) 30 (|has| |#1| (-254)) ELT)) (-3093 (((-531 |#1| |#3|) $ (-478)) NIL T ELT)) (-3090 (((-687) $) 33 (|has| |#1| (-489)) ELT)) (-1559 ((|#1| $ (-478) (-478) |#1|) NIL T ELT)) (-3094 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL T ELT)) (-3089 (((-687) $) 35 (|has| |#1| (-489)) ELT)) (-3088 (((-578 (-531 |#1| |#2|)) $) 38 (|has| |#1| (-489)) ELT)) (-3096 (((-687) $) NIL T ELT)) (-3590 (($ (-687) (-687) |#1|) NIL T ELT)) (-3095 (((-687) $) NIL T ELT)) (-3304 ((|#1| $) 28 (|has| |#1| (-6 (-3973 #1="*"))) ELT)) (-3100 (((-478) $) 10 T ELT)) (-3098 (((-478) $) NIL T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3099 (((-478) $) 13 T ELT)) (-3097 (((-478) $) NIL T ELT)) (-3105 (($ (-578 (-578 |#1|))) NIL T ELT) (($ (-687) (-687) (-1 |#1| (-478) (-478))) NIL T ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3570 (((-578 (-578 |#1|)) $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3566 (((-3 $ #2="failed") $) 42 (|has| |#1| (-308)) ELT)) (-2333 (($ $ $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-2181 (($ $ |#1|) NIL T ELT)) (-3443 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478))) NIL T ELT)) (-3309 (($ (-578 |#1|)) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3103 (((-83) $) NIL T ELT)) (-3305 ((|#1| $) 26 (|has| |#1| (-6 (-3973 #1#))) ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3092 (((-531 |#1| |#2|) $ (-478)) NIL T ELT)) (-3922 (($ (-531 |#1| |#2|)) NIL T ELT) (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3101 (((-83) $) NIL T ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-478) $) NIL T ELT) (((-531 |#1| |#2|) $ (-531 |#1| |#2|)) NIL T ELT) (((-531 |#1| |#3|) (-531 |#1| |#3|) $) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-455 |#1| |#2| |#3|) (-622 |#1| (-531 |#1| |#3|) (-531 |#1| |#2|)) (-954) (-478) (-478)) (T -455)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1975 (((-578 (-1115)) $) 14 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 20 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT) (($ (-578 (-1115))) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-456) (-13 (-986) (-10 -8 (-15 -3922 ($ (-578 (-1115)))) (-15 -1975 ((-578 (-1115)) $))))) (T -456)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-456)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-456))))) -((-2548 (((-83) $ $) NIL T ELT)) (-1976 (((-1035) $) 15 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3427 (((-439) $) 12 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 22 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-457) (-13 (-986) (-10 -8 (-15 -3427 ((-439) $)) (-15 -1976 ((-1035) $))))) (T -457)) -((-3427 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-457)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-457))))) -((-1982 (((-627 (-1123)) $) 15 T ELT)) (-1978 (((-627 (-1121)) $) 38 T ELT)) (-1980 (((-627 (-1120)) $) 29 T ELT)) (-1983 (((-627 (-482)) $) 12 T ELT)) (-1979 (((-627 (-480)) $) 42 T ELT)) (-1981 (((-627 (-479)) $) 33 T ELT)) (-1977 (((-687) $ (-100)) 54 T ELT))) -(((-458 |#1|) (-10 -7 (-15 -1977 ((-687) |#1| (-100))) (-15 -1978 ((-627 (-1121)) |#1|)) (-15 -1979 ((-627 (-480)) |#1|)) (-15 -1980 ((-627 (-1120)) |#1|)) (-15 -1981 ((-627 (-479)) |#1|)) (-15 -1982 ((-627 (-1123)) |#1|)) (-15 -1983 ((-627 (-482)) |#1|))) (-459)) (T -458)) -NIL -((-1982 (((-627 (-1123)) $) 12 T ELT)) (-1978 (((-627 (-1121)) $) 8 T ELT)) (-1980 (((-627 (-1120)) $) 10 T ELT)) (-1983 (((-627 (-482)) $) 13 T ELT)) (-1979 (((-627 (-480)) $) 9 T ELT)) (-1981 (((-627 (-479)) $) 11 T ELT)) (-1977 (((-687) $ (-100)) 7 T ELT)) (-1984 (((-627 (-99)) $) 14 T ELT)) (-1683 (($ $) 6 T ELT))) -(((-459) (-111)) (T -459)) -((-1984 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-99))))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-482))))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1123))))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-479))))) (-1980 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1120))))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-480))))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1121))))) (-1977 (*1 *2 *1 *3) (-12 (-4 *1 (-459)) (-5 *3 (-100)) (-5 *2 (-687))))) -(-13 (-145) (-10 -8 (-15 -1984 ((-627 (-99)) $)) (-15 -1983 ((-627 (-482)) $)) (-15 -1982 ((-627 (-1123)) $)) (-15 -1981 ((-627 (-479)) $)) (-15 -1980 ((-627 (-1120)) $)) (-15 -1979 ((-627 (-480)) $)) (-15 -1978 ((-627 (-1121)) $)) (-15 -1977 ((-687) $ (-100))))) +((-1717 (*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1169 *1)) (-4 *1 (-312 *3)))) (-3093 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-824)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-579 (-851 *4))))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-1169 (-626 *4))))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) (-1774 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1713 (*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-3208 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-1169 *4)))) (-3208 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-144)) (-4 *1 (-312 *4)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1075 *3)))) (-1711 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1075 *3)))) (-1710 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1709 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1708 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1707 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1706 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1705 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1704 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1703 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1702 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1701 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1700 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1699 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1698 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1697 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-1696 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83)))) (-3449 (*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-490)))) (-2392 (*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-490)))) (-2391 (*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-490)))) (-1695 (*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-490)) (-5 *2 (-579 (-1169 *3))))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-490)) (-5 *2 (-1075 *3)))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-490)) (-5 *2 (-1075 *3)))) (-1895 (*1 *2) (|partial| -12 (-4 *3 (-490)) (-4 *3 (-144)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1999 (-579 *1)))) (-4 *1 (-312 *3)))) (-1894 (*1 *2) (|partial| -12 (-4 *3 (-490)) (-4 *3 (-144)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1999 (-579 *1)))) (-4 *1 (-312 *3)))) (-1692 (*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-490)) (-4 *2 (-144)))) (-1691 (*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-490)) (-4 *2 (-144)))) (-1760 (*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-490)) (-4 *2 (-144))))) +(-13 (-677 |t#1|) (-10 -8 (-15 -1717 ((-1169 $))) (-15 -3093 ((-824))) (-15 -1880 ((-579 (-851 |t#1|)) (-1169 $))) (-15 -3207 ((-1169 (-626 |t#1|)) (-1169 $))) (-15 -1775 ((-626 |t#1|) $ (-1169 $))) (-15 -1774 ((-626 |t#1|) $ (-1169 $))) (-15 -1716 (|t#1| $)) (-15 -1715 (|t#1| $)) (-15 -1714 (|t#1| $)) (-15 -1713 (|t#1| $)) (-15 -3208 ((-1169 |t#1|) $ (-1169 $))) (-15 -3208 ((-626 |t#1|) (-1169 $) (-1169 $))) (-15 -1780 ($ (-1169 |t#1|) (-1169 $))) (-15 -1779 (|t#1| (-1169 $))) (-15 -1778 (|t#1| (-1169 $))) (-15 -1777 ((-626 |t#1|) (-1169 $))) (-15 -1776 ((-626 |t#1|) (-1169 $))) (-15 -1712 ((-1075 |t#1|) $)) (-15 -1711 ((-1075 |t#1|) $)) (-15 -1710 ((-83))) (-15 -1709 ((-83))) (-15 -1708 ((-83))) (-15 -1707 ((-83))) (-15 -1706 ((-83))) (-15 -1705 ((-83))) (-15 -1704 ((-83))) (-15 -1703 ((-83))) (-15 -1702 ((-83))) (-15 -1701 ((-83))) (-15 -1700 ((-83))) (-15 -1699 ((-83))) (-15 -1698 ((-83))) (-15 -1697 ((-83))) (-15 -1696 ((-83))) (IF (|has| |t#1| (-490)) (PROGN (-15 -3449 ((-3 $ "failed") $)) (-15 -2392 ((-3 $ "failed") $)) (-15 -2391 ((-3 $ "failed") $)) (-15 -1695 ((-579 (-1169 |t#1|)))) (-15 -1694 ((-1075 |t#1|) $)) (-15 -1693 ((-1075 |t#1|) $)) (-15 -1895 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) "failed"))) (-15 -1894 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) "failed"))) (-15 -1692 ((-3 $ "failed"))) (-15 -1691 ((-3 $ "failed"))) (-15 -1760 ((-3 $ "failed"))) (-6 -3974)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-679) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2979 (($) 15 T ELT))) +(((-313 |#1|) (-10 -7 (-15 -2979 (|#1|))) (-314)) (T -313)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3120 (((-688)) 20 T ELT)) (-2979 (($) 17 T ELT)) (-1997 (((-824) $) 18 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2387 (($ (-824)) 19 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-314) (-111)) (T -314)) +((-3120 (*1 *2) (-12 (-4 *1 (-314)) (-5 *2 (-688)))) (-2387 (*1 *1 *2) (-12 (-5 *2 (-824)) (-4 *1 (-314)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-824)))) (-2979 (*1 *1) (-4 *1 (-314)))) +(-13 (-1006) (-10 -8 (-15 -3120 ((-688))) (-15 -2387 ($ (-824))) (-15 -1997 ((-824) $)) (-15 -2979 ($)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-1770 (((-626 |#2|) (-1169 $)) 45 T ELT)) (-1780 (($ (-1169 |#2|) (-1169 $)) 39 T ELT)) (-1769 (((-626 |#2|) $ (-1169 $)) 47 T ELT)) (-3739 ((|#2| (-1169 $)) 13 T ELT)) (-3208 (((-1169 |#2|) $ (-1169 $)) NIL T ELT) (((-626 |#2|) (-1169 $) (-1169 $)) 27 T ELT))) +(((-315 |#1| |#2| |#3|) (-10 -7 (-15 -1770 ((-626 |#2|) (-1169 |#1|))) (-15 -3739 (|#2| (-1169 |#1|))) (-15 -1780 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -3208 ((-626 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -3208 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1769 ((-626 |#2|) |#1| (-1169 |#1|)))) (-316 |#2| |#3|) (-144) (-1145 |#2|)) (T -315)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1770 (((-626 |#1|) (-1169 $)) 58 T ELT)) (-3312 ((|#1| $) 64 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-1780 (($ (-1169 |#1|) (-1169 $)) 60 T ELT)) (-1769 (((-626 |#1|) $ (-1169 $)) 65 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3093 (((-824)) 66 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3116 ((|#1| $) 63 T ELT)) (-2001 ((|#2| $) 56 (|has| |#1| (-308)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3739 ((|#1| (-1169 $)) 59 T ELT)) (-3208 (((-1169 |#1|) $ (-1169 $)) 62 T ELT) (((-626 |#1|) (-1169 $) (-1169 $)) 61 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2687 (((-628 $) $) 55 (|has| |#1| (-116)) ELT)) (-2434 ((|#2| $) 57 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-316 |#1| |#2|) (-111) (-144) (-1145 |t#1|)) (T -316)) +((-3093 (*1 *2) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) (-5 *2 (-824)))) (-1769 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-144)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-144)))) (-3208 (*1 *2 *1 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *4)))) (-3208 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)))) (-1780 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-144)) (-4 *1 (-316 *4 *5)) (-4 *5 (-1145 *4)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *2 *4)) (-4 *4 (-1145 *2)) (-4 *2 (-144)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1145 *3)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-144)) (-4 *3 (-308)) (-4 *2 (-1145 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3093 ((-824))) (-15 -1769 ((-626 |t#1|) $ (-1169 $))) (-15 -3312 (|t#1| $)) (-15 -3116 (|t#1| $)) (-15 -3208 ((-1169 |t#1|) $ (-1169 $))) (-15 -3208 ((-626 |t#1|) (-1169 $) (-1169 $))) (-15 -1780 ($ (-1169 |t#1|) (-1169 $))) (-15 -3739 (|t#1| (-1169 $))) (-15 -1770 ((-626 |t#1|) (-1169 $))) (-15 -2434 (|t#2| $)) (IF (|has| |t#1| (-308)) (-15 -2001 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 |#1|) . T) ((-650 |#1|) . T) ((-659) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-1720 (((-83) (-1 (-83) |#2| |#2|) $) NIL T ELT) (((-83) $) 18 T ELT)) (-1718 (($ (-1 (-83) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2894 (($ (-1 (-83) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2285 (($ $) 25 T ELT)) (-3401 (((-479) (-1 (-83) |#2|) $) NIL T ELT) (((-479) |#2| $) 11 T ELT) (((-479) |#2| $ (-479)) NIL T ELT)) (-3500 (($ (-1 (-83) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-317 |#1| |#2|) (-10 -7 (-15 -1718 (|#1| |#1|)) (-15 -1718 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -1720 ((-83) |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -3500 (|#1| |#1| |#1|)) (-15 -3401 ((-479) |#2| |#1| (-479))) (-15 -3401 ((-479) |#2| |#1|)) (-15 -3401 ((-479) (-1 (-83) |#2|) |#1|)) (-15 -1720 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -2894 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -3500 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|))) (-318 |#2|) (-1119)) (T -317)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) 44 (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3978)) ELT) (($ $) 97 (-12 (|has| |#1| (-750)) (|has| $ (-6 -3978))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) 56 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-2284 (($ $) 99 (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) 109 T ELT)) (-1341 (($ $) 84 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#1| $) 83 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) 57 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 55 T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) 106 T ELT) (((-479) |#1| $) 105 (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) 104 (|has| |#1| (-1006)) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) |#1|) 74 T ELT)) (-2187 (((-479) $) 47 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) 91 (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 48 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) 92 (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) 66 T ELT) (($ $ $ (-479)) 65 T ELT)) (-2190 (((-579 (-479)) $) 50 T ELT)) (-2191 (((-83) (-479) $) 51 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 46 (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2186 (($ $ |#1|) 45 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ (-479) |#1|) 54 T ELT) ((|#1| $ (-479)) 53 T ELT) (($ $ (-1136 (-479))) 75 T ELT)) (-2292 (($ $ (-479)) 68 T ELT) (($ $ (-1136 (-479))) 67 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1719 (($ $ $ (-479)) 100 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 85 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 76 T ELT)) (-3784 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-579 $)) 70 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) 93 (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) 95 (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) 94 (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 96 (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-318 |#1|) (-111) (-1119)) (T -318)) +((-3500 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1119)))) (-2285 (*1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-1119)))) (-2894 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1119)))) (-1720 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *1 (-318 *4)) (-4 *4 (-1119)) (-5 *2 (-83)))) (-3401 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1119)) (-5 *2 (-479)))) (-3401 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-479)))) (-3401 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-318 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)))) (-3500 (*1 *1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-1119)) (-4 *2 (-750)))) (-2894 (*1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-1119)) (-4 *2 (-750)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1119)) (-4 *3 (-750)) (-5 *2 (-83)))) (-1719 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-479)) (|has| *1 (-6 -3978)) (-4 *1 (-318 *3)) (-4 *3 (-1119)))) (-2284 (*1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-318 *2)) (-4 *2 (-1119)))) (-1718 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3 *3)) (|has| *1 (-6 -3978)) (-4 *1 (-318 *3)) (-4 *3 (-1119)))) (-1718 (*1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-318 *2)) (-4 *2 (-1119)) (-4 *2 (-750))))) +(-13 (-589 |t#1|) (-10 -8 (-6 -3977) (-15 -3500 ($ (-1 (-83) |t#1| |t#1|) $ $)) (-15 -2285 ($ $)) (-15 -2894 ($ (-1 (-83) |t#1| |t#1|) $)) (-15 -1720 ((-83) (-1 (-83) |t#1| |t#1|) $)) (-15 -3401 ((-479) (-1 (-83) |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -3401 ((-479) |t#1| $)) (-15 -3401 ((-479) |t#1| $ (-479)))) |%noBranch|) (IF (|has| |t#1| (-750)) (PROGN (-6 (-750)) (-15 -3500 ($ $ $)) (-15 -2894 ($ $)) (-15 -1720 ((-83) $))) |%noBranch|) (IF (|has| $ (-6 -3978)) (PROGN (-15 -1719 ($ $ $ (-479))) (-15 -2284 ($ $)) (-15 -1718 ($ (-1 (-83) |t#1| |t#1|) $)) (IF (|has| |t#1| (-750)) (-15 -1718 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 (-479) |#1|) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-534 (-479) |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-589 |#1|) . T) ((-750) |has| |#1| (-750)) ((-753) |has| |#1| (-750)) ((-1006) OR (|has| |#1| (-1006)) (|has| |#1| (-750))) ((-1119) . T)) +((-3823 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3824 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3940 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-319 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3824 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3823 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1119) (-318 |#1|) (-1119) (-318 |#3|)) (T -319)) +((-3823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-4 *2 (-318 *5)) (-5 *1 (-319 *6 *4 *5 *2)) (-4 *4 (-318 *6)))) (-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-319 *5 *4 *2 *6)) (-4 *4 (-318 *5)) (-4 *6 (-318 *2)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-318 *6)) (-5 *1 (-319 *5 *4 *6 *2)) (-4 *4 (-318 *5))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3916 (((-579 |#1|) $) 42 T ELT)) (-3929 (($ $ (-688)) 43 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3921 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 46 T ELT)) (-3918 (($ $) 44 T ELT)) (-3922 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 47 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3750 (($ $ |#1| $) 41 T ELT) (($ $ (-579 |#1|) (-579 $)) 40 T ELT)) (-3930 (((-688) $) 48 T ELT)) (-3512 (($ $ $) 39 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1185 |#1| |#2|) $) 50 T ELT) (((-1194 |#1| |#2|) $) 49 T ELT)) (-3936 ((|#2| (-1194 |#1| |#2|) $) 52 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-1721 (($ (-610 |#1|)) 45 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#2|) 38 (|has| |#2| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-320 |#1| |#2|) (-111) (-750) (-144)) (T -320)) +((-3936 (*1 *2 *3 *1) (-12 (-5 *3 (-1194 *4 *2)) (-4 *1 (-320 *4 *2)) (-4 *4 (-750)) (-4 *2 (-144)))) (-3928 (*1 *1 *2) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-750)) (-4 *3 (-144)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) (-5 *2 (-1185 *3 *4)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) (-5 *2 (-1194 *3 *4)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) (-5 *2 (-688)))) (-3922 (*1 *2 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) (-3921 (*1 *2 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) (-1721 (*1 *1 *2) (-12 (-5 *2 (-610 *3)) (-4 *3 (-750)) (-4 *1 (-320 *3 *4)) (-4 *4 (-144)))) (-3918 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-750)) (-4 *3 (-144)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) (-5 *2 (-579 *3)))) (-3750 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-750)) (-4 *3 (-144)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 *4)) (-5 *3 (-579 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-750)) (-4 *5 (-144))))) +(-13 (-570 |t#2|) (-10 -8 (-15 -3936 (|t#2| (-1194 |t#1| |t#2|) $)) (-15 -3928 ($ |t#1|)) (-15 -3928 ((-1185 |t#1| |t#2|) $)) (-15 -3928 ((-1194 |t#1| |t#2|) $)) (-15 -3930 ((-688) $)) (-15 -3922 ((-1194 |t#1| |t#2|) (-1194 |t#1| |t#2|) $)) (-15 -3921 ((-1194 |t#1| |t#2|) (-1194 |t#1| |t#2|) $)) (-15 -1721 ($ (-610 |t#1|))) (-15 -3918 ($ $)) (-15 -3929 ($ $ (-688))) (-15 -3916 ((-579 |t#1|) $)) (-15 -3750 ($ $ |t#1| $)) (-15 -3750 ($ $ (-579 |t#1|) (-579 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#2|) . T) ((-586 |#2|) . T) ((-570 |#2|) . T) ((-578 |#2|) . T) ((-650 |#2|) . T) ((-957 |#2|) . T) ((-962 |#2|) . T) ((-1006) . T) ((-1119) . T)) +((-1724 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 40 T ELT)) (-1722 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 13 T ELT)) (-1723 ((|#2| (-1 (-83) |#1| |#1|) |#2|) 33 T ELT))) +(((-321 |#1| |#2|) (-10 -7 (-15 -1722 (|#2| (-1 (-83) |#1| |#1|) |#2|)) (-15 -1723 (|#2| (-1 (-83) |#1| |#1|) |#2|)) (-15 -1724 (|#2| (-1 (-83) |#1| |#1|) |#2|))) (-1119) (-13 (-318 |#1|) (-10 -7 (-6 -3978)))) (T -321)) +((-1724 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-321 *4 *2)) (-4 *2 (-13 (-318 *4) (-10 -7 (-6 -3978)))))) (-1723 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-321 *4 *2)) (-4 *2 (-13 (-318 *4) (-10 -7 (-6 -3978)))))) (-1722 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-321 *4 *2)) (-4 *2 (-13 (-318 *4) (-10 -7 (-6 -3978))))))) +((-2266 (((-626 |#2|) (-626 $)) NIL T ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL T ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 22 T ELT) (((-626 (-479)) (-626 $)) 14 T ELT))) +(((-322 |#1| |#2|) (-10 -7 (-15 -2266 ((-626 (-479)) (-626 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-626 |#2|) (-626 |#1|)))) (-323 |#2|) (-955)) (T -322)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-2266 (((-626 |#1|) (-626 $)) 35 T ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 34 T ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 46 (|has| |#1| (-576 (-479))) ELT) (((-626 (-479)) (-626 $)) 45 (|has| |#1| (-576 (-479))) ELT)) (-2267 (((-626 |#1|) (-1169 $)) 37 T ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 36 T ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 44 (|has| |#1| (-576 (-479))) ELT) (((-626 (-479)) (-1169 $)) 43 (|has| |#1| (-576 (-479))) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-323 |#1|) (-111) (-955)) (T -323)) +NIL +(-13 (-576 |t#1|) (-10 -7 (IF (|has| |t#1| (-576 (-479))) (-6 (-576 (-479))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 (-479)) |has| |#1| (-576 (-479))) ((-586 |#1|) . T) ((-576 (-479)) |has| |#1| (-576 (-479))) ((-576 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 16 T ELT)) (-3113 (((-479) $) 44 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3753 (($ $) 120 T ELT)) (-3474 (($ $) 81 T ELT)) (-3621 (($ $) 72 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-3022 (($ $) 28 T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3472 (($ $) 79 T ELT)) (-3620 (($ $) 67 T ELT)) (-3605 (((-479) $) 60 T ELT)) (-2426 (($ $ (-479)) 55 T ELT)) (-3476 (($ $) NIL T ELT)) (-3619 (($ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3111 (($ $) 122 T ELT)) (-3141 (((-3 (-479) #1#) $) 217 T ELT) (((-3 (-344 (-479)) #1#) $) 213 T ELT)) (-3140 (((-479) $) 215 T ELT) (((-344 (-479)) $) 211 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-1733 (((-479) $ $) 110 T ELT)) (-3449 (((-3 $ #1#) $) 125 T ELT)) (-1732 (((-344 (-479)) $ (-688)) 218 T ELT) (((-344 (-479)) $ (-688) (-688)) 210 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-1756 (((-824)) 106 T ELT) (((-824) (-824)) 107 (|has| $ (-6 -3968)) ELT)) (-3170 (((-83) $) 38 T ELT)) (-3609 (($) 22 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL T ELT)) (-1725 (((-1175) (-688)) 177 T ELT)) (-1726 (((-1175)) 182 T ELT) (((-1175) (-688)) 183 T ELT)) (-1728 (((-1175)) 184 T ELT) (((-1175) (-688)) 185 T ELT)) (-1727 (((-1175)) 180 T ELT) (((-1175) (-688)) 181 T ELT)) (-3754 (((-479) $) 50 T ELT)) (-2397 (((-83) $) 21 T ELT)) (-2996 (($ $ (-479)) NIL T ELT)) (-2428 (($ $) 32 T ELT)) (-3116 (($ $) NIL T ELT)) (-3171 (((-83) $) 18 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL (-12 (-2545 (|has| $ (-6 -3960))) (-2545 (|has| $ (-6 -3968)))) ELT)) (-2842 (($ $ $) NIL T ELT) (($) NIL (-12 (-2545 (|has| $ (-6 -3960))) (-2545 (|has| $ (-6 -3968)))) ELT)) (-1758 (((-479) $) 112 T ELT)) (-1731 (($) 90 T ELT) (($ $) 97 T ELT)) (-1730 (($) 96 T ELT) (($ $) 98 T ELT)) (-3924 (($ $) 84 T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 127 T ELT)) (-1755 (((-824) (-479)) 27 (|has| $ (-6 -3968)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) 41 T ELT)) (-3114 (($ $) 119 T ELT)) (-3238 (($ (-479) (-479)) 115 T ELT) (($ (-479) (-479) (-824)) 116 T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-2388 (((-479) $) 113 T ELT)) (-1729 (($) 99 T ELT)) (-3925 (($ $) 78 T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-2600 (((-824)) 108 T ELT) (((-824) (-824)) 109 (|has| $ (-6 -3968)) ELT)) (-3740 (($ $) 126 T ELT) (($ $ (-688)) NIL T ELT)) (-1754 (((-824) (-479)) 31 (|has| $ (-6 -3968)) ELT)) (-3477 (($ $) NIL T ELT)) (-3618 (($ $) NIL T ELT)) (-3475 (($ $) NIL T ELT)) (-3617 (($ $) NIL T ELT)) (-3473 (($ $) 80 T ELT)) (-3616 (($ $) 71 T ELT)) (-3954 (((-324) $) 202 T ELT) (((-177) $) 204 T ELT) (((-794 (-324)) $) NIL T ELT) (((-1063) $) 188 T ELT) (((-468) $) 200 T ELT) (($ (-177)) 209 T ELT)) (-3928 (((-766) $) 192 T ELT) (($ (-479)) 214 T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-479)) 214 T ELT) (($ (-344 (-479))) NIL T ELT) (((-177) $) 205 T ELT)) (-3110 (((-688)) NIL T CONST)) (-3115 (($ $) 121 T ELT)) (-1757 (((-824)) 42 T ELT) (((-824) (-824)) 62 (|has| $ (-6 -3968)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2679 (((-824)) 111 T ELT)) (-3480 (($ $) 87 T ELT)) (-3468 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3478 (($ $) 85 T ELT)) (-3466 (($ $) 20 T ELT)) (-3482 (($ $) NIL T ELT)) (-3470 (($ $) NIL T ELT)) (-3483 (($ $) NIL T ELT)) (-3471 (($ $) NIL T ELT)) (-3481 (($ $) NIL T ELT)) (-3469 (($ $) NIL T ELT)) (-3479 (($ $) 86 T ELT)) (-3467 (($ $) 33 T ELT)) (-3365 (($ $) 39 T ELT)) (-2645 (($) 17 T CONST)) (-2651 (($) 24 T CONST)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2551 (((-83) $ $) 189 T ELT)) (-2552 (((-83) $ $) 26 T ELT)) (-3041 (((-83) $ $) 37 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 43 T ELT)) (-3931 (($ $ $) 29 T ELT) (($ $ (-479)) 23 T ELT)) (-3819 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3821 (($ $ $) 54 T ELT)) (** (($ $ (-824)) 65 T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 91 T ELT) (($ $ (-344 (-479))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-824) $) 61 T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT))) +(((-324) (-13 (-341) (-188) (-549 (-1063)) (-548 (-177)) (-1105) (-549 (-468)) (-553 (-177)) (-10 -8 (-15 -3931 ($ $ (-479))) (-15 ** ($ $ $)) (-15 -2428 ($ $)) (-15 -1733 ((-479) $ $)) (-15 -2426 ($ $ (-479))) (-15 -1732 ((-344 (-479)) $ (-688))) (-15 -1732 ((-344 (-479)) $ (-688) (-688))) (-15 -1731 ($)) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -3468 ($ $ $)) (-15 -1731 ($ $)) (-15 -1730 ($ $)) (-15 -1728 ((-1175))) (-15 -1728 ((-1175) (-688))) (-15 -1727 ((-1175))) (-15 -1727 ((-1175) (-688))) (-15 -1726 ((-1175))) (-15 -1726 ((-1175) (-688))) (-15 -1725 ((-1175) (-688))) (-6 -3968) (-6 -3960)))) (T -324)) +((** (*1 *1 *1 *1) (-5 *1 (-324))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-324)))) (-2428 (*1 *1 *1) (-5 *1 (-324))) (-1733 (*1 *2 *1 *1) (-12 (-5 *2 (-479)) (-5 *1 (-324)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-324)))) (-1732 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *2 (-344 (-479))) (-5 *1 (-324)))) (-1732 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-344 (-479))) (-5 *1 (-324)))) (-1731 (*1 *1) (-5 *1 (-324))) (-1730 (*1 *1) (-5 *1 (-324))) (-1729 (*1 *1) (-5 *1 (-324))) (-3468 (*1 *1 *1 *1) (-5 *1 (-324))) (-1731 (*1 *1 *1) (-5 *1 (-324))) (-1730 (*1 *1 *1) (-5 *1 (-324))) (-1728 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-324)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-324)))) (-1727 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-324)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-324)))) (-1726 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-324)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-324)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-324))))) +((-1734 (((-579 (-245 (-851 (-140 |#1|)))) (-245 (-344 (-851 (-140 (-479))))) |#1|) 52 T ELT) (((-579 (-245 (-851 (-140 |#1|)))) (-344 (-851 (-140 (-479)))) |#1|) 51 T ELT) (((-579 (-579 (-245 (-851 (-140 |#1|))))) (-579 (-245 (-344 (-851 (-140 (-479)))))) |#1|) 48 T ELT) (((-579 (-579 (-245 (-851 (-140 |#1|))))) (-579 (-344 (-851 (-140 (-479))))) |#1|) 42 T ELT)) (-1735 (((-579 (-579 (-140 |#1|))) (-579 (-344 (-851 (-140 (-479))))) (-579 (-1080)) |#1|) 30 T ELT) (((-579 (-140 |#1|)) (-344 (-851 (-140 (-479)))) |#1|) 18 T ELT))) +(((-325 |#1|) (-10 -7 (-15 -1734 ((-579 (-579 (-245 (-851 (-140 |#1|))))) (-579 (-344 (-851 (-140 (-479))))) |#1|)) (-15 -1734 ((-579 (-579 (-245 (-851 (-140 |#1|))))) (-579 (-245 (-344 (-851 (-140 (-479)))))) |#1|)) (-15 -1734 ((-579 (-245 (-851 (-140 |#1|)))) (-344 (-851 (-140 (-479)))) |#1|)) (-15 -1734 ((-579 (-245 (-851 (-140 |#1|)))) (-245 (-344 (-851 (-140 (-479))))) |#1|)) (-15 -1735 ((-579 (-140 |#1|)) (-344 (-851 (-140 (-479)))) |#1|)) (-15 -1735 ((-579 (-579 (-140 |#1|))) (-579 (-344 (-851 (-140 (-479))))) (-579 (-1080)) |#1|))) (-13 (-308) (-749))) (T -325)) +((-1735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 (-344 (-851 (-140 (-479)))))) (-5 *4 (-579 (-1080))) (-5 *2 (-579 (-579 (-140 *5)))) (-5 *1 (-325 *5)) (-4 *5 (-13 (-308) (-749))))) (-1735 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 (-140 (-479))))) (-5 *2 (-579 (-140 *4))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-308) (-749))))) (-1734 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-344 (-851 (-140 (-479)))))) (-5 *2 (-579 (-245 (-851 (-140 *4))))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-308) (-749))))) (-1734 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 (-140 (-479))))) (-5 *2 (-579 (-245 (-851 (-140 *4))))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-308) (-749))))) (-1734 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-245 (-344 (-851 (-140 (-479))))))) (-5 *2 (-579 (-579 (-245 (-851 (-140 *4)))))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-308) (-749))))) (-1734 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-344 (-851 (-140 (-479)))))) (-5 *2 (-579 (-579 (-245 (-851 (-140 *4)))))) (-5 *1 (-325 *4)) (-4 *4 (-13 (-308) (-749)))))) +((-3555 (((-579 (-245 (-851 |#1|))) (-245 (-344 (-851 (-479)))) |#1|) 47 T ELT) (((-579 (-245 (-851 |#1|))) (-344 (-851 (-479))) |#1|) 46 T ELT) (((-579 (-579 (-245 (-851 |#1|)))) (-579 (-245 (-344 (-851 (-479))))) |#1|) 43 T ELT) (((-579 (-579 (-245 (-851 |#1|)))) (-579 (-344 (-851 (-479)))) |#1|) 37 T ELT)) (-1736 (((-579 |#1|) (-344 (-851 (-479))) |#1|) 20 T ELT) (((-579 (-579 |#1|)) (-579 (-344 (-851 (-479)))) (-579 (-1080)) |#1|) 30 T ELT))) +(((-326 |#1|) (-10 -7 (-15 -3555 ((-579 (-579 (-245 (-851 |#1|)))) (-579 (-344 (-851 (-479)))) |#1|)) (-15 -3555 ((-579 (-579 (-245 (-851 |#1|)))) (-579 (-245 (-344 (-851 (-479))))) |#1|)) (-15 -3555 ((-579 (-245 (-851 |#1|))) (-344 (-851 (-479))) |#1|)) (-15 -3555 ((-579 (-245 (-851 |#1|))) (-245 (-344 (-851 (-479)))) |#1|)) (-15 -1736 ((-579 (-579 |#1|)) (-579 (-344 (-851 (-479)))) (-579 (-1080)) |#1|)) (-15 -1736 ((-579 |#1|) (-344 (-851 (-479))) |#1|))) (-13 (-749) (-308))) (T -326)) +((-1736 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 (-479)))) (-5 *2 (-579 *4)) (-5 *1 (-326 *4)) (-4 *4 (-13 (-749) (-308))))) (-1736 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 (-344 (-851 (-479))))) (-5 *4 (-579 (-1080))) (-5 *2 (-579 (-579 *5))) (-5 *1 (-326 *5)) (-4 *5 (-13 (-749) (-308))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-344 (-851 (-479))))) (-5 *2 (-579 (-245 (-851 *4)))) (-5 *1 (-326 *4)) (-4 *4 (-13 (-749) (-308))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 (-479)))) (-5 *2 (-579 (-245 (-851 *4)))) (-5 *1 (-326 *4)) (-4 *4 (-13 (-749) (-308))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-245 (-344 (-851 (-479)))))) (-5 *2 (-579 (-579 (-245 (-851 *4))))) (-5 *1 (-326 *4)) (-4 *4 (-13 (-749) (-308))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-344 (-851 (-479))))) (-5 *2 (-579 (-579 (-245 (-851 *4))))) (-5 *1 (-326 *4)) (-4 *4 (-13 (-749) (-308)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3756 (((-579 (-776 |#2| |#1|)) $) NIL T ELT)) (-1300 (((-3 $ "failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-2878 (($ |#1| |#2|) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1972 ((|#2| $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 34 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 12 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-327 |#1| |#2|) (-13 (-80 |#1| |#1|) (-443 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-144)) (-6 (-650 |#1|)) |%noBranch|))) (-955) (-753)) (T -327)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) 29 T ELT)) (-3140 ((|#2| $) 31 T ELT)) (-3941 (($ $) NIL T ELT)) (-2405 (((-688) $) 13 T ELT)) (-2806 (((-579 $) $) 23 T ELT)) (-3919 (((-83) $) NIL T ELT)) (-3920 (($ |#2| |#1|) 21 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1737 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2879 ((|#2| $) 18 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3799 (((-579 |#1|) $) 20 T ELT)) (-3659 ((|#1| $ |#2|) 54 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 32 T CONST)) (-2650 (((-579 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-328 |#1| |#2|) (-13 (-329 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-955) (-750)) (T -328)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-328 *3 *2)) (-4 *3 (-955)) (-4 *2 (-750))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#2| "failed") $) 54 T ELT)) (-3140 ((|#2| $) 55 T ELT)) (-3941 (($ $) 40 T ELT)) (-2405 (((-688) $) 44 T ELT)) (-2806 (((-579 $) $) 45 T ELT)) (-3919 (((-83) $) 48 T ELT)) (-3920 (($ |#2| |#1|) 49 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1737 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-2879 ((|#2| $) 43 T ELT)) (-3158 ((|#1| $) 42 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-3799 (((-579 |#1|) $) 46 T ELT)) (-3659 ((|#1| $ |#2|) 51 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2650 (((-579 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) +(((-329 |#1| |#2|) (-111) (-955) (-1006)) (T -329)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-955)) (-4 *3 (-1006)))) (-3659 (*1 *2 *1 *3) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-955)))) (-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)))) (-3920 (*1 *1 *2 *3) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1006)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-83)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-579 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-579 *3)))) (-2806 (*1 *2 *1) (-12 (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-579 *1)) (-4 *1 (-329 *3 *4)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-688)))) (-2879 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1006)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-955)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3941 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-955)) (-4 *3 (-1006))))) +(-13 (-80 |t#1| |t#1|) (-944 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3659 (|t#1| $ |t#2|)) (-15 -3940 ($ (-1 |t#1| |t#1|) $)) (-15 -3920 ($ |t#2| |t#1|)) (-15 -3919 ((-83) $)) (-15 -2650 ((-579 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3799 ((-579 |t#1|) $)) (-15 -2806 ((-579 $) $)) (-15 -2405 ((-688) $)) (-15 -2879 (|t#2| $)) (-15 -3158 (|t#1| $)) (-15 -1737 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3941 ($ $)) (IF (|has| |t#1| (-144)) (-6 (-650 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-551 |#2|) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) |has| |#1| (-144)) ((-650 |#1|) |has| |#1| (-144)) ((-944 |#2|) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3120 (((-688) $) 40 T ELT)) (-3706 (($) 23 T CONST)) (-3921 (((-3 $ "failed") $ $) 43 T ELT)) (-3141 (((-3 |#1| "failed") $) 51 T ELT)) (-3140 ((|#1| $) 52 T ELT)) (-3449 (((-3 $ "failed") $) 20 T ELT)) (-1738 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2397 (((-83) $) 22 T ELT)) (-2286 ((|#1| $ (-479)) 37 T ELT)) (-2287 (((-688) $ (-479)) 38 T ELT)) (-2516 (($ $ $) 29 (|has| |#1| (-750)) ELT)) (-2842 (($ $ $) 30 (|has| |#1| (-750)) ELT)) (-2277 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2278 (($ (-1 (-688) (-688)) $) 36 T ELT)) (-3922 (((-3 $ "failed") $ $) 44 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1739 (($ $ $) 45 T ELT)) (-1740 (($ $ $) 46 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1767 (((-579 (-2 (|:| |gen| |#1|) (|:| -3925 (-688)))) $) 39 T ELT)) (-2864 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2651 (($) 24 T CONST)) (-2551 (((-83) $ $) 31 (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) 33 (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 32 (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 34 (|has| |#1| (-750)) ELT)) (** (($ $ (-824)) 17 T ELT) (($ $ (-688)) 21 T ELT) (($ |#1| (-688)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-330 |#1|) (-111) (-1006)) (T -330)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-330 *2)) (-4 *2 (-1006)))) (-1740 (*1 *1 *1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) (-1739 (*1 *1 *1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) (-3922 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) (-3921 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) (-2864 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1006)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-330 *3)))) (-1738 (*1 *2 *1 *1) (-12 (-4 *3 (-1006)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-330 *3)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-1006)) (-5 *2 (-688)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-1006)) (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 (-688))))))) (-2287 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-330 *4)) (-4 *4 (-1006)) (-5 *2 (-688)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-330 *2)) (-4 *2 (-1006)))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-688) (-688))) (-4 *1 (-330 *3)) (-4 *3 (-1006)))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3)) (-4 *3 (-1006))))) +(-13 (-659) (-944 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-688))) (-15 -1740 ($ $ $)) (-15 -1739 ($ $ $)) (-15 -3922 ((-3 $ "failed") $ $)) (-15 -3921 ((-3 $ "failed") $ $)) (-15 -2864 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1738 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3120 ((-688) $)) (-15 -1767 ((-579 (-2 (|:| |gen| |t#1|) (|:| -3925 (-688)))) $)) (-15 -2287 ((-688) $ (-479))) (-15 -2286 (|t#1| $ (-479))) (-15 -2278 ($ (-1 (-688) (-688)) $)) (-15 -2277 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-750)) (-6 (-750)) |%noBranch|))) +(((-72) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-659) . T) ((-750) |has| |#1| (-750)) ((-753) |has| |#1| (-750)) ((-944 |#1|) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688) $) 74 T ELT)) (-3706 (($) NIL T CONST)) (-3921 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3141 (((-3 |#1| #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-1738 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2397 (((-83) $) 17 T ELT)) (-2286 ((|#1| $ (-479)) NIL T ELT)) (-2287 (((-688) $ (-479)) NIL T ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2277 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2278 (($ (-1 (-688) (-688)) $) 37 T ELT)) (-3922 (((-3 $ #1#) $ $) 60 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1739 (($ $ $) 28 T ELT)) (-1740 (($ $ $) 26 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1767 (((-579 (-2 (|:| |gen| |#1|) (|:| -3925 (-688)))) $) 34 T ELT)) (-2864 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3928 (((-766) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2651 (($) 7 T CONST)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 83 (|has| |#1| (-750)) ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ |#1| (-688)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-331 |#1|) (-330 |#1|) (-1006)) (T -331)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-1741 (((-83) $) 25 T ELT)) (-1742 (((-83) $) 22 T ELT)) (-3596 (($ (-1063) (-1063) (-1063)) 26 T ELT)) (-3524 (((-1063) $) 16 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1746 (($ (-1063) (-1063) (-1063)) 14 T ELT)) (-1744 (((-1063) $) 17 T ELT)) (-1743 (((-83) $) 18 T ELT)) (-1745 (((-1063) $) 15 T ELT)) (-3928 (((-766) $) 12 T ELT) (($ (-1063)) 13 T ELT) (((-1063) $) 9 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 7 T ELT))) +(((-332) (-333)) (T -332)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-1741 (((-83) $) 20 T ELT)) (-1742 (((-83) $) 21 T ELT)) (-3596 (($ (-1063) (-1063) (-1063)) 19 T ELT)) (-3524 (((-1063) $) 24 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1746 (($ (-1063) (-1063) (-1063)) 26 T ELT)) (-1744 (((-1063) $) 23 T ELT)) (-1743 (((-83) $) 22 T ELT)) (-1745 (((-1063) $) 25 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-1063)) 28 T ELT) (((-1063) $) 27 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-333) (-111)) (T -333)) +((-1746 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1063)) (-4 *1 (-333)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-1063)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-1063)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-1063)))) (-1743 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-83)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-83)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-83)))) (-3596 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1063)) (-4 *1 (-333))))) +(-13 (-1006) (-424 (-1063)) (-10 -8 (-15 -1746 ($ (-1063) (-1063) (-1063))) (-15 -1745 ((-1063) $)) (-15 -3524 ((-1063) $)) (-15 -1744 ((-1063) $)) (-15 -1743 ((-83) $)) (-15 -1742 ((-83) $)) (-15 -1741 ((-83) $)) (-15 -3596 ($ (-1063) (-1063) (-1063))))) +(((-72) . T) ((-551 (-1063)) . T) ((-548 (-766)) . T) ((-548 (-1063)) . T) ((-424 (-1063)) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ "failed") $ $) NIL T ELT)) (-1747 (((-766) $) 64 T ELT)) (-3706 (($) NIL T CONST)) (-2394 (($ $ (-824)) NIL T ELT)) (-2418 (($ $ (-824)) NIL T ELT)) (-2393 (($ $ (-824)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($ (-688)) 38 T ELT)) (-3893 (((-688)) 18 T ELT)) (-1748 (((-766) $) 66 T ELT)) (-2420 (($ $ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2421 (($ $ $ $) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-2645 (($) 24 T CONST)) (-3041 (((-83) $ $) 41 T ELT)) (-3819 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3821 (($ $ $) 51 T ELT)) (** (($ $ (-824)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-334 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -3893 ((-688))) (-15 -1748 ((-766) $)) (-15 -1747 ((-766) $)) (-15 -2396 ($ (-688))))) (-688) (-688) (-144)) (T -334)) +((-3893 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-688)) (-14 *4 (-688)) (-4 *5 (-144)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-688)) (-14 *4 (-688)) (-4 *5 (-144)))) (-2396 (*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144))))) +((-3754 (((-688) (-279 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-335 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3754 ((-688) (-279 |#1| |#2| |#3| |#4|)))) (-13 (-314) (-308)) (-1145 |#1|) (-1145 (-344 |#2|)) (-287 |#1| |#2| |#3|)) (T -335)) +((-3754 (*1 *2 *3) (-12 (-5 *3 (-279 *4 *5 *6 *7)) (-4 *4 (-13 (-314) (-308))) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-4 *7 (-287 *4 *5 *6)) (-5 *2 (-688)) (-5 *1 (-335 *4 *5 *6 *7))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1750 ((|#2| $) 38 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1751 (($ (-344 |#2|)) 93 T ELT)) (-1749 (((-579 (-2 (|:| -2388 (-688)) (|:| -3755 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3740 (($ $ (-688)) 36 T ELT) (($ $) 34 T ELT)) (-3954 (((-344 |#2|) $) 49 T ELT)) (-3512 (($ (-579 (-2 (|:| -2388 (-688)) (|:| -3755 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3928 (((-766) $) 131 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2654 (($ $ (-688)) 37 T ELT) (($ $) 35 T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3821 (($ |#2| $) 41 T ELT))) +(((-336 |#1| |#2|) (-13 (-1006) (-187) (-549 (-344 |#2|)) (-10 -8 (-15 -3821 ($ |#2| $)) (-15 -1751 ($ (-344 |#2|))) (-15 -1750 (|#2| $)) (-15 -1749 ((-579 (-2 (|:| -2388 (-688)) (|:| -3755 |#2|) (|:| |num| |#2|))) $)) (-15 -3512 ($ (-579 (-2 (|:| -2388 (-688)) (|:| -3755 |#2|) (|:| |num| |#2|))))))) (-13 (-308) (-118)) (-1145 |#1|)) (T -336)) +((-3821 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-308) (-118))) (-5 *1 (-336 *3 *2)) (-4 *2 (-1145 *3)))) (-1751 (*1 *1 *2) (-12 (-5 *2 (-344 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-13 (-308) (-118))) (-5 *1 (-336 *3 *4)))) (-1750 (*1 *2 *1) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-336 *3 *2)) (-4 *3 (-13 (-308) (-118))))) (-1749 (*1 *2 *1) (-12 (-4 *3 (-13 (-308) (-118))) (-5 *2 (-579 (-2 (|:| -2388 (-688)) (|:| -3755 *4) (|:| |num| *4)))) (-5 *1 (-336 *3 *4)) (-4 *4 (-1145 *3)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-579 (-2 (|:| -2388 (-688)) (|:| -3755 *4) (|:| |num| *4)))) (-4 *4 (-1145 *3)) (-4 *3 (-13 (-308) (-118))) (-5 *1 (-336 *3 *4))))) +((-2553 (((-83) $ $) 10 (OR (|has| |#1| (-790 (-479))) (|has| |#1| (-790 (-324)))) ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 16 (|has| |#1| (-790 (-324))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 15 (|has| |#1| (-790 (-479))) ELT)) (-3226 (((-1063) $) 14 (OR (|has| |#1| (-790 (-479))) (|has| |#1| (-790 (-324)))) ELT)) (-3227 (((-1024) $) 13 (OR (|has| |#1| (-790 (-479))) (|has| |#1| (-790 (-324)))) ELT)) (-3928 (((-766) $) 12 (OR (|has| |#1| (-790 (-479))) (|has| |#1| (-790 (-324)))) ELT)) (-1254 (((-83) $ $) 11 (OR (|has| |#1| (-790 (-479))) (|has| |#1| (-790 (-324)))) ELT)) (-3041 (((-83) $ $) 9 (OR (|has| |#1| (-790 (-479))) (|has| |#1| (-790 (-324)))) ELT))) +(((-337 |#1|) (-111) (-1119)) (T -337)) +NIL +(-13 (-1119) (-10 -7 (IF (|has| |t#1| (-790 (-479))) (-6 (-790 (-479))) |%noBranch|) (IF (|has| |t#1| (-790 (-324))) (-6 (-790 (-324))) |%noBranch|))) +(((-72) OR (|has| |#1| (-790 (-479))) (|has| |#1| (-790 (-324)))) ((-548 (-766)) OR (|has| |#1| (-790 (-479))) (|has| |#1| (-790 (-324)))) ((-790 (-324)) |has| |#1| (-790 (-324))) ((-790 (-479)) |has| |#1| (-790 (-479))) ((-1006) OR (|has| |#1| (-790 (-479))) (|has| |#1| (-790 (-324)))) ((-1119) . T)) +((-1752 (($ $) 10 T ELT) (($ $ (-688)) 12 T ELT))) +(((-338 |#1|) (-10 -7 (-15 -1752 (|#1| |#1| (-688))) (-15 -1752 (|#1| |#1|))) (-339)) (T -338)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3706 (($) 22 T CONST)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-1752 (($ $) 94 T ELT) (($ $ (-688)) 93 T ELT)) (-3705 (((-83) $) 86 T ELT)) (-3754 (((-737 (-824)) $) 96 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 65 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 85 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-1753 (((-3 (-688) "failed") $ $) 95 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT)) (-2687 (((-628 $) $) 97 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 80 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT))) +(((-339) (-111)) (T -339)) +((-3754 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-737 (-824))))) (-1753 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339)) (-5 *2 (-688)))) (-1752 (*1 *1 *1) (-4 *1 (-339))) (-1752 (*1 *1 *1 *2) (-12 (-4 *1 (-339)) (-5 *2 (-688))))) +(-13 (-308) (-116) (-10 -8 (-15 -3754 ((-737 (-824)) $)) (-15 -1753 ((-3 (-688) "failed") $ $)) (-15 -1752 ($ $)) (-15 -1752 ($ $ (-688))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 $ $) . T) ((-102) . T) ((-116) . T) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-386) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 $) . T) ((-650 (-344 (-479))) . T) ((-650 $) . T) ((-659) . T) ((-826) . T) ((-957 (-344 (-479))) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) . T)) +((-3238 (($ (-479) (-479)) 11 T ELT) (($ (-479) (-479) (-824)) NIL T ELT)) (-2600 (((-824)) 19 T ELT) (((-824) (-824)) NIL T ELT))) +(((-340 |#1|) (-10 -7 (-15 -2600 ((-824) (-824))) (-15 -2600 ((-824))) (-15 -3238 (|#1| (-479) (-479) (-824))) (-15 -3238 (|#1| (-479) (-479)))) (-341)) (T -340)) +((-2600 (*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-340 *3)) (-4 *3 (-341)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-340 *3)) (-4 *3 (-341))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3113 (((-479) $) 105 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-3753 (($ $) 103 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-3022 (($ $) 113 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3605 (((-479) $) 130 T ELT)) (-3706 (($) 22 T CONST)) (-3111 (($ $) 102 T ELT)) (-3141 (((-3 (-479) #1="failed") $) 118 T ELT) (((-3 (-344 (-479)) #1#) $) 115 T ELT)) (-3140 (((-479) $) 119 T ELT) (((-344 (-479)) $) 116 T ELT)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-3705 (((-83) $) 86 T ELT)) (-1756 (((-824)) 146 T ELT) (((-824) (-824)) 143 (|has| $ (-6 -3968)) ELT)) (-3170 (((-83) $) 128 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 109 T ELT)) (-3754 (((-479) $) 152 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 112 T ELT)) (-3116 (($ $) 108 T ELT)) (-3171 (((-83) $) 129 T ELT)) (-1593 (((-3 (-579 $) #2="failed") (-579 $) $) 65 T ELT)) (-2516 (($ $ $) 122 T ELT) (($) 140 (-12 (-2545 (|has| $ (-6 -3968))) (-2545 (|has| $ (-6 -3960)))) ELT)) (-2842 (($ $ $) 123 T ELT) (($) 139 (-12 (-2545 (|has| $ (-6 -3968))) (-2545 (|has| $ (-6 -3960)))) ELT)) (-1758 (((-479) $) 149 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 85 T ELT)) (-1755 (((-824) (-479)) 142 (|has| $ (-6 -3968)) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3112 (($ $) 104 T ELT)) (-3114 (($ $) 106 T ELT)) (-3238 (($ (-479) (-479)) 154 T ELT) (($ (-479) (-479) (-824)) 153 T ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-2388 (((-479) $) 150 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-2600 (((-824)) 147 T ELT) (((-824) (-824)) 144 (|has| $ (-6 -3968)) ELT)) (-1754 (((-824) (-479)) 141 (|has| $ (-6 -3968)) ELT)) (-3954 (((-324) $) 121 T ELT) (((-177) $) 120 T ELT) (((-794 (-324)) $) 110 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT) (($ (-479)) 117 T ELT) (($ (-344 (-479))) 114 T ELT)) (-3110 (((-688)) 37 T CONST)) (-3115 (($ $) 107 T ELT)) (-1757 (((-824)) 148 T ELT) (((-824) (-824)) 145 (|has| $ (-6 -3968)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2679 (((-824)) 151 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-3365 (($ $) 131 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2551 (((-83) $ $) 124 T ELT)) (-2552 (((-83) $ $) 126 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 125 T ELT)) (-2670 (((-83) $ $) 127 T ELT)) (-3931 (($ $ $) 80 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT) (($ $ (-344 (-479))) 111 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT))) +(((-341) (-111)) (T -341)) +((-3238 (*1 *1 *2 *2) (-12 (-5 *2 (-479)) (-4 *1 (-341)))) (-3238 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-479)) (-5 *3 (-824)) (-4 *1 (-341)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-479)))) (-2679 (*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-824)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-479)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-479)))) (-1757 (*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-824)))) (-2600 (*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-824)))) (-1756 (*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-824)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-824)) (|has| *1 (-6 -3968)) (-4 *1 (-341)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-824)) (|has| *1 (-6 -3968)) (-4 *1 (-341)))) (-1756 (*1 *2 *2) (-12 (-5 *2 (-824)) (|has| *1 (-6 -3968)) (-4 *1 (-341)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-479)) (|has| *1 (-6 -3968)) (-4 *1 (-341)) (-5 *2 (-824)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-479)) (|has| *1 (-6 -3968)) (-4 *1 (-341)) (-5 *2 (-824)))) (-2516 (*1 *1) (-12 (-4 *1 (-341)) (-2545 (|has| *1 (-6 -3968))) (-2545 (|has| *1 (-6 -3960))))) (-2842 (*1 *1) (-12 (-4 *1 (-341)) (-2545 (|has| *1 (-6 -3968))) (-2545 (|has| *1 (-6 -3960)))))) +(-13 (-966) (-10 -8 (-6 -3752) (-15 -3238 ($ (-479) (-479))) (-15 -3238 ($ (-479) (-479) (-824))) (-15 -3754 ((-479) $)) (-15 -2679 ((-824))) (-15 -2388 ((-479) $)) (-15 -1758 ((-479) $)) (-15 -1757 ((-824))) (-15 -2600 ((-824))) (-15 -1756 ((-824))) (IF (|has| $ (-6 -3968)) (PROGN (-15 -1757 ((-824) (-824))) (-15 -2600 ((-824) (-824))) (-15 -1756 ((-824) (-824))) (-15 -1755 ((-824) (-479))) (-15 -1754 ((-824) (-479)))) |%noBranch|) (IF (|has| $ (-6 -3960)) |%noBranch| (IF (|has| $ (-6 -3968)) |%noBranch| (PROGN (-15 -2516 ($)) (-15 -2842 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-549 (-177)) . T) ((-549 (-324)) . T) ((-549 (-794 (-324))) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-386) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 $) . T) ((-650 (-344 (-479))) . T) ((-650 $) . T) ((-659) . T) ((-708) . T) ((-710) . T) ((-712) . T) ((-715) . T) ((-749) . T) ((-750) . T) ((-753) . T) ((-790 (-324)) . T) ((-826) . T) ((-909) . T) ((-927) . T) ((-966) . T) ((-944 (-344 (-479))) . T) ((-944 (-479)) . T) ((-957 (-344 (-479))) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 59 T ELT)) (-1759 (($ $) 77 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 189 T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) 48 T ELT)) (-1760 ((|#1| $) 16 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#1| (-1124)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-1124)) ELT)) (-1762 (($ |#1| (-479)) 42 T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 73 T ELT)) (-3449 (((-3 $ #1#) $) 163 T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) 84 (|has| |#1| (-478)) ELT)) (-3008 (((-83) $) 80 (|has| |#1| (-478)) ELT)) (-3007 (((-344 (-479)) $) 82 (|has| |#1| (-478)) ELT)) (-1763 (($ |#1| (-479)) 44 T ELT)) (-3705 (((-83) $) 209 (|has| |#1| (-1124)) ELT)) (-2397 (((-83) $) 61 T ELT)) (-1822 (((-688) $) 51 T ELT)) (-1764 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-479)) 174 T ELT)) (-2286 ((|#1| $ (-479)) 173 T ELT)) (-1765 (((-479) $ (-479)) 172 T ELT)) (-1768 (($ |#1| (-479)) 41 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1819 (($ |#1| (-579 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-479))))) 78 T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1766 (($ |#1| (-479)) 43 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) 190 (|has| |#1| (-386)) ELT)) (-1761 (($ |#1| (-479) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1767 (((-579 (-2 (|:| -3714 |#1|) (|:| -2388 (-479)))) $) 72 T ELT)) (-1940 (((-579 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-479)))) $) 12 T ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-1124)) ELT)) (-3448 (((-3 $ #1#) $ $) 175 T ELT)) (-2388 (((-479) $) 166 T ELT)) (-3945 ((|#1| $) 74 T ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-245 |#1|))) 99 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) 105 (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) |#1|) NIL (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) $) NIL (|has| |#1| (-448 (-1080) $)) ELT) (($ $ (-579 (-1080)) (-579 $)) 106 (|has| |#1| (-448 (-1080) $)) ELT) (($ $ (-579 (-245 $))) 102 (|has| |#1| (-256 $)) ELT) (($ $ (-245 $)) NIL (|has| |#1| (-256 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-256 $)) ELT) (($ $ (-579 $) (-579 $)) NIL (|has| |#1| (-256 $)) ELT)) (-3782 (($ $ |#1|) 91 (|has| |#1| (-238 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-238 $ $)) ELT)) (-3740 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-3954 (((-468) $) 39 (|has| |#1| (-549 (-468))) ELT) (((-324) $) 112 (|has| |#1| (-927)) ELT) (((-177) $) 118 (|has| |#1| (-927)) ELT)) (-3928 (((-766) $) 145 T ELT) (($ (-479)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-944 (-344 (-479)))) ELT)) (-3110 (((-688)) 66 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2645 (($) 53 T CONST)) (-2651 (($) 52 T CONST)) (-2654 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) 158 T ELT)) (-3819 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 179 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 124 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-342 |#1|) (-13 (-490) (-182 |#1|) (-38 |#1|) (-284 |#1|) (-349 |#1|) (-10 -8 (-15 -3945 (|#1| $)) (-15 -2388 ((-479) $)) (-15 -1819 ($ |#1| (-579 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-479)))))) (-15 -1940 ((-579 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-479)))) $)) (-15 -1768 ($ |#1| (-479))) (-15 -1767 ((-579 (-2 (|:| -3714 |#1|) (|:| -2388 (-479)))) $)) (-15 -1766 ($ |#1| (-479))) (-15 -1765 ((-479) $ (-479))) (-15 -2286 (|#1| $ (-479))) (-15 -1764 ((-3 #1# #2# #3# #4#) $ (-479))) (-15 -1822 ((-688) $)) (-15 -1763 ($ |#1| (-479))) (-15 -1762 ($ |#1| (-479))) (-15 -1761 ($ |#1| (-479) (-3 #1# #2# #3# #4#))) (-15 -1760 (|#1| $)) (-15 -1759 ($ $)) (-15 -3940 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-386)) (-6 (-386)) |%noBranch|) (IF (|has| |#1| (-927)) (-6 (-927)) |%noBranch|) (IF (|has| |#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |#1| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-15 -3008 ((-83) $)) (-15 -3007 ((-344 (-479)) $)) (-15 -3009 ((-3 (-344 (-479)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-238 $ $)) (-6 (-238 $ $)) |%noBranch|) (IF (|has| |#1| (-256 $)) (-6 (-256 $)) |%noBranch|) (IF (|has| |#1| (-448 (-1080) $)) (-6 (-448 (-1080) $)) |%noBranch|))) (-490)) (T -342)) +((-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-490)) (-5 *1 (-342 *3)))) (-3945 (*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-490)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-342 *3)) (-4 *3 (-490)))) (-1819 (*1 *1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-479))))) (-4 *2 (-490)) (-5 *1 (-342 *2)))) (-1940 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-479))))) (-5 *1 (-342 *3)) (-4 *3 (-490)))) (-1768 (*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| -3714 *3) (|:| -2388 (-479))))) (-5 *1 (-342 *3)) (-4 *3 (-490)))) (-1766 (*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490)))) (-1765 (*1 *2 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-342 *3)) (-4 *3 (-490)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490)))) (-1764 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-342 *4)) (-4 *4 (-490)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-342 *3)) (-4 *3 (-490)))) (-1763 (*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490)))) (-1762 (*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490)))) (-1761 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-479)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-342 *2)) (-4 *2 (-490)))) (-1760 (*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-490)))) (-1759 (*1 *1 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-490)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-342 *3)) (-4 *3 (-478)) (-4 *3 (-490)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-342 *3)) (-4 *3 (-478)) (-4 *3 (-490)))) (-3009 (*1 *2 *1) (|partial| -12 (-5 *2 (-344 (-479))) (-5 *1 (-342 *3)) (-4 *3 (-478)) (-4 *3 (-490))))) +((-3940 (((-342 |#2|) (-1 |#2| |#1|) (-342 |#1|)) 20 T ELT))) +(((-343 |#1| |#2|) (-10 -7 (-15 -3940 ((-342 |#2|) (-1 |#2| |#1|) (-342 |#1|)))) (-490) (-490)) (T -343)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-342 *5)) (-4 *5 (-490)) (-4 *6 (-490)) (-5 *2 (-342 *6)) (-5 *1 (-343 *5 *6))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 13 T ELT)) (-3113 ((|#1| $) 21 (|has| |#1| (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| |#1| (-734)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1080) #1#) $) NIL (|has| |#1| (-944 (-1080))) ELT) (((-3 (-344 (-479)) #1#) $) 54 (|has| |#1| (-944 (-479))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT)) (-3140 ((|#1| $) 15 T ELT) (((-1080) $) NIL (|has| |#1| (-944 (-1080))) ELT) (((-344 (-479)) $) 51 (|has| |#1| (-944 (-479))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) 32 T ELT)) (-2979 (($) NIL (|has| |#1| (-478)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| |#1| (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| |#1| (-790 (-324))) ELT)) (-2397 (((-83) $) 38 T ELT)) (-2981 (($ $) NIL T ELT)) (-2983 ((|#1| $) 55 T ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-1056)) ELT)) (-3171 (((-83) $) 22 (|has| |#1| (-734)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| |#1| (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 82 T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL (|has| |#1| (-254)) ELT)) (-3114 ((|#1| $) 26 (|has| |#1| (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 133 (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 128 (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) NIL (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) |#1|) NIL (|has| |#1| (-448 (-1080) |#1|)) ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT)) (-2980 (($ $) NIL T ELT)) (-2982 ((|#1| $) 57 T ELT)) (-3954 (((-794 (-479)) $) NIL (|has| |#1| (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| |#1| (-549 (-794 (-324)))) ELT) (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT) (((-324) $) NIL (|has| |#1| (-927)) ELT) (((-177) $) NIL (|has| |#1| (-927)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) 112 (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1080)) NIL (|has| |#1| (-944 (-1080))) ELT)) (-2687 (((-628 $) $) 92 (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) 93 T CONST)) (-3115 ((|#1| $) 24 (|has| |#1| (-478)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3365 (($ $) NIL (|has| |#1| (-734)) ELT)) (-2645 (($) 28 T CONST)) (-2651 (($) 8 T CONST)) (-2654 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 48 T ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3931 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3819 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3821 (($ $ $) 35 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 122 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-344 |#1|) (-13 (-898 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3964)) (IF (|has| |#1| (-386)) (IF (|has| |#1| (-6 -3975)) (-6 -3964) |%noBranch|) |%noBranch|) |%noBranch|))) (-490)) (T -344)) +NIL +((-3940 (((-344 |#2|) (-1 |#2| |#1|) (-344 |#1|)) 13 T ELT))) +(((-345 |#1| |#2|) (-10 -7 (-15 -3940 ((-344 |#2|) (-1 |#2| |#1|) (-344 |#1|)))) (-490) (-490)) (T -345)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-344 *5)) (-4 *5 (-490)) (-4 *6 (-490)) (-5 *2 (-344 *6)) (-5 *1 (-345 *5 *6))))) +((-1770 (((-626 |#2|) (-1169 $)) NIL T ELT) (((-626 |#2|)) 18 T ELT)) (-1780 (($ (-1169 |#2|) (-1169 $)) NIL T ELT) (($ (-1169 |#2|)) 24 T ELT)) (-1769 (((-626 |#2|) $ (-1169 $)) NIL T ELT) (((-626 |#2|) $) 40 T ELT)) (-2001 ((|#3| $) 69 T ELT)) (-3739 ((|#2| (-1169 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3208 (((-1169 |#2|) $ (-1169 $)) NIL T ELT) (((-626 |#2|) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 |#2|) $) 22 T ELT) (((-626 |#2|) (-1169 $)) 38 T ELT)) (-3954 (((-1169 |#2|) $) 11 T ELT) (($ (-1169 |#2|)) 13 T ELT)) (-2434 ((|#3| $) 55 T ELT))) +(((-346 |#1| |#2| |#3|) (-10 -7 (-15 -1769 ((-626 |#2|) |#1|)) (-15 -3739 (|#2|)) (-15 -1770 ((-626 |#2|))) (-15 -3954 (|#1| (-1169 |#2|))) (-15 -3954 ((-1169 |#2|) |#1|)) (-15 -1780 (|#1| (-1169 |#2|))) (-15 -3208 ((-626 |#2|) (-1169 |#1|))) (-15 -3208 ((-1169 |#2|) |#1|)) (-15 -2001 (|#3| |#1|)) (-15 -2434 (|#3| |#1|)) (-15 -1770 ((-626 |#2|) (-1169 |#1|))) (-15 -3739 (|#2| (-1169 |#1|))) (-15 -1780 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -3208 ((-626 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -3208 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1769 ((-626 |#2|) |#1| (-1169 |#1|)))) (-347 |#2| |#3|) (-144) (-1145 |#2|)) (T -346)) +((-1770 (*1 *2) (-12 (-4 *4 (-144)) (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)) (-5 *1 (-346 *3 *4 *5)) (-4 *3 (-347 *4 *5)))) (-3739 (*1 *2) (-12 (-4 *4 (-1145 *2)) (-4 *2 (-144)) (-5 *1 (-346 *3 *2 *4)) (-4 *3 (-347 *2 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1770 (((-626 |#1|) (-1169 $)) 58 T ELT) (((-626 |#1|)) 74 T ELT)) (-3312 ((|#1| $) 64 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-1780 (($ (-1169 |#1|) (-1169 $)) 60 T ELT) (($ (-1169 |#1|)) 77 T ELT)) (-1769 (((-626 |#1|) $ (-1169 $)) 65 T ELT) (((-626 |#1|) $) 72 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3093 (((-824)) 66 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3116 ((|#1| $) 63 T ELT)) (-2001 ((|#2| $) 56 (|has| |#1| (-308)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3739 ((|#1| (-1169 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3208 (((-1169 |#1|) $ (-1169 $)) 62 T ELT) (((-626 |#1|) (-1169 $) (-1169 $)) 61 T ELT) (((-1169 |#1|) $) 79 T ELT) (((-626 |#1|) (-1169 $)) 78 T ELT)) (-3954 (((-1169 |#1|) $) 76 T ELT) (($ (-1169 |#1|)) 75 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 49 T ELT)) (-2687 (((-628 $) $) 55 (|has| |#1| (-116)) ELT)) (-2434 ((|#2| $) 57 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-1999 (((-1169 $)) 80 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-347 |#1| |#2|) (-111) (-144) (-1145 |t#1|)) (T -347)) +((-1999 (*1 *2) (-12 (-4 *3 (-144)) (-4 *4 (-1145 *3)) (-5 *2 (-1169 *1)) (-4 *1 (-347 *3 *4)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) (-5 *2 (-1169 *3)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-347 *4 *5)) (-4 *4 (-144)) (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)))) (-1780 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-144)) (-4 *1 (-347 *3 *4)) (-4 *4 (-1145 *3)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) (-5 *2 (-1169 *3)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-144)) (-4 *1 (-347 *3 *4)) (-4 *4 (-1145 *3)))) (-1770 (*1 *2) (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) (-5 *2 (-626 *3)))) (-3739 (*1 *2) (-12 (-4 *1 (-347 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-144)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) (-5 *2 (-626 *3))))) +(-13 (-316 |t#1| |t#2|) (-10 -8 (-15 -1999 ((-1169 $))) (-15 -3208 ((-1169 |t#1|) $)) (-15 -3208 ((-626 |t#1|) (-1169 $))) (-15 -1780 ($ (-1169 |t#1|))) (-15 -3954 ((-1169 |t#1|) $)) (-15 -3954 ($ (-1169 |t#1|))) (-15 -1770 ((-626 |t#1|))) (-15 -3739 (|t#1|)) (-15 -1769 ((-626 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-316 |#1| |#2|) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 |#1|) . T) ((-650 |#1|) . T) ((-659) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3141 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) 27 T ELT) (((-3 (-479) #1#) $) 19 T ELT)) (-3140 ((|#2| $) NIL T ELT) (((-344 (-479)) $) 24 T ELT) (((-479) $) 14 T ELT)) (-3928 (($ |#2|) NIL T ELT) (($ (-344 (-479))) 22 T ELT) (($ (-479)) 11 T ELT))) +(((-348 |#1| |#2|) (-10 -7 (-15 -3928 (|#1| (-479))) (-15 -3141 ((-3 (-479) #1="failed") |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3928 (|#1| |#2|))) (-349 |#2|) (-1119)) (T -348)) +NIL +((-3141 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-344 (-479)) #1#) $) 16 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) 13 (|has| |#1| (-944 (-479))) ELT)) (-3140 ((|#1| $) 8 T ELT) (((-344 (-479)) $) 17 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) 14 (|has| |#1| (-944 (-479))) ELT)) (-3928 (($ |#1|) 6 T ELT) (($ (-344 (-479))) 15 (|has| |#1| (-944 (-344 (-479)))) ELT) (($ (-479)) 12 (|has| |#1| (-944 (-479))) ELT))) +(((-349 |#1|) (-111) (-1119)) (T -349)) +NIL +(-13 (-944 |t#1|) (-10 -7 (IF (|has| |t#1| (-944 (-479))) (-6 (-944 (-479))) |%noBranch|) (IF (|has| |t#1| (-944 (-344 (-479)))) (-6 (-944 (-344 (-479)))) |%noBranch|))) +(((-551 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-551 (-479)) |has| |#1| (-944 (-479))) ((-551 |#1|) . T) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ "failed") $) NIL T ELT)) (-1771 ((|#4| (-688) (-1169 |#4|)) 55 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2983 (((-1169 |#4|) $) 15 T ELT)) (-3116 ((|#2| $) 53 T ELT)) (-1772 (($ $) 156 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 103 T ELT)) (-1957 (($ (-1169 |#4|)) 102 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2982 ((|#1| $) 16 T ELT)) (-2994 (($ $ $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-3928 (((-766) $) 147 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 |#4|) $) 140 T ELT)) (-2651 (($) 11 T CONST)) (-3041 (((-83) $ $) 39 T ELT)) (-3931 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-350 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -1957 ($ (-1169 |#4|))) (-15 -1999 ((-1169 |#4|) $)) (-15 -3116 (|#2| $)) (-15 -2983 ((-1169 |#4|) $)) (-15 -2982 (|#1| $)) (-15 -1772 ($ $)) (-15 -1771 (|#4| (-688) (-1169 |#4|))))) (-254) (-898 |#1|) (-1145 |#2|) (-13 (-347 |#2| |#3|) (-944 |#2|))) (T -350)) +((-1957 (*1 *1 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-13 (-347 *4 *5) (-944 *4))) (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-4 *3 (-254)) (-5 *1 (-350 *3 *4 *5 *6)))) (-1999 (*1 *2 *1) (-12 (-4 *3 (-254)) (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *6)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *6 (-13 (-347 *4 *5) (-944 *4))))) (-3116 (*1 *2 *1) (-12 (-4 *4 (-1145 *2)) (-4 *2 (-898 *3)) (-5 *1 (-350 *3 *2 *4 *5)) (-4 *3 (-254)) (-4 *5 (-13 (-347 *2 *4) (-944 *2))))) (-2983 (*1 *2 *1) (-12 (-4 *3 (-254)) (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *6)) (-5 *1 (-350 *3 *4 *5 *6)) (-4 *6 (-13 (-347 *4 *5) (-944 *4))))) (-2982 (*1 *2 *1) (-12 (-4 *3 (-898 *2)) (-4 *4 (-1145 *3)) (-4 *2 (-254)) (-5 *1 (-350 *2 *3 *4 *5)) (-4 *5 (-13 (-347 *3 *4) (-944 *3))))) (-1772 (*1 *1 *1) (-12 (-4 *2 (-254)) (-4 *3 (-898 *2)) (-4 *4 (-1145 *3)) (-5 *1 (-350 *2 *3 *4 *5)) (-4 *5 (-13 (-347 *3 *4) (-944 *3))))) (-1771 (*1 *2 *3 *4) (-12 (-5 *3 (-688)) (-5 *4 (-1169 *2)) (-4 *5 (-254)) (-4 *6 (-898 *5)) (-4 *2 (-13 (-347 *6 *7) (-944 *6))) (-5 *1 (-350 *5 *6 *7 *2)) (-4 *7 (-1145 *6))))) +((-3940 (((-350 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-350 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3940 ((-350 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-350 |#1| |#2| |#3| |#4|)))) (-254) (-898 |#1|) (-1145 |#2|) (-13 (-347 |#2| |#3|) (-944 |#2|)) (-254) (-898 |#5|) (-1145 |#6|) (-13 (-347 |#6| |#7|) (-944 |#6|))) (T -351)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-350 *5 *6 *7 *8)) (-4 *5 (-254)) (-4 *6 (-898 *5)) (-4 *7 (-1145 *6)) (-4 *8 (-13 (-347 *6 *7) (-944 *6))) (-4 *9 (-254)) (-4 *10 (-898 *9)) (-4 *11 (-1145 *10)) (-5 *2 (-350 *9 *10 *11 *12)) (-5 *1 (-351 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-347 *10 *11) (-944 *10)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ "failed") $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3116 ((|#2| $) 69 T ELT)) (-1773 (($ (-1169 |#4|)) 27 T ELT) (($ (-350 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-944 |#2|)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 37 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 |#4|) $) 28 T ELT)) (-2651 (($) 26 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ $ $) 80 T ELT))) +(((-352 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -1999 ((-1169 |#4|) $)) (-15 -3116 (|#2| $)) (-15 -1773 ($ (-1169 |#4|))) (IF (|has| |#4| (-944 |#2|)) (-15 -1773 ($ (-350 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-254) (-898 |#1|) (-1145 |#2|) (-347 |#2| |#3|) (-1169 |#4|)) (T -352)) +((-1999 (*1 *2 *1) (-12 (-4 *3 (-254)) (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *6)) (-5 *1 (-352 *3 *4 *5 *6 *7)) (-4 *6 (-347 *4 *5)) (-14 *7 *2))) (-3116 (*1 *2 *1) (-12 (-4 *4 (-1145 *2)) (-4 *2 (-898 *3)) (-5 *1 (-352 *3 *2 *4 *5 *6)) (-4 *3 (-254)) (-4 *5 (-347 *2 *4)) (-14 *6 (-1169 *5)))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-1169 *6)) (-4 *6 (-347 *4 *5)) (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-4 *3 (-254)) (-5 *1 (-352 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1773 (*1 *1 *2) (-12 (-5 *2 (-350 *3 *4 *5 *6)) (-4 *6 (-944 *4)) (-4 *3 (-254)) (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-4 *6 (-347 *4 *5)) (-14 *7 (-1169 *6)) (-5 *1 (-352 *3 *4 *5 *6 *7))))) +((-3940 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-353 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#3| (-1 |#4| |#2|) |#1|))) (-355 |#2|) (-144) (-355 |#4|) (-144)) (T -353)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-355 *6)) (-5 *1 (-353 *4 *5 *2 *6)) (-4 *4 (-355 *5))))) +((-1760 (((-3 $ #1="failed")) 99 T ELT)) (-3207 (((-1169 (-626 |#2|)) (-1169 $)) NIL T ELT) (((-1169 (-626 |#2|))) 104 T ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) 97 T ELT)) (-1691 (((-3 $ #1#)) 96 T ELT)) (-1776 (((-626 |#2|) (-1169 $)) NIL T ELT) (((-626 |#2|)) 115 T ELT)) (-1774 (((-626 |#2|) $ (-1169 $)) NIL T ELT) (((-626 |#2|) $) 123 T ELT)) (-1888 (((-1075 (-851 |#2|))) 64 T ELT)) (-1778 ((|#2| (-1169 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1780 (($ (-1169 |#2|) (-1169 $)) NIL T ELT) (($ (-1169 |#2|)) 125 T ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) 95 T ELT)) (-1692 (((-3 $ #1#)) 87 T ELT)) (-1777 (((-626 |#2|) (-1169 $)) NIL T ELT) (((-626 |#2|)) 113 T ELT)) (-1775 (((-626 |#2|) $ (-1169 $)) NIL T ELT) (((-626 |#2|) $) 121 T ELT)) (-1892 (((-1075 (-851 |#2|))) 63 T ELT)) (-1779 ((|#2| (-1169 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3208 (((-1169 |#2|) $ (-1169 $)) NIL T ELT) (((-626 |#2|) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 |#2|) $) 124 T ELT) (((-626 |#2|) (-1169 $)) 133 T ELT)) (-3954 (((-1169 |#2|) $) 109 T ELT) (($ (-1169 |#2|)) 111 T ELT)) (-1880 (((-579 (-851 |#2|)) (-1169 $)) NIL T ELT) (((-579 (-851 |#2|))) 107 T ELT)) (-2530 (($ (-626 |#2|) $) 103 T ELT))) +(((-354 |#1| |#2|) (-10 -7 (-15 -2530 (|#1| (-626 |#2|) |#1|)) (-15 -1888 ((-1075 (-851 |#2|)))) (-15 -1892 ((-1075 (-851 |#2|)))) (-15 -1774 ((-626 |#2|) |#1|)) (-15 -1775 ((-626 |#2|) |#1|)) (-15 -1776 ((-626 |#2|))) (-15 -1777 ((-626 |#2|))) (-15 -1778 (|#2|)) (-15 -1779 (|#2|)) (-15 -3954 (|#1| (-1169 |#2|))) (-15 -3954 ((-1169 |#2|) |#1|)) (-15 -1780 (|#1| (-1169 |#2|))) (-15 -1880 ((-579 (-851 |#2|)))) (-15 -3207 ((-1169 (-626 |#2|)))) (-15 -3208 ((-626 |#2|) (-1169 |#1|))) (-15 -3208 ((-1169 |#2|) |#1|)) (-15 -1760 ((-3 |#1| #1="failed"))) (-15 -1691 ((-3 |#1| #1#))) (-15 -1692 ((-3 |#1| #1#))) (-15 -1894 ((-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-579 |#1|))) #1#))) (-15 -1895 ((-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-579 |#1|))) #1#))) (-15 -1776 ((-626 |#2|) (-1169 |#1|))) (-15 -1777 ((-626 |#2|) (-1169 |#1|))) (-15 -1778 (|#2| (-1169 |#1|))) (-15 -1779 (|#2| (-1169 |#1|))) (-15 -1780 (|#1| (-1169 |#2|) (-1169 |#1|))) (-15 -3208 ((-626 |#2|) (-1169 |#1|) (-1169 |#1|))) (-15 -3208 ((-1169 |#2|) |#1| (-1169 |#1|))) (-15 -1774 ((-626 |#2|) |#1| (-1169 |#1|))) (-15 -1775 ((-626 |#2|) |#1| (-1169 |#1|))) (-15 -3207 ((-1169 (-626 |#2|)) (-1169 |#1|))) (-15 -1880 ((-579 (-851 |#2|)) (-1169 |#1|)))) (-355 |#2|) (-144)) (T -354)) +((-3207 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1169 (-626 *4))) (-5 *1 (-354 *3 *4)) (-4 *3 (-355 *4)))) (-1880 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-579 (-851 *4))) (-5 *1 (-354 *3 *4)) (-4 *3 (-355 *4)))) (-1779 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-354 *3 *2)) (-4 *3 (-355 *2)))) (-1778 (*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-354 *3 *2)) (-4 *3 (-355 *2)))) (-1777 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-626 *4)) (-5 *1 (-354 *3 *4)) (-4 *3 (-355 *4)))) (-1776 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-626 *4)) (-5 *1 (-354 *3 *4)) (-4 *3 (-355 *4)))) (-1892 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1075 (-851 *4))) (-5 *1 (-354 *3 *4)) (-4 *3 (-355 *4)))) (-1888 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-1075 (-851 *4))) (-5 *1 (-354 *3 *4)) (-4 *3 (-355 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1760 (((-3 $ #1="failed")) 47 (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3207 (((-1169 (-626 |#1|)) (-1169 $)) 88 T ELT) (((-1169 (-626 |#1|))) 114 T ELT)) (-1717 (((-1169 $)) 91 T ELT)) (-3706 (($) 22 T CONST)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) 50 (|has| |#1| (-490)) ELT)) (-1691 (((-3 $ #1#)) 48 (|has| |#1| (-490)) ELT)) (-1776 (((-626 |#1|) (-1169 $)) 75 T ELT) (((-626 |#1|)) 106 T ELT)) (-1715 ((|#1| $) 84 T ELT)) (-1774 (((-626 |#1|) $ (-1169 $)) 86 T ELT) (((-626 |#1|) $) 104 T ELT)) (-2391 (((-3 $ #1#) $) 55 (|has| |#1| (-490)) ELT)) (-1888 (((-1075 (-851 |#1|))) 102 (|has| |#1| (-308)) ELT)) (-2394 (($ $ (-824)) 36 T ELT)) (-1713 ((|#1| $) 82 T ELT)) (-1693 (((-1075 |#1|) $) 52 (|has| |#1| (-490)) ELT)) (-1778 ((|#1| (-1169 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1711 (((-1075 |#1|) $) 73 T ELT)) (-1705 (((-83)) 67 T ELT)) (-1780 (($ (-1169 |#1|) (-1169 $)) 79 T ELT) (($ (-1169 |#1|)) 112 T ELT)) (-3449 (((-3 $ #1#) $) 57 (|has| |#1| (-490)) ELT)) (-3093 (((-824)) 90 T ELT)) (-1702 (((-83)) 64 T ELT)) (-2418 (($ $ (-824)) 43 T ELT)) (-1698 (((-83)) 60 T ELT)) (-1696 (((-83)) 58 T ELT)) (-1700 (((-83)) 62 T ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) 51 (|has| |#1| (-490)) ELT)) (-1692 (((-3 $ #1#)) 49 (|has| |#1| (-490)) ELT)) (-1777 (((-626 |#1|) (-1169 $)) 76 T ELT) (((-626 |#1|)) 107 T ELT)) (-1716 ((|#1| $) 85 T ELT)) (-1775 (((-626 |#1|) $ (-1169 $)) 87 T ELT) (((-626 |#1|) $) 105 T ELT)) (-2392 (((-3 $ #1#) $) 56 (|has| |#1| (-490)) ELT)) (-1892 (((-1075 (-851 |#1|))) 103 (|has| |#1| (-308)) ELT)) (-2393 (($ $ (-824)) 37 T ELT)) (-1714 ((|#1| $) 83 T ELT)) (-1694 (((-1075 |#1|) $) 53 (|has| |#1| (-490)) ELT)) (-1779 ((|#1| (-1169 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1712 (((-1075 |#1|) $) 74 T ELT)) (-1706 (((-83)) 68 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1697 (((-83)) 59 T ELT)) (-1699 (((-83)) 61 T ELT)) (-1701 (((-83)) 63 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1704 (((-83)) 66 T ELT)) (-3782 ((|#1| $ (-479)) 118 T ELT)) (-3208 (((-1169 |#1|) $ (-1169 $)) 81 T ELT) (((-626 |#1|) (-1169 $) (-1169 $)) 80 T ELT) (((-1169 |#1|) $) 116 T ELT) (((-626 |#1|) (-1169 $)) 115 T ELT)) (-3954 (((-1169 |#1|) $) 111 T ELT) (($ (-1169 |#1|)) 110 T ELT)) (-1880 (((-579 (-851 |#1|)) (-1169 $)) 89 T ELT) (((-579 (-851 |#1|))) 113 T ELT)) (-2420 (($ $ $) 33 T ELT)) (-1710 (((-83)) 72 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-1999 (((-1169 $)) 117 T ELT)) (-1695 (((-579 (-1169 |#1|))) 54 (|has| |#1| (-490)) ELT)) (-2421 (($ $ $ $) 34 T ELT)) (-1708 (((-83)) 70 T ELT)) (-2530 (($ (-626 |#1|) $) 101 T ELT)) (-2419 (($ $ $) 32 T ELT)) (-1709 (((-83)) 71 T ELT)) (-1707 (((-83)) 69 T ELT)) (-1703 (((-83)) 65 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 38 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-355 |#1|) (-111) (-144)) (T -355)) +((-1999 (*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1169 *1)) (-4 *1 (-355 *3)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-1169 *3)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-355 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) (-3207 (*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-1169 (-626 *3))))) (-1880 (*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-579 (-851 *3))))) (-1780 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-144)) (-4 *1 (-355 *3)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-1169 *3)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-144)) (-4 *1 (-355 *3)))) (-1779 (*1 *2) (-12 (-4 *1 (-355 *2)) (-4 *2 (-144)))) (-1778 (*1 *2) (-12 (-4 *1 (-355 *2)) (-4 *2 (-144)))) (-1777 (*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-626 *3)))) (-1776 (*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-626 *3)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-626 *3)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-626 *3)))) (-1892 (*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-4 *3 (-308)) (-5 *2 (-1075 (-851 *3))))) (-1888 (*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-4 *3 (-308)) (-5 *2 (-1075 (-851 *3))))) (-2530 (*1 *1 *2 *1) (-12 (-5 *2 (-626 *3)) (-4 *1 (-355 *3)) (-4 *3 (-144))))) +(-13 (-312 |t#1|) (-238 (-479) |t#1|) (-10 -8 (-15 -1999 ((-1169 $))) (-15 -3208 ((-1169 |t#1|) $)) (-15 -3208 ((-626 |t#1|) (-1169 $))) (-15 -3207 ((-1169 (-626 |t#1|)))) (-15 -1880 ((-579 (-851 |t#1|)))) (-15 -1780 ($ (-1169 |t#1|))) (-15 -3954 ((-1169 |t#1|) $)) (-15 -3954 ($ (-1169 |t#1|))) (-15 -1779 (|t#1|)) (-15 -1778 (|t#1|)) (-15 -1777 ((-626 |t#1|))) (-15 -1776 ((-626 |t#1|))) (-15 -1775 ((-626 |t#1|) $)) (-15 -1774 ((-626 |t#1|) $)) (IF (|has| |t#1| (-308)) (PROGN (-15 -1892 ((-1075 (-851 |t#1|)))) (-15 -1888 ((-1075 (-851 |t#1|))))) |%noBranch|) (-15 -2530 ($ (-626 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-548 (-766)) . T) ((-238 (-479) |#1|) . T) ((-312 |#1|) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-679) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-3118 (((-342 |#1|) (-342 |#1|) (-1 (-342 |#1|) |#1|)) 28 T ELT)) (-1781 (((-342 |#1|) (-342 |#1|) (-342 |#1|)) 17 T ELT))) +(((-356 |#1|) (-10 -7 (-15 -3118 ((-342 |#1|) (-342 |#1|) (-1 (-342 |#1|) |#1|))) (-15 -1781 ((-342 |#1|) (-342 |#1|) (-342 |#1|)))) (-490)) (T -356)) +((-1781 (*1 *2 *2 *2) (-12 (-5 *2 (-342 *3)) (-4 *3 (-490)) (-5 *1 (-356 *3)))) (-3118 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-342 *4) *4)) (-4 *4 (-490)) (-5 *2 (-342 *4)) (-5 *1 (-356 *4))))) +((-3066 (((-579 (-1080)) $) 81 T ELT)) (-3068 (((-344 (-1075 $)) $ (-546 $)) 313 T ELT)) (-1592 (($ $ (-245 $)) NIL T ELT) (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-579 (-546 $)) (-579 $)) 277 T ELT)) (-3141 (((-3 (-546 $) #1="failed") $) NIL T ELT) (((-3 (-1080) #1#) $) 84 T ELT) (((-3 (-479) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-344 (-851 |#2|)) #1#) $) 363 T ELT) (((-3 (-851 |#2|) #1#) $) 275 T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT)) (-3140 (((-546 $) $) NIL T ELT) (((-1080) $) 28 T ELT) (((-479) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-344 (-851 |#2|)) $) 345 T ELT) (((-851 |#2|) $) 272 T ELT) (((-344 (-479)) $) NIL T ELT)) (-3577 (((-84) (-84)) 47 T ELT)) (-2981 (($ $) 99 T ELT)) (-1590 (((-3 (-546 $) #1#) $) 268 T ELT)) (-1589 (((-579 (-546 $)) $) 269 T ELT)) (-2808 (((-3 (-579 $) #1#) $) 287 T ELT)) (-2810 (((-3 (-2 (|:| |val| $) (|:| -2388 (-479))) #1#) $) 294 T ELT)) (-2807 (((-3 (-579 $) #1#) $) 285 T ELT)) (-1782 (((-3 (-2 (|:| -3936 (-479)) (|:| |var| (-546 $))) #1#) $) 304 T ELT)) (-2809 (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) #1#) $ (-84)) 255 T ELT) (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) #1#) $ (-1080)) 257 T ELT)) (-1785 (((-83) $) 17 T ELT)) (-1784 ((|#2| $) 19 T ELT)) (-3750 (($ $ (-546 $) $) NIL T ELT) (($ $ (-579 (-546 $)) (-579 $)) 276 T ELT) (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ $))) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ (-579 $)))) 109 T ELT) (($ $ (-1080) (-1 $ (-579 $))) NIL T ELT) (($ $ (-1080) (-1 $ $)) NIL T ELT) (($ $ (-579 (-84)) (-579 (-1 $ $))) NIL T ELT) (($ $ (-579 (-84)) (-579 (-1 $ (-579 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-579 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT) (($ $ (-1080)) 62 T ELT) (($ $ (-579 (-1080))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-84) $ (-1080)) 65 T ELT) (($ $ (-579 (-84)) (-579 $) (-1080)) 72 T ELT) (($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ $))) 120 T ELT) (($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ (-579 $)))) 282 T ELT) (($ $ (-1080) (-688) (-1 $ (-579 $))) 105 T ELT) (($ $ (-1080) (-688) (-1 $ $)) 104 T ELT)) (-3782 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-579 $)) 119 T ELT)) (-3740 (($ $ (-1080)) 278 T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT)) (-2980 (($ $) 324 T ELT)) (-3954 (((-794 (-479)) $) 297 T ELT) (((-794 (-324)) $) 301 T ELT) (($ (-342 $)) 359 T ELT) (((-468) $) NIL T ELT)) (-3928 (((-766) $) 279 T ELT) (($ (-546 $)) 93 T ELT) (($ (-1080)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1029 |#2| (-546 $))) NIL T ELT) (($ (-344 |#2|)) 329 T ELT) (($ (-851 (-344 |#2|))) 368 T ELT) (($ (-344 (-851 (-344 |#2|)))) 341 T ELT) (($ (-344 (-851 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-851 |#2|)) 216 T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) 373 T ELT)) (-3110 (((-688)) 88 T CONST)) (-2241 (((-83) (-84)) 42 T ELT)) (-1783 (($ (-1080) $) 31 T ELT) (($ (-1080) $ $) 32 T ELT) (($ (-1080) $ $ $) 33 T ELT) (($ (-1080) $ $ $ $) 34 T ELT) (($ (-1080) (-579 $)) 39 T ELT)) (* (($ (-344 (-479)) $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-824) $) NIL T ELT))) +(((-357 |#1| |#2|) (-10 -7 (-15 * (|#1| (-824) |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3141 ((-3 (-344 (-479)) #1="failed") |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3928 (|#1| (-479))) (-15 -3110 ((-688)) -3934) (-15 * (|#1| |#2| |#1|)) (-15 -3954 ((-468) |#1|)) (-15 -3928 (|#1| (-851 |#2|))) (-15 -3141 ((-3 (-851 |#2|) #1#) |#1|)) (-15 -3140 ((-851 |#2|) |#1|)) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080))) (-15 * (|#1| |#1| |#2|)) (-15 -3928 (|#1| |#1|)) (-15 * (|#1| |#1| (-344 (-479)))) (-15 * (|#1| (-344 (-479)) |#1|)) (-15 -3928 (|#1| (-344 (-851 |#2|)))) (-15 -3141 ((-3 (-344 (-851 |#2|)) #1#) |#1|)) (-15 -3140 ((-344 (-851 |#2|)) |#1|)) (-15 -3068 ((-344 (-1075 |#1|)) |#1| (-546 |#1|))) (-15 -3928 (|#1| (-344 (-851 (-344 |#2|))))) (-15 -3928 (|#1| (-851 (-344 |#2|)))) (-15 -3928 (|#1| (-344 |#2|))) (-15 -2980 (|#1| |#1|)) (-15 -3954 (|#1| (-342 |#1|))) (-15 -3750 (|#1| |#1| (-1080) (-688) (-1 |#1| |#1|))) (-15 -3750 (|#1| |#1| (-1080) (-688) (-1 |#1| (-579 |#1|)))) (-15 -3750 (|#1| |#1| (-579 (-1080)) (-579 (-688)) (-579 (-1 |#1| (-579 |#1|))))) (-15 -3750 (|#1| |#1| (-579 (-1080)) (-579 (-688)) (-579 (-1 |#1| |#1|)))) (-15 -2810 ((-3 (-2 (|:| |val| |#1|) (|:| -2388 (-479))) #1#) |#1|)) (-15 -2809 ((-3 (-2 (|:| |var| (-546 |#1|)) (|:| -2388 (-479))) #1#) |#1| (-1080))) (-15 -2809 ((-3 (-2 (|:| |var| (-546 |#1|)) (|:| -2388 (-479))) #1#) |#1| (-84))) (-15 -2981 (|#1| |#1|)) (-15 -3928 (|#1| (-1029 |#2| (-546 |#1|)))) (-15 -1782 ((-3 (-2 (|:| -3936 (-479)) (|:| |var| (-546 |#1|))) #1#) |#1|)) (-15 -2807 ((-3 (-579 |#1|) #1#) |#1|)) (-15 -2809 ((-3 (-2 (|:| |var| (-546 |#1|)) (|:| -2388 (-479))) #1#) |#1|)) (-15 -2808 ((-3 (-579 |#1|) #1#) |#1|)) (-15 -3750 (|#1| |#1| (-579 (-84)) (-579 |#1|) (-1080))) (-15 -3750 (|#1| |#1| (-84) |#1| (-1080))) (-15 -3750 (|#1| |#1|)) (-15 -3750 (|#1| |#1| (-579 (-1080)))) (-15 -3750 (|#1| |#1| (-1080))) (-15 -1783 (|#1| (-1080) (-579 |#1|))) (-15 -1783 (|#1| (-1080) |#1| |#1| |#1| |#1|)) (-15 -1783 (|#1| (-1080) |#1| |#1| |#1|)) (-15 -1783 (|#1| (-1080) |#1| |#1|)) (-15 -1783 (|#1| (-1080) |#1|)) (-15 -3066 ((-579 (-1080)) |#1|)) (-15 -1784 (|#2| |#1|)) (-15 -1785 ((-83) |#1|)) (-15 -3928 (|#1| |#2|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3954 ((-794 (-324)) |#1|)) (-15 -3954 ((-794 (-479)) |#1|)) (-15 -3928 (|#1| (-1080))) (-15 -3141 ((-3 (-1080) #1#) |#1|)) (-15 -3140 ((-1080) |#1|)) (-15 -3750 (|#1| |#1| (-84) (-1 |#1| |#1|))) (-15 -3750 (|#1| |#1| (-84) (-1 |#1| (-579 |#1|)))) (-15 -3750 (|#1| |#1| (-579 (-84)) (-579 (-1 |#1| (-579 |#1|))))) (-15 -3750 (|#1| |#1| (-579 (-84)) (-579 (-1 |#1| |#1|)))) (-15 -3750 (|#1| |#1| (-1080) (-1 |#1| |#1|))) (-15 -3750 (|#1| |#1| (-1080) (-1 |#1| (-579 |#1|)))) (-15 -3750 (|#1| |#1| (-579 (-1080)) (-579 (-1 |#1| (-579 |#1|))))) (-15 -3750 (|#1| |#1| (-579 (-1080)) (-579 (-1 |#1| |#1|)))) (-15 -2241 ((-83) (-84))) (-15 -3577 ((-84) (-84))) (-15 -1589 ((-579 (-546 |#1|)) |#1|)) (-15 -1590 ((-3 (-546 |#1|) #1#) |#1|)) (-15 -1592 (|#1| |#1| (-579 (-546 |#1|)) (-579 |#1|))) (-15 -1592 (|#1| |#1| (-579 (-245 |#1|)))) (-15 -1592 (|#1| |#1| (-245 |#1|))) (-15 -3782 (|#1| (-84) (-579 |#1|))) (-15 -3782 (|#1| (-84) |#1| |#1| |#1| |#1|)) (-15 -3782 (|#1| (-84) |#1| |#1| |#1|)) (-15 -3782 (|#1| (-84) |#1| |#1|)) (-15 -3782 (|#1| (-84) |#1|)) (-15 -3750 (|#1| |#1| (-579 |#1|) (-579 |#1|))) (-15 -3750 (|#1| |#1| |#1| |#1|)) (-15 -3750 (|#1| |#1| (-245 |#1|))) (-15 -3750 (|#1| |#1| (-579 (-245 |#1|)))) (-15 -3750 (|#1| |#1| (-579 (-546 |#1|)) (-579 |#1|))) (-15 -3750 (|#1| |#1| (-546 |#1|) |#1|)) (-15 -3928 (|#1| (-546 |#1|))) (-15 -3141 ((-3 (-546 |#1|) #1#) |#1|)) (-15 -3140 ((-546 |#1|) |#1|)) (-15 -3928 ((-766) |#1|))) (-358 |#2|) (-1006)) (T -357)) +((-3577 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *4 (-1006)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *5 (-1006)) (-5 *2 (-83)) (-5 *1 (-357 *4 *5)) (-4 *4 (-358 *5)))) (-3110 (*1 *2) (-12 (-4 *4 (-1006)) (-5 *2 (-688)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 129 (|has| |#1| (-25)) ELT)) (-3066 (((-579 (-1080)) $) 220 T ELT)) (-3068 (((-344 (-1075 $)) $ (-546 $)) 188 (|has| |#1| (-490)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 160 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 161 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 163 (|has| |#1| (-490)) ELT)) (-1588 (((-579 (-546 $)) $) 42 T ELT)) (-1300 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1592 (($ $ (-245 $)) 54 T ELT) (($ $ (-579 (-245 $))) 53 T ELT) (($ $ (-579 (-546 $)) (-579 $)) 52 T ELT)) (-3757 (($ $) 180 (|has| |#1| (-490)) ELT)) (-3953 (((-342 $) $) 181 (|has| |#1| (-490)) ELT)) (-1596 (((-83) $ $) 171 (|has| |#1| (-490)) ELT)) (-3706 (($) 117 (OR (|has| |#1| (-1016)) (|has| |#1| (-25))) CONST)) (-3141 (((-3 (-546 $) #1="failed") $) 67 T ELT) (((-3 (-1080) #1#) $) 233 T ELT) (((-3 (-479) #1#) $) 227 (|has| |#1| (-944 (-479))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-344 (-851 |#1|)) #1#) $) 186 (|has| |#1| (-490)) ELT) (((-3 (-851 |#1|) #1#) $) 136 (|has| |#1| (-955)) ELT) (((-3 (-344 (-479)) #1#) $) 111 (OR (-12 (|has| |#1| (-944 (-479))) (|has| |#1| (-490))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-3140 (((-546 $) $) 68 T ELT) (((-1080) $) 234 T ELT) (((-479) $) 226 (|has| |#1| (-944 (-479))) ELT) ((|#1| $) 225 T ELT) (((-344 (-851 |#1|)) $) 187 (|has| |#1| (-490)) ELT) (((-851 |#1|) $) 137 (|has| |#1| (-955)) ELT) (((-344 (-479)) $) 112 (OR (-12 (|has| |#1| (-944 (-479))) (|has| |#1| (-490))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-2549 (($ $ $) 175 (|has| |#1| (-490)) ELT)) (-2266 (((-626 (-479)) (-626 $)) 153 (-2547 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 152 (-2547 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 151 (|has| |#1| (-955)) ELT) (((-626 |#1|) (-626 $)) 150 (|has| |#1| (-955)) ELT)) (-3449 (((-3 $ "failed") $) 119 (|has| |#1| (-1016)) ELT)) (-2548 (($ $ $) 174 (|has| |#1| (-490)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 169 (|has| |#1| (-490)) ELT)) (-3705 (((-83) $) 182 (|has| |#1| (-490)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 229 (|has| |#1| (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 228 (|has| |#1| (-790 (-324))) ELT)) (-2558 (($ $) 49 T ELT) (($ (-579 $)) 48 T ELT)) (-1587 (((-579 (-84)) $) 41 T ELT)) (-3577 (((-84) (-84)) 40 T ELT)) (-2397 (((-83) $) 118 (|has| |#1| (-1016)) ELT)) (-2658 (((-83) $) 20 (|has| $ (-944 (-479))) ELT)) (-2981 (($ $) 203 (|has| |#1| (-955)) ELT)) (-2983 (((-1029 |#1| (-546 $)) $) 204 (|has| |#1| (-955)) ELT)) (-1593 (((-3 (-579 $) #2="failed") (-579 $) $) 178 (|has| |#1| (-490)) ELT)) (-1585 (((-1075 $) (-546 $)) 23 (|has| $ (-955)) ELT)) (-3940 (($ (-1 $ $) (-546 $)) 34 T ELT)) (-1590 (((-3 (-546 $) "failed") $) 44 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 155 (-2547 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 154 (-2547 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 149 (|has| |#1| (-955)) ELT) (((-626 |#1|) (-1169 $)) 148 (|has| |#1| (-955)) ELT)) (-1879 (($ (-579 $)) 167 (|has| |#1| (-490)) ELT) (($ $ $) 166 (|has| |#1| (-490)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-1589 (((-579 (-546 $)) $) 43 T ELT)) (-2222 (($ (-84) $) 36 T ELT) (($ (-84) (-579 $)) 35 T ELT)) (-2808 (((-3 (-579 $) "failed") $) 209 (|has| |#1| (-1016)) ELT)) (-2810 (((-3 (-2 (|:| |val| $) (|:| -2388 (-479))) "failed") $) 200 (|has| |#1| (-955)) ELT)) (-2807 (((-3 (-579 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-1782 (((-3 (-2 (|:| -3936 (-479)) (|:| |var| (-546 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-2809 (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) "failed") $) 208 (|has| |#1| (-1016)) ELT) (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) "failed") $ (-84)) 202 (|has| |#1| (-955)) ELT) (((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) "failed") $ (-1080)) 201 (|has| |#1| (-955)) ELT)) (-2618 (((-83) $ (-84)) 38 T ELT) (((-83) $ (-1080)) 37 T ELT)) (-2469 (($ $) 121 (OR (|has| |#1| (-407)) (|has| |#1| (-490))) ELT)) (-2588 (((-688) $) 45 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1785 (((-83) $) 222 T ELT)) (-1784 ((|#1| $) 221 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 168 (|has| |#1| (-490)) ELT)) (-3128 (($ (-579 $)) 165 (|has| |#1| (-490)) ELT) (($ $ $) 164 (|has| |#1| (-490)) ELT)) (-1586 (((-83) $ $) 33 T ELT) (((-83) $ (-1080)) 32 T ELT)) (-3714 (((-342 $) $) 179 (|has| |#1| (-490)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-490)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 176 (|has| |#1| (-490)) ELT)) (-3448 (((-3 $ "failed") $ $) 159 (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 170 (|has| |#1| (-490)) ELT)) (-2659 (((-83) $) 21 (|has| $ (-944 (-479))) ELT)) (-3750 (($ $ (-546 $) $) 65 T ELT) (($ $ (-579 (-546 $)) (-579 $)) 64 T ELT) (($ $ (-579 (-245 $))) 63 T ELT) (($ $ (-245 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-579 $) (-579 $)) 60 T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ $))) 31 T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ (-579 $)))) 30 T ELT) (($ $ (-1080) (-1 $ (-579 $))) 29 T ELT) (($ $ (-1080) (-1 $ $)) 28 T ELT) (($ $ (-579 (-84)) (-579 (-1 $ $))) 27 T ELT) (($ $ (-579 (-84)) (-579 (-1 $ (-579 $)))) 26 T ELT) (($ $ (-84) (-1 $ (-579 $))) 25 T ELT) (($ $ (-84) (-1 $ $)) 24 T ELT) (($ $ (-1080)) 214 (|has| |#1| (-549 (-468))) ELT) (($ $ (-579 (-1080))) 213 (|has| |#1| (-549 (-468))) ELT) (($ $) 212 (|has| |#1| (-549 (-468))) ELT) (($ $ (-84) $ (-1080)) 211 (|has| |#1| (-549 (-468))) ELT) (($ $ (-579 (-84)) (-579 $) (-1080)) 210 (|has| |#1| (-549 (-468))) ELT) (($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ $))) 199 (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ (-579 $)))) 198 (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688) (-1 $ (-579 $))) 197 (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688) (-1 $ $)) 196 (|has| |#1| (-955)) ELT)) (-1595 (((-688) $) 172 (|has| |#1| (-490)) ELT)) (-3782 (($ (-84) $) 59 T ELT) (($ (-84) $ $) 58 T ELT) (($ (-84) $ $ $) 57 T ELT) (($ (-84) $ $ $ $) 56 T ELT) (($ (-84) (-579 $)) 55 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 173 (|has| |#1| (-490)) ELT)) (-1591 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3740 (($ $ (-1080)) 146 (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080))) 144 (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688)) 143 (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 142 (|has| |#1| (-955)) ELT)) (-2980 (($ $) 193 (|has| |#1| (-490)) ELT)) (-2982 (((-1029 |#1| (-546 $)) $) 194 (|has| |#1| (-490)) ELT)) (-3169 (($ $) 22 (|has| $ (-955)) ELT)) (-3954 (((-794 (-479)) $) 231 (|has| |#1| (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) 230 (|has| |#1| (-549 (-794 (-324)))) ELT) (($ (-342 $)) 195 (|has| |#1| (-490)) ELT) (((-468) $) 113 (|has| |#1| (-549 (-468))) ELT)) (-2994 (($ $ $) 124 (|has| |#1| (-407)) ELT)) (-2420 (($ $ $) 125 (|has| |#1| (-407)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-546 $)) 66 T ELT) (($ (-1080)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1029 |#1| (-546 $))) 205 (|has| |#1| (-955)) ELT) (($ (-344 |#1|)) 191 (|has| |#1| (-490)) ELT) (($ (-851 (-344 |#1|))) 190 (|has| |#1| (-490)) ELT) (($ (-344 (-851 (-344 |#1|)))) 189 (|has| |#1| (-490)) ELT) (($ (-344 (-851 |#1|))) 185 (|has| |#1| (-490)) ELT) (($ $) 158 (|has| |#1| (-490)) ELT) (($ (-851 |#1|)) 135 (|has| |#1| (-955)) ELT) (($ (-344 (-479))) 110 (OR (|has| |#1| (-490)) (-12 (|has| |#1| (-944 (-479))) (|has| |#1| (-490))) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ (-479)) 109 (OR (|has| |#1| (-955)) (|has| |#1| (-944 (-479)))) ELT)) (-2687 (((-628 $) $) 156 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 138 (|has| |#1| (-955)) CONST)) (-2575 (($ $) 51 T ELT) (($ (-579 $)) 50 T ELT)) (-2241 (((-83) (-84)) 39 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 162 (|has| |#1| (-490)) ELT)) (-1783 (($ (-1080) $) 219 T ELT) (($ (-1080) $ $) 218 T ELT) (($ (-1080) $ $ $) 217 T ELT) (($ (-1080) $ $ $ $) 216 T ELT) (($ (-1080) (-579 $)) 215 T ELT)) (-2645 (($) 128 (|has| |#1| (-25)) CONST)) (-2651 (($) 116 (|has| |#1| (-1016)) CONST)) (-2654 (($ $ (-1080)) 145 (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080))) 141 (|has| |#1| (-955)) ELT) (($ $ (-1080) (-688)) 140 (|has| |#1| (-955)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 139 (|has| |#1| (-955)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ (-1029 |#1| (-546 $)) (-1029 |#1| (-546 $))) 192 (|has| |#1| (-490)) ELT) (($ $ $) 122 (OR (|has| |#1| (-407)) (|has| |#1| (-490))) ELT)) (-3819 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-3821 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-479)) 123 (OR (|has| |#1| (-407)) (|has| |#1| (-490))) ELT) (($ $ (-688)) 120 (|has| |#1| (-1016)) ELT) (($ $ (-824)) 115 (|has| |#1| (-1016)) ELT)) (* (($ (-344 (-479)) $) 184 (|has| |#1| (-490)) ELT) (($ $ (-344 (-479))) 183 (|has| |#1| (-490)) ELT) (($ $ |#1|) 157 (|has| |#1| (-144)) ELT) (($ |#1| $) 147 (|has| |#1| (-955)) ELT) (($ (-479) $) 132 (|has| |#1| (-21)) ELT) (($ (-688) $) 130 (|has| |#1| (-25)) ELT) (($ (-824) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1016)) ELT))) +(((-358 |#1|) (-111) (-1006)) (T -358)) +((-1785 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-1006)) (-5 *2 (-83)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-1006)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-1006)) (-5 *2 (-579 (-1080))))) (-1783 (*1 *1 *2 *1) (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006)))) (-1783 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006)))) (-1783 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006)))) (-1783 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006)))) (-1783 (*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-579 *1)) (-4 *1 (-358 *4)) (-4 *4 (-1006)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006)) (-4 *3 (-549 (-468))))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-1080))) (-4 *1 (-358 *3)) (-4 *3 (-1006)) (-4 *3 (-549 (-468))))) (-3750 (*1 *1 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-1006)) (-4 *2 (-549 (-468))))) (-3750 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1080)) (-4 *1 (-358 *4)) (-4 *4 (-1006)) (-4 *4 (-549 (-468))))) (-3750 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-579 (-84))) (-5 *3 (-579 *1)) (-5 *4 (-1080)) (-4 *1 (-358 *5)) (-4 *5 (-1006)) (-4 *5 (-549 (-468))))) (-2808 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-1006)) (-5 *2 (-579 *1)) (-4 *1 (-358 *3)))) (-2809 (*1 *2 *1) (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-1006)) (-5 *2 (-2 (|:| |var| (-546 *1)) (|:| -2388 (-479)))) (-4 *1 (-358 *3)))) (-2807 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1006)) (-5 *2 (-579 *1)) (-4 *1 (-358 *3)))) (-1782 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1006)) (-5 *2 (-2 (|:| -3936 (-479)) (|:| |var| (-546 *1)))) (-4 *1 (-358 *3)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-1029 *3 (-546 *1))) (-4 *3 (-955)) (-4 *3 (-1006)) (-4 *1 (-358 *3)))) (-2983 (*1 *2 *1) (-12 (-4 *3 (-955)) (-4 *3 (-1006)) (-5 *2 (-1029 *3 (-546 *1))) (-4 *1 (-358 *3)))) (-2981 (*1 *1 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-1006)) (-4 *2 (-955)))) (-2809 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-84)) (-4 *4 (-955)) (-4 *4 (-1006)) (-5 *2 (-2 (|:| |var| (-546 *1)) (|:| -2388 (-479)))) (-4 *1 (-358 *4)))) (-2809 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1080)) (-4 *4 (-955)) (-4 *4 (-1006)) (-5 *2 (-2 (|:| |var| (-546 *1)) (|:| -2388 (-479)))) (-4 *1 (-358 *4)))) (-2810 (*1 *2 *1) (|partial| -12 (-4 *3 (-955)) (-4 *3 (-1006)) (-5 *2 (-2 (|:| |val| *1) (|:| -2388 (-479)))) (-4 *1 (-358 *3)))) (-3750 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-579 (-688))) (-5 *4 (-579 (-1 *1 *1))) (-4 *1 (-358 *5)) (-4 *5 (-1006)) (-4 *5 (-955)))) (-3750 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-579 (-688))) (-5 *4 (-579 (-1 *1 (-579 *1)))) (-4 *1 (-358 *5)) (-4 *5 (-1006)) (-4 *5 (-955)))) (-3750 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1080)) (-5 *3 (-688)) (-5 *4 (-1 *1 (-579 *1))) (-4 *1 (-358 *5)) (-4 *5 (-1006)) (-4 *5 (-955)))) (-3750 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1080)) (-5 *3 (-688)) (-5 *4 (-1 *1 *1)) (-4 *1 (-358 *5)) (-4 *5 (-1006)) (-4 *5 (-955)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-342 *1)) (-4 *1 (-358 *3)) (-4 *3 (-490)) (-4 *3 (-1006)))) (-2982 (*1 *2 *1) (-12 (-4 *3 (-490)) (-4 *3 (-1006)) (-5 *2 (-1029 *3 (-546 *1))) (-4 *1 (-358 *3)))) (-2980 (*1 *1 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-1006)) (-4 *2 (-490)))) (-3931 (*1 *1 *2 *2) (-12 (-5 *2 (-1029 *3 (-546 *1))) (-4 *3 (-490)) (-4 *3 (-1006)) (-4 *1 (-358 *3)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-344 *3)) (-4 *3 (-490)) (-4 *3 (-1006)) (-4 *1 (-358 *3)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-851 (-344 *3))) (-4 *3 (-490)) (-4 *3 (-1006)) (-4 *1 (-358 *3)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-344 (-851 (-344 *3)))) (-4 *3 (-490)) (-4 *3 (-1006)) (-4 *1 (-358 *3)))) (-3068 (*1 *2 *1 *3) (-12 (-5 *3 (-546 *1)) (-4 *1 (-358 *4)) (-4 *4 (-1006)) (-4 *4 (-490)) (-5 *2 (-344 (-1075 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-358 *3)) (-4 *3 (-1006)) (-4 *3 (-1016))))) +(-13 (-250) (-944 (-1080)) (-788 |t#1|) (-337 |t#1|) (-349 |t#1|) (-10 -8 (-15 -1785 ((-83) $)) (-15 -1784 (|t#1| $)) (-15 -3066 ((-579 (-1080)) $)) (-15 -1783 ($ (-1080) $)) (-15 -1783 ($ (-1080) $ $)) (-15 -1783 ($ (-1080) $ $ $)) (-15 -1783 ($ (-1080) $ $ $ $)) (-15 -1783 ($ (-1080) (-579 $))) (IF (|has| |t#1| (-549 (-468))) (PROGN (-6 (-549 (-468))) (-15 -3750 ($ $ (-1080))) (-15 -3750 ($ $ (-579 (-1080)))) (-15 -3750 ($ $)) (-15 -3750 ($ $ (-84) $ (-1080))) (-15 -3750 ($ $ (-579 (-84)) (-579 $) (-1080)))) |%noBranch|) (IF (|has| |t#1| (-1016)) (PROGN (-6 (-659)) (-15 ** ($ $ (-688))) (-15 -2808 ((-3 (-579 $) "failed") $)) (-15 -2809 ((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-407)) (-6 (-407)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2807 ((-3 (-579 $) "failed") $)) (-15 -1782 ((-3 (-2 (|:| -3936 (-479)) (|:| |var| (-546 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-955)) (PROGN (-6 (-955)) (-6 (-944 (-851 |t#1|))) (-6 (-803 (-1080))) (-6 (-323 |t#1|)) (-15 -3928 ($ (-1029 |t#1| (-546 $)))) (-15 -2983 ((-1029 |t#1| (-546 $)) $)) (-15 -2981 ($ $)) (-15 -2809 ((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) "failed") $ (-84))) (-15 -2809 ((-3 (-2 (|:| |var| (-546 $)) (|:| -2388 (-479))) "failed") $ (-1080))) (-15 -2810 ((-3 (-2 (|:| |val| $) (|:| -2388 (-479))) "failed") $)) (-15 -3750 ($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ $)))) (-15 -3750 ($ $ (-579 (-1080)) (-579 (-688)) (-579 (-1 $ (-579 $))))) (-15 -3750 ($ $ (-1080) (-688) (-1 $ (-579 $)))) (-15 -3750 ($ $ (-1080) (-688) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-490)) (PROGN (-6 (-308)) (-6 (-944 (-344 (-851 |t#1|)))) (-15 -3954 ($ (-342 $))) (-15 -2982 ((-1029 |t#1| (-546 $)) $)) (-15 -2980 ($ $)) (-15 -3931 ($ (-1029 |t#1| (-546 $)) (-1029 |t#1| (-546 $)))) (-15 -3928 ($ (-344 |t#1|))) (-15 -3928 ($ (-851 (-344 |t#1|)))) (-15 -3928 ($ (-344 (-851 (-344 |t#1|))))) (-15 -3068 ((-344 (-1075 $)) $ (-546 $))) (IF (|has| |t#1| (-944 (-479))) (-6 (-944 (-344 (-479)))) |%noBranch|)) |%noBranch|))) +(((-21) OR (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-344 (-479))) |has| |#1| (-490)) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-490)) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-490)) ((-80 |#1| |#1|) |has| |#1| (-144)) ((-80 $ $) |has| |#1| (-490)) ((-102) OR (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-490))) ((-551 (-344 (-851 |#1|))) |has| |#1| (-490)) ((-551 (-479)) OR (|has| |#1| (-955)) (|has| |#1| (-944 (-479))) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-551 (-546 $)) . T) ((-551 (-851 |#1|)) |has| |#1| (-955)) ((-551 (-1080)) . T) ((-551 |#1|) . T) ((-551 $) |has| |#1| (-490)) ((-548 (-766)) . T) ((-144) |has| |#1| (-490)) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-549 (-794 (-324))) |has| |#1| (-549 (-794 (-324)))) ((-549 (-794 (-479))) |has| |#1| (-549 (-794 (-479)))) ((-198) |has| |#1| (-490)) ((-242) |has| |#1| (-490)) ((-254) |has| |#1| (-490)) ((-256 $) . T) ((-250) . T) ((-308) |has| |#1| (-490)) ((-323 |#1|) |has| |#1| (-955)) ((-337 |#1|) . T) ((-349 |#1|) . T) ((-386) |has| |#1| (-490)) ((-407) |has| |#1| (-407)) ((-448 (-546 $) $) . T) ((-448 $ $) . T) ((-490) |has| |#1| (-490)) ((-584 (-344 (-479))) |has| |#1| (-490)) ((-584 (-479)) OR (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116)) (|has| |#1| (-21))) ((-584 |#1|) OR (|has| |#1| (-955)) (|has| |#1| (-144))) ((-584 $) OR (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-586 (-344 (-479))) |has| |#1| (-490)) ((-586 (-479)) -12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ((-586 |#1|) OR (|has| |#1| (-955)) (|has| |#1| (-144))) ((-586 $) OR (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-578 (-344 (-479))) |has| |#1| (-490)) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) |has| |#1| (-490)) ((-576 (-479)) -12 (|has| |#1| (-576 (-479))) (|has| |#1| (-955))) ((-576 |#1|) |has| |#1| (-955)) ((-650 (-344 (-479))) |has| |#1| (-490)) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) |has| |#1| (-490)) ((-659) OR (|has| |#1| (-1016)) (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-407)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-800 $ (-1080)) |has| |#1| (-955)) ((-803 (-1080)) |has| |#1| (-955)) ((-805 (-1080)) |has| |#1| (-955)) ((-790 (-324)) |has| |#1| (-790 (-324))) ((-790 (-479)) |has| |#1| (-790 (-479))) ((-788 |#1|) . T) ((-826) |has| |#1| (-490)) ((-944 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (-12 (|has| |#1| (-490)) (|has| |#1| (-944 (-479))))) ((-944 (-344 (-851 |#1|))) |has| |#1| (-490)) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 (-546 $)) . T) ((-944 (-851 |#1|)) |has| |#1| (-955)) ((-944 (-1080)) . T) ((-944 |#1|) . T) ((-957 (-344 (-479))) |has| |#1| (-490)) ((-957 |#1|) |has| |#1| (-144)) ((-957 $) |has| |#1| (-490)) ((-962 (-344 (-479))) |has| |#1| (-490)) ((-962 |#1|) |has| |#1| (-144)) ((-962 $) |has| |#1| (-490)) ((-955) OR (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-963) OR (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-1016) OR (|has| |#1| (-1016)) (|has| |#1| (-955)) (|has| |#1| (-490)) (|has| |#1| (-407)) (|has| |#1| (-144)) (|has| |#1| (-118)) (|has| |#1| (-116))) ((-1006) . T) ((-1119) . T) ((-1124) |has| |#1| (-490))) +((-3940 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#4| (-1 |#3| |#1|) |#2|))) (-955) (-358 |#1|) (-955) (-358 |#3|)) (T -359)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-4 *2 (-358 *6)) (-5 *1 (-359 *5 *4 *6 *2)) (-4 *4 (-358 *5))))) +((-1789 ((|#2| |#2|) 182 T ELT)) (-1786 (((-3 (|:| |%expansion| (-260 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063))))) |#2| (-83)) 60 T ELT))) +(((-360 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1786 ((-3 (|:| |%expansion| (-260 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063))))) |#2| (-83))) (-15 -1789 (|#2| |#2|))) (-13 (-386) (-944 (-479)) (-576 (-479))) (-13 (-27) (-1105) (-358 |#1|)) (-1080) |#2|) (T -360)) +((-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-360 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1105) (-358 *3))) (-14 *4 (-1080)) (-14 *5 *2))) (-1786 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (|:| |%expansion| (-260 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063)))))) (-5 *1 (-360 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) (-14 *6 (-1080)) (-14 *7 *3)))) +((-1789 ((|#2| |#2|) 105 T ELT)) (-1787 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063))))) |#2| (-83) (-1063)) 52 T ELT)) (-1788 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063))))) |#2| (-83) (-1063)) 169 T ELT))) +(((-361 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1787 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063))))) |#2| (-83) (-1063))) (-15 -1788 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063))))) |#2| (-83) (-1063))) (-15 -1789 (|#2| |#2|))) (-13 (-386) (-944 (-479)) (-576 (-479))) (-13 (-27) (-1105) (-358 |#1|) (-10 -8 (-15 -3928 ($ |#3|)))) (-749) (-13 (-1148 |#2| |#3|) (-308) (-1105) (-10 -8 (-15 -3740 ($ $)) (-15 -3794 ($ $)))) (-890 |#4|) (-1080)) (T -361)) +((-1789 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-4 *2 (-13 (-27) (-1105) (-358 *3) (-10 -8 (-15 -3928 ($ *4))))) (-4 *4 (-749)) (-4 *5 (-13 (-1148 *2 *4) (-308) (-1105) (-10 -8 (-15 -3740 ($ $)) (-15 -3794 ($ $))))) (-5 *1 (-361 *3 *2 *4 *5 *6 *7)) (-4 *6 (-890 *5)) (-14 *7 (-1080)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-83)) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-4 *3 (-13 (-27) (-1105) (-358 *6) (-10 -8 (-15 -3928 ($ *7))))) (-4 *7 (-749)) (-4 *8 (-13 (-1148 *3 *7) (-308) (-1105) (-10 -8 (-15 -3740 ($ $)) (-15 -3794 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063)))))) (-5 *1 (-361 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1063)) (-4 *9 (-890 *8)) (-14 *10 (-1080)))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-83)) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-4 *3 (-13 (-27) (-1105) (-358 *6) (-10 -8 (-15 -3928 ($ *7))))) (-4 *7 (-749)) (-4 *8 (-13 (-1148 *3 *7) (-308) (-1105) (-10 -8 (-15 -3740 ($ $)) (-15 -3794 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063)))))) (-5 *1 (-361 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1063)) (-4 *9 (-890 *8)) (-14 *10 (-1080))))) +((-1790 (($) 51 T ELT)) (-3218 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3220 (($ $ $) 46 T ELT)) (-3219 (((-83) $ $) 35 T ELT)) (-3120 (((-688)) 55 T ELT)) (-3223 (($ (-579 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2979 (($) 66 T ELT)) (-3225 (((-83) $ $) 15 T ELT)) (-2516 ((|#2| $) 77 T ELT)) (-2842 ((|#2| $) 75 T ELT)) (-1997 (((-824) $) 70 T ELT)) (-3222 (($ $ $) 42 T ELT)) (-2387 (($ (-824)) 60 T ELT)) (-3221 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) NIL T ELT) (((-688) |#2| $) 31 T ELT)) (-3512 (($ (-579 |#2|)) 27 T ELT)) (-1791 (($ $) 53 T ELT)) (-3928 (((-766) $) 40 T ELT)) (-1792 (((-688) $) 24 T ELT)) (-3224 (($ (-579 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3041 (((-83) $ $) 19 T ELT))) +(((-362 |#1| |#2|) (-10 -7 (-15 -3120 ((-688))) (-15 -2387 (|#1| (-824))) (-15 -1997 ((-824) |#1|)) (-15 -2979 (|#1|)) (-15 -2516 (|#2| |#1|)) (-15 -2842 (|#2| |#1|)) (-15 -1790 (|#1|)) (-15 -1791 (|#1| |#1|)) (-15 -1792 ((-688) |#1|)) (-15 -3041 ((-83) |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -3225 ((-83) |#1| |#1|)) (-15 -3224 (|#1|)) (-15 -3224 (|#1| (-579 |#2|))) (-15 -3223 (|#1|)) (-15 -3223 (|#1| (-579 |#2|))) (-15 -3222 (|#1| |#1| |#1|)) (-15 -3221 (|#1| |#1| |#1|)) (-15 -3221 (|#1| |#1| |#2|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -3219 ((-83) |#1| |#1|)) (-15 -3218 (|#1| |#1| |#1|)) (-15 -3218 (|#1| |#1| |#2|)) (-15 -3218 (|#1| |#2| |#1|)) (-15 -3512 (|#1| (-579 |#2|))) (-15 -1934 ((-688) |#2| |#1|)) (-15 -1934 ((-688) (-1 (-83) |#2|) |#1|))) (-363 |#2|) (-1006)) (T -362)) +((-3120 (*1 *2) (-12 (-4 *4 (-1006)) (-5 *2 (-688)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4))))) +((-2553 (((-83) $ $) 19 T ELT)) (-1790 (($) 71 (|has| |#1| (-314)) ELT)) (-3218 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3220 (($ $ $) 82 T ELT)) (-3219 (((-83) $ $) 83 T ELT)) (-3120 (((-688)) 65 (|has| |#1| (-314)) ELT)) (-3223 (($ (-579 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1558 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-1341 (($ $) 62 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ |#1| $) 51 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3388 (($ |#1| $) 61 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3977)) ELT)) (-2979 (($) 68 (|has| |#1| (-314)) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3225 (((-83) $ $) 74 T ELT)) (-2516 ((|#1| $) 69 (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2842 ((|#1| $) 70 (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-1997 (((-824) $) 67 (|has| |#1| (-314)) ELT)) (-3226 (((-1063) $) 22 T ELT)) (-3222 (($ $ $) 79 T ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT)) (-2387 (($ (-824)) 66 (|has| |#1| (-314)) ELT)) (-3227 (((-1024) $) 21 T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3221 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1454 (($) 53 T ELT) (($ (-579 |#1|)) 52 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 63 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 54 T ELT)) (-1791 (($ $) 72 (|has| |#1| (-314)) ELT)) (-3928 (((-766) $) 17 T ELT)) (-1792 (((-688) $) 73 T ELT)) (-3224 (($ (-579 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1254 (((-83) $ $) 20 T ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 T ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-363 |#1|) (-111) (-1006)) (T -363)) +((-1792 (*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1006)) (-5 *2 (-688)))) (-1791 (*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1006)) (-4 *2 (-314)))) (-1790 (*1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-314)) (-4 *2 (-1006)))) (-2842 (*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1006)) (-4 *2 (-750)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1006)) (-4 *2 (-750))))) +(-13 (-181 |t#1|) (-1004 |t#1|) (-10 -8 (-6 -3977) (-15 -1792 ((-688) $)) (IF (|has| |t#1| (-314)) (PROGN (-6 (-314)) (-15 -1791 ($ $)) (-15 -1790 ($))) |%noBranch|) (IF (|has| |t#1| (-750)) (PROGN (-15 -2842 (|t#1| $)) (-15 -2516 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-548 (-766)) . T) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-181 |#1|) . T) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-314) |has| |#1| (-314)) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1004 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-3823 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3824 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3940 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-364 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3824 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3823 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1006) (-363 |#1|) (-1006) (-363 |#3|)) (T -364)) +((-3823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1006)) (-4 *5 (-1006)) (-4 *2 (-363 *5)) (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-363 *6)))) (-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1006)) (-4 *2 (-1006)) (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-363 *5)) (-4 *6 (-363 *2)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-363 *6)) (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-363 *5))))) +((-1793 (((-514 |#2|) |#2| (-1080)) 36 T ELT)) (-2087 (((-514 |#2|) |#2| (-1080)) 21 T ELT)) (-2136 ((|#2| |#2| (-1080)) 26 T ELT))) +(((-365 |#1| |#2|) (-10 -7 (-15 -2087 ((-514 |#2|) |#2| (-1080))) (-15 -1793 ((-514 |#2|) |#2| (-1080))) (-15 -2136 (|#2| |#2| (-1080)))) (-13 (-254) (-118) (-944 (-479)) (-576 (-479))) (-13 (-1105) (-29 |#1|))) (T -365)) +((-2136 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *1 (-365 *4 *2)) (-4 *2 (-13 (-1105) (-29 *4))))) (-1793 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-514 *3)) (-5 *1 (-365 *5 *3)) (-4 *3 (-13 (-1105) (-29 *5))))) (-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-514 *3)) (-5 *1 (-365 *5 *3)) (-4 *3 (-13 (-1105) (-29 *5)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1795 (($ |#2| |#1|) 37 T ELT)) (-1794 (($ |#2| |#1|) 35 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-277 |#2|)) 25 T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 10 T CONST)) (-2651 (($) 16 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 36 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-366 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3964)) (IF (|has| |#1| (-6 -3964)) (-6 -3964) |%noBranch|) |%noBranch|) (-15 -3928 ($ |#1|)) (-15 -3928 ($ (-277 |#2|))) (-15 -1795 ($ |#2| |#1|)) (-15 -1794 ($ |#2| |#1|)))) (-13 (-144) (-38 (-344 (-479)))) (-13 (-750) (-21))) (T -366)) +((-3928 (*1 *1 *2) (-12 (-5 *1 (-366 *2 *3)) (-4 *2 (-13 (-144) (-38 (-344 (-479))))) (-4 *3 (-13 (-750) (-21))))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-277 *4)) (-4 *4 (-13 (-750) (-21))) (-5 *1 (-366 *3 *4)) (-4 *3 (-13 (-144) (-38 (-344 (-479))))))) (-1795 (*1 *1 *2 *3) (-12 (-5 *1 (-366 *3 *2)) (-4 *3 (-13 (-144) (-38 (-344 (-479))))) (-4 *2 (-13 (-750) (-21))))) (-1794 (*1 *1 *2 *3) (-12 (-5 *1 (-366 *3 *2)) (-4 *3 (-13 (-144) (-38 (-344 (-479))))) (-4 *2 (-13 (-750) (-21)))))) +((-3794 (((-3 |#2| (-579 |#2|)) |#2| (-1080)) 115 T ELT))) +(((-367 |#1| |#2|) (-10 -7 (-15 -3794 ((-3 |#2| (-579 |#2|)) |#2| (-1080)))) (-13 (-254) (-118) (-944 (-479)) (-576 (-479))) (-13 (-1105) (-865) (-29 |#1|))) (T -367)) +((-3794 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 *3 (-579 *3))) (-5 *1 (-367 *5 *3)) (-4 *3 (-13 (-1105) (-865) (-29 *5)))))) +((-3368 ((|#2| |#2| |#2|) 31 T ELT)) (-3577 (((-84) (-84)) 43 T ELT)) (-1797 ((|#2| |#2|) 63 T ELT)) (-1796 ((|#2| |#2|) 66 T ELT)) (-3367 ((|#2| |#2|) 30 T ELT)) (-3371 ((|#2| |#2| |#2|) 33 T ELT)) (-3373 ((|#2| |#2| |#2|) 35 T ELT)) (-3370 ((|#2| |#2| |#2|) 32 T ELT)) (-3372 ((|#2| |#2| |#2|) 34 T ELT)) (-2241 (((-83) (-84)) 41 T ELT)) (-3375 ((|#2| |#2|) 37 T ELT)) (-3374 ((|#2| |#2|) 36 T ELT)) (-3365 ((|#2| |#2|) 25 T ELT)) (-3369 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3366 ((|#2| |#2| |#2|) 29 T ELT))) +(((-368 |#1| |#2|) (-10 -7 (-15 -2241 ((-83) (-84))) (-15 -3577 ((-84) (-84))) (-15 -3365 (|#2| |#2|)) (-15 -3369 (|#2| |#2|)) (-15 -3369 (|#2| |#2| |#2|)) (-15 -3366 (|#2| |#2| |#2|)) (-15 -3367 (|#2| |#2|)) (-15 -3368 (|#2| |#2| |#2|)) (-15 -3370 (|#2| |#2| |#2|)) (-15 -3371 (|#2| |#2| |#2|)) (-15 -3372 (|#2| |#2| |#2|)) (-15 -3373 (|#2| |#2| |#2|)) (-15 -3374 (|#2| |#2|)) (-15 -3375 (|#2| |#2|)) (-15 -1796 (|#2| |#2|)) (-15 -1797 (|#2| |#2|))) (-490) (-358 |#1|)) (T -368)) +((-1797 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-1796 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3375 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3374 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3373 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3372 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3371 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3370 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3368 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3367 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3366 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3369 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3369 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3365 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-368 *3 *4)) (-4 *4 (-358 *3)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-368 *4 *5)) (-4 *5 (-358 *4))))) +((-2818 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1075 |#2|)) (|:| |pol2| (-1075 |#2|)) (|:| |prim| (-1075 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-579 (-1075 |#2|))) (|:| |prim| (-1075 |#2|))) (-579 |#2|)) 65 T ELT))) +(((-369 |#1| |#2|) (-10 -7 (-15 -2818 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-579 (-1075 |#2|))) (|:| |prim| (-1075 |#2|))) (-579 |#2|))) (IF (|has| |#2| (-27)) (-15 -2818 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1075 |#2|)) (|:| |pol2| (-1075 |#2|)) (|:| |prim| (-1075 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-490) (-118)) (-358 |#1|)) (T -369)) +((-2818 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-490) (-118))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1075 *3)) (|:| |pol2| (-1075 *3)) (|:| |prim| (-1075 *3)))) (-5 *1 (-369 *4 *3)) (-4 *3 (-27)) (-4 *3 (-358 *4)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-579 *5)) (-4 *5 (-358 *4)) (-4 *4 (-13 (-490) (-118))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-579 (-1075 *5))) (|:| |prim| (-1075 *5)))) (-5 *1 (-369 *4 *5))))) +((-1799 (((-1175)) 18 T ELT)) (-1798 (((-1075 (-344 (-479))) |#2| (-546 |#2|)) 40 T ELT) (((-344 (-479)) |#2|) 27 T ELT))) +(((-370 |#1| |#2|) (-10 -7 (-15 -1798 ((-344 (-479)) |#2|)) (-15 -1798 ((-1075 (-344 (-479))) |#2| (-546 |#2|))) (-15 -1799 ((-1175)))) (-13 (-490) (-944 (-479))) (-358 |#1|)) (T -370)) +((-1799 (*1 *2) (-12 (-4 *3 (-13 (-490) (-944 (-479)))) (-5 *2 (-1175)) (-5 *1 (-370 *3 *4)) (-4 *4 (-358 *3)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *4 (-546 *3)) (-4 *3 (-358 *5)) (-4 *5 (-13 (-490) (-944 (-479)))) (-5 *2 (-1075 (-344 (-479)))) (-5 *1 (-370 *5 *3)))) (-1798 (*1 *2 *3) (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-344 (-479))) (-5 *1 (-370 *4 *3)) (-4 *3 (-358 *4))))) +((-3627 (((-83) $) 33 T ELT)) (-1800 (((-83) $) 35 T ELT)) (-3243 (((-83) $) 36 T ELT)) (-1802 (((-83) $) 39 T ELT)) (-1804 (((-83) $) 34 T ELT)) (-1803 (((-83) $) 38 T ELT)) (-3928 (((-766) $) 20 T ELT) (($ (-1063)) 32 T ELT) (($ (-1080)) 30 T ELT) (((-1080) $) 24 T ELT) (((-1008) $) 23 T ELT)) (-1801 (((-83) $) 37 T ELT)) (-3041 (((-83) $ $) 17 T ELT))) +(((-371) (-13 (-548 (-766)) (-10 -8 (-15 -3928 ($ (-1063))) (-15 -3928 ($ (-1080))) (-15 -3928 ((-1080) $)) (-15 -3928 ((-1008) $)) (-15 -3627 ((-83) $)) (-15 -1804 ((-83) $)) (-15 -3243 ((-83) $)) (-15 -1803 ((-83) $)) (-15 -1802 ((-83) $)) (-15 -1801 ((-83) $)) (-15 -1800 ((-83) $)) (-15 -3041 ((-83) $ $))))) (T -371)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-371)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-371)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-371)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-371)))) (-3627 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) (-1803 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) (-3041 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371))))) +((-1806 (((-3 (-342 (-1075 (-344 (-479)))) #1="failed") |#3|) 71 T ELT)) (-1805 (((-342 |#3|) |#3|) 34 T ELT)) (-1808 (((-3 (-342 (-1075 (-48))) #1#) |#3|) 29 (|has| |#2| (-944 (-48))) ELT)) (-1807 (((-3 (|:| |overq| (-1075 (-344 (-479)))) (|:| |overan| (-1075 (-48))) (|:| -2624 (-83))) |#3|) 37 T ELT))) +(((-372 |#1| |#2| |#3|) (-10 -7 (-15 -1805 ((-342 |#3|) |#3|)) (-15 -1806 ((-3 (-342 (-1075 (-344 (-479)))) #1="failed") |#3|)) (-15 -1807 ((-3 (|:| |overq| (-1075 (-344 (-479)))) (|:| |overan| (-1075 (-48))) (|:| -2624 (-83))) |#3|)) (IF (|has| |#2| (-944 (-48))) (-15 -1808 ((-3 (-342 (-1075 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-490) (-944 (-479))) (-358 |#1|) (-1145 |#2|)) (T -372)) +((-1808 (*1 *2 *3) (|partial| -12 (-4 *5 (-944 (-48))) (-4 *4 (-13 (-490) (-944 (-479)))) (-4 *5 (-358 *4)) (-5 *2 (-342 (-1075 (-48)))) (-5 *1 (-372 *4 *5 *3)) (-4 *3 (-1145 *5)))) (-1807 (*1 *2 *3) (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-4 *5 (-358 *4)) (-5 *2 (-3 (|:| |overq| (-1075 (-344 (-479)))) (|:| |overan| (-1075 (-48))) (|:| -2624 (-83)))) (-5 *1 (-372 *4 *5 *3)) (-4 *3 (-1145 *5)))) (-1806 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-490) (-944 (-479)))) (-4 *5 (-358 *4)) (-5 *2 (-342 (-1075 (-344 (-479))))) (-5 *1 (-372 *4 *5 *3)) (-4 *3 (-1145 *5)))) (-1805 (*1 *2 *3) (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-4 *5 (-358 *4)) (-5 *2 (-342 *3)) (-5 *1 (-372 *4 *5 *3)) (-4 *3 (-1145 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1818 (((-3 (|:| |fst| (-371)) (|:| -3892 #1="void")) $) 11 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1815 (($) 35 T ELT)) (-1812 (($) 41 T ELT)) (-1813 (($) 37 T ELT)) (-1810 (($) 39 T ELT)) (-1814 (($) 36 T ELT)) (-1811 (($) 38 T ELT)) (-1809 (($) 40 T ELT)) (-1816 (((-83) $) 8 T ELT)) (-1817 (((-579 (-851 (-479))) $) 19 T ELT)) (-3512 (($ (-3 (|:| |fst| (-371)) (|:| -3892 #1#)) (-579 (-1080)) (-83)) 29 T ELT) (($ (-3 (|:| |fst| (-371)) (|:| -3892 #1#)) (-579 (-851 (-479))) (-83)) 30 T ELT)) (-3928 (((-766) $) 24 T ELT) (($ (-371)) 32 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-373) (-13 (-1006) (-10 -8 (-15 -3928 ($ (-371))) (-15 -1818 ((-3 (|:| |fst| (-371)) (|:| -3892 #1="void")) $)) (-15 -1817 ((-579 (-851 (-479))) $)) (-15 -1816 ((-83) $)) (-15 -3512 ($ (-3 (|:| |fst| (-371)) (|:| -3892 #1#)) (-579 (-1080)) (-83))) (-15 -3512 ($ (-3 (|:| |fst| (-371)) (|:| -3892 #1#)) (-579 (-851 (-479))) (-83))) (-15 -1815 ($)) (-15 -1814 ($)) (-15 -1813 ($)) (-15 -1812 ($)) (-15 -1811 ($)) (-15 -1810 ($)) (-15 -1809 ($))))) (T -373)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-373)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-371)) (|:| -3892 #1="void"))) (-5 *1 (-373)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-579 (-851 (-479)))) (-5 *1 (-373)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-373)))) (-3512 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) (-5 *3 (-579 (-1080))) (-5 *4 (-83)) (-5 *1 (-373)))) (-3512 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) (-5 *3 (-579 (-851 (-479)))) (-5 *4 (-83)) (-5 *1 (-373)))) (-1815 (*1 *1) (-5 *1 (-373))) (-1814 (*1 *1) (-5 *1 (-373))) (-1813 (*1 *1) (-5 *1 (-373))) (-1812 (*1 *1) (-5 *1 (-373))) (-1811 (*1 *1) (-5 *1 (-373))) (-1810 (*1 *1) (-5 *1 (-373))) (-1809 (*1 *1) (-5 *1 (-373)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3524 (((-1080) $) 8 T ELT)) (-3226 (((-1063) $) 17 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 11 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 14 T ELT))) +(((-374 |#1|) (-13 (-1006) (-10 -8 (-15 -3524 ((-1080) $)))) (-1080)) (T -374)) +((-3524 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-374 *3)) (-14 *3 *2)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3302 (((-1019) $) 7 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 9 T ELT))) +(((-375) (-13 (-1006) (-10 -8 (-15 -3302 ((-1019) $))))) (T -375)) +((-3302 (*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-375))))) +((-1824 (((-83)) 18 T ELT)) (-1825 (((-83) (-83)) 19 T ELT)) (-1826 (((-83)) 14 T ELT)) (-1827 (((-83) (-83)) 15 T ELT)) (-1829 (((-83)) 16 T ELT)) (-1830 (((-83) (-83)) 17 T ELT)) (-1821 (((-824) (-824)) 22 T ELT) (((-824)) 21 T ELT)) (-1822 (((-688) (-579 (-2 (|:| -3714 |#1|) (|:| -3930 (-479))))) 52 T ELT)) (-1820 (((-824) (-824)) 24 T ELT) (((-824)) 23 T ELT)) (-1823 (((-2 (|:| -2563 (-479)) (|:| -1767 (-579 |#1|))) |#1|) 94 T ELT)) (-1819 (((-342 |#1|) (-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| |#1|) (|:| -2382 (-479))))))) 176 T ELT)) (-3716 (((-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| |#1|) (|:| -2382 (-479)))))) |#1| (-83)) 209 T ELT)) (-3715 (((-342 |#1|) |#1| (-688) (-688)) 224 T ELT) (((-342 |#1|) |#1| (-579 (-688)) (-688)) 221 T ELT) (((-342 |#1|) |#1| (-579 (-688))) 223 T ELT) (((-342 |#1|) |#1| (-688)) 222 T ELT) (((-342 |#1|) |#1|) 220 T ELT)) (-1841 (((-3 |#1| #1="failed") (-824) |#1| (-579 (-688)) (-688) (-83)) 226 T ELT) (((-3 |#1| #1#) (-824) |#1| (-579 (-688)) (-688)) 227 T ELT) (((-3 |#1| #1#) (-824) |#1| (-579 (-688))) 229 T ELT) (((-3 |#1| #1#) (-824) |#1| (-688)) 228 T ELT) (((-3 |#1| #1#) (-824) |#1|) 230 T ELT)) (-3714 (((-342 |#1|) |#1| (-688) (-688)) 219 T ELT) (((-342 |#1|) |#1| (-579 (-688)) (-688)) 215 T ELT) (((-342 |#1|) |#1| (-579 (-688))) 217 T ELT) (((-342 |#1|) |#1| (-688)) 216 T ELT) (((-342 |#1|) |#1|) 214 T ELT)) (-1828 (((-83) |#1|) 43 T ELT)) (-1840 (((-669 (-688)) (-579 (-2 (|:| -3714 |#1|) (|:| -3930 (-479))))) 99 T ELT)) (-1831 (((-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| |#1|) (|:| -2382 (-479)))))) |#1| (-83) (-1002 (-688)) (-688)) 213 T ELT))) +(((-376 |#1|) (-10 -7 (-15 -1819 ((-342 |#1|) (-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| |#1|) (|:| -2382 (-479)))))))) (-15 -1840 ((-669 (-688)) (-579 (-2 (|:| -3714 |#1|) (|:| -3930 (-479)))))) (-15 -1820 ((-824))) (-15 -1820 ((-824) (-824))) (-15 -1821 ((-824))) (-15 -1821 ((-824) (-824))) (-15 -1822 ((-688) (-579 (-2 (|:| -3714 |#1|) (|:| -3930 (-479)))))) (-15 -1823 ((-2 (|:| -2563 (-479)) (|:| -1767 (-579 |#1|))) |#1|)) (-15 -1824 ((-83))) (-15 -1825 ((-83) (-83))) (-15 -1826 ((-83))) (-15 -1827 ((-83) (-83))) (-15 -1828 ((-83) |#1|)) (-15 -1829 ((-83))) (-15 -1830 ((-83) (-83))) (-15 -3714 ((-342 |#1|) |#1|)) (-15 -3714 ((-342 |#1|) |#1| (-688))) (-15 -3714 ((-342 |#1|) |#1| (-579 (-688)))) (-15 -3714 ((-342 |#1|) |#1| (-579 (-688)) (-688))) (-15 -3714 ((-342 |#1|) |#1| (-688) (-688))) (-15 -3715 ((-342 |#1|) |#1|)) (-15 -3715 ((-342 |#1|) |#1| (-688))) (-15 -3715 ((-342 |#1|) |#1| (-579 (-688)))) (-15 -3715 ((-342 |#1|) |#1| (-579 (-688)) (-688))) (-15 -3715 ((-342 |#1|) |#1| (-688) (-688))) (-15 -1841 ((-3 |#1| #1="failed") (-824) |#1|)) (-15 -1841 ((-3 |#1| #1#) (-824) |#1| (-688))) (-15 -1841 ((-3 |#1| #1#) (-824) |#1| (-579 (-688)))) (-15 -1841 ((-3 |#1| #1#) (-824) |#1| (-579 (-688)) (-688))) (-15 -1841 ((-3 |#1| #1#) (-824) |#1| (-579 (-688)) (-688) (-83))) (-15 -3716 ((-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| |#1|) (|:| -2382 (-479)))))) |#1| (-83))) (-15 -1831 ((-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| |#1|) (|:| -2382 (-479)))))) |#1| (-83) (-1002 (-688)) (-688)))) (-1145 (-479))) (T -376)) +((-1831 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-83)) (-5 *5 (-1002 (-688))) (-5 *6 (-688)) (-5 *2 (-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| *3) (|:| -2382 (-479))))))) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 (-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| *3) (|:| -2382 (-479))))))) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1841 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-824)) (-5 *4 (-579 (-688))) (-5 *5 (-688)) (-5 *6 (-83)) (-5 *1 (-376 *2)) (-4 *2 (-1145 (-479))))) (-1841 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-824)) (-5 *4 (-579 (-688))) (-5 *5 (-688)) (-5 *1 (-376 *2)) (-4 *2 (-1145 (-479))))) (-1841 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-824)) (-5 *4 (-579 (-688))) (-5 *1 (-376 *2)) (-4 *2 (-1145 (-479))))) (-1841 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-824)) (-5 *4 (-688)) (-5 *1 (-376 *2)) (-4 *2 (-1145 (-479))))) (-1841 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-824)) (-5 *1 (-376 *2)) (-4 *2 (-1145 (-479))))) (-3715 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3715 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-579 (-688))) (-5 *5 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-688))) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3714 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3714 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-579 (-688))) (-5 *5 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-688))) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1829 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1828 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1826 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1824 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1823 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2563 (-479)) (|:| -1767 (-579 *3)))) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1822 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| -3714 *4) (|:| -3930 (-479))))) (-4 *4 (-1145 (-479))) (-5 *2 (-688)) (-5 *1 (-376 *4)))) (-1821 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1821 (*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1820 (*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| -3714 *4) (|:| -3930 (-479))))) (-4 *4 (-1145 (-479))) (-5 *2 (-669 (-688))) (-5 *1 (-376 *4)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| *4) (|:| -2382 (-479))))))) (-4 *4 (-1145 (-479))) (-5 *2 (-342 *4)) (-5 *1 (-376 *4))))) +((-1835 (((-479) |#2|) 52 T ELT) (((-479) |#2| (-688)) 51 T ELT)) (-1834 (((-479) |#2|) 64 T ELT)) (-1836 ((|#3| |#2|) 26 T ELT)) (-3116 ((|#3| |#2| (-824)) 15 T ELT)) (-3815 ((|#3| |#2|) 16 T ELT)) (-1837 ((|#3| |#2|) 9 T ELT)) (-2588 ((|#3| |#2|) 10 T ELT)) (-1833 ((|#3| |#2| (-824)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1832 (((-479) |#2|) 66 T ELT))) +(((-377 |#1| |#2| |#3|) (-10 -7 (-15 -1832 ((-479) |#2|)) (-15 -1833 (|#3| |#2|)) (-15 -1833 (|#3| |#2| (-824))) (-15 -1834 ((-479) |#2|)) (-15 -1835 ((-479) |#2| (-688))) (-15 -1835 ((-479) |#2|)) (-15 -3116 (|#3| |#2| (-824))) (-15 -1836 (|#3| |#2|)) (-15 -1837 (|#3| |#2|)) (-15 -2588 (|#3| |#2|)) (-15 -3815 (|#3| |#2|))) (-955) (-1145 |#1|) (-13 (-341) (-944 |#1|) (-308) (-1105) (-236))) (T -377)) +((-3815 (*1 *2 *3) (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-2588 (*1 *2 *3) (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-1837 (*1 *2 *3) (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-1836 (*1 *2 *3) (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *4 (-824)) (-4 *5 (-955)) (-4 *2 (-13 (-341) (-944 *5) (-308) (-1105) (-236))) (-5 *1 (-377 *5 *3 *2)) (-4 *3 (-1145 *5)))) (-1835 (*1 *2 *3) (-12 (-4 *4 (-955)) (-5 *2 (-479)) (-5 *1 (-377 *4 *3 *5)) (-4 *3 (-1145 *4)) (-4 *5 (-13 (-341) (-944 *4) (-308) (-1105) (-236))))) (-1835 (*1 *2 *3 *4) (-12 (-5 *4 (-688)) (-4 *5 (-955)) (-5 *2 (-479)) (-5 *1 (-377 *5 *3 *6)) (-4 *3 (-1145 *5)) (-4 *6 (-13 (-341) (-944 *5) (-308) (-1105) (-236))))) (-1834 (*1 *2 *3) (-12 (-4 *4 (-955)) (-5 *2 (-479)) (-5 *1 (-377 *4 *3 *5)) (-4 *3 (-1145 *4)) (-4 *5 (-13 (-341) (-944 *4) (-308) (-1105) (-236))))) (-1833 (*1 *2 *3 *4) (-12 (-5 *4 (-824)) (-4 *5 (-955)) (-4 *2 (-13 (-341) (-944 *5) (-308) (-1105) (-236))) (-5 *1 (-377 *5 *3 *2)) (-4 *3 (-1145 *5)))) (-1833 (*1 *2 *3) (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4)))) (-1832 (*1 *2 *3) (-12 (-4 *4 (-955)) (-5 *2 (-479)) (-5 *1 (-377 *4 *3 *5)) (-4 *3 (-1145 *4)) (-4 *5 (-13 (-341) (-944 *4) (-308) (-1105) (-236)))))) +((-3336 ((|#2| (-1169 |#1|)) 42 T ELT)) (-1839 ((|#2| |#2| |#1|) 58 T ELT)) (-1838 ((|#2| |#2| |#1|) 49 T ELT)) (-2285 ((|#2| |#2|) 44 T ELT)) (-3157 (((-83) |#2|) 32 T ELT)) (-1842 (((-579 |#2|) (-824) (-342 |#2|)) 21 T ELT)) (-1841 ((|#2| (-824) (-342 |#2|)) 25 T ELT)) (-1840 (((-669 (-688)) (-342 |#2|)) 29 T ELT))) +(((-378 |#1| |#2|) (-10 -7 (-15 -3157 ((-83) |#2|)) (-15 -3336 (|#2| (-1169 |#1|))) (-15 -2285 (|#2| |#2|)) (-15 -1838 (|#2| |#2| |#1|)) (-15 -1839 (|#2| |#2| |#1|)) (-15 -1840 ((-669 (-688)) (-342 |#2|))) (-15 -1841 (|#2| (-824) (-342 |#2|))) (-15 -1842 ((-579 |#2|) (-824) (-342 |#2|)))) (-955) (-1145 |#1|)) (T -378)) +((-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-342 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-955)) (-5 *2 (-579 *6)) (-5 *1 (-378 *5 *6)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-342 *2)) (-4 *2 (-1145 *5)) (-5 *1 (-378 *5 *2)) (-4 *5 (-955)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-342 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-955)) (-5 *2 (-669 (-688))) (-5 *1 (-378 *4 *5)))) (-1839 (*1 *2 *2 *3) (-12 (-4 *3 (-955)) (-5 *1 (-378 *3 *2)) (-4 *2 (-1145 *3)))) (-1838 (*1 *2 *2 *3) (-12 (-4 *3 (-955)) (-5 *1 (-378 *3 *2)) (-4 *2 (-1145 *3)))) (-2285 (*1 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-378 *3 *2)) (-4 *2 (-1145 *3)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-955)) (-4 *2 (-1145 *4)) (-5 *1 (-378 *4 *2)))) (-3157 (*1 *2 *3) (-12 (-4 *4 (-955)) (-5 *2 (-83)) (-5 *1 (-378 *4 *3)) (-4 *3 (-1145 *4))))) +((-1845 (((-688)) 59 T ELT)) (-1849 (((-688)) 29 (|has| |#1| (-341)) ELT) (((-688) (-688)) 28 (|has| |#1| (-341)) ELT)) (-1848 (((-479) |#1|) 25 (|has| |#1| (-341)) ELT)) (-1847 (((-479) |#1|) 27 (|has| |#1| (-341)) ELT)) (-1844 (((-688)) 58 T ELT) (((-688) (-688)) 57 T ELT)) (-1843 ((|#1| (-688) (-479)) 37 T ELT)) (-1846 (((-1175)) 61 T ELT))) +(((-379 |#1|) (-10 -7 (-15 -1843 (|#1| (-688) (-479))) (-15 -1844 ((-688) (-688))) (-15 -1844 ((-688))) (-15 -1845 ((-688))) (-15 -1846 ((-1175))) (IF (|has| |#1| (-341)) (PROGN (-15 -1847 ((-479) |#1|)) (-15 -1848 ((-479) |#1|)) (-15 -1849 ((-688) (-688))) (-15 -1849 ((-688)))) |%noBranch|)) (-955)) (T -379)) +((-1849 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-341)) (-4 *3 (-955)))) (-1849 (*1 *2 *2) (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-341)) (-4 *3 (-955)))) (-1848 (*1 *2 *3) (-12 (-5 *2 (-479)) (-5 *1 (-379 *3)) (-4 *3 (-341)) (-4 *3 (-955)))) (-1847 (*1 *2 *3) (-12 (-5 *2 (-479)) (-5 *1 (-379 *3)) (-4 *3 (-341)) (-4 *3 (-955)))) (-1846 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-379 *3)) (-4 *3 (-955)))) (-1845 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-955)))) (-1844 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-955)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-955)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-688)) (-5 *4 (-479)) (-5 *1 (-379 *2)) (-4 *2 (-955))))) +((-1850 (((-579 (-479)) (-479)) 76 T ELT)) (-3705 (((-83) (-140 (-479))) 84 T ELT)) (-3714 (((-342 (-140 (-479))) (-140 (-479))) 75 T ELT))) +(((-380) (-10 -7 (-15 -3714 ((-342 (-140 (-479))) (-140 (-479)))) (-15 -1850 ((-579 (-479)) (-479))) (-15 -3705 ((-83) (-140 (-479)))))) (T -380)) +((-3705 (*1 *2 *3) (-12 (-5 *3 (-140 (-479))) (-5 *2 (-83)) (-5 *1 (-380)))) (-1850 (*1 *2 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-380)) (-5 *3 (-479)))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-342 (-140 (-479)))) (-5 *1 (-380)) (-5 *3 (-140 (-479)))))) +((-2931 ((|#4| |#4| (-579 |#4|)) 20 (|has| |#1| (-308)) ELT)) (-2238 (((-579 |#4|) (-579 |#4|) (-1063) (-1063)) 46 T ELT) (((-579 |#4|) (-579 |#4|) (-1063)) 45 T ELT) (((-579 |#4|) (-579 |#4|)) 34 T ELT))) +(((-381 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2238 ((-579 |#4|) (-579 |#4|))) (-15 -2238 ((-579 |#4|) (-579 |#4|) (-1063))) (-15 -2238 ((-579 |#4|) (-579 |#4|) (-1063) (-1063))) (IF (|has| |#1| (-308)) (-15 -2931 (|#4| |#4| (-579 |#4|))) |%noBranch|)) (-386) (-711) (-750) (-855 |#1| |#2| |#3|)) (T -381)) +((-2931 (*1 *2 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *4 *5 *6)) (-4 *4 (-308)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-381 *4 *5 *6 *2)))) (-2238 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-579 *7)) (-5 *3 (-1063)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-381 *4 *5 *6 *7)))) (-2238 (*1 *2 *2 *3) (-12 (-5 *2 (-579 *7)) (-5 *3 (-1063)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-381 *4 *5 *6 *7)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-381 *3 *4 *5 *6))))) +((-1851 ((|#4| |#4| (-579 |#4|)) 82 T ELT)) (-1852 (((-579 |#4|) (-579 |#4|) (-1063) (-1063)) 22 T ELT) (((-579 |#4|) (-579 |#4|) (-1063)) 21 T ELT) (((-579 |#4|) (-579 |#4|)) 13 T ELT))) +(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1851 (|#4| |#4| (-579 |#4|))) (-15 -1852 ((-579 |#4|) (-579 |#4|))) (-15 -1852 ((-579 |#4|) (-579 |#4|) (-1063))) (-15 -1852 ((-579 |#4|) (-579 |#4|) (-1063) (-1063)))) (-254) (-711) (-750) (-855 |#1| |#2| |#3|)) (T -382)) +((-1852 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-579 *7)) (-5 *3 (-1063)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-382 *4 *5 *6 *7)))) (-1852 (*1 *2 *2 *3) (-12 (-5 *2 (-579 *7)) (-5 *3 (-1063)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-382 *4 *5 *6 *7)))) (-1852 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-254)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-382 *3 *4 *5 *6)))) (-1851 (*1 *2 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-382 *4 *5 *6 *2))))) +((-1854 (((-579 (-579 |#4|)) (-579 |#4|) (-83)) 90 T ELT) (((-579 (-579 |#4|)) (-579 |#4|)) 89 T ELT) (((-579 (-579 |#4|)) (-579 |#4|) (-579 |#4|) (-83)) 83 T ELT) (((-579 (-579 |#4|)) (-579 |#4|) (-579 |#4|)) 84 T ELT)) (-1853 (((-579 (-579 |#4|)) (-579 |#4|) (-83)) 56 T ELT) (((-579 (-579 |#4|)) (-579 |#4|)) 78 T ELT))) +(((-383 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1853 ((-579 (-579 |#4|)) (-579 |#4|))) (-15 -1853 ((-579 (-579 |#4|)) (-579 |#4|) (-83))) (-15 -1854 ((-579 (-579 |#4|)) (-579 |#4|) (-579 |#4|))) (-15 -1854 ((-579 (-579 |#4|)) (-579 |#4|) (-579 |#4|) (-83))) (-15 -1854 ((-579 (-579 |#4|)) (-579 |#4|))) (-15 -1854 ((-579 (-579 |#4|)) (-579 |#4|) (-83)))) (-13 (-254) (-118)) (-711) (-750) (-855 |#1| |#2| |#3|)) (T -383)) +((-1854 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-855 *5 *6 *7)) (-5 *2 (-579 (-579 *8))) (-5 *1 (-383 *5 *6 *7 *8)) (-5 *3 (-579 *8)))) (-1854 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-855 *4 *5 *6)) (-5 *2 (-579 (-579 *7))) (-5 *1 (-383 *4 *5 *6 *7)) (-5 *3 (-579 *7)))) (-1854 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-855 *5 *6 *7)) (-5 *2 (-579 (-579 *8))) (-5 *1 (-383 *5 *6 *7 *8)) (-5 *3 (-579 *8)))) (-1854 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-855 *4 *5 *6)) (-5 *2 (-579 (-579 *7))) (-5 *1 (-383 *4 *5 *6 *7)) (-5 *3 (-579 *7)))) (-1853 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-855 *5 *6 *7)) (-5 *2 (-579 (-579 *8))) (-5 *1 (-383 *5 *6 *7 *8)) (-5 *3 (-579 *8)))) (-1853 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-855 *4 *5 *6)) (-5 *2 (-579 (-579 *7))) (-5 *1 (-383 *4 *5 *6 *7)) (-5 *3 (-579 *7))))) +((-1878 (((-688) |#4|) 12 T ELT)) (-1866 (((-579 (-2 (|:| |totdeg| (-688)) (|:| -1991 |#4|))) |#4| (-688) (-579 (-2 (|:| |totdeg| (-688)) (|:| -1991 |#4|)))) 39 T ELT)) (-1868 (((-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1867 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1856 ((|#4| |#4| (-579 |#4|)) 54 T ELT)) (-1864 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-579 |#4|)) 96 T ELT)) (-1871 (((-1175) |#4|) 59 T ELT)) (-1874 (((-1175) (-579 |#4|)) 69 T ELT)) (-1872 (((-479) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-479) (-479) (-479)) 66 T ELT)) (-1875 (((-1175) (-479)) 110 T ELT)) (-1869 (((-579 |#4|) (-579 |#4|)) 104 T ELT)) (-1877 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-688)) (|:| -1991 |#4|)) |#4| (-688)) 31 T ELT)) (-1870 (((-479) |#4|) 109 T ELT)) (-1865 ((|#4| |#4|) 37 T ELT)) (-1857 (((-579 |#4|) (-579 |#4|) (-479) (-479)) 74 T ELT)) (-1873 (((-479) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-479) (-479) (-479) (-479)) 123 T ELT)) (-1876 (((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1858 (((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1863 (((-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1862 (((-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1859 (((-83) |#2| |#2|) 75 T ELT)) (-1861 (((-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1860 (((-83) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1855 ((|#4| |#4| (-579 |#4|)) 97 T ELT))) +(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1855 (|#4| |#4| (-579 |#4|))) (-15 -1856 (|#4| |#4| (-579 |#4|))) (-15 -1857 ((-579 |#4|) (-579 |#4|) (-479) (-479))) (-15 -1858 ((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1859 ((-83) |#2| |#2|)) (-15 -1860 ((-83) |#2| |#2| |#2| |#2|)) (-15 -1861 ((-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1862 ((-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1863 ((-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1864 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-579 |#4|))) (-15 -1865 (|#4| |#4|)) (-15 -1866 ((-579 (-2 (|:| |totdeg| (-688)) (|:| -1991 |#4|))) |#4| (-688) (-579 (-2 (|:| |totdeg| (-688)) (|:| -1991 |#4|))))) (-15 -1867 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1868 ((-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-579 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1869 ((-579 |#4|) (-579 |#4|))) (-15 -1870 ((-479) |#4|)) (-15 -1871 ((-1175) |#4|)) (-15 -1872 ((-479) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-479) (-479) (-479))) (-15 -1873 ((-479) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-479) (-479) (-479) (-479))) (-15 -1874 ((-1175) (-579 |#4|))) (-15 -1875 ((-1175) (-479))) (-15 -1876 ((-83) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1877 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-688)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-688)) (|:| -1991 |#4|)) |#4| (-688))) (-15 -1878 ((-688) |#4|))) (-386) (-711) (-750) (-855 |#1| |#2| |#3|)) (T -384)) +((-1878 (*1 *2 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-688)) (-5 *1 (-384 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6)))) (-1877 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-688)) (|:| -1991 *4))) (-5 *5 (-688)) (-4 *4 (-855 *6 *7 *8)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-384 *6 *7 *8 *4)))) (-1876 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-688)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-711)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-384 *4 *5 *6 *7)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-479)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-1175)) (-5 *1 (-384 *4 *5 *6 *7)) (-4 *7 (-855 *4 *5 *6)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-1175)) (-5 *1 (-384 *4 *5 *6 *7)))) (-1873 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-688)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-711)) (-4 *4 (-855 *5 *6 *7)) (-4 *5 (-386)) (-4 *7 (-750)) (-5 *1 (-384 *5 *6 *7 *4)))) (-1872 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-688)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-711)) (-4 *4 (-855 *5 *6 *7)) (-4 *5 (-386)) (-4 *7 (-750)) (-5 *1 (-384 *5 *6 *7 *4)))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-1175)) (-5 *1 (-384 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-479)) (-5 *1 (-384 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6)))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-384 *3 *4 *5 *6)))) (-1868 (*1 *2 *2 *2) (-12 (-5 *2 (-579 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-688)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-711)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-386)) (-4 *5 (-750)) (-5 *1 (-384 *3 *4 *5 *6)))) (-1867 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-688)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-711)) (-4 *2 (-855 *4 *5 *6)) (-5 *1 (-384 *4 *5 *6 *2)) (-4 *4 (-386)) (-4 *6 (-750)))) (-1866 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-579 (-2 (|:| |totdeg| (-688)) (|:| -1991 *3)))) (-5 *4 (-688)) (-4 *3 (-855 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-384 *5 *6 *7 *3)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-384 *3 *4 *5 *2)) (-4 *2 (-855 *3 *4 *5)))) (-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-579 *3)) (-4 *3 (-855 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-384 *5 *6 *7 *3)))) (-1863 (*1 *2 *3 *2) (-12 (-5 *2 (-579 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-688)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-711)) (-4 *6 (-855 *4 *3 *5)) (-4 *4 (-386)) (-4 *5 (-750)) (-5 *1 (-384 *4 *3 *5 *6)))) (-1862 (*1 *2 *2) (-12 (-5 *2 (-579 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-688)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-711)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-386)) (-4 *5 (-750)) (-5 *1 (-384 *3 *4 *5 *6)))) (-1861 (*1 *2 *3 *2) (-12 (-5 *2 (-579 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-688)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-711)) (-4 *3 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *6 (-750)) (-5 *1 (-384 *4 *5 *6 *3)))) (-1860 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-386)) (-4 *3 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) (-5 *1 (-384 *4 *3 *5 *6)) (-4 *6 (-855 *4 *3 *5)))) (-1859 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *3 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) (-5 *1 (-384 *4 *3 *5 *6)) (-4 *6 (-855 *4 *3 *5)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-688)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-711)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-384 *4 *5 *6 *7)))) (-1857 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-579 *7)) (-5 *3 (-479)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-384 *4 *5 *6 *7)))) (-1856 (*1 *2 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-384 *4 *5 *6 *2)))) (-1855 (*1 *2 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-384 *4 *5 *6 *2))))) +((-1879 (($ $ $) 14 T ELT) (($ (-579 $)) 21 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 45 T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) 22 T ELT))) +(((-385 |#1|) (-10 -7 (-15 -2693 ((-1075 |#1|) (-1075 |#1|) (-1075 |#1|))) (-15 -1879 (|#1| (-579 |#1|))) (-15 -1879 (|#1| |#1| |#1|)) (-15 -3128 (|#1| (-579 |#1|))) (-15 -3128 (|#1| |#1| |#1|))) (-386)) (T -385)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-386) (-111)) (T -386)) +((-3128 (*1 *1 *1 *1) (-4 *1 (-386))) (-3128 (*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-386)))) (-1879 (*1 *1 *1 *1) (-4 *1 (-386))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-386)))) (-2693 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 *1)) (-4 *1 (-386))))) +(-13 (-490) (-10 -8 (-15 -3128 ($ $ $)) (-15 -3128 ($ (-579 $))) (-15 -1879 ($ $ $)) (-15 -1879 ($ (-579 $))) (-15 -2693 ((-1075 $) (-1075 $) (-1075 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-242) . T) ((-490) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-578 $) . T) ((-650 $) . T) ((-659) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1760 (((-3 $ #1="failed")) NIL (|has| (-344 (-851 |#1|)) (-490)) ELT)) (-1300 (((-3 $ #1#) $ $) NIL T ELT)) (-3207 (((-1169 (-626 (-344 (-851 |#1|)))) (-1169 $)) NIL T ELT) (((-1169 (-626 (-344 (-851 |#1|))))) NIL T ELT)) (-1717 (((-1169 $)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL T ELT)) (-1691 (((-3 $ #1#)) NIL (|has| (-344 (-851 |#1|)) (-490)) ELT)) (-1776 (((-626 (-344 (-851 |#1|))) (-1169 $)) NIL T ELT) (((-626 (-344 (-851 |#1|)))) NIL T ELT)) (-1715 (((-344 (-851 |#1|)) $) NIL T ELT)) (-1774 (((-626 (-344 (-851 |#1|))) $ (-1169 $)) NIL T ELT) (((-626 (-344 (-851 |#1|))) $) NIL T ELT)) (-2391 (((-3 $ #1#) $) NIL (|has| (-344 (-851 |#1|)) (-490)) ELT)) (-1888 (((-1075 (-851 (-344 (-851 |#1|))))) NIL (|has| (-344 (-851 |#1|)) (-308)) ELT) (((-1075 (-344 (-851 |#1|)))) 89 (|has| |#1| (-490)) ELT)) (-2394 (($ $ (-824)) NIL T ELT)) (-1713 (((-344 (-851 |#1|)) $) NIL T ELT)) (-1693 (((-1075 (-344 (-851 |#1|))) $) 87 (|has| (-344 (-851 |#1|)) (-490)) ELT)) (-1778 (((-344 (-851 |#1|)) (-1169 $)) NIL T ELT) (((-344 (-851 |#1|))) NIL T ELT)) (-1711 (((-1075 (-344 (-851 |#1|))) $) NIL T ELT)) (-1705 (((-83)) NIL T ELT)) (-1780 (($ (-1169 (-344 (-851 |#1|))) (-1169 $)) 111 T ELT) (($ (-1169 (-344 (-851 |#1|)))) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL (|has| (-344 (-851 |#1|)) (-490)) ELT)) (-3093 (((-824)) NIL T ELT)) (-1702 (((-83)) NIL T ELT)) (-2418 (($ $ (-824)) NIL T ELT)) (-1698 (((-83)) NIL T ELT)) (-1696 (((-83)) NIL T ELT)) (-1700 (((-83)) NIL T ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL T ELT)) (-1692 (((-3 $ #1#)) NIL (|has| (-344 (-851 |#1|)) (-490)) ELT)) (-1777 (((-626 (-344 (-851 |#1|))) (-1169 $)) NIL T ELT) (((-626 (-344 (-851 |#1|)))) NIL T ELT)) (-1716 (((-344 (-851 |#1|)) $) NIL T ELT)) (-1775 (((-626 (-344 (-851 |#1|))) $ (-1169 $)) NIL T ELT) (((-626 (-344 (-851 |#1|))) $) NIL T ELT)) (-2392 (((-3 $ #1#) $) NIL (|has| (-344 (-851 |#1|)) (-490)) ELT)) (-1892 (((-1075 (-851 (-344 (-851 |#1|))))) NIL (|has| (-344 (-851 |#1|)) (-308)) ELT) (((-1075 (-344 (-851 |#1|)))) 88 (|has| |#1| (-490)) ELT)) (-2393 (($ $ (-824)) NIL T ELT)) (-1714 (((-344 (-851 |#1|)) $) NIL T ELT)) (-1694 (((-1075 (-344 (-851 |#1|))) $) 84 (|has| (-344 (-851 |#1|)) (-490)) ELT)) (-1779 (((-344 (-851 |#1|)) (-1169 $)) NIL T ELT) (((-344 (-851 |#1|))) NIL T ELT)) (-1712 (((-1075 (-344 (-851 |#1|))) $) NIL T ELT)) (-1706 (((-83)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-1699 (((-83)) NIL T ELT)) (-1701 (((-83)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1882 (((-344 (-851 |#1|)) $ $) 75 (|has| |#1| (-490)) ELT)) (-1886 (((-344 (-851 |#1|)) $) 74 (|has| |#1| (-490)) ELT)) (-1885 (((-344 (-851 |#1|)) $) 101 (|has| |#1| (-490)) ELT)) (-1887 (((-1075 (-344 (-851 |#1|))) $) 93 (|has| |#1| (-490)) ELT)) (-1881 (((-344 (-851 |#1|))) 76 (|has| |#1| (-490)) ELT)) (-1884 (((-344 (-851 |#1|)) $ $) 64 (|has| |#1| (-490)) ELT)) (-1890 (((-344 (-851 |#1|)) $) 63 (|has| |#1| (-490)) ELT)) (-1889 (((-344 (-851 |#1|)) $) 100 (|has| |#1| (-490)) ELT)) (-1891 (((-1075 (-344 (-851 |#1|))) $) 92 (|has| |#1| (-490)) ELT)) (-1883 (((-344 (-851 |#1|))) 73 (|has| |#1| (-490)) ELT)) (-1893 (($) 107 T ELT) (($ (-1080)) 115 T ELT) (($ (-1169 (-1080))) 114 T ELT) (($ (-1169 $)) 102 T ELT) (($ (-1080) (-1169 $)) 113 T ELT) (($ (-1169 (-1080)) (-1169 $)) 112 T ELT)) (-1704 (((-83)) NIL T ELT)) (-3782 (((-344 (-851 |#1|)) $ (-479)) NIL T ELT)) (-3208 (((-1169 (-344 (-851 |#1|))) $ (-1169 $)) 104 T ELT) (((-626 (-344 (-851 |#1|))) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 (-344 (-851 |#1|))) $) 44 T ELT) (((-626 (-344 (-851 |#1|))) (-1169 $)) NIL T ELT)) (-3954 (((-1169 (-344 (-851 |#1|))) $) NIL T ELT) (($ (-1169 (-344 (-851 |#1|)))) 41 T ELT)) (-1880 (((-579 (-851 (-344 (-851 |#1|)))) (-1169 $)) NIL T ELT) (((-579 (-851 (-344 (-851 |#1|))))) NIL T ELT) (((-579 (-851 |#1|)) (-1169 $)) 105 (|has| |#1| (-490)) ELT) (((-579 (-851 |#1|))) 106 (|has| |#1| (-490)) ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-1169 (-344 (-851 |#1|)))) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) 66 T ELT)) (-1695 (((-579 (-1169 (-344 (-851 |#1|))))) NIL (|has| (-344 (-851 |#1|)) (-490)) ELT)) (-2421 (($ $ $ $) NIL T ELT)) (-1708 (((-83)) NIL T ELT)) (-2530 (($ (-626 (-344 (-851 |#1|))) $) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) NIL T ELT)) (-1707 (((-83)) NIL T ELT)) (-1703 (((-83)) NIL T ELT)) (-2645 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-344 (-851 |#1|))) NIL T ELT) (($ (-344 (-851 |#1|)) $) NIL T ELT) (($ (-1046 |#2| (-344 (-851 |#1|))) $) NIL T ELT))) +(((-387 |#1| |#2| |#3| |#4|) (-13 (-355 (-344 (-851 |#1|))) (-586 (-1046 |#2| (-344 (-851 |#1|)))) (-10 -8 (-15 -3928 ($ (-1169 (-344 (-851 |#1|))))) (-15 -1895 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1="failed"))) (-15 -1894 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#))) (-15 -1893 ($)) (-15 -1893 ($ (-1080))) (-15 -1893 ($ (-1169 (-1080)))) (-15 -1893 ($ (-1169 $))) (-15 -1893 ($ (-1080) (-1169 $))) (-15 -1893 ($ (-1169 (-1080)) (-1169 $))) (IF (|has| |#1| (-490)) (PROGN (-15 -1892 ((-1075 (-344 (-851 |#1|))))) (-15 -1891 ((-1075 (-344 (-851 |#1|))) $)) (-15 -1890 ((-344 (-851 |#1|)) $)) (-15 -1889 ((-344 (-851 |#1|)) $)) (-15 -1888 ((-1075 (-344 (-851 |#1|))))) (-15 -1887 ((-1075 (-344 (-851 |#1|))) $)) (-15 -1886 ((-344 (-851 |#1|)) $)) (-15 -1885 ((-344 (-851 |#1|)) $)) (-15 -1884 ((-344 (-851 |#1|)) $ $)) (-15 -1883 ((-344 (-851 |#1|)))) (-15 -1882 ((-344 (-851 |#1|)) $ $)) (-15 -1881 ((-344 (-851 |#1|)))) (-15 -1880 ((-579 (-851 |#1|)) (-1169 $))) (-15 -1880 ((-579 (-851 |#1|))))) |%noBranch|))) (-144) (-824) (-579 (-1080)) (-1169 (-626 |#1|))) (T -387)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1169 (-344 (-851 *3)))) (-4 *3 (-144)) (-14 *6 (-1169 (-626 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))))) (-1895 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-387 *3 *4 *5 *6)) (|:| -1999 (-579 (-387 *3 *4 *5 *6))))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1894 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-387 *3 *4 *5 *6)) (|:| -1999 (-579 (-387 *3 *4 *5 *6))))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1893 (*1 *1) (-12 (-5 *1 (-387 *2 *3 *4 *5)) (-4 *2 (-144)) (-14 *3 (-824)) (-14 *4 (-579 (-1080))) (-14 *5 (-1169 (-626 *2))))) (-1893 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 *2)) (-14 *6 (-1169 (-626 *3))))) (-1893 (*1 *1 *2) (-12 (-5 *2 (-1169 (-1080))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1893 (*1 *1 *2) (-12 (-5 *2 (-1169 (-387 *3 *4 *5 *6))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1893 (*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-1169 (-387 *4 *5 *6 *7))) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-824)) (-14 *6 (-579 *2)) (-14 *7 (-1169 (-626 *4))))) (-1893 (*1 *1 *2 *3) (-12 (-5 *2 (-1169 (-1080))) (-5 *3 (-1169 (-387 *4 *5 *6 *7))) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-824)) (-14 *6 (-579 (-1080))) (-14 *7 (-1169 (-626 *4))))) (-1892 (*1 *2) (-12 (-5 *2 (-1075 (-344 (-851 *3)))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-1075 (-344 (-851 *3)))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1888 (*1 *2) (-12 (-5 *2 (-1075 (-344 (-851 *3)))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-1075 (-344 (-851 *3)))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1884 (*1 *2 *1 *1) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1883 (*1 *2) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1882 (*1 *2 *1 *1) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1881 (*1 *2) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1169 (-387 *4 *5 *6 *7))) (-5 *2 (-579 (-851 *4))) (-5 *1 (-387 *4 *5 *6 *7)) (-4 *4 (-490)) (-4 *4 (-144)) (-14 *5 (-824)) (-14 *6 (-579 (-1080))) (-14 *7 (-1169 (-626 *4))))) (-1880 (*1 *2) (-12 (-5 *2 (-579 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 19 T ELT)) (-3066 (((-579 (-767 |#1|)) $) 88 T ELT)) (-3068 (((-1075 $) $ (-767 |#1|)) 53 T ELT) (((-1075 |#2|) $) 140 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#2| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#2| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#2| (-490)) ELT)) (-2804 (((-688) $) 28 T ELT) (((-688) $ (-579 (-767 |#1|))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#2| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#2| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-3 (-767 |#1|) #1#) $) NIL T ELT)) (-3140 ((|#2| $) 49 T ELT) (((-344 (-479)) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-767 |#1|) $) NIL T ELT)) (-3738 (($ $ $ (-767 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1925 (($ $ (-579 (-479))) 95 T ELT)) (-3941 (($ $) 81 T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#2|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#2| (-386)) ELT) (($ $ (-767 |#1|)) NIL (|has| |#2| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#2| (-815)) ELT)) (-1612 (($ $ |#2| |#3| $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-767 |#1|) (-790 (-324))) (|has| |#2| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-767 |#1|) (-790 (-479))) (|has| |#2| (-790 (-479)))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) 66 T ELT)) (-3069 (($ (-1075 |#2|) (-767 |#1|)) 145 T ELT) (($ (-1075 $) (-767 |#1|)) 59 T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) 69 T ELT)) (-2878 (($ |#2| |#3|) 36 T ELT) (($ $ (-767 |#1|) (-688)) 38 T ELT) (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-767 |#1|)) NIL T ELT)) (-2805 ((|#3| $) NIL T ELT) (((-688) $ (-767 |#1|)) 57 T ELT) (((-579 (-688)) $ (-579 (-767 |#1|))) 64 T ELT)) (-1613 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3067 (((-3 (-767 |#1|) #1#) $) 46 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#2| $) 48 T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) NIL (|has| |#2| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-767 |#1|)) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) 47 T ELT)) (-1784 ((|#2| $) 138 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#2| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) 151 (|has| |#2| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#2| (-815)) ELT)) (-3448 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-767 |#1|) |#2|) 102 T ELT) (($ $ (-579 (-767 |#1|)) (-579 |#2|)) 108 T ELT) (($ $ (-767 |#1|) $) 100 T ELT) (($ $ (-579 (-767 |#1|)) (-579 $)) 126 T ELT)) (-3739 (($ $ (-767 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3740 (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|)) 60 T ELT)) (-3930 ((|#3| $) 80 T ELT) (((-688) $ (-767 |#1|)) 43 T ELT) (((-579 (-688)) $ (-579 (-767 |#1|))) 63 T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-767 |#1|) (-549 (-794 (-324)))) (|has| |#2| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-767 |#1|) (-549 (-794 (-479)))) (|has| |#2| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-767 |#1|) (-549 (-468))) (|has| |#2| (-549 (-468)))) ELT)) (-2802 ((|#2| $) 147 (|has| |#2| (-386)) ELT) (($ $ (-767 |#1|)) NIL (|has| |#2| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-815))) ELT)) (-3928 (((-766) $) 175 T ELT) (($ (-479)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-767 |#1|)) 40 T ELT) (($ (-344 (-479))) NIL (OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#2| (-490)) ELT)) (-3799 (((-579 |#2|) $) NIL T ELT)) (-3659 ((|#2| $ |#3|) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-815))) (|has| |#2| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#2| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#2| (-490)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 32 T CONST)) (-2654 (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#2|) 77 (|has| |#2| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 133 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 131 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-344 (-479))) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT))) +(((-388 |#1| |#2| |#3|) (-13 (-855 |#2| |#3| (-767 |#1|)) (-10 -8 (-15 -1925 ($ $ (-579 (-479)))))) (-579 (-1080)) (-955) (-193 (-3939 |#1|) (-688))) (T -388)) +((-1925 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-479))) (-14 *3 (-579 (-1080))) (-5 *1 (-388 *3 *4 *5)) (-4 *4 (-955)) (-4 *5 (-193 (-3939 *3) (-688)))))) +((-1899 (((-83) |#1| (-579 |#2|)) 90 T ELT)) (-1897 (((-3 (-1169 (-579 |#2|)) #1="failed") (-688) |#1| (-579 |#2|)) 99 T ELT)) (-1898 (((-3 (-579 |#2|) #1#) |#2| |#1| (-1169 (-579 |#2|))) 101 T ELT)) (-2024 ((|#2| |#2| |#1|) 35 T ELT)) (-1896 (((-688) |#2| (-579 |#2|)) 26 T ELT))) +(((-389 |#1| |#2|) (-10 -7 (-15 -2024 (|#2| |#2| |#1|)) (-15 -1896 ((-688) |#2| (-579 |#2|))) (-15 -1897 ((-3 (-1169 (-579 |#2|)) #1="failed") (-688) |#1| (-579 |#2|))) (-15 -1898 ((-3 (-579 |#2|) #1#) |#2| |#1| (-1169 (-579 |#2|)))) (-15 -1899 ((-83) |#1| (-579 |#2|)))) (-254) (-1145 |#1|)) (T -389)) +((-1899 (*1 *2 *3 *4) (-12 (-5 *4 (-579 *5)) (-4 *5 (-1145 *3)) (-4 *3 (-254)) (-5 *2 (-83)) (-5 *1 (-389 *3 *5)))) (-1898 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1169 (-579 *3))) (-4 *4 (-254)) (-5 *2 (-579 *3)) (-5 *1 (-389 *4 *3)) (-4 *3 (-1145 *4)))) (-1897 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-688)) (-4 *4 (-254)) (-4 *6 (-1145 *4)) (-5 *2 (-1169 (-579 *6))) (-5 *1 (-389 *4 *6)) (-5 *5 (-579 *6)))) (-1896 (*1 *2 *3 *4) (-12 (-5 *4 (-579 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-254)) (-5 *2 (-688)) (-5 *1 (-389 *5 *3)))) (-2024 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-389 *3 *2)) (-4 *2 (-1145 *3))))) +((-3714 (((-342 |#5|) |#5|) 24 T ELT))) +(((-390 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3714 ((-342 |#5|) |#5|))) (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ "failed") (-1080))))) (-711) (-490) (-490) (-855 |#4| |#2| |#1|)) (T -390)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ "failed") (-1080)))))) (-4 *5 (-711)) (-4 *7 (-490)) (-5 *2 (-342 *3)) (-5 *1 (-390 *4 *5 *6 *7 *3)) (-4 *6 (-490)) (-4 *3 (-855 *7 *5 *4))))) +((-2685 ((|#3|) 43 T ELT)) (-2693 (((-1075 |#4|) (-1075 |#4|) (-1075 |#4|)) 34 T ELT))) +(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2693 ((-1075 |#4|) (-1075 |#4|) (-1075 |#4|))) (-15 -2685 (|#3|))) (-711) (-750) (-815) (-855 |#3| |#1| |#2|)) (T -391)) +((-2685 (*1 *2) (-12 (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-815)) (-5 *1 (-391 *3 *4 *2 *5)) (-4 *5 (-855 *2 *3 *4)))) (-2693 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 *6)) (-4 *6 (-855 *5 *3 *4)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *5 (-815)) (-5 *1 (-391 *3 *4 *5 *6))))) +((-3714 (((-342 (-1075 |#1|)) (-1075 |#1|)) 43 T ELT))) +(((-392 |#1|) (-10 -7 (-15 -3714 ((-342 (-1075 |#1|)) (-1075 |#1|)))) (-254)) (T -392)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-254)) (-5 *2 (-342 (-1075 *4))) (-5 *1 (-392 *4)) (-5 *3 (-1075 *4))))) +((-3711 (((-51) |#2| (-1080) (-245 |#2|) (-1136 (-688))) 44 T ELT) (((-51) (-1 |#2| (-479)) (-245 |#2|) (-1136 (-688))) 43 T ELT) (((-51) |#2| (-1080) (-245 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-479)) (-245 |#2|)) 29 T ELT)) (-3800 (((-51) |#2| (-1080) (-245 |#2|) (-1136 (-344 (-479))) (-344 (-479))) 88 T ELT) (((-51) (-1 |#2| (-344 (-479))) (-245 |#2|) (-1136 (-344 (-479))) (-344 (-479))) 87 T ELT) (((-51) |#2| (-1080) (-245 |#2|) (-1136 (-479))) 86 T ELT) (((-51) (-1 |#2| (-479)) (-245 |#2|) (-1136 (-479))) 85 T ELT) (((-51) |#2| (-1080) (-245 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-479)) (-245 |#2|)) 79 T ELT)) (-3764 (((-51) |#2| (-1080) (-245 |#2|) (-1136 (-344 (-479))) (-344 (-479))) 74 T ELT) (((-51) (-1 |#2| (-344 (-479))) (-245 |#2|) (-1136 (-344 (-479))) (-344 (-479))) 72 T ELT)) (-3761 (((-51) |#2| (-1080) (-245 |#2|) (-1136 (-479))) 51 T ELT) (((-51) (-1 |#2| (-479)) (-245 |#2|) (-1136 (-479))) 50 T ELT))) +(((-393 |#1| |#2|) (-10 -7 (-15 -3711 ((-51) (-1 |#2| (-479)) (-245 |#2|))) (-15 -3711 ((-51) |#2| (-1080) (-245 |#2|))) (-15 -3711 ((-51) (-1 |#2| (-479)) (-245 |#2|) (-1136 (-688)))) (-15 -3711 ((-51) |#2| (-1080) (-245 |#2|) (-1136 (-688)))) (-15 -3761 ((-51) (-1 |#2| (-479)) (-245 |#2|) (-1136 (-479)))) (-15 -3761 ((-51) |#2| (-1080) (-245 |#2|) (-1136 (-479)))) (-15 -3764 ((-51) (-1 |#2| (-344 (-479))) (-245 |#2|) (-1136 (-344 (-479))) (-344 (-479)))) (-15 -3764 ((-51) |#2| (-1080) (-245 |#2|) (-1136 (-344 (-479))) (-344 (-479)))) (-15 -3800 ((-51) (-1 |#2| (-479)) (-245 |#2|))) (-15 -3800 ((-51) |#2| (-1080) (-245 |#2|))) (-15 -3800 ((-51) (-1 |#2| (-479)) (-245 |#2|) (-1136 (-479)))) (-15 -3800 ((-51) |#2| (-1080) (-245 |#2|) (-1136 (-479)))) (-15 -3800 ((-51) (-1 |#2| (-344 (-479))) (-245 |#2|) (-1136 (-344 (-479))) (-344 (-479)))) (-15 -3800 ((-51) |#2| (-1080) (-245 |#2|) (-1136 (-344 (-479))) (-344 (-479))))) (-13 (-490) (-944 (-479)) (-576 (-479))) (-13 (-27) (-1105) (-358 |#1|))) (T -393)) +((-3800 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-344 (-479)))) (-5 *7 (-344 (-479))) (-4 *3 (-13 (-27) (-1105) (-358 *8))) (-4 *8 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *8 *3)))) (-3800 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-344 (-479)))) (-5 *4 (-245 *8)) (-5 *5 (-1136 (-344 (-479)))) (-5 *6 (-344 (-479))) (-4 *8 (-13 (-27) (-1105) (-358 *7))) (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *7 *8)))) (-3800 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-479))) (-4 *3 (-13 (-27) (-1105) (-358 *7))) (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *7 *3)))) (-3800 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-479))) (-5 *4 (-245 *7)) (-5 *5 (-1136 (-479))) (-4 *7 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *6 *7)))) (-3800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *6 *3)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-479))) (-5 *4 (-245 *6)) (-4 *6 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *5 *6)))) (-3764 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-344 (-479)))) (-5 *7 (-344 (-479))) (-4 *3 (-13 (-27) (-1105) (-358 *8))) (-4 *8 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *8 *3)))) (-3764 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-344 (-479)))) (-5 *4 (-245 *8)) (-5 *5 (-1136 (-344 (-479)))) (-5 *6 (-344 (-479))) (-4 *8 (-13 (-27) (-1105) (-358 *7))) (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *7 *8)))) (-3761 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-479))) (-4 *3 (-13 (-27) (-1105) (-358 *7))) (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *7 *3)))) (-3761 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-479))) (-5 *4 (-245 *7)) (-5 *5 (-1136 (-479))) (-4 *7 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *6 *7)))) (-3711 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-688))) (-4 *3 (-13 (-27) (-1105) (-358 *7))) (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *7 *3)))) (-3711 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-479))) (-5 *4 (-245 *7)) (-5 *5 (-1136 (-688))) (-4 *7 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *6 *7)))) (-3711 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *6 *3)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-479))) (-5 *4 (-245 *6)) (-4 *6 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-393 *5 *6))))) +((-2024 ((|#2| |#2| |#1|) 15 T ELT)) (-1901 (((-579 |#2|) |#2| (-579 |#2|) |#1| (-824)) 82 T ELT)) (-1900 (((-2 (|:| |plist| (-579 |#2|)) (|:| |modulo| |#1|)) |#2| (-579 |#2|) |#1| (-824)) 71 T ELT))) +(((-394 |#1| |#2|) (-10 -7 (-15 -1900 ((-2 (|:| |plist| (-579 |#2|)) (|:| |modulo| |#1|)) |#2| (-579 |#2|) |#1| (-824))) (-15 -1901 ((-579 |#2|) |#2| (-579 |#2|) |#1| (-824))) (-15 -2024 (|#2| |#2| |#1|))) (-254) (-1145 |#1|)) (T -394)) +((-2024 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-394 *3 *2)) (-4 *2 (-1145 *3)))) (-1901 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-579 *3)) (-5 *5 (-824)) (-4 *3 (-1145 *4)) (-4 *4 (-254)) (-5 *1 (-394 *4 *3)))) (-1900 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-824)) (-4 *5 (-254)) (-4 *3 (-1145 *5)) (-5 *2 (-2 (|:| |plist| (-579 *3)) (|:| |modulo| *5))) (-5 *1 (-394 *5 *3)) (-5 *4 (-579 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 28 T ELT)) (-3689 (($ |#3|) 25 T ELT)) (-1300 (((-3 $ "failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) 32 T ELT)) (-1902 (($ |#2| |#4| $) 33 T ELT)) (-2878 (($ |#2| (-646 |#3| |#4| |#5|)) 24 T ELT)) (-2879 (((-646 |#3| |#4| |#5|) $) 15 T ELT)) (-1904 ((|#3| $) 19 T ELT)) (-1905 ((|#4| $) 17 T ELT)) (-3158 ((|#2| $) 29 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1903 (($ |#2| |#3| |#4|) 26 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 36 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 34 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-395 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -3158 (|#2| $)) (-15 -2879 ((-646 |#3| |#4| |#5|) $)) (-15 -1905 (|#4| $)) (-15 -1904 (|#3| $)) (-15 -3941 ($ $)) (-15 -2878 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -3689 ($ |#3|)) (-15 -1903 ($ |#2| |#3| |#4|)) (-15 -1902 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-579 (-1080)) (-144) (-750) (-193 (-3939 |#1|) (-688)) (-1 (-83) (-2 (|:| -2387 |#3|) (|:| -2388 |#4|)) (-2 (|:| -2387 |#3|) (|:| -2388 |#4|))) (-855 |#2| |#4| (-767 |#1|))) (T -395)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-4 *6 (-193 (-3939 *3) (-688))) (-14 *7 (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *6)) (-2 (|:| -2387 *5) (|:| -2388 *6)))) (-5 *1 (-395 *3 *4 *5 *6 *7 *2)) (-4 *5 (-750)) (-4 *2 (-855 *4 *6 (-767 *3))))) (-3158 (*1 *2 *1) (-12 (-14 *3 (-579 (-1080))) (-4 *5 (-193 (-3939 *3) (-688))) (-14 *6 (-1 (-83) (-2 (|:| -2387 *4) (|:| -2388 *5)) (-2 (|:| -2387 *4) (|:| -2388 *5)))) (-4 *2 (-144)) (-5 *1 (-395 *3 *2 *4 *5 *6 *7)) (-4 *4 (-750)) (-4 *7 (-855 *2 *5 (-767 *3))))) (-2879 (*1 *2 *1) (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-4 *6 (-193 (-3939 *3) (-688))) (-14 *7 (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *6)) (-2 (|:| -2387 *5) (|:| -2388 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-395 *3 *4 *5 *6 *7 *8)) (-4 *5 (-750)) (-4 *8 (-855 *4 *6 (-767 *3))))) (-1905 (*1 *2 *1) (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-14 *6 (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *2)) (-2 (|:| -2387 *5) (|:| -2388 *2)))) (-4 *2 (-193 (-3939 *3) (-688))) (-5 *1 (-395 *3 *4 *5 *2 *6 *7)) (-4 *5 (-750)) (-4 *7 (-855 *4 *2 (-767 *3))))) (-1904 (*1 *2 *1) (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-4 *5 (-193 (-3939 *3) (-688))) (-14 *6 (-1 (-83) (-2 (|:| -2387 *2) (|:| -2388 *5)) (-2 (|:| -2387 *2) (|:| -2388 *5)))) (-4 *2 (-750)) (-5 *1 (-395 *3 *4 *2 *5 *6 *7)) (-4 *7 (-855 *4 *5 (-767 *3))))) (-3941 (*1 *1 *1) (-12 (-14 *2 (-579 (-1080))) (-4 *3 (-144)) (-4 *5 (-193 (-3939 *2) (-688))) (-14 *6 (-1 (-83) (-2 (|:| -2387 *4) (|:| -2388 *5)) (-2 (|:| -2387 *4) (|:| -2388 *5)))) (-5 *1 (-395 *2 *3 *4 *5 *6 *7)) (-4 *4 (-750)) (-4 *7 (-855 *3 *5 (-767 *2))))) (-2878 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-750)) (-4 *6 (-193 (-3939 *4) (-688))) (-14 *7 (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *6)) (-2 (|:| -2387 *5) (|:| -2388 *6)))) (-14 *4 (-579 (-1080))) (-4 *2 (-144)) (-5 *1 (-395 *4 *2 *5 *6 *7 *8)) (-4 *8 (-855 *2 *6 (-767 *4))))) (-3689 (*1 *1 *2) (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-4 *5 (-193 (-3939 *3) (-688))) (-14 *6 (-1 (-83) (-2 (|:| -2387 *2) (|:| -2388 *5)) (-2 (|:| -2387 *2) (|:| -2388 *5)))) (-5 *1 (-395 *3 *4 *2 *5 *6 *7)) (-4 *2 (-750)) (-4 *7 (-855 *4 *5 (-767 *3))))) (-1903 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-579 (-1080))) (-4 *2 (-144)) (-4 *4 (-193 (-3939 *5) (-688))) (-14 *6 (-1 (-83) (-2 (|:| -2387 *3) (|:| -2388 *4)) (-2 (|:| -2387 *3) (|:| -2388 *4)))) (-5 *1 (-395 *5 *2 *3 *4 *6 *7)) (-4 *3 (-750)) (-4 *7 (-855 *2 *4 (-767 *5))))) (-1902 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-579 (-1080))) (-4 *2 (-144)) (-4 *3 (-193 (-3939 *4) (-688))) (-14 *6 (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *3)) (-2 (|:| -2387 *5) (|:| -2388 *3)))) (-5 *1 (-395 *4 *2 *5 *3 *6 *7)) (-4 *5 (-750)) (-4 *7 (-855 *2 *3 (-767 *4)))))) +((-1906 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-396 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1906 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-711) (-750) (-490) (-855 |#3| |#1| |#2|) (-13 (-944 (-344 (-479))) (-308) (-10 -8 (-15 -3928 ($ |#4|)) (-15 -2983 (|#4| $)) (-15 -2982 (|#4| $))))) (T -396)) +((-1906 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-750)) (-4 *5 (-711)) (-4 *6 (-490)) (-4 *7 (-855 *6 *5 *3)) (-5 *1 (-396 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-944 (-344 (-479))) (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $)))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3066 (((-579 |#3|) $) 41 T ELT)) (-2893 (((-83) $) NIL T ELT)) (-2884 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3692 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2889 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) NIL (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) NIL (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ #1="failed") (-579 |#4|)) 49 T ELT)) (-3140 (($ (-579 |#4|)) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-3388 (($ |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-490)) ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#4|) $) 18 (|has| $ (-6 -3977)) ELT)) (-3164 ((|#3| $) 47 T ELT)) (-2593 (((-579 |#4|) $) 14 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 26 (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-2899 (((-579 |#3|) $) NIL T ELT)) (-2898 (((-83) |#3| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-490)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1342 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 39 T ELT)) (-3547 (($) 17 T ELT)) (-1934 (((-688) |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (((-688) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 16 T ELT)) (-3954 (((-468) $) NIL (|has| |#4| (-549 (-468))) ELT) (($ (-579 |#4|)) 51 T ELT)) (-3512 (($ (-579 |#4|)) 13 T ELT)) (-2895 (($ $ |#3|) NIL T ELT)) (-2897 (($ $ |#3|) NIL T ELT)) (-2896 (($ $ |#3|) NIL T ELT)) (-3928 (((-766) $) 38 T ELT) (((-579 |#4|) $) 50 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 30 T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-397 |#1| |#2| |#3| |#4|) (-13 (-883 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3954 ($ (-579 |#4|))) (-6 -3977) (-6 -3978))) (-955) (-711) (-750) (-970 |#1| |#2| |#3|)) (T -397)) +((-3954 (*1 *1 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-397 *3 *4 *5 *6))))) +((-2645 (($) 11 T CONST)) (-2651 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-398 |#1| |#2| |#3|) (-10 -7 (-15 -2651 (|#1|) -3934) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2645 (|#1|) -3934)) (-399 |#2| |#3|) (-144) (-23)) (T -398)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3141 (((-3 |#1| "failed") $) 30 T ELT)) (-3140 ((|#1| $) 31 T ELT)) (-3926 (($ $ $) 27 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3930 ((|#2| $) 23 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 22 T CONST)) (-2651 (($) 28 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-399 |#1| |#2|) (-111) (-144) (-23)) (T -399)) +((-2651 (*1 *1) (-12 (-4 *1 (-399 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3926 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23))))) +(-13 (-404 |t#1| |t#2|) (-944 |t#1|) (-10 -8 (-15 -2651 ($) -3934) (-15 -3926 ($ $ $)))) +(((-72) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-404 |#1| |#2|) . T) ((-944 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-1907 (((-1169 (-1169 (-479))) (-1169 (-1169 (-479))) (-824)) 26 T ELT)) (-1908 (((-1169 (-1169 (-479))) (-824)) 21 T ELT))) +(((-400) (-10 -7 (-15 -1907 ((-1169 (-1169 (-479))) (-1169 (-1169 (-479))) (-824))) (-15 -1908 ((-1169 (-1169 (-479))) (-824))))) (T -400)) +((-1908 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1169 (-1169 (-479)))) (-5 *1 (-400)))) (-1907 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 (-1169 (-479)))) (-5 *3 (-824)) (-5 *1 (-400))))) +((-2755 (((-479) (-479)) 32 T ELT) (((-479)) 24 T ELT)) (-2759 (((-479) (-479)) 28 T ELT) (((-479)) 20 T ELT)) (-2757 (((-479) (-479)) 30 T ELT) (((-479)) 22 T ELT)) (-1910 (((-83) (-83)) 14 T ELT) (((-83)) 12 T ELT)) (-1909 (((-83) (-83)) 13 T ELT) (((-83)) 11 T ELT)) (-1911 (((-83) (-83)) 26 T ELT) (((-83)) 17 T ELT))) +(((-401) (-10 -7 (-15 -1909 ((-83))) (-15 -1910 ((-83))) (-15 -1909 ((-83) (-83))) (-15 -1910 ((-83) (-83))) (-15 -1911 ((-83))) (-15 -2757 ((-479))) (-15 -2759 ((-479))) (-15 -2755 ((-479))) (-15 -1911 ((-83) (-83))) (-15 -2757 ((-479) (-479))) (-15 -2759 ((-479) (-479))) (-15 -2755 ((-479) (-479))))) (T -401)) +((-2755 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) (-2759 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) (-2757 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) (-1911 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401)))) (-2755 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) (-2759 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) (-2757 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) (-1911 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401)))) (-1910 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401)))) (-1909 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401)))) (-1910 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401)))) (-1909 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3833 (((-579 (-324)) $) 34 T ELT) (((-579 (-324)) $ (-579 (-324))) 145 T ELT)) (-1916 (((-579 (-994 (-324))) $) 16 T ELT) (((-579 (-994 (-324))) $ (-579 (-994 (-324)))) 142 T ELT)) (-1913 (((-579 (-579 (-848 (-177)))) (-579 (-579 (-848 (-177)))) (-579 (-777))) 58 T ELT)) (-1917 (((-579 (-579 (-848 (-177)))) $) 137 T ELT)) (-3688 (((-1175) $ (-848 (-177)) (-777)) 162 T ELT)) (-1918 (($ $) 136 T ELT) (($ (-579 (-579 (-848 (-177))))) 148 T ELT) (($ (-579 (-579 (-848 (-177)))) (-579 (-777)) (-579 (-777)) (-579 (-824))) 147 T ELT) (($ (-579 (-579 (-848 (-177)))) (-579 (-777)) (-579 (-777)) (-579 (-824)) (-579 (-218))) 149 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3842 (((-479) $) 110 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1919 (($) 146 T ELT)) (-1912 (((-579 (-177)) (-579 (-579 (-848 (-177))))) 89 T ELT)) (-1915 (((-1175) $ (-579 (-848 (-177))) (-777) (-777) (-824)) 154 T ELT) (((-1175) $ (-848 (-177))) 156 T ELT) (((-1175) $ (-848 (-177)) (-777) (-777) (-824)) 155 T ELT)) (-3928 (((-766) $) 168 T ELT) (($ (-579 (-579 (-848 (-177))))) 163 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1914 (((-1175) $ (-848 (-177))) 161 T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-402) (-13 (-1006) (-10 -8 (-15 -1919 ($)) (-15 -1918 ($ $)) (-15 -1918 ($ (-579 (-579 (-848 (-177)))))) (-15 -1918 ($ (-579 (-579 (-848 (-177)))) (-579 (-777)) (-579 (-777)) (-579 (-824)))) (-15 -1918 ($ (-579 (-579 (-848 (-177)))) (-579 (-777)) (-579 (-777)) (-579 (-824)) (-579 (-218)))) (-15 -1917 ((-579 (-579 (-848 (-177)))) $)) (-15 -3842 ((-479) $)) (-15 -1916 ((-579 (-994 (-324))) $)) (-15 -1916 ((-579 (-994 (-324))) $ (-579 (-994 (-324))))) (-15 -3833 ((-579 (-324)) $)) (-15 -3833 ((-579 (-324)) $ (-579 (-324)))) (-15 -1915 ((-1175) $ (-579 (-848 (-177))) (-777) (-777) (-824))) (-15 -1915 ((-1175) $ (-848 (-177)))) (-15 -1915 ((-1175) $ (-848 (-177)) (-777) (-777) (-824))) (-15 -1914 ((-1175) $ (-848 (-177)))) (-15 -3688 ((-1175) $ (-848 (-177)) (-777))) (-15 -3928 ($ (-579 (-579 (-848 (-177)))))) (-15 -3928 ((-766) $)) (-15 -1913 ((-579 (-579 (-848 (-177)))) (-579 (-579 (-848 (-177)))) (-579 (-777)))) (-15 -1912 ((-579 (-177)) (-579 (-579 (-848 (-177))))))))) (T -402)) +((-3928 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-402)))) (-1919 (*1 *1) (-5 *1 (-402))) (-1918 (*1 *1 *1) (-5 *1 (-402))) (-1918 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *1 (-402)))) (-1918 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *3 (-579 (-777))) (-5 *4 (-579 (-824))) (-5 *1 (-402)))) (-1918 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *3 (-579 (-777))) (-5 *4 (-579 (-824))) (-5 *5 (-579 (-218))) (-5 *1 (-402)))) (-1917 (*1 *2 *1) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *1 (-402)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-402)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-402)))) (-1916 (*1 *2 *1 *2) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-402)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-579 (-324))) (-5 *1 (-402)))) (-3833 (*1 *2 *1 *2) (-12 (-5 *2 (-579 (-324))) (-5 *1 (-402)))) (-1915 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-579 (-848 (-177)))) (-5 *4 (-777)) (-5 *5 (-824)) (-5 *2 (-1175)) (-5 *1 (-402)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-848 (-177))) (-5 *2 (-1175)) (-5 *1 (-402)))) (-1915 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-848 (-177))) (-5 *4 (-777)) (-5 *5 (-824)) (-5 *2 (-1175)) (-5 *1 (-402)))) (-1914 (*1 *2 *1 *3) (-12 (-5 *3 (-848 (-177))) (-5 *2 (-1175)) (-5 *1 (-402)))) (-3688 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-848 (-177))) (-5 *4 (-777)) (-5 *2 (-1175)) (-5 *1 (-402)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *1 (-402)))) (-1913 (*1 *2 *2 *3) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *3 (-579 (-777))) (-5 *1 (-402)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *2 (-579 (-177))) (-5 *1 (-402))))) +((-3819 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-403 |#1| |#2| |#3|) (-10 -7 (-15 -3819 (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1|))) (-404 |#2| |#3|) (-144) (-23)) (T -403)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3930 ((|#2| $) 23 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 22 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +(((-404 |#1| |#2|) (-111) (-144) (-23)) (T -404)) +((-3930 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *2)) (-4 *3 (-144)) (-4 *2 (-23)))) (-2645 (*1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3819 (*1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3821 (*1 *1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) (-3819 (*1 *1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23))))) +(-13 (-1006) (-10 -8 (-15 -3930 (|t#2| $)) (-15 -2645 ($) -3934) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3819 ($ $)) (-15 -3821 ($ $ $)) (-15 -3819 ($ $ $)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-1921 (((-3 (-579 (-415 |#1| |#2|)) "failed") (-579 (-415 |#1| |#2|)) (-579 (-767 |#1|))) 135 T ELT)) (-1920 (((-579 (-579 (-203 |#1| |#2|))) (-579 (-203 |#1| |#2|)) (-579 (-767 |#1|))) 132 T ELT)) (-1922 (((-2 (|:| |dpolys| (-579 (-203 |#1| |#2|))) (|:| |coords| (-579 (-479)))) (-579 (-203 |#1| |#2|)) (-579 (-767 |#1|))) 87 T ELT))) +(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -1920 ((-579 (-579 (-203 |#1| |#2|))) (-579 (-203 |#1| |#2|)) (-579 (-767 |#1|)))) (-15 -1921 ((-3 (-579 (-415 |#1| |#2|)) "failed") (-579 (-415 |#1| |#2|)) (-579 (-767 |#1|)))) (-15 -1922 ((-2 (|:| |dpolys| (-579 (-203 |#1| |#2|))) (|:| |coords| (-579 (-479)))) (-579 (-203 |#1| |#2|)) (-579 (-767 |#1|))))) (-579 (-1080)) (-386) (-386)) (T -405)) +((-1922 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-767 *5))) (-14 *5 (-579 (-1080))) (-4 *6 (-386)) (-5 *2 (-2 (|:| |dpolys| (-579 (-203 *5 *6))) (|:| |coords| (-579 (-479))))) (-5 *1 (-405 *5 *6 *7)) (-5 *3 (-579 (-203 *5 *6))) (-4 *7 (-386)))) (-1921 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 (-415 *4 *5))) (-5 *3 (-579 (-767 *4))) (-14 *4 (-579 (-1080))) (-4 *5 (-386)) (-5 *1 (-405 *4 *5 *6)) (-4 *6 (-386)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-767 *5))) (-14 *5 (-579 (-1080))) (-4 *6 (-386)) (-5 *2 (-579 (-579 (-203 *5 *6)))) (-5 *1 (-405 *5 *6 *7)) (-5 *3 (-579 (-203 *5 *6))) (-4 *7 (-386))))) +((-3449 (((-3 $ "failed") $) 11 T ELT)) (-2994 (($ $ $) 22 T ELT)) (-2420 (($ $ $) 23 T ELT)) (-3931 (($ $ $) 9 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 21 T ELT))) +(((-406 |#1|) (-10 -7 (-15 -2420 (|#1| |#1| |#1|)) (-15 -2994 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-479))) (-15 -3931 (|#1| |#1| |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-688))) (-15 ** (|#1| |#1| (-824)))) (-407)) (T -406)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3706 (($) 23 T CONST)) (-3449 (((-3 $ "failed") $) 20 T ELT)) (-2397 (((-83) $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 30 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2994 (($ $ $) 27 T ELT)) (-2420 (($ $ $) 26 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2651 (($) 24 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 29 T ELT)) (** (($ $ (-824)) 17 T ELT) (($ $ (-688)) 21 T ELT) (($ $ (-479)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-407) (-111)) (T -407)) +((-2469 (*1 *1 *1) (-4 *1 (-407))) (-3931 (*1 *1 *1 *1) (-4 *1 (-407))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-479)))) (-2994 (*1 *1 *1 *1) (-4 *1 (-407))) (-2420 (*1 *1 *1 *1) (-4 *1 (-407)))) +(-13 (-659) (-10 -8 (-15 -2469 ($ $)) (-15 -3931 ($ $ $)) (-15 ** ($ $ (-479))) (-6 -3974) (-15 -2994 ($ $ $)) (-15 -2420 ($ $ $)))) +(((-72) . T) ((-548 (-766)) . T) ((-659) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) 18 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-344 (-479))) NIL T ELT) (($ $ (-344 (-479)) (-344 (-479))) NIL T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|))) $) NIL T ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-688) (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|)))) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2877 (((-83) $) NIL T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-344 (-479)) $) NIL T ELT) (((-344 (-479)) $ (-344 (-479))) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-344 (-479))) NIL T ELT) (($ $ (-987) (-344 (-479))) NIL T ELT) (($ $ (-579 (-987)) (-579 (-344 (-479)))) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3924 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3794 (($ $) 29 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) 35 (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT) (($ $ (-1166 |#2|)) 30 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-344 (-479))) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-344 (-479))) NIL T ELT) (($ $ $) NIL (|has| (-344 (-479)) (-1016)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1080)) 28 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-1166 |#2|)) 16 T ELT)) (-3930 (((-344 (-479)) $) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1166 |#2|)) NIL T ELT) (($ (-1150 |#1| |#2| |#3|)) 9 T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-344 (-479))) NIL T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-3755 ((|#1| $) 21 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-344 (-479))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-1166 |#2|)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-408 |#1| |#2| |#3|) (-13 (-1152 |#1|) (-800 $ (-1166 |#2|)) (-10 -8 (-15 -3928 ($ (-1166 |#2|))) (-15 -3928 ($ (-1150 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-344 (-479)))) (-15 -3794 ($ $ (-1166 |#2|))) |%noBranch|))) (-955) (-1080) |#1|) (T -408)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-955)) (-14 *5 *3))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3) (-5 *1 (-408 *3 *4 *5)))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3)))) +((-2553 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3581 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2185 (((-1175) $ |#1| |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) NIL T ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-2219 (((-579 |#1|) $) NIL T ELT)) (-2220 (((-83) |#1| $) NIL T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2190 (((-579 |#1|) $) NIL T ELT)) (-2191 (((-83) |#1| $) NIL T ELT)) (-3227 (((-1024) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-3783 ((|#2| $) NIL (|has| |#1| (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1454 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3928 (((-766) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-548 (-766)))) ELT)) (-1254 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-409 |#1| |#2| |#3| |#4|) (-1097 |#1| |#2|) (-1006) (-1006) (-1097 |#1| |#2|) |#2|) (T -409)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |#4|)))) (-579 |#4|)) NIL T ELT)) (-3664 (((-579 $) (-579 |#4|)) NIL T ELT)) (-3066 (((-579 |#3|) $) NIL T ELT)) (-2893 (((-83) $) NIL T ELT)) (-2884 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3692 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2889 (((-83) $) 29 (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3671 (((-579 |#4|) (-579 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) NIL (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) NIL (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ #1#) (-579 |#4|)) NIL T ELT)) (-3140 (($ (-579 |#4|)) NIL T ELT)) (-3781 (((-3 $ #1#) $) 45 T ELT)) (-3667 ((|#4| |#4| $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-3388 (($ |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-490)) ELT)) (-3676 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3665 ((|#4| |#4| $) NIL T ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3977)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#4|)) (|:| -1690 (-579 |#4|))) $) NIL T ELT)) (-2874 (((-579 |#4|) $) 18 (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3164 ((|#3| $) 38 T ELT)) (-2593 (((-579 |#4|) $) 19 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2899 (((-579 |#3|) $) NIL T ELT)) (-2898 (((-83) |#3| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3780 (((-3 |#4| #1#) $) 42 T ELT)) (-3679 (((-579 |#4|) $) NIL T ELT)) (-3673 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3668 ((|#4| |#4| $) NIL T ELT)) (-3681 (((-83) $ $) NIL T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-490)) ELT)) (-3674 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 ((|#4| |#4| $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 (((-3 |#4| #1#) $) 40 T ELT)) (-1342 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3661 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3751 (($ $ |#4|) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 17 T ELT)) (-3547 (($) 14 T ELT)) (-3930 (((-688) $) NIL T ELT)) (-1934 (((-688) |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (((-688) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 13 T ELT)) (-3954 (((-468) $) NIL (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) 22 T ELT)) (-2895 (($ $ |#3|) 49 T ELT)) (-2897 (($ $ |#3|) 51 T ELT)) (-3666 (($ $) NIL T ELT)) (-2896 (($ $ |#3|) NIL T ELT)) (-3928 (((-766) $) 35 T ELT) (((-579 |#4|) $) 46 T ELT)) (-3660 (((-688) $) NIL (|has| |#3| (-314)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3672 (((-83) $ (-1 (-83) |#4| (-579 |#4|))) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 |#3|) $) NIL T ELT)) (-3915 (((-83) |#3| $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-410 |#1| |#2| |#3| |#4|) (-1114 |#1| |#2| |#3| |#4|) (-490) (-711) (-750) (-970 |#1| |#2| |#3|)) (T -410)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL T ELT) (((-344 (-479)) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3609 (($) 17 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3954 (((-324) $) 21 T ELT) (((-177) $) 24 T ELT) (((-344 (-1075 (-479))) $) 18 T ELT) (((-468) $) 53 T ELT)) (-3928 (((-766) $) 51 T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (((-177) $) 23 T ELT) (((-324) $) 20 T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2645 (($) 37 T CONST)) (-2651 (($) 8 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT))) +(((-411) (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))) (-927) (-548 (-177)) (-548 (-324)) (-549 (-344 (-1075 (-479)))) (-549 (-468)) (-10 -8 (-15 -3609 ($))))) (T -411)) +((-3609 (*1 *1) (-5 *1 (-411)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3510 (((-1039) $) 12 T ELT)) (-3511 (((-1039) $) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-412) (-13 (-988) (-10 -8 (-15 -3511 ((-1039) $)) (-15 -3510 ((-1039) $))))) (T -412)) +((-3511 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-412)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-412))))) +((-2553 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3581 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2185 (((-1175) $ |#1| |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) NIL T ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-2219 (((-579 |#1|) $) 13 T ELT)) (-2220 (((-83) |#1| $) NIL T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2190 (((-579 |#1|) $) NIL T ELT)) (-2191 (((-83) |#1| $) NIL T ELT)) (-3227 (((-1024) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-3783 ((|#2| $) NIL (|has| |#1| (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) 19 T ELT)) (-3782 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1454 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3928 (((-766) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-548 (-766)))) ELT)) (-1254 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 11 (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3939 (((-688) $) 15 (|has| $ (-6 -3977)) ELT))) +(((-413 |#1| |#2| |#3|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -3977))) (-1006) (-1006) (-1063)) (T -413)) +NIL +((-1923 (((-479) (-479) (-479)) 19 T ELT)) (-1924 (((-83) (-479) (-479) (-479) (-479)) 28 T ELT)) (-3439 (((-1169 (-579 (-479))) (-688) (-688)) 42 T ELT))) +(((-414) (-10 -7 (-15 -1923 ((-479) (-479) (-479))) (-15 -1924 ((-83) (-479) (-479) (-479) (-479))) (-15 -3439 ((-1169 (-579 (-479))) (-688) (-688))))) (T -414)) +((-3439 (*1 *2 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1169 (-579 (-479)))) (-5 *1 (-414)))) (-1924 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-479)) (-5 *2 (-83)) (-5 *1 (-414)))) (-1923 (*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-414))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-767 |#1|)) $) NIL T ELT)) (-3068 (((-1075 $) $ (-767 |#1|)) NIL T ELT) (((-1075 |#2|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#2| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#2| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#2| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-767 |#1|))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#2| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#2| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-3 (-767 |#1|) #1#) $) NIL T ELT)) (-3140 ((|#2| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-767 |#1|) $) NIL T ELT)) (-3738 (($ $ $ (-767 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-1925 (($ $ (-579 (-479))) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#2|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#2| (-386)) ELT) (($ $ (-767 |#1|)) NIL (|has| |#2| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#2| (-815)) ELT)) (-1612 (($ $ |#2| (-416 (-3939 |#1|) (-688)) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-767 |#1|) (-790 (-324))) (|has| |#2| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-767 |#1|) (-790 (-479))) (|has| |#2| (-790 (-479)))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3069 (($ (-1075 |#2|) (-767 |#1|)) NIL T ELT) (($ (-1075 $) (-767 |#1|)) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#2| (-416 (-3939 |#1|) (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-767 |#1|)) NIL T ELT)) (-2805 (((-416 (-3939 |#1|) (-688)) $) NIL T ELT) (((-688) $ (-767 |#1|)) NIL T ELT) (((-579 (-688)) $ (-579 (-767 |#1|))) NIL T ELT)) (-1613 (($ (-1 (-416 (-3939 |#1|) (-688)) (-416 (-3939 |#1|) (-688))) $) NIL T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3067 (((-3 (-767 |#1|) #1#) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) NIL (|has| |#2| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-767 |#1|)) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#2| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#2| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) NIL (|has| |#2| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#2| (-815)) ELT)) (-3448 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-767 |#1|) |#2|) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 |#2|)) NIL T ELT) (($ $ (-767 |#1|) $) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 $)) NIL T ELT)) (-3739 (($ $ (-767 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3740 (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|)) NIL T ELT)) (-3930 (((-416 (-3939 |#1|) (-688)) $) NIL T ELT) (((-688) $ (-767 |#1|)) NIL T ELT) (((-579 (-688)) $ (-579 (-767 |#1|))) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-767 |#1|) (-549 (-794 (-324)))) (|has| |#2| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-767 |#1|) (-549 (-794 (-479)))) (|has| |#2| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-767 |#1|) (-549 (-468))) (|has| |#2| (-549 (-468)))) ELT)) (-2802 ((|#2| $) NIL (|has| |#2| (-386)) ELT) (($ $ (-767 |#1|)) NIL (|has| |#2| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-767 |#1|)) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#2| (-490)) ELT)) (-3799 (((-579 |#2|) $) NIL T ELT)) (-3659 ((|#2| $ (-416 (-3939 |#1|) (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-815))) (|has| |#2| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#2| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#2| (-490)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-415 |#1| |#2|) (-13 (-855 |#2| (-416 (-3939 |#1|) (-688)) (-767 |#1|)) (-10 -8 (-15 -1925 ($ $ (-579 (-479)))))) (-579 (-1080)) (-955)) (T -415)) +((-1925 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-415 *3 *4)) (-14 *3 (-579 (-1080))) (-4 *4 (-955))))) +((-2553 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3172 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3689 (($ (-824)) NIL (|has| |#2| (-955)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-2468 (($ $ $) NIL (|has| |#2| (-711)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-102)) ELT)) (-3120 (((-688)) NIL (|has| |#2| (-314)) ELT)) (-3770 ((|#2| $ (-479) |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (-12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1006)) ELT)) (-3140 (((-479) $) NIL (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) ELT) (((-344 (-479)) $) NIL (-12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) ((|#2| $) NIL (|has| |#2| (-1006)) ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL (|has| |#2| (-955)) ELT) (((-626 |#2|) (-626 $)) NIL (|has| |#2| (-955)) ELT)) (-3449 (((-3 $ #1#) $) NIL (|has| |#2| (-955)) ELT)) (-2979 (($) NIL (|has| |#2| (-314)) ELT)) (-1564 ((|#2| $ (-479) |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ (-479)) 11 T ELT)) (-3170 (((-83) $) NIL (|has| |#2| (-711)) ELT)) (-2874 (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) NIL (|has| |#2| (-955)) ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#2| (-750)) ELT)) (-2593 (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#2| (-750)) ELT)) (-1937 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1997 (((-824) $) NIL (|has| |#2| (-314)) ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL (|has| |#2| (-955)) ELT) (((-626 |#2|) (-1169 $)) NIL (|has| |#2| (-955)) ELT)) (-3226 (((-1063) $) NIL (|has| |#2| (-1006)) ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-2387 (($ (-824)) NIL (|has| |#2| (-314)) ELT)) (-3227 (((-1024) $) NIL (|has| |#2| (-1006)) ELT)) (-3783 ((|#2| $) NIL (|has| (-479) (-750)) ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ (-479) |#2|) NIL T ELT) ((|#2| $ (-479)) NIL T ELT)) (-3818 ((|#2| $ $) NIL (|has| |#2| (-955)) ELT)) (-1456 (($ (-1169 |#2|)) NIL T ELT)) (-3893 (((-105)) NIL (|has| |#2| (-308)) ELT)) (-3740 (($ $ (-688)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-955)) ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL (|has| |#2| (-955)) ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-1169 |#2|) $) NIL T ELT) (($ (-479)) NIL (OR (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (|has| |#2| (-955))) ELT) (($ (-344 (-479))) NIL (-12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) (($ |#2|) NIL (|has| |#2| (-1006)) ELT) (((-766) $) NIL (|has| |#2| (-548 (-766))) ELT)) (-3110 (((-688)) NIL (|has| |#2| (-955)) CONST)) (-1254 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2645 (($) NIL (|has| |#2| (-23)) CONST)) (-2651 (($) NIL (|has| |#2| (-955)) CONST)) (-2654 (($ $ (-688)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-955)) ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL (|has| |#2| (-955)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-2670 (((-83) $ $) 17 (|has| |#2| (-750)) ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3821 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-688)) NIL (|has| |#2| (-955)) ELT) (($ $ (-824)) NIL (|has| |#2| (-955)) ELT)) (* (($ $ $) NIL (|has| |#2| (-955)) ELT) (($ $ |#2|) NIL (|has| |#2| (-659)) ELT) (($ |#2| $) NIL (|has| |#2| (-659)) ELT) (($ (-479) $) NIL (|has| |#2| (-21)) ELT) (($ (-688) $) NIL (|has| |#2| (-23)) ELT) (($ (-824) $) NIL (|has| |#2| (-25)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-416 |#1| |#2|) (-193 |#1| |#2|) (-688) (-711)) (T -416)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-1926 (((-579 (-779)) $) 16 T ELT)) (-3524 (((-440) $) 14 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1927 (($ (-440) (-579 (-779))) 12 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 23 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-417) (-13 (-988) (-10 -8 (-15 -1927 ($ (-440) (-579 (-779)))) (-15 -3524 ((-440) $)) (-15 -1926 ((-579 (-779)) $))))) (T -417)) +((-1927 (*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-579 (-779))) (-5 *1 (-417)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-417)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-579 (-779))) (-5 *1 (-417))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3706 (($) NIL T CONST)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2841 (($ $ $) 48 T ELT)) (-3500 (($ $ $) 47 T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2842 ((|#1| $) 40 T ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 41 T ELT)) (-3591 (($ |#1| $) 18 T ELT)) (-1928 (($ (-579 |#1|)) 19 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1264 ((|#1| $) 34 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) 11 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 29 (|has| $ (-6 -3977)) ELT))) +(((-418 |#1|) (-13 (-875 |#1|) (-10 -8 (-15 -1928 ($ (-579 |#1|))))) (-750)) (T -418)) +((-1928 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-418 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3824 (($ $) 71 T ELT)) (-1625 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1957 (((-350 |#2| (-344 |#2|) |#3| |#4|) $) 45 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (((-3 |#4| #1#) $) 117 T ELT)) (-1626 (($ (-350 |#2| (-344 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-479)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3417 (((-2 (|:| -2323 (-350 |#2| (-344 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3928 (((-766) $) 110 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 32 T CONST)) (-3041 (((-83) $ $) 121 T ELT)) (-3819 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 72 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 77 T ELT))) +(((-419 |#1| |#2| |#3| |#4|) (-282 |#1| |#2| |#3| |#4|) (-308) (-1145 |#1|) (-1145 (-344 |#2|)) (-287 |#1| |#2| |#3|)) (T -419)) +NIL +((-1932 (((-479) (-579 (-479))) 53 T ELT)) (-1929 ((|#1| (-579 |#1|)) 94 T ELT)) (-1931 (((-579 |#1|) (-579 |#1|)) 95 T ELT)) (-1930 (((-579 |#1|) (-579 |#1|)) 97 T ELT)) (-3128 ((|#1| (-579 |#1|)) 96 T ELT)) (-2802 (((-579 (-479)) (-579 |#1|)) 56 T ELT))) +(((-420 |#1|) (-10 -7 (-15 -3128 (|#1| (-579 |#1|))) (-15 -1929 (|#1| (-579 |#1|))) (-15 -1930 ((-579 |#1|) (-579 |#1|))) (-15 -1931 ((-579 |#1|) (-579 |#1|))) (-15 -2802 ((-579 (-479)) (-579 |#1|))) (-15 -1932 ((-479) (-579 (-479))))) (-1145 (-479))) (T -420)) +((-1932 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-479)) (-5 *1 (-420 *4)) (-4 *4 (-1145 *2)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-579 *4)) (-4 *4 (-1145 (-479))) (-5 *2 (-579 (-479))) (-5 *1 (-420 *4)))) (-1931 (*1 *2 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1145 (-479))) (-5 *1 (-420 *3)))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1145 (-479))) (-5 *1 (-420 *3)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-5 *1 (-420 *2)) (-4 *2 (-1145 (-479))))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-5 *1 (-420 *2)) (-4 *2 (-1145 (-479)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 (((-479) $) NIL (|has| (-479) (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| (-479) (-734)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL (|has| (-479) (-944 (-1080))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| (-479) (-944 (-479))) ELT) (((-3 (-479) #1#) $) NIL (|has| (-479) (-944 (-479))) ELT)) (-3140 (((-479) $) NIL T ELT) (((-1080) $) NIL (|has| (-479) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL (|has| (-479) (-944 (-479))) ELT) (((-479) $) NIL (|has| (-479) (-944 (-479))) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-479)) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-479) (-478)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| (-479) (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| (-479) (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| (-479) (-790 (-324))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-479) $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| (-479) (-1056)) ELT)) (-3171 (((-83) $) NIL (|has| (-479) (-734)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-479) (-750)) ELT)) (-3940 (($ (-1 (-479) (-479)) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL T ELT) (((-626 (-479)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-479) (-1056)) CONST)) (-1933 (($ (-344 (-479))) 9 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL (|has| (-479) (-254)) ELT) (((-344 (-479)) $) NIL T ELT)) (-3114 (((-479) $) NIL (|has| (-479) (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-3750 (($ $ (-579 (-479)) (-579 (-479))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-479) (-479)) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-245 (-479))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-579 (-245 (-479)))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-579 (-1080)) (-579 (-479))) NIL (|has| (-479) (-448 (-1080) (-479))) ELT) (($ $ (-1080) (-479)) NIL (|has| (-479) (-448 (-1080) (-479))) ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ $ (-479)) NIL (|has| (-479) (-238 (-479) (-479))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $ (-1 (-479) (-479))) NIL T ELT) (($ $ (-1 (-479) (-479)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $) NIL (|has| (-479) (-187)) ELT) (($ $ (-688)) NIL (|has| (-479) (-187)) ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-479) $) NIL T ELT)) (-3954 (((-794 (-479)) $) NIL (|has| (-479) (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| (-479) (-549 (-794 (-324)))) ELT) (((-468) $) NIL (|has| (-479) (-549 (-468))) ELT) (((-324) $) NIL (|has| (-479) (-927)) ELT) (((-177) $) NIL (|has| (-479) (-927)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| (-479) (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) 8 T ELT) (($ (-479)) NIL T ELT) (($ (-1080)) NIL (|has| (-479) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL T ELT) (((-911 16) $) 10 T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-479) (-815))) (|has| (-479) (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-3115 (((-479) $) NIL (|has| (-479) (-478)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3365 (($ $) NIL (|has| (-479) (-734)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1 (-479) (-479))) NIL T ELT) (($ $ (-1 (-479) (-479)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $) NIL (|has| (-479) (-187)) ELT) (($ $ (-688)) NIL (|has| (-479) (-187)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-3931 (($ $ $) NIL T ELT) (($ (-479) (-479)) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ (-479)) NIL T ELT))) +(((-421) (-13 (-898 (-479)) (-548 (-344 (-479))) (-548 (-911 16)) (-10 -8 (-15 -3112 ((-344 (-479)) $)) (-15 -1933 ($ (-344 (-479))))))) (T -421)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-421)))) (-1933 (*1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-421))))) +((-2593 (((-579 |#2|) $) 31 T ELT)) (-3229 (((-83) |#2| $) 39 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 26 T ELT)) (-3750 (($ $ (-579 (-245 |#2|))) 13 T ELT) (($ $ (-245 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) 30 T ELT) (((-688) |#2| $) 37 T ELT)) (-3928 (((-766) $) 45 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 23 T ELT)) (-3041 (((-83) $ $) 35 T ELT)) (-3939 (((-688) $) 18 T ELT))) +(((-422 |#1| |#2|) (-10 -7 (-15 -3041 ((-83) |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -3750 (|#1| |#1| (-579 |#2|) (-579 |#2|))) (-15 -3750 (|#1| |#1| |#2| |#2|)) (-15 -3750 (|#1| |#1| (-245 |#2|))) (-15 -3750 (|#1| |#1| (-579 (-245 |#2|)))) (-15 -3229 ((-83) |#2| |#1|)) (-15 -1934 ((-688) |#2| |#1|)) (-15 -2593 ((-579 |#2|) |#1|)) (-15 -1934 ((-688) (-1 (-83) |#2|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3939 ((-688) |#1|))) (-423 |#2|) (-1119)) (T -422)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3706 (($) 7 T CONST)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-423 |#1|) (-111) (-1119)) (T -423)) +((-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-423 *3)) (-4 *3 (-1119)))) (-1937 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3978)) (-4 *1 (-423 *3)) (-4 *3 (-1119)))) (-1936 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3977)) (-4 *1 (-423 *4)) (-4 *4 (-1119)) (-5 *2 (-83)))) (-1935 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3977)) (-4 *1 (-423 *4)) (-4 *4 (-1119)) (-5 *2 (-83)))) (-1934 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3977)) (-4 *1 (-423 *4)) (-4 *4 (-1119)) (-5 *2 (-688)))) (-2874 (*1 *2 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-423 *3)) (-4 *3 (-1119)) (-5 *2 (-579 *3)))) (-2593 (*1 *2 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-423 *3)) (-4 *3 (-1119)) (-5 *2 (-579 *3)))) (-1934 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-423 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-688)))) (-3229 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-423 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-83))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-548 (-766))) (-6 (-548 (-766))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |t#1| (-1006)) (IF (|has| |t#1| (-256 |t#1|)) (-6 (-256 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3940 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3978)) (-15 -1937 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -3977)) (PROGN (-15 -1936 ((-83) (-1 (-83) |t#1|) $)) (-15 -1935 ((-83) (-1 (-83) |t#1|) $)) (-15 -1934 ((-688) (-1 (-83) |t#1|) $)) (-15 -2874 ((-579 |t#1|) $)) (-15 -2593 ((-579 |t#1|) $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -1934 ((-688) |t#1| $)) (-15 -3229 ((-83) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-3928 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-424 |#1|) (-111) (-1119)) (T -424)) +NIL +(-13 (-548 |t#1|) (-551 |t#1|)) +(((-551 |#1|) . T) ((-548 |#1|) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1938 (($ (-1063)) 8 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 15 T ELT) (((-1063) $) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 11 T ELT))) +(((-425) (-13 (-1006) (-548 (-1063)) (-10 -8 (-15 -1938 ($ (-1063)))))) (T -425)) +((-1938 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-425))))) +((-3474 (($ $) 15 T ELT)) (-3472 (($ $) 24 T ELT)) (-3476 (($ $) 12 T ELT)) (-3477 (($ $) 10 T ELT)) (-3475 (($ $) 17 T ELT)) (-3473 (($ $) 22 T ELT))) +(((-426 |#1|) (-10 -7 (-15 -3473 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -3474 (|#1| |#1|))) (-427)) (T -426)) +NIL +((-3474 (($ $) 11 T ELT)) (-3472 (($ $) 10 T ELT)) (-3476 (($ $) 9 T ELT)) (-3477 (($ $) 8 T ELT)) (-3475 (($ $) 7 T ELT)) (-3473 (($ $) 6 T ELT))) +(((-427) (-111)) (T -427)) +((-3474 (*1 *1 *1) (-4 *1 (-427))) (-3472 (*1 *1 *1) (-4 *1 (-427))) (-3476 (*1 *1 *1) (-4 *1 (-427))) (-3477 (*1 *1 *1) (-4 *1 (-427))) (-3475 (*1 *1 *1) (-4 *1 (-427))) (-3473 (*1 *1 *1) (-4 *1 (-427)))) +(-13 (-10 -8 (-15 -3473 ($ $)) (-15 -3475 ($ $)) (-15 -3477 ($ $)) (-15 -3476 ($ $)) (-15 -3472 ($ $)) (-15 -3474 ($ $)))) +((-3714 (((-342 |#4|) |#4| (-1 (-342 |#2|) |#2|)) 54 T ELT))) +(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3714 ((-342 |#4|) |#4| (-1 (-342 |#2|) |#2|)))) (-308) (-1145 |#1|) (-13 (-308) (-118) (-657 |#1| |#2|)) (-1145 |#3|)) (T -428)) +((-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) (-4 *7 (-13 (-308) (-118) (-657 *5 *6))) (-5 *2 (-342 *3)) (-5 *1 (-428 *5 *6 *7 *3)) (-4 *3 (-1145 *7))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1204 (((-579 $) (-1075 $) (-1080)) NIL T ELT) (((-579 $) (-1075 $)) NIL T ELT) (((-579 $) (-851 $)) NIL T ELT)) (-1205 (($ (-1075 $) (-1080)) NIL T ELT) (($ (-1075 $)) NIL T ELT) (($ (-851 $)) NIL T ELT)) (-3172 (((-83) $) 39 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1939 (((-83) $ $) 72 T ELT)) (-1588 (((-579 (-546 $)) $) 49 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1592 (($ $ (-245 $)) NIL T ELT) (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-579 (-546 $)) (-579 $)) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-3022 (($ $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-1206 (((-579 $) (-1075 $) (-1080)) NIL T ELT) (((-579 $) (-1075 $)) NIL T ELT) (((-579 $) (-851 $)) NIL T ELT)) (-3167 (($ (-1075 $) (-1080)) NIL T ELT) (($ (-1075 $)) NIL T ELT) (($ (-851 $)) NIL T ELT)) (-3141 (((-3 (-546 $) #1#) $) NIL T ELT) (((-3 (-479) #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT)) (-3140 (((-546 $) $) NIL T ELT) (((-479) $) NIL T ELT) (((-344 (-479)) $) 54 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-479)) (-626 $)) NIL T ELT) (((-2 (|:| |mat| (-626 (-344 (-479)))) (|:| |vec| (-1169 (-344 (-479))))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-344 (-479))) (-626 $)) NIL T ELT)) (-3824 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-2558 (($ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1587 (((-579 (-84)) $) NIL T ELT)) (-3577 (((-84) (-84)) NIL T ELT)) (-2397 (((-83) $) 42 T ELT)) (-2658 (((-83) $) NIL (|has| $ (-944 (-479))) ELT)) (-2983 (((-1029 (-479) (-546 $)) $) 37 T ELT)) (-2996 (($ $ (-479)) NIL T ELT)) (-3116 (((-1075 $) (-1075 $) (-546 $)) 86 T ELT) (((-1075 $) (-1075 $) (-579 (-546 $))) 61 T ELT) (($ $ (-546 $)) 75 T ELT) (($ $ (-579 (-546 $))) 76 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-1585 (((-1075 $) (-546 $)) 73 (|has| $ (-955)) ELT)) (-3940 (($ (-1 $ $) (-546 $)) NIL T ELT)) (-1590 (((-3 (-546 $) #1#) $) NIL T ELT)) (-2267 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL T ELT) (((-626 (-479)) (-1169 $)) NIL T ELT) (((-2 (|:| |mat| (-626 (-344 (-479)))) (|:| |vec| (-1169 (-344 (-479))))) (-1169 $) $) NIL T ELT) (((-626 (-344 (-479))) (-1169 $)) NIL T ELT)) (-1879 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1589 (((-579 (-546 $)) $) NIL T ELT)) (-2222 (($ (-84) $) NIL T ELT) (($ (-84) (-579 $)) NIL T ELT)) (-2618 (((-83) $ (-84)) NIL T ELT) (((-83) $ (-1080)) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-2588 (((-688) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1586 (((-83) $ $) NIL T ELT) (((-83) $ (-1080)) NIL T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-2659 (((-83) $) NIL (|has| $ (-944 (-479))) ELT)) (-3750 (($ $ (-546 $) $) NIL T ELT) (($ $ (-579 (-546 $)) (-579 $)) NIL T ELT) (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ $))) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-1 $ (-579 $)))) NIL T ELT) (($ $ (-1080) (-1 $ (-579 $))) NIL T ELT) (($ $ (-1080) (-1 $ $)) NIL T ELT) (($ $ (-579 (-84)) (-579 (-1 $ $))) NIL T ELT) (($ $ (-579 (-84)) (-579 (-1 $ (-579 $)))) NIL T ELT) (($ $ (-84) (-1 $ (-579 $))) NIL T ELT) (($ $ (-84) (-1 $ $)) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ (-84) $) NIL T ELT) (($ (-84) $ $) NIL T ELT) (($ (-84) $ $ $) NIL T ELT) (($ (-84) $ $ $ $) NIL T ELT) (($ (-84) (-579 $)) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1591 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3740 (($ $) 36 T ELT) (($ $ (-688)) NIL T ELT)) (-2982 (((-1029 (-479) (-546 $)) $) 20 T ELT)) (-3169 (($ $) NIL (|has| $ (-955)) ELT)) (-3954 (((-324) $) 100 T ELT) (((-177) $) 108 T ELT) (((-140 (-324)) $) 116 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-546 $)) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-1029 (-479) (-546 $))) 21 T ELT)) (-3110 (((-688)) NIL T CONST)) (-2575 (($ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-2241 (((-83) (-84)) 92 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2645 (($) 10 T CONST)) (-2651 (($) 22 T CONST)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3041 (((-83) $ $) 24 T ELT)) (-3931 (($ $ $) 44 T ELT)) (-3819 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-344 (-479))) NIL T ELT) (($ $ (-479)) 47 T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-824)) NIL T ELT)) (* (($ (-344 (-479)) $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-479) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-824) $) NIL T ELT))) +(((-429) (-13 (-250) (-27) (-944 (-479)) (-944 (-344 (-479))) (-576 (-479)) (-927) (-576 (-344 (-479))) (-118) (-549 (-140 (-324))) (-188) (-551 (-1029 (-479) (-546 $))) (-10 -8 (-15 -2983 ((-1029 (-479) (-546 $)) $)) (-15 -2982 ((-1029 (-479) (-546 $)) $)) (-15 -3824 ($ $)) (-15 -1939 ((-83) $ $)) (-15 -3116 ((-1075 $) (-1075 $) (-546 $))) (-15 -3116 ((-1075 $) (-1075 $) (-579 (-546 $)))) (-15 -3116 ($ $ (-546 $))) (-15 -3116 ($ $ (-579 (-546 $))))))) (T -429)) +((-2983 (*1 *2 *1) (-12 (-5 *2 (-1029 (-479) (-546 (-429)))) (-5 *1 (-429)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-1029 (-479) (-546 (-429)))) (-5 *1 (-429)))) (-3824 (*1 *1 *1) (-5 *1 (-429))) (-1939 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-429)))) (-3116 (*1 *2 *2 *3) (-12 (-5 *2 (-1075 (-429))) (-5 *3 (-546 (-429))) (-5 *1 (-429)))) (-3116 (*1 *2 *2 *3) (-12 (-5 *2 (-1075 (-429))) (-5 *3 (-579 (-546 (-429)))) (-5 *1 (-429)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-546 (-429))) (-5 *1 (-429)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-546 (-429)))) (-5 *1 (-429))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) 43 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) 39 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 38 T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) NIL T ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) |#1|) 22 T ELT)) (-2187 (((-479) $) 18 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) 40 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) 16 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) 20 T ELT)) (-3782 ((|#1| $ (-479) |#1|) NIL T ELT) ((|#1| $ (-479)) 42 T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 14 T ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 25 T ELT)) (-3784 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) 12 (|has| $ (-6 -3977)) ELT))) +(((-430 |#1| |#2|) (-19 |#1|) (-1119) (-479)) (T -430)) +NIL +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3770 ((|#1| $ (-479) (-479) |#1|) NIL T ELT)) (-1246 (($ $ (-479) (-430 |#1| |#3|)) NIL T ELT)) (-1245 (($ $ (-479) (-430 |#1| |#2|)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3096 (((-430 |#1| |#3|) $ (-479)) NIL T ELT)) (-1564 ((|#1| $ (-479) (-479) |#1|) NIL T ELT)) (-3097 ((|#1| $ (-479) (-479)) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL T ELT)) (-3099 (((-688) $) NIL T ELT)) (-3596 (($ (-688) (-688) |#1|) NIL T ELT)) (-3098 (((-688) $) NIL T ELT)) (-3103 (((-479) $) NIL T ELT)) (-3101 (((-479) $) NIL T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3102 (((-479) $) NIL T ELT)) (-3100 (((-479) $) NIL T ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-2186 (($ $ |#1|) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) (-479)) NIL T ELT) ((|#1| $ (-479) (-479) |#1|) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3095 (((-430 |#1| |#2|) $ (-479)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-431 |#1| |#2| |#3|) (-57 |#1| (-430 |#1| |#3|) (-430 |#1| |#2|)) (-1119) (-479) (-479)) (T -431)) +NIL +((-1941 (((-579 (-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-688) (-688)) 32 T ELT)) (-1940 (((-579 (-1075 |#1|)) |#1| (-688) (-688) (-688)) 43 T ELT)) (-2064 (((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-579 |#3|) (-579 (-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-688)) 107 T ELT))) +(((-432 |#1| |#2| |#3|) (-10 -7 (-15 -1940 ((-579 (-1075 |#1|)) |#1| (-688) (-688) (-688))) (-15 -1941 ((-579 (-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-688) (-688))) (-15 -2064 ((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) (-579 |#3|) (-579 (-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) (-688)))) (-295) (-1145 |#1|) (-1145 |#2|)) (T -432)) +((-2064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 (-2 (|:| -1999 (-626 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-626 *7))))) (-5 *5 (-688)) (-4 *8 (-1145 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-295)) (-5 *2 (-2 (|:| -1999 (-626 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-626 *7)))) (-5 *1 (-432 *6 *7 *8)))) (-1941 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-688)) (-4 *5 (-295)) (-4 *6 (-1145 *5)) (-5 *2 (-579 (-2 (|:| -1999 (-626 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-626 *6))))) (-5 *1 (-432 *5 *6 *7)) (-5 *3 (-2 (|:| -1999 (-626 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-626 *6)))) (-4 *7 (-1145 *6)))) (-1940 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-688)) (-4 *3 (-295)) (-4 *5 (-1145 *3)) (-5 *2 (-579 (-1075 *3))) (-5 *1 (-432 *3 *5 *6)) (-4 *6 (-1145 *5))))) +((-1947 (((-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|)))) 70 T ELT)) (-1942 ((|#1| (-626 |#1|) |#1| (-688)) 24 T ELT)) (-1944 (((-688) (-688) (-688)) 34 T ELT)) (-1946 (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 50 T ELT)) (-1945 (((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|) 58 T ELT) (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 55 T ELT)) (-1943 ((|#1| (-626 |#1|) (-626 |#1|) |#1| (-479)) 28 T ELT)) (-3311 ((|#1| (-626 |#1|)) 18 T ELT))) +(((-433 |#1| |#2| |#3|) (-10 -7 (-15 -3311 (|#1| (-626 |#1|))) (-15 -1942 (|#1| (-626 |#1|) |#1| (-688))) (-15 -1943 (|#1| (-626 |#1|) (-626 |#1|) |#1| (-479))) (-15 -1944 ((-688) (-688) (-688))) (-15 -1945 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1945 ((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|)) (-15 -1946 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -1947 ((-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|))) (-2 (|:| -1999 (-626 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-626 |#1|)))))) (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $)))) (-1145 |#1|) (-347 |#1| |#2|)) (T -433)) +((-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4)))) (-1946 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4)))) (-1945 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4)))) (-1945 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4)))) (-1944 (*1 *2 *2 *2) (-12 (-5 *2 (-688)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *4 (-1145 *3)) (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4)))) (-1943 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-626 *2)) (-5 *4 (-479)) (-4 *2 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *5 (-1145 *2)) (-5 *1 (-433 *2 *5 *6)) (-4 *6 (-347 *2 *5)))) (-1942 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-626 *2)) (-5 *4 (-688)) (-4 *2 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *5 (-1145 *2)) (-5 *1 (-433 *2 *5 *6)) (-4 *6 (-347 *2 *5)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-626 *2)) (-4 *4 (-1145 *2)) (-4 *2 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-5 *1 (-433 *2 *4 *5)) (-4 *5 (-347 *2 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) 44 T ELT)) (-3304 (($ $ $) 41 T ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) $) NIL (|has| (-83) (-750)) ELT) (((-83) (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-1718 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-83) (-750))) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-2894 (($ $) NIL (|has| (-83) (-750)) ELT) (($ (-1 (-83) (-83) (-83)) $) NIL T ELT)) (-3770 (((-83) $ (-1136 (-479)) (-83)) NIL (|has| $ (-6 -3978)) ELT) (((-83) $ (-479) (-83)) 43 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-3388 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-83) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-3824 (((-83) (-1 (-83) (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83)) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-83) (-83)) $ (-83) (-83)) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-1564 (((-83) $ (-479) (-83)) NIL (|has| $ (-6 -3978)) ELT)) (-3097 (((-83) $ (-479)) NIL T ELT)) (-3401 (((-479) (-83) $ (-479)) NIL (|has| (-83) (-1006)) ELT) (((-479) (-83) $) NIL (|has| (-83) (-1006)) ELT) (((-479) (-1 (-83) (-83)) $) NIL T ELT)) (-2874 (((-579 (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-2546 (($ $ $) 39 T ELT)) (-2545 (($ $) NIL T ELT)) (-1288 (($ $ $) NIL T ELT)) (-3596 (($ (-688) (-83)) 27 T ELT)) (-1289 (($ $ $) NIL T ELT)) (-2187 (((-479) $) 8 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL T ELT)) (-3500 (($ $ $) NIL (|has| (-83) (-750)) ELT) (($ (-1 (-83) (-83) (-83)) $ $) NIL T ELT)) (-2593 (((-579 (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL T ELT)) (-1937 (($ (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-83) (-83) (-83)) $ $) 36 T ELT) (($ (-1 (-83) (-83)) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2291 (($ $ $ (-479)) NIL T ELT) (($ (-83) $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 (((-83) $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 (-83) "failed") (-1 (-83) (-83)) $) NIL T ELT)) (-2186 (($ $ (-83)) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-83)) (-579 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT) (($ $ (-83) (-83)) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT) (($ $ (-245 (-83))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT) (($ $ (-579 (-245 (-83)))) NIL (-12 (|has| (-83) (-256 (-83))) (|has| (-83) (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) (-83) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT)) (-2192 (((-579 (-83)) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) 29 T ELT)) (-3782 (($ $ (-1136 (-479))) NIL T ELT) (((-83) $ (-479)) 22 T ELT) (((-83) $ (-479) (-83)) NIL T ELT)) (-2292 (($ $ (-1136 (-479))) NIL T ELT) (($ $ (-479)) NIL T ELT)) (-1934 (((-688) (-83) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-83) (-1006))) ELT) (((-688) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 30 T ELT)) (-3954 (((-468) $) NIL (|has| (-83) (-549 (-468))) ELT)) (-3512 (($ (-579 (-83))) NIL T ELT)) (-3784 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-83) $) NIL T ELT) (($ $ (-83)) NIL T ELT)) (-3928 (((-766) $) 26 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-83)) $) NIL (|has| $ (-6 -3977)) ELT)) (-2547 (($ $ $) 37 T ELT)) (-2298 (($ $ $) 46 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 31 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 32 T ELT)) (-2299 (($ $ $) 45 T ELT)) (-3939 (((-688) $) 13 (|has| $ (-6 -3977)) ELT))) +(((-434 |#1|) (-94) (-479)) (T -434)) +NIL +((-1949 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1075 |#4|)) 35 T ELT)) (-1948 (((-1075 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1075 |#4|)) 22 T ELT)) (-1950 (((-3 (-626 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-626 (-1075 |#4|))) 46 T ELT)) (-1951 (((-1075 (-1075 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1948 (|#2| (-1 |#1| |#4|) (-1075 |#4|))) (-15 -1948 ((-1075 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1949 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1075 |#4|))) (-15 -1950 ((-3 (-626 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-626 (-1075 |#4|)))) (-15 -1951 ((-1075 (-1075 |#4|)) (-1 |#4| |#1|) |#3|))) (-955) (-1145 |#1|) (-1145 |#2|) (-955)) (T -435)) +((-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-955)) (-4 *7 (-955)) (-4 *6 (-1145 *5)) (-5 *2 (-1075 (-1075 *7))) (-5 *1 (-435 *5 *6 *4 *7)) (-4 *4 (-1145 *6)))) (-1950 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-626 (-1075 *8))) (-4 *5 (-955)) (-4 *8 (-955)) (-4 *6 (-1145 *5)) (-5 *2 (-626 *6)) (-5 *1 (-435 *5 *6 *7 *8)) (-4 *7 (-1145 *6)))) (-1949 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1075 *7)) (-4 *5 (-955)) (-4 *7 (-955)) (-4 *2 (-1145 *5)) (-5 *1 (-435 *5 *2 *6 *7)) (-4 *6 (-1145 *2)))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-955)) (-4 *7 (-955)) (-4 *4 (-1145 *5)) (-5 *2 (-1075 *7)) (-5 *1 (-435 *5 *4 *6 *7)) (-4 *6 (-1145 *4)))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1075 *7)) (-4 *5 (-955)) (-4 *7 (-955)) (-4 *2 (-1145 *5)) (-5 *1 (-435 *5 *2 *6 *7)) (-4 *6 (-1145 *2))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1952 (((-1175) $) 25 T ELT)) (-3782 (((-1063) $ (-1080)) 30 T ELT)) (-3599 (((-1175) $) 20 T ELT)) (-3928 (((-766) $) 27 T ELT) (($ (-1063)) 26 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 12 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 10 T ELT))) +(((-436) (-13 (-750) (-551 (-1063)) (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 ((-1175) $)) (-15 -1952 ((-1175) $))))) (T -436)) +((-3782 (*1 *2 *1 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1063)) (-5 *1 (-436)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436))))) +((-3723 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3721 ((|#1| |#4|) 10 T ELT)) (-3722 ((|#3| |#4|) 17 T ELT))) +(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3721 (|#1| |#4|)) (-15 -3722 (|#3| |#4|)) (-15 -3723 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-490) (-898 |#1|) (-318 |#1|) (-318 |#2|)) (T -437)) +((-3723 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-898 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-437 *4 *5 *6 *3)) (-4 *6 (-318 *4)) (-4 *3 (-318 *5)))) (-3722 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-898 *4)) (-4 *2 (-318 *4)) (-5 *1 (-437 *4 *5 *2 *3)) (-4 *3 (-318 *5)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-898 *2)) (-4 *2 (-490)) (-5 *1 (-437 *2 *4 *5 *3)) (-4 *5 (-318 *2)) (-4 *3 (-318 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1962 (((-83) $ (-579 |#3|)) 127 T ELT) (((-83) $) 128 T ELT)) (-3172 (((-83) $) 178 T ELT)) (-1954 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-579 |#3|)) 122 T ELT)) (-1953 (((-1070 (-579 (-851 |#1|)) (-579 (-245 (-851 |#1|)))) (-579 |#4|)) 171 (|has| |#3| (-549 (-1080))) ELT)) (-1961 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2397 (((-83) $) 177 T ELT)) (-1958 (($ $) 132 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3222 (($ $ $) 99 T ELT) (($ (-579 $)) 101 T ELT)) (-1963 (((-83) |#4| $) 130 T ELT)) (-1964 (((-83) $ $) 82 T ELT)) (-1957 (($ (-579 |#4|)) 106 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1956 (($ (-579 |#4|)) 175 T ELT)) (-1955 (((-83) $) 176 T ELT)) (-2238 (($ $) 85 T ELT)) (-2680 (((-579 |#4|) $) 73 T ELT)) (-1960 (((-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $)) $ (-579 |#3|)) NIL T ELT)) (-1965 (((-83) |#4| $) 89 T ELT)) (-3893 (((-479) $ (-579 |#3|)) 134 T ELT) (((-479) $) 135 T ELT)) (-3928 (((-766) $) 174 T ELT) (($ (-579 |#4|)) 102 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1959 (($ (-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3041 (((-83) $ $) 84 T ELT)) (-3821 (($ $ $) 109 T ELT)) (** (($ $ (-688)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-438 |#1| |#2| |#3| |#4|) (-13 (-1006) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-688))) (-15 -3821 ($ $ $)) (-15 -2397 ((-83) $)) (-15 -3172 ((-83) $)) (-15 -1965 ((-83) |#4| $)) (-15 -1964 ((-83) $ $)) (-15 -1963 ((-83) |#4| $)) (-15 -1962 ((-83) $ (-579 |#3|))) (-15 -1962 ((-83) $)) (-15 -3222 ($ $ $)) (-15 -3222 ($ (-579 $))) (-15 -1961 ($ $ $)) (-15 -1961 ($ $ |#4|)) (-15 -2238 ($ $)) (-15 -1960 ((-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $)) $ (-579 |#3|))) (-15 -1959 ($ (-2 (|:| |mval| (-626 |#1|)) (|:| |invmval| (-626 |#1|)) (|:| |genIdeal| $)))) (-15 -3893 ((-479) $ (-579 |#3|))) (-15 -3893 ((-479) $)) (-15 -1958 ($ $)) (-15 -1957 ($ (-579 |#4|))) (-15 -1956 ($ (-579 |#4|))) (-15 -1955 ((-83) $)) (-15 -2680 ((-579 |#4|) $)) (-15 -3928 ($ (-579 |#4|))) (-15 -1954 ($ $ |#4|)) (-15 -1954 ($ $ |#4| (-579 |#3|))) (IF (|has| |#3| (-549 (-1080))) (-15 -1953 ((-1070 (-579 (-851 |#1|)) (-579 (-245 (-851 |#1|)))) (-579 |#4|))) |%noBranch|))) (-308) (-711) (-750) (-855 |#1| |#2| |#3|)) (T -438)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) (-4 *5 (-855 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-3821 (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) (-4 *5 (-855 *2 *3 *4)))) (-2397 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-3172 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-1965 (*1 *2 *3 *1) (-12 (-4 *4 (-308)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6)))) (-1964 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-1963 (*1 *2 *3 *1) (-12 (-4 *4 (-308)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6)))) (-1962 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *6)) (-4 *6 (-750)) (-4 *4 (-308)) (-4 *5 (-711)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5 *6 *7)) (-4 *7 (-855 *4 *5 *6)))) (-1962 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-3222 (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) (-4 *5 (-855 *2 *3 *4)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-579 (-438 *3 *4 *5 *6))) (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-1961 (*1 *1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) (-4 *5 (-855 *2 *3 *4)))) (-1961 (*1 *1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *2)) (-4 *2 (-855 *3 *4 *5)))) (-2238 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) (-4 *5 (-855 *2 *3 *4)))) (-1960 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *6)) (-4 *6 (-750)) (-4 *4 (-308)) (-4 *5 (-711)) (-5 *2 (-2 (|:| |mval| (-626 *4)) (|:| |invmval| (-626 *4)) (|:| |genIdeal| (-438 *4 *5 *6 *7)))) (-5 *1 (-438 *4 *5 *6 *7)) (-4 *7 (-855 *4 *5 *6)))) (-1959 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-626 *3)) (|:| |invmval| (-626 *3)) (|:| |genIdeal| (-438 *3 *4 *5 *6)))) (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-3893 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *6)) (-4 *6 (-750)) (-4 *4 (-308)) (-4 *5 (-711)) (-5 *2 (-479)) (-5 *1 (-438 *4 *5 *6 *7)) (-4 *7 (-855 *4 *5 *6)))) (-3893 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-479)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-1958 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) (-4 *5 (-855 *2 *3 *4)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6)))) (-1956 (*1 *1 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6)))) (-1955 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-2680 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *6)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6)))) (-1954 (*1 *1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *2)) (-4 *2 (-855 *3 *4 *5)))) (-1954 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-579 *6)) (-4 *6 (-750)) (-4 *4 (-308)) (-4 *5 (-711)) (-5 *1 (-438 *4 *5 *6 *2)) (-4 *2 (-855 *4 *5 *6)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *5 *6)) (-4 *6 (-549 (-1080))) (-4 *4 (-308)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-1070 (-579 (-851 *4)) (-579 (-245 (-851 *4))))) (-5 *1 (-438 *4 *5 *6 *7))))) +((-1966 (((-83) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479))))) 178 T ELT)) (-1967 (((-83) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479))))) 179 T ELT)) (-1968 (((-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479))))) 129 T ELT)) (-3705 (((-83) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479))))) NIL T ELT)) (-1969 (((-579 (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479))))) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479))))) 181 T ELT)) (-1970 (((-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))) (-579 (-767 |#1|))) 197 T ELT))) +(((-439 |#1| |#2|) (-10 -7 (-15 -1966 ((-83) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))))) (-15 -1967 ((-83) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))))) (-15 -3705 ((-83) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))))) (-15 -1968 ((-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))))) (-15 -1969 ((-579 (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479))))) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))))) (-15 -1970 ((-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))) (-438 (-344 (-479)) (-194 |#2| (-688)) (-767 |#1|) (-203 |#1| (-344 (-479)))) (-579 (-767 |#1|))))) (-579 (-1080)) (-688)) (T -439)) +((-1970 (*1 *2 *2 *3) (-12 (-5 *2 (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479))))) (-5 *3 (-579 (-767 *4))) (-14 *4 (-579 (-1080))) (-14 *5 (-688)) (-5 *1 (-439 *4 *5)))) (-1969 (*1 *2 *3) (-12 (-14 *4 (-579 (-1080))) (-14 *5 (-688)) (-5 *2 (-579 (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479)))))) (-5 *1 (-439 *4 *5)) (-5 *3 (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479))))))) (-1968 (*1 *2 *2) (-12 (-5 *2 (-438 (-344 (-479)) (-194 *4 (-688)) (-767 *3) (-203 *3 (-344 (-479))))) (-14 *3 (-579 (-1080))) (-14 *4 (-688)) (-5 *1 (-439 *3 *4)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479))))) (-14 *4 (-579 (-1080))) (-14 *5 (-688)) (-5 *2 (-83)) (-5 *1 (-439 *4 *5)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479))))) (-14 *4 (-579 (-1080))) (-14 *5 (-688)) (-5 *2 (-83)) (-5 *1 (-439 *4 *5)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479))))) (-14 *4 (-579 (-1080))) (-14 *5 (-688)) (-5 *2 (-83)) (-5 *1 (-439 *4 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1971 (($) 6 T ELT)) (-3928 (((-766) $) 10 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-440) (-13 (-1006) (-10 -8 (-15 -1971 ($))))) (T -440)) +((-1971 (*1 *1) (-5 *1 (-440)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3756 (((-579 (-776 |#2| |#1|)) $) 12 T ELT)) (-1300 (((-3 $ "failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-2878 (($ |#1| |#2|) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1972 ((|#2| $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 16 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-3821 (($ $ $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 26 T ELT))) +(((-441 |#1| |#2|) (-13 (-21) (-443 |#1| |#2|)) (-21) (-753)) (T -441)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 17 T ELT)) (-3756 (((-579 (-776 |#2| |#1|)) $) 14 T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) 44 T ELT)) (-2878 (($ |#1| |#2|) 41 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-1972 ((|#2| $) NIL T ELT)) (-3158 ((|#1| $) 45 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 13 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3821 (($ $ $) 31 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) 40 T ELT))) +(((-442 |#1| |#2|) (-13 (-23) (-443 |#1| |#2|)) (-23) (-753)) (T -442)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3756 (((-579 (-776 |#2| |#1|)) $) 15 T ELT)) (-3941 (($ $) 16 T ELT)) (-2878 (($ |#1| |#2|) 19 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-1972 ((|#2| $) 17 T ELT)) (-3158 ((|#1| $) 18 T ELT)) (-3226 (((-1063) $) 14 (-12 (|has| |#2| (-1006)) (|has| |#1| (-1006))) ELT)) (-3227 (((-1024) $) 13 (-12 (|has| |#2| (-1006)) (|has| |#1| (-1006))) ELT)) (-3928 (((-766) $) 12 (-12 (|has| |#2| (-1006)) (|has| |#1| (-1006))) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-443 |#1| |#2|) (-111) (-72) (-753)) (T -443)) +((-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-443 *3 *4)) (-4 *3 (-72)) (-4 *4 (-753)))) (-2878 (*1 *1 *2 *3) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-72)) (-4 *3 (-753)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *3 (-753)) (-4 *2 (-72)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-443 *3 *2)) (-4 *3 (-72)) (-4 *2 (-753)))) (-3941 (*1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-72)) (-4 *3 (-753)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-443 *3 *4)) (-4 *3 (-72)) (-4 *4 (-753)) (-5 *2 (-579 (-776 *4 *3)))))) +(-13 (-72) (-10 -8 (IF (|has| |t#1| (-1006)) (IF (|has| |t#2| (-1006)) (-6 (-1006)) |%noBranch|) |%noBranch|) (-15 -3940 ($ (-1 |t#1| |t#1|) $)) (-15 -2878 ($ |t#1| |t#2|)) (-15 -3158 (|t#1| $)) (-15 -1972 (|t#2| $)) (-15 -3941 ($ $)) (-15 -3756 ((-579 (-776 |t#2| |t#1|)) $)))) +(((-72) . T) ((-548 (-766)) -12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ((-1006) -12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3756 (((-579 (-776 |#2| |#1|)) $) 36 T ELT)) (-3941 (($ $) 33 T ELT)) (-2878 (($ |#1| |#2|) 30 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-1972 ((|#2| $) 35 T ELT)) (-3158 ((|#1| $) 34 T ELT)) (-3226 (((-1063) $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ELT)) (-3227 (((-1024) $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ELT)) (-3928 (((-766) $) 28 (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 21 T ELT))) +(((-444 |#1| |#2|) (-443 |#1| |#2|) (-72) (-753)) (T -444)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3756 (((-579 (-776 |#2| |#1|)) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2878 (($ |#1| |#2|) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1972 ((|#2| $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 23 T ELT)) (-3821 (($ $ $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT))) +(((-445 |#1| |#2|) (-13 (-710) (-443 |#1| |#2|)) (-710) (-753)) (T -445)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3756 (((-579 (-776 |#2| |#1|)) $) NIL T ELT)) (-2468 (($ $ $) 24 T ELT)) (-1300 (((-3 $ "failed") $ $) 20 T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2878 (($ |#1| |#2|) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1972 ((|#2| $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT))) +(((-446 |#1| |#2|) (-13 (-711) (-443 |#1| |#2|)) (-711) (-750)) (T -446)) +NIL +((-3750 (($ $ (-579 |#2|) (-579 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -3750 (|#1| |#1| |#2| |#3|)) (-15 -3750 (|#1| |#1| (-579 |#2|) (-579 |#3|)))) (-448 |#2| |#3|) (-1006) (-1119)) (T -447)) +NIL +((-3750 (($ $ (-579 |#1|) (-579 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-448 |#1| |#2|) (-111) (-1006) (-1119)) (T -448)) +((-3750 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 *4)) (-5 *3 (-579 *5)) (-4 *1 (-448 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1119)))) (-3750 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1119))))) +(-13 (-10 -8 (-15 -3750 ($ $ |t#1| |t#2|)) (-15 -3750 ($ $ (-579 |t#1|) (-579 |t#2|))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 17 T ELT)) (-3756 (((-579 (-2 (|:| |gen| |#1|) (|:| -3925 |#2|))) $) 19 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3120 (((-688) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-2286 ((|#1| $ (-479)) 24 T ELT)) (-1610 ((|#2| $ (-479)) 22 T ELT)) (-2277 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1609 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1608 (($ $ $) 55 (|has| |#2| (-710)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3659 ((|#2| |#1| $) 51 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 11 T CONST)) (-3041 (((-83) $ $) 30 T ELT)) (-3821 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-449 |#1| |#2| |#3|) (-270 |#1| |#2|) (-1006) (-102) |#2|) (T -449)) +NIL +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-750)) ELT)) (-1973 (((-83) (-83)) 32 T ELT)) (-3770 ((|#1| $ (-479) |#1|) 42 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1558 (($ (-1 (-83) |#1|) $) 79 T ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-2355 (($ $) 83 (|has| |#1| (-1006)) ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3387 (($ |#1| $) NIL (|has| |#1| (-1006)) ELT) (($ (-1 (-83) |#1|) $) 66 T ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) NIL T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) NIL T ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT)) (-1974 (($ $ (-479)) 19 T ELT)) (-1975 (((-688) $) 13 T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) |#1|) 31 T ELT)) (-2187 (((-479) $) 29 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 57 T ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) 28 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3591 (($ $ $ (-479)) 75 T ELT) (($ |#1| $ (-479)) 59 T ELT)) (-2291 (($ |#1| $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1976 (($ (-579 |#1|)) 43 T ELT)) (-3783 ((|#1| $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) 24 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 62 T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) 21 T ELT)) (-3782 ((|#1| $ (-479) |#1|) NIL T ELT) ((|#1| $ (-479)) 55 T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-1559 (($ $ (-1136 (-479))) 73 T ELT) (($ $ (-479)) 67 T ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) 63 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 53 T ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) NIL T ELT)) (-3773 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3784 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) 22 (|has| $ (-6 -3977)) ELT))) +(((-450 |#1| |#2|) (-13 (-19 |#1|) (-234 |#1|) (-10 -8 (-15 -1976 ($ (-579 |#1|))) (-15 -1975 ((-688) $)) (-15 -1974 ($ $ (-479))) (-15 -1973 ((-83) (-83))))) (-1119) (-479)) (T -450)) +((-1976 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-450 *3 *4)) (-14 *4 (-479)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-450 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-479)))) (-1974 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-450 *3 *4)) (-4 *3 (-1119)) (-14 *4 *2))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-450 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-479))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1978 (((-1039) $) 12 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1977 (((-1039) $) 14 T ELT)) (-3904 (((-1039) $) 10 T ELT)) (-3928 (((-766) $) 20 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-451) (-13 (-988) (-10 -8 (-15 -3904 ((-1039) $)) (-15 -1978 ((-1039) $)) (-15 -1977 ((-1039) $))))) (T -451)) +((-3904 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-451)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-451)))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-451))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 (((-512 |#1|) $) NIL T ELT) (($ $ (-824)) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| (-512 |#1|) (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-512 |#1|) #1#) $) NIL T ELT)) (-3140 (((-512 |#1|) $) NIL T ELT)) (-1780 (($ (-1169 (-512 |#1|))) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-512 |#1|) (-314)) ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-512 |#1|) (-314)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1668 (((-83) $) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1752 (($ $ (-688)) NIL (OR (|has| (-512 |#1|) (-116)) (|has| (-512 |#1|) (-314))) ELT) (($ $) NIL (OR (|has| (-512 |#1|) (-116)) (|has| (-512 |#1|) (-314))) ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-824) $) NIL (|has| (-512 |#1|) (-314)) ELT) (((-737 (-824)) $) NIL (OR (|has| (-512 |#1|) (-116)) (|has| (-512 |#1|) (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1998 (((-83) $) NIL (|has| (-512 |#1|) (-314)) ELT)) (-3116 (((-512 |#1|) $) NIL T ELT) (($ $ (-824)) NIL (|has| (-512 |#1|) (-314)) ELT)) (-3427 (((-628 $) $) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 (-512 |#1|)) $) NIL T ELT) (((-1075 $) $ (-824)) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1997 (((-824) $) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1615 (((-1075 (-512 |#1|)) $) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1614 (((-1075 (-512 |#1|)) $) NIL (|has| (-512 |#1|) (-314)) ELT) (((-3 (-1075 (-512 |#1|)) #1#) $ $) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1616 (($ $ (-1075 (-512 |#1|))) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-512 |#1|) (-314)) CONST)) (-2387 (($ (-824)) NIL (|has| (-512 |#1|) (-314)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($) NIL (|has| (-512 |#1|) (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| (-512 |#1|) (-314)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-737 (-824))) NIL T ELT) (((-824)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-688) $) NIL (|has| (-512 |#1|) (-314)) ELT) (((-3 (-688) #1#) $ $) NIL (OR (|has| (-512 |#1|) (-116)) (|has| (-512 |#1|) (-314))) ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $ (-688)) NIL (|has| (-512 |#1|) (-314)) ELT) (($ $) NIL (|has| (-512 |#1|) (-314)) ELT)) (-3930 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-3169 (((-1075 (-512 |#1|))) NIL T ELT)) (-1662 (($) NIL (|has| (-512 |#1|) (-314)) ELT)) (-1617 (($) NIL (|has| (-512 |#1|) (-314)) ELT)) (-3208 (((-1169 (-512 |#1|)) $) NIL T ELT) (((-626 (-512 |#1|)) (-1169 $)) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| (-512 |#1|) (-314)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-512 |#1|)) NIL T ELT)) (-2687 (($ $) NIL (|has| (-512 |#1|) (-314)) ELT) (((-628 $) $) NIL (OR (|has| (-512 |#1|) (-116)) (|has| (-512 |#1|) (-314))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT) (((-1169 $) (-824)) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3910 (($ $) NIL (|has| (-512 |#1|) (-314)) ELT) (($ $ (-688)) NIL (|has| (-512 |#1|) (-314)) ELT)) (-2654 (($ $ (-688)) NIL (|has| (-512 |#1|) (-314)) ELT) (($ $) NIL (|has| (-512 |#1|) (-314)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT) (($ $ (-512 |#1|)) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ (-512 |#1|)) NIL T ELT) (($ (-512 |#1|) $) NIL T ELT))) +(((-452 |#1| |#2|) (-276 (-512 |#1|)) (-824) (-824)) (T -452)) +NIL +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3770 ((|#1| $ (-479) (-479) |#1|) 51 T ELT)) (-1246 (($ $ (-479) |#4|) NIL T ELT)) (-1245 (($ $ (-479) |#5|) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3096 ((|#4| $ (-479)) NIL T ELT)) (-1564 ((|#1| $ (-479) (-479) |#1|) 50 T ELT)) (-3097 ((|#1| $ (-479) (-479)) 45 T ELT)) (-2874 (((-579 |#1|) $) NIL T ELT)) (-3099 (((-688) $) 33 T ELT)) (-3596 (($ (-688) (-688) |#1|) 30 T ELT)) (-3098 (((-688) $) 38 T ELT)) (-3103 (((-479) $) 31 T ELT)) (-3101 (((-479) $) 32 T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3102 (((-479) $) 37 T ELT)) (-3100 (((-479) $) 39 T ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3226 (((-1063) $) 55 (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-2186 (($ $ |#1|) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 16 T ELT)) (-3547 (($) 18 T ELT)) (-3782 ((|#1| $ (-479) (-479)) 48 T ELT) ((|#1| $ (-479) (-479) |#1|) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3095 ((|#5| $ (-479)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-453 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1119) (-479) (-479) (-318 |#1|) (-318 |#1|)) (T -453)) +NIL +((-3094 ((|#4| |#4|) 38 T ELT)) (-3093 (((-688) |#4|) 45 T ELT)) (-3092 (((-688) |#4|) 46 T ELT)) (-3091 (((-579 |#3|) |#4|) 57 (|has| |#3| (-6 -3978)) ELT)) (-3572 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1979 ((|#4| |#4|) 61 T ELT)) (-3310 ((|#1| |#4|) 60 T ELT))) +(((-454 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3094 (|#4| |#4|)) (-15 -3093 ((-688) |#4|)) (-15 -3092 ((-688) |#4|)) (IF (|has| |#3| (-6 -3978)) (-15 -3091 ((-579 |#3|) |#4|)) |%noBranch|) (-15 -3310 (|#1| |#4|)) (-15 -1979 (|#4| |#4|)) (-15 -3572 ((-3 |#4| "failed") |#4|))) (-308) (-318 |#1|) (-318 |#1|) (-623 |#1| |#2| |#3|)) (T -454)) +((-3572 (*1 *2 *2) (|partial| -12 (-4 *3 (-308)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-3310 (*1 *2 *3) (-12 (-4 *4 (-318 *2)) (-4 *5 (-318 *2)) (-4 *2 (-308)) (-5 *1 (-454 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) (-3091 (*1 *2 *3) (-12 (|has| *6 (-6 -3978)) (-4 *4 (-308)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-579 *6)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-688)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-688)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3094 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +((-3094 ((|#8| |#4|) 20 T ELT)) (-3091 (((-579 |#3|) |#4|) 29 (|has| |#7| (-6 -3978)) ELT)) (-3572 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-455 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3094 (|#8| |#4|)) (-15 -3572 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -3978)) (-15 -3091 ((-579 |#3|) |#4|)) |%noBranch|)) (-490) (-318 |#1|) (-318 |#1|) (-623 |#1| |#2| |#3|) (-898 |#1|) (-318 |#5|) (-318 |#5|) (-623 |#5| |#6| |#7|)) (T -455)) +((-3091 (*1 *2 *3) (-12 (|has| *9 (-6 -3978)) (-4 *4 (-490)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-4 *7 (-898 *4)) (-4 *8 (-318 *7)) (-4 *9 (-318 *7)) (-5 *2 (-579 *6)) (-5 *1 (-455 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-623 *4 *5 *6)) (-4 *10 (-623 *7 *8 *9)))) (-3572 (*1 *2 *3) (|partial| -12 (-4 *4 (-490)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-4 *7 (-898 *4)) (-4 *2 (-623 *7 *8 *9)) (-5 *1 (-455 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-623 *4 *5 *6)) (-4 *8 (-318 *7)) (-4 *9 (-318 *7)))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-4 *7 (-898 *4)) (-4 *2 (-623 *7 *8 *9)) (-5 *1 (-455 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-623 *4 *5 *6)) (-4 *8 (-318 *7)) (-4 *9 (-318 *7))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3820 (($ (-688) (-688)) NIL T ELT)) (-2337 (($ $ $) NIL T ELT)) (-3396 (($ (-532 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3105 (((-83) $) NIL T ELT)) (-2336 (($ $ (-479) (-479)) 21 T ELT)) (-2335 (($ $ (-479) (-479)) NIL T ELT)) (-2334 (($ $ (-479) (-479) (-479) (-479)) NIL T ELT)) (-2339 (($ $) NIL T ELT)) (-3107 (((-83) $) NIL T ELT)) (-2333 (($ $ (-479) (-479) $) NIL T ELT)) (-3770 ((|#1| $ (-479) (-479) |#1|) NIL T ELT) (($ $ (-579 (-479)) (-579 (-479)) $) NIL T ELT)) (-1246 (($ $ (-479) (-532 |#1| |#3|)) NIL T ELT)) (-1245 (($ $ (-479) (-532 |#1| |#2|)) NIL T ELT)) (-3315 (($ (-688) |#1|) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3094 (($ $) 30 (|has| |#1| (-254)) ELT)) (-3096 (((-532 |#1| |#3|) $ (-479)) NIL T ELT)) (-3093 (((-688) $) 33 (|has| |#1| (-490)) ELT)) (-1564 ((|#1| $ (-479) (-479) |#1|) NIL T ELT)) (-3097 ((|#1| $ (-479) (-479)) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL T ELT)) (-3092 (((-688) $) 35 (|has| |#1| (-490)) ELT)) (-3091 (((-579 (-532 |#1| |#2|)) $) 38 (|has| |#1| (-490)) ELT)) (-3099 (((-688) $) NIL T ELT)) (-3596 (($ (-688) (-688) |#1|) NIL T ELT)) (-3098 (((-688) $) NIL T ELT)) (-3309 ((|#1| $) 28 (|has| |#1| (-6 (-3979 #1="*"))) ELT)) (-3103 (((-479) $) 10 T ELT)) (-3101 (((-479) $) NIL T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3102 (((-479) $) 13 T ELT)) (-3100 (((-479) $) NIL T ELT)) (-3108 (($ (-579 (-579 |#1|))) NIL T ELT) (($ (-688) (-688) (-1 |#1| (-479) (-479))) NIL T ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3576 (((-579 (-579 |#1|)) $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3572 (((-3 $ #2="failed") $) 42 (|has| |#1| (-308)) ELT)) (-2338 (($ $ $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-2186 (($ $ |#1|) NIL T ELT)) (-3448 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-490)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) (-479)) NIL T ELT) ((|#1| $ (-479) (-479) |#1|) NIL T ELT) (($ $ (-579 (-479)) (-579 (-479))) NIL T ELT)) (-3314 (($ (-579 |#1|)) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-3310 ((|#1| $) 26 (|has| |#1| (-6 (-3979 #1#))) ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3095 (((-532 |#1| |#2|) $ (-479)) NIL T ELT)) (-3928 (($ (-532 |#1| |#2|)) NIL T ELT) (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3104 (((-83) $) NIL T ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-479) $) NIL T ELT) (((-532 |#1| |#2|) $ (-532 |#1| |#2|)) NIL T ELT) (((-532 |#1| |#3|) (-532 |#1| |#3|) $) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-456 |#1| |#2| |#3|) (-623 |#1| (-532 |#1| |#3|) (-532 |#1| |#2|)) (-955) (-479) (-479)) (T -456)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1980 (((-579 (-1120)) $) 14 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 20 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT) (($ (-579 (-1120))) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-457) (-13 (-988) (-10 -8 (-15 -3928 ($ (-579 (-1120)))) (-15 -1980 ((-579 (-1120)) $))))) (T -457)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-457)))) (-1980 (*1 *2 *1) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-457))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1981 (((-1039) $) 15 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3432 (((-440) $) 12 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 22 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-458) (-13 (-988) (-10 -8 (-15 -3432 ((-440) $)) (-15 -1981 ((-1039) $))))) (T -458)) +((-3432 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-458)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-458))))) +((-1987 (((-628 (-1128)) $) 15 T ELT)) (-1983 (((-628 (-1126)) $) 38 T ELT)) (-1985 (((-628 (-1125)) $) 29 T ELT)) (-1988 (((-628 (-483)) $) 12 T ELT)) (-1984 (((-628 (-481)) $) 42 T ELT)) (-1986 (((-628 (-480)) $) 33 T ELT)) (-1982 (((-688) $ (-100)) 54 T ELT))) +(((-459 |#1|) (-10 -7 (-15 -1982 ((-688) |#1| (-100))) (-15 -1983 ((-628 (-1126)) |#1|)) (-15 -1984 ((-628 (-481)) |#1|)) (-15 -1985 ((-628 (-1125)) |#1|)) (-15 -1986 ((-628 (-480)) |#1|)) (-15 -1987 ((-628 (-1128)) |#1|)) (-15 -1988 ((-628 (-483)) |#1|))) (-460)) (T -459)) +NIL +((-1987 (((-628 (-1128)) $) 12 T ELT)) (-1983 (((-628 (-1126)) $) 8 T ELT)) (-1985 (((-628 (-1125)) $) 10 T ELT)) (-1988 (((-628 (-483)) $) 13 T ELT)) (-1984 (((-628 (-481)) $) 9 T ELT)) (-1986 (((-628 (-480)) $) 11 T ELT)) (-1982 (((-688) $ (-100)) 7 T ELT)) (-1989 (((-628 (-99)) $) 14 T ELT)) (-1688 (($ $) 6 T ELT))) +(((-460) (-111)) (T -460)) +((-1989 (*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-99))))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-483))))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-1128))))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-480))))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-1125))))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-481))))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-1126))))) (-1982 (*1 *2 *1 *3) (-12 (-4 *1 (-460)) (-5 *3 (-100)) (-5 *2 (-688))))) +(-13 (-145) (-10 -8 (-15 -1989 ((-628 (-99)) $)) (-15 -1988 ((-628 (-483)) $)) (-15 -1987 ((-628 (-1128)) $)) (-15 -1986 ((-628 (-480)) $)) (-15 -1985 ((-628 (-1125)) $)) (-15 -1984 ((-628 (-481)) $)) (-15 -1983 ((-628 (-1126)) $)) (-15 -1982 ((-688) $ (-100))))) (((-145) . T)) -((-1987 (((-1070 |#1|) (-687)) 114 T ELT)) (-3307 (((-1164 |#1|) (-1164 |#1|) (-823)) 107 T ELT)) (-1985 (((-1170) (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))) |#1|) 122 T ELT)) (-1989 (((-1164 |#1|) (-1164 |#1|) (-687)) 53 T ELT)) (-2975 (((-1164 |#1|) (-823)) 109 T ELT)) (-1991 (((-1164 |#1|) (-1164 |#1|) (-478)) 30 T ELT)) (-1986 (((-1070 |#1|) (-1164 |#1|)) 115 T ELT)) (-1995 (((-1164 |#1|) (-823)) 136 T ELT)) (-1993 (((-83) (-1164 |#1|)) 119 T ELT)) (-3113 (((-1164 |#1|) (-1164 |#1|) (-823)) 99 T ELT)) (-1996 (((-1070 |#1|) (-1164 |#1|)) 130 T ELT)) (-1992 (((-823) (-1164 |#1|)) 95 T ELT)) (-2464 (((-1164 |#1|) (-1164 |#1|)) 38 T ELT)) (-2382 (((-1164 |#1|) (-823) (-823)) 139 T ELT)) (-1990 (((-1164 |#1|) (-1164 |#1|) (-1020) (-1020)) 29 T ELT)) (-1988 (((-1164 |#1|) (-1164 |#1|) (-687) (-1020)) 54 T ELT)) (-1994 (((-1164 (-1164 |#1|)) (-823)) 135 T ELT)) (-3925 (((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)) 120 T ELT)) (** (((-1164 |#1|) (-1164 |#1|) (-478)) 67 T ELT)) (* (((-1164 |#1|) (-1164 |#1|) (-1164 |#1|)) 31 T ELT))) -(((-460 |#1|) (-10 -7 (-15 -1985 ((-1170) (-1164 (-578 (-2 (|:| -3379 |#1|) (|:| -2382 (-1020))))) |#1|)) (-15 -2975 ((-1164 |#1|) (-823))) (-15 -2382 ((-1164 |#1|) (-823) (-823))) (-15 -1986 ((-1070 |#1|) (-1164 |#1|))) (-15 -1987 ((-1070 |#1|) (-687))) (-15 -1988 ((-1164 |#1|) (-1164 |#1|) (-687) (-1020))) (-15 -1989 ((-1164 |#1|) (-1164 |#1|) (-687))) (-15 -1990 ((-1164 |#1|) (-1164 |#1|) (-1020) (-1020))) (-15 -1991 ((-1164 |#1|) (-1164 |#1|) (-478))) (-15 ** ((-1164 |#1|) (-1164 |#1|) (-478))) (-15 * ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -3925 ((-1164 |#1|) (-1164 |#1|) (-1164 |#1|))) (-15 -3113 ((-1164 |#1|) (-1164 |#1|) (-823))) (-15 -3307 ((-1164 |#1|) (-1164 |#1|) (-823))) (-15 -2464 ((-1164 |#1|) (-1164 |#1|))) (-15 -1992 ((-823) (-1164 |#1|))) (-15 -1993 ((-83) (-1164 |#1|))) (-15 -1994 ((-1164 (-1164 |#1|)) (-823))) (-15 -1995 ((-1164 |#1|) (-823))) (-15 -1996 ((-1070 |#1|) (-1164 |#1|)))) (-295)) (T -460)) -((-1996 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-295)) (-5 *2 (-1070 *4)) (-5 *1 (-460 *4)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1164 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1164 (-1164 *4))) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-460 *4)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-295)) (-5 *2 (-823)) (-5 *1 (-460 *4)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) (-3307 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-823)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-823)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-3925 (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-478)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-1991 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-478)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-1990 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1020)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-1989 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) (-1988 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1164 *5)) (-5 *3 (-687)) (-5 *4 (-1020)) (-4 *5 (-295)) (-5 *1 (-460 *5)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1070 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-295)) (-5 *2 (-1070 *4)) (-5 *1 (-460 *4)))) (-2382 (*1 *2 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1164 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1164 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) (-4 *4 (-295)) (-5 *2 (-1170)) (-5 *1 (-460 *4))))) -((-1982 (((-627 (-1123)) $) NIL T ELT)) (-1978 (((-627 (-1121)) $) NIL T ELT)) (-1980 (((-627 (-1120)) $) NIL T ELT)) (-1983 (((-627 (-482)) $) NIL T ELT)) (-1979 (((-627 (-480)) $) NIL T ELT)) (-1981 (((-627 (-479)) $) NIL T ELT)) (-1977 (((-687) $ (-100)) NIL T ELT)) (-1984 (((-627 (-99)) $) 26 T ELT)) (-1997 (((-1020) $ (-1020)) 31 T ELT)) (-3396 (((-1020) $) 30 T ELT)) (-2538 (((-83) $) 20 T ELT)) (-1999 (($ (-331)) 14 T ELT) (($ (-1059)) 16 T ELT)) (-1998 (((-83) $) 27 T ELT)) (-3922 (((-765) $) 34 T ELT)) (-1683 (($ $) 28 T ELT))) -(((-461) (-13 (-459) (-547 (-765)) (-10 -8 (-15 -1999 ($ (-331))) (-15 -1999 ($ (-1059))) (-15 -1998 ((-83) $)) (-15 -2538 ((-83) $)) (-15 -3396 ((-1020) $)) (-15 -1997 ((-1020) $ (-1020)))))) (T -461)) -((-1999 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-461)))) (-1999 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-461)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-461)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-461)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-461)))) (-1997 (*1 *2 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-461))))) -((-2001 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2000 (((-1 |#1| |#1|)) 10 T ELT))) -(((-462 |#1|) (-10 -7 (-15 -2000 ((-1 |#1| |#1|))) (-15 -2001 ((-1 |#1| |#1|) |#1|))) (-13 (-658) (-25))) (T -462)) -((-2001 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-462 *3)) (-4 *3 (-13 (-658) (-25))))) (-2000 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-462 *3)) (-4 *3 (-13 (-658) (-25)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3750 (((-578 (-775 |#1| (-687))) $) NIL T ELT)) (-2463 (($ $ $) NIL T ELT)) (-1295 (((-3 $ "failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-3168 (((-83) $) NIL T ELT)) (-2874 (($ (-687) |#1|) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3934 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-1967 ((|#1| $) NIL T ELT)) (-3155 (((-687) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 28 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT))) -(((-463 |#1|) (-13 (-710) (-442 (-687) |#1|)) (-749)) (T -463)) -NIL -((-2003 (((-578 |#2|) (-1070 |#1|) |#3|) 98 T ELT)) (-2004 (((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 |#2|))))) (-625 |#1|) |#3| (-1 (-341 (-1070 |#1|)) (-1070 |#1|))) 114 T ELT)) (-2002 (((-1070 |#1|) (-625 |#1|)) 110 T ELT))) -(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -2002 ((-1070 |#1|) (-625 |#1|))) (-15 -2003 ((-578 |#2|) (-1070 |#1|) |#3|)) (-15 -2004 ((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 |#2|))))) (-625 |#1|) |#3| (-1 (-341 (-1070 |#1|)) (-1070 |#1|))))) (-308) (-308) (-13 (-308) (-748))) (T -464)) -((-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *6)) (-5 *5 (-1 (-341 (-1070 *6)) (-1070 *6))) (-4 *6 (-308)) (-5 *2 (-578 (-2 (|:| |outval| *7) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 *7)))))) (-5 *1 (-464 *6 *7 *4)) (-4 *7 (-308)) (-4 *4 (-13 (-308) (-748))))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-308)) (-5 *2 (-578 *6)) (-5 *1 (-464 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748))))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-308)) (-5 *2 (-1070 *4)) (-5 *1 (-464 *4 *5 *6)) (-4 *5 (-308)) (-4 *6 (-13 (-308) (-748)))))) -((-2535 (((-627 (-1123)) $ (-1123)) NIL T ELT)) (-2536 (((-627 (-482)) $ (-482)) NIL T ELT)) (-2534 (((-687) $ (-100)) 39 T ELT)) (-2537 (((-627 (-99)) $ (-99)) 40 T ELT)) (-1982 (((-627 (-1123)) $) NIL T ELT)) (-1978 (((-627 (-1121)) $) NIL T ELT)) (-1980 (((-627 (-1120)) $) NIL T ELT)) (-1983 (((-627 (-482)) $) NIL T ELT)) (-1979 (((-627 (-480)) $) NIL T ELT)) (-1981 (((-627 (-479)) $) NIL T ELT)) (-1977 (((-687) $ (-100)) 35 T ELT)) (-1984 (((-627 (-99)) $) 37 T ELT)) (-2419 (((-83) $) 27 T ELT)) (-2420 (((-627 $) (-509) (-858)) 18 T ELT) (((-627 $) (-424) (-858)) 24 T ELT)) (-3922 (((-765) $) 48 T ELT)) (-1683 (($ $) 42 T ELT))) -(((-465) (-13 (-684 (-509)) (-547 (-765)) (-10 -8 (-15 -2420 ((-627 $) (-424) (-858)))))) (T -465)) -((-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-424)) (-5 *4 (-858)) (-5 *2 (-627 (-465))) (-5 *1 (-465))))) -((-2507 (((-743 (-478))) 12 T ELT)) (-2506 (((-743 (-478))) 14 T ELT)) (-2494 (((-736 (-478))) 9 T ELT))) -(((-466) (-10 -7 (-15 -2494 ((-736 (-478)))) (-15 -2507 ((-743 (-478)))) (-15 -2506 ((-743 (-478)))))) (T -466)) -((-2506 (*1 *2) (-12 (-5 *2 (-743 (-478))) (-5 *1 (-466)))) (-2507 (*1 *2) (-12 (-5 *2 (-743 (-478))) (-5 *1 (-466)))) (-2494 (*1 *2) (-12 (-5 *2 (-736 (-478))) (-5 *1 (-466))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2008 (((-1059) $) 55 T ELT)) (-3240 (((-83) $) 51 T ELT)) (-3236 (((-1075) $) 52 T ELT)) (-3241 (((-83) $) 49 T ELT)) (-3511 (((-1059) $) 50 T ELT)) (-2007 (($ (-1059)) 56 T ELT)) (-3243 (((-83) $) NIL T ELT)) (-3245 (((-83) $) NIL T ELT)) (-3242 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2010 (($ $ (-578 (-1075))) 21 T ELT)) (-2013 (((-51) $) 23 T ELT)) (-3239 (((-83) $) NIL T ELT)) (-3235 (((-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2365 (($ $ (-578 (-1075)) (-1075)) 73 T ELT)) (-3238 (((-83) $) NIL T ELT)) (-3234 (((-177) $) NIL T ELT)) (-2009 (($ $) 44 T ELT)) (-3233 (((-765) $) NIL T ELT)) (-3246 (((-83) $ $) NIL T ELT)) (-3776 (($ $ (-478)) NIL T ELT) (($ $ (-578 (-478))) NIL T ELT)) (-3237 (((-578 $) $) 30 T ELT)) (-2006 (((-1075) (-578 $)) 57 T ELT)) (-3948 (($ (-1059)) NIL T ELT) (($ (-1075)) 19 T ELT) (($ (-478)) 8 T ELT) (($ (-177)) 28 T ELT) (($ (-765)) NIL T ELT) (($ (-578 $)) 65 T ELT) (((-1005) $) 12 T ELT) (($ (-1005)) 13 T ELT)) (-2005 (((-1075) (-1075) (-578 $)) 60 T ELT)) (-3922 (((-765) $) 54 T ELT)) (-3231 (($ $) 59 T ELT)) (-3232 (($ $) 58 T ELT)) (-2011 (($ $ (-578 $)) 66 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3244 (((-83) $) 29 T ELT)) (-2640 (($) 9 T CONST)) (-2647 (($) 11 T CONST)) (-3037 (((-83) $ $) 74 T ELT)) (-3925 (($ $ $) 82 T ELT)) (-3815 (($ $ $) 75 T ELT)) (** (($ $ (-687)) 81 T ELT) (($ $ (-478)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3933 (((-478) $) NIL T ELT))) -(((-467) (-13 (-1006 (-1059) (-1075) (-478) (-177) (-765)) (-548 (-1005)) (-10 -8 (-15 -2013 ((-51) $)) (-15 -3948 ($ (-1005))) (-15 -2011 ($ $ (-578 $))) (-15 -2365 ($ $ (-578 (-1075)) (-1075))) (-15 -2010 ($ $ (-578 (-1075)))) (-15 -3815 ($ $ $)) (-15 * ($ $ $)) (-15 -3925 ($ $ $)) (-15 ** ($ $ (-687))) (-15 ** ($ $ (-478))) (-15 -2640 ($) -3928) (-15 -2647 ($) -3928) (-15 -2009 ($ $)) (-15 -2008 ((-1059) $)) (-15 -2007 ($ (-1059))) (-15 -2006 ((-1075) (-578 $))) (-15 -2005 ((-1075) (-1075) (-578 $)))))) (T -467)) -((-2013 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-467)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1005)) (-5 *1 (-467)))) (-2011 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-467))) (-5 *1 (-467)))) (-2365 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-1075)) (-5 *1 (-467)))) (-2010 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-467)))) (-3815 (*1 *1 *1 *1) (-5 *1 (-467))) (* (*1 *1 *1 *1) (-5 *1 (-467))) (-3925 (*1 *1 *1 *1) (-5 *1 (-467))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-467)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-467)))) (-2640 (*1 *1) (-5 *1 (-467))) (-2647 (*1 *1) (-5 *1 (-467))) (-2009 (*1 *1 *1) (-5 *1 (-467))) (-2008 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-467)))) (-2007 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-467)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-578 (-467))) (-5 *2 (-1075)) (-5 *1 (-467)))) (-2005 (*1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-578 (-467))) (-5 *1 (-467))))) -((-2012 (((-467) (-1075)) 15 T ELT)) (-2013 ((|#1| (-467)) 20 T ELT))) -(((-468 |#1|) (-10 -7 (-15 -2012 ((-467) (-1075))) (-15 -2013 (|#1| (-467)))) (-1114)) (T -468)) -((-2013 (*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *1 (-468 *2)) (-4 *2 (-1114)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-467)) (-5 *1 (-468 *4)) (-4 *4 (-1114))))) -((-3430 ((|#2| |#2|) 17 T ELT)) (-3428 ((|#2| |#2|) 13 T ELT)) (-3431 ((|#2| |#2| (-478) (-478)) 20 T ELT)) (-3429 ((|#2| |#2|) 15 T ELT))) -(((-469 |#1| |#2|) (-10 -7 (-15 -3428 (|#2| |#2|)) (-15 -3429 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -3431 (|#2| |#2| (-478) (-478)))) (-13 (-489) (-118)) (-1157 |#1|)) (T -469)) -((-3431 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-478)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-469 *4 *2)) (-4 *2 (-1157 *4)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1157 *3)))) (-3429 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1157 *3)))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1157 *3))))) -((-2016 (((-578 (-245 (-850 |#2|))) (-578 |#2|) (-578 (-1075))) 32 T ELT)) (-2014 (((-578 |#2|) (-850 |#1|) |#3|) 54 T ELT) (((-578 |#2|) (-1070 |#1|) |#3|) 53 T ELT)) (-2015 (((-578 (-578 |#2|)) (-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1075)) |#3|) 106 T ELT))) -(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -2014 ((-578 |#2|) (-1070 |#1|) |#3|)) (-15 -2014 ((-578 |#2|) (-850 |#1|) |#3|)) (-15 -2015 ((-578 (-578 |#2|)) (-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1075)) |#3|)) (-15 -2016 ((-578 (-245 (-850 |#2|))) (-578 |#2|) (-578 (-1075))))) (-385) (-308) (-13 (-308) (-748))) (T -470)) -((-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1075))) (-4 *6 (-308)) (-5 *2 (-578 (-245 (-850 *6)))) (-5 *1 (-470 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-13 (-308) (-748))))) (-2015 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1075))) (-4 *6 (-385)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-470 *6 *7 *5)) (-4 *7 (-308)) (-4 *5 (-13 (-308) (-748))))) (-2014 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-4 *5 (-385)) (-5 *2 (-578 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748))))) (-2014 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *5)) (-4 *5 (-385)) (-5 *2 (-578 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748)))))) -((-2019 ((|#2| |#2| |#1|) 17 T ELT)) (-2017 ((|#2| (-578 |#2|)) 30 T ELT)) (-2018 ((|#2| (-578 |#2|)) 51 T ELT))) -(((-471 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2017 (|#2| (-578 |#2|))) (-15 -2018 (|#2| (-578 |#2|))) (-15 -2019 (|#2| |#2| |#1|))) (-254) (-1140 |#1|) |#1| (-1 |#1| |#1| (-687))) (T -471)) -((-2019 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-687))) (-5 *1 (-471 *3 *2 *4 *5)) (-4 *2 (-1140 *3)))) (-2018 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-471 *4 *2 *5 *6)) (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-687))))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-471 *4 *2 *5 *6)) (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-687)))))) -((-3708 (((-341 (-1070 |#4|)) (-1070 |#4|) (-1 (-341 (-1070 |#3|)) (-1070 |#3|))) 90 T ELT) (((-341 |#4|) |#4| (-1 (-341 (-1070 |#3|)) (-1070 |#3|))) 213 T ELT))) -(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3708 ((-341 |#4|) |#4| (-1 (-341 (-1070 |#3|)) (-1070 |#3|)))) (-15 -3708 ((-341 (-1070 |#4|)) (-1070 |#4|) (-1 (-341 (-1070 |#3|)) (-1070 |#3|))))) (-749) (-710) (-13 (-254) (-118)) (-854 |#3| |#2| |#1|)) (T -472)) -((-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-341 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-254) (-118))) (-4 *5 (-749)) (-4 *6 (-710)) (-4 *8 (-854 *7 *6 *5)) (-5 *2 (-341 (-1070 *8))) (-5 *1 (-472 *5 *6 *7 *8)) (-5 *3 (-1070 *8)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-341 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-254) (-118))) (-4 *5 (-749)) (-4 *6 (-710)) (-5 *2 (-341 *3)) (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-854 *7 *6 *5))))) -((-3430 ((|#4| |#4|) 74 T ELT)) (-3428 ((|#4| |#4|) 70 T ELT)) (-3431 ((|#4| |#4| (-478) (-478)) 76 T ELT)) (-3429 ((|#4| |#4|) 72 T ELT))) -(((-473 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3428 (|#4| |#4|)) (-15 -3429 (|#4| |#4|)) (-15 -3430 (|#4| |#4|)) (-15 -3431 (|#4| |#4| (-478) (-478)))) (-13 (-308) (-313) (-548 (-478))) (-1140 |#1|) (-656 |#1| |#2|) (-1157 |#3|)) (T -473)) -((-3431 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-478)) (-4 *4 (-13 (-308) (-313) (-548 *3))) (-4 *5 (-1140 *4)) (-4 *6 (-656 *4 *5)) (-5 *1 (-473 *4 *5 *6 *2)) (-4 *2 (-1157 *6)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1140 *3)) (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) (-3429 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1140 *3)) (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1140 *3)) (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1157 *5))))) -((-3430 ((|#2| |#2|) 27 T ELT)) (-3428 ((|#2| |#2|) 23 T ELT)) (-3431 ((|#2| |#2| (-478) (-478)) 29 T ELT)) (-3429 ((|#2| |#2|) 25 T ELT))) -(((-474 |#1| |#2|) (-10 -7 (-15 -3428 (|#2| |#2|)) (-15 -3429 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -3431 (|#2| |#2| (-478) (-478)))) (-13 (-308) (-313) (-548 (-478))) (-1157 |#1|)) (T -474)) -((-3431 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-478)) (-4 *4 (-13 (-308) (-313) (-548 *3))) (-5 *1 (-474 *4 *2)) (-4 *2 (-1157 *4)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1157 *3)))) (-3429 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1157 *3)))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) (-4 *2 (-1157 *3))))) -((-2020 (((-3 (-478) #1="failed") |#2| |#1| (-1 (-3 (-478) #1#) |#1|)) 18 T ELT) (((-3 (-478) #1#) |#2| |#1| (-478) (-1 (-3 (-478) #1#) |#1|)) 14 T ELT) (((-3 (-478) #1#) |#2| (-478) (-1 (-3 (-478) #1#) |#1|)) 30 T ELT))) -(((-475 |#1| |#2|) (-10 -7 (-15 -2020 ((-3 (-478) #1="failed") |#2| (-478) (-1 (-3 (-478) #1#) |#1|))) (-15 -2020 ((-3 (-478) #1#) |#2| |#1| (-478) (-1 (-3 (-478) #1#) |#1|))) (-15 -2020 ((-3 (-478) #1#) |#2| |#1| (-1 (-3 (-478) #1#) |#1|)))) (-954) (-1140 |#1|)) (T -475)) -((-2020 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-478) #1="failed") *4)) (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-475 *4 *3)) (-4 *3 (-1140 *4)))) (-2020 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-478) #1#) *4)) (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-475 *4 *3)) (-4 *3 (-1140 *4)))) (-2020 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-478) #1#) *5)) (-4 *5 (-954)) (-5 *2 (-478)) (-5 *1 (-475 *5 *3)) (-4 *3 (-1140 *5))))) -((-2029 (($ $ $) 87 T ELT)) (-3947 (((-341 $) $) 50 T ELT)) (-3138 (((-3 (-478) #1="failed") $) 62 T ELT)) (-3137 (((-478) $) 40 T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) 80 T ELT)) (-3004 (((-83) $) 24 T ELT)) (-3003 (((-343 (-478)) $) 78 T ELT)) (-3699 (((-83) $) 53 T ELT)) (-2022 (($ $ $ $) 94 T ELT)) (-1352 (($ $ $) 60 T ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 75 T ELT)) (-3422 (((-627 $) $) 70 T ELT)) (-2026 (($ $) 22 T ELT)) (-2021 (($ $ $) 92 T ELT)) (-3423 (($) 63 T CONST)) (-1350 (($ $) 56 T ELT)) (-3708 (((-341 $) $) 48 T ELT)) (-2655 (((-83) $) 15 T ELT)) (-1590 (((-687) $) 30 T ELT)) (-3734 (($ $) 11 T ELT) (($ $ (-687)) NIL T ELT)) (-3377 (($ $) 16 T ELT)) (-3948 (((-478) $) NIL T ELT) (((-467) $) 39 T ELT) (((-793 (-478)) $) 43 T ELT) (((-323) $) 33 T ELT) (((-177) $) 36 T ELT)) (-3107 (((-687)) 9 T CONST)) (-2031 (((-83) $ $) 19 T ELT)) (-3083 (($ $ $) 58 T ELT))) -(((-476 |#1|) (-10 -7 (-15 -2021 (|#1| |#1| |#1|)) (-15 -2022 (|#1| |#1| |#1| |#1|)) (-15 -2026 (|#1| |#1|)) (-15 -3377 (|#1| |#1|)) (-15 -3005 ((-3 (-343 (-478)) #1="failed") |#1|)) (-15 -3003 ((-343 (-478)) |#1|)) (-15 -3004 ((-83) |#1|)) (-15 -2029 (|#1| |#1| |#1|)) (-15 -2031 ((-83) |#1| |#1|)) (-15 -2655 ((-83) |#1|)) (-15 -3423 (|#1|) -3928) (-15 -3422 ((-627 |#1|) |#1|)) (-15 -3948 ((-177) |#1|)) (-15 -3948 ((-323) |#1|)) (-15 -1352 (|#1| |#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -2777 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|))) (-15 -3948 ((-793 (-478)) |#1|)) (-15 -3948 ((-467) |#1|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3948 ((-478) |#1|)) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1|)) (-15 -1590 ((-687) |#1|)) (-15 -3708 ((-341 |#1|) |#1|)) (-15 -3947 ((-341 |#1|) |#1|)) (-15 -3699 ((-83) |#1|)) (-15 -3107 ((-687)) -3928)) (-477)) (T -476)) -((-3107 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-476 *3)) (-4 *3 (-477))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-2029 (($ $ $) 99 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-2024 (($ $ $ $) 88 T ELT)) (-3751 (($ $) 63 T ELT)) (-3947 (((-341 $) $) 64 T ELT)) (-1591 (((-83) $ $) 142 T ELT)) (-3599 (((-478) $) 131 T ELT)) (-2421 (($ $ $) 102 T ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 (-478) "failed") $) 123 T ELT)) (-3137 (((-478) $) 124 T ELT)) (-2544 (($ $ $) 146 T ELT)) (-2261 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 121 T ELT) (((-625 (-478)) (-625 $)) 120 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3005 (((-3 (-343 (-478)) "failed") $) 96 T ELT)) (-3004 (((-83) $) 98 T ELT)) (-3003 (((-343 (-478)) $) 97 T ELT)) (-2975 (($) 95 T ELT) (($ $) 94 T ELT)) (-2543 (($ $ $) 145 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 140 T ELT)) (-3699 (((-83) $) 65 T ELT)) (-2022 (($ $ $ $) 86 T ELT)) (-2030 (($ $ $) 100 T ELT)) (-3168 (((-83) $) 133 T ELT)) (-1352 (($ $ $) 111 T ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 114 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2654 (((-83) $) 106 T ELT)) (-3422 (((-627 $) $) 108 T ELT)) (-3169 (((-83) $) 132 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 149 T ELT)) (-2023 (($ $ $ $) 87 T ELT)) (-2511 (($ $ $) 139 T ELT)) (-2838 (($ $ $) 138 T ELT)) (-2026 (($ $) 90 T ELT)) (-3809 (($ $) 103 T ELT)) (-2262 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 119 T ELT) (((-625 (-478)) (-1164 $)) 118 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2021 (($ $ $) 85 T ELT)) (-3423 (($) 107 T CONST)) (-2028 (($ $) 92 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1350 (($ $) 112 T ELT)) (-3708 (((-341 $) $) 62 T ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 147 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 141 T ELT)) (-2655 (((-83) $) 105 T ELT)) (-1590 (((-687) $) 143 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 144 T ELT)) (-3734 (($ $) 129 T ELT) (($ $ (-687)) 127 T ELT)) (-2027 (($ $) 91 T ELT)) (-3377 (($ $) 93 T ELT)) (-3948 (((-478) $) 125 T ELT) (((-467) $) 116 T ELT) (((-793 (-478)) $) 115 T ELT) (((-323) $) 110 T ELT) (((-177) $) 109 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-478)) 122 T ELT)) (-3107 (((-687)) 37 T CONST)) (-2031 (((-83) $ $) 101 T ELT)) (-3083 (($ $ $) 113 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2675 (($) 104 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2025 (($ $ $ $) 89 T ELT)) (-3360 (($ $) 130 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $) 128 T ELT) (($ $ (-687)) 126 T ELT)) (-2546 (((-83) $ $) 137 T ELT)) (-2547 (((-83) $ $) 135 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 136 T ELT)) (-2666 (((-83) $ $) 134 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-478) $) 117 T ELT))) -(((-477) (-111)) (T -477)) -((-2654 (*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) (-2675 (*1 *1) (-4 *1 (-477))) (-3809 (*1 *1 *1) (-4 *1 (-477))) (-2421 (*1 *1 *1 *1) (-4 *1 (-477))) (-2031 (*1 *2 *1 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) (-2030 (*1 *1 *1 *1) (-4 *1 (-477))) (-2029 (*1 *1 *1 *1) (-4 *1 (-477))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-343 (-478))))) (-3005 (*1 *2 *1) (|partial| -12 (-4 *1 (-477)) (-5 *2 (-343 (-478))))) (-2975 (*1 *1) (-4 *1 (-477))) (-2975 (*1 *1 *1) (-4 *1 (-477))) (-3377 (*1 *1 *1) (-4 *1 (-477))) (-2028 (*1 *1 *1) (-4 *1 (-477))) (-2027 (*1 *1 *1) (-4 *1 (-477))) (-2026 (*1 *1 *1) (-4 *1 (-477))) (-2025 (*1 *1 *1 *1 *1) (-4 *1 (-477))) (-2024 (*1 *1 *1 *1 *1) (-4 *1 (-477))) (-2023 (*1 *1 *1 *1 *1) (-4 *1 (-477))) (-2022 (*1 *1 *1 *1 *1) (-4 *1 (-477))) (-2021 (*1 *1 *1 *1) (-4 *1 (-477)))) -(-13 (-1119) (-254) (-733) (-188) (-548 (-478)) (-943 (-478)) (-575 (-478)) (-548 (-467)) (-548 (-793 (-478))) (-789 (-478)) (-114) (-926) (-118) (-1052) (-10 -8 (-15 -2654 ((-83) $)) (-15 -2655 ((-83) $)) (-6 -3970) (-15 -2675 ($)) (-15 -3809 ($ $)) (-15 -2421 ($ $ $)) (-15 -2031 ((-83) $ $)) (-15 -2030 ($ $ $)) (-15 -2029 ($ $ $)) (-15 -3004 ((-83) $)) (-15 -3003 ((-343 (-478)) $)) (-15 -3005 ((-3 (-343 (-478)) "failed") $)) (-15 -2975 ($)) (-15 -2975 ($ $)) (-15 -3377 ($ $)) (-15 -2028 ($ $)) (-15 -2027 ($ $)) (-15 -2026 ($ $)) (-15 -2025 ($ $ $ $)) (-15 -2024 ($ $ $ $)) (-15 -2023 ($ $ $ $)) (-15 -2022 ($ $ $ $)) (-15 -2021 ($ $ $)) (-6 -3969))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-114) . T) ((-144) . T) ((-548 (-177)) . T) ((-548 (-323)) . T) ((-548 (-467)) . T) ((-548 (-478)) . T) ((-548 (-793 (-478))) . T) ((-184 $) . T) ((-188) . T) ((-187) . T) ((-242) . T) ((-254) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-478)) . T) ((-585 $) . T) ((-577 $) . T) ((-575 (-478)) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-733) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-789 (-478)) . T) ((-825) . T) ((-926) . T) ((-943 (-478)) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1052) . T) ((-1114) . T) ((-1119) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 8 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 77 T ELT)) (-2045 (($ $) 78 T ELT)) (-2043 (((-83) $) NIL T ELT)) (-2029 (($ $ $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2024 (($ $ $ $) 32 T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL T ELT)) (-2421 (($ $ $) 71 T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL T ELT)) (-2544 (($ $ $) 33 T ELT)) (-2261 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 54 T ELT) (((-625 (-478)) (-625 $)) 50 T ELT)) (-3444 (((-3 $ #1#) $) 74 T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3004 (((-83) $) NIL T ELT)) (-3003 (((-343 (-478)) $) NIL T ELT)) (-2975 (($) 56 T ELT) (($ $) 57 T ELT)) (-2543 (($ $ $) 70 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-2022 (($ $ $ $) NIL T ELT)) (-2030 (($ $ $) 47 T ELT)) (-3168 (((-83) $) 22 T ELT)) (-1352 (($ $ $) NIL T ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL T ELT)) (-2392 (((-83) $) 9 T ELT)) (-2654 (((-83) $) 64 T ELT)) (-3422 (((-627 $) $) NIL T ELT)) (-3169 (((-83) $) 21 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2023 (($ $ $ $) 34 T ELT)) (-2511 (($ $ $) 67 T ELT)) (-2838 (($ $ $) 66 T ELT)) (-2026 (($ $) NIL T ELT)) (-3809 (($ $) 29 T ELT)) (-2262 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL T ELT) (((-625 (-478)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) 46 T ELT)) (-2021 (($ $ $) NIL T ELT)) (-3423 (($) NIL T CONST)) (-2028 (($ $) 15 T ELT)) (-3223 (((-1020) $) 19 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 109 T ELT)) (-3125 (($ $ $) 75 T ELT) (($ (-578 $)) NIL T ELT)) (-1350 (($ $) NIL T ELT)) (-3708 (((-341 $) $) 95 T ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) 93 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2655 (((-83) $) 65 T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 69 T ELT)) (-3734 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2027 (($ $) 17 T ELT)) (-3377 (($ $) 13 T ELT)) (-3948 (((-478) $) 28 T ELT) (((-467) $) 43 T ELT) (((-793 (-478)) $) NIL T ELT) (((-323) $) 37 T ELT) (((-177) $) 40 T ELT)) (-3922 (((-765) $) 26 T ELT) (($ (-478)) 27 T ELT) (($ $) NIL T ELT) (($ (-478)) 27 T ELT)) (-3107 (((-687)) NIL T CONST)) (-2031 (((-83) $ $) NIL T ELT)) (-3083 (($ $ $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2675 (($) 12 T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2025 (($ $ $ $) 31 T ELT)) (-3360 (($ $) 55 T ELT)) (-2640 (($) 10 T CONST)) (-2647 (($) 11 T CONST)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2546 (((-83) $ $) 30 T ELT)) (-2547 (((-83) $ $) 58 T ELT)) (-3037 (((-83) $ $) 7 T ELT)) (-2665 (((-83) $ $) 59 T ELT)) (-2666 (((-83) $ $) 20 T ELT)) (-3813 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-3815 (($ $ $) 14 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 63 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-478) $) 61 T ELT))) -(((-478) (-13 (-477) (-10 -7 (-6 -3958) (-6 -3963) (-6 -3959)))) (T -478)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT))) -(((-479) (-13 (-745) (-10 -8 (-15 -3700 ($) -3928)))) (T -479)) -((-3700 (*1 *1) (-5 *1 (-479)))) -((-478) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT))) -(((-480) (-13 (-745) (-10 -8 (-15 -3700 ($) -3928)))) (T -480)) -((-3700 (*1 *1) (-5 *1 (-480)))) -((-478) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT))) -(((-481) (-13 (-745) (-10 -8 (-15 -3700 ($) -3928)))) (T -481)) -((-3700 (*1 *1) (-5 *1 (-481)))) -((-478) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT))) -(((-482) (-13 (-745) (-10 -8 (-15 -3700 ($) -3928)))) (T -482)) -((-3700 (*1 *1) (-5 *1 (-482)))) -((-478) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3575 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2180 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) NIL T ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2182 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2183 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-2214 (((-578 |#1|) $) NIL T ELT)) (-2215 (((-83) |#1| $) NIL T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2185 (((-578 |#1|) $) NIL T ELT)) (-2186 (((-83) |#1| $) NIL T ELT)) (-3223 (((-1020) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-3777 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1449 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3922 (((-765) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1249 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-483 |#1| |#2| |#3|) (-13 (-1092 |#1| |#2|) (-10 -7 (-6 -3971))) (-1003) (-1003) (-13 (-1092 |#1| |#2|) (-10 -7 (-6 -3971)))) (T -483)) -NIL -((-2032 (((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) (-1 (-1070 |#2|) (-1070 |#2|))) 50 T ELT))) -(((-484 |#1| |#2|) (-10 -7 (-15 -2032 ((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) (-1 (-1070 |#2|) (-1070 |#2|))))) (-489) (-13 (-27) (-357 |#1|))) (T -484)) -((-2032 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-545 *3)) (-5 *5 (-1 (-1070 *3) (-1070 *3))) (-4 *3 (-13 (-27) (-357 *6))) (-4 *6 (-489)) (-5 *2 (-513 *3)) (-5 *1 (-484 *6 *3))))) -((-2034 (((-513 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2035 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2033 (((-513 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-485 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2033 ((-513 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2034 ((-513 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2035 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-489) (-943 (-478))) (-13 (-27) (-357 |#1|)) (-1140 |#2|) (-1140 (-343 |#3|)) (-287 |#2| |#3| |#4|)) (T -485)) -((-2035 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-27) (-357 *4))) (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *7 (-1140 (-343 *6))) (-5 *1 (-485 *4 *5 *6 *7 *2)) (-4 *2 (-287 *5 *6 *7)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-13 (-27) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)))) (-4 *8 (-1140 (-343 *7))) (-5 *2 (-513 *3)) (-5 *1 (-485 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8)))) (-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-13 (-27) (-357 *5))) (-4 *5 (-13 (-489) (-943 (-478)))) (-4 *8 (-1140 (-343 *7))) (-5 *2 (-513 *3)) (-5 *1 (-485 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8))))) -((-2038 (((-83) (-478) (-478)) 12 T ELT)) (-2036 (((-478) (-478)) 7 T ELT)) (-2037 (((-478) (-478) (-478)) 10 T ELT))) -(((-486) (-10 -7 (-15 -2036 ((-478) (-478))) (-15 -2037 ((-478) (-478) (-478))) (-15 -2038 ((-83) (-478) (-478))))) (T -486)) -((-2038 (*1 *2 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-83)) (-5 *1 (-486)))) (-2037 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-486)))) (-2036 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-486))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2584 ((|#1| $) 74 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-3469 (($ $) 104 T ELT)) (-3615 (($ $) 87 T ELT)) (-2463 ((|#1| $) 75 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3018 (($ $) 86 T ELT)) (-3467 (($ $) 103 T ELT)) (-3614 (($ $) 88 T ELT)) (-3471 (($ $) 102 T ELT)) (-3613 (($ $) 89 T ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 (-478) "failed") $) 82 T ELT)) (-3137 (((-478) $) 83 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2041 (($ |#1| |#1|) 79 T ELT)) (-3168 (((-83) $) 73 T ELT)) (-3603 (($) 114 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 85 T ELT)) (-3169 (((-83) $) 72 T ELT)) (-2511 (($ $ $) 115 T ELT)) (-2838 (($ $ $) 116 T ELT)) (-3918 (($ $) 111 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2042 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-343 (-478))) 77 T ELT)) (-2040 ((|#1| $) 76 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-3919 (($ $) 112 T ELT)) (-3472 (($ $) 101 T ELT)) (-3612 (($ $) 90 T ELT)) (-3470 (($ $) 100 T ELT)) (-3611 (($ $) 91 T ELT)) (-3468 (($ $) 99 T ELT)) (-3610 (($ $) 92 T ELT)) (-2039 (((-83) $ |#1|) 71 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-478)) 81 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-3475 (($ $) 110 T ELT)) (-3463 (($ $) 98 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-3473 (($ $) 109 T ELT)) (-3461 (($ $) 97 T ELT)) (-3477 (($ $) 108 T ELT)) (-3465 (($ $) 96 T ELT)) (-3478 (($ $) 107 T ELT)) (-3466 (($ $) 95 T ELT)) (-3476 (($ $) 106 T ELT)) (-3464 (($ $) 94 T ELT)) (-3474 (($ $) 105 T ELT)) (-3462 (($ $) 93 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2546 (((-83) $ $) 117 T ELT)) (-2547 (((-83) $ $) 119 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 118 T ELT)) (-2666 (((-83) $ $) 120 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-343 (-478))) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-487 |#1|) (-111) (-13 (-340) (-1100))) (T -487)) -((-2042 (*1 *1 *2 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100))))) (-2041 (*1 *1 *2 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100))))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100))))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1100))))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100))))) (-2463 (*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100))))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100))))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1100))) (-5 *2 (-83)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1100))) (-5 *2 (-83)))) (-2039 (*1 *2 *1 *3) (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1100))) (-5 *2 (-83))))) -(-13 (-385) (-749) (-1100) (-908) (-943 (-478)) (-10 -8 (-6 -3746) (-15 -2042 ($ |t#1| |t#1|)) (-15 -2041 ($ |t#1| |t#1|)) (-15 -2042 ($ |t#1|)) (-15 -2042 ($ (-343 (-478)))) (-15 -2040 (|t#1| $)) (-15 -2463 (|t#1| $)) (-15 -2584 (|t#1| $)) (-15 -3168 ((-83) $)) (-15 -3169 ((-83) $)) (-15 -2039 ((-83) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-236) . T) ((-242) . T) ((-385) . T) ((-426) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-749) . T) ((-752) . T) ((-908) . T) ((-943 (-478)) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1100) . T) ((-1103) . T) ((-1114) . T)) -((-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 9 T ELT)) (-2045 (($ $) 11 T ELT)) (-2043 (((-83) $) 20 T ELT)) (-3444 (((-3 $ "failed") $) 16 T ELT)) (-2044 (((-83) $ $) 22 T ELT))) -(((-488 |#1|) (-10 -7 (-15 -2043 ((-83) |#1|)) (-15 -2044 ((-83) |#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -2046 ((-2 (|:| -1755 |#1|) (|:| -3958 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3444 ((-3 |#1| "failed") |#1|))) (-489)) (T -488)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-489) (-111)) (T -489)) -((-3443 (*1 *1 *1 *1) (|partial| -4 *1 (-489))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1755 *1) (|:| -3958 *1) (|:| |associate| *1))) (-4 *1 (-489)))) (-2045 (*1 *1 *1) (-4 *1 (-489))) (-2044 (*1 *2 *1 *1) (-12 (-4 *1 (-489)) (-5 *2 (-83)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-489)) (-5 *2 (-83))))) -(-13 (-144) (-38 $) (-242) (-10 -8 (-15 -3443 ((-3 $ "failed") $ $)) (-15 -2046 ((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $)) (-15 -2045 ($ $)) (-15 -2044 ((-83) $ $)) (-15 -2043 ((-83) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2048 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1075) (-578 |#2|)) 38 T ELT)) (-2050 (((-513 |#2|) |#2| (-1075)) 63 T ELT)) (-2049 (((-3 |#2| #1#) |#2| (-1075)) 156 T ELT)) (-2051 (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1075) (-545 |#2|) (-578 (-545 |#2|))) 159 T ELT)) (-2047 (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1075) |#2|) 41 T ELT))) -(((-490 |#1| |#2|) (-10 -7 (-15 -2047 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1075) |#2|)) (-15 -2048 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1075) (-578 |#2|))) (-15 -2049 ((-3 |#2| #1#) |#2| (-1075))) (-15 -2050 ((-513 |#2|) |#2| (-1075))) (-15 -2051 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1075) (-545 |#2|) (-578 (-545 |#2|))))) (-13 (-385) (-118) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1100) (-357 |#1|))) (T -490)) -((-2051 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1075)) (-5 *6 (-578 (-545 *3))) (-5 *5 (-545 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *7))) (-4 *7 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-490 *7 *3)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-490 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) (-2049 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-490 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4))))) (-2048 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-490 *6 *3)))) (-2047 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-490 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5)))))) -((-3947 (((-341 |#1|) |#1|) 17 T ELT)) (-3708 (((-341 |#1|) |#1|) 32 T ELT)) (-2053 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2052 (((-341 |#1|) |#1|) 59 T ELT))) -(((-491 |#1|) (-10 -7 (-15 -3708 ((-341 |#1|) |#1|)) (-15 -3947 ((-341 |#1|) |#1|)) (-15 -2052 ((-341 |#1|) |#1|)) (-15 -2053 ((-3 |#1| "failed") |#1|))) (-477)) (T -491)) -((-2053 (*1 *2 *2) (|partial| -12 (-5 *1 (-491 *2)) (-4 *2 (-477)))) (-2052 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477)))) (-3708 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477))))) -((-3065 (((-1070 (-343 (-1070 |#2|))) |#2| (-545 |#2|) (-545 |#2|) (-1070 |#2|)) 35 T ELT)) (-2056 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|) (-545 |#2|) |#2| (-343 (-1070 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|) |#2| (-1070 |#2|)) 115 T ELT)) (-2054 (((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) (-545 |#2|) |#2| (-343 (-1070 |#2|))) 85 T ELT) (((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) |#2| (-1070 |#2|)) 55 T ELT)) (-2055 (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-545 |#2|) (-545 |#2|) |#2| (-545 |#2|) |#2| (-343 (-1070 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-545 |#2|) (-545 |#2|) |#2| |#2| (-1070 |#2|)) 114 T ELT)) (-2057 (((-3 |#2| #1#) |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1075)) (-545 |#2|) |#2| (-343 (-1070 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1075)) |#2| (-1070 |#2|)) 116 T ELT)) (-2058 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1994 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) (-545 |#2|) |#2| (-343 (-1070 |#2|))) 133 (|has| |#3| (-595 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1994 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) |#2| (-1070 |#2|)) 132 (|has| |#3| (-595 |#2|)) ELT)) (-3066 ((|#2| (-1070 (-343 (-1070 |#2|))) (-545 |#2|) |#2|) 53 T ELT)) (-3060 (((-1070 (-343 (-1070 |#2|))) (-1070 |#2|) (-545 |#2|)) 34 T ELT))) -(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -2054 ((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) |#2| (-1070 |#2|))) (-15 -2054 ((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|) (-545 |#2|) |#2| (-343 (-1070 |#2|)))) (-15 -2055 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-545 |#2|) (-545 |#2|) |#2| |#2| (-1070 |#2|))) (-15 -2055 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-545 |#2|) (-545 |#2|) |#2| (-545 |#2|) |#2| (-343 (-1070 |#2|)))) (-15 -2056 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|) |#2| (-1070 |#2|))) (-15 -2056 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|) (-545 |#2|) |#2| (-343 (-1070 |#2|)))) (-15 -2057 ((-3 |#2| #1#) |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1075)) |#2| (-1070 |#2|))) (-15 -2057 ((-3 |#2| #1#) |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1075)) (-545 |#2|) |#2| (-343 (-1070 |#2|)))) (-15 -3065 ((-1070 (-343 (-1070 |#2|))) |#2| (-545 |#2|) (-545 |#2|) (-1070 |#2|))) (-15 -3066 (|#2| (-1070 (-343 (-1070 |#2|))) (-545 |#2|) |#2|)) (-15 -3060 ((-1070 (-343 (-1070 |#2|))) (-1070 |#2|) (-545 |#2|))) (IF (|has| |#3| (-595 |#2|)) (PROGN (-15 -2058 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1994 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) |#2| (-1070 |#2|))) (-15 -2058 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1994 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) (-545 |#2|) |#2| (-343 (-1070 |#2|))))) |%noBranch|)) (-13 (-385) (-943 (-478)) (-118) (-575 (-478))) (-13 (-357 |#1|) (-27) (-1100)) (-1003)) (T -492)) -((-2058 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-545 *4)) (-5 *6 (-343 (-1070 *4))) (-4 *4 (-13 (-357 *7) (-27) (-1100))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1994 (-578 *4)))) (-5 *1 (-492 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1003)))) (-2058 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-545 *4)) (-5 *6 (-1070 *4)) (-4 *4 (-13 (-357 *7) (-27) (-1100))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1994 (-578 *4)))) (-5 *1 (-492 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1003)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-545 *6)) (-4 *6 (-13 (-357 *5) (-27) (-1100))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-1070 (-343 (-1070 *6)))) (-5 *1 (-492 *5 *6 *7)) (-5 *3 (-1070 *6)) (-4 *7 (-1003)))) (-3066 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1070 (-343 (-1070 *2)))) (-5 *4 (-545 *2)) (-4 *2 (-13 (-357 *5) (-27) (-1100))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *1 (-492 *5 *2 *6)) (-4 *6 (-1003)))) (-3065 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1100))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-1070 (-343 (-1070 *3)))) (-5 *1 (-492 *6 *3 *7)) (-5 *5 (-1070 *3)) (-4 *7 (-1003)))) (-2057 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1075))) (-5 *5 (-343 (-1070 *2))) (-4 *2 (-13 (-357 *6) (-27) (-1100))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *1 (-492 *6 *2 *7)) (-4 *7 (-1003)))) (-2057 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1075))) (-5 *5 (-1070 *2)) (-4 *2 (-13 (-357 *6) (-27) (-1100))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *1 (-492 *6 *2 *7)) (-4 *7 (-1003)))) (-2056 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-5 *6 (-343 (-1070 *3))) (-4 *3 (-13 (-357 *7) (-27) (-1100))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-492 *7 *3 *8)) (-4 *8 (-1003)))) (-2056 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-5 *6 (-1070 *3)) (-4 *3 (-13 (-357 *7) (-27) (-1100))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-492 *7 *3 *8)) (-4 *8 (-1003)))) (-2055 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-343 (-1070 *3))) (-4 *3 (-13 (-357 *6) (-27) (-1100))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1003)))) (-2055 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1100))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1003)))) (-2054 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-545 *3)) (-5 *5 (-343 (-1070 *3))) (-4 *3 (-13 (-357 *6) (-27) (-1100))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1003)))) (-2054 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-545 *3)) (-5 *5 (-1070 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1100))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1003))))) -((-2068 (((-478) (-478) (-687)) 87 T ELT)) (-2067 (((-478) (-478)) 85 T ELT)) (-2066 (((-478) (-478)) 82 T ELT)) (-2065 (((-478) (-478)) 89 T ELT)) (-2786 (((-478) (-478) (-478)) 67 T ELT)) (-2064 (((-478) (-478) (-478)) 64 T ELT)) (-2063 (((-343 (-478)) (-478)) 29 T ELT)) (-2062 (((-478) (-478)) 34 T ELT)) (-2061 (((-478) (-478)) 76 T ELT)) (-2783 (((-478) (-478)) 47 T ELT)) (-2060 (((-578 (-478)) (-478)) 81 T ELT)) (-2059 (((-478) (-478) (-478) (-478) (-478)) 60 T ELT)) (-2779 (((-343 (-478)) (-478)) 56 T ELT))) -(((-493) (-10 -7 (-15 -2779 ((-343 (-478)) (-478))) (-15 -2059 ((-478) (-478) (-478) (-478) (-478))) (-15 -2060 ((-578 (-478)) (-478))) (-15 -2783 ((-478) (-478))) (-15 -2061 ((-478) (-478))) (-15 -2062 ((-478) (-478))) (-15 -2063 ((-343 (-478)) (-478))) (-15 -2064 ((-478) (-478) (-478))) (-15 -2786 ((-478) (-478) (-478))) (-15 -2065 ((-478) (-478))) (-15 -2066 ((-478) (-478))) (-15 -2067 ((-478) (-478))) (-15 -2068 ((-478) (-478) (-687))))) (T -493)) -((-2068 (*1 *2 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-687)) (-5 *1 (-493)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2786 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2064 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2063 (*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-493)) (-5 *3 (-478)))) (-2062 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2061 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2060 (*1 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-493)) (-5 *3 (-478)))) (-2059 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) (-2779 (*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-493)) (-5 *3 (-478))))) -((-2069 (((-2 (|:| |answer| |#4|) (|:| -2117 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2069 ((-2 (|:| |answer| |#4|) (|:| -2117 |#4|)) |#4| (-1 |#2| |#2|)))) (-308) (-1140 |#1|) (-1140 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -494)) -((-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) (-4 *7 (-1140 (-343 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2117 *3))) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-287 *5 *6 *7))))) -((-2069 (((-2 (|:| |answer| (-343 |#2|)) (|:| -2117 (-343 |#2|)) (|:| |specpart| (-343 |#2|)) (|:| |polypart| |#2|)) (-343 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-495 |#1| |#2|) (-10 -7 (-15 -2069 ((-2 (|:| |answer| (-343 |#2|)) (|:| -2117 (-343 |#2|)) (|:| |specpart| (-343 |#2|)) (|:| |polypart| |#2|)) (-343 |#2|) (-1 |#2| |#2|)))) (-308) (-1140 |#1|)) (T -495)) -((-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |answer| (-343 *6)) (|:| -2117 (-343 *6)) (|:| |specpart| (-343 *6)) (|:| |polypart| *6))) (-5 *1 (-495 *5 *6)) (-5 *3 (-343 *6))))) -((-2072 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|)) 195 T ELT)) (-2070 (((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|)) 97 T ELT)) (-2071 (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-545 |#2|) (-545 |#2|) |#2|) 191 T ELT)) (-2073 (((-3 |#2| #1#) |#2| |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1075))) 200 T ELT)) (-2074 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1994 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) (-1075)) 209 (|has| |#3| (-595 |#2|)) ELT))) -(((-496 |#1| |#2| |#3|) (-10 -7 (-15 -2070 ((-513 |#2|) |#2| (-545 |#2|) (-545 |#2|))) (-15 -2071 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-545 |#2|) (-545 |#2|) |#2|)) (-15 -2072 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-545 |#2|) (-545 |#2|) (-578 |#2|))) (-15 -2073 ((-3 |#2| #1#) |#2| |#2| |#2| (-545 |#2|) (-545 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1075)))) (IF (|has| |#3| (-595 |#2|)) (-15 -2074 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1994 (-578 |#2|))) |#3| |#2| (-545 |#2|) (-545 |#2|) (-1075))) |%noBranch|)) (-13 (-385) (-943 (-478)) (-118) (-575 (-478))) (-13 (-357 |#1|) (-27) (-1100)) (-1003)) (T -496)) -((-2074 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-545 *4)) (-5 *6 (-1075)) (-4 *4 (-13 (-357 *7) (-27) (-1100))) (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1994 (-578 *4)))) (-5 *1 (-496 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1003)))) (-2073 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1075))) (-4 *2 (-13 (-357 *5) (-27) (-1100))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *1 (-496 *5 *2 *6)) (-4 *6 (-1003)))) (-2072 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1100))) (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-496 *6 *3 *7)) (-4 *7 (-1003)))) (-2071 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *5) (-27) (-1100))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3 *6)) (-4 *6 (-1003)))) (-2070 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *5) (-27) (-1100))) (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) (-5 *1 (-496 *5 *3 *6)) (-4 *6 (-1003))))) -((-2075 (((-2 (|:| -2320 |#2|) (|:| |nconst| |#2|)) |#2| (-1075)) 64 T ELT)) (-2077 (((-3 |#2| #1="failed") |#2| (-1075) (-743 |#2|) (-743 |#2|)) 174 (-12 (|has| |#2| (-1039)) (|has| |#1| (-548 (-793 (-478)))) (|has| |#1| (-789 (-478)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1075)) 145 (-12 (|has| |#2| (-564)) (|has| |#1| (-548 (-793 (-478)))) (|has| |#1| (-789 (-478)))) ELT)) (-2076 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1075)) 156 (-12 (|has| |#2| (-564)) (|has| |#1| (-548 (-793 (-478)))) (|has| |#1| (-789 (-478)))) ELT))) -(((-497 |#1| |#2|) (-10 -7 (-15 -2075 ((-2 (|:| -2320 |#2|) (|:| |nconst| |#2|)) |#2| (-1075))) (IF (|has| |#1| (-548 (-793 (-478)))) (IF (|has| |#1| (-789 (-478))) (PROGN (IF (|has| |#2| (-564)) (PROGN (-15 -2076 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1075))) (-15 -2077 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1075)))) |%noBranch|) (IF (|has| |#2| (-1039)) (-15 -2077 ((-3 |#2| #1#) |#2| (-1075) (-743 |#2|) (-743 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-943 (-478)) (-385) (-575 (-478))) (-13 (-27) (-1100) (-357 |#1|))) (T -497)) -((-2077 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1075)) (-5 *4 (-743 *2)) (-4 *2 (-1039)) (-4 *2 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-548 (-793 (-478)))) (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) (-5 *1 (-497 *5 *2)))) (-2077 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-548 (-793 (-478)))) (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-564)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) (-2076 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-548 (-793 (-478)))) (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-564)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) (-5 *2 (-2 (|:| -2320 *3) (|:| |nconst| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5)))))) -((-2080 (((-3 (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|)))))) #1="failed") (-343 |#2|) (-578 (-343 |#2|))) 41 T ELT)) (-3788 (((-513 (-343 |#2|)) (-343 |#2|)) 28 T ELT)) (-2078 (((-3 (-343 |#2|) #1#) (-343 |#2|)) 17 T ELT)) (-2079 (((-3 (-2 (|:| -2118 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-343 |#2|)) 48 T ELT))) -(((-498 |#1| |#2|) (-10 -7 (-15 -3788 ((-513 (-343 |#2|)) (-343 |#2|))) (-15 -2078 ((-3 (-343 |#2|) #1="failed") (-343 |#2|))) (-15 -2079 ((-3 (-2 (|:| -2118 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-343 |#2|))) (-15 -2080 ((-3 (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|)))))) #1#) (-343 |#2|) (-578 (-343 |#2|))))) (-13 (-308) (-118) (-943 (-478))) (-1140 |#1|)) (T -498)) -((-2080 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-578 (-343 *6))) (-5 *3 (-343 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *5 *6)))) (-2079 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -2118 (-343 *5)) (|:| |coeff| (-343 *5)))) (-5 *1 (-498 *4 *5)) (-5 *3 (-343 *5)))) (-2078 (*1 *2 *2) (|partial| -12 (-5 *2 (-343 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-13 (-308) (-118) (-943 (-478)))) (-5 *1 (-498 *3 *4)))) (-3788 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1140 *4)) (-5 *2 (-513 (-343 *5))) (-5 *1 (-498 *4 *5)) (-5 *3 (-343 *5))))) -((-2081 (((-3 (-478) "failed") |#1|) 14 T ELT)) (-3239 (((-83) |#1|) 13 T ELT)) (-3235 (((-478) |#1|) 9 T ELT))) -(((-499 |#1|) (-10 -7 (-15 -3235 ((-478) |#1|)) (-15 -3239 ((-83) |#1|)) (-15 -2081 ((-3 (-478) "failed") |#1|))) (-943 (-478))) (T -499)) -((-2081 (*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-499 *3)) (-4 *3 (-943 *2)))) (-3239 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-499 *3)) (-4 *3 (-943 (-478))))) (-3235 (*1 *2 *3) (-12 (-5 *2 (-478)) (-5 *1 (-499 *3)) (-4 *3 (-943 *2))))) -((-2084 (((-3 (-2 (|:| |mainpart| (-343 (-850 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 (-850 |#1|))) (|:| |logand| (-343 (-850 |#1|))))))) #1="failed") (-343 (-850 |#1|)) (-1075) (-578 (-343 (-850 |#1|)))) 48 T ELT)) (-2082 (((-513 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-1075)) 28 T ELT)) (-2083 (((-3 (-343 (-850 |#1|)) #1#) (-343 (-850 |#1|)) (-1075)) 23 T ELT)) (-2085 (((-3 (-2 (|:| -2118 (-343 (-850 |#1|))) (|:| |coeff| (-343 (-850 |#1|)))) #1#) (-343 (-850 |#1|)) (-1075) (-343 (-850 |#1|))) 35 T ELT))) -(((-500 |#1|) (-10 -7 (-15 -2082 ((-513 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-1075))) (-15 -2083 ((-3 (-343 (-850 |#1|)) #1="failed") (-343 (-850 |#1|)) (-1075))) (-15 -2084 ((-3 (-2 (|:| |mainpart| (-343 (-850 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 (-850 |#1|))) (|:| |logand| (-343 (-850 |#1|))))))) #1#) (-343 (-850 |#1|)) (-1075) (-578 (-343 (-850 |#1|))))) (-15 -2085 ((-3 (-2 (|:| -2118 (-343 (-850 |#1|))) (|:| |coeff| (-343 (-850 |#1|)))) #1#) (-343 (-850 |#1|)) (-1075) (-343 (-850 |#1|))))) (-13 (-489) (-943 (-478)) (-118))) (T -500)) -((-2085 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)) (-118))) (-5 *2 (-2 (|:| -2118 (-343 (-850 *5))) (|:| |coeff| (-343 (-850 *5))))) (-5 *1 (-500 *5)) (-5 *3 (-343 (-850 *5))))) (-2084 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-578 (-343 (-850 *6)))) (-5 *3 (-343 (-850 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-118))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-500 *6)))) (-2083 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-343 (-850 *4))) (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)) (-118))) (-5 *1 (-500 *4)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)) (-118))) (-5 *2 (-513 (-343 (-850 *5)))) (-5 *1 (-500 *5)) (-5 *3 (-343 (-850 *5)))))) -((-2548 (((-83) $ $) 77 T ELT)) (-3170 (((-83) $) 49 T ELT)) (-2584 ((|#1| $) 39 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) 81 T ELT)) (-3469 (($ $) 142 T ELT)) (-3615 (($ $) 120 T ELT)) (-2463 ((|#1| $) 37 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3018 (($ $) NIL T ELT)) (-3467 (($ $) 144 T ELT)) (-3614 (($ $) 116 T ELT)) (-3471 (($ $) 146 T ELT)) (-3613 (($ $) 124 T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) 95 T ELT)) (-3137 (((-478) $) 97 T ELT)) (-3444 (((-3 $ #1#) $) 80 T ELT)) (-2041 (($ |#1| |#1|) 35 T ELT)) (-3168 (((-83) $) 44 T ELT)) (-3603 (($) 106 T ELT)) (-2392 (((-83) $) 56 T ELT)) (-2992 (($ $ (-478)) NIL T ELT)) (-3169 (((-83) $) 46 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3918 (($ $) 108 T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2042 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-343 (-478))) 94 T ELT)) (-2040 ((|#1| $) 36 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) 83 T ELT) (($ (-578 $)) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) 82 T ELT)) (-3919 (($ $) 110 T ELT)) (-3472 (($ $) 150 T ELT)) (-3612 (($ $) 122 T ELT)) (-3470 (($ $) 152 T ELT)) (-3611 (($ $) 126 T ELT)) (-3468 (($ $) 148 T ELT)) (-3610 (($ $) 118 T ELT)) (-2039 (((-83) $ |#1|) 42 T ELT)) (-3922 (((-765) $) 102 T ELT) (($ (-478)) 85 T ELT) (($ $) NIL T ELT) (($ (-478)) 85 T ELT)) (-3107 (((-687)) 104 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) 164 T ELT)) (-3463 (($ $) 132 T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3473 (($ $) 162 T ELT)) (-3461 (($ $) 128 T ELT)) (-3477 (($ $) 160 T ELT)) (-3465 (($ $) 140 T ELT)) (-3478 (($ $) 158 T ELT)) (-3466 (($ $) 138 T ELT)) (-3476 (($ $) 156 T ELT)) (-3464 (($ $) 134 T ELT)) (-3474 (($ $) 154 T ELT)) (-3462 (($ $) 130 T ELT)) (-2640 (($) 30 T CONST)) (-2647 (($) 10 T CONST)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 50 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 48 T ELT)) (-3813 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3815 (($ $ $) 53 T ELT)) (** (($ $ (-823)) 73 T ELT) (($ $ (-687)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-343 (-478))) 166 T ELT)) (* (($ (-823) $) 67 T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-501 |#1|) (-487 |#1|) (-13 (-340) (-1100))) (T -501)) -NIL -((-2685 (((-3 (-578 (-1070 (-478))) "failed") (-578 (-1070 (-478))) (-1070 (-478))) 27 T ELT))) -(((-502) (-10 -7 (-15 -2685 ((-3 (-578 (-1070 (-478))) "failed") (-578 (-1070 (-478))) (-1070 (-478)))))) (T -502)) -((-2685 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1070 (-478)))) (-5 *3 (-1070 (-478))) (-5 *1 (-502))))) -((-2086 (((-578 (-545 |#2|)) (-578 (-545 |#2|)) (-1075)) 19 T ELT)) (-2089 (((-578 (-545 |#2|)) (-578 |#2|) (-1075)) 23 T ELT)) (-3214 (((-578 (-545 |#2|)) (-578 (-545 |#2|)) (-578 (-545 |#2|))) 11 T ELT)) (-2090 ((|#2| |#2| (-1075)) 59 (|has| |#1| (-489)) ELT)) (-2091 ((|#2| |#2| (-1075)) 87 (-12 (|has| |#2| (-236)) (|has| |#1| (-385))) ELT)) (-2088 (((-545 |#2|) (-545 |#2|) (-578 (-545 |#2|)) (-1075)) 25 T ELT)) (-2087 (((-545 |#2|) (-578 (-545 |#2|))) 24 T ELT)) (-2092 (((-513 |#2|) |#2| (-1075) (-1 (-513 |#2|) |#2| (-1075)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075))) 115 (-12 (|has| |#2| (-236)) (|has| |#2| (-564)) (|has| |#2| (-943 (-1075))) (|has| |#1| (-548 (-793 (-478)))) (|has| |#1| (-385)) (|has| |#1| (-789 (-478)))) ELT))) -(((-503 |#1| |#2|) (-10 -7 (-15 -2086 ((-578 (-545 |#2|)) (-578 (-545 |#2|)) (-1075))) (-15 -2087 ((-545 |#2|) (-578 (-545 |#2|)))) (-15 -2088 ((-545 |#2|) (-545 |#2|) (-578 (-545 |#2|)) (-1075))) (-15 -3214 ((-578 (-545 |#2|)) (-578 (-545 |#2|)) (-578 (-545 |#2|)))) (-15 -2089 ((-578 (-545 |#2|)) (-578 |#2|) (-1075))) (IF (|has| |#1| (-489)) (-15 -2090 (|#2| |#2| (-1075))) |%noBranch|) (IF (|has| |#1| (-385)) (IF (|has| |#2| (-236)) (PROGN (-15 -2091 (|#2| |#2| (-1075))) (IF (|has| |#1| (-548 (-793 (-478)))) (IF (|has| |#1| (-789 (-478))) (IF (|has| |#2| (-564)) (IF (|has| |#2| (-943 (-1075))) (-15 -2092 ((-513 |#2|) |#2| (-1075) (-1 (-513 |#2|) |#2| (-1075)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1075)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1003) (-357 |#1|)) (T -503)) -((-2092 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-513 *3) *3 (-1075))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1075))) (-4 *3 (-236)) (-4 *3 (-564)) (-4 *3 (-943 *4)) (-4 *3 (-357 *7)) (-5 *4 (-1075)) (-4 *7 (-548 (-793 (-478)))) (-4 *7 (-385)) (-4 *7 (-789 (-478))) (-4 *7 (-1003)) (-5 *2 (-513 *3)) (-5 *1 (-503 *7 *3)))) (-2091 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-385)) (-4 *4 (-1003)) (-5 *1 (-503 *4 *2)) (-4 *2 (-236)) (-4 *2 (-357 *4)))) (-2090 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-4 *4 (-1003)) (-5 *1 (-503 *4 *2)) (-4 *2 (-357 *4)))) (-2089 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-1075)) (-4 *6 (-357 *5)) (-4 *5 (-1003)) (-5 *2 (-578 (-545 *6))) (-5 *1 (-503 *5 *6)))) (-3214 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-545 *4))) (-4 *4 (-357 *3)) (-4 *3 (-1003)) (-5 *1 (-503 *3 *4)))) (-2088 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-545 *6))) (-5 *4 (-1075)) (-5 *2 (-545 *6)) (-4 *6 (-357 *5)) (-4 *5 (-1003)) (-5 *1 (-503 *5 *6)))) (-2087 (*1 *2 *3) (-12 (-5 *3 (-578 (-545 *5))) (-4 *4 (-1003)) (-5 *2 (-545 *5)) (-5 *1 (-503 *4 *5)) (-4 *5 (-357 *4)))) (-2086 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-545 *5))) (-5 *3 (-1075)) (-4 *5 (-357 *4)) (-4 *4 (-1003)) (-5 *1 (-503 *4 *5))))) -((-2095 (((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) #1="failed") (-478) |#1| |#1|)) 199 T ELT)) (-2098 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|))))))) (|:| |a0| |#1|)) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-578 (-343 |#2|))) 174 T ELT)) (-2101 (((-3 (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|)))))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-578 (-343 |#2|))) 171 T ELT)) (-2102 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2093 (((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2100 (((-3 (-2 (|:| -2118 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-343 |#2|)) 202 T ELT)) (-2096 (((-3 (-2 (|:| |answer| (-343 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-343 |#2|)) 205 T ELT)) (-2104 (((-2 (|:| |ir| (-513 (-343 |#2|))) (|:| |specpart| (-343 |#2|)) (|:| |polypart| |#2|)) (-343 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2105 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2099 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|))))))) (|:| |a0| |#1|)) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3118 |#1|) (|:| |sol?| (-83))) (-478) |#1|) (-578 (-343 |#2|))) 178 T ELT)) (-2103 (((-3 (-557 |#1| |#2|) #1#) (-557 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3118 |#1|) (|:| |sol?| (-83))) (-478) |#1|)) 166 T ELT)) (-2094 (((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3118 |#1|) (|:| |sol?| (-83))) (-478) |#1|)) 189 T ELT)) (-2097 (((-3 (-2 (|:| |answer| (-343 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3118 |#1|) (|:| |sol?| (-83))) (-478) |#1|) (-343 |#2|)) 210 T ELT))) -(((-504 |#1| |#2|) (-10 -7 (-15 -2093 ((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2094 ((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3118 |#1|) (|:| |sol?| (-83))) (-478) |#1|))) (-15 -2095 ((-2 (|:| |answer| (-513 (-343 |#2|))) (|:| |a0| |#1|)) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) #1#) (-478) |#1| |#1|))) (-15 -2096 ((-3 (-2 (|:| |answer| (-343 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-343 |#2|))) (-15 -2097 ((-3 (-2 (|:| |answer| (-343 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3118 |#1|) (|:| |sol?| (-83))) (-478) |#1|) (-343 |#2|))) (-15 -2098 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|))))))) (|:| |a0| |#1|)) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-578 (-343 |#2|)))) (-15 -2099 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|))))))) (|:| |a0| |#1|)) #1#) (-343 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3118 |#1|) (|:| |sol?| (-83))) (-478) |#1|) (-578 (-343 |#2|)))) (-15 -2100 ((-3 (-2 (|:| -2118 (-343 |#2|)) (|:| |coeff| (-343 |#2|))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-343 |#2|))) (-15 -2101 ((-3 (-2 (|:| |mainpart| (-343 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-343 |#2|)) (|:| |logand| (-343 |#2|)))))) #1#) (-343 |#2|) (-1 |#2| |#2|) (-578 (-343 |#2|)))) (-15 -2102 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2103 ((-3 (-557 |#1| |#2|) #1#) (-557 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3118 |#1|) (|:| |sol?| (-83))) (-478) |#1|))) (-15 -2104 ((-2 (|:| |ir| (-513 (-343 |#2|))) (|:| |specpart| (-343 |#2|)) (|:| |polypart| |#2|)) (-343 |#2|) (-1 |#2| |#2|))) (-15 -2105 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-308) (-1140 |#1|)) (T -504)) -((-2105 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-504 *5 *3)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |ir| (-513 (-343 *6))) (|:| |specpart| (-343 *6)) (|:| |polypart| *6))) (-5 *1 (-504 *5 *6)) (-5 *3 (-343 *6)))) (-2103 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-557 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3118 *4) (|:| |sol?| (-83))) (-478) *4)) (-4 *4 (-308)) (-4 *5 (-1140 *4)) (-5 *1 (-504 *4 *5)))) (-2102 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-308)) (-5 *1 (-504 *4 *2)) (-4 *2 (-1140 *4)))) (-2101 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-578 (-343 *7))) (-4 *7 (-1140 *6)) (-5 *3 (-343 *7)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *6 *7)))) (-2100 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -2118 (-343 *6)) (|:| |coeff| (-343 *6)))) (-5 *1 (-504 *5 *6)) (-5 *3 (-343 *6)))) (-2099 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3118 *7) (|:| |sol?| (-83))) (-478) *7)) (-5 *6 (-578 (-343 *8))) (-4 *7 (-308)) (-4 *8 (-1140 *7)) (-5 *3 (-343 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-504 *7 *8)))) (-2098 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2118 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-578 (-343 *8))) (-4 *7 (-308)) (-4 *8 (-1140 *7)) (-5 *3 (-343 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-504 *7 *8)))) (-2097 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3118 *6) (|:| |sol?| (-83))) (-478) *6)) (-4 *6 (-308)) (-4 *7 (-1140 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-343 *7)) (|:| |a0| *6)) (-2 (|:| -2118 (-343 *7)) (|:| |coeff| (-343 *7))) "failed")) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7)))) (-2096 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2118 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-308)) (-4 *7 (-1140 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-343 *7)) (|:| |a0| *6)) (-2 (|:| -2118 (-343 *7)) (|:| |coeff| (-343 *7))) "failed")) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7)))) (-2095 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-578 *6) "failed") (-478) *6 *6)) (-4 *6 (-308)) (-4 *7 (-1140 *6)) (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7)))) (-2094 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3118 *6) (|:| |sol?| (-83))) (-478) *6)) (-4 *6 (-308)) (-4 *7 (-1140 *6)) (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7)))) (-2093 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2118 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-308)) (-4 *7 (-1140 *6)) (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) -((-2106 (((-3 |#2| "failed") |#2| (-1075) (-1075)) 10 T ELT))) -(((-505 |#1| |#2|) (-10 -7 (-15 -2106 ((-3 |#2| "failed") |#2| (-1075) (-1075)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1100) (-864) (-1039) (-29 |#1|))) (T -505)) -((-2106 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-505 *4 *2)) (-4 *2 (-13 (-1100) (-864) (-1039) (-29 *4)))))) -((-2535 (((-627 (-1123)) $ (-1123)) 27 T ELT)) (-2536 (((-627 (-482)) $ (-482)) 26 T ELT)) (-2534 (((-687) $ (-100)) 28 T ELT)) (-2537 (((-627 (-99)) $ (-99)) 25 T ELT)) (-1982 (((-627 (-1123)) $) 12 T ELT)) (-1978 (((-627 (-1121)) $) 8 T ELT)) (-1980 (((-627 (-1120)) $) 10 T ELT)) (-1983 (((-627 (-482)) $) 13 T ELT)) (-1979 (((-627 (-480)) $) 9 T ELT)) (-1981 (((-627 (-479)) $) 11 T ELT)) (-1977 (((-687) $ (-100)) 7 T ELT)) (-1984 (((-627 (-99)) $) 14 T ELT)) (-1683 (($ $) 6 T ELT))) -(((-506) (-111)) (T -506)) -NIL -(-13 (-459) (-763)) -(((-145) . T) ((-459) . T) ((-763) . T)) -((-2535 (((-627 (-1123)) $ (-1123)) NIL T ELT)) (-2536 (((-627 (-482)) $ (-482)) NIL T ELT)) (-2534 (((-687) $ (-100)) NIL T ELT)) (-2537 (((-627 (-99)) $ (-99)) NIL T ELT)) (-1982 (((-627 (-1123)) $) NIL T ELT)) (-1978 (((-627 (-1121)) $) NIL T ELT)) (-1980 (((-627 (-1120)) $) NIL T ELT)) (-1983 (((-627 (-482)) $) NIL T ELT)) (-1979 (((-627 (-480)) $) NIL T ELT)) (-1981 (((-627 (-479)) $) NIL T ELT)) (-1977 (((-687) $ (-100)) NIL T ELT)) (-1984 (((-627 (-99)) $) NIL T ELT)) (-2538 (((-83) $) NIL T ELT)) (-2107 (($ (-331)) 14 T ELT) (($ (-1059)) 16 T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1683 (($ $) NIL T ELT))) -(((-507) (-13 (-506) (-547 (-765)) (-10 -8 (-15 -2107 ($ (-331))) (-15 -2107 ($ (-1059))) (-15 -2538 ((-83) $))))) (T -507)) -((-2107 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-507)))) (-2107 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-507)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-507))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3437 (($) 7 T CONST)) (-3222 (((-1059) $) NIL T ELT)) (-2110 (($) 6 T CONST)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 15 T ELT)) (-2108 (($) 9 T CONST)) (-2109 (($) 8 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT))) -(((-508) (-13 (-1003) (-10 -8 (-15 -2110 ($) -3928) (-15 -3437 ($) -3928) (-15 -2109 ($) -3928) (-15 -2108 ($) -3928)))) (T -508)) -((-2110 (*1 *1) (-5 *1 (-508))) (-3437 (*1 *1) (-5 *1 (-508))) (-2109 (*1 *1) (-5 *1 (-508))) (-2108 (*1 *1) (-5 *1 (-508)))) -((-2548 (((-83) $ $) NIL T ELT)) (-2111 (((-627 $) (-424)) 23 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2113 (($ (-1059)) 16 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 33 T ELT)) (-2112 (((-164 4 (-99)) $) 24 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 26 T ELT))) -(((-509) (-13 (-1003) (-10 -8 (-15 -2113 ($ (-1059))) (-15 -2112 ((-164 4 (-99)) $)) (-15 -2111 ((-627 $) (-424)))))) (T -509)) -((-2113 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-509)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-164 4 (-99))) (-5 *1 (-509)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-424)) (-5 *2 (-627 (-509))) (-5 *1 (-509))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3018 (($ $ (-478)) 73 T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2591 (($ (-1070 (-478)) (-478)) 79 T ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) 64 T ELT)) (-2592 (($ $) 43 T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3748 (((-687) $) 16 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2594 (((-478)) 37 T ELT)) (-2593 (((-478) $) 41 T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3745 (($ $ (-478)) 24 T ELT)) (-3443 (((-3 $ #1#) $ $) 70 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) 17 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 71 T ELT)) (-2595 (((-1055 (-478)) $) 19 T ELT)) (-2872 (($ $) 26 T ELT)) (-3922 (((-765) $) 100 T ELT) (($ (-478)) 59 T ELT) (($ $) NIL T ELT)) (-3107 (((-687)) 15 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3746 (((-478) $ (-478)) 46 T ELT)) (-2640 (($) 44 T CONST)) (-2647 (($) 21 T CONST)) (-3037 (((-83) $ $) 51 T ELT)) (-3813 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3815 (($ $ $) 57 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 60 T ELT) (($ $ $) 61 T ELT))) -(((-510 |#1| |#2|) (-772 |#1|) (-478) (-83)) (T -510)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 30 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 (($ $ (-823)) NIL (|has| $ (-313)) ELT) (($ $) NIL T ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) 59 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 $ #1#) $) 95 T ELT)) (-3137 (($ $) 94 T ELT)) (-1775 (($ (-1164 $)) 93 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) 47 T ELT)) (-2975 (($) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) 61 T ELT)) (-1663 (((-83) $) NIL T ELT)) (-1747 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) 49 (|has| $ (-313)) ELT)) (-1993 (((-83) $) NIL (|has| $ (-313)) ELT)) (-3113 (($ $ (-823)) NIL (|has| $ (-313)) ELT) (($ $) NIL T ELT)) (-3422 (((-627 $) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 $) $ (-823)) NIL (|has| $ (-313)) ELT) (((-1070 $) $) 104 T ELT)) (-1992 (((-823) $) 67 T ELT)) (-1610 (((-1070 $) $) NIL (|has| $ (-313)) ELT)) (-1609 (((-3 (-1070 $) #1#) $ $) NIL (|has| $ (-313)) ELT) (((-1070 $) $) NIL (|has| $ (-313)) ELT)) (-1611 (($ $ (-1070 $)) NIL (|has| $ (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL T CONST)) (-2382 (($ (-823)) 60 T ELT)) (-3907 (((-83) $) 87 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($) 28 (|has| $ (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) 54 T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-823)) 86 T ELT) (((-736 (-823))) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-3 (-687) #1#) $ $) NIL T ELT) (((-687) $) NIL T ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3924 (((-823) $) 85 T ELT) (((-736 (-823)) $) NIL T ELT)) (-3167 (((-1070 $)) 102 T ELT)) (-1657 (($) 66 T ELT)) (-1612 (($) 50 (|has| $ (-313)) ELT)) (-3205 (((-625 $) (-1164 $)) NIL T ELT) (((-1164 $) $) 91 T ELT)) (-3948 (((-478) $) 42 T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) 45 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT)) (-2683 (((-627 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3107 (((-687)) 51 T CONST)) (-1249 (((-83) $ $) 107 T ELT)) (-1994 (((-1164 $) (-823)) 97 T ELT) (((-1164 $)) 96 T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) 31 T CONST)) (-2647 (($) 27 T CONST)) (-3904 (($ $ (-687)) NIL (|has| $ (-313)) ELT) (($ $) NIL (|has| $ (-313)) ELT)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 34 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) -(((-511 |#1|) (-13 (-295) (-276 $) (-548 (-478))) (-823)) (T -511)) -NIL -((-2114 (((-1170) (-1059)) 10 T ELT))) -(((-512) (-10 -7 (-15 -2114 ((-1170) (-1059))))) (T -512)) -((-2114 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-512))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) 77 T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-2118 ((|#1| $) 30 T ELT)) (-2116 (((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2119 (($ |#1| (-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2117 (((-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) $) 31 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2813 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1075)) 49 (|has| |#1| (-943 (-1075))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2115 (((-83) $) 35 T ELT)) (-3734 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1075)) 90 (|has| |#1| (-802 (-1075))) ELT)) (-3922 (((-765) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 18 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 86 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 16 T ELT) (($ (-343 (-478)) $) 41 T ELT) (($ $ (-343 (-478))) NIL T ELT))) -(((-513 |#1|) (-13 (-649 (-343 (-478))) (-943 |#1|) (-10 -8 (-15 -2119 ($ |#1| (-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2118 (|#1| $)) (-15 -2117 ((-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1070 |#1|)) (|:| |logand| (-1070 |#1|)))) $)) (-15 -2116 ((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2115 ((-83) $)) (-15 -2813 ($ |#1| |#1|)) (-15 -3734 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-802 (-1075))) (-15 -3734 (|#1| $ (-1075))) |%noBranch|) (IF (|has| |#1| (-943 (-1075))) (-15 -2813 ($ |#1| (-1075))) |%noBranch|))) (-308)) (T -513)) -((-2119 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1070 *2)) (|:| |logand| (-1070 *2))))) (-5 *4 (-578 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-308)) (-5 *1 (-513 *2)))) (-2118 (*1 *2 *1) (-12 (-5 *1 (-513 *2)) (-4 *2 (-308)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1070 *3)) (|:| |logand| (-1070 *3))))) (-5 *1 (-513 *3)) (-4 *3 (-308)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-513 *3)) (-4 *3 (-308)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-513 *3)) (-4 *3 (-308)))) (-2813 (*1 *1 *2 *2) (-12 (-5 *1 (-513 *2)) (-4 *2 (-308)))) (-3734 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-513 *2)) (-4 *2 (-308)))) (-3734 (*1 *2 *1 *3) (-12 (-4 *2 (-308)) (-4 *2 (-802 *3)) (-5 *1 (-513 *2)) (-5 *3 (-1075)))) (-2813 (*1 *1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *1 (-513 *2)) (-4 *2 (-943 *3)) (-4 *2 (-308))))) -((-3934 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-513 |#2|) (-1 |#2| |#1|) (-513 |#1|)) 30 T ELT))) -(((-514 |#1| |#2|) (-10 -7 (-15 -3934 ((-513 |#2|) (-1 |#2| |#1|) (-513 |#1|))) (-15 -3934 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3934 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3934 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-308) (-308)) (T -514)) -((-3934 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-514 *5 *6)))) (-3934 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-308)) (-4 *2 (-308)) (-5 *1 (-514 *5 *2)))) (-3934 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2118 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-2 (|:| -2118 *6) (|:| |coeff| *6))) (-5 *1 (-514 *5 *6)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-513 *5)) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-513 *6)) (-5 *1 (-514 *5 *6))))) -((-3395 (((-513 |#2|) (-513 |#2|)) 42 T ELT)) (-3939 (((-578 |#2|) (-513 |#2|)) 44 T ELT)) (-2130 ((|#2| (-513 |#2|)) 50 T ELT))) -(((-515 |#1| |#2|) (-10 -7 (-15 -3395 ((-513 |#2|) (-513 |#2|))) (-15 -3939 ((-578 |#2|) (-513 |#2|))) (-15 -2130 (|#2| (-513 |#2|)))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-29 |#1|) (-1100))) (T -515)) -((-2130 (*1 *2 *3) (-12 (-5 *3 (-513 *2)) (-4 *2 (-13 (-29 *4) (-1100))) (-5 *1 (-515 *4 *2)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-513 *5)) (-4 *5 (-13 (-29 *4) (-1100))) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-578 *5)) (-5 *1 (-515 *4 *5)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-513 *4)) (-4 *4 (-13 (-29 *3) (-1100))) (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-515 *3 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2122 (($ (-439) (-526)) 14 T ELT)) (-2120 (($ (-439) (-526) $) 16 T ELT)) (-2121 (($ (-439) (-526)) 15 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-1080)) 7 T ELT) (((-1080) $) 6 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-516) (-13 (-1003) (-423 (-1080)) (-10 -8 (-15 -2122 ($ (-439) (-526))) (-15 -2121 ($ (-439) (-526))) (-15 -2120 ($ (-439) (-526) $))))) (T -516)) -((-2122 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516)))) (-2121 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516)))) (-2120 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516))))) -((-2126 (((-83) |#1|) 16 T ELT)) (-2127 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2124 (((-2 (|:| -2675 |#1|) (|:| -2383 (-687))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-687)) 18 T ELT)) (-2123 (((-83) |#1| (-687)) 19 T ELT)) (-2128 ((|#1| |#1|) 41 T ELT)) (-2125 ((|#1| |#1| (-687)) 44 T ELT))) -(((-517 |#1|) (-10 -7 (-15 -2123 ((-83) |#1| (-687))) (-15 -2124 ((-3 |#1| #1="failed") |#1| (-687))) (-15 -2124 ((-2 (|:| -2675 |#1|) (|:| -2383 (-687))) |#1|)) (-15 -2125 (|#1| |#1| (-687))) (-15 -2126 ((-83) |#1|)) (-15 -2127 ((-3 |#1| #1#) |#1|)) (-15 -2128 (|#1| |#1|))) (-477)) (T -517)) -((-2128 (*1 *2 *2) (-12 (-5 *1 (-517 *2)) (-4 *2 (-477)))) (-2127 (*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-477)))) (-2126 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-517 *3)) (-4 *3 (-477)))) (-2125 (*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-5 *1 (-517 *2)) (-4 *2 (-477)))) (-2124 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2675 *3) (|:| -2383 (-687)))) (-5 *1 (-517 *3)) (-4 *3 (-477)))) (-2124 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-687)) (-5 *1 (-517 *2)) (-4 *2 (-477)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-5 *2 (-83)) (-5 *1 (-517 *3)) (-4 *3 (-477))))) -((-2129 (((-1070 |#1|) (-823)) 44 T ELT))) -(((-518 |#1|) (-10 -7 (-15 -2129 ((-1070 |#1|) (-823)))) (-295)) (T -518)) -((-2129 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-518 *4)) (-4 *4 (-295))))) -((-3395 (((-513 (-343 (-850 |#1|))) (-513 (-343 (-850 |#1|)))) 27 T ELT)) (-3788 (((-3 (-261 |#1|) (-578 (-261 |#1|))) (-343 (-850 |#1|)) (-1075)) 33 (|has| |#1| (-118)) ELT)) (-3939 (((-578 (-261 |#1|)) (-513 (-343 (-850 |#1|)))) 19 T ELT)) (-2131 (((-261 |#1|) (-343 (-850 |#1|)) (-1075)) 31 (|has| |#1| (-118)) ELT)) (-2130 (((-261 |#1|) (-513 (-343 (-850 |#1|)))) 21 T ELT))) -(((-519 |#1|) (-10 -7 (-15 -3395 ((-513 (-343 (-850 |#1|))) (-513 (-343 (-850 |#1|))))) (-15 -3939 ((-578 (-261 |#1|)) (-513 (-343 (-850 |#1|))))) (-15 -2130 ((-261 |#1|) (-513 (-343 (-850 |#1|))))) (IF (|has| |#1| (-118)) (PROGN (-15 -3788 ((-3 (-261 |#1|) (-578 (-261 |#1|))) (-343 (-850 |#1|)) (-1075))) (-15 -2131 ((-261 |#1|) (-343 (-850 |#1|)) (-1075)))) |%noBranch|)) (-13 (-385) (-943 (-478)) (-575 (-478)))) (T -519)) -((-2131 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-118)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-261 *5)) (-5 *1 (-519 *5)))) (-3788 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-118)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (-261 *5) (-578 (-261 *5)))) (-5 *1 (-519 *5)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-513 (-343 (-850 *4)))) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-261 *4)) (-5 *1 (-519 *4)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-513 (-343 (-850 *4)))) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-578 (-261 *4))) (-5 *1 (-519 *4)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-513 (-343 (-850 *3)))) (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-519 *3))))) -((-2133 (((-578 (-625 (-478))) (-578 (-823)) (-578 (-806 (-478)))) 80 T ELT) (((-578 (-625 (-478))) (-578 (-823))) 81 T ELT) (((-625 (-478)) (-578 (-823)) (-806 (-478))) 74 T ELT)) (-2132 (((-687) (-578 (-823))) 71 T ELT))) -(((-520) (-10 -7 (-15 -2132 ((-687) (-578 (-823)))) (-15 -2133 ((-625 (-478)) (-578 (-823)) (-806 (-478)))) (-15 -2133 ((-578 (-625 (-478))) (-578 (-823)))) (-15 -2133 ((-578 (-625 (-478))) (-578 (-823)) (-578 (-806 (-478))))))) (T -520)) -((-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-823))) (-5 *4 (-578 (-806 (-478)))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-520)))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-520)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-823))) (-5 *4 (-806 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-520)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-687)) (-5 *1 (-520))))) -((-3194 (((-578 |#5|) |#5| (-83)) 97 T ELT)) (-2134 (((-83) |#5| (-578 |#5|)) 34 T ELT))) -(((-521 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3194 ((-578 |#5|) |#5| (-83))) (-15 -2134 ((-83) |#5| (-578 |#5|)))) (-13 (-254) (-118)) (-710) (-749) (-969 |#1| |#2| |#3|) (-1010 |#1| |#2| |#3| |#4|)) (T -521)) -((-2134 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1010 *5 *6 *7 *8)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-521 *5 *6 *7 *8 *3)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-578 *3)) (-5 *1 (-521 *5 *6 *7 *8 *3)) (-4 *3 (-1010 *5 *6 *7 *8))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3505 (((-1035) $) 12 T ELT)) (-3506 (((-1035) $) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-522) (-13 (-986) (-10 -8 (-15 -3506 ((-1035) $)) (-15 -3505 ((-1035) $))))) (T -522)) -((-3506 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-522)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-522))))) -((-3508 (((-2 (|:| |num| |#4|) (|:| |den| (-478))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-478))) |#4| |#2| (-992 |#4|)) 32 T ELT))) -(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3508 ((-2 (|:| |num| |#4|) (|:| |den| (-478))) |#4| |#2| (-992 |#4|))) (-15 -3508 ((-2 (|:| |num| |#4|) (|:| |den| (-478))) |#4| |#2|))) (-710) (-749) (-489) (-854 |#3| |#1| |#2|)) (T -523)) -((-3508 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-489)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-478)))) (-5 *1 (-523 *5 *4 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) (-3508 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-992 *3)) (-4 *3 (-854 *7 *6 *4)) (-4 *6 (-710)) (-4 *4 (-749)) (-4 *7 (-489)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-478)))) (-5 *1 (-523 *6 *4 *7 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 71 T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-478)) 58 T ELT) (($ $ (-478) (-478)) 59 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 65 T ELT)) (-2165 (($ $) 109 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2163 (((-765) (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) (-932 (-743 (-478))) (-1075) |#1| (-343 (-478))) 232 T ELT)) (-3794 (($ (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 36 T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2873 (((-83) $) NIL T ELT)) (-3748 (((-478) $) 63 T ELT) (((-478) $ (-478)) 64 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3753 (($ $ (-823)) 83 T ELT)) (-3791 (($ (-1 |#1| (-478)) $) 80 T ELT)) (-3913 (((-83) $) 26 T ELT)) (-2874 (($ |#1| (-478)) 22 T ELT) (($ $ (-985) (-478)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-478))) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2169 (($ (-932 (-743 (-478))) (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 13 T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3788 (($ $) 120 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2166 (((-3 $ #1#) $ $ (-83)) 108 T ELT)) (-2164 (($ $ $) 116 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2167 (((-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 15 T ELT)) (-2168 (((-932 (-743 (-478))) $) 14 T ELT)) (-3745 (($ $ (-478)) 47 T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3744 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT)) (-3776 ((|#1| $ (-478)) 62 T ELT) (($ $ $) NIL (|has| (-478) (-1013)) ELT)) (-3734 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT)) (-3924 (((-478) $) NIL T ELT)) (-2872 (($ $) 48 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) 29 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) 28 (|has| |#1| (-144)) ELT)) (-3653 ((|#1| $ (-478)) 61 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 39 T CONST)) (-3749 ((|#1| $) NIL T ELT)) (-2144 (($ $) 192 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2156 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2146 (($ $) 189 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2158 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2142 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2154 (($ $) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2161 (($ $ (-343 (-478))) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2162 (($ $ |#1|) 128 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2159 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2160 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2141 (($ $) 195 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2153 (($ $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2143 (($ $) 193 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2155 (($ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2145 (($ $) 190 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2157 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2138 (($ $) 200 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2150 (($ $) 180 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2140 (($ $) 197 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2152 (($ $) 176 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2136 (($ $) 204 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2148 (($ $) 184 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2135 (($ $) 206 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2147 (($ $) 186 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2137 (($ $) 202 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2149 (($ $) 182 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2139 (($ $) 199 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2151 (($ $) 178 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3746 ((|#1| $ (-478)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-2640 (($) 30 T CONST)) (-2647 (($) 40 T CONST)) (-2650 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT)) (-3037 (((-83) $ $) 73 T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3815 (($ $ $) 88 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 111 T ELT)) (* (($ (-823) $) 98 T ELT) (($ (-687) $) 96 T ELT) (($ (-478) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-524 |#1|) (-13 (-1143 |#1| (-478)) (-10 -8 (-15 -2169 ($ (-932 (-743 (-478))) (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))))) (-15 -2168 ((-932 (-743 (-478))) $)) (-15 -2167 ((-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $)) (-15 -3794 ($ (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))))) (-15 -3913 ((-83) $)) (-15 -3791 ($ (-1 |#1| (-478)) $)) (-15 -2166 ((-3 $ "failed") $ $ (-83))) (-15 -2165 ($ $)) (-15 -2164 ($ $ $)) (-15 -2163 ((-765) (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) (-932 (-743 (-478))) (-1075) |#1| (-343 (-478)))) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -3788 ($ $)) (-15 -2162 ($ $ |#1|)) (-15 -2161 ($ $ (-343 (-478)))) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $)) (-15 -2151 ($ $)) (-15 -2150 ($ $)) (-15 -2149 ($ $)) (-15 -2148 ($ $)) (-15 -2147 ($ $)) (-15 -2146 ($ $)) (-15 -2145 ($ $)) (-15 -2144 ($ $)) (-15 -2143 ($ $)) (-15 -2142 ($ $)) (-15 -2141 ($ $)) (-15 -2140 ($ $)) (-15 -2139 ($ $)) (-15 -2138 ($ $)) (-15 -2137 ($ $)) (-15 -2136 ($ $)) (-15 -2135 ($ $))) |%noBranch|))) (-954)) (T -524)) -((-3913 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-524 *3)) (-4 *3 (-954)))) (-2169 (*1 *1 *2 *3) (-12 (-5 *2 (-932 (-743 (-478)))) (-5 *3 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *4)))) (-4 *4 (-954)) (-5 *1 (-524 *4)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-932 (-743 (-478)))) (-5 *1 (-524 *3)) (-4 *3 (-954)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-5 *1 (-524 *3)) (-4 *3 (-954)))) (-3794 (*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-4 *3 (-954)) (-5 *1 (-524 *3)))) (-3791 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *3 (-954)) (-5 *1 (-524 *3)))) (-2166 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-83)) (-5 *1 (-524 *3)) (-4 *3 (-954)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-954)))) (-2164 (*1 *1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-954)))) (-2163 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *6)))) (-5 *4 (-932 (-743 (-478)))) (-5 *5 (-1075)) (-5 *7 (-343 (-478))) (-4 *6 (-954)) (-5 *2 (-765)) (-5 *1 (-524 *6)))) (-3788 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2162 (*1 *1 *1 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2161 (*1 *1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-524 *3)) (-4 *3 (-38 *2)) (-4 *3 (-954)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2149 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2148 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2147 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2146 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2145 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2144 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2143 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2142 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2141 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2140 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2139 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2138 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2137 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2136 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 62 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3794 (($ (-1055 |#1|)) 9 T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ #1#) $) 44 T ELT)) (-2873 (((-83) $) 56 T ELT)) (-3748 (((-687) $) 61 T ELT) (((-687) $ (-687)) 60 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) 46 (|has| |#1| (-489)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3793 (((-1055 |#1|) $) 25 T ELT)) (-3107 (((-687)) 55 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) 10 T CONST)) (-2647 (($) 14 T CONST)) (-3037 (((-83) $ $) 24 T ELT)) (-3813 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3815 (($ $ $) 27 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 53 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-478)) 38 T ELT))) -(((-525 |#1|) (-13 (-954) (-80 |#1| |#1|) (-10 -8 (-15 -3793 ((-1055 |#1|) $)) (-15 -3794 ($ (-1055 |#1|))) (-15 -2873 ((-83) $)) (-15 -3748 ((-687) $)) (-15 -3748 ((-687) $ (-687))) (-15 * ($ $ (-478))) (IF (|has| |#1| (-489)) (-6 (-489)) |%noBranch|))) (-954)) (T -525)) -((-3793 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) (-3794 (*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-525 *3)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) (-3748 (*1 *2 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-525 *3)) (-4 *3 (-954))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2172 (($) 8 T CONST)) (-2173 (($) 7 T CONST)) (-2170 (($ $ (-578 $)) 16 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2174 (($) 6 T CONST)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-1080)) 15 T ELT) (((-1080) $) 10 T ELT)) (-2171 (($) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-526) (-13 (-1003) (-423 (-1080)) (-10 -8 (-15 -2174 ($) -3928) (-15 -2173 ($) -3928) (-15 -2172 ($) -3928) (-15 -2171 ($) -3928) (-15 -2170 ($ $ (-578 $)))))) (T -526)) -((-2174 (*1 *1) (-5 *1 (-526))) (-2173 (*1 *1) (-5 *1 (-526))) (-2172 (*1 *1) (-5 *1 (-526))) (-2171 (*1 *1) (-5 *1 (-526))) (-2170 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-526))) (-5 *1 (-526))))) -((-3934 (((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|)) 15 T ELT))) -(((-527 |#1| |#2|) (-13 (-1114) (-10 -7 (-15 -3934 ((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|))))) (-1114) (-1114)) (T -527)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-530 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-530 *6)) (-5 *1 (-527 *5 *6))))) -((-3934 (((-1055 |#3|) (-1 |#3| |#1| |#2|) (-530 |#1|) (-1055 |#2|)) 20 T ELT) (((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-530 |#2|)) 19 T ELT) (((-530 |#3|) (-1 |#3| |#1| |#2|) (-530 |#1|) (-530 |#2|)) 18 T ELT))) -(((-528 |#1| |#2| |#3|) (-10 -7 (-15 -3934 ((-530 |#3|) (-1 |#3| |#1| |#2|) (-530 |#1|) (-530 |#2|))) (-15 -3934 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-530 |#2|))) (-15 -3934 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-530 |#1|) (-1055 |#2|)))) (-1114) (-1114) (-1114)) (T -528)) -((-3934 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-530 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-1055 *8)) (-5 *1 (-528 *6 *7 *8)))) (-3934 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-530 *7)) (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-1055 *8)) (-5 *1 (-528 *6 *7 *8)))) (-3934 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-530 *6)) (-5 *5 (-530 *7)) (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-530 *8)) (-5 *1 (-528 *6 *7 *8))))) -((-2179 ((|#3| |#3| (-578 (-545 |#3|)) (-578 (-1075))) 57 T ELT)) (-2178 (((-140 |#2|) |#3|) 122 T ELT)) (-2175 ((|#3| (-140 |#2|)) 46 T ELT)) (-2176 ((|#2| |#3|) 21 T ELT)) (-2177 ((|#3| |#2|) 35 T ELT))) -(((-529 |#1| |#2| |#3|) (-10 -7 (-15 -2175 (|#3| (-140 |#2|))) (-15 -2176 (|#2| |#3|)) (-15 -2177 (|#3| |#2|)) (-15 -2178 ((-140 |#2|) |#3|)) (-15 -2179 (|#3| |#3| (-578 (-545 |#3|)) (-578 (-1075))))) (-489) (-13 (-357 |#1|) (-908) (-1100)) (-13 (-357 (-140 |#1|)) (-908) (-1100))) (T -529)) -((-2179 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-545 *2))) (-5 *4 (-578 (-1075))) (-4 *2 (-13 (-357 (-140 *5)) (-908) (-1100))) (-4 *5 (-489)) (-5 *1 (-529 *5 *6 *2)) (-4 *6 (-13 (-357 *5) (-908) (-1100))))) (-2178 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-140 *5)) (-5 *1 (-529 *4 *5 *3)) (-4 *5 (-13 (-357 *4) (-908) (-1100))) (-4 *3 (-13 (-357 (-140 *4)) (-908) (-1100))))) (-2177 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *2 (-13 (-357 (-140 *4)) (-908) (-1100))) (-5 *1 (-529 *4 *3 *2)) (-4 *3 (-13 (-357 *4) (-908) (-1100))))) (-2176 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *2 (-13 (-357 *4) (-908) (-1100))) (-5 *1 (-529 *4 *2 *3)) (-4 *3 (-13 (-357 (-140 *4)) (-908) (-1100))))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-140 *5)) (-4 *5 (-13 (-357 *4) (-908) (-1100))) (-4 *4 (-489)) (-4 *2 (-13 (-357 (-140 *4)) (-908) (-1100))) (-5 *1 (-529 *4 *5 *2))))) -((-3686 (($ (-1 (-83) |#1|) $) 19 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3434 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3433 (($ (-1 (-83) |#1|) $) 15 T ELT)) (-3432 (($ (-1 (-83) |#1|) $) 17 T ELT)) (-3507 (((-1055 |#1|) $) 20 T ELT)) (-3922 (((-765) $) 25 T ELT))) -(((-530 |#1|) (-13 (-547 (-765)) (-10 -8 (-15 -3934 ($ (-1 |#1| |#1|) $)) (-15 -3433 ($ (-1 (-83) |#1|) $)) (-15 -3432 ($ (-1 (-83) |#1|) $)) (-15 -3686 ($ (-1 (-83) |#1|) $)) (-15 -3434 ($ (-1 |#1| |#1|) |#1|)) (-15 -3507 ((-1055 |#1|) $)))) (-1114)) (T -530)) -((-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) (-3433 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) (-3432 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) (-3686 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) (-3434 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-530 *3)) (-4 *3 (-1114))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3814 (($ (-687)) NIL (|has| |#1| (-23)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) NIL T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3811 (((-625 |#1|) $ $) NIL (|has| |#1| (-954)) ELT)) (-3590 (($ (-687) |#1|) NIL T ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3808 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3809 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-3812 ((|#1| $ $) NIL (|has| |#1| (-954)) ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-3810 (($ $ $) NIL (|has| |#1| (-954)) ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) NIL T ELT)) (-3778 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3813 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3815 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-478) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-658)) ELT) (($ $ |#1|) NIL (|has| |#1| (-658)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-531 |#1| |#2|) (-1163 |#1|) (-1114) (-478)) (T -531)) -NIL -((-2180 (((-1170) $ |#2| |#2|) 35 T ELT)) (-2182 ((|#2| $) 23 T ELT)) (-2183 ((|#2| $) 21 T ELT)) (-1932 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3934 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3777 ((|#3| $) 26 T ELT)) (-2181 (($ $ |#3|) 33 T ELT)) (-2184 (((-83) |#3| $) 17 T ELT)) (-2187 (((-578 |#3|) $) 15 T ELT)) (-3776 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -2180 ((-1170) |#1| |#2| |#2|)) (-15 -2181 (|#1| |#1| |#3|)) (-15 -3777 (|#3| |#1|)) (-15 -2182 (|#2| |#1|)) (-15 -2183 (|#2| |#1|)) (-15 -2184 ((-83) |#3| |#1|)) (-15 -2187 ((-578 |#3|) |#1|)) (-15 -3776 (|#3| |#1| |#2|)) (-15 -3776 (|#3| |#1| |#2| |#3|)) (-15 -1932 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3934 (|#1| (-1 |#3| |#3|) |#1|))) (-533 |#2| |#3|) (-1003) (-1114)) (T -532)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#2| (-72)) ELT)) (-2180 (((-1170) $ |#1| |#1|) 44 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3972)) ELT)) (-3700 (($) 7 T CONST)) (-1559 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) 55 T ELT)) (-2870 (((-578 |#2|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2182 ((|#1| $) 47 (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#2|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 ((|#1| $) 48 (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| |#2| (-1003)) ELT)) (-2185 (((-578 |#1|) $) 50 T ELT)) (-2186 (((-83) |#1| $) 51 T ELT)) (-3223 (((-1020) $) 21 (|has| |#2| (-1003)) ELT)) (-3777 ((|#2| $) 46 (|has| |#1| (-749)) ELT)) (-2181 (($ $ |#2|) 45 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#2|))) 26 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) 25 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 23 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#2| $) 49 (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#2| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#2| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#2| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-533 |#1| |#2|) (-111) (-1003) (-1114)) (T -533)) -((-2187 (*1 *2 *1) (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1114)) (-5 *2 (-578 *4)))) (-2186 (*1 *2 *3 *1) (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1114)) (-5 *2 (-83)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1114)) (-5 *2 (-578 *3)))) (-2184 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-533 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-83)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-533 *2 *3)) (-4 *3 (-1114)) (-4 *2 (-1003)) (-4 *2 (-749)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-533 *2 *3)) (-4 *3 (-1114)) (-4 *2 (-1003)) (-4 *2 (-749)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-533 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-749)) (-4 *2 (-1114)))) (-2181 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-533 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1114)))) (-2180 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-533 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1114)) (-5 *2 (-1170))))) -(-13 (-422 |t#2|) (-240 |t#1| |t#2|) (-10 -8 (-15 -2187 ((-578 |t#2|) $)) (-15 -2186 ((-83) |t#1| $)) (-15 -2185 ((-578 |t#1|) $)) (IF (|has| |t#2| (-1003)) (IF (|has| $ (-6 -3971)) (-15 -2184 ((-83) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-749)) (PROGN (-15 -2183 (|t#1| $)) (-15 -2182 (|t#1| $)) (-15 -3777 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3972)) (PROGN (-15 -2181 ($ $ |t#2|)) (-15 -2180 ((-1170) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#2| (-1003)) (|has| |#2| (-72))) ((-547 (-765)) OR (|has| |#2| (-1003)) (|has| |#2| (-547 (-765)))) ((-238 |#1| |#2|) . T) ((-240 |#1| |#2|) . T) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-422 |#2|) . T) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-1003) |has| |#2| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT) (((-1115) $) 15 T ELT) (($ (-578 (-1115))) 14 T ELT)) (-2188 (((-578 (-1115)) $) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-534) (-13 (-986) (-547 (-1115)) (-10 -8 (-15 -3922 ($ (-578 (-1115)))) (-15 -2188 ((-578 (-1115)) $))))) (T -534)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-534)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-534))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1755 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1295 (((-3 $ #1#) $ $) NIL T ELT)) (-3204 (((-1164 (-625 |#1|))) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1164 (-625 |#1|)) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1712 (((-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3700 (($) NIL T CONST)) (-1889 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1686 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1771 (((-625 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1710 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1769 (((-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) $ (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2386 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1883 (((-1070 (-850 |#1|))) NIL (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-308))) ELT)) (-2389 (($ $ (-823)) NIL T ELT)) (-1708 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1688 (((-1070 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1773 ((|#1|) NIL (|has| |#2| (-354 |#1|)) ELT) ((|#1| (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1706 (((-1070 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1700 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1775 (($ (-1164 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (($ (-1164 |#1|) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3444 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-3090 (((-823)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1697 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2413 (($ $ (-823)) NIL T ELT)) (-1693 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1691 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1695 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1890 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1687 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1772 (((-625 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1711 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1770 (((-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) $ (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2387 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1887 (((-1070 (-850 |#1|))) NIL (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-308))) ELT)) (-2388 (($ $ (-823)) NIL T ELT)) (-1709 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1689 (((-1070 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1774 ((|#1|) NIL (|has| |#2| (-354 |#1|)) ELT) ((|#1| (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1707 (((-1070 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1701 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1692 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1694 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1696 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1699 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3776 ((|#1| $ (-478)) NIL (|has| |#2| (-354 |#1|)) ELT)) (-3205 (((-625 |#1|) (-1164 $)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1164 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1164 $) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT) (((-1164 |#1|) $ (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3948 (($ (-1164 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1164 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT)) (-1875 (((-578 (-850 |#1|))) NIL (|has| |#2| (-354 |#1|)) ELT) (((-578 (-850 |#1|)) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2415 (($ $ $) NIL T ELT)) (-1705 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3922 (((-765) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL (|has| |#2| (-354 |#1|)) ELT)) (-1690 (((-578 (-1164 |#1|))) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-2416 (($ $ $ $) NIL T ELT)) (-1703 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2525 (($ (-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT)) (-2414 (($ $ $) NIL T ELT)) (-1704 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1702 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1698 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2640 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 24 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-535 |#1| |#2|) (-13 (-676 |#1|) (-547 |#2|) (-10 -8 (-15 -3922 ($ |#2|)) (IF (|has| |#2| (-354 |#1|)) (-6 (-354 |#1|)) |%noBranch|) (IF (|has| |#2| (-312 |#1|)) (-6 (-312 |#1|)) |%noBranch|))) (-144) (-676 |#1|)) (T -535)) -((-3922 (*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-535 *3 *2)) (-4 *2 (-676 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-99)) 6 T ELT) (((-99) $) 7 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-536) (-13 (-1003) (-423 (-99)))) (T -536)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2190 (($) 10 T CONST)) (-2212 (($) 8 T CONST)) (-2189 (($) 11 T CONST)) (-2208 (($) 9 T CONST)) (-2205 (($) 12 T CONST)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2293 (($ $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) NIL T ELT))) -(((-537) (-13 (-1003) (-599) (-10 -8 (-15 -2212 ($) -3928) (-15 -2208 ($) -3928) (-15 -2190 ($) -3928) (-15 -2189 ($) -3928) (-15 -2205 ($) -3928)))) (T -537)) -((-2212 (*1 *1) (-5 *1 (-537))) (-2208 (*1 *1) (-5 *1 (-537))) (-2190 (*1 *1) (-5 *1 (-537))) (-2189 (*1 *1) (-5 *1 (-537))) (-2205 (*1 *1) (-5 *1 (-537)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2201 (($) 11 T CONST)) (-2195 (($) 17 T CONST)) (-2191 (($) 21 T CONST)) (-2193 (($) 19 T CONST)) (-2198 (($) 14 T CONST)) (-2192 (($) 20 T CONST)) (-2200 (($) 12 T CONST)) (-2199 (($) 13 T CONST)) (-2194 (($) 18 T CONST)) (-2197 (($) 15 T CONST)) (-2196 (($) 16 T CONST)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (((-99) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-538) (-13 (-1003) (-547 (-99)) (-10 -8 (-15 -2201 ($) -3928) (-15 -2200 ($) -3928) (-15 -2199 ($) -3928) (-15 -2198 ($) -3928) (-15 -2197 ($) -3928) (-15 -2196 ($) -3928) (-15 -2195 ($) -3928) (-15 -2194 ($) -3928) (-15 -2193 ($) -3928) (-15 -2192 ($) -3928) (-15 -2191 ($) -3928)))) (T -538)) -((-2201 (*1 *1) (-5 *1 (-538))) (-2200 (*1 *1) (-5 *1 (-538))) (-2199 (*1 *1) (-5 *1 (-538))) (-2198 (*1 *1) (-5 *1 (-538))) (-2197 (*1 *1) (-5 *1 (-538))) (-2196 (*1 *1) (-5 *1 (-538))) (-2195 (*1 *1) (-5 *1 (-538))) (-2194 (*1 *1) (-5 *1 (-538))) (-2193 (*1 *1) (-5 *1 (-538))) (-2192 (*1 *1) (-5 *1 (-538))) (-2191 (*1 *1) (-5 *1 (-538)))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2203 (($) 13 T CONST)) (-2202 (($) 14 T CONST)) (-2209 (($) 11 T CONST)) (-2212 (($) 8 T CONST)) (-2210 (($) 10 T CONST)) (-2211 (($) 9 T CONST)) (-2208 (($) 12 T CONST)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2293 (($ $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) NIL T ELT))) -(((-539) (-13 (-1003) (-599) (-10 -8 (-15 -2212 ($) -3928) (-15 -2211 ($) -3928) (-15 -2210 ($) -3928) (-15 -2209 ($) -3928) (-15 -2208 ($) -3928) (-15 -2203 ($) -3928) (-15 -2202 ($) -3928)))) (T -539)) -((-2212 (*1 *1) (-5 *1 (-539))) (-2211 (*1 *1) (-5 *1 (-539))) (-2210 (*1 *1) (-5 *1 (-539))) (-2209 (*1 *1) (-5 *1 (-539))) (-2208 (*1 *1) (-5 *1 (-539))) (-2203 (*1 *1) (-5 *1 (-539))) (-2202 (*1 *1) (-5 *1 (-539)))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2207 (($) 13 T CONST)) (-2204 (($) 16 T CONST)) (-2209 (($) 11 T CONST)) (-2212 (($) 8 T CONST)) (-2210 (($) 10 T CONST)) (-2211 (($) 9 T CONST)) (-2206 (($) 14 T CONST)) (-2208 (($) 12 T CONST)) (-2205 (($) 15 T CONST)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2293 (($ $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) NIL T ELT))) -(((-540) (-13 (-1003) (-599) (-10 -8 (-15 -2212 ($) -3928) (-15 -2211 ($) -3928) (-15 -2210 ($) -3928) (-15 -2209 ($) -3928) (-15 -2208 ($) -3928) (-15 -2207 ($) -3928) (-15 -2206 ($) -3928) (-15 -2205 ($) -3928) (-15 -2204 ($) -3928)))) (T -540)) -((-2212 (*1 *1) (-5 *1 (-540))) (-2211 (*1 *1) (-5 *1 (-540))) (-2210 (*1 *1) (-5 *1 (-540))) (-2209 (*1 *1) (-5 *1 (-540))) (-2208 (*1 *1) (-5 *1 (-540))) (-2207 (*1 *1) (-5 *1 (-540))) (-2206 (*1 *1) (-5 *1 (-540))) (-2205 (*1 *1) (-5 *1 (-540))) (-2204 (*1 *1) (-5 *1 (-540)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 19 T ELT) (($ (-536)) 12 T ELT) (((-536) $) 11 T ELT) (($ (-99)) NIL T ELT) (((-99) $) 14 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-541) (-13 (-1003) (-423 (-536)) (-423 (-99)))) (T -541)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-1680 (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) 40 T ELT)) (-3575 (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2180 (((-1170) $ (-1059) (-1059)) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ (-1059) |#1|) 50 T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#1| #1="failed") (-1059) $) 53 T ELT)) (-3700 (($) NIL T CONST)) (-1684 (($ $ (-1059)) 25 T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT)) (-3382 (((-3 |#1| #1#) (-1059) $) 54 T ELT) (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3383 (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT)) (-3818 (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT)) (-1681 (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1559 ((|#1| $ (-1059) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-1059)) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2253 (($ $) 55 T ELT)) (-1685 (($ (-331)) 23 T ELT) (($ (-331) (-1059)) 22 T ELT)) (-3518 (((-331) $) 41 T ELT)) (-2182 (((-1059) $) NIL (|has| (-1059) (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (((-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT)) (-2183 (((-1059) $) NIL (|has| (-1059) (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2214 (((-578 (-1059)) $) 46 T ELT)) (-2215 (((-83) (-1059) $) NIL T ELT)) (-1682 (((-1059) $) 42 T ELT)) (-1258 (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2185 (((-578 (-1059)) $) NIL T ELT)) (-2186 (((-83) (-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 ((|#1| $) NIL (|has| (-1059) (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) #1#) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2181 (($ $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (($ $ (-578 (-245 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) 44 T ELT)) (-3776 ((|#1| $ (-1059) |#1|) NIL T ELT) ((|#1| $ (-1059)) 49 T ELT)) (-1449 (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (((-687) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (((-687) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL T ELT)) (-3922 (((-765) $) 21 T ELT)) (-1683 (($ $) 26 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1260 (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 20 T ELT)) (-3933 (((-687) $) 48 (|has| $ (-6 -3971)) ELT))) -(((-542 |#1|) (-13 (-310 (-331) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) (-1092 (-1059) |#1|) (-10 -8 (-6 -3971) (-15 -2253 ($ $)))) (-1003)) (T -542)) -((-2253 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-1003))))) -((-3225 (((-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2214 (((-578 |#2|) $) 20 T ELT)) (-2215 (((-83) |#2| $) 12 T ELT))) -(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -2214 ((-578 |#2|) |#1|)) (-15 -2215 ((-83) |#2| |#1|)) (-15 -3225 ((-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) |#1|))) (-544 |#2| |#3|) (-1003) (-1003)) (T -543)) -NIL -((-2548 (((-83) $ $) 19 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3700 (($) 7 T CONST)) (-1336 (($ $) 62 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3971)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-2214 (((-578 |#1|) $) 67 T ELT)) (-2215 (((-83) |#1| $) 68 T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3223 (((-1020) $) 21 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-1449 (($) 53 T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 63 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3922 (((-765) $) 17 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-544 |#1| |#2|) (-111) (-1003) (-1003)) (T -544)) -((-2215 (*1 *2 *3 *1) (-12 (-4 *1 (-544 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-83)))) (-2214 (*1 *2 *1) (-12 (-4 *1 (-544 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-578 *3)))) (-3382 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-544 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2213 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-544 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) -(-13 (-181 (-2 (|:| -3836 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2215 ((-83) |t#1| $)) (-15 -2214 ((-578 |t#1|) $)) (-15 -3382 ((-3 |t#2| "failed") |t#1| $)) (-15 -2213 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-76 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72))) ((-547 (-765)) OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765)))) ((-122 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-548 (-467)) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ((-181 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-190 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ((-422 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-447 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ((-1003) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-2216 (((-3 (-1075) "failed") $) 46 T ELT)) (-1296 (((-1170) $ (-687)) 22 T ELT)) (-3396 (((-687) $) 20 T ELT)) (-3571 (((-84) $) 9 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2217 (($ (-84) (-578 |#1|) (-687)) 32 T ELT) (($ (-1075)) 33 T ELT)) (-2613 (((-83) $ (-84)) 15 T ELT) (((-83) $ (-1075)) 13 T ELT)) (-2583 (((-687) $) 17 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3948 (((-793 (-478)) $) 99 (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) 106 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-467) $) 92 (|has| |#1| (-548 (-467))) ELT)) (-3922 (((-765) $) 74 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2218 (((-578 |#1|) $) 19 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 51 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 53 T ELT))) -(((-545 |#1|) (-13 (-103) (-749) (-787 |#1|) (-10 -8 (-15 -3571 ((-84) $)) (-15 -2218 ((-578 |#1|) $)) (-15 -2583 ((-687) $)) (-15 -2217 ($ (-84) (-578 |#1|) (-687))) (-15 -2217 ($ (-1075))) (-15 -2216 ((-3 (-1075) "failed") $)) (-15 -2613 ((-83) $ (-84))) (-15 -2613 ((-83) $ (-1075))) (IF (|has| |#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|))) (-1003)) (T -545)) -((-3571 (*1 *2 *1) (-12 (-5 *2 (-84)) (-5 *1 (-545 *3)) (-4 *3 (-1003)))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-545 *3)) (-4 *3 (-1003)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-545 *3)) (-4 *3 (-1003)))) (-2217 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-84)) (-5 *3 (-578 *5)) (-5 *4 (-687)) (-4 *5 (-1003)) (-5 *1 (-545 *5)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-545 *3)) (-4 *3 (-1003)))) (-2216 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-545 *3)) (-4 *3 (-1003)))) (-2613 (*1 *2 *1 *3) (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-545 *4)) (-4 *4 (-1003)))) (-2613 (*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-83)) (-5 *1 (-545 *4)) (-4 *4 (-1003))))) -((-2219 (((-545 |#2|) |#1|) 17 T ELT)) (-2220 (((-3 |#1| "failed") (-545 |#2|)) 21 T ELT))) -(((-546 |#1| |#2|) (-10 -7 (-15 -2219 ((-545 |#2|) |#1|)) (-15 -2220 ((-3 |#1| "failed") (-545 |#2|)))) (-1003) (-1003)) (T -546)) -((-2220 (*1 *2 *3) (|partial| -12 (-5 *3 (-545 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-546 *2 *4)))) (-2219 (*1 *2 *3) (-12 (-5 *2 (-545 *4)) (-5 *1 (-546 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) -((-3922 ((|#1| $) 6 T ELT))) -(((-547 |#1|) (-111) (-1114)) (T -547)) -((-3922 (*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-1114))))) -(-13 (-10 -8 (-15 -3922 (|t#1| $)))) -((-3948 ((|#1| $) 6 T ELT))) -(((-548 |#1|) (-111) (-1114)) (T -548)) -((-3948 (*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-1114))))) -(-13 (-10 -8 (-15 -3948 (|t#1| $)))) -((-2221 (((-3 (-1070 (-343 |#2|)) #1="failed") (-343 |#2|) (-343 |#2|) (-343 |#2|) (-1 (-341 |#2|) |#2|)) 15 T ELT) (((-3 (-1070 (-343 |#2|)) #1#) (-343 |#2|) (-343 |#2|) (-343 |#2|)) 16 T ELT))) -(((-549 |#1| |#2|) (-10 -7 (-15 -2221 ((-3 (-1070 (-343 |#2|)) #1="failed") (-343 |#2|) (-343 |#2|) (-343 |#2|))) (-15 -2221 ((-3 (-1070 (-343 |#2|)) #1#) (-343 |#2|) (-343 |#2|) (-343 |#2|) (-1 (-341 |#2|) |#2|)))) (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478)))) (-1140 |#1|)) (T -549)) -((-2221 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-1070 (-343 *6))) (-5 *1 (-549 *5 *6)) (-5 *3 (-343 *6)))) (-2221 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) (-5 *2 (-1070 (-343 *5))) (-5 *1 (-549 *4 *5)) (-5 *3 (-343 *5))))) -((-3922 (($ |#1|) 6 T ELT))) -(((-550 |#1|) (-111) (-1114)) (T -550)) -((-3922 (*1 *1 *2) (-12 (-4 *1 (-550 *2)) (-4 *2 (-1114))))) -(-13 (-10 -8 (-15 -3922 ($ |t#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) NIL T ELT)) (-2222 (($) 11 T CONST)) (-2836 (($) 12 T CONST)) (-2541 (($ $ $) 25 T ELT)) (-2540 (($ $) 23 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2834 (($ $ $) 26 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2835 (($) 9 T CONST)) (-2833 (($ $ $) 27 T ELT)) (-3922 (((-765) $) 31 T ELT)) (-3542 (((-83) $ (|[\|\|]| -2835)) 20 T ELT) (((-83) $ (|[\|\|]| -2222)) 22 T ELT) (((-83) $ (|[\|\|]| -2836)) 18 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2542 (($ $ $) 24 T ELT)) (-2293 (($ $ $) NIL T ELT)) (-3037 (((-83) $ $) 16 T ELT)) (-2294 (($ $ $) NIL T ELT))) -(((-551) (-13 (-873) (-10 -8 (-15 -2222 ($) -3928) (-15 -3542 ((-83) $ (|[\|\|]| -2835))) (-15 -3542 ((-83) $ (|[\|\|]| -2222))) (-15 -3542 ((-83) $ (|[\|\|]| -2836)))))) (T -551)) -((-2222 (*1 *1) (-5 *1 (-551))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2835)) (-5 *2 (-83)) (-5 *1 (-551)))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2222)) (-5 *2 (-83)) (-5 *1 (-551)))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2836)) (-5 *2 (-83)) (-5 *1 (-551))))) -((-3948 (($ |#1|) 6 T ELT))) -(((-552 |#1|) (-111) (-1114)) (T -552)) -((-3948 (*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1114))))) -(-13 (-10 -8 (-15 -3948 ($ |t#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| |#1| (-748)) ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3168 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2979 ((|#1| $) 13 T ELT)) (-3169 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2978 ((|#3| $) 15 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3107 (((-687)) 20 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3360 (($ $) NIL (|has| |#1| (-748)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) 12 T CONST)) (-2546 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-3925 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-553 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-748)) (-6 (-748)) |%noBranch|) (-15 -3925 ($ $ |#3|)) (-15 -3925 ($ |#1| |#3|)) (-15 -2979 (|#1| $)) (-15 -2978 (|#3| $)))) (-38 |#2|) (-144) (|SubsetCategory| (-658) |#2|)) (T -553)) -((-3925 (*1 *1 *1 *2) (-12 (-4 *4 (-144)) (-5 *1 (-553 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-658) *4)))) (-3925 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-553 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-658) *4)))) (-2979 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-38 *3)) (-5 *1 (-553 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-658) *3)))) (-2978 (*1 *2 *1) (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-658) *4)) (-5 *1 (-553 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-554 |#1| |#2|) (-10 -7 (-15 -3922 (|#1| |#2|)) (-15 -3922 (|#1| (-478))) (-15 -3922 ((-765) |#1|))) (-555 |#2|) (-954)) (T -554)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) -(((-555 |#1|) (-111) (-954)) (T -555)) -((-3922 (*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-954))))) -(-13 (-954) (-585 |t#1|) (-10 -8 (-15 -3922 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-658) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2223 ((|#2| |#2| (-1075) (-1075)) 16 T ELT))) -(((-556 |#1| |#2|) (-10 -7 (-15 -2223 (|#2| |#2| (-1075) (-1075)))) (-13 (-254) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1100) (-864) (-29 |#1|))) (T -556)) -((-2223 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-1100) (-864) (-29 *4)))))) -((-2548 (((-83) $ $) 64 T ELT)) (-3170 (((-83) $) 58 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-2224 ((|#1| $) 55 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3727 (((-2 (|:| -1745 $) (|:| -1744 (-343 |#2|))) (-343 |#2|)) 111 (|has| |#1| (-308)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) 27 T ELT)) (-3444 (((-3 $ #1#) $) 88 T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3748 (((-478) $) 22 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) 40 T ELT)) (-2874 (($ |#1| (-478)) 24 T ELT)) (-3155 ((|#1| $) 57 T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) 101 (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3443 (((-3 $ #1#) $ $) 93 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-1590 (((-687) $) 115 (|has| |#1| (-308)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 114 (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT)) (-3924 (((-478) $) 38 T ELT)) (-3948 (((-343 |#2|) $) 47 T ELT)) (-3922 (((-765) $) 69 T ELT) (($ (-478)) 35 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3653 ((|#1| $ (-478)) 72 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 32 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2640 (($) 9 T CONST)) (-2647 (($) 14 T CONST)) (-2650 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) 21 T ELT)) (-3813 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 90 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-557 |#1| |#2|) (-13 (-182 |#2|) (-489) (-548 (-343 |#2|)) (-348 |#1|) (-943 |#2|) (-10 -8 (-15 -3913 ((-83) $)) (-15 -3924 ((-478) $)) (-15 -3748 ((-478) $)) (-15 -3935 ($ $)) (-15 -3155 (|#1| $)) (-15 -2224 (|#1| $)) (-15 -3653 (|#1| $ (-478))) (-15 -2874 ($ |#1| (-478))) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-6 (-254)) (-15 -3727 ((-2 (|:| -1745 $) (|:| -1744 (-343 |#2|))) (-343 |#2|)))) |%noBranch|))) (-489) (-1140 |#1|)) (T -557)) -((-3913 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-83)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1140 *3)))) (-3924 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-478)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1140 *3)))) (-3748 (*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-478)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1140 *3)))) (-3935 (*1 *1 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1140 *2)))) (-3155 (*1 *2 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1140 *2)))) (-2224 (*1 *2 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1140 *2)))) (-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *2 (-489)) (-5 *1 (-557 *2 *4)) (-4 *4 (-1140 *2)))) (-2874 (*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-4 *2 (-489)) (-5 *1 (-557 *2 *4)) (-4 *4 (-1140 *2)))) (-3727 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *4 (-489)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -1745 (-557 *4 *5)) (|:| -1744 (-343 *5)))) (-5 *1 (-557 *4 *5)) (-5 *3 (-343 *5))))) -((-3658 (((-578 |#6|) (-578 |#4|) (-83)) 54 T ELT)) (-2225 ((|#6| |#6|) 48 T ELT))) -(((-558 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2225 (|#6| |#6|)) (-15 -3658 ((-578 |#6|) (-578 |#4|) (-83)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|) (-1010 |#1| |#2| |#3| |#4|)) (T -558)) -((-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 *10)) (-5 *1 (-558 *5 *6 *7 *8 *9 *10)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *10 (-1010 *5 *6 *7 *8)))) (-2225 (*1 *2 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-558 *3 *4 *5 *6 *7 *2)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *2 (-1010 *3 *4 *5 *6))))) -((-2226 (((-83) |#3| (-687) (-578 |#3|)) 30 T ELT)) (-2227 (((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1070 |#3|)))) "failed") |#3| (-578 (-1070 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1762 (-578 (-2 (|:| |irr| |#4|) (|:| -2377 (-478)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|)) 68 T ELT))) -(((-559 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2226 ((-83) |#3| (-687) (-578 |#3|))) (-15 -2227 ((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1070 |#3|)))) "failed") |#3| (-578 (-1070 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1762 (-578 (-2 (|:| |irr| |#4|) (|:| -2377 (-478)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|)))) (-749) (-710) (-254) (-854 |#3| |#2| |#1|)) (T -559)) -((-2227 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1762 (-578 (-2 (|:| |irr| *10) (|:| -2377 (-478))))))) (-5 *6 (-578 *3)) (-5 *7 (-578 *8)) (-4 *8 (-749)) (-4 *3 (-254)) (-4 *10 (-854 *3 *9 *8)) (-4 *9 (-710)) (-5 *2 (-2 (|:| |polfac| (-578 *10)) (|:| |correct| *3) (|:| |corrfact| (-578 (-1070 *3))))) (-5 *1 (-559 *8 *9 *3 *10)) (-5 *4 (-578 (-1070 *3))))) (-2226 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-687)) (-5 *5 (-578 *3)) (-4 *3 (-254)) (-4 *6 (-749)) (-4 *7 (-710)) (-5 *2 (-83)) (-5 *1 (-559 *6 *7 *3 *8)) (-4 *8 (-854 *3 *7 *6))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3505 (((-1035) $) 12 T ELT)) (-3506 (((-1035) $) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-560) (-13 (-986) (-10 -8 (-15 -3506 ((-1035) $)) (-15 -3505 ((-1035) $))))) (T -560)) -((-3506 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-560)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-560))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3910 (((-578 |#1|) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ "failed") $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3912 (($ $) 77 T ELT)) (-3918 (((-601 |#1| |#2|) $) 60 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 81 T ELT)) (-2228 (((-578 (-245 |#2|)) $ $) 42 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3919 (($ (-601 |#1| |#2|)) 56 T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2415 (($ $ $) NIL T ELT)) (-3922 (((-765) $) 66 T ELT) (((-1180 |#1| |#2|) $) NIL T ELT) (((-1185 |#1| |#2|) $) 74 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2647 (($) 61 T CONST)) (-2229 (((-578 (-2 (|:| |k| (-609 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2230 (((-578 (-601 |#1| |#2|)) (-578 |#1|)) 73 T ELT)) (-2646 (((-578 (-2 (|:| |k| (-796 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3037 (((-83) $ $) 62 T ELT)) (-3925 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-561 |#1| |#2| |#3|) (-13 (-406) (-10 -8 (-15 -3919 ($ (-601 |#1| |#2|))) (-15 -3918 ((-601 |#1| |#2|) $)) (-15 -2646 ((-578 (-2 (|:| |k| (-796 |#1|)) (|:| |c| |#2|))) $)) (-15 -3922 ((-1180 |#1| |#2|) $)) (-15 -3922 ((-1185 |#1| |#2|) $)) (-15 -3912 ($ $)) (-15 -3910 ((-578 |#1|) $)) (-15 -2230 ((-578 (-601 |#1| |#2|)) (-578 |#1|))) (-15 -2229 ((-578 (-2 (|:| |k| (-609 |#1|)) (|:| |c| |#2|))) $)) (-15 -2228 ((-578 (-245 |#2|)) $ $)))) (-749) (-13 (-144) (-649 (-343 (-478)))) (-823)) (T -561)) -((-3919 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-5 *1 (-561 *3 *4 *5)) (-14 *5 (-823)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-796 *3)) (|:| |c| *4)))) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-3912 (*1 *1 *1) (-12 (-5 *1 (-561 *2 *3 *4)) (-4 *2 (-749)) (-4 *3 (-13 (-144) (-649 (-343 (-478))))) (-14 *4 (-823)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-749)) (-5 *2 (-578 (-601 *4 *5))) (-5 *1 (-561 *4 *5 *6)) (-4 *5 (-13 (-144) (-649 (-343 (-478))))) (-14 *6 (-823)))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-609 *3)) (|:| |c| *4)))) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) (-2228 (*1 *2 *1 *1) (-12 (-5 *2 (-578 (-245 *4))) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823))))) -((-3658 (((-578 (-1046 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|)))) (-578 (-696 |#1| (-766 |#2|))) (-83)) 103 T ELT) (((-578 (-951 |#1| |#2|)) (-578 (-696 |#1| (-766 |#2|))) (-83)) 77 T ELT)) (-2231 (((-83) (-578 (-696 |#1| (-766 |#2|)))) 26 T ELT)) (-2235 (((-578 (-1046 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|)))) (-578 (-696 |#1| (-766 |#2|))) (-83)) 102 T ELT)) (-2234 (((-578 (-951 |#1| |#2|)) (-578 (-696 |#1| (-766 |#2|))) (-83)) 76 T ELT)) (-2233 (((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|)))) 30 T ELT)) (-2232 (((-3 (-578 (-696 |#1| (-766 |#2|))) "failed") (-578 (-696 |#1| (-766 |#2|)))) 29 T ELT))) -(((-562 |#1| |#2|) (-10 -7 (-15 -2231 ((-83) (-578 (-696 |#1| (-766 |#2|))))) (-15 -2232 ((-3 (-578 (-696 |#1| (-766 |#2|))) "failed") (-578 (-696 |#1| (-766 |#2|))))) (-15 -2233 ((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|))))) (-15 -2234 ((-578 (-951 |#1| |#2|)) (-578 (-696 |#1| (-766 |#2|))) (-83))) (-15 -2235 ((-578 (-1046 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|)))) (-578 (-696 |#1| (-766 |#2|))) (-83))) (-15 -3658 ((-578 (-951 |#1| |#2|)) (-578 (-696 |#1| (-766 |#2|))) (-83))) (-15 -3658 ((-578 (-1046 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|)))) (-578 (-696 |#1| (-766 |#2|))) (-83)))) (-385) (-578 (-1075))) (T -562)) -((-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1075))) (-5 *2 (-578 (-1046 *5 (-463 (-766 *6)) (-766 *6) (-696 *5 (-766 *6))))) (-5 *1 (-562 *5 *6)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1075))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-562 *5 *6)))) (-2235 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1075))) (-5 *2 (-578 (-1046 *5 (-463 (-766 *6)) (-766 *6) (-696 *5 (-766 *6))))) (-5 *1 (-562 *5 *6)))) (-2234 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1075))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-562 *5 *6)))) (-2233 (*1 *2 *2) (-12 (-5 *2 (-578 (-696 *3 (-766 *4)))) (-4 *3 (-385)) (-14 *4 (-578 (-1075))) (-5 *1 (-562 *3 *4)))) (-2232 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-696 *3 (-766 *4)))) (-4 *3 (-385)) (-14 *4 (-578 (-1075))) (-5 *1 (-562 *3 *4)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-578 (-696 *4 (-766 *5)))) (-4 *4 (-385)) (-14 *5 (-578 (-1075))) (-5 *2 (-83)) (-5 *1 (-562 *4 *5))))) -((-3571 (((-84) (-84)) 88 T ELT)) (-2239 ((|#2| |#2|) 28 T ELT)) (-2813 ((|#2| |#2| (-995 |#2|)) 84 T ELT) ((|#2| |#2| (-1075)) 50 T ELT)) (-2237 ((|#2| |#2|) 27 T ELT)) (-2238 ((|#2| |#2|) 29 T ELT)) (-2236 (((-83) (-84)) 33 T ELT)) (-2241 ((|#2| |#2|) 24 T ELT)) (-2242 ((|#2| |#2|) 26 T ELT)) (-2240 ((|#2| |#2|) 25 T ELT))) -(((-563 |#1| |#2|) (-10 -7 (-15 -2236 ((-83) (-84))) (-15 -3571 ((-84) (-84))) (-15 -2242 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2240 (|#2| |#2|)) (-15 -2239 (|#2| |#2|)) (-15 -2237 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -2813 (|#2| |#2| (-1075))) (-15 -2813 (|#2| |#2| (-995 |#2|)))) (-489) (-13 (-357 |#1|) (-908) (-1100))) (T -563)) -((-2813 (*1 *2 *2 *3) (-12 (-5 *3 (-995 *2)) (-4 *2 (-13 (-357 *4) (-908) (-1100))) (-4 *4 (-489)) (-5 *1 (-563 *4 *2)))) (-2813 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-357 *4) (-908) (-1100))))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1100))))) (-2237 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1100))))) (-2239 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1100))))) (-2240 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1100))))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1100))))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) (-4 *2 (-13 (-357 *3) (-908) (-1100))))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-563 *3 *4)) (-4 *4 (-13 (-357 *3) (-908) (-1100))))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-563 *4 *5)) (-4 *5 (-13 (-357 *4) (-908) (-1100)))))) -((-3469 (($ $) 38 T ELT)) (-3615 (($ $) 21 T ELT)) (-3467 (($ $) 37 T ELT)) (-3614 (($ $) 22 T ELT)) (-3471 (($ $) 36 T ELT)) (-3613 (($ $) 23 T ELT)) (-3603 (($) 48 T ELT)) (-3918 (($ $) 45 T ELT)) (-2239 (($ $) 17 T ELT)) (-2813 (($ $ (-995 $)) 7 T ELT) (($ $ (-1075)) 6 T ELT)) (-3919 (($ $) 46 T ELT)) (-2237 (($ $) 15 T ELT)) (-2238 (($ $) 16 T ELT)) (-3472 (($ $) 35 T ELT)) (-3612 (($ $) 24 T ELT)) (-3470 (($ $) 34 T ELT)) (-3611 (($ $) 25 T ELT)) (-3468 (($ $) 33 T ELT)) (-3610 (($ $) 26 T ELT)) (-3475 (($ $) 44 T ELT)) (-3463 (($ $) 32 T ELT)) (-3473 (($ $) 43 T ELT)) (-3461 (($ $) 31 T ELT)) (-3477 (($ $) 42 T ELT)) (-3465 (($ $) 30 T ELT)) (-3478 (($ $) 41 T ELT)) (-3466 (($ $) 29 T ELT)) (-3476 (($ $) 40 T ELT)) (-3464 (($ $) 28 T ELT)) (-3474 (($ $) 39 T ELT)) (-3462 (($ $) 27 T ELT)) (-2241 (($ $) 19 T ELT)) (-2242 (($ $) 20 T ELT)) (-2240 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-564) (-111)) (T -564)) -((-2242 (*1 *1 *1) (-4 *1 (-564))) (-2241 (*1 *1 *1) (-4 *1 (-564))) (-2240 (*1 *1 *1) (-4 *1 (-564))) (-2239 (*1 *1 *1) (-4 *1 (-564))) (-2238 (*1 *1 *1) (-4 *1 (-564))) (-2237 (*1 *1 *1) (-4 *1 (-564)))) -(-13 (-864) (-1100) (-10 -8 (-15 -2242 ($ $)) (-15 -2241 ($ $)) (-15 -2240 ($ $)) (-15 -2239 ($ $)) (-15 -2238 ($ $)) (-15 -2237 ($ $)))) -(((-35) . T) ((-66) . T) ((-236) . T) ((-426) . T) ((-864) . T) ((-1100) . T) ((-1103) . T)) -((-2252 (((-414 |#1| |#2|) (-203 |#1| |#2|)) 65 T ELT)) (-2245 (((-578 (-203 |#1| |#2|)) (-578 (-414 |#1| |#2|))) 90 T ELT)) (-2246 (((-414 |#1| |#2|) (-578 (-414 |#1| |#2|)) (-766 |#1|)) 92 T ELT) (((-414 |#1| |#2|) (-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|)) (-766 |#1|)) 91 T ELT)) (-2243 (((-2 (|:| |gblist| (-578 (-203 |#1| |#2|))) (|:| |gvlist| (-578 (-478)))) (-578 (-414 |#1| |#2|))) 136 T ELT)) (-2250 (((-578 (-414 |#1| |#2|)) (-766 |#1|) (-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|))) 105 T ELT)) (-2244 (((-2 (|:| |glbase| (-578 (-203 |#1| |#2|))) (|:| |glval| (-578 (-478)))) (-578 (-203 |#1| |#2|))) 147 T ELT)) (-2248 (((-1164 |#2|) (-414 |#1| |#2|) (-578 (-414 |#1| |#2|))) 70 T ELT)) (-2247 (((-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|))) 47 T ELT)) (-2251 (((-203 |#1| |#2|) (-203 |#1| |#2|) (-578 (-203 |#1| |#2|))) 61 T ELT)) (-2249 (((-203 |#1| |#2|) (-578 |#2|) (-203 |#1| |#2|) (-578 (-203 |#1| |#2|))) 113 T ELT))) -(((-565 |#1| |#2|) (-10 -7 (-15 -2243 ((-2 (|:| |gblist| (-578 (-203 |#1| |#2|))) (|:| |gvlist| (-578 (-478)))) (-578 (-414 |#1| |#2|)))) (-15 -2244 ((-2 (|:| |glbase| (-578 (-203 |#1| |#2|))) (|:| |glval| (-578 (-478)))) (-578 (-203 |#1| |#2|)))) (-15 -2245 ((-578 (-203 |#1| |#2|)) (-578 (-414 |#1| |#2|)))) (-15 -2246 ((-414 |#1| |#2|) (-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|)) (-766 |#1|))) (-15 -2246 ((-414 |#1| |#2|) (-578 (-414 |#1| |#2|)) (-766 |#1|))) (-15 -2247 ((-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|)))) (-15 -2248 ((-1164 |#2|) (-414 |#1| |#2|) (-578 (-414 |#1| |#2|)))) (-15 -2249 ((-203 |#1| |#2|) (-578 |#2|) (-203 |#1| |#2|) (-578 (-203 |#1| |#2|)))) (-15 -2250 ((-578 (-414 |#1| |#2|)) (-766 |#1|) (-578 (-414 |#1| |#2|)) (-578 (-414 |#1| |#2|)))) (-15 -2251 ((-203 |#1| |#2|) (-203 |#1| |#2|) (-578 (-203 |#1| |#2|)))) (-15 -2252 ((-414 |#1| |#2|) (-203 |#1| |#2|)))) (-578 (-1075)) (-385)) (T -565)) -((-2252 (*1 *2 *3) (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-385)) (-5 *2 (-414 *4 *5)) (-5 *1 (-565 *4 *5)))) (-2251 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-203 *4 *5))) (-5 *2 (-203 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-385)) (-5 *1 (-565 *4 *5)))) (-2250 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-578 (-414 *4 *5))) (-5 *3 (-766 *4)) (-14 *4 (-578 (-1075))) (-4 *5 (-385)) (-5 *1 (-565 *4 *5)))) (-2249 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-203 *5 *6))) (-4 *6 (-385)) (-5 *2 (-203 *5 *6)) (-14 *5 (-578 (-1075))) (-5 *1 (-565 *5 *6)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-414 *5 *6))) (-5 *3 (-414 *5 *6)) (-14 *5 (-578 (-1075))) (-4 *6 (-385)) (-5 *2 (-1164 *6)) (-5 *1 (-565 *5 *6)))) (-2247 (*1 *2 *2) (-12 (-5 *2 (-578 (-414 *3 *4))) (-14 *3 (-578 (-1075))) (-4 *4 (-385)) (-5 *1 (-565 *3 *4)))) (-2246 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-414 *5 *6))) (-5 *4 (-766 *5)) (-14 *5 (-578 (-1075))) (-5 *2 (-414 *5 *6)) (-5 *1 (-565 *5 *6)) (-4 *6 (-385)))) (-2246 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-414 *5 *6))) (-5 *4 (-766 *5)) (-14 *5 (-578 (-1075))) (-5 *2 (-414 *5 *6)) (-5 *1 (-565 *5 *6)) (-4 *6 (-385)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-578 (-414 *4 *5))) (-14 *4 (-578 (-1075))) (-4 *5 (-385)) (-5 *2 (-578 (-203 *4 *5))) (-5 *1 (-565 *4 *5)))) (-2244 (*1 *2 *3) (-12 (-14 *4 (-578 (-1075))) (-4 *5 (-385)) (-5 *2 (-2 (|:| |glbase| (-578 (-203 *4 *5))) (|:| |glval| (-578 (-478))))) (-5 *1 (-565 *4 *5)) (-5 *3 (-578 (-203 *4 *5))))) (-2243 (*1 *2 *3) (-12 (-5 *3 (-578 (-414 *4 *5))) (-14 *4 (-578 (-1075))) (-4 *5 (-385)) (-5 *2 (-2 (|:| |gblist| (-578 (-203 *4 *5))) (|:| |gvlist| (-578 (-478))))) (-5 *1 (-565 *4 *5))))) -((-2548 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-72))) ELT)) (-3575 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) NIL T ELT)) (-2180 (((-1170) $ (-1059) (-1059)) NIL (|has| $ (-6 -3972)) ELT)) (-3764 (((-51) $ (-1059) (-51)) NIL T ELT) (((-51) $ (-1075) (-51)) 16 T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 (-51) #1="failed") (-1059) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT)) (-3382 (($ (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 (-51) #1#) (-1059) $) NIL T ELT)) (-3383 (($ (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $ (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT) (((-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $ (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 (((-51) $ (-1059) (-51)) NIL (|has| $ (-6 -3972)) ELT)) (-3094 (((-51) $ (-1059)) NIL T ELT)) (-2870 (((-578 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 (-51)) $) NIL (|has| $ (-6 -3971)) ELT)) (-2253 (($ $) NIL T ELT)) (-2182 (((-1059) $) NIL (|has| (-1059) (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 (-51)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT) (((-83) (-51) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-51) (-1003))) ELT)) (-2183 (((-1059) $) NIL (|has| (-1059) (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2254 (($ (-331)) 8 T ELT)) (-3222 (((-1059) $) NIL (OR (|has| (-51) (-1003)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT)) (-2214 (((-578 (-1059)) $) NIL T ELT)) (-2215 (((-83) (-1059) $) NIL T ELT)) (-1258 (((-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) $) NIL T ELT)) (-2185 (((-578 (-1059)) $) NIL T ELT)) (-2186 (((-83) (-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL (OR (|has| (-51) (-1003)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT)) (-3777 (((-51) $) NIL (|has| (-1059) (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) #1#) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2181 (($ $ (-51)) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT) (($ $ (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT) (($ $ (-578 (-51)) (-578 (-51))) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1003))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1003))) ELT) (($ $ (-245 (-51))) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1003))) ELT) (($ $ (-578 (-245 (-51)))) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) (-51) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-51) (-1003))) ELT)) (-2187 (((-578 (-51)) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 (((-51) $ (-1059)) NIL T ELT) (((-51) $ (-1059) (-51)) NIL T ELT) (((-51) $ (-1075)) 14 T ELT)) (-1449 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-1003))) ELT) (((-687) (-51) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-51) (-1003))) ELT) (((-687) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) NIL T ELT)) (-3922 (((-765) $) NIL (OR (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-547 (-765))) (|has| (-51) (-547 (-765)))) ELT)) (-1249 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))))) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| (-51))) (-72))) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-566) (-13 (-1092 (-1059) (-51)) (-238 (-1075) (-51)) (-10 -8 (-15 -2254 ($ (-331))) (-15 -2253 ($ $)) (-15 -3764 ((-51) $ (-1075) (-51)))))) (T -566)) -((-2254 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-566)))) (-2253 (*1 *1 *1) (-5 *1 (-566))) (-3764 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1075)) (-5 *1 (-566))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1755 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1295 (((-3 $ #1#) $ $) NIL T ELT)) (-3204 (((-1164 (-625 |#1|))) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1164 (-625 |#1|)) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1712 (((-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3700 (($) NIL T CONST)) (-1889 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1686 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1771 (((-625 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1710 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1769 (((-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) $ (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2386 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1883 (((-1070 (-850 |#1|))) NIL (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-308))) ELT)) (-2389 (($ $ (-823)) NIL T ELT)) (-1708 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1688 (((-1070 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1773 ((|#1|) NIL (|has| |#2| (-354 |#1|)) ELT) ((|#1| (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1706 (((-1070 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1700 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1775 (($ (-1164 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (($ (-1164 |#1|) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3444 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-3090 (((-823)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1697 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2413 (($ $ (-823)) NIL T ELT)) (-1693 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1691 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1695 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1890 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1687 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1772 (((-625 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1711 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1770 (((-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) $ (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2387 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1887 (((-1070 (-850 |#1|))) NIL (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-308))) ELT)) (-2388 (($ $ (-823)) NIL T ELT)) (-1709 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1689 (((-1070 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-1774 ((|#1|) NIL (|has| |#2| (-354 |#1|)) ELT) ((|#1| (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1707 (((-1070 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1701 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1692 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1694 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1696 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1699 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3776 ((|#1| $ (-478)) NIL (|has| |#2| (-354 |#1|)) ELT)) (-3205 (((-625 |#1|) (-1164 $)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1164 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT) (((-625 |#1|) (-1164 $) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT) (((-1164 |#1|) $ (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3948 (($ (-1164 |#1|)) NIL (|has| |#2| (-354 |#1|)) ELT) (((-1164 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT)) (-1875 (((-578 (-850 |#1|))) NIL (|has| |#2| (-354 |#1|)) ELT) (((-578 (-850 |#1|)) (-1164 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2415 (($ $ $) NIL T ELT)) (-1705 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3922 (((-765) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL (|has| |#2| (-354 |#1|)) ELT)) (-1690 (((-578 (-1164 |#1|))) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-489))) (-12 (|has| |#2| (-354 |#1|)) (|has| |#1| (-489)))) ELT)) (-2416 (($ $ $ $) NIL T ELT)) (-1703 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2525 (($ (-625 |#1|) $) NIL (|has| |#2| (-354 |#1|)) ELT)) (-2414 (($ $ $) NIL T ELT)) (-1704 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1702 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1698 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2640 (($) 18 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 19 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-567 |#1| |#2|) (-13 (-676 |#1|) (-547 |#2|) (-10 -8 (-15 -3922 ($ |#2|)) (IF (|has| |#2| (-354 |#1|)) (-6 (-354 |#1|)) |%noBranch|) (IF (|has| |#2| (-312 |#1|)) (-6 (-312 |#1|)) |%noBranch|))) (-144) (-676 |#1|)) (T -567)) -((-3922 (*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-567 *3 *2)) (-4 *2 (-676 *3))))) -((-3925 (($ $ |#2|) 10 T ELT))) -(((-568 |#1| |#2|) (-10 -7 (-15 -3925 (|#1| |#1| |#2|))) (-569 |#2|) (-144)) (T -568)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3507 (($ $ $) 39 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 38 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-569 |#1|) (-111) (-144)) (T -569)) -((-3507 (*1 *1 *1 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-144)))) (-3925 (*1 *1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-144)) (-4 *2 (-308))))) -(-13 (-649 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3507 ($ $ $)) (IF (|has| |t#1| (-308)) (-15 -3925 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2256 (((-3 (-743 |#2|) #1="failed") |#2| (-245 |#2|) (-1059)) 105 T ELT) (((-3 (-743 |#2|) (-2 (|:| |leftHandLimit| (-3 (-743 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-743 |#2|) #1#))) #1#) |#2| (-245 (-743 |#2|))) 130 T ELT)) (-2255 (((-3 (-736 |#2|) #1#) |#2| (-245 (-736 |#2|))) 135 T ELT))) -(((-570 |#1| |#2|) (-10 -7 (-15 -2256 ((-3 (-743 |#2|) (-2 (|:| |leftHandLimit| (-3 (-743 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-743 |#2|) #1#))) #1#) |#2| (-245 (-743 |#2|)))) (-15 -2255 ((-3 (-736 |#2|) #1#) |#2| (-245 (-736 |#2|)))) (-15 -2256 ((-3 (-743 |#2|) #1#) |#2| (-245 |#2|) (-1059)))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1100) (-357 |#1|))) (T -570)) -((-2256 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-245 *3)) (-5 *5 (-1059)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-743 *3)) (-5 *1 (-570 *6 *3)))) (-2255 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-245 (-736 *3))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-736 *3)) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) (-2256 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-743 *3))) (-4 *3 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-3 (-743 *3) (-2 (|:| |leftHandLimit| (-3 (-743 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-743 *3) #1#))) "failed")) (-5 *1 (-570 *5 *3))))) -((-2256 (((-3 (-743 (-343 (-850 |#1|))) #1="failed") (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))) (-1059)) 86 T ELT) (((-3 (-743 (-343 (-850 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#))) #1#) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|)))) 20 T ELT) (((-3 (-743 (-343 (-850 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#))) #1#) (-343 (-850 |#1|)) (-245 (-743 (-850 |#1|)))) 35 T ELT)) (-2255 (((-736 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|)))) 23 T ELT) (((-736 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-245 (-736 (-850 |#1|)))) 43 T ELT))) -(((-571 |#1|) (-10 -7 (-15 -2256 ((-3 (-743 (-343 (-850 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#))) #1#) (-343 (-850 |#1|)) (-245 (-743 (-850 |#1|))))) (-15 -2256 ((-3 (-743 (-343 (-850 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 |#1|))) #1#))) #1#) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))))) (-15 -2255 ((-736 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-245 (-736 (-850 |#1|))))) (-15 -2255 ((-736 (-343 (-850 |#1|))) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))))) (-15 -2256 ((-3 (-743 (-343 (-850 |#1|))) #1#) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))) (-1059)))) (-385)) (T -571)) -((-2256 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-245 (-343 (-850 *6)))) (-5 *5 (-1059)) (-5 *3 (-343 (-850 *6))) (-4 *6 (-385)) (-5 *2 (-743 *3)) (-5 *1 (-571 *6)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-385)) (-5 *2 (-736 *3)) (-5 *1 (-571 *5)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-736 (-850 *5)))) (-4 *5 (-385)) (-5 *2 (-736 (-343 (-850 *5)))) (-5 *1 (-571 *5)) (-5 *3 (-343 (-850 *5))))) (-2256 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-385)) (-5 *2 (-3 (-743 *3) (-2 (|:| |leftHandLimit| (-3 (-743 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-743 *3) #1#))) #2="failed")) (-5 *1 (-571 *5)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-743 (-850 *5)))) (-4 *5 (-385)) (-5 *2 (-3 (-743 (-343 (-850 *5))) (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 *5))) #1#)) (|:| |rightHandLimit| (-3 (-743 (-343 (-850 *5))) #1#))) #2#)) (-5 *1 (-571 *5)) (-5 *3 (-343 (-850 *5)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) 11 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2832 (($ (-166 |#1|)) 12 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-766 |#1|)) 7 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT))) -(((-572 |#1|) (-13 (-745) (-550 (-766 |#1|)) (-10 -8 (-15 -2832 ($ (-166 |#1|))))) (-578 (-1075))) (T -572)) -((-2832 (*1 *1 *2) (-12 (-5 *2 (-166 *3)) (-14 *3 (-578 (-1075))) (-5 *1 (-572 *3))))) -((-2259 (((-3 (-1164 (-343 |#1|)) #1="failed") (-1164 |#2|) |#2|) 64 (-2540 (|has| |#1| (-308))) ELT) (((-3 (-1164 |#1|) #1#) (-1164 |#2|) |#2|) 49 (|has| |#1| (-308)) ELT)) (-2257 (((-83) (-1164 |#2|)) 33 T ELT)) (-2258 (((-3 (-1164 |#1|) #1#) (-1164 |#2|)) 40 T ELT))) -(((-573 |#1| |#2|) (-10 -7 (-15 -2257 ((-83) (-1164 |#2|))) (-15 -2258 ((-3 (-1164 |#1|) #1="failed") (-1164 |#2|))) (IF (|has| |#1| (-308)) (-15 -2259 ((-3 (-1164 |#1|) #1#) (-1164 |#2|) |#2|)) (-15 -2259 ((-3 (-1164 (-343 |#1|)) #1#) (-1164 |#2|) |#2|)))) (-489) (-13 (-954) (-575 |#1|))) (T -573)) -((-2259 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 *5))) (-2540 (-4 *5 (-308))) (-4 *5 (-489)) (-5 *2 (-1164 (-343 *5))) (-5 *1 (-573 *5 *4)))) (-2259 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 *5))) (-4 *5 (-308)) (-4 *5 (-489)) (-5 *2 (-1164 *5)) (-5 *1 (-573 *5 *4)))) (-2258 (*1 *2 *3) (|partial| -12 (-5 *3 (-1164 *5)) (-4 *5 (-13 (-954) (-575 *4))) (-4 *4 (-489)) (-5 *2 (-1164 *4)) (-5 *1 (-573 *4 *5)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-13 (-954) (-575 *4))) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-573 *4 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3750 (((-578 (-775 (-572 |#2|) |#1|)) $) NIL T ELT)) (-1295 (((-3 $ "failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-2874 (($ |#1| (-572 |#2|)) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2260 (($ (-578 |#1|)) 25 T ELT)) (-1967 (((-572 |#2|) $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3887 (((-105)) 16 T ELT)) (-3205 (((-1164 |#1|) $) 44 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-572 |#2|)) 11 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 20 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 17 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-574 |#1| |#2|) (-13 (-1172 |#1|) (-550 (-572 |#2|)) (-442 |#1| (-572 |#2|)) (-10 -8 (-15 -2260 ($ (-578 |#1|))) (-15 -3205 ((-1164 |#1|) $)))) (-308) (-578 (-1075))) (T -574)) -((-2260 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-308)) (-5 *1 (-574 *3 *4)) (-14 *4 (-578 (-1075))))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-1164 *3)) (-5 *1 (-574 *3 *4)) (-4 *3 (-308)) (-14 *4 (-578 (-1075)))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-2261 (((-625 |#1|) (-625 $)) 35 T ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 34 T ELT)) (-2262 (((-625 |#1|) (-1164 $)) 37 T ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 36 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-575 |#1|) (-111) (-954)) (T -575)) -((-2262 (*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-625 *4)))) (-2262 (*1 *2 *3 *1) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-2 (|:| |mat| (-625 *4)) (|:| |vec| (-1164 *4)))))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-625 *4)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *1)) (-5 *4 (-1164 *1)) (-4 *1 (-575 *5)) (-4 *5 (-954)) (-5 *2 (-2 (|:| |mat| (-625 *5)) (|:| |vec| (-1164 *5))))))) -(-13 (-585 |t#1|) (-10 -8 (-15 -2262 ((-625 |t#1|) (-1164 $))) (-15 -2262 ((-2 (|:| |mat| (-625 |t#1|)) (|:| |vec| (-1164 |t#1|))) (-1164 $) $)) (-15 -2261 ((-625 |t#1|) (-625 $))) (-15 -2261 ((-2 (|:| |mat| (-625 |t#1|)) (|:| |vec| (-1164 |t#1|))) (-625 $) (-1164 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ "failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2263 (($ (-578 |#1|)) 23 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3776 ((|#1| $ (-574 |#1| |#2|)) 46 T ELT)) (-3887 (((-105)) 13 T ELT)) (-3205 (((-1164 |#1|) $) 42 T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 18 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 14 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-576 |#1| |#2|) (-13 (-1172 |#1|) (-238 (-574 |#1| |#2|) |#1|) (-10 -8 (-15 -2263 ($ (-578 |#1|))) (-15 -3205 ((-1164 |#1|) $)))) (-308) (-578 (-1075))) (T -576)) -((-2263 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-308)) (-5 *1 (-576 *3 *4)) (-14 *4 (-578 (-1075))))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-1164 *3)) (-5 *1 (-576 *3 *4)) (-4 *3 (-308)) (-14 *4 (-578 (-1075)))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-577 |#1|) (-111) (-1013)) (T -577)) -NIL -(-13 (-583 |t#1|) (-956 |t#1|)) -(((-72) . T) ((-547 (-765)) . T) ((-583 |#1|) . T) ((-956 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) NIL T ELT)) (-3771 ((|#1| $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3761 (($ $ (-478)) 71 (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) $) NIL (|has| |#1| (-749)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-1713 (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT) (($ (-1 (-83) |#1| |#1|) $) 68 (|has| $ (-6 -3972)) ELT)) (-2890 (($ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-3419 (((-83) $ (-687)) NIL T ELT)) (-3006 ((|#1| $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3763 (($ $ $) 26 (|has| $ (-6 -3972)) ELT)) (-3762 ((|#1| $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3765 ((|#1| $ |#1|) 24 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3972)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3972)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) NIL (|has| $ (-6 -3972)) ELT)) (-2266 (($ $ $) 77 (|has| |#1| (-1003)) ELT)) (-2265 (($ $ $) 78 (|has| |#1| (-1003)) ELT)) (-2264 (($ $ $) 81 (|has| |#1| (-1003)) ELT)) (-1553 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3772 ((|#1| $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) 31 (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) 32 T ELT)) (-3775 (($ $) 21 T ELT) (($ $ (-687)) 36 T ELT)) (-2350 (($ $) 66 (|has| |#1| (-1003)) ELT)) (-1336 (($ $) 76 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3382 (($ |#1| $) NIL (|has| |#1| (-1003)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3383 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1559 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) NIL T ELT)) (-3420 (((-83) $) NIL T ELT)) (-3396 (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) (-1 (-83) |#1|) $) NIL T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2268 (((-83) $) 9 T ELT)) (-3012 (((-578 $) $) NIL T ELT)) (-3008 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-2269 (($) 7 T CONST)) (-3590 (($ (-687) |#1|) NIL T ELT)) (-3695 (((-83) $ (-687)) NIL T ELT)) (-2182 (((-478) $) 35 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2837 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 69 T ELT)) (-3495 (($ $ $) NIL (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 64 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3510 (($ |#1|) NIL T ELT)) (-3692 (((-83) $ (-687)) NIL T ELT)) (-3011 (((-578 |#1|) $) NIL T ELT)) (-3504 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) 62 (|has| |#1| (-1003)) ELT)) (-3774 ((|#1| $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3585 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2286 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 16 T ELT) (($ $ (-687)) NIL T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3421 (((-83) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 15 T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) 20 T ELT)) (-3541 (($) 19 T ELT)) (-3776 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT) ((|#1| $ (-478)) 80 T ELT) ((|#1| $ (-478) |#1|) NIL T ELT)) (-3010 (((-478) $ $) NIL T ELT)) (-1554 (($ $ (-1131 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-2287 (($ $ (-1131 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-3609 (((-83) $) 39 T ELT)) (-3768 (($ $) NIL T ELT)) (-3766 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-3769 (((-687) $) NIL T ELT)) (-3770 (($ $) 44 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 40 T ELT)) (-3948 (((-467) $) 89 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 29 T ELT)) (-3438 (($ |#1| $) 10 T ELT)) (-3767 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-3778 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-578 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3922 (((-765) $) 54 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) NIL T ELT)) (-3009 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2267 (($ $ $) 11 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 58 (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) 13 (|has| $ (-6 -3971)) ELT))) -(((-578 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2269 ($) -3928) (-15 -2268 ((-83) $)) (-15 -3438 ($ |#1| $)) (-15 -2267 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2266 ($ $ $)) (-15 -2265 ($ $ $)) (-15 -2264 ($ $ $))) |%noBranch|))) (-1114)) (T -578)) -((-2269 (*1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1114)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-578 *3)) (-4 *3 (-1114)))) (-3438 (*1 *1 *2 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1114)))) (-2267 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1114)))) (-2266 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1003)) (-4 *2 (-1114)))) (-2265 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1003)) (-4 *2 (-1114)))) (-2264 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1003)) (-4 *2 (-1114))))) -((-3817 (((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|) 16 T ELT)) (-3818 ((|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|) 18 T ELT)) (-3934 (((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|)) 13 T ELT))) -(((-579 |#1| |#2|) (-10 -7 (-15 -3817 ((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -3818 (|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -3934 ((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|)))) (-1114) (-1114)) (T -579)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-578 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-578 *6)) (-5 *1 (-579 *5 *6)))) (-3818 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-578 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) (-5 *1 (-579 *5 *2)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-578 *6)) (-4 *6 (-1114)) (-4 *5 (-1114)) (-5 *2 (-578 *5)) (-5 *1 (-579 *6 *5))))) -((-3399 ((|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|) 17 T ELT) ((|#2| (-578 |#1|) (-578 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|)) 12 T ELT))) -(((-580 |#1| |#2|) (-10 -7 (-15 -3399 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|))) (-15 -3399 (|#2| (-578 |#1|) (-578 |#2|) |#1|)) (-15 -3399 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|)) (-15 -3399 (|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|)) (-15 -3399 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|))) (-15 -3399 (|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|)))) (-1003) (-1114)) (T -580)) -((-3399 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1114)) (-5 *1 (-580 *5 *2)))) (-3399 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1003)) (-4 *6 (-1114)) (-5 *1 (-580 *5 *6)))) (-3399 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1003)) (-4 *2 (-1114)) (-5 *1 (-580 *5 *2)))) (-3399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 *5)) (-4 *6 (-1003)) (-4 *5 (-1114)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-3399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1003)) (-4 *2 (-1114)) (-5 *1 (-580 *5 *2)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1003)) (-4 *6 (-1114)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6))))) -((-3934 (((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|)) 21 T ELT))) -(((-581 |#1| |#2| |#3|) (-10 -7 (-15 -3934 ((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|)))) (-1114) (-1114) (-1114)) (T -581)) -((-3934 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-578 *6)) (-5 *5 (-578 *7)) (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-578 *8)) (-5 *1 (-581 *6 *7 *8))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 11 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-582 |#1|) (-13 (-986) (-547 |#1|)) (-1003)) (T -582)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-583 |#1|) (-111) (-1013)) (T -583)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-1013))))) -(-13 (-1003) (-10 -8 (-15 * ($ |t#1| $)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2270 (($ |#1| |#1| $) 45 T ELT)) (-1553 (($ (-1 (-83) |#1|) $) 61 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2350 (($ $) 47 T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3382 (($ |#1| $) 58 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) |#1|) $) 60 (|has| $ (-6 -3971)) ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#1|) $) 9 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 49 T ELT)) (-3585 (($ |#1| $) 30 T ELT) (($ |#1| $ (-687)) 44 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-1259 ((|#1| $) 52 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 23 T ELT)) (-3541 (($) 29 T ELT)) (-2271 (((-83) $) 56 T ELT)) (-2349 (((-578 (-2 (|:| |entry| |#1|) (|:| -1929 (-687)))) $) 69 T ELT)) (-1449 (($) 26 T ELT) (($ (-578 |#1|)) 19 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 65 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) 20 T ELT)) (-3948 (((-467) $) 36 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) NIL T ELT)) (-3922 (((-765) $) 14 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 24 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 71 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 17 (|has| $ (-6 -3971)) ELT))) -(((-584 |#1|) (-13 (-629 |#1|) (-10 -8 (-6 -3971) (-15 -2271 ((-83) $)) (-15 -2270 ($ |#1| |#1| $)))) (-1003)) (T -584)) -((-2271 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))) (-2270 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-585 |#1|) (-111) (-962)) (T -585)) -NIL -(-13 (-21) (-583 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687) $) 17 T ELT)) (-2277 (($ $ |#1|) 68 T ELT)) (-2279 (($ $) 39 T ELT)) (-2280 (($ $) 37 T ELT)) (-3138 (((-3 |#1| "failed") $) 60 T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-2275 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3509 (((-765) $ (-1 (-765) (-765) (-765)) (-1 (-765) (-765) (-765)) (-478)) 55 T ELT)) (-2281 ((|#1| $ (-478)) 35 T ELT)) (-2282 ((|#2| $ (-478)) 34 T ELT)) (-2272 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2273 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2278 (($) 13 T ELT)) (-2284 (($ |#1| |#2|) 24 T ELT)) (-2283 (($ (-578 (-2 (|:| |gen| |#1|) (|:| -3919 |#2|)))) 25 T ELT)) (-2285 (((-578 (-2 (|:| |gen| |#1|) (|:| -3919 |#2|))) $) 14 T ELT)) (-2276 (($ |#1| $) 69 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2274 (((-83) $ $) 74 T ELT)) (-3922 (((-765) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 27 T ELT))) -(((-586 |#1| |#2| |#3|) (-13 (-1003) (-943 |#1|) (-10 -8 (-15 -3509 ((-765) $ (-1 (-765) (-765) (-765)) (-1 (-765) (-765) (-765)) (-478))) (-15 -2285 ((-578 (-2 (|:| |gen| |#1|) (|:| -3919 |#2|))) $)) (-15 -2284 ($ |#1| |#2|)) (-15 -2283 ($ (-578 (-2 (|:| |gen| |#1|) (|:| -3919 |#2|))))) (-15 -2282 (|#2| $ (-478))) (-15 -2281 (|#1| $ (-478))) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -3117 ((-687) $)) (-15 -2278 ($)) (-15 -2277 ($ $ |#1|)) (-15 -2276 ($ |#1| $)) (-15 -2275 ($ |#1| |#2| $)) (-15 -2275 ($ $ $)) (-15 -2274 ((-83) $ $)) (-15 -2273 ($ (-1 |#2| |#2|) $)) (-15 -2272 ($ (-1 |#1| |#1|) $)))) (-1003) (-23) |#2|) (T -586)) -((-3509 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-765) (-765) (-765))) (-5 *4 (-478)) (-5 *2 (-765)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2284 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2283 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-2282 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2280 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2278 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2277 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2276 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2275 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2275 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2274 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))) (-2272 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2183 (((-478) $) 30 T ELT)) (-2286 (($ |#2| $ (-478)) 26 T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) 12 T ELT)) (-2186 (((-83) (-478) $) 17 T ELT)) (-3778 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT))) -(((-587 |#1| |#2|) (-10 -7 (-15 -2286 (|#1| |#1| |#1| (-478))) (-15 -2286 (|#1| |#2| |#1| (-478))) (-15 -3778 (|#1| (-578 |#1|))) (-15 -3778 (|#1| |#1| |#1|)) (-15 -3778 (|#1| |#2| |#1|)) (-15 -3778 (|#1| |#1| |#2|)) (-15 -2183 ((-478) |#1|)) (-15 -2185 ((-578 (-478)) |#1|)) (-15 -2186 ((-83) (-478) |#1|))) (-588 |#2|) (-1114)) (T -587)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) 44 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-1336 (($ $) 84 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#1| $) 83 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 55 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) |#1|) 74 T ELT)) (-2182 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2185 (((-578 (-478)) $) 50 T ELT)) (-2186 (((-83) (-478) $) 51 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2181 (($ $ |#1|) 45 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1131 (-478))) 75 T ELT)) (-2287 (($ $ (-478)) 68 T ELT) (($ $ (-1131 (-478))) 67 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 76 T ELT)) (-3778 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-588 |#1|) (-111) (-1114)) (T -588)) -((-3590 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) (-3778 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1114)))) (-3778 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1114)))) (-3778 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1114)))) (-3778 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) (-3934 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) (-2287 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) (-2287 (*1 *1 *1 *2) (-12 (-5 *2 (-1131 (-478))) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) (-2286 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-588 *2)) (-4 *2 (-1114)))) (-2286 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) (-3764 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1131 (-478))) (|has| *1 (-6 -3972)) (-4 *1 (-588 *2)) (-4 *2 (-1114))))) -(-13 (-533 (-478) |t#1|) (-122 |t#1|) (-238 (-1131 (-478)) $) (-10 -8 (-15 -3590 ($ (-687) |t#1|)) (-15 -3778 ($ $ |t#1|)) (-15 -3778 ($ |t#1| $)) (-15 -3778 ($ $ $)) (-15 -3778 ($ (-578 $))) (-15 -3934 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2287 ($ $ (-478))) (-15 -2287 ($ $ (-1131 (-478)))) (-15 -2286 ($ |t#1| $ (-478))) (-15 -2286 ($ $ $ (-478))) (IF (|has| $ (-6 -3972)) (-15 -3764 (|t#1| $ (-1131 (-478)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 15 T ELT)) (-1295 (((-3 $ "failed") $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| |#1| (-707)) ELT)) (-3700 (($) NIL T CONST)) (-3168 (((-83) $) NIL (|has| |#1| (-707)) ELT)) (-2979 ((|#1| $) 23 T ELT)) (-3169 (((-83) $) NIL (|has| |#1| (-707)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-707)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-707)) ELT)) (-3222 (((-1059) $) 48 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2978 ((|#3| $) 24 T ELT)) (-3922 (((-765) $) 43 T ELT)) (-1249 (((-83) $ $) 22 T ELT)) (-3360 (($ $) NIL (|has| |#1| (-707)) ELT)) (-2640 (($) 10 T CONST)) (-2546 (((-83) $ $) NIL (|has| |#1| (-707)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-707)) ELT)) (-3037 (((-83) $ $) 20 T ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-707)) ELT)) (-2666 (((-83) $ $) 26 (|has| |#1| (-707)) ELT)) (-3925 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3813 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 29 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-589 |#1| |#2| |#3|) (-13 (-649 |#2|) (-10 -8 (IF (|has| |#1| (-707)) (-6 (-707)) |%noBranch|) (-15 -3925 ($ $ |#3|)) (-15 -3925 ($ |#1| |#3|)) (-15 -2979 (|#1| $)) (-15 -2978 (|#3| $)))) (-649 |#2|) (-144) (|SubsetCategory| (-658) |#2|)) (T -589)) -((-3925 (*1 *1 *1 *2) (-12 (-4 *4 (-144)) (-5 *1 (-589 *3 *4 *2)) (-4 *3 (-649 *4)) (-4 *2 (|SubsetCategory| (-658) *4)))) (-3925 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-589 *2 *4 *3)) (-4 *2 (-649 *4)) (-4 *3 (|SubsetCategory| (-658) *4)))) (-2979 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-649 *3)) (-5 *1 (-589 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-658) *3)))) (-2978 (*1 *2 *1) (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-658) *4)) (-5 *1 (-589 *3 *4 *2)) (-4 *3 (-649 *4))))) -((-3549 (((-3 |#2| #1="failed") |#3| |#2| (-1075) |#2| (-578 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1994 (-578 |#2|))) #1#) |#3| |#2| (-1075)) 44 T ELT))) -(((-590 |#1| |#2| |#3|) (-10 -7 (-15 -3549 ((-3 (-2 (|:| |particular| |#2|) (|:| -1994 (-578 |#2|))) #1="failed") |#3| |#2| (-1075))) (-15 -3549 ((-3 |#2| #1#) |#3| |#2| (-1075) |#2| (-578 |#2|)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1100) (-864)) (-595 |#2|)) (T -590)) -((-3549 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1100) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-590 *6 *2 *3)) (-4 *3 (-595 *2)))) (-3549 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1075)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-4 *4 (-13 (-29 *6) (-1100) (-864))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1994 (-578 *4)))) (-5 *1 (-590 *6 *4 *3)) (-4 *3 (-595 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2288 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2290 (($ $ $) 28 (|has| |#1| (-308)) ELT)) (-2291 (($ $ (-687)) 31 (|has| |#1| (-308)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2516 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2514 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2513 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2515 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2529 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-687)) NIL T ELT)) (-2527 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2526 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2801 (((-687) $) NIL T ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2512 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2528 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3776 ((|#1| $ |#1|) 24 T ELT)) (-2292 (($ $ $) 33 (|has| |#1| (-308)) ELT)) (-3924 (((-687) $) NIL T ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3922 (((-765) $) 20 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) NIL T ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-687)) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2525 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2500 (($ $) NIL T ELT)) (-2640 (($) 21 T CONST)) (-2647 (($) 8 T CONST)) (-2650 (($) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-591 |#1| |#2|) (-595 |#1|) (-954) (-1 |#1| |#1|)) (T -591)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2288 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2290 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2291 (($ $ (-687)) NIL (|has| |#1| (-308)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2516 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2514 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2513 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2515 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2529 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-687)) NIL T ELT)) (-2527 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2526 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2801 (((-687) $) NIL T ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2512 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2528 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3776 ((|#1| $ |#1|) NIL T ELT)) (-2292 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3924 (((-687) $) NIL T ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) NIL T ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-687)) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2525 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2500 (($ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-592 |#1|) (-595 |#1|) (-188)) (T -592)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2288 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2290 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2291 (($ $ (-687)) NIL (|has| |#1| (-308)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2516 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2514 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2513 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2515 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2529 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-687)) NIL T ELT)) (-2527 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2526 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2801 (((-687) $) NIL T ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2512 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2528 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3776 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2292 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3924 (((-687) $) NIL T ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) NIL T ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-687)) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2525 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2500 (($ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-593 |#1| |#2|) (-13 (-595 |#1|) (-238 |#2| |#2|)) (-188) (-13 (-585 |#1|) (-10 -8 (-15 -3734 ($ $))))) (T -593)) -NIL -((-2288 (($ $) 29 T ELT)) (-2500 (($ $) 27 T ELT)) (-2650 (($) 13 T ELT))) -(((-594 |#1| |#2|) (-10 -7 (-15 -2288 (|#1| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2650 (|#1|))) (-595 |#2|) (-954)) (T -594)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2288 (($ $) 93 (|has| |#1| (-308)) ELT)) (-2290 (($ $ $) 95 (|has| |#1| (-308)) ELT)) (-2291 (($ $ (-687)) 94 (|has| |#1| (-308)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-2516 (($ $ $) 55 (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) 56 (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) 58 (|has| |#1| (-308)) ELT)) (-2514 (($ $ $) 53 (|has| |#1| (-308)) ELT)) (-2513 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 52 (|has| |#1| (-308)) ELT)) (-2515 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-308)) ELT)) (-2529 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 57 (|has| |#1| (-308)) ELT)) (-3138 (((-3 (-478) #2="failed") $) 85 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #2#) $) 82 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3137 (((-478) $) 84 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 81 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 80 T ELT)) (-3935 (($ $) 74 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3480 (($ $) 65 (|has| |#1| (-385)) ELT)) (-2392 (((-83) $) 40 T ELT)) (-2874 (($ |#1| (-687)) 72 T ELT)) (-2527 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 67 (|has| |#1| (-489)) ELT)) (-2526 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 68 (|has| |#1| (-489)) ELT)) (-2801 (((-687) $) 76 T ELT)) (-2522 (($ $ $) 62 (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) 63 (|has| |#1| (-308)) ELT)) (-2512 (($ $ $) 51 (|has| |#1| (-308)) ELT)) (-2520 (($ $ $) 60 (|has| |#1| (-308)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 59 (|has| |#1| (-308)) ELT)) (-2521 (((-3 $ #1#) $ $) 61 (|has| |#1| (-308)) ELT)) (-2528 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 64 (|has| |#1| (-308)) ELT)) (-3155 ((|#1| $) 75 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3443 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-489)) ELT)) (-3776 ((|#1| $ |#1|) 98 T ELT)) (-2292 (($ $ $) 92 (|has| |#1| (-308)) ELT)) (-3924 (((-687) $) 77 T ELT)) (-2798 ((|#1| $) 66 (|has| |#1| (-385)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 83 (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 78 T ELT)) (-3793 (((-578 |#1|) $) 71 T ELT)) (-3653 ((|#1| $ (-687)) 73 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2525 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2500 (($ $) 96 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($) 97 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-595 |#1|) (-111) (-954)) (T -595)) -((-2650 (*1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)))) (-2290 (*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2291 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-595 *3)) (-4 *3 (-954)) (-4 *3 (-308)))) (-2288 (*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2292 (*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) -(-13 (-754 |t#1|) (-238 |t#1| |t#1|) (-10 -8 (-15 -2650 ($)) (-15 -2500 ($ $)) (IF (|has| |t#1| (-308)) (PROGN (-15 -2290 ($ $ $)) (-15 -2291 ($ $ (-687))) (-15 -2288 ($ $)) (-15 -2292 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-238 |#1| |#1|) . T) ((-348 |#1|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-658) . T) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-754 |#1|) . T)) -((-2289 (((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3708 (((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|)) 19 T ELT))) -(((-596 |#1| |#2|) (-10 -7 (-15 -3708 ((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3708 ((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|)))) (-15 -2289 ((-578 (-592 (-343 |#2|))) (-592 (-343 |#2|))))) |%noBranch|)) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))) (-1140 |#1|)) (T -596)) -((-2289 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) (-5 *2 (-578 (-592 (-343 *5)))) (-5 *1 (-596 *4 *5)) (-5 *3 (-592 (-343 *5))))) (-3708 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) (-5 *2 (-578 (-592 (-343 *5)))) (-5 *1 (-596 *4 *5)) (-5 *3 (-592 (-343 *5))))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) (-5 *2 (-578 (-592 (-343 *6)))) (-5 *1 (-596 *5 *6)) (-5 *3 (-592 (-343 *6)))))) -((-2290 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2291 ((|#2| |#2| (-687) (-1 |#1| |#1|)) 45 T ELT)) (-2292 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-597 |#1| |#2|) (-10 -7 (-15 -2290 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2291 (|#2| |#2| (-687) (-1 |#1| |#1|))) (-15 -2292 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-308) (-595 |#1|)) (T -597)) -((-2292 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-597 *4 *2)) (-4 *2 (-595 *4)))) (-2291 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-687)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-5 *1 (-597 *5 *2)) (-4 *2 (-595 *5)))) (-2290 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-597 *4 *2)) (-4 *2 (-595 *4))))) -((-2293 (($ $ $) 9 T ELT))) -(((-598 |#1|) (-10 -7 (-15 -2293 (|#1| |#1| |#1|))) (-599)) (T -598)) -NIL -((-2295 (($ $) 8 T ELT)) (-2293 (($ $ $) 6 T ELT)) (-2294 (($ $ $) 7 T ELT))) -(((-599) (-111)) (T -599)) -((-2295 (*1 *1 *1) (-4 *1 (-599))) (-2294 (*1 *1 *1 *1) (-4 *1 (-599))) (-2293 (*1 *1 *1 *1) (-4 *1 (-599)))) -(-13 (-1114) (-10 -8 (-15 -2295 ($ $)) (-15 -2294 ($ $ $)) (-15 -2293 ($ $ $)))) -(((-1114) . T)) -((-2296 (((-3 (-578 (-1070 |#1|)) "failed") (-578 (-1070 |#1|)) (-1070 |#1|)) 33 T ELT))) -(((-600 |#1|) (-10 -7 (-15 -2296 ((-3 (-578 (-1070 |#1|)) "failed") (-578 (-1070 |#1|)) (-1070 |#1|)))) (-814)) (T -600)) -((-2296 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1070 *4))) (-5 *3 (-1070 *4)) (-4 *4 (-814)) (-5 *1 (-600 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3910 (((-578 |#1|) $) 85 T ELT)) (-3923 (($ $ (-687)) 95 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3915 (((-1189 |#1| |#2|) (-1189 |#1| |#2|) $) 50 T ELT)) (-3138 (((-3 (-609 |#1|) #1#) $) NIL T ELT)) (-3137 (((-609 |#1|) $) NIL T ELT)) (-3935 (($ $) 94 T ELT)) (-2400 (((-687) $) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-3914 (($ (-609 |#1|) |#2|) 70 T ELT)) (-3912 (($ $) 90 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3916 (((-1189 |#1| |#2|) (-1189 |#1| |#2|) $) 49 T ELT)) (-1732 (((-2 (|:| |k| (-609 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2875 (((-609 |#1|) $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3744 (($ $ |#1| $) 32 T ELT) (($ $ (-578 |#1|) (-578 $)) 34 T ELT)) (-3924 (((-687) $) 92 T ELT)) (-3507 (($ $ $) 20 T ELT) (($ (-609 |#1|) (-609 |#1|)) 79 T ELT) (($ (-609 |#1|) $) 77 T ELT) (($ $ (-609 |#1|)) 78 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1180 |#1| |#2|) $) 60 T ELT) (((-1189 |#1| |#2|) $) 43 T ELT) (($ (-609 |#1|)) 27 T ELT)) (-3793 (((-578 |#2|) $) NIL T ELT)) (-3653 ((|#2| $ (-609 |#1|)) NIL T ELT)) (-3930 ((|#2| (-1189 |#1| |#2|) $) 45 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 23 T CONST)) (-2646 (((-578 (-2 (|:| |k| (-609 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3921 (((-3 $ #1#) (-1180 |#1| |#2|)) 62 T ELT)) (-1716 (($ (-609 |#1|)) 14 T ELT)) (-3037 (((-83) $ $) 46 T ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 31 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-609 |#1|)) NIL T ELT))) -(((-601 |#1| |#2|) (-13 (-319 |#1| |#2|) (-328 |#2| (-609 |#1|)) (-10 -8 (-15 -3921 ((-3 $ "failed") (-1180 |#1| |#2|))) (-15 -3507 ($ (-609 |#1|) (-609 |#1|))) (-15 -3507 ($ (-609 |#1|) $)) (-15 -3507 ($ $ (-609 |#1|))))) (-749) (-144)) (T -601)) -((-3921 (*1 *1 *2) (|partial| -12 (-5 *2 (-1180 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *1 (-601 *3 *4)))) (-3507 (*1 *1 *2 *2) (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) (-3507 (*1 *1 *2 *1) (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) (-3507 (*1 *1 *1 *2) (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144))))) -((-1715 (((-83) $) NIL T ELT) (((-83) (-1 (-83) |#2| |#2|) $) 59 T ELT)) (-1713 (($ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $) 12 T ELT)) (-1553 (($ (-1 (-83) |#2|) $) 29 T ELT)) (-2279 (($ $) 65 T ELT)) (-2350 (($ $) 74 T ELT)) (-3382 (($ |#2| $) NIL T ELT) (($ (-1 (-83) |#2|) $) 43 T ELT)) (-3818 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3396 (((-478) |#2| $ (-478)) 71 T ELT) (((-478) |#2| $) NIL T ELT) (((-478) (-1 (-83) |#2|) $) 54 T ELT)) (-3590 (($ (-687) |#2|) 63 T ELT)) (-2837 (($ $ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $ $) 31 T ELT)) (-3495 (($ $ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $ $) 24 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3510 (($ |#2|) 15 T ELT)) (-3585 (($ $ $ (-478)) 42 T ELT) (($ |#2| $ (-478)) 40 T ELT)) (-1337 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 53 T ELT)) (-1554 (($ $ (-1131 (-478))) 51 T ELT) (($ $ (-478)) 44 T ELT)) (-1714 (($ $ $ (-478)) 70 T ELT)) (-3377 (($ $) 68 T ELT)) (-2666 (((-83) $ $) 76 T ELT))) -(((-602 |#1| |#2|) (-10 -7 (-15 -3510 (|#1| |#2|)) (-15 -1554 (|#1| |#1| (-478))) (-15 -1554 (|#1| |#1| (-1131 (-478)))) (-15 -3382 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3585 (|#1| |#2| |#1| (-478))) (-15 -3585 (|#1| |#1| |#1| (-478))) (-15 -2837 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -1553 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3382 (|#1| |#2| |#1|)) (-15 -2350 (|#1| |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -1715 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -3396 ((-478) (-1 (-83) |#2|) |#1|)) (-15 -3396 ((-478) |#2| |#1|)) (-15 -3396 ((-478) |#2| |#1| (-478))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -1715 ((-83) |#1|)) (-15 -1714 (|#1| |#1| |#1| (-478))) (-15 -2279 (|#1| |#1|)) (-15 -1713 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -1713 (|#1| |#1|)) (-15 -2666 ((-83) |#1| |#1|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3818 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1337 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -3590 (|#1| (-687) |#2|)) (-15 -3934 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3934 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3377 (|#1| |#1|))) (-603 |#2|) (-1114)) (T -602)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 52 T ELT)) (-3771 ((|#1| $) 71 T ELT)) (-3773 (($ $) 73 T ELT)) (-2180 (((-1170) $ (-478) (-478)) 107 (|has| $ (-6 -3972)) ELT)) (-3761 (($ $ (-478)) 58 (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) $) 153 (|has| |#1| (-749)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) 147 T ELT)) (-1713 (($ $) 157 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3972))) ELT) (($ (-1 (-83) |#1| |#1|) $) 156 (|has| $ (-6 -3972)) ELT)) (-2890 (($ $) 152 (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $) 146 T ELT)) (-3419 (((-83) $ (-687)) 90 T ELT)) (-3006 ((|#1| $ |#1|) 43 (|has| $ (-6 -3972)) ELT)) (-3763 (($ $ $) 62 (|has| $ (-6 -3972)) ELT)) (-3762 ((|#1| $ |#1|) 60 (|has| $ (-6 -3972)) ELT)) (-3765 ((|#1| $ |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3972)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3972)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3972)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 127 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-478) |#1|) 96 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 45 (|has| $ (-6 -3972)) ELT)) (-1553 (($ (-1 (-83) |#1|) $) 140 T ELT)) (-3686 (($ (-1 (-83) |#1|) $) 112 (|has| $ (-6 -3971)) ELT)) (-3772 ((|#1| $) 72 T ELT)) (-3700 (($) 7 T CONST)) (-2279 (($ $) 155 (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) 145 T ELT)) (-3775 (($ $) 79 T ELT) (($ $ (-687)) 77 T ELT)) (-2350 (($ $) 142 (|has| |#1| (-1003)) ELT)) (-1336 (($ $) 109 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ |#1| $) 141 (|has| |#1| (-1003)) ELT) (($ (-1 (-83) |#1|) $) 136 T ELT)) (-3383 (($ (-1 (-83) |#1|) $) 113 (|has| $ (-6 -3971)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1559 ((|#1| $ (-478) |#1|) 95 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 97 T ELT)) (-3420 (((-83) $) 93 T ELT)) (-3396 (((-478) |#1| $ (-478)) 150 (|has| |#1| (-1003)) ELT) (((-478) |#1| $) 149 (|has| |#1| (-1003)) ELT) (((-478) (-1 (-83) |#1|) $) 148 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 54 T ELT)) (-3008 (((-83) $ $) 46 (|has| |#1| (-1003)) ELT)) (-3590 (($ (-687) |#1|) 119 T ELT)) (-3695 (((-83) $ (-687)) 91 T ELT)) (-2182 (((-478) $) 105 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) 163 (|has| |#1| (-749)) ELT)) (-2837 (($ $ $) 143 (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 139 T ELT)) (-3495 (($ $ $) 151 (|has| |#1| (-749)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 144 T ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 104 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) 162 (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3510 (($ |#1|) 133 T ELT)) (-3692 (((-83) $ (-687)) 92 T ELT)) (-3011 (((-578 |#1|) $) 49 T ELT)) (-3504 (((-83) $) 53 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3774 ((|#1| $) 76 T ELT) (($ $ (-687)) 74 T ELT)) (-3585 (($ $ $ (-478)) 138 T ELT) (($ |#1| $ (-478)) 137 T ELT)) (-2286 (($ $ $ (-478)) 126 T ELT) (($ |#1| $ (-478)) 125 T ELT)) (-2185 (((-578 (-478)) $) 102 T ELT)) (-2186 (((-83) (-478) $) 101 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 82 T ELT) (($ $ (-687)) 80 T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2181 (($ $ |#1|) 106 (|has| $ (-6 -3972)) ELT)) (-3421 (((-83) $) 94 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) 100 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1131 (-478))) 118 T ELT) ((|#1| $ (-478)) 99 T ELT) ((|#1| $ (-478) |#1|) 98 T ELT)) (-3010 (((-478) $ $) 48 T ELT)) (-1554 (($ $ (-1131 (-478))) 135 T ELT) (($ $ (-478)) 134 T ELT)) (-2287 (($ $ (-1131 (-478))) 124 T ELT) (($ $ (-478)) 123 T ELT)) (-3609 (((-83) $) 50 T ELT)) (-3768 (($ $) 68 T ELT)) (-3766 (($ $) 65 (|has| $ (-6 -3972)) ELT)) (-3769 (((-687) $) 69 T ELT)) (-3770 (($ $) 70 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1714 (($ $ $ (-478)) 154 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 108 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 117 T ELT)) (-3767 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3778 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-578 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) 55 T ELT)) (-3009 (((-83) $ $) 47 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) 161 (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) 159 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) 160 (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 158 (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-603 |#1|) (-111) (-1114)) (T -603)) -((-3510 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1114))))) -(-13 (-1050 |t#1|) (-317 |t#1|) (-234 |t#1|) (-10 -8 (-15 -3510 ($ |t#1|)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-234 |#1|) . T) ((-317 |#1|) . T) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-916 |#1|) . T) ((-1003) OR (|has| |#1| (-1003)) (|has| |#1| (-749))) ((-1050 |#1|) . T) ((-1114) . T) ((-1153 |#1|) . T)) -((-3549 (((-578 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -1994 (-578 |#3|)))) |#4| (-578 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -1994 (-578 |#3|))) |#4| |#3|) 60 T ELT)) (-3090 (((-687) |#4| |#3|) 18 T ELT)) (-3317 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2297 (((-83) |#4| |#3|) 14 T ELT))) -(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3549 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -1994 (-578 |#3|))) |#4| |#3|)) (-15 -3549 ((-578 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -1994 (-578 |#3|)))) |#4| (-578 |#3|))) (-15 -3317 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2297 ((-83) |#4| |#3|)) (-15 -3090 ((-687) |#4| |#3|))) (-308) (-13 (-317 |#1|) (-10 -7 (-6 -3972))) (-13 (-317 |#1|) (-10 -7 (-6 -3972))) (-622 |#1| |#2| |#3|)) (T -604)) -((-3090 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-5 *2 (-687)) (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) (-2297 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-5 *2 (-83)) (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) (-3317 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-308)) (-4 *5 (-13 (-317 *4) (-10 -7 (-6 -3972)))) (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3972)))) (-5 *1 (-604 *4 *5 *2 *3)) (-4 *3 (-622 *4 *5 *2)))) (-3549 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-4 *7 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-5 *2 (-578 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -1994 (-578 *7))))) (-5 *1 (-604 *5 *6 *7 *3)) (-5 *4 (-578 *7)) (-4 *3 (-622 *5 *6 *7)))) (-3549 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1994 (-578 *4)))) (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4))))) -((-3549 (((-578 (-2 (|:| |particular| (-3 (-1164 |#1|) #1="failed")) (|:| -1994 (-578 (-1164 |#1|))))) (-578 (-578 |#1|)) (-578 (-1164 |#1|))) 22 T ELT) (((-578 (-2 (|:| |particular| (-3 (-1164 |#1|) #1#)) (|:| -1994 (-578 (-1164 |#1|))))) (-625 |#1|) (-578 (-1164 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1164 |#1|) #1#)) (|:| -1994 (-578 (-1164 |#1|)))) (-578 (-578 |#1|)) (-1164 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1164 |#1|) #1#)) (|:| -1994 (-578 (-1164 |#1|)))) (-625 |#1|) (-1164 |#1|)) 14 T ELT)) (-3090 (((-687) (-625 |#1|) (-1164 |#1|)) 30 T ELT)) (-3317 (((-3 (-1164 |#1|) #1#) (-625 |#1|) (-1164 |#1|)) 24 T ELT)) (-2297 (((-83) (-625 |#1|) (-1164 |#1|)) 27 T ELT))) -(((-605 |#1|) (-10 -7 (-15 -3549 ((-2 (|:| |particular| (-3 (-1164 |#1|) #1="failed")) (|:| -1994 (-578 (-1164 |#1|)))) (-625 |#1|) (-1164 |#1|))) (-15 -3549 ((-2 (|:| |particular| (-3 (-1164 |#1|) #1#)) (|:| -1994 (-578 (-1164 |#1|)))) (-578 (-578 |#1|)) (-1164 |#1|))) (-15 -3549 ((-578 (-2 (|:| |particular| (-3 (-1164 |#1|) #1#)) (|:| -1994 (-578 (-1164 |#1|))))) (-625 |#1|) (-578 (-1164 |#1|)))) (-15 -3549 ((-578 (-2 (|:| |particular| (-3 (-1164 |#1|) #1#)) (|:| -1994 (-578 (-1164 |#1|))))) (-578 (-578 |#1|)) (-578 (-1164 |#1|)))) (-15 -3317 ((-3 (-1164 |#1|) #1#) (-625 |#1|) (-1164 |#1|))) (-15 -2297 ((-83) (-625 |#1|) (-1164 |#1|))) (-15 -3090 ((-687) (-625 |#1|) (-1164 |#1|)))) (-308)) (T -605)) -((-3090 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-308)) (-5 *2 (-687)) (-5 *1 (-605 *5)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-308)) (-5 *2 (-83)) (-5 *1 (-605 *5)))) (-3317 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1164 *4)) (-5 *3 (-625 *4)) (-4 *4 (-308)) (-5 *1 (-605 *4)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-308)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1164 *5) #1="failed")) (|:| -1994 (-578 (-1164 *5)))))) (-5 *1 (-605 *5)) (-5 *4 (-578 (-1164 *5))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-4 *5 (-308)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1164 *5) #1#)) (|:| -1994 (-578 (-1164 *5)))))) (-5 *1 (-605 *5)) (-5 *4 (-578 (-1164 *5))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-308)) (-5 *2 (-2 (|:| |particular| (-3 (-1164 *5) #1#)) (|:| -1994 (-578 (-1164 *5))))) (-5 *1 (-605 *5)) (-5 *4 (-1164 *5)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |particular| (-3 (-1164 *5) #1#)) (|:| -1994 (-578 (-1164 *5))))) (-5 *1 (-605 *5)) (-5 *4 (-1164 *5))))) -((-2298 (((-2 (|:| |particular| (-3 (-1164 (-343 |#4|)) "failed")) (|:| -1994 (-578 (-1164 (-343 |#4|))))) (-578 |#4|) (-578 |#3|)) 51 T ELT))) -(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2298 ((-2 (|:| |particular| (-3 (-1164 (-343 |#4|)) "failed")) (|:| -1994 (-578 (-1164 (-343 |#4|))))) (-578 |#4|) (-578 |#3|)))) (-489) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -606)) -((-2298 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *7)) (-4 *7 (-749)) (-4 *8 (-854 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-5 *2 (-2 (|:| |particular| (-3 (-1164 (-343 *8)) "failed")) (|:| -1994 (-578 (-1164 (-343 *8)))))) (-5 *1 (-606 *5 *6 *7 *8))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1755 (((-3 $ #1="failed")) NIL (|has| |#2| (-489)) ELT)) (-3307 ((|#2| $) NIL T ELT)) (-3102 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1#) $ $) NIL T ELT)) (-3204 (((-1164 (-625 |#2|))) NIL T ELT) (((-1164 (-625 |#2|)) (-1164 $)) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-1712 (((-1164 $)) 41 T ELT)) (-3310 (($ |#2|) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3091 (($ $) NIL (|has| |#2| (-254)) ELT)) (-3093 (((-194 |#1| |#2|) $ (-478)) NIL T ELT)) (-1889 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL (|has| |#2| (-489)) ELT)) (-1686 (((-3 $ #1#)) NIL (|has| |#2| (-489)) ELT)) (-1771 (((-625 |#2|)) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-1710 ((|#2| $) NIL T ELT)) (-1769 (((-625 |#2|) $) NIL T ELT) (((-625 |#2|) $ (-1164 $)) NIL T ELT)) (-2386 (((-3 $ #1#) $) NIL (|has| |#2| (-489)) ELT)) (-1883 (((-1070 (-850 |#2|))) NIL (|has| |#2| (-308)) ELT)) (-2389 (($ $ (-823)) NIL T ELT)) (-1708 ((|#2| $) NIL T ELT)) (-1688 (((-1070 |#2|) $) NIL (|has| |#2| (-489)) ELT)) (-1773 ((|#2|) NIL T ELT) ((|#2| (-1164 $)) NIL T ELT)) (-1706 (((-1070 |#2|) $) NIL T ELT)) (-1700 (((-83)) NIL T ELT)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) ((|#2| $) NIL T ELT)) (-1775 (($ (-1164 |#2|)) NIL T ELT) (($ (-1164 |#2|) (-1164 $)) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3090 (((-687) $) NIL (|has| |#2| (-489)) ELT) (((-823)) 42 T ELT)) (-3094 ((|#2| $ (-478) (-478)) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-2413 (($ $ (-823)) NIL T ELT)) (-2870 (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-3089 (((-687) $) NIL (|has| |#2| (-489)) ELT)) (-3088 (((-578 (-194 |#1| |#2|)) $) NIL (|has| |#2| (-489)) ELT)) (-3096 (((-687) $) NIL T ELT)) (-1693 (((-83)) NIL T ELT)) (-3095 (((-687) $) NIL T ELT)) (-3304 ((|#2| $) NIL (|has| |#2| (-6 (-3973 #2="*"))) ELT)) (-3100 (((-478) $) NIL T ELT)) (-3098 (((-478) $) NIL T ELT)) (-2588 (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-3099 (((-478) $) NIL T ELT)) (-3097 (((-478) $) NIL T ELT)) (-3105 (($ (-578 (-578 |#2|))) NIL T ELT)) (-1932 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3570 (((-578 (-578 |#2|)) $) NIL T ELT)) (-1691 (((-83)) NIL T ELT)) (-1695 (((-83)) NIL T ELT)) (-1890 (((-3 (-2 (|:| |particular| $) (|:| -1994 (-578 $))) #1#)) NIL (|has| |#2| (-489)) ELT)) (-1687 (((-3 $ #1#)) NIL (|has| |#2| (-489)) ELT)) (-1772 (((-625 |#2|)) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-1711 ((|#2| $) NIL T ELT)) (-1770 (((-625 |#2|) $) NIL T ELT) (((-625 |#2|) $ (-1164 $)) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-2387 (((-3 $ #1#) $) NIL (|has| |#2| (-489)) ELT)) (-1887 (((-1070 (-850 |#2|))) NIL (|has| |#2| (-308)) ELT)) (-2388 (($ $ (-823)) NIL T ELT)) (-1709 ((|#2| $) NIL T ELT)) (-1689 (((-1070 |#2|) $) NIL (|has| |#2| (-489)) ELT)) (-1774 ((|#2|) NIL T ELT) ((|#2| (-1164 $)) NIL T ELT)) (-1707 (((-1070 |#2|) $) NIL T ELT)) (-1701 (((-83)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1692 (((-83)) NIL T ELT)) (-1694 (((-83)) NIL T ELT)) (-1696 (((-83)) NIL T ELT)) (-3566 (((-3 $ #1#) $) NIL (|has| |#2| (-308)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1699 (((-83)) NIL T ELT)) (-3443 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ (-478) (-478) |#2|) NIL T ELT) ((|#2| $ (-478) (-478)) 27 T ELT) ((|#2| $ (-478)) NIL T ELT)) (-3734 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT)) (-3306 ((|#2| $) NIL T ELT)) (-3309 (($ (-578 |#2|)) NIL T ELT)) (-3103 (((-83) $) NIL T ELT)) (-3308 (((-194 |#1| |#2|) $) NIL T ELT)) (-3305 ((|#2| $) NIL (|has| |#2| (-6 (-3973 #2#))) ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3205 (((-625 |#2|) (-1164 $)) NIL T ELT) (((-1164 |#2|) $) NIL T ELT) (((-625 |#2|) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 |#2|) $ (-1164 $)) 30 T ELT)) (-3948 (($ (-1164 |#2|)) NIL T ELT) (((-1164 |#2|) $) NIL T ELT)) (-1875 (((-578 (-850 |#2|))) NIL T ELT) (((-578 (-850 |#2|)) (-1164 $)) NIL T ELT)) (-2415 (($ $ $) NIL T ELT)) (-1705 (((-83)) NIL T ELT)) (-3092 (((-194 |#1| |#2|) $ (-478)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (($ |#2|) NIL T ELT) (((-625 |#2|) $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) 40 T ELT)) (-1690 (((-578 (-1164 |#2|))) NIL (|has| |#2| (-489)) ELT)) (-2416 (($ $ $ $) NIL T ELT)) (-1703 (((-83)) NIL T ELT)) (-2525 (($ (-625 |#2|) $) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3101 (((-83) $) NIL T ELT)) (-2414 (($ $ $) NIL T ELT)) (-1704 (((-83)) NIL T ELT)) (-1702 (((-83)) NIL T ELT)) (-1698 (((-83)) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#2| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-194 |#1| |#2|) $ (-194 |#1| |#2|)) NIL T ELT) (((-194 |#1| |#2|) (-194 |#1| |#2|) $) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-607 |#1| |#2|) (-13 (-1023 |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) (-547 (-625 |#2|)) (-354 |#2|)) (-823) (-144)) (T -607)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3228 (((-578 (-1035)) $) 12 T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-608) (-13 (-986) (-10 -8 (-15 -3228 ((-578 (-1035)) $))))) (T -608)) -((-3228 (*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-608))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3910 (((-578 |#1|) $) NIL T ELT)) (-3118 (($ $) 62 T ELT)) (-2645 (((-83) $) NIL T ELT)) (-3138 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-2301 (((-3 $ #1#) (-732 |#1|)) 28 T ELT)) (-2303 (((-83) (-732 |#1|)) 18 T ELT)) (-2302 (($ (-732 |#1|)) 29 T ELT)) (-2491 (((-83) $ $) 36 T ELT)) (-3809 (((-823) $) 43 T ELT)) (-3119 (($ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3708 (((-578 $) (-732 |#1|)) 20 T ELT)) (-3922 (((-765) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-732 |#1|) $) 47 T ELT) (((-613 |#1|) $) 52 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2300 (((-58 (-578 $)) (-578 |#1|) (-823)) 67 T ELT)) (-2299 (((-578 $) (-578 |#1|) (-823)) 70 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 63 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 46 T ELT))) -(((-609 |#1|) (-13 (-749) (-943 |#1|) (-10 -8 (-15 -2645 ((-83) $)) (-15 -3119 ($ $)) (-15 -3118 ($ $)) (-15 -3809 ((-823) $)) (-15 -2491 ((-83) $ $)) (-15 -3922 ((-732 |#1|) $)) (-15 -3922 ((-613 |#1|) $)) (-15 -3708 ((-578 $) (-732 |#1|))) (-15 -2303 ((-83) (-732 |#1|))) (-15 -2302 ($ (-732 |#1|))) (-15 -2301 ((-3 $ "failed") (-732 |#1|))) (-15 -3910 ((-578 |#1|) $)) (-15 -2300 ((-58 (-578 $)) (-578 |#1|) (-823))) (-15 -2299 ((-578 $) (-578 |#1|) (-823))))) (-749)) (T -609)) -((-2645 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-3119 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-749)))) (-3118 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-749)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-2491 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-732 *4)) (-4 *4 (-749)) (-5 *2 (-578 (-609 *4))) (-5 *1 (-609 *4)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-732 *4)) (-4 *4 (-749)) (-5 *2 (-83)) (-5 *1 (-609 *4)))) (-2302 (*1 *1 *2) (-12 (-5 *2 (-732 *3)) (-4 *3 (-749)) (-5 *1 (-609 *3)))) (-2301 (*1 *1 *2) (|partial| -12 (-5 *2 (-732 *3)) (-4 *3 (-749)) (-5 *1 (-609 *3)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) (-2300 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-823)) (-4 *5 (-749)) (-5 *2 (-58 (-578 (-609 *5)))) (-5 *1 (-609 *5)))) (-2299 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-823)) (-4 *5 (-749)) (-5 *2 (-578 (-609 *5))) (-5 *1 (-609 *5))))) -((-3379 ((|#2| $) 100 T ELT)) (-3773 (($ $) 121 T ELT)) (-3419 (((-83) $ (-687)) 35 T ELT)) (-3775 (($ $) 109 T ELT) (($ $ (-687)) 112 T ELT)) (-3420 (((-83) $) 122 T ELT)) (-3012 (((-578 $) $) 96 T ELT)) (-3008 (((-83) $ $) 92 T ELT)) (-3695 (((-83) $ (-687)) 33 T ELT)) (-2182 (((-478) $) 66 T ELT)) (-2183 (((-478) $) 65 T ELT)) (-3692 (((-83) $ (-687)) 31 T ELT)) (-3504 (((-83) $) 98 T ELT)) (-3774 ((|#2| $) 113 T ELT) (($ $ (-687)) 117 T ELT)) (-2286 (($ $ $ (-478)) 83 T ELT) (($ |#2| $ (-478)) 82 T ELT)) (-2185 (((-578 (-478)) $) 64 T ELT)) (-2186 (((-83) (-478) $) 59 T ELT)) (-3777 ((|#2| $) NIL T ELT) (($ $ (-687)) 108 T ELT)) (-3745 (($ $ (-478)) 125 T ELT)) (-3421 (((-83) $) 124 T ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) 42 T ELT)) (-2187 (((-578 |#2|) $) 46 T ELT)) (-3776 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1131 (-478))) 79 T ELT) ((|#2| $ (-478)) 57 T ELT) ((|#2| $ (-478) |#2|) 58 T ELT)) (-3010 (((-478) $ $) 91 T ELT)) (-2287 (($ $ (-1131 (-478))) 78 T ELT) (($ $ (-478)) 72 T ELT)) (-3609 (((-83) $) 87 T ELT)) (-3768 (($ $) 105 T ELT)) (-3769 (((-687) $) 104 T ELT)) (-3770 (($ $) 103 T ELT)) (-3507 (($ (-578 |#2|)) 53 T ELT)) (-2872 (($ $) 126 T ELT)) (-3499 (((-578 $) $) 90 T ELT)) (-3009 (((-83) $ $) 89 T ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) 41 T ELT)) (-3037 (((-83) $ $) 20 T ELT)) (-3933 (((-687) $) 39 T ELT))) -(((-610 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -2872 (|#1| |#1|)) (-15 -3745 (|#1| |#1| (-478))) (-15 -3419 ((-83) |#1| (-687))) (-15 -3695 ((-83) |#1| (-687))) (-15 -3692 ((-83) |#1| (-687))) (-15 -3420 ((-83) |#1|)) (-15 -3421 ((-83) |#1|)) (-15 -3776 (|#2| |#1| (-478) |#2|)) (-15 -3776 (|#2| |#1| (-478))) (-15 -2187 ((-578 |#2|) |#1|)) (-15 -2186 ((-83) (-478) |#1|)) (-15 -2185 ((-578 (-478)) |#1|)) (-15 -2183 ((-478) |#1|)) (-15 -2182 ((-478) |#1|)) (-15 -3507 (|#1| (-578 |#2|))) (-15 -3776 (|#1| |#1| (-1131 (-478)))) (-15 -2287 (|#1| |#1| (-478))) (-15 -2287 (|#1| |#1| (-1131 (-478)))) (-15 -2286 (|#1| |#2| |#1| (-478))) (-15 -2286 (|#1| |#1| |#1| (-478))) (-15 -3768 (|#1| |#1|)) (-15 -3769 ((-687) |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3774 (|#1| |#1| (-687))) (-15 -3776 (|#2| |#1| "last")) (-15 -3774 (|#2| |#1|)) (-15 -3775 (|#1| |#1| (-687))) (-15 -3776 (|#1| |#1| "rest")) (-15 -3775 (|#1| |#1|)) (-15 -3777 (|#1| |#1| (-687))) (-15 -3776 (|#2| |#1| "first")) (-15 -3777 (|#2| |#1|)) (-15 -3008 ((-83) |#1| |#1|)) (-15 -3009 ((-83) |#1| |#1|)) (-15 -3010 ((-478) |#1| |#1|)) (-15 -3609 ((-83) |#1|)) (-15 -3776 (|#2| |#1| "value")) (-15 -3379 (|#2| |#1|)) (-15 -3504 ((-83) |#1|)) (-15 -3012 ((-578 |#1|) |#1|)) (-15 -3499 ((-578 |#1|) |#1|)) (-15 -1930 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1931 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3933 ((-687) |#1|))) (-611 |#2|) (-1114)) (T -610)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 52 T ELT)) (-3771 ((|#1| $) 71 T ELT)) (-3773 (($ $) 73 T ELT)) (-2180 (((-1170) $ (-478) (-478)) 107 (|has| $ (-6 -3972)) ELT)) (-3761 (($ $ (-478)) 58 (|has| $ (-6 -3972)) ELT)) (-3419 (((-83) $ (-687)) 90 T ELT)) (-3006 ((|#1| $ |#1|) 43 (|has| $ (-6 -3972)) ELT)) (-3763 (($ $ $) 62 (|has| $ (-6 -3972)) ELT)) (-3762 ((|#1| $ |#1|) 60 (|has| $ (-6 -3972)) ELT)) (-3765 ((|#1| $ |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3972)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3972)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3972)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 127 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-478) |#1|) 96 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 45 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 112 T ELT)) (-3772 ((|#1| $) 72 T ELT)) (-3700 (($) 7 T CONST)) (-2305 (($ $) 135 T ELT)) (-3775 (($ $) 79 T ELT) (($ $ (-687)) 77 T ELT)) (-1336 (($ $) 109 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#1| $) 110 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 113 T ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1559 ((|#1| $ (-478) |#1|) 95 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 97 T ELT)) (-3420 (((-83) $) 93 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2304 (((-687) $) 134 T ELT)) (-3012 (((-578 $) $) 54 T ELT)) (-3008 (((-83) $ $) 46 (|has| |#1| (-1003)) ELT)) (-3590 (($ (-687) |#1|) 119 T ELT)) (-3695 (((-83) $ (-687)) 91 T ELT)) (-2182 (((-478) $) 105 (|has| (-478) (-749)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 104 (|has| (-478) (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3692 (((-83) $ (-687)) 92 T ELT)) (-3011 (((-578 |#1|) $) 49 T ELT)) (-3504 (((-83) $) 53 T ELT)) (-2307 (($ $) 137 T ELT)) (-2308 (((-83) $) 138 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3774 ((|#1| $) 76 T ELT) (($ $ (-687)) 74 T ELT)) (-2286 (($ $ $ (-478)) 126 T ELT) (($ |#1| $ (-478)) 125 T ELT)) (-2185 (((-578 (-478)) $) 102 T ELT)) (-2186 (((-83) (-478) $) 101 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-2306 ((|#1| $) 136 T ELT)) (-3777 ((|#1| $) 82 T ELT) (($ $ (-687)) 80 T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2181 (($ $ |#1|) 106 (|has| $ (-6 -3972)) ELT)) (-3745 (($ $ (-478)) 133 T ELT)) (-3421 (((-83) $) 94 T ELT)) (-2309 (((-83) $) 139 T ELT)) (-2310 (((-83) $) 140 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) 100 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1131 (-478))) 118 T ELT) ((|#1| $ (-478)) 99 T ELT) ((|#1| $ (-478) |#1|) 98 T ELT)) (-3010 (((-478) $ $) 48 T ELT)) (-2287 (($ $ (-1131 (-478))) 124 T ELT) (($ $ (-478)) 123 T ELT)) (-3609 (((-83) $) 50 T ELT)) (-3768 (($ $) 68 T ELT)) (-3766 (($ $) 65 (|has| $ (-6 -3972)) ELT)) (-3769 (((-687) $) 69 T ELT)) (-3770 (($ $) 70 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 108 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 117 T ELT)) (-3767 (($ $ $) 67 (|has| $ (-6 -3972)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3972)) ELT)) (-3778 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-578 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2872 (($ $) 132 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) 55 T ELT)) (-3009 (((-83) $ $) 47 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-611 |#1|) (-111) (-1114)) (T -611)) -((-3383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-611 *3)) (-4 *3 (-1114)))) (-3686 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-611 *3)) (-4 *3 (-1114)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1114)) (-5 *2 (-83)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1114)) (-5 *2 (-83)))) (-2308 (*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1114)) (-5 *2 (-83)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1114)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1114)))) (-2305 (*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1114)))) (-2304 (*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1114)) (-5 *2 (-687)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-611 *3)) (-4 *3 (-1114)))) (-2872 (*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1114))))) -(-13 (-1050 |t#1|) (-10 -8 (-15 -3383 ($ (-1 (-83) |t#1|) $)) (-15 -3686 ($ (-1 (-83) |t#1|) $)) (-15 -2310 ((-83) $)) (-15 -2309 ((-83) $)) (-15 -2308 ((-83) $)) (-15 -2307 ($ $)) (-15 -2306 (|t#1| $)) (-15 -2305 ($ $)) (-15 -2304 ((-687) $)) (-15 -3745 ($ $ (-478))) (-15 -2872 ($ $)))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-916 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1050 |#1|) . T) ((-1114) . T) ((-1153 |#1|) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3159 (((-416) $) 15 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 24 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3162 (((-1035) $) 17 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-612) (-13 (-986) (-10 -8 (-15 -3159 ((-416) $)) (-15 -3162 ((-1035) $))))) (T -612)) -((-3159 (*1 *2 *1) (-12 (-5 *2 (-416)) (-5 *1 (-612)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-612))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3910 (((-578 |#1|) $) 15 T ELT)) (-3118 (($ $) 19 T ELT)) (-2645 (((-83) $) 20 T ELT)) (-3138 (((-3 |#1| "failed") $) 23 T ELT)) (-3137 ((|#1| $) 21 T ELT)) (-3775 (($ $) 37 T ELT)) (-3912 (($ $) 25 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-2491 (((-83) $ $) 46 T ELT)) (-3809 (((-823) $) 40 T ELT)) (-3119 (($ $) 18 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 ((|#1| $) 36 T ELT)) (-3922 (((-765) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-732 |#1|) $) 28 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 13 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-613 |#1|) (-13 (-749) (-943 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3922 ((-732 |#1|) $)) (-15 -3777 (|#1| $)) (-15 -3119 ($ $)) (-15 -3809 ((-823) $)) (-15 -2491 ((-83) $ $)) (-15 -3912 ($ $)) (-15 -3775 ($ $)) (-15 -2645 ((-83) $)) (-15 -3118 ($ $)) (-15 -3910 ((-578 |#1|) $)))) (-749)) (T -613)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) (-3777 (*1 *2 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3119 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) (-2491 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) (-3912 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3775 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) (-3118 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-613 *3)) (-4 *3 (-749))))) -((-2319 ((|#1| (-1 |#1| (-687) |#1|) (-687) |#1|) 11 T ELT)) (-2311 ((|#1| (-1 |#1| |#1|) (-687) |#1|) 9 T ELT))) -(((-614 |#1|) (-10 -7 (-15 -2311 (|#1| (-1 |#1| |#1|) (-687) |#1|)) (-15 -2319 (|#1| (-1 |#1| (-687) |#1|) (-687) |#1|))) (-1003)) (T -614)) -((-2319 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-687) *2)) (-5 *4 (-687)) (-4 *2 (-1003)) (-5 *1 (-614 *2)))) (-2311 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-687)) (-4 *2 (-1003)) (-5 *1 (-614 *2))))) -((-2313 ((|#2| |#1| |#2|) 9 T ELT)) (-2312 ((|#1| |#1| |#2|) 8 T ELT))) -(((-615 |#1| |#2|) (-10 -7 (-15 -2312 (|#1| |#1| |#2|)) (-15 -2313 (|#2| |#1| |#2|))) (-1003) (-1003)) (T -615)) -((-2313 (*1 *2 *3 *2) (-12 (-5 *1 (-615 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2312 (*1 *2 *2 *3) (-12 (-5 *1 (-615 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) -((-2314 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-616 |#1| |#2| |#3|) (-10 -7 (-15 -2314 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1003) (-1003) (-1003)) (T -616)) -((-2314 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-616 *5 *6 *2))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3297 (((-1115) $) 22 T ELT)) (-3296 (((-578 (-1115)) $) 20 T ELT)) (-2315 (($ (-578 (-1115)) (-1115)) 15 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 30 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT) (((-1115) $) 23 T ELT) (($ (-1016)) 11 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-617) (-13 (-986) (-547 (-1115)) (-10 -8 (-15 -3922 ($ (-1016))) (-15 -2315 ($ (-578 (-1115)) (-1115))) (-15 -3296 ((-578 (-1115)) $)) (-15 -3297 ((-1115) $))))) (T -617)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-617)))) (-2315 (*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1115))) (-5 *3 (-1115)) (-5 *1 (-617)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-617)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-617))))) -((-2319 (((-1 |#1| (-687) |#1|) (-1 |#1| (-687) |#1|)) 26 T ELT)) (-2316 (((-1 |#1|) |#1|) 8 T ELT)) (-2318 ((|#1| |#1|) 19 T ELT)) (-2317 (((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-478)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3922 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-687)) 23 T ELT))) -(((-618 |#1|) (-10 -7 (-15 -2316 ((-1 |#1|) |#1|)) (-15 -3922 ((-1 |#1|) |#1|)) (-15 -2317 (|#1| (-1 |#1| |#1|))) (-15 -2317 ((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-478))) (-15 -2318 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-687))) (-15 -2319 ((-1 |#1| (-687) |#1|) (-1 |#1| (-687) |#1|)))) (-1003)) (T -618)) -((-2319 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-687) *3)) (-4 *3 (-1003)) (-5 *1 (-618 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *4 (-1003)) (-5 *1 (-618 *4)))) (-2318 (*1 *2 *2) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1003)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 *5) (-578 *5))) (-5 *4 (-478)) (-5 *2 (-578 *5)) (-5 *1 (-618 *5)) (-4 *5 (-1003)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-618 *2)) (-4 *2 (-1003)))) (-3922 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1003)))) (-2316 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1003))))) -((-2322 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2321 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3928 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2320 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-619 |#1| |#2|) (-10 -7 (-15 -2320 ((-1 |#2| |#1|) |#2|)) (-15 -2321 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3928 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2322 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1003) (-1003)) (T -619)) -((-2322 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-619 *4 *5)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-619 *4 *5)) (-4 *4 (-1003)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-619 *4 *5)))) (-2320 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-619 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003))))) -((-2327 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2323 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2324 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2325 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2326 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-620 |#1| |#2| |#3|) (-10 -7 (-15 -2323 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2324 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2325 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2326 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2327 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1003) (-1003) (-1003)) (T -620)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-620 *5 *6 *7)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-620 *4 *5 *6)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-620 *4 *5 *6)) (-4 *4 (-1003)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-620 *4 *5 *6)) (-4 *5 (-1003)))) (-2324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *4 *5 *6)))) (-2323 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *4 *6))))) -((-3814 (($ (-687) (-687)) 42 T ELT)) (-2332 (($ $ $) 73 T ELT)) (-3391 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3102 (((-83) $) 36 T ELT)) (-2331 (($ $ (-478) (-478)) 84 T ELT)) (-2330 (($ $ (-478) (-478)) 85 T ELT)) (-2329 (($ $ (-478) (-478) (-478) (-478)) 90 T ELT)) (-2334 (($ $) 71 T ELT)) (-3104 (((-83) $) 15 T ELT)) (-2328 (($ $ (-478) (-478) $) 91 T ELT)) (-3764 ((|#2| $ (-478) (-478) |#2|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) 89 T ELT)) (-3310 (($ (-687) |#2|) 55 T ELT)) (-3105 (($ (-578 (-578 |#2|))) 51 T ELT) (($ (-687) (-687) (-1 |#2| (-478) (-478))) 53 T ELT)) (-3570 (((-578 (-578 |#2|)) $) 80 T ELT)) (-2333 (($ $ $) 72 T ELT)) (-3443 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3776 ((|#2| $ (-478) (-478)) NIL T ELT) ((|#2| $ (-478) (-478) |#2|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478))) 88 T ELT)) (-3309 (($ (-578 |#2|)) 56 T ELT) (($ (-578 $)) 58 T ELT)) (-3103 (((-83) $) 28 T ELT)) (-3922 (($ |#4|) 63 T ELT) (((-765) $) NIL T ELT)) (-3101 (((-83) $) 38 T ELT)) (-3925 (($ $ |#2|) 124 T ELT)) (-3813 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3815 (($ $ $) 93 T ELT)) (** (($ $ (-687)) 111 T ELT) (($ $ (-478)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-478) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-621 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3922 ((-765) |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 -3925 (|#1| |#1| |#2|)) (-15 -3443 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-687))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -2328 (|#1| |#1| (-478) (-478) |#1|)) (-15 -2329 (|#1| |#1| (-478) (-478) (-478) (-478))) (-15 -2330 (|#1| |#1| (-478) (-478))) (-15 -2331 (|#1| |#1| (-478) (-478))) (-15 -3764 (|#1| |#1| (-578 (-478)) (-578 (-478)) |#1|)) (-15 -3776 (|#1| |#1| (-578 (-478)) (-578 (-478)))) (-15 -3570 ((-578 (-578 |#2|)) |#1|)) (-15 -2332 (|#1| |#1| |#1|)) (-15 -2333 (|#1| |#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -3391 (|#1| |#1|)) (-15 -3391 (|#1| |#3|)) (-15 -3922 (|#1| |#4|)) (-15 -3309 (|#1| (-578 |#1|))) (-15 -3309 (|#1| (-578 |#2|))) (-15 -3310 (|#1| (-687) |#2|)) (-15 -3105 (|#1| (-687) (-687) (-1 |#2| (-478) (-478)))) (-15 -3105 (|#1| (-578 (-578 |#2|)))) (-15 -3814 (|#1| (-687) (-687))) (-15 -3101 ((-83) |#1|)) (-15 -3102 ((-83) |#1|)) (-15 -3103 ((-83) |#1|)) (-15 -3104 ((-83) |#1|)) (-15 -3764 (|#2| |#1| (-478) (-478) |#2|)) (-15 -3776 (|#2| |#1| (-478) (-478) |#2|)) (-15 -3776 (|#2| |#1| (-478) (-478)))) (-622 |#2| |#3| |#4|) (-954) (-317 |#2|) (-317 |#2|)) (T -621)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3814 (($ (-687) (-687)) 103 T ELT)) (-2332 (($ $ $) 92 T ELT)) (-3391 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3102 (((-83) $) 105 T ELT)) (-2331 (($ $ (-478) (-478)) 88 T ELT)) (-2330 (($ $ (-478) (-478)) 87 T ELT)) (-2329 (($ $ (-478) (-478) (-478) (-478)) 86 T ELT)) (-2334 (($ $) 94 T ELT)) (-3104 (((-83) $) 107 T ELT)) (-2328 (($ $ (-478) (-478) $) 85 T ELT)) (-3764 ((|#1| $ (-478) (-478) |#1|) 48 T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) 89 T ELT)) (-1241 (($ $ (-478) |#2|) 46 T ELT)) (-1240 (($ $ (-478) |#3|) 45 T ELT)) (-3310 (($ (-687) |#1|) 100 T ELT)) (-3700 (($) 7 T CONST)) (-3091 (($ $) 72 (|has| |#1| (-254)) ELT)) (-3093 ((|#2| $ (-478)) 50 T ELT)) (-3090 (((-687) $) 71 (|has| |#1| (-489)) ELT)) (-1559 ((|#1| $ (-478) (-478) |#1|) 47 T ELT)) (-3094 ((|#1| $ (-478) (-478)) 52 T ELT)) (-2870 (((-578 |#1|) $) 30 T ELT)) (-3089 (((-687) $) 70 (|has| |#1| (-489)) ELT)) (-3088 (((-578 |#3|) $) 69 (|has| |#1| (-489)) ELT)) (-3096 (((-687) $) 55 T ELT)) (-3590 (($ (-687) (-687) |#1|) 61 T ELT)) (-3095 (((-687) $) 54 T ELT)) (-3304 ((|#1| $) 67 (|has| |#1| (-6 (-3973 #1="*"))) ELT)) (-3100 (((-478) $) 59 T ELT)) (-3098 (((-478) $) 57 T ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3099 (((-478) $) 58 T ELT)) (-3097 (((-478) $) 56 T ELT)) (-3105 (($ (-578 (-578 |#1|))) 102 T ELT) (($ (-687) (-687) (-1 |#1| (-478) (-478))) 101 T ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3570 (((-578 (-578 |#1|)) $) 91 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3566 (((-3 $ "failed") $) 66 (|has| |#1| (-308)) ELT)) (-2333 (($ $ $) 93 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-2181 (($ $ |#1|) 60 T ELT)) (-3443 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-489)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ (-478) (-478)) 53 T ELT) ((|#1| $ (-478) (-478) |#1|) 51 T ELT) (($ $ (-578 (-478)) (-578 (-478))) 90 T ELT)) (-3309 (($ (-578 |#1|)) 99 T ELT) (($ (-578 $)) 98 T ELT)) (-3103 (((-83) $) 106 T ELT)) (-3305 ((|#1| $) 68 (|has| |#1| (-6 (-3973 #1#))) ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3092 ((|#3| $ (-478)) 49 T ELT)) (-3922 (($ |#3|) 97 T ELT) (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3101 (((-83) $) 104 T ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3925 (($ $ |#1|) 73 (|has| |#1| (-308)) ELT)) (-3813 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3815 (($ $ $) 84 T ELT)) (** (($ $ (-687)) 75 T ELT) (($ $ (-478)) 65 (|has| |#1| (-308)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-478) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-622 |#1| |#2| |#3|) (-111) (-954) (-317 |t#1|) (-317 |t#1|)) (T -622)) -((-3104 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-83)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-83)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-83)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-83)))) (-3814 (*1 *1 *2 *2) (-12 (-5 *2 (-687)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3105 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-1 *4 (-478) (-478))) (-4 *4 (-954)) (-4 *1 (-622 *4 *5 *6)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)))) (-3310 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3309 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3309 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3922 (*1 *1 *2) (-12 (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *2)) (-4 *4 (-317 *3)) (-4 *2 (-317 *3)))) (-3391 (*1 *1 *2) (-12 (-4 *3 (-954)) (-4 *1 (-622 *3 *2 *4)) (-4 *2 (-317 *3)) (-4 *4 (-317 *3)))) (-3391 (*1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-2334 (*1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-2333 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-2332 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-578 (-578 *3))))) (-3776 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-578 (-478))) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3764 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-578 (-478))) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2331 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2330 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2329 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-2328 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3815 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-3813 (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-622 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *2 (-317 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-622 *3 *2 *4)) (-4 *3 (-954)) (-4 *2 (-317 *3)) (-4 *4 (-317 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) (-3443 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (-4 *2 (-489)))) (-3925 (*1 *1 *1 *2) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (-4 *2 (-308)))) (-3091 (*1 *1 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (-4 *2 (-254)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-687)))) (-3089 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-687)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-578 *5)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (|has| *2 (-6 (-3973 #1="*"))) (-4 *2 (-954)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (|has| *2 (-6 (-3973 #1#))) (-4 *2 (-954)))) (-3566 (*1 *1 *1) (|partial| -12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) (-4 *2 (-308)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-4 *3 (-308))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -3972) (-6 -3971) (-15 -3104 ((-83) $)) (-15 -3103 ((-83) $)) (-15 -3102 ((-83) $)) (-15 -3101 ((-83) $)) (-15 -3814 ($ (-687) (-687))) (-15 -3105 ($ (-578 (-578 |t#1|)))) (-15 -3105 ($ (-687) (-687) (-1 |t#1| (-478) (-478)))) (-15 -3310 ($ (-687) |t#1|)) (-15 -3309 ($ (-578 |t#1|))) (-15 -3309 ($ (-578 $))) (-15 -3922 ($ |t#3|)) (-15 -3391 ($ |t#2|)) (-15 -3391 ($ $)) (-15 -2334 ($ $)) (-15 -2333 ($ $ $)) (-15 -2332 ($ $ $)) (-15 -3570 ((-578 (-578 |t#1|)) $)) (-15 -3776 ($ $ (-578 (-478)) (-578 (-478)))) (-15 -3764 ($ $ (-578 (-478)) (-578 (-478)) $)) (-15 -2331 ($ $ (-478) (-478))) (-15 -2330 ($ $ (-478) (-478))) (-15 -2329 ($ $ (-478) (-478) (-478) (-478))) (-15 -2328 ($ $ (-478) (-478) $)) (-15 -3815 ($ $ $)) (-15 -3813 ($ $ $)) (-15 -3813 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-478) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-687))) (IF (|has| |t#1| (-489)) (-15 -3443 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -3925 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-254)) (-15 -3091 ($ $)) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-15 -3090 ((-687) $)) (-15 -3089 ((-687) $)) (-15 -3088 ((-578 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3973 "*"))) (PROGN (-15 -3305 (|t#1| $)) (-15 -3304 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -3566 ((-3 $ "failed") $)) (-15 ** ($ $ (-478)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-57 |#1| |#2| |#3|) . T) ((-1114) . T)) -((-3818 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3934 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-623 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3934 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3934 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3818 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-954) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|) (-954) (-317 |#5|) (-317 |#5|) (-622 |#5| |#6| |#7|)) (T -623)) -((-3818 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-954)) (-4 *2 (-954)) (-4 *6 (-317 *5)) (-4 *7 (-317 *5)) (-4 *8 (-317 *2)) (-4 *9 (-317 *2)) (-5 *1 (-623 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-622 *5 *6 *7)) (-4 *10 (-622 *2 *8 *9)))) (-3934 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-317 *5)) (-4 *7 (-317 *5)) (-4 *2 (-622 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-622 *5 *6 *7)) (-4 *9 (-317 *8)) (-4 *10 (-317 *8)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-317 *5)) (-4 *7 (-317 *5)) (-4 *2 (-622 *8 *9 *10)) (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-622 *5 *6 *7)) (-4 *9 (-317 *8)) (-4 *10 (-317 *8))))) -((-3091 ((|#4| |#4|) 90 (|has| |#1| (-254)) ELT)) (-3090 (((-687) |#4|) 92 (|has| |#1| (-489)) ELT)) (-3089 (((-687) |#4|) 94 (|has| |#1| (-489)) ELT)) (-3088 (((-578 |#3|) |#4|) 101 (|has| |#1| (-489)) ELT)) (-2362 (((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|) 124 (|has| |#1| (-254)) ELT)) (-3304 ((|#1| |#4|) 52 T ELT)) (-2339 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-489)) ELT)) (-3566 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-308)) ELT)) (-2338 ((|#4| |#4|) 76 (|has| |#1| (-489)) ELT)) (-2336 ((|#4| |#4| |#1| (-478) (-478)) 60 T ELT)) (-2335 ((|#4| |#4| (-478) (-478)) 55 T ELT)) (-2337 ((|#4| |#4| |#1| (-478) (-478)) 65 T ELT)) (-3305 ((|#1| |#4|) 96 T ELT)) (-2500 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-489)) ELT))) -(((-624 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3305 (|#1| |#4|)) (-15 -3304 (|#1| |#4|)) (-15 -2335 (|#4| |#4| (-478) (-478))) (-15 -2336 (|#4| |#4| |#1| (-478) (-478))) (-15 -2337 (|#4| |#4| |#1| (-478) (-478))) (IF (|has| |#1| (-489)) (PROGN (-15 -3090 ((-687) |#4|)) (-15 -3089 ((-687) |#4|)) (-15 -3088 ((-578 |#3|) |#4|)) (-15 -2338 (|#4| |#4|)) (-15 -2339 ((-3 |#4| #1="failed") |#4|)) (-15 -2500 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-254)) (PROGN (-15 -3091 (|#4| |#4|)) (-15 -2362 ((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3566 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-144) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|)) (T -624)) -((-3566 (*1 *2 *2) (|partial| -12 (-4 *3 (-308)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-2362 (*1 *2 *3 *3) (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-624 *3 *4 *5 *6)) (-4 *6 (-622 *3 *4 *5)))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-2500 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-2339 (*1 *2 *2) (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-489)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-3088 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-578 *6)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3089 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3090 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-2337 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-478)) (-4 *3 (-144)) (-4 *5 (-317 *3)) (-4 *6 (-317 *3)) (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-622 *3 *5 *6)))) (-2336 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-478)) (-4 *3 (-144)) (-4 *5 (-317 *3)) (-4 *6 (-317 *3)) (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-622 *3 *5 *6)))) (-2335 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-478)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *1 (-624 *4 *5 *6 *2)) (-4 *2 (-622 *4 *5 *6)))) (-3304 (*1 *2 *3) (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-144)) (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) (-3305 (*1 *2 *3) (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-144)) (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3814 (($ (-687) (-687)) 63 T ELT)) (-2332 (($ $ $) NIL T ELT)) (-3391 (($ (-1164 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3102 (((-83) $) NIL T ELT)) (-2331 (($ $ (-478) (-478)) 22 T ELT)) (-2330 (($ $ (-478) (-478)) NIL T ELT)) (-2329 (($ $ (-478) (-478) (-478) (-478)) NIL T ELT)) (-2334 (($ $) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-2328 (($ $ (-478) (-478) $) NIL T ELT)) (-3764 ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478)) $) NIL T ELT)) (-1241 (($ $ (-478) (-1164 |#1|)) NIL T ELT)) (-1240 (($ $ (-478) (-1164 |#1|)) NIL T ELT)) (-3310 (($ (-687) |#1|) 37 T ELT)) (-3700 (($) NIL T CONST)) (-3091 (($ $) 46 (|has| |#1| (-254)) ELT)) (-3093 (((-1164 |#1|) $ (-478)) NIL T ELT)) (-3090 (((-687) $) 48 (|has| |#1| (-489)) ELT)) (-1559 ((|#1| $ (-478) (-478) |#1|) 68 T ELT)) (-3094 ((|#1| $ (-478) (-478)) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL T ELT)) (-3089 (((-687) $) 50 (|has| |#1| (-489)) ELT)) (-3088 (((-578 (-1164 |#1|)) $) 53 (|has| |#1| (-489)) ELT)) (-3096 (((-687) $) 32 T ELT)) (-3590 (($ (-687) (-687) |#1|) 28 T ELT)) (-3095 (((-687) $) 33 T ELT)) (-3304 ((|#1| $) 44 (|has| |#1| (-6 (-3973 #1="*"))) ELT)) (-3100 (((-478) $) 10 T ELT)) (-3098 (((-478) $) 11 T ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3099 (((-478) $) 14 T ELT)) (-3097 (((-478) $) 64 T ELT)) (-3105 (($ (-578 (-578 |#1|))) NIL T ELT) (($ (-687) (-687) (-1 |#1| (-478) (-478))) NIL T ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3570 (((-578 (-578 |#1|)) $) 75 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3566 (((-3 $ #2="failed") $) 57 (|has| |#1| (-308)) ELT)) (-2333 (($ $ $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-2181 (($ $ |#1|) NIL T ELT)) (-3443 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) (-478)) NIL T ELT) ((|#1| $ (-478) (-478) |#1|) NIL T ELT) (($ $ (-578 (-478)) (-578 (-478))) NIL T ELT)) (-3309 (($ (-578 |#1|)) NIL T ELT) (($ (-578 $)) NIL T ELT) (($ (-1164 |#1|)) 69 T ELT)) (-3103 (((-83) $) NIL T ELT)) (-3305 ((|#1| $) 42 (|has| |#1| (-6 (-3973 #1#))) ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) 79 (|has| |#1| (-548 (-467))) ELT)) (-3092 (((-1164 |#1|) $ (-478)) NIL T ELT)) (-3922 (($ (-1164 |#1|)) NIL T ELT) (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3101 (((-83) $) NIL T ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-687)) 38 T ELT) (($ $ (-478)) 61 (|has| |#1| (-308)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-478) $) NIL T ELT) (((-1164 |#1|) $ (-1164 |#1|)) NIL T ELT) (((-1164 |#1|) (-1164 |#1|) $) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-625 |#1|) (-13 (-622 |#1| (-1164 |#1|) (-1164 |#1|)) (-10 -8 (-15 -3309 ($ (-1164 |#1|))) (IF (|has| |#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3566 ((-3 $ "failed") $)) |%noBranch|))) (-954)) (T -625)) -((-3566 (*1 *1 *1) (|partial| -12 (-5 *1 (-625 *2)) (-4 *2 (-308)) (-4 *2 (-954)))) (-3309 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-954)) (-5 *1 (-625 *3))))) -((-2345 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|)) 37 T ELT)) (-2344 (((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|) 32 T ELT)) (-2346 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-687)) 43 T ELT)) (-2341 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|)) 25 T ELT)) (-2342 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|)) 29 T ELT) (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 27 T ELT)) (-2343 (((-625 |#1|) (-625 |#1|) |#1| (-625 |#1|)) 31 T ELT)) (-2340 (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 23 T ELT)) (** (((-625 |#1|) (-625 |#1|) (-687)) 46 T ELT))) -(((-626 |#1|) (-10 -7 (-15 -2340 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2341 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2342 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2342 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2343 ((-625 |#1|) (-625 |#1|) |#1| (-625 |#1|))) (-15 -2344 ((-625 |#1|) (-625 |#1|) (-625 |#1|) |#1|)) (-15 -2345 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -2346 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-625 |#1|) (-687))) (-15 ** ((-625 |#1|) (-625 |#1|) (-687)))) (-954)) (T -626)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-626 *4)))) (-2346 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-626 *4)))) (-2345 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2344 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2343 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2342 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2342 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2341 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) (-2340 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) -((-3138 (((-3 |#1| "failed") $) 18 T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-2347 (($) 7 T CONST)) (-2348 (($ |#1|) 8 T ELT)) (-3922 (($ |#1|) 16 T ELT) (((-765) $) 23 T ELT)) (-3542 (((-83) $ (|[\|\|]| |#1|)) 14 T ELT) (((-83) $ (|[\|\|]| -2347)) 11 T ELT)) (-3548 ((|#1| $) 15 T ELT))) -(((-627 |#1|) (-13 (-1160) (-943 |#1|) (-547 (-765)) (-10 -8 (-15 -2348 ($ |#1|)) (-15 -3542 ((-83) $ (|[\|\|]| |#1|))) (-15 -3542 ((-83) $ (|[\|\|]| -2347))) (-15 -3548 (|#1| $)) (-15 -2347 ($) -3928))) (-547 (-765))) (T -627)) -((-2348 (*1 *1 *2) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765))))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-547 (-765))) (-5 *2 (-83)) (-5 *1 (-627 *4)))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2347)) (-5 *2 (-83)) (-5 *1 (-627 *4)) (-4 *4 (-547 (-765))))) (-3548 (*1 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765))))) (-2347 (*1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765)))))) -((-3717 (((-2 (|:| |num| (-625 |#1|)) (|:| |den| |#1|)) (-625 |#2|)) 20 T ELT)) (-3715 ((|#1| (-625 |#2|)) 9 T ELT)) (-3716 (((-625 |#1|) (-625 |#2|)) 18 T ELT))) -(((-628 |#1| |#2|) (-10 -7 (-15 -3715 (|#1| (-625 |#2|))) (-15 -3716 ((-625 |#1|) (-625 |#2|))) (-15 -3717 ((-2 (|:| |num| (-625 |#1|)) (|:| |den| |#1|)) (-625 |#2|)))) (-489) (-897 |#1|)) (T -628)) -((-3717 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-897 *4)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |num| (-625 *4)) (|:| |den| *4))) (-5 *1 (-628 *4 *5)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-897 *4)) (-4 *4 (-489)) (-5 *2 (-625 *4)) (-5 *1 (-628 *4 *5)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-628 *2 *4))))) -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1553 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-2350 (($ $) 66 T ELT)) (-1336 (($ $) 62 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ |#1| $) 51 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3383 (($ |#1| $) 61 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT) (($ |#1| $ (-687)) 67 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-2349 (((-578 (-2 (|:| |entry| |#1|) (|:| -1929 (-687)))) $) 65 T ELT)) (-1449 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 54 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-629 |#1|) (-111) (-1003)) (T -629)) -((-3585 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-629 *2)) (-4 *2 (-1003)))) (-2350 (*1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1003)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-629 *3)) (-4 *3 (-1003)) (-5 *2 (-578 (-2 (|:| |entry| *3) (|:| -1929 (-687)))))))) -(-13 (-190 |t#1|) (-10 -8 (-15 -3585 ($ |t#1| $ (-687))) (-15 -2350 ($ $)) (-15 -2349 ((-578 (-2 (|:| |entry| |t#1|) (|:| -1929 (-687)))) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2353 (((-578 |#1|) (-578 (-2 (|:| -3708 |#1|) (|:| -3924 (-478)))) (-478)) 66 T ELT)) (-2351 ((|#1| |#1| (-478)) 63 T ELT)) (-3125 ((|#1| |#1| |#1| (-478)) 46 T ELT)) (-3708 (((-578 |#1|) |#1| (-478)) 49 T ELT)) (-2354 ((|#1| |#1| (-478) |#1| (-478)) 40 T ELT)) (-2352 (((-578 (-2 (|:| -3708 |#1|) (|:| -3924 (-478)))) |#1| (-478)) 62 T ELT))) -(((-630 |#1|) (-10 -7 (-15 -3125 (|#1| |#1| |#1| (-478))) (-15 -2351 (|#1| |#1| (-478))) (-15 -3708 ((-578 |#1|) |#1| (-478))) (-15 -2352 ((-578 (-2 (|:| -3708 |#1|) (|:| -3924 (-478)))) |#1| (-478))) (-15 -2353 ((-578 |#1|) (-578 (-2 (|:| -3708 |#1|) (|:| -3924 (-478)))) (-478))) (-15 -2354 (|#1| |#1| (-478) |#1| (-478)))) (-1140 (-478))) (T -630)) -((-2354 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1140 *3)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| -3708 *5) (|:| -3924 (-478))))) (-5 *4 (-478)) (-4 *5 (-1140 *4)) (-5 *2 (-578 *5)) (-5 *1 (-630 *5)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-5 *2 (-578 (-2 (|:| -3708 *3) (|:| -3924 *4)))) (-5 *1 (-630 *3)) (-4 *3 (-1140 *4)))) (-3708 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-5 *2 (-578 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1140 *4)))) (-2351 (*1 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1140 *3)))) (-3125 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1140 *3))))) -((-2358 (((-1 (-847 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177) (-177))) 17 T ELT)) (-2355 (((-1033 (-177)) (-1033 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-992 (-177)) (-992 (-177)) (-578 (-218))) 53 T ELT) (((-1033 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-992 (-177)) (-992 (-177)) (-578 (-218))) 55 T ELT) (((-1033 (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined") (-992 (-177)) (-992 (-177)) (-578 (-218))) 57 T ELT)) (-2357 (((-1033 (-177)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-578 (-218))) NIL T ELT)) (-2356 (((-1033 (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1#) (-992 (-177)) (-992 (-177)) (-578 (-218))) 58 T ELT))) -(((-631) (-10 -7 (-15 -2355 ((-1033 (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined") (-992 (-177)) (-992 (-177)) (-578 (-218)))) (-15 -2355 ((-1033 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-992 (-177)) (-992 (-177)) (-578 (-218)))) (-15 -2355 ((-1033 (-177)) (-1033 (-177)) (-1 (-847 (-177)) (-177) (-177)) (-992 (-177)) (-992 (-177)) (-578 (-218)))) (-15 -2356 ((-1033 (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1#) (-992 (-177)) (-992 (-177)) (-578 (-218)))) (-15 -2357 ((-1033 (-177)) (-261 (-478)) (-261 (-478)) (-261 (-478)) (-1 (-177) (-177)) (-992 (-177)) (-578 (-218)))) (-15 -2358 ((-1 (-847 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177) (-177)))))) (T -631)) -((-2358 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-1 (-177) (-177) (-177) (-177))) (-5 *2 (-1 (-847 (-177)) (-177) (-177))) (-5 *1 (-631)))) (-2357 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-631)))) (-2356 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined")) (-5 *5 (-992 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-631)))) (-2355 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1033 (-177))) (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-177))) (-5 *5 (-578 (-218))) (-5 *1 (-631)))) (-2355 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-177))) (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-631)))) (-2355 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) #1#)) (-5 *5 (-992 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-631))))) -((-3708 (((-341 (-1070 |#4|)) (-1070 |#4|)) 87 T ELT) (((-341 |#4|) |#4|) 270 T ELT))) -(((-632 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3708 ((-341 |#4|) |#4|)) (-15 -3708 ((-341 (-1070 |#4|)) (-1070 |#4|)))) (-749) (-710) (-295) (-854 |#3| |#2| |#1|)) (T -632)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-295)) (-4 *7 (-854 *6 *5 *4)) (-5 *2 (-341 (-1070 *7))) (-5 *1 (-632 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3708 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-632 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4))))) -((-2361 (((-625 |#1|) (-625 |#1|) |#1| |#1|) 85 T ELT)) (-3091 (((-625 |#1|) (-625 |#1|) |#1|) 66 T ELT)) (-2360 (((-625 |#1|) (-625 |#1|) |#1|) 86 T ELT)) (-2359 (((-625 |#1|) (-625 |#1|)) 67 T ELT)) (-2362 (((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|) 84 T ELT))) -(((-633 |#1|) (-10 -7 (-15 -2359 ((-625 |#1|) (-625 |#1|))) (-15 -3091 ((-625 |#1|) (-625 |#1|) |#1|)) (-15 -2360 ((-625 |#1|) (-625 |#1|) |#1|)) (-15 -2361 ((-625 |#1|) (-625 |#1|) |#1| |#1|)) (-15 -2362 ((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|))) (-254)) (T -633)) -((-2362 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-633 *3)) (-4 *3 (-254)))) (-2361 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3)))) (-2360 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3)))) (-3091 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3))))) -((-2368 (((-1 |#4| |#2| |#3|) |#1| (-1075) (-1075)) 19 T ELT)) (-2363 (((-1 |#4| |#2| |#3|) (-1075)) 12 T ELT))) -(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2363 ((-1 |#4| |#2| |#3|) (-1075))) (-15 -2368 ((-1 |#4| |#2| |#3|) |#1| (-1075) (-1075)))) (-548 (-467)) (-1114) (-1114) (-1114)) (T -634)) -((-2368 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-634 *3 *5 *6 *7)) (-4 *3 (-548 (-467))) (-4 *5 (-1114)) (-4 *6 (-1114)) (-4 *7 (-1114)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-634 *4 *5 *6 *7)) (-4 *4 (-548 (-467))) (-4 *5 (-1114)) (-4 *6 (-1114)) (-4 *7 (-1114))))) -((-2364 (((-1 (-177) (-177) (-177)) |#1| (-1075) (-1075)) 43 T ELT) (((-1 (-177) (-177)) |#1| (-1075)) 48 T ELT))) -(((-635 |#1|) (-10 -7 (-15 -2364 ((-1 (-177) (-177)) |#1| (-1075))) (-15 -2364 ((-1 (-177) (-177) (-177)) |#1| (-1075) (-1075)))) (-548 (-467))) (T -635)) -((-2364 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-635 *3)) (-4 *3 (-548 (-467))))) (-2364 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-1 (-177) (-177))) (-5 *1 (-635 *3)) (-4 *3 (-548 (-467)))))) -((-2365 (((-1075) |#1| (-1075) (-578 (-1075))) 10 T ELT) (((-1075) |#1| (-1075) (-1075) (-1075)) 13 T ELT) (((-1075) |#1| (-1075) (-1075)) 12 T ELT) (((-1075) |#1| (-1075)) 11 T ELT))) -(((-636 |#1|) (-10 -7 (-15 -2365 ((-1075) |#1| (-1075))) (-15 -2365 ((-1075) |#1| (-1075) (-1075))) (-15 -2365 ((-1075) |#1| (-1075) (-1075) (-1075))) (-15 -2365 ((-1075) |#1| (-1075) (-578 (-1075))))) (-548 (-467))) (T -636)) -((-2365 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-578 (-1075))) (-5 *2 (-1075)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) (-2365 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) (-2365 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) (-2365 (*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467)))))) -((-2366 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-637 |#1| |#2|) (-10 -7 (-15 -2366 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1114) (-1114)) (T -637)) -((-2366 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-637 *3 *4)) (-4 *3 (-1114)) (-4 *4 (-1114))))) -((-2367 (((-1 |#3| |#2|) (-1075)) 11 T ELT)) (-2368 (((-1 |#3| |#2|) |#1| (-1075)) 21 T ELT))) -(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -2367 ((-1 |#3| |#2|) (-1075))) (-15 -2368 ((-1 |#3| |#2|) |#1| (-1075)))) (-548 (-467)) (-1114) (-1114)) (T -638)) -((-2368 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *3 *5 *6)) (-4 *3 (-548 (-467))) (-4 *5 (-1114)) (-4 *6 (-1114)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *4 *5 *6)) (-4 *4 (-548 (-467))) (-4 *5 (-1114)) (-4 *6 (-1114))))) -((-2371 (((-3 (-578 (-1070 |#4|)) #1="failed") (-1070 |#4|) (-578 |#2|) (-578 (-1070 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3059 (-687)) (|:| |pcoef| |#4|)))) (-578 (-687)) (-1164 (-578 (-1070 |#3|))) |#3|) 92 T ELT)) (-2370 (((-3 (-578 (-1070 |#4|)) #1#) (-1070 |#4|) (-578 |#2|) (-578 (-1070 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-687)) |#3|) 110 T ELT)) (-2369 (((-3 (-578 (-1070 |#4|)) #1#) (-1070 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-687)) (-578 (-1070 |#4|)) (-1164 (-578 (-1070 |#3|))) |#3|) 48 T ELT))) -(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2369 ((-3 (-578 (-1070 |#4|)) #1="failed") (-1070 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-687)) (-578 (-1070 |#4|)) (-1164 (-578 (-1070 |#3|))) |#3|)) (-15 -2370 ((-3 (-578 (-1070 |#4|)) #1#) (-1070 |#4|) (-578 |#2|) (-578 (-1070 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-687)) |#3|)) (-15 -2371 ((-3 (-578 (-1070 |#4|)) #1#) (-1070 |#4|) (-578 |#2|) (-578 (-1070 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3059 (-687)) (|:| |pcoef| |#4|)))) (-578 (-687)) (-1164 (-578 (-1070 |#3|))) |#3|))) (-710) (-749) (-254) (-854 |#3| |#1| |#2|)) (T -639)) -((-2371 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-578 (-1070 *13))) (-5 *3 (-1070 *13)) (-5 *4 (-578 *12)) (-5 *5 (-578 *10)) (-5 *6 (-578 *13)) (-5 *7 (-578 (-578 (-2 (|:| -3059 (-687)) (|:| |pcoef| *13))))) (-5 *8 (-578 (-687))) (-5 *9 (-1164 (-578 (-1070 *10)))) (-4 *12 (-749)) (-4 *10 (-254)) (-4 *13 (-854 *10 *11 *12)) (-4 *11 (-710)) (-5 *1 (-639 *11 *12 *10 *13)))) (-2370 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-578 *11)) (-5 *5 (-578 (-1070 *9))) (-5 *6 (-578 *9)) (-5 *7 (-578 *12)) (-5 *8 (-578 (-687))) (-4 *11 (-749)) (-4 *9 (-254)) (-4 *12 (-854 *9 *10 *11)) (-4 *10 (-710)) (-5 *2 (-578 (-1070 *12))) (-5 *1 (-639 *10 *11 *9 *12)) (-5 *3 (-1070 *12)))) (-2369 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-578 (-1070 *11))) (-5 *3 (-1070 *11)) (-5 *4 (-578 *10)) (-5 *5 (-578 *8)) (-5 *6 (-578 (-687))) (-5 *7 (-1164 (-578 (-1070 *8)))) (-4 *10 (-749)) (-4 *8 (-254)) (-4 *11 (-854 *8 *9 *10)) (-4 *9 (-710)) (-5 *1 (-639 *9 *10 *8 *11))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3935 (($ $) 53 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2874 (($ |#1| (-687)) 51 T ELT)) (-2801 (((-687) $) 55 T ELT)) (-3155 ((|#1| $) 54 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3924 (((-687) $) 56 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-144)) ELT)) (-3653 ((|#1| $ (-687)) 52 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) -(((-640 |#1|) (-111) (-954)) (T -640)) -((-3924 (*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-954)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-954)))) (-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-640 *2)) (-4 *2 (-954)))) (-2874 (*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-640 *2)) (-4 *2 (-954))))) -(-13 (-954) (-80 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3924 ((-687) $)) (-15 -2801 ((-687) $)) (-15 -3155 (|t#1| $)) (-15 -3935 ($ $)) (-15 -3653 (|t#1| $ (-687))) (-15 -2874 ($ |t#1| (-687))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3934 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-641 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3934 (|#6| (-1 |#4| |#1|) |#3|))) (-489) (-1140 |#1|) (-1140 (-343 |#2|)) (-489) (-1140 |#4|) (-1140 (-343 |#5|))) (T -641)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-489)) (-4 *7 (-489)) (-4 *6 (-1140 *5)) (-4 *2 (-1140 (-343 *8))) (-5 *1 (-641 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1140 (-343 *6))) (-4 *8 (-1140 *7))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2372 (((-1059) (-765)) 36 T ELT)) (-3593 (((-1170) (-1059)) 29 T ELT)) (-2374 (((-1059) (-765)) 26 T ELT)) (-2373 (((-1059) (-765)) 27 T ELT)) (-3922 (((-765) $) NIL T ELT) (((-1059) (-765)) 25 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-642) (-13 (-1003) (-10 -7 (-15 -3922 ((-1059) (-765))) (-15 -2374 ((-1059) (-765))) (-15 -2373 ((-1059) (-765))) (-15 -2372 ((-1059) (-765))) (-15 -3593 ((-1170) (-1059)))))) (T -642)) -((-3922 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1059)) (-5 *1 (-642)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1059)) (-5 *1 (-642)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1059)) (-5 *1 (-642)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1059)) (-5 *1 (-642)))) (-3593 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-642))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2544 (($ $ $) NIL T ELT)) (-3818 (($ |#1| |#2|) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2594 ((|#2| $) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2384 (((-3 $ #1#) $ $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) -(((-643 |#1| |#2| |#3| |#4| |#5|) (-13 (-308) (-10 -8 (-15 -2594 (|#2| $)) (-15 -3922 (|#1| $)) (-15 -3818 ($ |#1| |#2|)) (-15 -2384 ((-3 $ #1="failed") $ $)))) (-144) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -643)) -((-2594 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-643 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3922 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3818 (*1 *1 *2 *3) (-12 (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2384 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 37 T ELT)) (-3743 (((-1164 |#1|) $ (-687)) NIL T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3741 (($ (-1070 |#1|)) NIL T ELT)) (-3065 (((-1070 $) $ (-985)) NIL T ELT) (((-1070 |#1|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-985))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3731 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3117 (((-687)) 55 (|has| |#1| (-313)) ELT)) (-3737 (($ $ (-687)) NIL T ELT)) (-3736 (($ $ (-687)) NIL T ELT)) (-2381 ((|#2| |#2|) 51 T ELT)) (-3727 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-385)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-985) #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-985) $) NIL T ELT)) (-3732 (($ $ $ (-985)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) NIL (|has| |#1| (-144)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) 72 T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3818 (($ |#2|) 49 T ELT)) (-3444 (((-3 $ #1#) $) 98 T ELT)) (-2975 (($) 59 (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3735 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3728 (((-2 (|:| -3930 |#1|) (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-985)) NIL (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-2377 (((-862 $)) 89 T ELT)) (-1607 (($ $ |#1| (-687) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-985) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-985) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3748 (((-687) $ $) NIL (|has| |#1| (-489)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-1052)) ELT)) (-3066 (($ (-1070 |#1|) (-985)) NIL T ELT) (($ (-1070 $) (-985)) NIL T ELT)) (-3753 (($ $ (-687)) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-687)) 86 T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-985)) NIL T ELT) (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-2594 ((|#2|) 52 T ELT)) (-2801 (((-687) $) NIL T ELT) (((-687) $ (-985)) NIL T ELT) (((-578 (-687)) $ (-578 (-985))) NIL T ELT)) (-1608 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3742 (((-1070 |#1|) $) NIL T ELT)) (-3064 (((-3 (-985) #1#) $) NIL T ELT)) (-1992 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-3060 ((|#2| $) 48 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) 35 T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3738 (((-2 (|:| -1956 $) (|:| -2883 $)) $ (-687)) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-985)) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3423 (($) NIL (|has| |#1| (-1052)) CONST)) (-2382 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2375 (($ $) 88 (|has| |#1| (-295)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-985) |#1|) NIL T ELT) (($ $ (-578 (-985)) (-578 |#1|)) NIL T ELT) (($ $ (-985) $) NIL T ELT) (($ $ (-578 (-985)) (-578 $)) NIL T ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-343 $) (-343 $) (-343 $)) NIL (|has| |#1| (-489)) ELT) ((|#1| (-343 $) |#1|) NIL (|has| |#1| (-308)) ELT) (((-343 $) $ (-343 $)) NIL (|has| |#1| (-489)) ELT)) (-3740 (((-3 $ #1#) $ (-687)) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 99 (|has| |#1| (-308)) ELT)) (-3733 (($ $ (-985)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) NIL (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985))) NIL T ELT) (($ $ (-985)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-3924 (((-687) $) 39 T ELT) (((-687) $ (-985)) NIL T ELT) (((-578 (-687)) $ (-578 (-985))) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-985) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-985) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-985) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-985)) NIL (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-2376 (((-862 $)) 43 T ELT)) (-3730 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT) (((-3 (-343 $) #1#) (-343 $) $) NIL (|has| |#1| (-489)) ELT)) (-3922 (((-765) $) 69 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-985)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-687)) 71 T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) 26 T CONST)) (-2380 (((-1164 |#1|) $) 84 T ELT)) (-2379 (($ (-1164 |#1|)) 58 T ELT)) (-2647 (($) 9 T CONST)) (-2650 (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985))) NIL T ELT) (($ $ (-985)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-2378 (((-1164 |#1|) $) NIL T ELT)) (-3037 (((-83) $ $) 77 T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 40 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 93 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) -(((-644 |#1| |#2|) (-13 (-1140 |#1|) (-550 |#2|) (-10 -8 (-15 -2381 (|#2| |#2|)) (-15 -2594 (|#2|)) (-15 -3818 ($ |#2|)) (-15 -3060 (|#2| $)) (-15 -2380 ((-1164 |#1|) $)) (-15 -2379 ($ (-1164 |#1|))) (-15 -2378 ((-1164 |#1|) $)) (-15 -2377 ((-862 $))) (-15 -2376 ((-862 $))) (IF (|has| |#1| (-295)) (-15 -2375 ($ $)) |%noBranch|) (IF (|has| |#1| (-313)) (-6 (-313)) |%noBranch|))) (-954) (-1140 |#1|)) (T -644)) -((-2381 (*1 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-644 *3 *2)) (-4 *2 (-1140 *3)))) (-2594 (*1 *2) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-644 *3 *2)) (-4 *3 (-954)))) (-3818 (*1 *1 *2) (-12 (-4 *3 (-954)) (-5 *1 (-644 *3 *2)) (-4 *2 (-1140 *3)))) (-3060 (*1 *2 *1) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-644 *3 *2)) (-4 *3 (-954)))) (-2380 (*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-1164 *3)) (-5 *1 (-644 *3 *4)) (-4 *4 (-1140 *3)))) (-2379 (*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-954)) (-5 *1 (-644 *3 *4)) (-4 *4 (-1140 *3)))) (-2378 (*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-1164 *3)) (-5 *1 (-644 *3 *4)) (-4 *4 (-1140 *3)))) (-2377 (*1 *2) (-12 (-4 *3 (-954)) (-5 *2 (-862 (-644 *3 *4))) (-5 *1 (-644 *3 *4)) (-4 *4 (-1140 *3)))) (-2376 (*1 *2) (-12 (-4 *3 (-954)) (-5 *2 (-862 (-644 *3 *4))) (-5 *1 (-644 *3 *4)) (-4 *4 (-1140 *3)))) (-2375 (*1 *1 *1) (-12 (-4 *2 (-295)) (-4 *2 (-954)) (-5 *1 (-644 *2 *3)) (-4 *3 (-1140 *2))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 ((|#1| $) 13 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2383 ((|#2| $) 12 T ELT)) (-3507 (($ |#1| |#2|) 16 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-2 (|:| -2382 |#1|) (|:| -2383 |#2|))) 15 T ELT) (((-2 (|:| -2382 |#1|) (|:| -2383 |#2|)) $) 14 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 11 T ELT))) -(((-645 |#1| |#2| |#3|) (-13 (-749) (-423 (-2 (|:| -2382 |#1|) (|:| -2383 |#2|))) (-10 -8 (-15 -2383 (|#2| $)) (-15 -2382 (|#1| $)) (-15 -3507 ($ |#1| |#2|)))) (-749) (-1003) (-1 (-83) (-2 (|:| -2382 |#1|) (|:| -2383 |#2|)) (-2 (|:| -2382 |#1|) (|:| -2383 |#2|)))) (T -645)) -((-2383 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-645 *3 *2 *4)) (-4 *3 (-749)) (-14 *4 (-1 (-83) (-2 (|:| -2382 *3) (|:| -2383 *2)) (-2 (|:| -2382 *3) (|:| -2383 *2)))))) (-2382 (*1 *2 *1) (-12 (-4 *2 (-749)) (-5 *1 (-645 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-83) (-2 (|:| -2382 *2) (|:| -2383 *3)) (-2 (|:| -2382 *2) (|:| -2383 *3)))))) (-3507 (*1 *1 *2 *3) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-749)) (-4 *3 (-1003)) (-14 *4 (-1 (-83) (-2 (|:| -2382 *2) (|:| -2383 *3)) (-2 (|:| -2382 *2) (|:| -2383 *3))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 66 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-84) #1#) $) 107 T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-84) $) 39 T ELT)) (-3444 (((-3 $ #1#) $) 102 T ELT)) (-2496 ((|#2| (-84) |#2|) 93 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2495 (($ |#1| (-306 (-84))) 14 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2497 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2498 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3776 ((|#2| $ |#2|) 33 T ELT)) (-2499 ((|#1| |#1|) 112 (|has| |#1| (-144)) ELT)) (-3922 (((-765) $) 73 T ELT) (($ (-478)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-84)) 23 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2500 (($ $) 111 (|has| |#1| (-144)) ELT) (($ $ $) 115 (|has| |#1| (-144)) ELT)) (-2640 (($) 21 T CONST)) (-2647 (($) 9 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 83 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ (-84) (-478)) NIL T ELT) (($ $ (-478)) 64 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-144)) ELT) (($ $ |#1|) 109 (|has| |#1| (-144)) ELT))) -(((-646 |#1| |#2|) (-13 (-954) (-943 |#1|) (-943 (-84)) (-238 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-6 (-38 |#1|)) (-15 -2500 ($ $)) (-15 -2500 ($ $ $)) (-15 -2499 (|#1| |#1|))) |%noBranch|) (-15 -2498 ($ $ (-1 |#2| |#2|))) (-15 -2497 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-84) (-478))) (-15 ** ($ $ (-478))) (-15 -2496 (|#2| (-84) |#2|)) (-15 -2495 ($ |#1| (-306 (-84)))))) (-954) (-585 |#1|)) (T -646)) -((-2500 (*1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) (-2500 (*1 *1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) (-2499 (*1 *2 *2) (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) (-2498 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-954)) (-5 *1 (-646 *3 *4)))) (-2497 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-954)) (-5 *1 (-646 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-646 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *3 (-954)) (-5 *1 (-646 *3 *4)) (-4 *4 (-585 *3)))) (-2496 (*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-4 *4 (-954)) (-5 *1 (-646 *4 *2)) (-4 *2 (-585 *4)))) (-2495 (*1 *1 *2 *3) (-12 (-5 *3 (-306 (-84))) (-4 *2 (-954)) (-5 *1 (-646 *2 *4)) (-4 *4 (-585 *2))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 33 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3818 (($ |#1| |#2|) 25 T ELT)) (-3444 (((-3 $ #1#) $) 51 T ELT)) (-2392 (((-83) $) 35 T ELT)) (-2594 ((|#2| $) 12 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 52 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2384 (((-3 $ #1#) $ $) 50 T ELT)) (-3922 (((-765) $) 24 T ELT) (($ (-478)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3107 (((-687)) 28 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 16 T CONST)) (-2647 (($) 30 T CONST)) (-3037 (((-83) $ $) 41 T ELT)) (-3813 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3815 (($ $ $) 43 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-647 |#1| |#2| |#3| |#4| |#5|) (-13 (-954) (-10 -8 (-15 -2594 (|#2| $)) (-15 -3922 (|#1| $)) (-15 -3818 ($ |#1| |#2|)) (-15 -2384 ((-3 $ #1="failed") $ $)) (-15 -3444 ((-3 $ #1#) $)) (-15 -2464 ($ $)))) (-144) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -647)) -((-3444 (*1 *1 *1) (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2594 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-647 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3922 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3818 (*1 *1 *2 *3) (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2384 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2464 (*1 *1 *1) (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-648 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-649 |#2|) (-144)) (T -648)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-649 |#1|) (-111) (-144)) (T -649)) -NIL -(-13 (-80 |t#1| |t#1|) (-577 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-2421 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3823 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2385 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 16 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3744 ((|#1| $ |#1|) 24 T ELT) (((-736 |#1|) $ (-736 |#1|)) 32 T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2415 (($ $ $) NIL T ELT)) (-3922 (((-765) $) 39 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2647 (($) 9 T CONST)) (-3037 (((-83) $ $) 48 T ELT)) (-3925 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-650 |#1|) (-13 (-406) (-10 -8 (-15 -2385 ($ |#1| |#1| |#1| |#1|)) (-15 -2421 ($ |#1|)) (-15 -3823 ($ |#1|)) (-15 -3444 ($)) (-15 -2421 ($ $ |#1|)) (-15 -3823 ($ $ |#1|)) (-15 -3444 ($ $)) (-15 -3744 (|#1| $ |#1|)) (-15 -3744 ((-736 |#1|) $ (-736 |#1|))))) (-308)) (T -650)) -((-2385 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-2421 (*1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3823 (*1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3444 (*1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-2421 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3823 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3444 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3744 (*1 *2 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) (-3744 (*1 *2 *1 *2) (-12 (-5 *2 (-736 *3)) (-4 *3 (-308)) (-5 *1 (-650 *3))))) -((-2389 (($ $ (-823)) 19 T ELT)) (-2388 (($ $ (-823)) 20 T ELT)) (** (($ $ (-823)) 10 T ELT))) -(((-651 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-823))) (-15 -2388 (|#1| |#1| (-823))) (-15 -2389 (|#1| |#1| (-823)))) (-652)) (T -651)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-2389 (($ $ (-823)) 19 T ELT)) (-2388 (($ $ (-823)) 18 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (** (($ $ (-823)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-652) (-111)) (T -652)) -((* (*1 *1 *1 *1) (-4 *1 (-652))) (-2389 (*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) (-2388 (*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823))))) -(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 -2389 ($ $ (-823))) (-15 -2388 ($ $ (-823))) (-15 ** ($ $ (-823))))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2389 (($ $ (-823)) NIL T ELT) (($ $ (-687)) 18 T ELT)) (-2392 (((-83) $) 10 T ELT)) (-2388 (($ $ (-823)) NIL T ELT) (($ $ (-687)) 19 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 16 T ELT))) -(((-653 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-687))) (-15 -2388 (|#1| |#1| (-687))) (-15 -2389 (|#1| |#1| (-687))) (-15 -2392 ((-83) |#1|)) (-15 ** (|#1| |#1| (-823))) (-15 -2388 (|#1| |#1| (-823))) (-15 -2389 (|#1| |#1| (-823)))) (-654)) (T -653)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-2386 (((-3 $ "failed") $) 22 T ELT)) (-2389 (($ $ (-823)) 19 T ELT) (($ $ (-687)) 27 T ELT)) (-3444 (((-3 $ "failed") $) 24 T ELT)) (-2392 (((-83) $) 28 T ELT)) (-2387 (((-3 $ "failed") $) 23 T ELT)) (-2388 (($ $ (-823)) 18 T ELT) (($ $ (-687)) 26 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2647 (($) 29 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-654) (-111)) (T -654)) -((-2647 (*1 *1) (-4 *1 (-654))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-654)) (-5 *2 (-83)))) (-2389 (*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687)))) (-2388 (*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687)))) (-3444 (*1 *1 *1) (|partial| -4 *1 (-654))) (-2387 (*1 *1 *1) (|partial| -4 *1 (-654))) (-2386 (*1 *1 *1) (|partial| -4 *1 (-654)))) -(-13 (-652) (-10 -8 (-15 -2647 ($) -3928) (-15 -2392 ((-83) $)) (-15 -2389 ($ $ (-687))) (-15 -2388 ($ $ (-687))) (-15 ** ($ $ (-687))) (-15 -3444 ((-3 $ "failed") $)) (-15 -2387 ((-3 $ "failed") $)) (-15 -2386 ((-3 $ "failed") $)))) -(((-72) . T) ((-547 (-765)) . T) ((-652) . T) ((-1003) . T) ((-1114) . T)) -((-3117 (((-687)) 39 T ELT)) (-3138 (((-3 (-478) #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3137 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3818 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-343 |#3|)) 49 T ELT)) (-3444 (((-3 $ #1#) $) 69 T ELT)) (-2975 (($) 43 T ELT)) (-3113 ((|#2| $) 21 T ELT)) (-2391 (($) 18 T ELT)) (-3734 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-2390 (((-625 |#2|) (-1164 $) (-1 |#2| |#2|)) 64 T ELT)) (-3948 (((-1164 |#2|) $) NIL T ELT) (($ (-1164 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2429 ((|#3| $) 36 T ELT)) (-1994 (((-1164 $)) 33 T ELT))) -(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -3734 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -2975 (|#1|)) (-15 -3117 ((-687))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2390 ((-625 |#2|) (-1164 |#1|) (-1 |#2| |#2|))) (-15 -3818 ((-3 |#1| #1="failed") (-343 |#3|))) (-15 -3948 (|#1| |#3|)) (-15 -3818 (|#1| |#3|)) (-15 -2391 (|#1|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3948 (|#3| |#1|)) (-15 -3948 (|#1| (-1164 |#2|))) (-15 -3948 ((-1164 |#2|) |#1|)) (-15 -1994 ((-1164 |#1|))) (-15 -2429 (|#3| |#1|)) (-15 -3113 (|#2| |#1|)) (-15 -3444 ((-3 |#1| #1#) |#1|))) (-656 |#2| |#3|) (-144) (-1140 |#2|)) (T -655)) -((-3117 (*1 *2) (-12 (-4 *4 (-144)) (-4 *5 (-1140 *4)) (-5 *2 (-687)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-656 *4 *5))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 111 (|has| |#1| (-308)) ELT)) (-2045 (($ $) 112 (|has| |#1| (-308)) ELT)) (-2043 (((-83) $) 114 (|has| |#1| (-308)) ELT)) (-1765 (((-625 |#1|) (-1164 $)) 58 T ELT) (((-625 |#1|)) 74 T ELT)) (-3307 ((|#1| $) 64 T ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) 164 (|has| |#1| (-295)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 131 (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) 132 (|has| |#1| (-308)) ELT)) (-1591 (((-83) $ $) 122 (|has| |#1| (-308)) ELT)) (-3117 (((-687)) 105 (|has| |#1| (-313)) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 (-478) #1="failed") $) 191 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 189 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3137 (((-478) $) 190 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 188 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 187 T ELT)) (-1775 (($ (-1164 |#1|) (-1164 $)) 60 T ELT) (($ (-1164 |#1|)) 77 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-295)) ELT)) (-2544 (($ $ $) 126 (|has| |#1| (-308)) ELT)) (-1764 (((-625 |#1|) $ (-1164 $)) 65 T ELT) (((-625 |#1|) $) 72 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 183 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 182 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 181 T ELT) (((-625 |#1|) (-625 $)) 180 T ELT)) (-3818 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-343 |#2|)) 172 (|has| |#1| (-308)) ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3090 (((-823)) 66 T ELT)) (-2975 (($) 108 (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) 125 (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 120 (|has| |#1| (-308)) ELT)) (-2814 (($) 166 (|has| |#1| (-295)) ELT)) (-1663 (((-83) $) 167 (|has| |#1| (-295)) ELT)) (-1747 (($ $ (-687)) 158 (|has| |#1| (-295)) ELT) (($ $) 157 (|has| |#1| (-295)) ELT)) (-3699 (((-83) $) 133 (|has| |#1| (-308)) ELT)) (-3748 (((-823) $) 169 (|has| |#1| (-295)) ELT) (((-736 (-823)) $) 155 (|has| |#1| (-295)) ELT)) (-2392 (((-83) $) 40 T ELT)) (-3113 ((|#1| $) 63 T ELT)) (-3422 (((-627 $) $) 159 (|has| |#1| (-295)) ELT)) (-1588 (((-3 (-578 $) #2="failed") (-578 $) $) 129 (|has| |#1| (-308)) ELT)) (-1996 ((|#2| $) 56 (|has| |#1| (-308)) ELT)) (-1992 (((-823) $) 107 (|has| |#1| (-313)) ELT)) (-3060 ((|#2| $) 173 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 185 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 184 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 179 T ELT) (((-625 |#1|) (-1164 $)) 178 T ELT)) (-1874 (($ (-578 $)) 118 (|has| |#1| (-308)) ELT) (($ $ $) 117 (|has| |#1| (-308)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 134 (|has| |#1| (-308)) ELT)) (-3423 (($) 160 (|has| |#1| (-295)) CONST)) (-2382 (($ (-823)) 106 (|has| |#1| (-313)) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2391 (($) 177 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 119 (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) 116 (|has| |#1| (-308)) ELT) (($ $ $) 115 (|has| |#1| (-308)) ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) 163 (|has| |#1| (-295)) ELT)) (-3708 (((-341 $) $) 130 (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 127 (|has| |#1| (-308)) ELT)) (-3443 (((-3 $ "failed") $ $) 110 (|has| |#1| (-308)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 121 (|has| |#1| (-308)) ELT)) (-1590 (((-687) $) 123 (|has| |#1| (-308)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 124 (|has| |#1| (-308)) ELT)) (-3733 ((|#1| (-1164 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1748 (((-687) $) 168 (|has| |#1| (-295)) ELT) (((-3 (-687) "failed") $ $) 156 (|has| |#1| (-295)) ELT)) (-3734 (($ $ (-687)) 153 (OR (-2542 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) 151 (OR (-2542 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 147 (-2542 (|has| |#1| (-804 (-1075))) (|has| |#1| (-308))) ELT) (($ $ (-1075) (-687)) 146 (-2542 (|has| |#1| (-804 (-1075))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1075))) 145 (-2542 (|has| |#1| (-804 (-1075))) (|has| |#1| (-308))) ELT) (($ $ (-1075)) 143 (-2542 (|has| |#1| (-804 (-1075))) (|has| |#1| (-308))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-687)) 141 (|has| |#1| (-308)) ELT)) (-2390 (((-625 |#1|) (-1164 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-308)) ELT)) (-3167 ((|#2|) 176 T ELT)) (-1657 (($) 165 (|has| |#1| (-295)) ELT)) (-3205 (((-1164 |#1|) $ (-1164 $)) 62 T ELT) (((-625 |#1|) (-1164 $) (-1164 $)) 61 T ELT) (((-1164 |#1|) $) 79 T ELT) (((-625 |#1|) (-1164 $)) 78 T ELT)) (-3948 (((-1164 |#1|) $) 76 T ELT) (($ (-1164 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-2684 (((-3 (-1164 $) "failed") (-625 $)) 162 (|has| |#1| (-295)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-308)) ELT) (($ (-343 (-478))) 104 (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2683 (($ $) 161 (|has| |#1| (-295)) ELT) (((-627 $) $) 55 (|has| |#1| (-116)) ELT)) (-2429 ((|#2| $) 57 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-1994 (((-1164 $)) 80 T ELT)) (-2044 (((-83) $ $) 113 (|has| |#1| (-308)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-687)) 154 (OR (-2542 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) 152 (OR (-2542 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 150 (-2542 (|has| |#1| (-804 (-1075))) (|has| |#1| (-308))) ELT) (($ $ (-1075) (-687)) 149 (-2542 (|has| |#1| (-804 (-1075))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1075))) 148 (-2542 (|has| |#1| (-804 (-1075))) (|has| |#1| (-308))) ELT) (($ $ (-1075)) 144 (-2542 (|has| |#1| (-804 (-1075))) (|has| |#1| (-308))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-687)) 139 (|has| |#1| (-308)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 138 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 135 (|has| |#1| (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-343 (-478)) $) 137 (|has| |#1| (-308)) ELT) (($ $ (-343 (-478))) 136 (|has| |#1| (-308)) ELT))) -(((-656 |#1| |#2|) (-111) (-144) (-1140 |t#1|)) (T -656)) -((-2391 (*1 *1) (-12 (-4 *2 (-144)) (-4 *1 (-656 *2 *3)) (-4 *3 (-1140 *2)))) (-3167 (*1 *2) (-12 (-4 *1 (-656 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1140 *3)))) (-3818 (*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-656 *3 *2)) (-4 *2 (-1140 *3)))) (-3948 (*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-656 *3 *2)) (-4 *2 (-1140 *3)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-656 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1140 *3)))) (-3818 (*1 *1 *2) (|partial| -12 (-5 *2 (-343 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-308)) (-4 *3 (-144)) (-4 *1 (-656 *3 *4)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-4 *1 (-656 *5 *6)) (-4 *5 (-144)) (-4 *6 (-1140 *5)) (-5 *2 (-625 *5))))) -(-13 (-346 |t#1| |t#2|) (-144) (-548 |t#2|) (-348 |t#1|) (-322 |t#1|) (-10 -8 (-15 -2391 ($)) (-15 -3167 (|t#2|)) (-15 -3818 ($ |t#2|)) (-15 -3948 ($ |t#2|)) (-15 -3060 (|t#2| $)) (IF (|has| |t#1| (-313)) (-6 (-313)) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-6 (-308)) (-6 (-182 |t#1|)) (-15 -3818 ((-3 $ "failed") (-343 |t#2|))) (-15 -2390 ((-625 |t#1|) (-1164 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-295)) (-6 (-295)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-295)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-295)) (|has| |#1| (-308))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) . T) ((-548 |#2|) . T) ((-184 $) OR (|has| |#1| (-295)) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (-12 (|has| |#1| (-188)) (|has| |#1| (-308)))) ((-182 |#1|) |has| |#1| (-308)) ((-188) OR (|has| |#1| (-295)) (-12 (|has| |#1| (-188)) (|has| |#1| (-308)))) ((-187) OR (|has| |#1| (-295)) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (-12 (|has| |#1| (-188)) (|has| |#1| (-308)))) ((-222 |#1|) |has| |#1| (-308)) ((-198) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-242) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-254) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-308) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-338) |has| |#1| (-295)) ((-313) OR (|has| |#1| (-295)) (|has| |#1| (-313))) ((-295) |has| |#1| (-295)) ((-315 |#1| |#2|) . T) ((-346 |#1| |#2|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-489) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-577 |#1|) . T) ((-577 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-649 |#1|) . T) ((-649 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-1075)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075))))) ((-802 (-1075)) -12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075)))) ((-804 (-1075)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-802 (-1075))))) ((-825) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1052) |has| |#1| (-295)) ((-1114) . T) ((-1119) OR (|has| |#1| (-295)) (|has| |#1| (-308)))) -((-3700 (($) 11 T CONST)) (-3444 (((-3 $ "failed") $) 14 T ELT)) (-2392 (((-83) $) 10 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 20 T ELT))) -(((-657 |#1|) (-10 -7 (-15 -3444 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-687))) (-15 -2392 ((-83) |#1|)) (-15 -3700 (|#1|) -3928) (-15 ** (|#1| |#1| (-823)))) (-658)) (T -657)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3700 (($) 23 T CONST)) (-3444 (((-3 $ "failed") $) 20 T ELT)) (-2392 (((-83) $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2647 (($) 24 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-658) (-111)) (T -658)) -((-2647 (*1 *1) (-4 *1 (-658))) (-3700 (*1 *1) (-4 *1 (-658))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-658)) (-5 *2 (-83)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-687)))) (-3444 (*1 *1 *1) (|partial| -4 *1 (-658)))) -(-13 (-1013) (-10 -8 (-15 -2647 ($) -3928) (-15 -3700 ($) -3928) (-15 -2392 ((-83) $)) (-15 ** ($ $ (-687))) (-15 -3444 ((-3 $ "failed") $)))) -(((-72) . T) ((-547 (-765)) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2393 (((-2 (|:| -3071 (-341 |#2|)) (|:| |special| (-341 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3395 (((-2 (|:| -3071 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2394 ((|#2| (-343 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3412 (((-2 (|:| |poly| |#2|) (|:| -3071 (-343 |#2|)) (|:| |special| (-343 |#2|))) (-343 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-659 |#1| |#2|) (-10 -7 (-15 -3395 ((-2 (|:| -3071 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2393 ((-2 (|:| -3071 (-341 |#2|)) (|:| |special| (-341 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2394 (|#2| (-343 |#2|) (-1 |#2| |#2|))) (-15 -3412 ((-2 (|:| |poly| |#2|) (|:| -3071 (-343 |#2|)) (|:| |special| (-343 |#2|))) (-343 |#2|) (-1 |#2| |#2|)))) (-308) (-1140 |#1|)) (T -659)) -((-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3071 (-343 *6)) (|:| |special| (-343 *6)))) (-5 *1 (-659 *5 *6)) (-5 *3 (-343 *6)))) (-2394 (*1 *2 *3 *4) (-12 (-5 *3 (-343 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1140 *5)) (-5 *1 (-659 *5 *2)) (-4 *5 (-308)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -3071 (-341 *3)) (|:| |special| (-341 *3)))) (-5 *1 (-659 *5 *3)))) (-3395 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -3071 *3) (|:| |special| *3))) (-5 *1 (-659 *5 *3))))) -((-2395 ((|#7| (-578 |#5|) |#6|) NIL T ELT)) (-3934 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-660 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3934 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2395 (|#7| (-578 |#5|) |#6|))) (-749) (-710) (-710) (-954) (-954) (-854 |#4| |#2| |#1|) (-854 |#5| |#3| |#1|)) (T -660)) -((-2395 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *9)) (-4 *9 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) (-4 *8 (-954)) (-4 *2 (-854 *9 *7 *5)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-710)) (-4 *4 (-854 *8 *6 *5)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-954)) (-4 *9 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) (-4 *2 (-854 *9 *7 *5)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-710)) (-4 *4 (-854 *8 *6 *5))))) -((-3934 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3934 (|#7| (-1 |#2| |#1|) |#6|))) (-749) (-749) (-710) (-710) (-954) (-854 |#5| |#3| |#1|) (-854 |#5| |#4| |#2|)) (T -661)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-749)) (-4 *6 (-749)) (-4 *7 (-710)) (-4 *9 (-954)) (-4 *2 (-854 *9 *8 *6)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-710)) (-4 *4 (-854 *9 *7 *5))))) -((-3708 (((-341 |#4|) |#4|) 42 T ELT))) -(((-662 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3708 ((-341 |#4|) |#4|))) (-710) (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ "failed") (-1075))))) (-254) (-854 (-850 |#3|) |#1| |#2|)) (T -662)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ "failed") (-1075)))))) (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-662 *4 *5 *6 *3)) (-4 *3 (-854 (-850 *6) *4 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-766 |#1|)) $) NIL T ELT)) (-3065 (((-1070 $) $ (-766 |#1|)) NIL T ELT) (((-1070 |#2|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-766 |#1|))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-3137 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-766 |#1|) $) NIL T ELT)) (-3732 (($ $ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1607 (($ $ |#2| (-463 (-766 |#1|)) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-766 |#1|) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3066 (($ (-1070 |#2|) (-766 |#1|)) NIL T ELT) (($ (-1070 $) (-766 |#1|)) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#2| (-463 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-766 |#1|)) NIL T ELT)) (-2801 (((-463 (-766 |#1|)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-1608 (($ (-1 (-463 (-766 |#1|)) (-463 (-766 |#1|))) $) NIL T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3064 (((-3 (-766 |#1|) #1#) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-766 |#1|)) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#2| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-3443 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-766 |#1|) |#2|) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 |#2|)) NIL T ELT) (($ $ (-766 |#1|) $) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 $)) NIL T ELT)) (-3733 (($ $ (-766 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3734 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3924 (((-463 (-766 |#1|)) $) NIL T ELT) (((-687) $ (-766 |#1|)) NIL T ELT) (((-578 (-687)) $ (-578 (-766 |#1|))) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-766 |#1|) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-766 |#1|) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2798 ((|#2| $) NIL (|has| |#2| (-385)) ELT) (($ $ (-766 |#1|)) NIL (|has| |#2| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-766 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-489)) ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT)) (-3793 (((-578 |#2|) $) NIL T ELT)) (-3653 ((|#2| $ (-463 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-578 (-766 |#1|)) (-578 (-687))) NIL T ELT) (($ $ (-766 |#1|) (-687)) NIL T ELT) (($ $ (-578 (-766 |#1|))) NIL T ELT) (($ $ (-766 |#1|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-663 |#1| |#2|) (-854 |#2| (-463 (-766 |#1|)) (-766 |#1|)) (-578 (-1075)) (-954)) (T -663)) -NIL -((-2396 (((-2 (|:| -2463 (-850 |#3|)) (|:| -2040 (-850 |#3|))) |#4|) 14 T ELT)) (-2967 ((|#4| |#4| |#2|) 33 T ELT)) (-2399 ((|#4| (-343 (-850 |#3|)) |#2|) 62 T ELT)) (-2398 ((|#4| (-1070 (-850 |#3|)) |#2|) 74 T ELT)) (-2397 ((|#4| (-1070 |#4|) |#2|) 49 T ELT)) (-2966 ((|#4| |#4| |#2|) 52 T ELT)) (-3708 (((-341 |#4|) |#4|) 40 T ELT))) -(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2396 ((-2 (|:| -2463 (-850 |#3|)) (|:| -2040 (-850 |#3|))) |#4|)) (-15 -2966 (|#4| |#4| |#2|)) (-15 -2397 (|#4| (-1070 |#4|) |#2|)) (-15 -2967 (|#4| |#4| |#2|)) (-15 -2398 (|#4| (-1070 (-850 |#3|)) |#2|)) (-15 -2399 (|#4| (-343 (-850 |#3|)) |#2|)) (-15 -3708 ((-341 |#4|) |#4|))) (-710) (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)))) (-489) (-854 (-343 (-850 |#3|)) |#1| |#2|)) (T -664)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) (-4 *6 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-854 (-343 (-850 *6)) *4 *5)))) (-2399 (*1 *2 *3 *4) (-12 (-4 *6 (-489)) (-4 *2 (-854 *3 *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) (-5 *3 (-343 (-850 *6))) (-4 *5 (-710)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))))) (-2398 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 (-850 *6))) (-4 *6 (-489)) (-4 *2 (-854 (-343 (-850 *6)) *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) (-4 *5 (-710)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))))) (-2967 (*1 *2 *2 *3) (-12 (-4 *4 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) (-4 *5 (-489)) (-5 *1 (-664 *4 *3 *5 *2)) (-4 *2 (-854 (-343 (-850 *5)) *4 *3)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-854 (-343 (-850 *6)) *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) (-4 *5 (-710)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) (-4 *6 (-489)))) (-2966 (*1 *2 *2 *3) (-12 (-4 *4 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) (-4 *5 (-489)) (-5 *1 (-664 *4 *3 *5 *2)) (-4 *2 (-854 (-343 (-850 *5)) *4 *3)))) (-2396 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) (-4 *6 (-489)) (-5 *2 (-2 (|:| -2463 (-850 *6)) (|:| -2040 (-850 *6)))) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-854 (-343 (-850 *6)) *4 *5))))) -((-3708 (((-341 |#4|) |#4|) 54 T ELT))) -(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3708 ((-341 |#4|) |#4|))) (-710) (-749) (-13 (-254) (-118)) (-854 (-343 |#3|) |#1| |#2|)) (T -665)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-13 (-254) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-854 (-343 *6) *4 *5))))) -((-3934 (((-667 |#2| |#3|) (-1 |#2| |#1|) (-667 |#1| |#3|)) 18 T ELT))) -(((-666 |#1| |#2| |#3|) (-10 -7 (-15 -3934 ((-667 |#2| |#3|) (-1 |#2| |#1|) (-667 |#1| |#3|)))) (-954) (-954) (-658)) (T -666)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5 *7)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *7 (-658)) (-5 *2 (-667 *6 *7)) (-5 *1 (-666 *5 *6 *7))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 36 T ELT)) (-3750 (((-578 (-2 (|:| -3930 |#1|) (|:| -3914 |#2|))) $) 37 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3117 (((-687)) 22 (-12 (|has| |#2| (-313)) (|has| |#1| (-313))) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3137 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3935 (($ $) 99 (|has| |#2| (-749)) ELT)) (-3444 (((-3 $ #1#) $) 83 T ELT)) (-2975 (($) 48 (-12 (|has| |#2| (-313)) (|has| |#1| (-313))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) 70 T ELT)) (-2802 (((-578 $) $) 52 T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| |#2|) 17 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-1992 (((-823) $) 43 (-12 (|has| |#2| (-313)) (|has| |#1| (-313))) ELT)) (-2875 ((|#2| $) 98 (|has| |#2| (-749)) ELT)) (-3155 ((|#1| $) 97 (|has| |#2| (-749)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) 35 (-12 (|has| |#2| (-313)) (|has| |#1| (-313))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 96 T ELT) (($ (-478)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-578 (-2 (|:| -3930 |#1|) (|:| -3914 |#2|)))) 11 T ELT)) (-3793 (((-578 |#1|) $) 54 T ELT)) (-3653 ((|#1| $ |#2|) 114 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 12 T CONST)) (-2647 (($) 44 T CONST)) (-3037 (((-83) $ $) 104 T ELT)) (-3813 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 33 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) -(((-667 |#1| |#2|) (-13 (-954) (-943 |#2|) (-943 |#1|) (-10 -8 (-15 -2874 ($ |#1| |#2|)) (-15 -3653 (|#1| $ |#2|)) (-15 -3922 ($ (-578 (-2 (|:| -3930 |#1|) (|:| -3914 |#2|))))) (-15 -3750 ((-578 (-2 (|:| -3930 |#1|) (|:| -3914 |#2|))) $)) (-15 -3934 ($ (-1 |#1| |#1|) $)) (-15 -3913 ((-83) $)) (-15 -3793 ((-578 |#1|) $)) (-15 -2802 ((-578 $) $)) (-15 -2400 ((-687) $)) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-313)) (IF (|has| |#2| (-313)) (-6 (-313)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-749)) (PROGN (-15 -2875 (|#2| $)) (-15 -3155 (|#1| $)) (-15 -3935 ($ $))) |%noBranch|))) (-954) (-658)) (T -667)) -((-2874 (*1 *1 *2 *3) (-12 (-5 *1 (-667 *2 *3)) (-4 *2 (-954)) (-4 *3 (-658)))) (-3653 (*1 *2 *1 *3) (-12 (-4 *2 (-954)) (-5 *1 (-667 *2 *3)) (-4 *3 (-658)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3930 *3) (|:| -3914 *4)))) (-4 *3 (-954)) (-4 *4 (-658)) (-5 *1 (-667 *3 *4)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3930 *3) (|:| -3914 *4)))) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-667 *3 *4)) (-4 *4 (-658)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-578 (-667 *3 *4))) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) (-2875 (*1 *2 *1) (-12 (-4 *2 (-658)) (-4 *2 (-749)) (-5 *1 (-667 *3 *2)) (-4 *3 (-954)))) (-3155 (*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-667 *2 *3)) (-4 *3 (-749)) (-4 *3 (-658)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-667 *2 *3)) (-4 *3 (-749)) (-4 *2 (-954)) (-4 *3 (-658))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3214 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3216 (($ $ $) 99 T ELT)) (-3215 (((-83) $ $) 107 T ELT)) (-3219 (($ (-578 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1553 (($ (-1 (-83) |#1|) $) 86 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2350 (($ $) 88 T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3382 (($ |#1| $) 71 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3971)) ELT) (($ |#1| $ (-478)) 78 T ELT) (($ (-1 (-83) |#1|) $ (-478)) 81 T ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (($ |#1| $ (-478)) 83 T ELT) (($ (-1 (-83) |#1|) $ (-478)) 84 T ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3221 (((-83) $ $) 106 T ELT)) (-2401 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-578 |#1|)) 23 T ELT)) (-2588 (((-578 |#1|) $) 38 T ELT)) (-3225 (((-83) |#1| $) 66 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3218 (($ $ $) 97 T ELT)) (-1258 ((|#1| $) 63 T ELT)) (-3585 (($ |#1| $) 64 T ELT) (($ |#1| $ (-687)) 89 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-1259 ((|#1| $) 62 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 57 T ELT)) (-3541 (($) 14 T ELT)) (-2349 (((-578 (-2 (|:| |entry| |#1|) (|:| -1929 (-687)))) $) 56 T ELT)) (-3217 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1449 (($) 16 T ELT) (($ (-578 |#1|)) 25 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 69 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) 82 T ELT)) (-3948 (((-467) $) 36 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 22 T ELT)) (-3922 (((-765) $) 50 T ELT)) (-3220 (($ (-578 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1260 (($ (-578 |#1|)) 24 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 103 T ELT)) (-3933 (((-687) $) 68 (|has| $ (-6 -3971)) ELT))) -(((-668 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -3971) (-6 -3972) (-15 -2401 ($)) (-15 -2401 ($ |#1|)) (-15 -2401 ($ (-578 |#1|))) (-15 -2588 ((-578 |#1|) $)) (-15 -3383 ($ |#1| $ (-478))) (-15 -3383 ($ (-1 (-83) |#1|) $ (-478))) (-15 -3382 ($ |#1| $ (-478))) (-15 -3382 ($ (-1 (-83) |#1|) $ (-478))))) (-1003)) (T -668)) -((-2401 (*1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1003)))) (-2401 (*1 *1 *2) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1003)))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-668 *3)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1003)))) (-3383 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-668 *2)) (-4 *2 (-1003)))) (-3383 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-478)) (-4 *4 (-1003)) (-5 *1 (-668 *4)))) (-3382 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-668 *2)) (-4 *2 (-1003)))) (-3382 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-478)) (-4 *4 (-1003)) (-5 *1 (-668 *4))))) -((-2548 (((-83) $ $) 19 T ELT)) (-3214 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3216 (($ $ $) 77 T ELT)) (-3215 (((-83) $ $) 78 T ELT)) (-3219 (($ (-578 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1553 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-2350 (($ $) 66 T ELT)) (-1336 (($ $) 62 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ |#1| $) 51 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3383 (($ |#1| $) 61 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3221 (((-83) $ $) 69 T ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 T ELT)) (-3218 (($ $ $) 74 T ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT) (($ |#1| $ (-687)) 67 T ELT)) (-3223 (((-1020) $) 21 T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-2349 (((-578 (-2 (|:| |entry| |#1|) (|:| -1929 (-687)))) $) 65 T ELT)) (-3217 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1449 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 54 T ELT)) (-3922 (((-765) $) 17 T ELT)) (-3220 (($ (-578 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1249 (((-83) $ $) 20 T ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-669 |#1|) (-111) (-1003)) (T -669)) -NIL -(-13 (-629 |t#1|) (-1001 |t#1|)) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-547 (-765)) . T) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-629 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2402 (((-1170) (-1059)) 8 T ELT))) -(((-670) (-10 -7 (-15 -2402 ((-1170) (-1059))))) (T -670)) -((-2402 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-670))))) -((-2403 (((-578 |#1|) (-578 |#1|) (-578 |#1|)) 15 T ELT))) -(((-671 |#1|) (-10 -7 (-15 -2403 ((-578 |#1|) (-578 |#1|) (-578 |#1|)))) (-749)) (T -671)) -((-2403 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-671 *3))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 |#2|) $) 156 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 149 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 148 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 146 (|has| |#1| (-489)) ELT)) (-3469 (($ $) 105 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 88 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3018 (($ $) 87 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3467 (($ $) 104 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 89 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 103 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 90 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) 22 T CONST)) (-3935 (($ $) 140 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3790 (((-850 |#1|) $ (-687)) 118 T ELT) (((-850 |#1|) $ (-687) (-687)) 117 T ELT)) (-2873 (((-83) $) 157 T ELT)) (-3603 (($) 115 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-687) $ |#2|) 120 T ELT) (((-687) $ |#2| (-687)) 119 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 86 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3913 (((-83) $) 138 T ELT)) (-2874 (($ $ (-578 |#2|) (-578 (-463 |#2|))) 155 T ELT) (($ $ |#2| (-463 |#2|)) 154 T ELT) (($ |#1| (-463 |#2|)) 139 T ELT) (($ $ |#2| (-687)) 122 T ELT) (($ $ (-578 |#2|) (-578 (-687))) 121 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-3918 (($ $) 112 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 135 T ELT)) (-3155 ((|#1| $) 134 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3788 (($ $ |#2|) 116 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3745 (($ $ (-687)) 123 T ELT)) (-3443 (((-3 $ "failed") $ $) 150 (|has| |#1| (-489)) ELT)) (-3919 (($ $) 113 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (($ $ |#2| $) 131 T ELT) (($ $ (-578 |#2|) (-578 $)) 130 T ELT) (($ $ (-578 (-245 $))) 129 T ELT) (($ $ (-245 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-578 $) (-578 $)) 126 T ELT)) (-3734 (($ $ (-578 |#2|) (-578 (-687))) 49 T ELT) (($ $ |#2| (-687)) 48 T ELT) (($ $ (-578 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-3924 (((-463 |#2|) $) 136 T ELT)) (-3472 (($ $) 102 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 91 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 101 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 92 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 100 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 93 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) 158 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-144)) ELT) (($ $) 151 (|has| |#1| (-489)) ELT) (($ (-343 (-478))) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3653 ((|#1| $ (-463 |#2|)) 141 T ELT) (($ $ |#2| (-687)) 125 T ELT) (($ $ (-578 |#2|) (-578 (-687))) 124 T ELT)) (-2683 (((-627 $) $) 152 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-3475 (($ $) 111 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 99 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) 147 (|has| |#1| (-489)) ELT)) (-3473 (($ $) 110 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 98 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 109 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 97 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3478 (($ $) 108 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 96 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 107 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 95 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 106 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 94 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-578 |#2|) (-578 (-687))) 52 T ELT) (($ $ |#2| (-687)) 51 T ELT) (($ $ (-578 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 142 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 85 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 145 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) -(((-672 |#1| |#2|) (-111) (-954) (-749)) (T -672)) -((-3653 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *2)) (-4 *4 (-954)) (-4 *2 (-749)))) (-3653 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-687))) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-672 *3 *4)) (-4 *3 (-954)) (-4 *4 (-749)))) (-2874 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *2)) (-4 *4 (-954)) (-4 *2 (-749)))) (-2874 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-687))) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)))) (-3748 (*1 *2 *1 *3) (-12 (-4 *1 (-672 *4 *3)) (-4 *4 (-954)) (-4 *3 (-749)) (-5 *2 (-687)))) (-3748 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-687)) (-4 *1 (-672 *4 *3)) (-4 *4 (-954)) (-4 *3 (-749)))) (-3790 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)) (-5 *2 (-850 *4)))) (-3790 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)) (-5 *2 (-850 *4)))) (-3788 (*1 *1 *1 *2) (-12 (-4 *1 (-672 *3 *2)) (-4 *3 (-954)) (-4 *2 (-749)) (-4 *3 (-38 (-343 (-478))))))) -(-13 (-802 |t#2|) (-879 |t#1| (-463 |t#2|) |t#2|) (-447 |t#2| $) (-256 $) (-10 -8 (-15 -3653 ($ $ |t#2| (-687))) (-15 -3653 ($ $ (-578 |t#2|) (-578 (-687)))) (-15 -3745 ($ $ (-687))) (-15 -2874 ($ $ |t#2| (-687))) (-15 -2874 ($ $ (-578 |t#2|) (-578 (-687)))) (-15 -3748 ((-687) $ |t#2|)) (-15 -3748 ((-687) $ |t#2| (-687))) (-15 -3790 ((-850 |t#1|) $ (-687))) (-15 -3790 ((-850 |t#1|) $ (-687) (-687))) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3788 ($ $ |t#2|)) (-6 (-908)) (-6 (-1100))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-463 |#2|)) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-242) |has| |#1| (-489)) ((-256 $) . T) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-447 |#2| $) . T) ((-447 $ $) . T) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-799 $ |#2|) . T) ((-802 |#2|) . T) ((-804 |#2|) . T) ((-879 |#1| (-463 |#2|) |#2|) . T) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1100) |has| |#1| (-38 (-343 (-478)))) ((-1103) |has| |#1| (-38 (-343 (-478)))) ((-1114) . T)) -((-3708 (((-341 (-1070 |#4|)) (-1070 |#4|)) 30 T ELT) (((-341 |#4|) |#4|) 26 T ELT))) -(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3708 ((-341 |#4|) |#4|)) (-15 -3708 ((-341 (-1070 |#4|)) (-1070 |#4|)))) (-749) (-710) (-13 (-254) (-118)) (-854 |#3| |#2| |#1|)) (T -673)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-854 *6 *5 *4)) (-5 *2 (-341 (-1070 *7))) (-5 *1 (-673 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3708 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-13 (-254) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4))))) -((-2406 (((-341 |#4|) |#4| |#2|) 142 T ELT)) (-2404 (((-341 |#4|) |#4|) NIL T ELT)) (-3947 (((-341 (-1070 |#4|)) (-1070 |#4|)) 129 T ELT) (((-341 |#4|) |#4|) 52 T ELT)) (-2408 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3708 (-1070 |#4|)) (|:| -2383 (-478)))))) (-1070 |#4|) (-578 |#2|) (-578 (-578 |#3|))) 81 T ELT)) (-2412 (((-1070 |#3|) (-1070 |#3|) (-478)) 169 T ELT)) (-2411 (((-578 (-687)) (-1070 |#4|) (-578 |#2|) (-687)) 75 T ELT)) (-3060 (((-3 (-578 (-1070 |#4|)) "failed") (-1070 |#4|) (-1070 |#3|) (-1070 |#3|) |#4| (-578 |#2|) (-578 (-687)) (-578 |#3|)) 79 T ELT)) (-2409 (((-2 (|:| |upol| (-1070 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3708 (-1070 |#3|)) (|:| -2383 (-478))))) (|:| |ctpol| |#3|)) (-1070 |#4|) (-578 |#2|) (-578 (-578 |#3|))) 27 T ELT)) (-2407 (((-2 (|:| -1986 (-1070 |#4|)) (|:| |polval| (-1070 |#3|))) (-1070 |#4|) (-1070 |#3|) (-478)) 72 T ELT)) (-2405 (((-478) (-578 (-2 (|:| -3708 (-1070 |#3|)) (|:| -2383 (-478))))) 165 T ELT)) (-2410 ((|#4| (-478) (-341 |#4|)) 73 T ELT)) (-3334 (((-83) (-578 (-2 (|:| -3708 (-1070 |#3|)) (|:| -2383 (-478)))) (-578 (-2 (|:| -3708 (-1070 |#3|)) (|:| -2383 (-478))))) NIL T ELT))) -(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 ((-341 |#4|) |#4|)) (-15 -3947 ((-341 (-1070 |#4|)) (-1070 |#4|))) (-15 -2404 ((-341 |#4|) |#4|)) (-15 -2405 ((-478) (-578 (-2 (|:| -3708 (-1070 |#3|)) (|:| -2383 (-478)))))) (-15 -2406 ((-341 |#4|) |#4| |#2|)) (-15 -2407 ((-2 (|:| -1986 (-1070 |#4|)) (|:| |polval| (-1070 |#3|))) (-1070 |#4|) (-1070 |#3|) (-478))) (-15 -2408 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3708 (-1070 |#4|)) (|:| -2383 (-478)))))) (-1070 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -2409 ((-2 (|:| |upol| (-1070 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3708 (-1070 |#3|)) (|:| -2383 (-478))))) (|:| |ctpol| |#3|)) (-1070 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -2410 (|#4| (-478) (-341 |#4|))) (-15 -3334 ((-83) (-578 (-2 (|:| -3708 (-1070 |#3|)) (|:| -2383 (-478)))) (-578 (-2 (|:| -3708 (-1070 |#3|)) (|:| -2383 (-478)))))) (-15 -3060 ((-3 (-578 (-1070 |#4|)) "failed") (-1070 |#4|) (-1070 |#3|) (-1070 |#3|) |#4| (-578 |#2|) (-578 (-687)) (-578 |#3|))) (-15 -2411 ((-578 (-687)) (-1070 |#4|) (-578 |#2|) (-687))) (-15 -2412 ((-1070 |#3|) (-1070 |#3|) (-478)))) (-710) (-749) (-254) (-854 |#3| |#1| |#2|)) (T -674)) -((-2412 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *6)) (-5 *3 (-478)) (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-2411 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-578 *7)) (-4 *7 (-749)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-4 *8 (-254)) (-5 *2 (-578 (-687))) (-5 *1 (-674 *6 *7 *8 *9)) (-5 *5 (-687)))) (-3060 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1070 *11)) (-5 *6 (-578 *10)) (-5 *7 (-578 (-687))) (-5 *8 (-578 *11)) (-4 *10 (-749)) (-4 *11 (-254)) (-4 *9 (-710)) (-4 *5 (-854 *11 *9 *10)) (-5 *2 (-578 (-1070 *5))) (-5 *1 (-674 *9 *10 *11 *5)) (-5 *3 (-1070 *5)))) (-3334 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-2 (|:| -3708 (-1070 *6)) (|:| -2383 (-478))))) (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-478)) (-5 *4 (-341 *2)) (-4 *2 (-854 *7 *5 *6)) (-5 *1 (-674 *5 *6 *7 *2)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-254)))) (-2409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1070 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-749)) (-4 *8 (-254)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-5 *2 (-2 (|:| |upol| (-1070 *8)) (|:| |Lval| (-578 *8)) (|:| |Lfact| (-578 (-2 (|:| -3708 (-1070 *8)) (|:| -2383 (-478))))) (|:| |ctpol| *8))) (-5 *1 (-674 *6 *7 *8 *9)))) (-2408 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-749)) (-4 *8 (-254)) (-4 *6 (-710)) (-4 *9 (-854 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-578 (-2 (|:| -3708 (-1070 *9)) (|:| -2383 (-478))))))) (-5 *1 (-674 *6 *7 *8 *9)) (-5 *3 (-1070 *9)))) (-2407 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-478)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-254)) (-4 *9 (-854 *8 *6 *7)) (-5 *2 (-2 (|:| -1986 (-1070 *9)) (|:| |polval| (-1070 *8)))) (-5 *1 (-674 *6 *7 *8 *9)) (-5 *3 (-1070 *9)) (-5 *4 (-1070 *8)))) (-2406 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-674 *5 *4 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3708 (-1070 *6)) (|:| -2383 (-478))))) (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-478)) (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-2404 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-854 *6 *4 *5)))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-341 (-1070 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-854 *6 *4 *5))))) -((-2413 (($ $ (-823)) 17 T ELT))) -(((-675 |#1| |#2|) (-10 -7 (-15 -2413 (|#1| |#1| (-823)))) (-676 |#2|) (-144)) (T -675)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-2389 (($ $ (-823)) 36 T ELT)) (-2413 (($ $ (-823)) 43 T ELT)) (-2388 (($ $ (-823)) 37 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2415 (($ $ $) 33 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2416 (($ $ $ $) 34 T ELT)) (-2414 (($ $ $) 32 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-676 |#1|) (-111) (-144)) (T -676)) -((-2413 (*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-676 *3)) (-4 *3 (-144))))) -(-13 (-678) (-649 |t#1|) (-10 -8 (-15 -2413 ($ $ (-823))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-652) . T) ((-678) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2415 (($ $ $) 10 T ELT)) (-2416 (($ $ $ $) 9 T ELT)) (-2414 (($ $ $) 12 T ELT))) -(((-677 |#1|) (-10 -7 (-15 -2414 (|#1| |#1| |#1|)) (-15 -2415 (|#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| |#1| |#1|))) (-678)) (T -677)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-2389 (($ $ (-823)) 36 T ELT)) (-2388 (($ $ (-823)) 37 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2415 (($ $ $) 33 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2416 (($ $ $ $) 34 T ELT)) (-2414 (($ $ $) 32 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-678) (-111)) (T -678)) -((-2416 (*1 *1 *1 *1 *1) (-4 *1 (-678))) (-2415 (*1 *1 *1 *1) (-4 *1 (-678))) (-2414 (*1 *1 *1 *1) (-4 *1 (-678)))) -(-13 (-21) (-652) (-10 -8 (-15 -2416 ($ $ $ $)) (-15 -2415 ($ $ $)) (-15 -2414 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-652) . T) ((-1003) . T) ((-1114) . T)) -((-3922 (((-765) $) NIL T ELT) (($ (-478)) 10 T ELT))) -(((-679 |#1|) (-10 -7 (-15 -3922 (|#1| (-478))) (-15 -3922 ((-765) |#1|))) (-680)) (T -679)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-2386 (((-3 $ #1="failed") $) 48 T ELT)) (-2389 (($ $ (-823)) 36 T ELT) (($ $ (-687)) 43 T ELT)) (-3444 (((-3 $ #1#) $) 46 T ELT)) (-2392 (((-83) $) 42 T ELT)) (-2387 (((-3 $ #1#) $) 47 T ELT)) (-2388 (($ $ (-823)) 37 T ELT) (($ $ (-687)) 44 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2415 (($ $ $) 33 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 39 T ELT)) (-3107 (((-687)) 40 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2416 (($ $ $ $) 34 T ELT)) (-2414 (($ $ $) 32 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 41 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 38 T ELT) (($ $ (-687)) 45 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-680) (-111)) (T -680)) -((-3107 (*1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-687)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-680))))) -(-13 (-678) (-654) (-10 -8 (-15 -3107 ((-687)) -3928) (-15 -3922 ($ (-478))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-652) . T) ((-654) . T) ((-678) . T) ((-1003) . T) ((-1114) . T)) -((-2418 (((-578 (-2 (|:| |outval| (-140 |#1|)) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 (-140 |#1|)))))) (-625 (-140 (-343 (-478)))) |#1|) 33 T ELT)) (-2417 (((-578 (-140 |#1|)) (-625 (-140 (-343 (-478)))) |#1|) 23 T ELT)) (-2429 (((-850 (-140 (-343 (-478)))) (-625 (-140 (-343 (-478)))) (-1075)) 20 T ELT) (((-850 (-140 (-343 (-478)))) (-625 (-140 (-343 (-478))))) 19 T ELT))) -(((-681 |#1|) (-10 -7 (-15 -2429 ((-850 (-140 (-343 (-478)))) (-625 (-140 (-343 (-478)))))) (-15 -2429 ((-850 (-140 (-343 (-478)))) (-625 (-140 (-343 (-478)))) (-1075))) (-15 -2417 ((-578 (-140 |#1|)) (-625 (-140 (-343 (-478)))) |#1|)) (-15 -2418 ((-578 (-2 (|:| |outval| (-140 |#1|)) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 (-140 |#1|)))))) (-625 (-140 (-343 (-478)))) |#1|))) (-13 (-308) (-748))) (T -681)) -((-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-578 (-2 (|:| |outval| (-140 *4)) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 (-140 *4))))))) (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748))))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-578 (-140 *4))) (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748))))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *4 (-1075)) (-5 *2 (-850 (-140 (-343 (-478))))) (-5 *1 (-681 *5)) (-4 *5 (-13 (-308) (-748))))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-850 (-140 (-343 (-478))))) (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748)))))) -((-2596 (((-146 (-478)) |#1|) 27 T ELT))) -(((-682 |#1|) (-10 -7 (-15 -2596 ((-146 (-478)) |#1|))) (-340)) (T -682)) -((-2596 (*1 *2 *3) (-12 (-5 *2 (-146 (-478))) (-5 *1 (-682 *3)) (-4 *3 (-340))))) -((-2522 ((|#1| |#1| |#1|) 28 T ELT)) (-2523 ((|#1| |#1| |#1|) 27 T ELT)) (-2512 ((|#1| |#1| |#1|) 38 T ELT)) (-2520 ((|#1| |#1| |#1|) 33 T ELT)) (-2521 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2528 (((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|) 26 T ELT))) -(((-683 |#1| |#2|) (-10 -7 (-15 -2528 ((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -2522 (|#1| |#1| |#1|)) (-15 -2521 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2512 (|#1| |#1| |#1|))) (-640 |#2|) (-308)) (T -683)) -((-2512 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2520 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2521 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2522 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2523 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) (-2528 (*1 *2 *3 *3) (-12 (-4 *4 (-308)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-683 *3 *4)) (-4 *3 (-640 *4))))) -((-2535 (((-627 (-1123)) $ (-1123)) 27 T ELT)) (-2536 (((-627 (-482)) $ (-482)) 26 T ELT)) (-2534 (((-687) $ (-100)) 28 T ELT)) (-2537 (((-627 (-99)) $ (-99)) 25 T ELT)) (-1982 (((-627 (-1123)) $) 12 T ELT)) (-1978 (((-627 (-1121)) $) 8 T ELT)) (-1980 (((-627 (-1120)) $) 10 T ELT)) (-1983 (((-627 (-482)) $) 13 T ELT)) (-1979 (((-627 (-480)) $) 9 T ELT)) (-1981 (((-627 (-479)) $) 11 T ELT)) (-1977 (((-687) $ (-100)) 7 T ELT)) (-1984 (((-627 (-99)) $) 14 T ELT)) (-2419 (((-83) $) 32 T ELT)) (-2420 (((-627 $) |#1| (-858)) 33 T ELT)) (-1683 (($ $) 6 T ELT))) -(((-684 |#1|) (-111) (-1003)) (T -684)) -((-2420 (*1 *2 *3 *4) (-12 (-5 *4 (-858)) (-4 *3 (-1003)) (-5 *2 (-627 *1)) (-4 *1 (-684 *3)))) (-2419 (*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1003)) (-5 *2 (-83))))) -(-13 (-506) (-10 -8 (-15 -2420 ((-627 $) |t#1| (-858))) (-15 -2419 ((-83) $)))) -(((-145) . T) ((-459) . T) ((-506) . T) ((-763) . T)) -((-3895 (((-2 (|:| -1994 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478)))) (-478)) 72 T ELT)) (-3894 (((-2 (|:| -1994 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478))))) 70 T ELT)) (-3733 (((-478)) 86 T ELT))) -(((-685 |#1| |#2|) (-10 -7 (-15 -3733 ((-478))) (-15 -3894 ((-2 (|:| -1994 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478)))))) (-15 -3895 ((-2 (|:| -1994 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478)))) (-478)))) (-1140 (-478)) (-346 (-478) |#1|)) (T -685)) -((-3895 (*1 *2 *3) (-12 (-5 *3 (-478)) (-4 *4 (-1140 *3)) (-5 *2 (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-685 *4 *5)) (-4 *5 (-346 *3 *4)))) (-3894 (*1 *2) (-12 (-4 *3 (-1140 (-478))) (-5 *2 (-2 (|:| -1994 (-625 (-478))) (|:| |basisDen| (-478)) (|:| |basisInv| (-625 (-478))))) (-5 *1 (-685 *3 *4)) (-4 *4 (-346 (-478) *3)))) (-3733 (*1 *2) (-12 (-4 *3 (-1140 *2)) (-5 *2 (-478)) (-5 *1 (-685 *3 *4)) (-4 *4 (-346 *2 *3))))) -((-2488 (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|))) 19 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)) (-578 (-1075))) 18 T ELT)) (-3549 (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|))) 21 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)) (-578 (-1075))) 20 T ELT))) -(((-686 |#1|) (-10 -7 (-15 -2488 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)) (-578 (-1075)))) (-15 -2488 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)))) (-15 -3549 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|)) (-578 (-1075)))) (-15 -3549 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-850 |#1|))))) (-489)) (T -686)) -((-3549 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-686 *4)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1075))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-686 *5)))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-686 *4)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1075))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-686 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2463 (($ $ $) 10 T ELT)) (-1295 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2421 (($ $ (-478)) 11 T ELT)) (-3700 (($) NIL T CONST)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($ $) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-3168 (((-83) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3125 (($ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 6 T CONST)) (-2647 (($) NIL T CONST)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-687) (-13 (-710) (-658) (-10 -8 (-15 -2543 ($ $ $)) (-15 -2544 ($ $ $)) (-15 -3125 ($ $ $)) (-15 -2860 ((-2 (|:| -1956 $) (|:| -2883 $)) $ $)) (-15 -3443 ((-3 $ "failed") $ $)) (-15 -2421 ($ $ (-478))) (-15 -2975 ($ $)) (-6 (-3973 "*"))))) (T -687)) -((-2543 (*1 *1 *1 *1) (-5 *1 (-687))) (-2544 (*1 *1 *1 *1) (-5 *1 (-687))) (-3125 (*1 *1 *1 *1) (-5 *1 (-687))) (-2860 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1956 (-687)) (|:| -2883 (-687)))) (-5 *1 (-687)))) (-3443 (*1 *1 *1 *1) (|partial| -5 *1 (-687))) (-2421 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-687)))) (-2975 (*1 *1 *1) (-5 *1 (-687)))) -((-478) (|%not| (|%ilt| |#1| 0))) -((-3549 (((-3 |#2| "failed") |#2| |#2| (-84) (-1075)) 37 T ELT))) -(((-688 |#1| |#2|) (-10 -7 (-15 -3549 ((-3 |#2| "failed") |#2| |#2| (-84) (-1075)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1100) (-864))) (T -688)) -((-3549 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-688 *5 *2)) (-4 *2 (-13 (-29 *5) (-1100) (-864)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 7 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 9 T ELT))) -(((-689) (-1003)) (T -689)) -NIL -((-3922 (((-689) |#1|) 8 T ELT))) -(((-690 |#1|) (-10 -7 (-15 -3922 ((-689) |#1|))) (-1114)) (T -690)) -((-3922 (*1 *2 *3) (-12 (-5 *2 (-689)) (-5 *1 (-690 *3)) (-4 *3 (-1114))))) -((-3113 ((|#2| |#4|) 35 T ELT))) -(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3113 (|#2| |#4|))) (-385) (-1140 |#1|) (-656 |#1| |#2|) (-1140 |#3|)) (T -691)) -((-3113 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-656 *4 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-691 *4 *2 *5 *3)) (-4 *3 (-1140 *5))))) -((-3444 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2424 (((-1170) (-1059) (-1059) |#4| |#5|) 33 T ELT)) (-2422 ((|#4| |#4| |#5|) 74 T ELT)) (-2423 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#5|) 79 T ELT)) (-2425 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|) 16 T ELT))) -(((-692 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3444 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2422 (|#4| |#4| |#5|)) (-15 -2423 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#5|)) (-15 -2424 ((-1170) (-1059) (-1059) |#4| |#5|)) (-15 -2425 ((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -692)) -((-2425 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-2424 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1059)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *4 (-969 *6 *7 *8)) (-5 *2 (-1170)) (-5 *1 (-692 *6 *7 *8 *4 *5)) (-4 *5 (-975 *6 *7 *8 *4)))) (-2423 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-2422 (*1 *2 *2 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *2 (-969 *4 *5 *6)) (-5 *1 (-692 *4 *5 *6 *2 *3)) (-4 *3 (-975 *4 *5 *6 *2)))) (-3444 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) -((-3138 (((-3 (-1070 (-1070 |#1|)) "failed") |#4|) 53 T ELT)) (-2426 (((-578 |#4|) |#4|) 22 T ELT)) (-3904 ((|#4| |#4|) 17 T ELT))) -(((-693 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2426 ((-578 |#4|) |#4|)) (-15 -3138 ((-3 (-1070 (-1070 |#1|)) "failed") |#4|)) (-15 -3904 (|#4| |#4|))) (-295) (-276 |#1|) (-1140 |#2|) (-1140 |#3|) (-823)) (T -693)) -((-3904 (*1 *2 *2) (-12 (-4 *3 (-295)) (-4 *4 (-276 *3)) (-4 *5 (-1140 *4)) (-5 *1 (-693 *3 *4 *5 *2 *6)) (-4 *2 (-1140 *5)) (-14 *6 (-823)))) (-3138 (*1 *2 *3) (|partial| -12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1140 *5)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-693 *4 *5 *6 *3 *7)) (-4 *3 (-1140 *6)) (-14 *7 (-823)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1140 *5)) (-5 *2 (-578 *3)) (-5 *1 (-693 *4 *5 *6 *3 *7)) (-4 *3 (-1140 *6)) (-14 *7 (-823))))) -((-2427 (((-2 (|:| |deter| (-578 (-1070 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3059 (-687)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1070 |#5|) (-578 |#1|) (-578 |#5|)) 72 T ELT)) (-2428 (((-578 (-687)) |#1|) 20 T ELT))) -(((-694 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2427 ((-2 (|:| |deter| (-578 (-1070 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3059 (-687)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1070 |#5|) (-578 |#1|) (-578 |#5|))) (-15 -2428 ((-578 (-687)) |#1|))) (-1140 |#4|) (-710) (-749) (-254) (-854 |#4| |#2| |#3|)) (T -694)) -((-2428 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-578 (-687))) (-5 *1 (-694 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *6)) (-4 *7 (-854 *6 *4 *5)))) (-2427 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1140 *9)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-254)) (-4 *10 (-854 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-578 (-1070 *10))) (|:| |dterm| (-578 (-578 (-2 (|:| -3059 (-687)) (|:| |pcoef| *10))))) (|:| |nfacts| (-578 *6)) (|:| |nlead| (-578 *10)))) (-5 *1 (-694 *6 *7 *8 *9 *10)) (-5 *3 (-1070 *10)) (-5 *4 (-578 *6)) (-5 *5 (-578 *10))))) -((-2431 (((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 |#1|))))) (-625 (-343 (-478))) |#1|) 31 T ELT)) (-2430 (((-578 |#1|) (-625 (-343 (-478))) |#1|) 21 T ELT)) (-2429 (((-850 (-343 (-478))) (-625 (-343 (-478))) (-1075)) 18 T ELT) (((-850 (-343 (-478))) (-625 (-343 (-478)))) 17 T ELT))) -(((-695 |#1|) (-10 -7 (-15 -2429 ((-850 (-343 (-478))) (-625 (-343 (-478))))) (-15 -2429 ((-850 (-343 (-478))) (-625 (-343 (-478))) (-1075))) (-15 -2430 ((-578 |#1|) (-625 (-343 (-478))) |#1|)) (-15 -2431 ((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 |#1|))))) (-625 (-343 (-478))) |#1|))) (-13 (-308) (-748))) (T -695)) -((-2431 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-578 (-2 (|:| |outval| *4) (|:| |outmult| (-478)) (|:| |outvect| (-578 (-625 *4)))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748))))) (-2430 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-578 *4)) (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748))))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *4 (-1075)) (-5 *2 (-850 (-343 (-478)))) (-5 *1 (-695 *5)) (-4 *5 (-13 (-308) (-748))))) (-2429 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-850 (-343 (-478)))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 36 T ELT)) (-3063 (((-578 |#2|) $) NIL T ELT)) (-3065 (((-1070 $) $ |#2|) NIL T ELT) (((-1070 |#1|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 |#2|)) NIL T ELT)) (-3773 (($ $) 30 T ELT)) (-3147 (((-83) $ $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3731 (($ $ $) 110 (|has| |#1| (-489)) ELT)) (-3129 (((-578 $) $ $) 123 (|has| |#1| (-489)) ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-850 (-343 (-478)))) NIL (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1075)))) ELT) (((-3 $ #1#) (-850 (-478))) NIL (OR (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1075))) (-2540 (|has| |#1| (-38 (-343 (-478)))))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1075))))) ELT) (((-3 $ #1#) (-850 |#1|)) NIL (OR (-12 (|has| |#2| (-548 (-1075))) (-2540 (|has| |#1| (-38 (-343 (-478))))) (-2540 (|has| |#1| (-38 (-478))))) (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1075))) (-2540 (|has| |#1| (-38 (-343 (-478))))) (-2540 (|has| |#1| (-477)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1075))) (-2540 (|has| |#1| (-897 (-478)))))) ELT) (((-3 (-1025 |#1| |#2|) #1#) $) 21 T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) ((|#2| $) NIL T ELT) (($ (-850 (-343 (-478)))) NIL (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1075)))) ELT) (($ (-850 (-478))) NIL (OR (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1075))) (-2540 (|has| |#1| (-38 (-343 (-478)))))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1075))))) ELT) (($ (-850 |#1|)) NIL (OR (-12 (|has| |#2| (-548 (-1075))) (-2540 (|has| |#1| (-38 (-343 (-478))))) (-2540 (|has| |#1| (-38 (-478))))) (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1075))) (-2540 (|has| |#1| (-38 (-343 (-478))))) (-2540 (|has| |#1| (-477)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1075))) (-2540 (|has| |#1| (-897 (-478)))))) ELT) (((-1025 |#1| |#2|) $) NIL T ELT)) (-3732 (($ $ $ |#2|) NIL (|has| |#1| (-144)) ELT) (($ $ $) 121 (|has| |#1| (-489)) ELT)) (-3935 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3670 (((-83) $ $) NIL T ELT) (((-83) $ (-578 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3153 (((-83) $) NIL T ELT)) (-3728 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 81 T ELT)) (-3124 (($ $) 136 (|has| |#1| (-385)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ |#2|) NIL (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-3135 (($ $) NIL (|has| |#1| (-489)) ELT)) (-3136 (($ $) NIL (|has| |#1| (-489)) ELT)) (-3146 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3145 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1607 (($ $ |#1| (-463 |#2|) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| |#1| (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| |#1| (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2392 (((-83) $) 57 T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3671 (((-83) $ $) NIL T ELT) (((-83) $ (-578 $)) NIL T ELT)) (-3126 (($ $ $ $ $) 107 (|has| |#1| (-489)) ELT)) (-3161 ((|#2| $) 22 T ELT)) (-3066 (($ (-1070 |#1|) |#2|) NIL T ELT) (($ (-1070 $) |#2|) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-463 |#2|)) NIL T ELT) (($ $ |#2| (-687)) 38 T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-3140 (($ $ $) 63 T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ |#2|) NIL T ELT)) (-3154 (((-83) $) NIL T ELT)) (-2801 (((-463 |#2|) $) NIL T ELT) (((-687) $ |#2|) NIL T ELT) (((-578 (-687)) $ (-578 |#2|)) NIL T ELT)) (-3160 (((-687) $) 23 T ELT)) (-1608 (($ (-1 (-463 |#2|) (-463 |#2|)) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3064 (((-3 |#2| #1#) $) NIL T ELT)) (-3121 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3122 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3149 (((-578 $) $) NIL T ELT)) (-3152 (($ $) 39 T ELT)) (-3123 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3150 (((-578 $) $) 43 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-3151 (($ $) 41 T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3139 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3458 (-687))) $ $) 96 T ELT)) (-3141 (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $) 78 T ELT) (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $ |#2|) NIL T ELT)) (-3142 (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -2883 $)) $ $) NIL T ELT) (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -2883 $)) $ $ |#2|) NIL T ELT)) (-3144 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3143 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3172 (($ $ $) 125 (|has| |#1| (-489)) ELT)) (-3157 (((-578 $) $) 32 T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| |#2|) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3667 (((-83) $ $) NIL T ELT) (((-83) $ (-578 $)) NIL T ELT)) (-3662 (($ $ $) NIL T ELT)) (-3423 (($ $) 24 T ELT)) (-3675 (((-83) $ $) NIL T ELT)) (-3668 (((-83) $ $) NIL T ELT) (((-83) $ (-578 $)) NIL T ELT)) (-3663 (($ $ $) NIL T ELT)) (-3159 (($ $) 26 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3130 (((-2 (|:| -3125 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-489)) ELT)) (-3131 (((-2 (|:| -3125 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-489)) ELT)) (-1780 (((-83) $) 56 T ELT)) (-1779 ((|#1| $) 58 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-385)) ELT)) (-3125 ((|#1| |#1| $) 133 (|has| |#1| (-385)) ELT) (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3132 (((-2 (|:| -3125 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-489)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-489)) ELT)) (-3133 (($ $ |#1|) 129 (|has| |#1| (-489)) ELT) (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3134 (($ $ |#1|) 128 (|has| |#1| (-489)) ELT) (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-578 |#2|) (-578 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-578 |#2|) (-578 $)) NIL T ELT)) (-3733 (($ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3924 (((-463 |#2|) $) NIL T ELT) (((-687) $ |#2|) 45 T ELT) (((-578 (-687)) $ (-578 |#2|)) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-3156 (($ $) 35 T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| |#1| (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT) (($ (-850 (-343 (-478)))) NIL (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1075)))) ELT) (($ (-850 (-478))) NIL (OR (-12 (|has| |#1| (-38 (-478))) (|has| |#2| (-548 (-1075))) (-2540 (|has| |#1| (-38 (-343 (-478)))))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#2| (-548 (-1075))))) ELT) (($ (-850 |#1|)) NIL (|has| |#2| (-548 (-1075))) ELT) (((-1059) $) NIL (-12 (|has| |#1| (-943 (-478))) (|has| |#2| (-548 (-1075)))) ELT) (((-850 |#1|) $) NIL (|has| |#2| (-548 (-1075))) ELT)) (-2798 ((|#1| $) 132 (|has| |#1| (-385)) ELT) (($ $ |#2|) NIL (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-850 |#1|) $) NIL (|has| |#2| (-548 (-1075))) ELT) (((-1025 |#1| |#2|) $) 18 T ELT) (($ (-1025 |#1| |#2|)) 19 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-463 |#2|)) NIL T ELT) (($ $ |#2| (-687)) 47 T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) 13 T CONST)) (-3148 (((-3 (-83) #1#) $ $) NIL T ELT)) (-2647 (($) 37 T CONST)) (-3127 (($ $ $ $ (-687)) 105 (|has| |#1| (-489)) ELT)) (-3128 (($ $ $ (-687)) 104 (|has| |#1| (-489)) ELT)) (-2650 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3815 (($ $ $) 85 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 70 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-696 |#1| |#2|) (-13 (-969 |#1| (-463 |#2|) |#2|) (-547 (-1025 |#1| |#2|)) (-943 (-1025 |#1| |#2|))) (-954) (-749)) (T -696)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 12 T ELT)) (-3743 (((-1164 |#1|) $ (-687)) NIL T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3741 (($ (-1070 |#1|)) NIL T ELT)) (-3065 (((-1070 $) $ (-985)) NIL T ELT) (((-1070 |#1|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-985))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2435 (((-578 $) $ $) 54 (|has| |#1| (-489)) ELT)) (-3731 (($ $ $) 50 (|has| |#1| (-489)) ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3737 (($ $ (-687)) NIL T ELT)) (-3736 (($ $ (-687)) NIL T ELT)) (-3727 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-385)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-985) #1#) $) NIL T ELT) (((-3 (-1070 |#1|) #1#) $) 10 T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-985) $) NIL T ELT) (((-1070 |#1|) $) NIL T ELT)) (-3732 (($ $ $ (-985)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) 58 (|has| |#1| (-144)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3735 (($ $ $) NIL T ELT)) (-3729 (($ $ $) 87 (|has| |#1| (-489)) ELT)) (-3728 (((-2 (|:| -3930 |#1|) (|:| -1956 $) (|:| -2883 $)) $ $) 86 (|has| |#1| (-489)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-985)) NIL (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| (-687) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-985) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-985) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3748 (((-687) $ $) NIL (|has| |#1| (-489)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-1052)) ELT)) (-3066 (($ (-1070 |#1|) (-985)) NIL T ELT) (($ (-1070 $) (-985)) NIL T ELT)) (-3753 (($ $ (-687)) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-687)) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-3140 (($ $ $) 27 T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-985)) NIL T ELT) (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-2801 (((-687) $) NIL T ELT) (((-687) $ (-985)) NIL T ELT) (((-578 (-687)) $ (-578 (-985))) NIL T ELT)) (-1608 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3742 (((-1070 |#1|) $) NIL T ELT)) (-3064 (((-3 (-985) #1#) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3139 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3458 (-687))) $ $) 37 T ELT)) (-2437 (($ $ $) 41 T ELT)) (-2436 (($ $ $) 47 T ELT)) (-3141 (((-2 (|:| -3930 |#1|) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $) 46 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3172 (($ $ $) 56 (|has| |#1| (-489)) ELT)) (-3738 (((-2 (|:| -1956 $) (|:| -2883 $)) $ (-687)) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-985)) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3423 (($) NIL (|has| |#1| (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-3130 (((-2 (|:| -3125 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-489)) ELT)) (-3131 (((-2 (|:| -3125 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-489)) ELT)) (-2432 (((-2 (|:| -3732 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-489)) ELT)) (-2433 (((-2 (|:| -3732 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-489)) ELT)) (-1780 (((-83) $) 13 T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3714 (($ $ (-687) |#1| $) 26 T ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3132 (((-2 (|:| -3125 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-489)) ELT)) (-2434 (((-2 (|:| -3732 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-489)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-985) |#1|) NIL T ELT) (($ $ (-578 (-985)) (-578 |#1|)) NIL T ELT) (($ $ (-985) $) NIL T ELT) (($ $ (-578 (-985)) (-578 $)) NIL T ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-343 $) (-343 $) (-343 $)) NIL (|has| |#1| (-489)) ELT) ((|#1| (-343 $) |#1|) NIL (|has| |#1| (-308)) ELT) (((-343 $) $ (-343 $)) NIL (|has| |#1| (-489)) ELT)) (-3740 (((-3 $ #1#) $ (-687)) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3733 (($ $ (-985)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) NIL (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985))) NIL T ELT) (($ $ (-985)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-3924 (((-687) $) NIL T ELT) (((-687) $ (-985)) NIL T ELT) (((-578 (-687)) $ (-578 (-985))) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-985) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-985) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-985) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-985)) NIL (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3730 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT) (((-3 (-343 $) #1#) (-343 $) $) NIL (|has| |#1| (-489)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-985)) NIL T ELT) (((-1070 |#1|) $) 7 T ELT) (($ (-1070 |#1|)) 8 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-687)) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) 28 T CONST)) (-2647 (($) 32 T CONST)) (-2650 (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985))) NIL T ELT) (($ $ (-985)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-697 |#1|) (-13 (-1140 |#1|) (-547 (-1070 |#1|)) (-943 (-1070 |#1|)) (-10 -8 (-15 -3714 ($ $ (-687) |#1| $)) (-15 -3140 ($ $ $)) (-15 -3139 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3458 (-687))) $ $)) (-15 -2437 ($ $ $)) (-15 -3141 ((-2 (|:| -3930 |#1|) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $)) (-15 -2436 ($ $ $)) (IF (|has| |#1| (-489)) (PROGN (-15 -2435 ((-578 $) $ $)) (-15 -3172 ($ $ $)) (-15 -3132 ((-2 (|:| -3125 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3131 ((-2 (|:| -3125 $) (|:| |coef1| $)) $ $)) (-15 -3130 ((-2 (|:| -3125 $) (|:| |coef2| $)) $ $)) (-15 -2434 ((-2 (|:| -3732 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2433 ((-2 (|:| -3732 |#1|) (|:| |coef1| $)) $ $)) (-15 -2432 ((-2 (|:| -3732 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-954)) (T -697)) -((-3714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-697 *3)) (-4 *3 (-954)))) (-3140 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954)))) (-3139 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-697 *3)) (|:| |polden| *3) (|:| -3458 (-687)))) (-5 *1 (-697 *3)) (-4 *3 (-954)))) (-2437 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954)))) (-3141 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3930 *3) (|:| |gap| (-687)) (|:| -1956 (-697 *3)) (|:| -2883 (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-954)))) (-2436 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954)))) (-2435 (*1 *2 *1 *1) (-12 (-5 *2 (-578 (-697 *3))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-3172 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-489)) (-4 *2 (-954)))) (-3132 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3125 (-697 *3)) (|:| |coef1| (-697 *3)) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-3131 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3125 (-697 *3)) (|:| |coef1| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-3130 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3125 (-697 *3)) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-2434 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3732 *3) (|:| |coef1| (-697 *3)) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-2433 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3732 *3) (|:| |coef1| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) (-2432 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3732 *3) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954))))) -((-3934 (((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|)) 13 T ELT))) -(((-698 |#1| |#2|) (-10 -7 (-15 -3934 ((-697 |#2|) (-1 |#2| |#1|) (-697 |#1|)))) (-954) (-954)) (T -698)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-697 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-5 *2 (-697 *6)) (-5 *1 (-698 *5 *6))))) -((-2439 ((|#1| (-687) |#1|) 33 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2782 ((|#1| (-687) |#1|) 23 T ELT)) (-2438 ((|#1| (-687) |#1|) 35 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-699 |#1|) (-10 -7 (-15 -2782 (|#1| (-687) |#1|)) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -2438 (|#1| (-687) |#1|)) (-15 -2439 (|#1| (-687) |#1|))) |%noBranch|)) (-144)) (T -699)) -((-2439 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-144)))) (-2438 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-144)))) (-2782 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-144))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3658 (((-578 $) (-578 |#4|)) 91 T ELT) (((-578 $) (-578 |#4|) (-83)) 118 T ELT)) (-3063 (((-578 |#3|) $) 37 T ELT)) (-2889 (((-83) $) 30 T ELT)) (-2880 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3669 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3664 ((|#4| |#4| $) 97 T ELT)) (-3751 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| $) 133 T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3686 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3971)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3700 (($) 46 T CONST)) (-2885 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3665 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3137 (($ (-578 |#4|)) 39 T ELT)) (-3775 (((-3 $ #1#) $) 87 T ELT)) (-3661 ((|#4| |#4| $) 94 T ELT)) (-1336 (($ $) 69 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#4| $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3670 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3659 ((|#4| |#4| $) 92 T ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3971)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#4|)) (|:| -1685 (-578 |#4|))) $) 110 T ELT)) (-3179 (((-83) |#4| $) 143 T ELT)) (-3177 (((-83) |#4| $) 140 T ELT)) (-3180 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2870 (((-578 |#4|) $) 53 (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3161 ((|#3| $) 38 T ELT)) (-2588 (((-578 |#4|) $) 54 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2895 (((-578 |#3|) $) 36 T ELT)) (-2894 (((-83) |#3| $) 35 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3173 (((-3 |#4| (-578 $)) |#4| |#4| $) 135 T ELT)) (-3172 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| |#4| $) 134 T ELT)) (-3774 (((-3 |#4| #1#) $) 88 T ELT)) (-3174 (((-578 $) |#4| $) 136 T ELT)) (-3176 (((-3 (-83) (-578 $)) |#4| $) 139 T ELT)) (-3175 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3218 (((-578 $) |#4| $) 132 T ELT) (((-578 $) (-578 |#4|) $) 131 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 130 T ELT) (((-578 $) |#4| (-578 $)) 129 T ELT)) (-3417 (($ |#4| $) 124 T ELT) (($ (-578 |#4|) $) 123 T ELT)) (-3673 (((-578 |#4|) $) 112 T ELT)) (-3667 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3662 ((|#4| |#4| $) 95 T ELT)) (-3675 (((-83) $ $) 115 T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3668 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3663 ((|#4| |#4| $) 96 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3777 (((-3 |#4| #1#) $) 89 T ELT)) (-1337 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3655 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3745 (($ $ |#4|) 82 T ELT) (((-578 $) |#4| $) 122 T ELT) (((-578 $) |#4| (-578 $)) 121 T ELT) (((-578 $) (-578 |#4|) $) 120 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 119 T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) 42 T ELT)) (-3380 (((-83) $) 45 T ELT)) (-3541 (($) 44 T ELT)) (-3924 (((-687) $) 111 T ELT)) (-1929 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 43 T ELT)) (-3948 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) 61 T ELT)) (-2891 (($ $ |#3|) 32 T ELT)) (-2893 (($ $ |#3|) 34 T ELT)) (-3660 (($ $) 93 T ELT)) (-2892 (($ $ |#3|) 33 T ELT)) (-3922 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3654 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3666 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-3171 (((-578 $) |#4| $) 128 T ELT) (((-578 $) |#4| (-578 $)) 127 T ELT) (((-578 $) (-578 |#4|) $) 126 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 125 T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 |#3|) $) 86 T ELT)) (-3178 (((-83) |#4| $) 142 T ELT)) (-3909 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (((-687) $) 47 (|has| $ (-6 -3971)) ELT))) -(((-700 |#1| |#2| |#3| |#4|) (-111) (-385) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -700)) -NIL -(-13 (-975 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-882 |#1| |#2| |#3| |#4|) . T) ((-975 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1109 |#1| |#2| |#3| |#4|) . T) ((-1114) . T)) -((-2442 (((-3 (-323) #1="failed") (-261 |#1|) (-823)) 60 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-323) #1#) (-261 |#1|)) 52 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-323) #1#) (-343 (-850 |#1|)) (-823)) 39 (|has| |#1| (-489)) ELT) (((-3 (-323) #1#) (-343 (-850 |#1|))) 35 (|has| |#1| (-489)) ELT) (((-3 (-323) #1#) (-850 |#1|) (-823)) 30 (|has| |#1| (-954)) ELT) (((-3 (-323) #1#) (-850 |#1|)) 24 (|has| |#1| (-954)) ELT)) (-2440 (((-323) (-261 |#1|) (-823)) 92 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-323) (-261 |#1|)) 87 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-323) (-343 (-850 |#1|)) (-823)) 84 (|has| |#1| (-489)) ELT) (((-323) (-343 (-850 |#1|))) 81 (|has| |#1| (-489)) ELT) (((-323) (-850 |#1|) (-823)) 80 (|has| |#1| (-954)) ELT) (((-323) (-850 |#1|)) 77 (|has| |#1| (-954)) ELT) (((-323) |#1| (-823)) 73 T ELT) (((-323) |#1|) 22 T ELT)) (-2443 (((-3 (-140 (-323)) #1#) (-261 (-140 |#1|)) (-823)) 68 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-140 (-323)) #1#) (-261 (-140 |#1|))) 58 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-140 (-323)) #1#) (-261 |#1|) (-823)) 61 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-140 (-323)) #1#) (-261 |#1|)) 59 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-3 (-140 (-323)) #1#) (-343 (-850 (-140 |#1|))) (-823)) 44 (|has| |#1| (-489)) ELT) (((-3 (-140 (-323)) #1#) (-343 (-850 (-140 |#1|)))) 43 (|has| |#1| (-489)) ELT) (((-3 (-140 (-323)) #1#) (-343 (-850 |#1|)) (-823)) 38 (|has| |#1| (-489)) ELT) (((-3 (-140 (-323)) #1#) (-343 (-850 |#1|))) 37 (|has| |#1| (-489)) ELT) (((-3 (-140 (-323)) #1#) (-850 |#1|) (-823)) 28 (|has| |#1| (-954)) ELT) (((-3 (-140 (-323)) #1#) (-850 |#1|)) 26 (|has| |#1| (-954)) ELT) (((-3 (-140 (-323)) #1#) (-850 (-140 |#1|)) (-823)) 18 (|has| |#1| (-144)) ELT) (((-3 (-140 (-323)) #1#) (-850 (-140 |#1|))) 15 (|has| |#1| (-144)) ELT)) (-2441 (((-140 (-323)) (-261 (-140 |#1|)) (-823)) 95 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-140 (-323)) (-261 (-140 |#1|))) 94 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-140 (-323)) (-261 |#1|) (-823)) 93 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-140 (-323)) (-261 |#1|)) 91 (-12 (|has| |#1| (-489)) (|has| |#1| (-749))) ELT) (((-140 (-323)) (-343 (-850 (-140 |#1|))) (-823)) 86 (|has| |#1| (-489)) ELT) (((-140 (-323)) (-343 (-850 (-140 |#1|)))) 85 (|has| |#1| (-489)) ELT) (((-140 (-323)) (-343 (-850 |#1|)) (-823)) 83 (|has| |#1| (-489)) ELT) (((-140 (-323)) (-343 (-850 |#1|))) 82 (|has| |#1| (-489)) ELT) (((-140 (-323)) (-850 |#1|) (-823)) 79 (|has| |#1| (-954)) ELT) (((-140 (-323)) (-850 |#1|)) 78 (|has| |#1| (-954)) ELT) (((-140 (-323)) (-850 (-140 |#1|)) (-823)) 75 (|has| |#1| (-144)) ELT) (((-140 (-323)) (-850 (-140 |#1|))) 74 (|has| |#1| (-144)) ELT) (((-140 (-323)) (-140 |#1|) (-823)) 17 (|has| |#1| (-144)) ELT) (((-140 (-323)) (-140 |#1|)) 13 (|has| |#1| (-144)) ELT) (((-140 (-323)) |#1| (-823)) 27 T ELT) (((-140 (-323)) |#1|) 25 T ELT))) -(((-701 |#1|) (-10 -7 (-15 -2440 ((-323) |#1|)) (-15 -2440 ((-323) |#1| (-823))) (-15 -2441 ((-140 (-323)) |#1|)) (-15 -2441 ((-140 (-323)) |#1| (-823))) (IF (|has| |#1| (-144)) (PROGN (-15 -2441 ((-140 (-323)) (-140 |#1|))) (-15 -2441 ((-140 (-323)) (-140 |#1|) (-823))) (-15 -2441 ((-140 (-323)) (-850 (-140 |#1|)))) (-15 -2441 ((-140 (-323)) (-850 (-140 |#1|)) (-823)))) |%noBranch|) (IF (|has| |#1| (-954)) (PROGN (-15 -2440 ((-323) (-850 |#1|))) (-15 -2440 ((-323) (-850 |#1|) (-823))) (-15 -2441 ((-140 (-323)) (-850 |#1|))) (-15 -2441 ((-140 (-323)) (-850 |#1|) (-823)))) |%noBranch|) (IF (|has| |#1| (-489)) (PROGN (-15 -2440 ((-323) (-343 (-850 |#1|)))) (-15 -2440 ((-323) (-343 (-850 |#1|)) (-823))) (-15 -2441 ((-140 (-323)) (-343 (-850 |#1|)))) (-15 -2441 ((-140 (-323)) (-343 (-850 |#1|)) (-823))) (-15 -2441 ((-140 (-323)) (-343 (-850 (-140 |#1|))))) (-15 -2441 ((-140 (-323)) (-343 (-850 (-140 |#1|))) (-823))) (IF (|has| |#1| (-749)) (PROGN (-15 -2440 ((-323) (-261 |#1|))) (-15 -2440 ((-323) (-261 |#1|) (-823))) (-15 -2441 ((-140 (-323)) (-261 |#1|))) (-15 -2441 ((-140 (-323)) (-261 |#1|) (-823))) (-15 -2441 ((-140 (-323)) (-261 (-140 |#1|)))) (-15 -2441 ((-140 (-323)) (-261 (-140 |#1|)) (-823)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-15 -2443 ((-3 (-140 (-323)) #1="failed") (-850 (-140 |#1|)))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-850 (-140 |#1|)) (-823)))) |%noBranch|) (IF (|has| |#1| (-954)) (PROGN (-15 -2442 ((-3 (-323) #1#) (-850 |#1|))) (-15 -2442 ((-3 (-323) #1#) (-850 |#1|) (-823))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-850 |#1|))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-850 |#1|) (-823)))) |%noBranch|) (IF (|has| |#1| (-489)) (PROGN (-15 -2442 ((-3 (-323) #1#) (-343 (-850 |#1|)))) (-15 -2442 ((-3 (-323) #1#) (-343 (-850 |#1|)) (-823))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-343 (-850 |#1|)))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-343 (-850 |#1|)) (-823))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-343 (-850 (-140 |#1|))))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-343 (-850 (-140 |#1|))) (-823))) (IF (|has| |#1| (-749)) (PROGN (-15 -2442 ((-3 (-323) #1#) (-261 |#1|))) (-15 -2442 ((-3 (-323) #1#) (-261 |#1|) (-823))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-261 |#1|))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-261 |#1|) (-823))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-261 (-140 |#1|)))) (-15 -2443 ((-3 (-140 (-323)) #1#) (-261 (-140 |#1|)) (-823)))) |%noBranch|)) |%noBranch|)) (-548 (-323))) (T -701)) -((-2443 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2443 (*1 *2 *3) (|partial| -12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2443 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2443 (*1 *2 *3) (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2442 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2442 (*1 *2 *3) (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2443 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-343 (-850 (-140 *5)))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2443 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 (-140 *4)))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2443 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2443 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2442 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2442 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2443 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2443 (*1 *2 *3) (|partial| -12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2442 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2442 (*1 *2 *3) (|partial| -12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2443 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-850 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-144)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2443 (*1 *2 *3) (|partial| -12 (-5 *3 (-850 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 (-140 *5)))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 (-140 *4)))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-144)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-850 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-140 *5)) (-5 *4 (-823)) (-4 *5 (-144)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-140 *4)) (-4 *4 (-144)) (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-5 *2 (-140 (-323))) (-5 *1 (-701 *3)) (-4 *3 (-548 (-323))))) (-2441 (*1 *2 *3) (-12 (-5 *2 (-140 (-323))) (-5 *1 (-701 *3)) (-4 *3 (-548 (-323))))) (-2440 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-5 *2 (-323)) (-5 *1 (-701 *3)) (-4 *3 (-548 *2)))) (-2440 (*1 *2 *3) (-12 (-5 *2 (-323)) (-5 *1 (-701 *3)) (-4 *3 (-548 *2))))) -((-2447 (((-823) (-1059)) 90 T ELT)) (-2449 (((-3 (-323) "failed") (-1059)) 36 T ELT)) (-2448 (((-323) (-1059)) 34 T ELT)) (-2445 (((-823) (-1059)) 64 T ELT)) (-2446 (((-1059) (-823)) 74 T ELT)) (-2444 (((-1059) (-823)) 63 T ELT))) -(((-702) (-10 -7 (-15 -2444 ((-1059) (-823))) (-15 -2445 ((-823) (-1059))) (-15 -2446 ((-1059) (-823))) (-15 -2447 ((-823) (-1059))) (-15 -2448 ((-323) (-1059))) (-15 -2449 ((-3 (-323) "failed") (-1059))))) (T -702)) -((-2449 (*1 *2 *3) (|partial| -12 (-5 *3 (-1059)) (-5 *2 (-323)) (-5 *1 (-702)))) (-2448 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-323)) (-5 *1 (-702)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-823)) (-5 *1 (-702)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1059)) (-5 *1 (-702)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-823)) (-5 *1 (-702)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1059)) (-5 *1 (-702))))) -((-2452 (((-1170) (-1164 (-323)) (-478) (-323) (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1458 (-323))) (-323) (-1164 (-323)) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323))) 54 T ELT) (((-1170) (-1164 (-323)) (-478) (-323) (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1458 (-323))) (-323) (-1164 (-323)) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323))) 51 T ELT)) (-2453 (((-1170) (-1164 (-323)) (-478) (-323) (-323) (-478) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323))) 61 T ELT)) (-2451 (((-1170) (-1164 (-323)) (-478) (-323) (-323) (-323) (-323) (-478) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323))) 49 T ELT)) (-2450 (((-1170) (-1164 (-323)) (-478) (-323) (-323) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323))) 63 T ELT) (((-1170) (-1164 (-323)) (-478) (-323) (-323) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323))) 62 T ELT))) -(((-703) (-10 -7 (-15 -2450 ((-1170) (-1164 (-323)) (-478) (-323) (-323) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323)))) (-15 -2450 ((-1170) (-1164 (-323)) (-478) (-323) (-323) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)))) (-15 -2451 ((-1170) (-1164 (-323)) (-478) (-323) (-323) (-323) (-323) (-478) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323)))) (-15 -2452 ((-1170) (-1164 (-323)) (-478) (-323) (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1458 (-323))) (-323) (-1164 (-323)) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323)))) (-15 -2452 ((-1170) (-1164 (-323)) (-478) (-323) (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1458 (-323))) (-323) (-1164 (-323)) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)) (-1164 (-323)))) (-15 -2453 ((-1170) (-1164 (-323)) (-478) (-323) (-323) (-478) (-1 (-1170) (-1164 (-323)) (-1164 (-323)) (-323)))))) (T -703)) -((-2453 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703)))) (-2452 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-478)) (-5 *6 (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1458 (-323)))) (-5 *7 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703)))) (-2452 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-478)) (-5 *6 (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1458 (-323)))) (-5 *7 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703)))) (-2451 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703)))) (-2450 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703)))) (-2450 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703))))) -((-2462 (((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 65 T ELT)) (-2459 (((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 40 T ELT)) (-2461 (((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 64 T ELT)) (-2458 (((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 38 T ELT)) (-2460 (((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 63 T ELT)) (-2457 (((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478)) 24 T ELT)) (-2456 (((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478)) 41 T ELT)) (-2455 (((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478)) 39 T ELT)) (-2454 (((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478)) 37 T ELT))) -(((-704) (-10 -7 (-15 -2454 ((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478))) (-15 -2455 ((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478))) (-15 -2456 ((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478) (-478))) (-15 -2457 ((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2458 ((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2459 ((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2460 ((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2461 ((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))) (-15 -2462 ((-2 (|:| -3379 (-323)) (|:| -1579 (-323)) (|:| |totalpts| (-478)) (|:| |success| (-83))) (-1 (-323) (-323)) (-323) (-323) (-323) (-323) (-478) (-478))))) (T -704)) -((-2462 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2461 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2460 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2459 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2458 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2457 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2456 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2455 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478)))) (-2454 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) (-5 *2 (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) (|:| |success| (-83)))) (-5 *1 (-704)) (-5 *5 (-478))))) -((-3681 (((-1110 |#1|) |#1| (-177) (-478)) 69 T ELT))) -(((-705 |#1|) (-10 -7 (-15 -3681 ((-1110 |#1|) |#1| (-177) (-478)))) (-880)) (T -705)) -((-3681 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-177)) (-5 *5 (-478)) (-5 *2 (-1110 *3)) (-5 *1 (-705 *3)) (-4 *3 (-880))))) -((-3599 (((-478) $) 17 T ELT)) (-3169 (((-83) $) 10 T ELT)) (-3360 (($ $) 19 T ELT))) -(((-706 |#1|) (-10 -7 (-15 -3360 (|#1| |#1|)) (-15 -3599 ((-478) |#1|)) (-15 -3169 ((-83) |#1|))) (-707)) (T -706)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 31 T ELT)) (-1295 (((-3 $ "failed") $ $) 34 T ELT)) (-3599 (((-478) $) 37 T ELT)) (-3700 (($) 30 T CONST)) (-3168 (((-83) $) 28 T ELT)) (-3169 (((-83) $) 38 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3360 (($ $) 36 T ELT)) (-2640 (($) 29 T CONST)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT)) (-3813 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3815 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT) (($ (-478) $) 39 T ELT))) -(((-707) (-111)) (T -707)) -((-3169 (*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-83)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-478)))) (-3360 (*1 *1 *1) (-4 *1 (-707)))) -(-13 (-714) (-21) (-10 -8 (-15 -3169 ((-83) $)) (-15 -3599 ((-478) $)) (-15 -3360 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-749) . T) ((-752) . T) ((-1003) . T) ((-1114) . T)) -((-3168 (((-83) $) 10 T ELT))) -(((-708 |#1|) (-10 -7 (-15 -3168 ((-83) |#1|))) (-709)) (T -708)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 31 T ELT)) (-3700 (($) 30 T CONST)) (-3168 (((-83) $) 28 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 29 T CONST)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT)) (-3815 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT))) -(((-709) (-111)) (T -709)) -((-3168 (*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-83))))) -(-13 (-711) (-23) (-10 -8 (-15 -3168 ((-83) $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-711) . T) ((-749) . T) ((-752) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 31 T ELT)) (-2463 (($ $ $) 35 T ELT)) (-1295 (((-3 $ "failed") $ $) 34 T ELT)) (-3700 (($) 30 T CONST)) (-3168 (((-83) $) 28 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 29 T CONST)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT)) (-3815 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT))) +((-1992 (((-1075 |#1|) (-688)) 114 T ELT)) (-3312 (((-1169 |#1|) (-1169 |#1|) (-824)) 107 T ELT)) (-1990 (((-1175) (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))) |#1|) 122 T ELT)) (-1994 (((-1169 |#1|) (-1169 |#1|) (-688)) 53 T ELT)) (-2979 (((-1169 |#1|) (-824)) 109 T ELT)) (-1996 (((-1169 |#1|) (-1169 |#1|) (-479)) 30 T ELT)) (-1991 (((-1075 |#1|) (-1169 |#1|)) 115 T ELT)) (-2000 (((-1169 |#1|) (-824)) 136 T ELT)) (-1998 (((-83) (-1169 |#1|)) 119 T ELT)) (-3116 (((-1169 |#1|) (-1169 |#1|) (-824)) 99 T ELT)) (-2001 (((-1075 |#1|) (-1169 |#1|)) 130 T ELT)) (-1997 (((-824) (-1169 |#1|)) 95 T ELT)) (-2469 (((-1169 |#1|) (-1169 |#1|)) 38 T ELT)) (-2387 (((-1169 |#1|) (-824) (-824)) 139 T ELT)) (-1995 (((-1169 |#1|) (-1169 |#1|) (-1024) (-1024)) 29 T ELT)) (-1993 (((-1169 |#1|) (-1169 |#1|) (-688) (-1024)) 54 T ELT)) (-1999 (((-1169 (-1169 |#1|)) (-824)) 135 T ELT)) (-3931 (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 120 T ELT)) (** (((-1169 |#1|) (-1169 |#1|) (-479)) 67 T ELT)) (* (((-1169 |#1|) (-1169 |#1|) (-1169 |#1|)) 31 T ELT))) +(((-461 |#1|) (-10 -7 (-15 -1990 ((-1175) (-1169 (-579 (-2 (|:| -3384 |#1|) (|:| -2387 (-1024))))) |#1|)) (-15 -2979 ((-1169 |#1|) (-824))) (-15 -2387 ((-1169 |#1|) (-824) (-824))) (-15 -1991 ((-1075 |#1|) (-1169 |#1|))) (-15 -1992 ((-1075 |#1|) (-688))) (-15 -1993 ((-1169 |#1|) (-1169 |#1|) (-688) (-1024))) (-15 -1994 ((-1169 |#1|) (-1169 |#1|) (-688))) (-15 -1995 ((-1169 |#1|) (-1169 |#1|) (-1024) (-1024))) (-15 -1996 ((-1169 |#1|) (-1169 |#1|) (-479))) (-15 ** ((-1169 |#1|) (-1169 |#1|) (-479))) (-15 * ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3931 ((-1169 |#1|) (-1169 |#1|) (-1169 |#1|))) (-15 -3116 ((-1169 |#1|) (-1169 |#1|) (-824))) (-15 -3312 ((-1169 |#1|) (-1169 |#1|) (-824))) (-15 -2469 ((-1169 |#1|) (-1169 |#1|))) (-15 -1997 ((-824) (-1169 |#1|))) (-15 -1998 ((-83) (-1169 |#1|))) (-15 -1999 ((-1169 (-1169 |#1|)) (-824))) (-15 -2000 ((-1169 |#1|) (-824))) (-15 -2001 ((-1075 |#1|) (-1169 |#1|)))) (-295)) (T -461)) +((-2001 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-295)) (-5 *2 (-1075 *4)) (-5 *1 (-461 *4)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1169 *4)) (-5 *1 (-461 *4)) (-4 *4 (-295)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1169 (-1169 *4))) (-5 *1 (-461 *4)) (-4 *4 (-295)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-461 *4)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-295)) (-5 *2 (-824)) (-5 *1 (-461 *4)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-295)) (-5 *1 (-461 *3)))) (-3312 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-824)) (-4 *4 (-295)) (-5 *1 (-461 *4)))) (-3116 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-824)) (-4 *4 (-295)) (-5 *1 (-461 *4)))) (-3931 (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-295)) (-5 *1 (-461 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-295)) (-5 *1 (-461 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-479)) (-4 *4 (-295)) (-5 *1 (-461 *4)))) (-1996 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-479)) (-4 *4 (-295)) (-5 *1 (-461 *4)))) (-1995 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1024)) (-4 *4 (-295)) (-5 *1 (-461 *4)))) (-1994 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-5 *3 (-688)) (-4 *4 (-295)) (-5 *1 (-461 *4)))) (-1993 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1169 *5)) (-5 *3 (-688)) (-5 *4 (-1024)) (-4 *5 (-295)) (-5 *1 (-461 *5)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1075 *4)) (-5 *1 (-461 *4)) (-4 *4 (-295)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-295)) (-5 *2 (-1075 *4)) (-5 *1 (-461 *4)))) (-2387 (*1 *2 *3 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1169 *4)) (-5 *1 (-461 *4)) (-4 *4 (-295)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1169 *4)) (-5 *1 (-461 *4)) (-4 *4 (-295)))) (-1990 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) (-4 *4 (-295)) (-5 *2 (-1175)) (-5 *1 (-461 *4))))) +((-1987 (((-628 (-1128)) $) NIL T ELT)) (-1983 (((-628 (-1126)) $) NIL T ELT)) (-1985 (((-628 (-1125)) $) NIL T ELT)) (-1988 (((-628 (-483)) $) NIL T ELT)) (-1984 (((-628 (-481)) $) NIL T ELT)) (-1986 (((-628 (-480)) $) NIL T ELT)) (-1982 (((-688) $ (-100)) NIL T ELT)) (-1989 (((-628 (-99)) $) 26 T ELT)) (-2002 (((-1024) $ (-1024)) 31 T ELT)) (-3401 (((-1024) $) 30 T ELT)) (-2543 (((-83) $) 20 T ELT)) (-2004 (($ (-332)) 14 T ELT) (($ (-1063)) 16 T ELT)) (-2003 (((-83) $) 27 T ELT)) (-3928 (((-766) $) 34 T ELT)) (-1688 (($ $) 28 T ELT))) +(((-462) (-13 (-460) (-548 (-766)) (-10 -8 (-15 -2004 ($ (-332))) (-15 -2004 ($ (-1063))) (-15 -2003 ((-83) $)) (-15 -2543 ((-83) $)) (-15 -3401 ((-1024) $)) (-15 -2002 ((-1024) $ (-1024)))))) (T -462)) +((-2004 (*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-462)))) (-2004 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-462)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-462)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-462)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-462)))) (-2002 (*1 *2 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-462))))) +((-2006 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2005 (((-1 |#1| |#1|)) 10 T ELT))) +(((-463 |#1|) (-10 -7 (-15 -2005 ((-1 |#1| |#1|))) (-15 -2006 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -463)) +((-2006 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-463 *3)) (-4 *3 (-13 (-659) (-25))))) (-2005 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-463 *3)) (-4 *3 (-13 (-659) (-25)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3756 (((-579 (-776 |#1| (-688))) $) NIL T ELT)) (-2468 (($ $ $) NIL T ELT)) (-1300 (((-3 $ "failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2878 (($ (-688) |#1|) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3940 (($ (-1 (-688) (-688)) $) NIL T ELT)) (-1972 ((|#1| $) NIL T ELT)) (-3158 (((-688) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 28 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT))) +(((-464 |#1|) (-13 (-711) (-443 (-688) |#1|)) (-750)) (T -464)) +NIL +((-2008 (((-579 |#2|) (-1075 |#1|) |#3|) 98 T ELT)) (-2009 (((-579 (-2 (|:| |outval| |#2|) (|:| |outmult| (-479)) (|:| |outvect| (-579 (-626 |#2|))))) (-626 |#1|) |#3| (-1 (-342 (-1075 |#1|)) (-1075 |#1|))) 114 T ELT)) (-2007 (((-1075 |#1|) (-626 |#1|)) 110 T ELT))) +(((-465 |#1| |#2| |#3|) (-10 -7 (-15 -2007 ((-1075 |#1|) (-626 |#1|))) (-15 -2008 ((-579 |#2|) (-1075 |#1|) |#3|)) (-15 -2009 ((-579 (-2 (|:| |outval| |#2|) (|:| |outmult| (-479)) (|:| |outvect| (-579 (-626 |#2|))))) (-626 |#1|) |#3| (-1 (-342 (-1075 |#1|)) (-1075 |#1|))))) (-308) (-308) (-13 (-308) (-749))) (T -465)) +((-2009 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *6)) (-5 *5 (-1 (-342 (-1075 *6)) (-1075 *6))) (-4 *6 (-308)) (-5 *2 (-579 (-2 (|:| |outval| *7) (|:| |outmult| (-479)) (|:| |outvect| (-579 (-626 *7)))))) (-5 *1 (-465 *6 *7 *4)) (-4 *7 (-308)) (-4 *4 (-13 (-308) (-749))))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-1075 *5)) (-4 *5 (-308)) (-5 *2 (-579 *6)) (-5 *1 (-465 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-749))))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-308)) (-5 *2 (-1075 *4)) (-5 *1 (-465 *4 *5 *6)) (-4 *5 (-308)) (-4 *6 (-13 (-308) (-749)))))) +((-2540 (((-628 (-1128)) $ (-1128)) NIL T ELT)) (-2541 (((-628 (-483)) $ (-483)) NIL T ELT)) (-2539 (((-688) $ (-100)) 39 T ELT)) (-2542 (((-628 (-99)) $ (-99)) 40 T ELT)) (-1987 (((-628 (-1128)) $) NIL T ELT)) (-1983 (((-628 (-1126)) $) NIL T ELT)) (-1985 (((-628 (-1125)) $) NIL T ELT)) (-1988 (((-628 (-483)) $) NIL T ELT)) (-1984 (((-628 (-481)) $) NIL T ELT)) (-1986 (((-628 (-480)) $) NIL T ELT)) (-1982 (((-688) $ (-100)) 35 T ELT)) (-1989 (((-628 (-99)) $) 37 T ELT)) (-2424 (((-83) $) 27 T ELT)) (-2425 (((-628 $) (-510) (-859)) 18 T ELT) (((-628 $) (-425) (-859)) 24 T ELT)) (-3928 (((-766) $) 48 T ELT)) (-1688 (($ $) 42 T ELT))) +(((-466) (-13 (-685 (-510)) (-548 (-766)) (-10 -8 (-15 -2425 ((-628 $) (-425) (-859)))))) (T -466)) +((-2425 (*1 *2 *3 *4) (-12 (-5 *3 (-425)) (-5 *4 (-859)) (-5 *2 (-628 (-466))) (-5 *1 (-466))))) +((-2512 (((-744 (-479))) 12 T ELT)) (-2511 (((-744 (-479))) 14 T ELT)) (-2499 (((-737 (-479))) 9 T ELT))) +(((-467) (-10 -7 (-15 -2499 ((-737 (-479)))) (-15 -2512 ((-744 (-479)))) (-15 -2511 ((-744 (-479)))))) (T -467)) +((-2511 (*1 *2) (-12 (-5 *2 (-744 (-479))) (-5 *1 (-467)))) (-2512 (*1 *2) (-12 (-5 *2 (-744 (-479))) (-5 *1 (-467)))) (-2499 (*1 *2) (-12 (-5 *2 (-737 (-479))) (-5 *1 (-467))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2013 (((-1063) $) 55 T ELT)) (-3244 (((-83) $) 51 T ELT)) (-3240 (((-1080) $) 52 T ELT)) (-3245 (((-83) $) 49 T ELT)) (-3517 (((-1063) $) 50 T ELT)) (-2012 (($ (-1063)) 56 T ELT)) (-3247 (((-83) $) NIL T ELT)) (-3249 (((-83) $) NIL T ELT)) (-3246 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2015 (($ $ (-579 (-1080))) 21 T ELT)) (-2018 (((-51) $) 23 T ELT)) (-3243 (((-83) $) NIL T ELT)) (-3239 (((-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2370 (($ $ (-579 (-1080)) (-1080)) 73 T ELT)) (-3242 (((-83) $) NIL T ELT)) (-3238 (((-177) $) NIL T ELT)) (-2014 (($ $) 44 T ELT)) (-3237 (((-766) $) NIL T ELT)) (-3250 (((-83) $ $) NIL T ELT)) (-3782 (($ $ (-479)) NIL T ELT) (($ $ (-579 (-479))) NIL T ELT)) (-3241 (((-579 $) $) 30 T ELT)) (-2011 (((-1080) (-579 $)) 57 T ELT)) (-3954 (($ (-1063)) NIL T ELT) (($ (-1080)) 19 T ELT) (($ (-479)) 8 T ELT) (($ (-177)) 28 T ELT) (($ (-766)) NIL T ELT) (($ (-579 $)) 65 T ELT) (((-1008) $) 12 T ELT) (($ (-1008)) 13 T ELT)) (-2010 (((-1080) (-1080) (-579 $)) 60 T ELT)) (-3928 (((-766) $) 54 T ELT)) (-3235 (($ $) 59 T ELT)) (-3236 (($ $) 58 T ELT)) (-2016 (($ $ (-579 $)) 66 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3248 (((-83) $) 29 T ELT)) (-2645 (($) 9 T CONST)) (-2651 (($) 11 T CONST)) (-3041 (((-83) $ $) 74 T ELT)) (-3931 (($ $ $) 82 T ELT)) (-3821 (($ $ $) 75 T ELT)) (** (($ $ (-688)) 81 T ELT) (($ $ (-479)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3939 (((-479) $) NIL T ELT))) +(((-468) (-13 (-1009 (-1063) (-1080) (-479) (-177) (-766)) (-549 (-1008)) (-10 -8 (-15 -2018 ((-51) $)) (-15 -3954 ($ (-1008))) (-15 -2016 ($ $ (-579 $))) (-15 -2370 ($ $ (-579 (-1080)) (-1080))) (-15 -2015 ($ $ (-579 (-1080)))) (-15 -3821 ($ $ $)) (-15 * ($ $ $)) (-15 -3931 ($ $ $)) (-15 ** ($ $ (-688))) (-15 ** ($ $ (-479))) (-15 -2645 ($) -3934) (-15 -2651 ($) -3934) (-15 -2014 ($ $)) (-15 -2013 ((-1063) $)) (-15 -2012 ($ (-1063))) (-15 -2011 ((-1080) (-579 $))) (-15 -2010 ((-1080) (-1080) (-579 $)))))) (T -468)) +((-2018 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-468)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-468)))) (-2016 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-468))) (-5 *1 (-468)))) (-2370 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-1080)) (-5 *1 (-468)))) (-2015 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-468)))) (-3821 (*1 *1 *1 *1) (-5 *1 (-468))) (* (*1 *1 *1 *1) (-5 *1 (-468))) (-3931 (*1 *1 *1 *1) (-5 *1 (-468))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-468)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-468)))) (-2645 (*1 *1) (-5 *1 (-468))) (-2651 (*1 *1) (-5 *1 (-468))) (-2014 (*1 *1 *1) (-5 *1 (-468))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-468)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-468)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-579 (-468))) (-5 *2 (-1080)) (-5 *1 (-468)))) (-2010 (*1 *2 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-579 (-468))) (-5 *1 (-468))))) +((-2017 (((-468) (-1080)) 15 T ELT)) (-2018 ((|#1| (-468)) 20 T ELT))) +(((-469 |#1|) (-10 -7 (-15 -2017 ((-468) (-1080))) (-15 -2018 (|#1| (-468)))) (-1119)) (T -469)) +((-2018 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *1 (-469 *2)) (-4 *2 (-1119)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-468)) (-5 *1 (-469 *4)) (-4 *4 (-1119))))) +((-3435 ((|#2| |#2|) 17 T ELT)) (-3433 ((|#2| |#2|) 13 T ELT)) (-3436 ((|#2| |#2| (-479) (-479)) 20 T ELT)) (-3434 ((|#2| |#2|) 15 T ELT))) +(((-470 |#1| |#2|) (-10 -7 (-15 -3433 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -3436 (|#2| |#2| (-479) (-479)))) (-13 (-490) (-118)) (-1162 |#1|)) (T -470)) +((-3436 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-479)) (-4 *4 (-13 (-490) (-118))) (-5 *1 (-470 *4 *2)) (-4 *2 (-1162 *4)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-490) (-118))) (-5 *1 (-470 *3 *2)) (-4 *2 (-1162 *3)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-490) (-118))) (-5 *1 (-470 *3 *2)) (-4 *2 (-1162 *3)))) (-3433 (*1 *2 *2) (-12 (-4 *3 (-13 (-490) (-118))) (-5 *1 (-470 *3 *2)) (-4 *2 (-1162 *3))))) +((-2021 (((-579 (-245 (-851 |#2|))) (-579 |#2|) (-579 (-1080))) 32 T ELT)) (-2019 (((-579 |#2|) (-851 |#1|) |#3|) 54 T ELT) (((-579 |#2|) (-1075 |#1|) |#3|) 53 T ELT)) (-2020 (((-579 (-579 |#2|)) (-579 (-851 |#1|)) (-579 (-851 |#1|)) (-579 (-1080)) |#3|) 106 T ELT))) +(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2019 ((-579 |#2|) (-1075 |#1|) |#3|)) (-15 -2019 ((-579 |#2|) (-851 |#1|) |#3|)) (-15 -2020 ((-579 (-579 |#2|)) (-579 (-851 |#1|)) (-579 (-851 |#1|)) (-579 (-1080)) |#3|)) (-15 -2021 ((-579 (-245 (-851 |#2|))) (-579 |#2|) (-579 (-1080))))) (-386) (-308) (-13 (-308) (-749))) (T -471)) +((-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *6)) (-5 *4 (-579 (-1080))) (-4 *6 (-308)) (-5 *2 (-579 (-245 (-851 *6)))) (-5 *1 (-471 *5 *6 *7)) (-4 *5 (-386)) (-4 *7 (-13 (-308) (-749))))) (-2020 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-579 (-851 *6))) (-5 *4 (-579 (-1080))) (-4 *6 (-386)) (-5 *2 (-579 (-579 *7))) (-5 *1 (-471 *6 *7 *5)) (-4 *7 (-308)) (-4 *5 (-13 (-308) (-749))))) (-2019 (*1 *2 *3 *4) (-12 (-5 *3 (-851 *5)) (-4 *5 (-386)) (-5 *2 (-579 *6)) (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-749))))) (-2019 (*1 *2 *3 *4) (-12 (-5 *3 (-1075 *5)) (-4 *5 (-386)) (-5 *2 (-579 *6)) (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-749)))))) +((-2024 ((|#2| |#2| |#1|) 17 T ELT)) (-2022 ((|#2| (-579 |#2|)) 30 T ELT)) (-2023 ((|#2| (-579 |#2|)) 51 T ELT))) +(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2022 (|#2| (-579 |#2|))) (-15 -2023 (|#2| (-579 |#2|))) (-15 -2024 (|#2| |#2| |#1|))) (-254) (-1145 |#1|) |#1| (-1 |#1| |#1| (-688))) (T -472)) +((-2024 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-688))) (-5 *1 (-472 *3 *2 *4 *5)) (-4 *2 (-1145 *3)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-472 *4 *2 *5 *6)) (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-688))))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-472 *4 *2 *5 *6)) (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-688)))))) +((-3714 (((-342 (-1075 |#4|)) (-1075 |#4|) (-1 (-342 (-1075 |#3|)) (-1075 |#3|))) 90 T ELT) (((-342 |#4|) |#4| (-1 (-342 (-1075 |#3|)) (-1075 |#3|))) 213 T ELT))) +(((-473 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3714 ((-342 |#4|) |#4| (-1 (-342 (-1075 |#3|)) (-1075 |#3|)))) (-15 -3714 ((-342 (-1075 |#4|)) (-1075 |#4|) (-1 (-342 (-1075 |#3|)) (-1075 |#3|))))) (-750) (-711) (-13 (-254) (-118)) (-855 |#3| |#2| |#1|)) (T -473)) +((-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-342 (-1075 *7)) (-1075 *7))) (-4 *7 (-13 (-254) (-118))) (-4 *5 (-750)) (-4 *6 (-711)) (-4 *8 (-855 *7 *6 *5)) (-5 *2 (-342 (-1075 *8))) (-5 *1 (-473 *5 *6 *7 *8)) (-5 *3 (-1075 *8)))) (-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-342 (-1075 *7)) (-1075 *7))) (-4 *7 (-13 (-254) (-118))) (-4 *5 (-750)) (-4 *6 (-711)) (-5 *2 (-342 *3)) (-5 *1 (-473 *5 *6 *7 *3)) (-4 *3 (-855 *7 *6 *5))))) +((-3435 ((|#4| |#4|) 74 T ELT)) (-3433 ((|#4| |#4|) 70 T ELT)) (-3436 ((|#4| |#4| (-479) (-479)) 76 T ELT)) (-3434 ((|#4| |#4|) 72 T ELT))) +(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3433 (|#4| |#4|)) (-15 -3434 (|#4| |#4|)) (-15 -3435 (|#4| |#4|)) (-15 -3436 (|#4| |#4| (-479) (-479)))) (-13 (-308) (-314) (-549 (-479))) (-1145 |#1|) (-657 |#1| |#2|) (-1162 |#3|)) (T -474)) +((-3436 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-479)) (-4 *4 (-13 (-308) (-314) (-549 *3))) (-4 *5 (-1145 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-474 *4 *5 *6 *2)) (-4 *2 (-1162 *6)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-4 *4 (-1145 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-4 *4 (-1145 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) (-3433 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-4 *4 (-1145 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-1162 *5))))) +((-3435 ((|#2| |#2|) 27 T ELT)) (-3433 ((|#2| |#2|) 23 T ELT)) (-3436 ((|#2| |#2| (-479) (-479)) 29 T ELT)) (-3434 ((|#2| |#2|) 25 T ELT))) +(((-475 |#1| |#2|) (-10 -7 (-15 -3433 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3435 (|#2| |#2|)) (-15 -3436 (|#2| |#2| (-479) (-479)))) (-13 (-308) (-314) (-549 (-479))) (-1162 |#1|)) (T -475)) +((-3436 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-479)) (-4 *4 (-13 (-308) (-314) (-549 *3))) (-5 *1 (-475 *4 *2)) (-4 *2 (-1162 *4)))) (-3435 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1162 *3)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1162 *3)))) (-3433 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1162 *3))))) +((-2025 (((-3 (-479) #1="failed") |#2| |#1| (-1 (-3 (-479) #1#) |#1|)) 18 T ELT) (((-3 (-479) #1#) |#2| |#1| (-479) (-1 (-3 (-479) #1#) |#1|)) 14 T ELT) (((-3 (-479) #1#) |#2| (-479) (-1 (-3 (-479) #1#) |#1|)) 30 T ELT))) +(((-476 |#1| |#2|) (-10 -7 (-15 -2025 ((-3 (-479) #1="failed") |#2| (-479) (-1 (-3 (-479) #1#) |#1|))) (-15 -2025 ((-3 (-479) #1#) |#2| |#1| (-479) (-1 (-3 (-479) #1#) |#1|))) (-15 -2025 ((-3 (-479) #1#) |#2| |#1| (-1 (-3 (-479) #1#) |#1|)))) (-955) (-1145 |#1|)) (T -476)) +((-2025 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-479) #1="failed") *4)) (-4 *4 (-955)) (-5 *2 (-479)) (-5 *1 (-476 *4 *3)) (-4 *3 (-1145 *4)))) (-2025 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-479) #1#) *4)) (-4 *4 (-955)) (-5 *2 (-479)) (-5 *1 (-476 *4 *3)) (-4 *3 (-1145 *4)))) (-2025 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-479) #1#) *5)) (-4 *5 (-955)) (-5 *2 (-479)) (-5 *1 (-476 *5 *3)) (-4 *3 (-1145 *5))))) +((-2034 (($ $ $) 87 T ELT)) (-3953 (((-342 $) $) 50 T ELT)) (-3141 (((-3 (-479) #1="failed") $) 62 T ELT)) (-3140 (((-479) $) 40 T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) 80 T ELT)) (-3008 (((-83) $) 24 T ELT)) (-3007 (((-344 (-479)) $) 78 T ELT)) (-3705 (((-83) $) 53 T ELT)) (-2027 (($ $ $ $) 94 T ELT)) (-1357 (($ $ $) 60 T ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 75 T ELT)) (-3427 (((-628 $) $) 70 T ELT)) (-2031 (($ $) 22 T ELT)) (-2026 (($ $ $) 92 T ELT)) (-3428 (($) 63 T CONST)) (-1355 (($ $) 56 T ELT)) (-3714 (((-342 $) $) 48 T ELT)) (-2659 (((-83) $) 15 T ELT)) (-1595 (((-688) $) 30 T ELT)) (-3740 (($ $) 11 T ELT) (($ $ (-688)) NIL T ELT)) (-3382 (($ $) 16 T ELT)) (-3954 (((-479) $) NIL T ELT) (((-468) $) 39 T ELT) (((-794 (-479)) $) 43 T ELT) (((-324) $) 33 T ELT) (((-177) $) 36 T ELT)) (-3110 (((-688)) 9 T CONST)) (-2036 (((-83) $ $) 19 T ELT)) (-3086 (($ $ $) 58 T ELT))) +(((-477 |#1|) (-10 -7 (-15 -2026 (|#1| |#1| |#1|)) (-15 -2027 (|#1| |#1| |#1| |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -3382 (|#1| |#1|)) (-15 -3009 ((-3 (-344 (-479)) #1="failed") |#1|)) (-15 -3007 ((-344 (-479)) |#1|)) (-15 -3008 ((-83) |#1|)) (-15 -2034 (|#1| |#1| |#1|)) (-15 -2036 ((-83) |#1| |#1|)) (-15 -2659 ((-83) |#1|)) (-15 -3428 (|#1|) -3934) (-15 -3427 ((-628 |#1|) |#1|)) (-15 -3954 ((-177) |#1|)) (-15 -3954 ((-324) |#1|)) (-15 -1357 (|#1| |#1| |#1|)) (-15 -1355 (|#1| |#1|)) (-15 -3086 (|#1| |#1| |#1|)) (-15 -2781 ((-792 (-479) |#1|) |#1| (-794 (-479)) (-792 (-479) |#1|))) (-15 -3954 ((-794 (-479)) |#1|)) (-15 -3954 ((-468) |#1|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3954 ((-479) |#1|)) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1|)) (-15 -1595 ((-688) |#1|)) (-15 -3714 ((-342 |#1|) |#1|)) (-15 -3953 ((-342 |#1|) |#1|)) (-15 -3705 ((-83) |#1|)) (-15 -3110 ((-688)) -3934)) (-478)) (T -477)) +((-3110 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-477 *3)) (-4 *3 (-478))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-2034 (($ $ $) 99 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-2029 (($ $ $ $) 88 T ELT)) (-3757 (($ $) 63 T ELT)) (-3953 (((-342 $) $) 64 T ELT)) (-1596 (((-83) $ $) 142 T ELT)) (-3605 (((-479) $) 131 T ELT)) (-2426 (($ $ $) 102 T ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 (-479) "failed") $) 123 T ELT)) (-3140 (((-479) $) 124 T ELT)) (-2549 (($ $ $) 146 T ELT)) (-2266 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 121 T ELT) (((-626 (-479)) (-626 $)) 120 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3009 (((-3 (-344 (-479)) "failed") $) 96 T ELT)) (-3008 (((-83) $) 98 T ELT)) (-3007 (((-344 (-479)) $) 97 T ELT)) (-2979 (($) 95 T ELT) (($ $) 94 T ELT)) (-2548 (($ $ $) 145 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 140 T ELT)) (-3705 (((-83) $) 65 T ELT)) (-2027 (($ $ $ $) 86 T ELT)) (-2035 (($ $ $) 100 T ELT)) (-3170 (((-83) $) 133 T ELT)) (-1357 (($ $ $) 111 T ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 114 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2658 (((-83) $) 106 T ELT)) (-3427 (((-628 $) $) 108 T ELT)) (-3171 (((-83) $) 132 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 149 T ELT)) (-2028 (($ $ $ $) 87 T ELT)) (-2516 (($ $ $) 139 T ELT)) (-2842 (($ $ $) 138 T ELT)) (-2031 (($ $) 90 T ELT)) (-3815 (($ $) 103 T ELT)) (-2267 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 119 T ELT) (((-626 (-479)) (-1169 $)) 118 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2026 (($ $ $) 85 T ELT)) (-3428 (($) 107 T CONST)) (-2033 (($ $) 92 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-1355 (($ $) 112 T ELT)) (-3714 (((-342 $) $) 62 T ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 147 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 141 T ELT)) (-2659 (((-83) $) 105 T ELT)) (-1595 (((-688) $) 143 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 144 T ELT)) (-3740 (($ $) 129 T ELT) (($ $ (-688)) 127 T ELT)) (-2032 (($ $) 91 T ELT)) (-3382 (($ $) 93 T ELT)) (-3954 (((-479) $) 125 T ELT) (((-468) $) 116 T ELT) (((-794 (-479)) $) 115 T ELT) (((-324) $) 110 T ELT) (((-177) $) 109 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-479)) 122 T ELT)) (-3110 (((-688)) 37 T CONST)) (-2036 (((-83) $ $) 101 T ELT)) (-3086 (($ $ $) 113 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2679 (($) 104 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2030 (($ $ $ $) 89 T ELT)) (-3365 (($ $) 130 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $) 128 T ELT) (($ $ (-688)) 126 T ELT)) (-2551 (((-83) $ $) 137 T ELT)) (-2552 (((-83) $ $) 135 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 136 T ELT)) (-2670 (((-83) $ $) 134 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-479) $) 117 T ELT))) +(((-478) (-111)) (T -478)) +((-2658 (*1 *2 *1) (-12 (-4 *1 (-478)) (-5 *2 (-83)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-478)) (-5 *2 (-83)))) (-2679 (*1 *1) (-4 *1 (-478))) (-3815 (*1 *1 *1) (-4 *1 (-478))) (-2426 (*1 *1 *1 *1) (-4 *1 (-478))) (-2036 (*1 *2 *1 *1) (-12 (-4 *1 (-478)) (-5 *2 (-83)))) (-2035 (*1 *1 *1 *1) (-4 *1 (-478))) (-2034 (*1 *1 *1 *1) (-4 *1 (-478))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-478)) (-5 *2 (-83)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-478)) (-5 *2 (-344 (-479))))) (-3009 (*1 *2 *1) (|partial| -12 (-4 *1 (-478)) (-5 *2 (-344 (-479))))) (-2979 (*1 *1) (-4 *1 (-478))) (-2979 (*1 *1 *1) (-4 *1 (-478))) (-3382 (*1 *1 *1) (-4 *1 (-478))) (-2033 (*1 *1 *1) (-4 *1 (-478))) (-2032 (*1 *1 *1) (-4 *1 (-478))) (-2031 (*1 *1 *1) (-4 *1 (-478))) (-2030 (*1 *1 *1 *1 *1) (-4 *1 (-478))) (-2029 (*1 *1 *1 *1 *1) (-4 *1 (-478))) (-2028 (*1 *1 *1 *1 *1) (-4 *1 (-478))) (-2027 (*1 *1 *1 *1 *1) (-4 *1 (-478))) (-2026 (*1 *1 *1 *1) (-4 *1 (-478)))) +(-13 (-1124) (-254) (-734) (-188) (-549 (-479)) (-944 (-479)) (-576 (-479)) (-549 (-468)) (-549 (-794 (-479))) (-790 (-479)) (-114) (-927) (-118) (-1056) (-10 -8 (-15 -2658 ((-83) $)) (-15 -2659 ((-83) $)) (-6 -3976) (-15 -2679 ($)) (-15 -3815 ($ $)) (-15 -2426 ($ $ $)) (-15 -2036 ((-83) $ $)) (-15 -2035 ($ $ $)) (-15 -2034 ($ $ $)) (-15 -3008 ((-83) $)) (-15 -3007 ((-344 (-479)) $)) (-15 -3009 ((-3 (-344 (-479)) "failed") $)) (-15 -2979 ($)) (-15 -2979 ($ $)) (-15 -3382 ($ $)) (-15 -2033 ($ $)) (-15 -2032 ($ $)) (-15 -2031 ($ $)) (-15 -2030 ($ $ $ $)) (-15 -2029 ($ $ $ $)) (-15 -2028 ($ $ $ $)) (-15 -2027 ($ $ $ $)) (-15 -2026 ($ $ $)) (-6 -3975))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-114) . T) ((-144) . T) ((-549 (-177)) . T) ((-549 (-324)) . T) ((-549 (-468)) . T) ((-549 (-479)) . T) ((-549 (-794 (-479))) . T) ((-184 $) . T) ((-188) . T) ((-187) . T) ((-242) . T) ((-254) . T) ((-386) . T) ((-490) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-479)) . T) ((-586 $) . T) ((-578 $) . T) ((-576 (-479)) . T) ((-650 $) . T) ((-659) . T) ((-708) . T) ((-710) . T) ((-712) . T) ((-715) . T) ((-734) . T) ((-749) . T) ((-750) . T) ((-753) . T) ((-790 (-479)) . T) ((-826) . T) ((-927) . T) ((-944 (-479)) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1056) . T) ((-1119) . T) ((-1124) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 8 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 77 T ELT)) (-2050 (($ $) 78 T ELT)) (-2048 (((-83) $) NIL T ELT)) (-2034 (($ $ $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2029 (($ $ $ $) 32 T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL T ELT)) (-2426 (($ $ $) 71 T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL T ELT)) (-2549 (($ $ $) 33 T ELT)) (-2266 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 54 T ELT) (((-626 (-479)) (-626 $)) 50 T ELT)) (-3449 (((-3 $ #1#) $) 74 T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) NIL T ELT)) (-3008 (((-83) $) NIL T ELT)) (-3007 (((-344 (-479)) $) NIL T ELT)) (-2979 (($) 56 T ELT) (($ $) 57 T ELT)) (-2548 (($ $ $) 70 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-2027 (($ $ $ $) NIL T ELT)) (-2035 (($ $ $) 47 T ELT)) (-3170 (((-83) $) 22 T ELT)) (-1357 (($ $ $) NIL T ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL T ELT)) (-2397 (((-83) $) 9 T ELT)) (-2658 (((-83) $) 64 T ELT)) (-3427 (((-628 $) $) NIL T ELT)) (-3171 (((-83) $) 21 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2028 (($ $ $ $) 34 T ELT)) (-2516 (($ $ $) 67 T ELT)) (-2842 (($ $ $) 66 T ELT)) (-2031 (($ $) NIL T ELT)) (-3815 (($ $) 29 T ELT)) (-2267 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL T ELT) (((-626 (-479)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) 46 T ELT)) (-2026 (($ $ $) NIL T ELT)) (-3428 (($) NIL T CONST)) (-2033 (($ $) 15 T ELT)) (-3227 (((-1024) $) 19 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 109 T ELT)) (-3128 (($ $ $) 75 T ELT) (($ (-579 $)) NIL T ELT)) (-1355 (($ $) NIL T ELT)) (-3714 (((-342 $) $) 95 T ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) 93 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-2659 (((-83) $) 65 T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 69 T ELT)) (-3740 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2032 (($ $) 17 T ELT)) (-3382 (($ $) 13 T ELT)) (-3954 (((-479) $) 28 T ELT) (((-468) $) 43 T ELT) (((-794 (-479)) $) NIL T ELT) (((-324) $) 37 T ELT) (((-177) $) 40 T ELT)) (-3928 (((-766) $) 26 T ELT) (($ (-479)) 27 T ELT) (($ $) NIL T ELT) (($ (-479)) 27 T ELT)) (-3110 (((-688)) NIL T CONST)) (-2036 (((-83) $ $) NIL T ELT)) (-3086 (($ $ $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2679 (($) 12 T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2030 (($ $ $ $) 31 T ELT)) (-3365 (($ $) 55 T ELT)) (-2645 (($) 10 T CONST)) (-2651 (($) 11 T CONST)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2551 (((-83) $ $) 30 T ELT)) (-2552 (((-83) $ $) 58 T ELT)) (-3041 (((-83) $ $) 7 T ELT)) (-2669 (((-83) $ $) 59 T ELT)) (-2670 (((-83) $ $) 20 T ELT)) (-3819 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-3821 (($ $ $) 14 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 63 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-479) $) 61 T ELT))) +(((-479) (-13 (-478) (-10 -7 (-6 -3964) (-6 -3969) (-6 -3965)))) (T -479)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT))) +(((-480) (-13 (-746) (-10 -8 (-15 -3706 ($) -3934)))) (T -480)) +((-3706 (*1 *1) (-5 *1 (-480)))) +((-479) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT))) +(((-481) (-13 (-746) (-10 -8 (-15 -3706 ($) -3934)))) (T -481)) +((-3706 (*1 *1) (-5 *1 (-481)))) +((-479) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT))) +(((-482) (-13 (-746) (-10 -8 (-15 -3706 ($) -3934)))) (T -482)) +((-3706 (*1 *1) (-5 *1 (-482)))) +((-479) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT))) +(((-483) (-13 (-746) (-10 -8 (-15 -3706 ($) -3934)))) (T -483)) +((-3706 (*1 *1) (-5 *1 (-483)))) +((-479) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3581 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2185 (((-1175) $ |#1| |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) NIL T ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-2219 (((-579 |#1|) $) NIL T ELT)) (-2220 (((-83) |#1| $) NIL T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2190 (((-579 |#1|) $) NIL T ELT)) (-2191 (((-83) |#1| $) NIL T ELT)) (-3227 (((-1024) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-3783 ((|#2| $) NIL (|has| |#1| (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1454 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3928 (((-766) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-548 (-766)))) ELT)) (-1254 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-484 |#1| |#2| |#3|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -3977))) (-1006) (-1006) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -3977)))) (T -484)) +NIL +((-2037 (((-514 |#2|) |#2| (-546 |#2|) (-546 |#2|) (-1 (-1075 |#2|) (-1075 |#2|))) 50 T ELT))) +(((-485 |#1| |#2|) (-10 -7 (-15 -2037 ((-514 |#2|) |#2| (-546 |#2|) (-546 |#2|) (-1 (-1075 |#2|) (-1075 |#2|))))) (-490) (-13 (-27) (-358 |#1|))) (T -485)) +((-2037 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-546 *3)) (-5 *5 (-1 (-1075 *3) (-1075 *3))) (-4 *3 (-13 (-27) (-358 *6))) (-4 *6 (-490)) (-5 *2 (-514 *3)) (-5 *1 (-485 *6 *3))))) +((-2039 (((-514 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2040 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2038 (((-514 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-486 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2038 ((-514 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2039 ((-514 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2040 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-490) (-944 (-479))) (-13 (-27) (-358 |#1|)) (-1145 |#2|) (-1145 (-344 |#3|)) (-287 |#2| |#3| |#4|)) (T -486)) +((-2040 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-27) (-358 *4))) (-4 *4 (-13 (-490) (-944 (-479)))) (-4 *7 (-1145 (-344 *6))) (-5 *1 (-486 *4 *5 *6 *7 *2)) (-4 *2 (-287 *5 *6 *7)))) (-2039 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-13 (-27) (-358 *5))) (-4 *5 (-13 (-490) (-944 (-479)))) (-4 *8 (-1145 (-344 *7))) (-5 *2 (-514 *3)) (-5 *1 (-486 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-13 (-27) (-358 *5))) (-4 *5 (-13 (-490) (-944 (-479)))) (-4 *8 (-1145 (-344 *7))) (-5 *2 (-514 *3)) (-5 *1 (-486 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8))))) +((-2043 (((-83) (-479) (-479)) 12 T ELT)) (-2041 (((-479) (-479)) 7 T ELT)) (-2042 (((-479) (-479) (-479)) 10 T ELT))) +(((-487) (-10 -7 (-15 -2041 ((-479) (-479))) (-15 -2042 ((-479) (-479) (-479))) (-15 -2043 ((-83) (-479) (-479))))) (T -487)) +((-2043 (*1 *2 *3 *3) (-12 (-5 *3 (-479)) (-5 *2 (-83)) (-5 *1 (-487)))) (-2042 (*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-487)))) (-2041 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-487))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2589 ((|#1| $) 74 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-3474 (($ $) 104 T ELT)) (-3621 (($ $) 87 T ELT)) (-2468 ((|#1| $) 75 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3022 (($ $) 86 T ELT)) (-3472 (($ $) 103 T ELT)) (-3620 (($ $) 88 T ELT)) (-3476 (($ $) 102 T ELT)) (-3619 (($ $) 89 T ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 (-479) "failed") $) 82 T ELT)) (-3140 (((-479) $) 83 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2046 (($ |#1| |#1|) 79 T ELT)) (-3170 (((-83) $) 73 T ELT)) (-3609 (($) 114 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 85 T ELT)) (-3171 (((-83) $) 72 T ELT)) (-2516 (($ $ $) 115 T ELT)) (-2842 (($ $ $) 116 T ELT)) (-3924 (($ $) 111 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2047 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-344 (-479))) 77 T ELT)) (-2045 ((|#1| $) 76 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-3925 (($ $) 112 T ELT)) (-3477 (($ $) 101 T ELT)) (-3618 (($ $) 90 T ELT)) (-3475 (($ $) 100 T ELT)) (-3617 (($ $) 91 T ELT)) (-3473 (($ $) 99 T ELT)) (-3616 (($ $) 92 T ELT)) (-2044 (((-83) $ |#1|) 71 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-479)) 81 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-3480 (($ $) 110 T ELT)) (-3468 (($ $) 98 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-3478 (($ $) 109 T ELT)) (-3466 (($ $) 97 T ELT)) (-3482 (($ $) 108 T ELT)) (-3470 (($ $) 96 T ELT)) (-3483 (($ $) 107 T ELT)) (-3471 (($ $) 95 T ELT)) (-3481 (($ $) 106 T ELT)) (-3469 (($ $) 94 T ELT)) (-3479 (($ $) 105 T ELT)) (-3467 (($ $) 93 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2551 (((-83) $ $) 117 T ELT)) (-2552 (((-83) $ $) 119 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 118 T ELT)) (-2670 (((-83) $ $) 120 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-344 (-479))) 84 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-488 |#1|) (-111) (-13 (-341) (-1105))) (T -488)) +((-2047 (*1 *1 *2 *2) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105))))) (-2046 (*1 *1 *2 *2) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105))))) (-2047 (*1 *1 *2) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105))))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-4 *1 (-488 *3)) (-4 *3 (-13 (-341) (-1105))))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105))))) (-2468 (*1 *2 *1) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105))))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105))))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-488 *3)) (-4 *3 (-13 (-341) (-1105))) (-5 *2 (-83)))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-488 *3)) (-4 *3 (-13 (-341) (-1105))) (-5 *2 (-83)))) (-2044 (*1 *2 *1 *3) (-12 (-4 *1 (-488 *3)) (-4 *3 (-13 (-341) (-1105))) (-5 *2 (-83))))) +(-13 (-386) (-750) (-1105) (-909) (-944 (-479)) (-10 -8 (-6 -3752) (-15 -2047 ($ |t#1| |t#1|)) (-15 -2046 ($ |t#1| |t#1|)) (-15 -2047 ($ |t#1|)) (-15 -2047 ($ (-344 (-479)))) (-15 -2045 (|t#1| $)) (-15 -2468 (|t#1| $)) (-15 -2589 (|t#1| $)) (-15 -3170 ((-83) $)) (-15 -3171 ((-83) $)) (-15 -2044 ((-83) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-236) . T) ((-242) . T) ((-386) . T) ((-427) . T) ((-490) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-578 $) . T) ((-650 $) . T) ((-659) . T) ((-750) . T) ((-753) . T) ((-909) . T) ((-944 (-479)) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1105) . T) ((-1108) . T) ((-1119) . T)) +((-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 9 T ELT)) (-2050 (($ $) 11 T ELT)) (-2048 (((-83) $) 20 T ELT)) (-3449 (((-3 $ "failed") $) 16 T ELT)) (-2049 (((-83) $ $) 22 T ELT))) +(((-489 |#1|) (-10 -7 (-15 -2048 ((-83) |#1|)) (-15 -2049 ((-83) |#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -2051 ((-2 (|:| -1760 |#1|) (|:| -3964 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1|))) (-490)) (T -489)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-490) (-111)) (T -490)) +((-3448 (*1 *1 *1 *1) (|partial| -4 *1 (-490))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1760 *1) (|:| -3964 *1) (|:| |associate| *1))) (-4 *1 (-490)))) (-2050 (*1 *1 *1) (-4 *1 (-490))) (-2049 (*1 *2 *1 *1) (-12 (-4 *1 (-490)) (-5 *2 (-83)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-490)) (-5 *2 (-83))))) +(-13 (-144) (-38 $) (-242) (-10 -8 (-15 -3448 ((-3 $ "failed") $ $)) (-15 -2051 ((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $)) (-15 -2050 ($ $)) (-15 -2049 ((-83) $ $)) (-15 -2048 ((-83) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-242) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-578 $) . T) ((-650 $) . T) ((-659) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2053 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1080) (-579 |#2|)) 38 T ELT)) (-2055 (((-514 |#2|) |#2| (-1080)) 63 T ELT)) (-2054 (((-3 |#2| #1#) |#2| (-1080)) 156 T ELT)) (-2056 (((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1080) (-546 |#2|) (-579 (-546 |#2|))) 159 T ELT)) (-2052 (((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1080) |#2|) 41 T ELT))) +(((-491 |#1| |#2|) (-10 -7 (-15 -2052 ((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1080) |#2|)) (-15 -2053 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1080) (-579 |#2|))) (-15 -2054 ((-3 |#2| #1#) |#2| (-1080))) (-15 -2055 ((-514 |#2|) |#2| (-1080))) (-15 -2056 ((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1080) (-546 |#2|) (-579 (-546 |#2|))))) (-13 (-386) (-118) (-944 (-479)) (-576 (-479))) (-13 (-27) (-1105) (-358 |#1|))) (T -491)) +((-2056 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1080)) (-5 *6 (-579 (-546 *3))) (-5 *5 (-546 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *7))) (-4 *7 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-491 *7 *3)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-514 *3)) (-5 *1 (-491 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) (-2054 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) (-5 *1 (-491 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4))))) (-2053 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-579 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-491 *6 *3)))) (-2052 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1080)) (-4 *5 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-491 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5)))))) +((-3953 (((-342 |#1|) |#1|) 17 T ELT)) (-3714 (((-342 |#1|) |#1|) 32 T ELT)) (-2058 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2057 (((-342 |#1|) |#1|) 59 T ELT))) +(((-492 |#1|) (-10 -7 (-15 -3714 ((-342 |#1|) |#1|)) (-15 -3953 ((-342 |#1|) |#1|)) (-15 -2057 ((-342 |#1|) |#1|)) (-15 -2058 ((-3 |#1| "failed") |#1|))) (-478)) (T -492)) +((-2058 (*1 *2 *2) (|partial| -12 (-5 *1 (-492 *2)) (-4 *2 (-478)))) (-2057 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-492 *3)) (-4 *3 (-478)))) (-3953 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-492 *3)) (-4 *3 (-478)))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-492 *3)) (-4 *3 (-478))))) +((-3068 (((-1075 (-344 (-1075 |#2|))) |#2| (-546 |#2|) (-546 |#2|) (-1075 |#2|)) 35 T ELT)) (-2061 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-546 |#2|) (-546 |#2|) (-579 |#2|) (-546 |#2|) |#2| (-344 (-1075 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-546 |#2|) (-546 |#2|) (-579 |#2|) |#2| (-1075 |#2|)) 115 T ELT)) (-2059 (((-514 |#2|) |#2| (-546 |#2|) (-546 |#2|) (-546 |#2|) |#2| (-344 (-1075 |#2|))) 85 T ELT) (((-514 |#2|) |#2| (-546 |#2|) (-546 |#2|) |#2| (-1075 |#2|)) 55 T ELT)) (-2060 (((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-546 |#2|) (-546 |#2|) |#2| (-546 |#2|) |#2| (-344 (-1075 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-546 |#2|) (-546 |#2|) |#2| |#2| (-1075 |#2|)) 114 T ELT)) (-2062 (((-3 |#2| #1#) |#2| |#2| (-546 |#2|) (-546 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1080)) (-546 |#2|) |#2| (-344 (-1075 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-546 |#2|) (-546 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1080)) |#2| (-1075 |#2|)) 116 T ELT)) (-2063 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1999 (-579 |#2|))) |#3| |#2| (-546 |#2|) (-546 |#2|) (-546 |#2|) |#2| (-344 (-1075 |#2|))) 133 (|has| |#3| (-596 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1999 (-579 |#2|))) |#3| |#2| (-546 |#2|) (-546 |#2|) |#2| (-1075 |#2|)) 132 (|has| |#3| (-596 |#2|)) ELT)) (-3069 ((|#2| (-1075 (-344 (-1075 |#2|))) (-546 |#2|) |#2|) 53 T ELT)) (-3064 (((-1075 (-344 (-1075 |#2|))) (-1075 |#2|) (-546 |#2|)) 34 T ELT))) +(((-493 |#1| |#2| |#3|) (-10 -7 (-15 -2059 ((-514 |#2|) |#2| (-546 |#2|) (-546 |#2|) |#2| (-1075 |#2|))) (-15 -2059 ((-514 |#2|) |#2| (-546 |#2|) (-546 |#2|) (-546 |#2|) |#2| (-344 (-1075 |#2|)))) (-15 -2060 ((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-546 |#2|) (-546 |#2|) |#2| |#2| (-1075 |#2|))) (-15 -2060 ((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-546 |#2|) (-546 |#2|) |#2| (-546 |#2|) |#2| (-344 (-1075 |#2|)))) (-15 -2061 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-546 |#2|) (-546 |#2|) (-579 |#2|) |#2| (-1075 |#2|))) (-15 -2061 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-546 |#2|) (-546 |#2|) (-579 |#2|) (-546 |#2|) |#2| (-344 (-1075 |#2|)))) (-15 -2062 ((-3 |#2| #1#) |#2| |#2| (-546 |#2|) (-546 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1080)) |#2| (-1075 |#2|))) (-15 -2062 ((-3 |#2| #1#) |#2| |#2| (-546 |#2|) (-546 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1080)) (-546 |#2|) |#2| (-344 (-1075 |#2|)))) (-15 -3068 ((-1075 (-344 (-1075 |#2|))) |#2| (-546 |#2|) (-546 |#2|) (-1075 |#2|))) (-15 -3069 (|#2| (-1075 (-344 (-1075 |#2|))) (-546 |#2|) |#2|)) (-15 -3064 ((-1075 (-344 (-1075 |#2|))) (-1075 |#2|) (-546 |#2|))) (IF (|has| |#3| (-596 |#2|)) (PROGN (-15 -2063 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1999 (-579 |#2|))) |#3| |#2| (-546 |#2|) (-546 |#2|) |#2| (-1075 |#2|))) (-15 -2063 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1999 (-579 |#2|))) |#3| |#2| (-546 |#2|) (-546 |#2|) (-546 |#2|) |#2| (-344 (-1075 |#2|))))) |%noBranch|)) (-13 (-386) (-944 (-479)) (-118) (-576 (-479))) (-13 (-358 |#1|) (-27) (-1105)) (-1006)) (T -493)) +((-2063 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-546 *4)) (-5 *6 (-344 (-1075 *4))) (-4 *4 (-13 (-358 *7) (-27) (-1105))) (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1999 (-579 *4)))) (-5 *1 (-493 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1006)))) (-2063 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-546 *4)) (-5 *6 (-1075 *4)) (-4 *4 (-13 (-358 *7) (-27) (-1105))) (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1999 (-579 *4)))) (-5 *1 (-493 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1006)))) (-3064 (*1 *2 *3 *4) (-12 (-5 *4 (-546 *6)) (-4 *6 (-13 (-358 *5) (-27) (-1105))) (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-1075 (-344 (-1075 *6)))) (-5 *1 (-493 *5 *6 *7)) (-5 *3 (-1075 *6)) (-4 *7 (-1006)))) (-3069 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1075 (-344 (-1075 *2)))) (-5 *4 (-546 *2)) (-4 *2 (-13 (-358 *5) (-27) (-1105))) (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *1 (-493 *5 *2 *6)) (-4 *6 (-1006)))) (-3068 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-546 *3)) (-4 *3 (-13 (-358 *6) (-27) (-1105))) (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-1075 (-344 (-1075 *3)))) (-5 *1 (-493 *6 *3 *7)) (-5 *5 (-1075 *3)) (-4 *7 (-1006)))) (-2062 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-546 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1080))) (-5 *5 (-344 (-1075 *2))) (-4 *2 (-13 (-358 *6) (-27) (-1105))) (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *1 (-493 *6 *2 *7)) (-4 *7 (-1006)))) (-2062 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-546 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1080))) (-5 *5 (-1075 *2)) (-4 *2 (-13 (-358 *6) (-27) (-1105))) (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *1 (-493 *6 *2 *7)) (-4 *7 (-1006)))) (-2061 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-579 *3)) (-5 *6 (-344 (-1075 *3))) (-4 *3 (-13 (-358 *7) (-27) (-1105))) (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-493 *7 *3 *8)) (-4 *8 (-1006)))) (-2061 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-579 *3)) (-5 *6 (-1075 *3)) (-4 *3 (-13 (-358 *7) (-27) (-1105))) (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-493 *7 *3 *8)) (-4 *8 (-1006)))) (-2060 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-344 (-1075 *3))) (-4 *3 (-13 (-358 *6) (-27) (-1105))) (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-493 *6 *3 *7)) (-4 *7 (-1006)))) (-2060 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-1075 *3)) (-4 *3 (-13 (-358 *6) (-27) (-1105))) (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-493 *6 *3 *7)) (-4 *7 (-1006)))) (-2059 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-546 *3)) (-5 *5 (-344 (-1075 *3))) (-4 *3 (-13 (-358 *6) (-27) (-1105))) (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-514 *3)) (-5 *1 (-493 *6 *3 *7)) (-4 *7 (-1006)))) (-2059 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-546 *3)) (-5 *5 (-1075 *3)) (-4 *3 (-13 (-358 *6) (-27) (-1105))) (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-514 *3)) (-5 *1 (-493 *6 *3 *7)) (-4 *7 (-1006))))) +((-2073 (((-479) (-479) (-688)) 87 T ELT)) (-2072 (((-479) (-479)) 85 T ELT)) (-2071 (((-479) (-479)) 82 T ELT)) (-2070 (((-479) (-479)) 89 T ELT)) (-2790 (((-479) (-479) (-479)) 67 T ELT)) (-2069 (((-479) (-479) (-479)) 64 T ELT)) (-2068 (((-344 (-479)) (-479)) 29 T ELT)) (-2067 (((-479) (-479)) 34 T ELT)) (-2066 (((-479) (-479)) 76 T ELT)) (-2787 (((-479) (-479)) 47 T ELT)) (-2065 (((-579 (-479)) (-479)) 81 T ELT)) (-2064 (((-479) (-479) (-479) (-479) (-479)) 60 T ELT)) (-2783 (((-344 (-479)) (-479)) 56 T ELT))) +(((-494) (-10 -7 (-15 -2783 ((-344 (-479)) (-479))) (-15 -2064 ((-479) (-479) (-479) (-479) (-479))) (-15 -2065 ((-579 (-479)) (-479))) (-15 -2787 ((-479) (-479))) (-15 -2066 ((-479) (-479))) (-15 -2067 ((-479) (-479))) (-15 -2068 ((-344 (-479)) (-479))) (-15 -2069 ((-479) (-479) (-479))) (-15 -2790 ((-479) (-479) (-479))) (-15 -2070 ((-479) (-479))) (-15 -2071 ((-479) (-479))) (-15 -2072 ((-479) (-479))) (-15 -2073 ((-479) (-479) (-688))))) (T -494)) +((-2073 (*1 *2 *2 *3) (-12 (-5 *2 (-479)) (-5 *3 (-688)) (-5 *1 (-494)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) (-2070 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) (-2790 (*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) (-2069 (*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) (-2068 (*1 *2 *3) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-494)) (-5 *3 (-479)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) (-2787 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) (-2065 (*1 *2 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-494)) (-5 *3 (-479)))) (-2064 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) (-2783 (*1 *2 *3) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-494)) (-5 *3 (-479))))) +((-2074 (((-2 (|:| |answer| |#4|) (|:| -2122 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2074 ((-2 (|:| |answer| |#4|) (|:| -2122 |#4|)) |#4| (-1 |#2| |#2|)))) (-308) (-1145 |#1|) (-1145 (-344 |#2|)) (-287 |#1| |#2| |#3|)) (T -495)) +((-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) (-4 *7 (-1145 (-344 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2122 *3))) (-5 *1 (-495 *5 *6 *7 *3)) (-4 *3 (-287 *5 *6 *7))))) +((-2074 (((-2 (|:| |answer| (-344 |#2|)) (|:| -2122 (-344 |#2|)) (|:| |specpart| (-344 |#2|)) (|:| |polypart| |#2|)) (-344 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-496 |#1| |#2|) (-10 -7 (-15 -2074 ((-2 (|:| |answer| (-344 |#2|)) (|:| -2122 (-344 |#2|)) (|:| |specpart| (-344 |#2|)) (|:| |polypart| |#2|)) (-344 |#2|) (-1 |#2| |#2|)))) (-308) (-1145 |#1|)) (T -496)) +((-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |answer| (-344 *6)) (|:| -2122 (-344 *6)) (|:| |specpart| (-344 *6)) (|:| |polypart| *6))) (-5 *1 (-496 *5 *6)) (-5 *3 (-344 *6))))) +((-2077 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-546 |#2|) (-546 |#2|) (-579 |#2|)) 195 T ELT)) (-2075 (((-514 |#2|) |#2| (-546 |#2|) (-546 |#2|)) 97 T ELT)) (-2076 (((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-546 |#2|) (-546 |#2|) |#2|) 191 T ELT)) (-2078 (((-3 |#2| #1#) |#2| |#2| |#2| (-546 |#2|) (-546 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1080))) 200 T ELT)) (-2079 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1999 (-579 |#2|))) |#3| |#2| (-546 |#2|) (-546 |#2|) (-1080)) 209 (|has| |#3| (-596 |#2|)) ELT))) +(((-497 |#1| |#2| |#3|) (-10 -7 (-15 -2075 ((-514 |#2|) |#2| (-546 |#2|) (-546 |#2|))) (-15 -2076 ((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-546 |#2|) (-546 |#2|) |#2|)) (-15 -2077 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-546 |#2|) (-546 |#2|) (-579 |#2|))) (-15 -2078 ((-3 |#2| #1#) |#2| |#2| |#2| (-546 |#2|) (-546 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1080)))) (IF (|has| |#3| (-596 |#2|)) (-15 -2079 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -1999 (-579 |#2|))) |#3| |#2| (-546 |#2|) (-546 |#2|) (-1080))) |%noBranch|)) (-13 (-386) (-944 (-479)) (-118) (-576 (-479))) (-13 (-358 |#1|) (-27) (-1105)) (-1006)) (T -497)) +((-2079 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-546 *4)) (-5 *6 (-1080)) (-4 *4 (-13 (-358 *7) (-27) (-1105))) (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1999 (-579 *4)))) (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1006)))) (-2078 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-546 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1080))) (-4 *2 (-13 (-358 *5) (-27) (-1105))) (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *1 (-497 *5 *2 *6)) (-4 *6 (-1006)))) (-2077 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-579 *3)) (-4 *3 (-13 (-358 *6) (-27) (-1105))) (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1006)))) (-2076 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-546 *3)) (-4 *3 (-13 (-358 *5) (-27) (-1105))) (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3 *6)) (-4 *6 (-1006)))) (-2075 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-546 *3)) (-4 *3 (-13 (-358 *5) (-27) (-1105))) (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-514 *3)) (-5 *1 (-497 *5 *3 *6)) (-4 *6 (-1006))))) +((-2080 (((-2 (|:| -2325 |#2|) (|:| |nconst| |#2|)) |#2| (-1080)) 64 T ELT)) (-2082 (((-3 |#2| #1="failed") |#2| (-1080) (-744 |#2|) (-744 |#2|)) 174 (-12 (|has| |#2| (-1043)) (|has| |#1| (-549 (-794 (-479)))) (|has| |#1| (-790 (-479)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1080)) 145 (-12 (|has| |#2| (-565)) (|has| |#1| (-549 (-794 (-479)))) (|has| |#1| (-790 (-479)))) ELT)) (-2081 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1080)) 156 (-12 (|has| |#2| (-565)) (|has| |#1| (-549 (-794 (-479)))) (|has| |#1| (-790 (-479)))) ELT))) +(((-498 |#1| |#2|) (-10 -7 (-15 -2080 ((-2 (|:| -2325 |#2|) (|:| |nconst| |#2|)) |#2| (-1080))) (IF (|has| |#1| (-549 (-794 (-479)))) (IF (|has| |#1| (-790 (-479))) (PROGN (IF (|has| |#2| (-565)) (PROGN (-15 -2081 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1080))) (-15 -2082 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1080)))) |%noBranch|) (IF (|has| |#2| (-1043)) (-15 -2082 ((-3 |#2| #1#) |#2| (-1080) (-744 |#2|) (-744 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-944 (-479)) (-386) (-576 (-479))) (-13 (-27) (-1105) (-358 |#1|))) (T -498)) +((-2082 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1080)) (-5 *4 (-744 *2)) (-4 *2 (-1043)) (-4 *2 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-549 (-794 (-479)))) (-4 *5 (-790 (-479))) (-4 *5 (-13 (-944 (-479)) (-386) (-576 (-479)))) (-5 *1 (-498 *5 *2)))) (-2082 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1080)) (-4 *5 (-549 (-794 (-479)))) (-4 *5 (-790 (-479))) (-4 *5 (-13 (-944 (-479)) (-386) (-576 (-479)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-498 *5 *3)) (-4 *3 (-565)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) (-2081 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1080)) (-4 *5 (-549 (-794 (-479)))) (-4 *5 (-790 (-479))) (-4 *5 (-13 (-944 (-479)) (-386) (-576 (-479)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-498 *5 *3)) (-4 *3 (-565)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) (-2080 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-944 (-479)) (-386) (-576 (-479)))) (-5 *2 (-2 (|:| -2325 *3) (|:| |nconst| *3))) (-5 *1 (-498 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5)))))) +((-2085 (((-3 (-2 (|:| |mainpart| (-344 |#2|)) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 |#2|)) (|:| |logand| (-344 |#2|)))))) #1="failed") (-344 |#2|) (-579 (-344 |#2|))) 41 T ELT)) (-3794 (((-514 (-344 |#2|)) (-344 |#2|)) 28 T ELT)) (-2083 (((-3 (-344 |#2|) #1#) (-344 |#2|)) 17 T ELT)) (-2084 (((-3 (-2 (|:| -2123 (-344 |#2|)) (|:| |coeff| (-344 |#2|))) #1#) (-344 |#2|) (-344 |#2|)) 48 T ELT))) +(((-499 |#1| |#2|) (-10 -7 (-15 -3794 ((-514 (-344 |#2|)) (-344 |#2|))) (-15 -2083 ((-3 (-344 |#2|) #1="failed") (-344 |#2|))) (-15 -2084 ((-3 (-2 (|:| -2123 (-344 |#2|)) (|:| |coeff| (-344 |#2|))) #1#) (-344 |#2|) (-344 |#2|))) (-15 -2085 ((-3 (-2 (|:| |mainpart| (-344 |#2|)) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 |#2|)) (|:| |logand| (-344 |#2|)))))) #1#) (-344 |#2|) (-579 (-344 |#2|))))) (-13 (-308) (-118) (-944 (-479))) (-1145 |#1|)) (T -499)) +((-2085 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-579 (-344 *6))) (-5 *3 (-344 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-308) (-118) (-944 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *5 *6)))) (-2084 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-308) (-118) (-944 (-479)))) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -2123 (-344 *5)) (|:| |coeff| (-344 *5)))) (-5 *1 (-499 *4 *5)) (-5 *3 (-344 *5)))) (-2083 (*1 *2 *2) (|partial| -12 (-5 *2 (-344 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-13 (-308) (-118) (-944 (-479)))) (-5 *1 (-499 *3 *4)))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-944 (-479)))) (-4 *5 (-1145 *4)) (-5 *2 (-514 (-344 *5))) (-5 *1 (-499 *4 *5)) (-5 *3 (-344 *5))))) +((-2086 (((-3 (-479) "failed") |#1|) 14 T ELT)) (-3243 (((-83) |#1|) 13 T ELT)) (-3239 (((-479) |#1|) 9 T ELT))) +(((-500 |#1|) (-10 -7 (-15 -3239 ((-479) |#1|)) (-15 -3243 ((-83) |#1|)) (-15 -2086 ((-3 (-479) "failed") |#1|))) (-944 (-479))) (T -500)) +((-2086 (*1 *2 *3) (|partial| -12 (-5 *2 (-479)) (-5 *1 (-500 *3)) (-4 *3 (-944 *2)))) (-3243 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-500 *3)) (-4 *3 (-944 (-479))))) (-3239 (*1 *2 *3) (-12 (-5 *2 (-479)) (-5 *1 (-500 *3)) (-4 *3 (-944 *2))))) +((-2089 (((-3 (-2 (|:| |mainpart| (-344 (-851 |#1|))) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 (-851 |#1|))) (|:| |logand| (-344 (-851 |#1|))))))) #1="failed") (-344 (-851 |#1|)) (-1080) (-579 (-344 (-851 |#1|)))) 48 T ELT)) (-2087 (((-514 (-344 (-851 |#1|))) (-344 (-851 |#1|)) (-1080)) 28 T ELT)) (-2088 (((-3 (-344 (-851 |#1|)) #1#) (-344 (-851 |#1|)) (-1080)) 23 T ELT)) (-2090 (((-3 (-2 (|:| -2123 (-344 (-851 |#1|))) (|:| |coeff| (-344 (-851 |#1|)))) #1#) (-344 (-851 |#1|)) (-1080) (-344 (-851 |#1|))) 35 T ELT))) +(((-501 |#1|) (-10 -7 (-15 -2087 ((-514 (-344 (-851 |#1|))) (-344 (-851 |#1|)) (-1080))) (-15 -2088 ((-3 (-344 (-851 |#1|)) #1="failed") (-344 (-851 |#1|)) (-1080))) (-15 -2089 ((-3 (-2 (|:| |mainpart| (-344 (-851 |#1|))) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 (-851 |#1|))) (|:| |logand| (-344 (-851 |#1|))))))) #1#) (-344 (-851 |#1|)) (-1080) (-579 (-344 (-851 |#1|))))) (-15 -2090 ((-3 (-2 (|:| -2123 (-344 (-851 |#1|))) (|:| |coeff| (-344 (-851 |#1|)))) #1#) (-344 (-851 |#1|)) (-1080) (-344 (-851 |#1|))))) (-13 (-490) (-944 (-479)) (-118))) (T -501)) +((-2090 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)) (-118))) (-5 *2 (-2 (|:| -2123 (-344 (-851 *5))) (|:| |coeff| (-344 (-851 *5))))) (-5 *1 (-501 *5)) (-5 *3 (-344 (-851 *5))))) (-2089 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-579 (-344 (-851 *6)))) (-5 *3 (-344 (-851 *6))) (-4 *6 (-13 (-490) (-944 (-479)) (-118))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-501 *6)))) (-2088 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-344 (-851 *4))) (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)) (-118))) (-5 *1 (-501 *4)))) (-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)) (-118))) (-5 *2 (-514 (-344 (-851 *5)))) (-5 *1 (-501 *5)) (-5 *3 (-344 (-851 *5)))))) +((-2553 (((-83) $ $) 77 T ELT)) (-3172 (((-83) $) 49 T ELT)) (-2589 ((|#1| $) 39 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) 81 T ELT)) (-3474 (($ $) 142 T ELT)) (-3621 (($ $) 120 T ELT)) (-2468 ((|#1| $) 37 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3022 (($ $) NIL T ELT)) (-3472 (($ $) 144 T ELT)) (-3620 (($ $) 116 T ELT)) (-3476 (($ $) 146 T ELT)) (-3619 (($ $) 124 T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) 95 T ELT)) (-3140 (((-479) $) 97 T ELT)) (-3449 (((-3 $ #1#) $) 80 T ELT)) (-2046 (($ |#1| |#1|) 35 T ELT)) (-3170 (((-83) $) 44 T ELT)) (-3609 (($) 106 T ELT)) (-2397 (((-83) $) 56 T ELT)) (-2996 (($ $ (-479)) NIL T ELT)) (-3171 (((-83) $) 46 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3924 (($ $) 108 T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2047 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-344 (-479))) 94 T ELT)) (-2045 ((|#1| $) 36 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) 83 T ELT) (($ (-579 $)) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) 82 T ELT)) (-3925 (($ $) 110 T ELT)) (-3477 (($ $) 150 T ELT)) (-3618 (($ $) 122 T ELT)) (-3475 (($ $) 152 T ELT)) (-3617 (($ $) 126 T ELT)) (-3473 (($ $) 148 T ELT)) (-3616 (($ $) 118 T ELT)) (-2044 (((-83) $ |#1|) 42 T ELT)) (-3928 (((-766) $) 102 T ELT) (($ (-479)) 85 T ELT) (($ $) NIL T ELT) (($ (-479)) 85 T ELT)) (-3110 (((-688)) 104 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) 164 T ELT)) (-3468 (($ $) 132 T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3478 (($ $) 162 T ELT)) (-3466 (($ $) 128 T ELT)) (-3482 (($ $) 160 T ELT)) (-3470 (($ $) 140 T ELT)) (-3483 (($ $) 158 T ELT)) (-3471 (($ $) 138 T ELT)) (-3481 (($ $) 156 T ELT)) (-3469 (($ $) 134 T ELT)) (-3479 (($ $) 154 T ELT)) (-3467 (($ $) 130 T ELT)) (-2645 (($) 30 T CONST)) (-2651 (($) 10 T CONST)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 50 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 48 T ELT)) (-3819 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3821 (($ $ $) 53 T ELT)) (** (($ $ (-824)) 73 T ELT) (($ $ (-688)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-344 (-479))) 166 T ELT)) (* (($ (-824) $) 67 T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-502 |#1|) (-488 |#1|) (-13 (-341) (-1105))) (T -502)) +NIL +((-2689 (((-3 (-579 (-1075 (-479))) "failed") (-579 (-1075 (-479))) (-1075 (-479))) 27 T ELT))) +(((-503) (-10 -7 (-15 -2689 ((-3 (-579 (-1075 (-479))) "failed") (-579 (-1075 (-479))) (-1075 (-479)))))) (T -503)) +((-2689 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 (-1075 (-479)))) (-5 *3 (-1075 (-479))) (-5 *1 (-503))))) +((-2091 (((-579 (-546 |#2|)) (-579 (-546 |#2|)) (-1080)) 19 T ELT)) (-2094 (((-579 (-546 |#2|)) (-579 |#2|) (-1080)) 23 T ELT)) (-3218 (((-579 (-546 |#2|)) (-579 (-546 |#2|)) (-579 (-546 |#2|))) 11 T ELT)) (-2095 ((|#2| |#2| (-1080)) 59 (|has| |#1| (-490)) ELT)) (-2096 ((|#2| |#2| (-1080)) 87 (-12 (|has| |#2| (-236)) (|has| |#1| (-386))) ELT)) (-2093 (((-546 |#2|) (-546 |#2|) (-579 (-546 |#2|)) (-1080)) 25 T ELT)) (-2092 (((-546 |#2|) (-579 (-546 |#2|))) 24 T ELT)) (-2097 (((-514 |#2|) |#2| (-1080) (-1 (-514 |#2|) |#2| (-1080)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1080))) 115 (-12 (|has| |#2| (-236)) (|has| |#2| (-565)) (|has| |#2| (-944 (-1080))) (|has| |#1| (-549 (-794 (-479)))) (|has| |#1| (-386)) (|has| |#1| (-790 (-479)))) ELT))) +(((-504 |#1| |#2|) (-10 -7 (-15 -2091 ((-579 (-546 |#2|)) (-579 (-546 |#2|)) (-1080))) (-15 -2092 ((-546 |#2|) (-579 (-546 |#2|)))) (-15 -2093 ((-546 |#2|) (-546 |#2|) (-579 (-546 |#2|)) (-1080))) (-15 -3218 ((-579 (-546 |#2|)) (-579 (-546 |#2|)) (-579 (-546 |#2|)))) (-15 -2094 ((-579 (-546 |#2|)) (-579 |#2|) (-1080))) (IF (|has| |#1| (-490)) (-15 -2095 (|#2| |#2| (-1080))) |%noBranch|) (IF (|has| |#1| (-386)) (IF (|has| |#2| (-236)) (PROGN (-15 -2096 (|#2| |#2| (-1080))) (IF (|has| |#1| (-549 (-794 (-479)))) (IF (|has| |#1| (-790 (-479))) (IF (|has| |#2| (-565)) (IF (|has| |#2| (-944 (-1080))) (-15 -2097 ((-514 |#2|) |#2| (-1080) (-1 (-514 |#2|) |#2| (-1080)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1080)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1006) (-358 |#1|)) (T -504)) +((-2097 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-514 *3) *3 (-1080))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1080))) (-4 *3 (-236)) (-4 *3 (-565)) (-4 *3 (-944 *4)) (-4 *3 (-358 *7)) (-5 *4 (-1080)) (-4 *7 (-549 (-794 (-479)))) (-4 *7 (-386)) (-4 *7 (-790 (-479))) (-4 *7 (-1006)) (-5 *2 (-514 *3)) (-5 *1 (-504 *7 *3)))) (-2096 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-386)) (-4 *4 (-1006)) (-5 *1 (-504 *4 *2)) (-4 *2 (-236)) (-4 *2 (-358 *4)))) (-2095 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-4 *4 (-1006)) (-5 *1 (-504 *4 *2)) (-4 *2 (-358 *4)))) (-2094 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *6)) (-5 *4 (-1080)) (-4 *6 (-358 *5)) (-4 *5 (-1006)) (-5 *2 (-579 (-546 *6))) (-5 *1 (-504 *5 *6)))) (-3218 (*1 *2 *2 *2) (-12 (-5 *2 (-579 (-546 *4))) (-4 *4 (-358 *3)) (-4 *3 (-1006)) (-5 *1 (-504 *3 *4)))) (-2093 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-579 (-546 *6))) (-5 *4 (-1080)) (-5 *2 (-546 *6)) (-4 *6 (-358 *5)) (-4 *5 (-1006)) (-5 *1 (-504 *5 *6)))) (-2092 (*1 *2 *3) (-12 (-5 *3 (-579 (-546 *5))) (-4 *4 (-1006)) (-5 *2 (-546 *5)) (-5 *1 (-504 *4 *5)) (-4 *5 (-358 *4)))) (-2091 (*1 *2 *2 *3) (-12 (-5 *2 (-579 (-546 *5))) (-5 *3 (-1080)) (-4 *5 (-358 *4)) (-4 *4 (-1006)) (-5 *1 (-504 *4 *5))))) +((-2100 (((-2 (|:| |answer| (-514 (-344 |#2|))) (|:| |a0| |#1|)) (-344 |#2|) (-1 |#2| |#2|) (-1 (-3 (-579 |#1|) #1="failed") (-479) |#1| |#1|)) 199 T ELT)) (-2103 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-344 |#2|)) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 |#2|)) (|:| |logand| (-344 |#2|))))))) (|:| |a0| |#1|)) #1#) (-344 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-579 (-344 |#2|))) 174 T ELT)) (-2106 (((-3 (-2 (|:| |mainpart| (-344 |#2|)) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 |#2|)) (|:| |logand| (-344 |#2|)))))) #1#) (-344 |#2|) (-1 |#2| |#2|) (-579 (-344 |#2|))) 171 T ELT)) (-2107 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2098 (((-2 (|:| |answer| (-514 (-344 |#2|))) (|:| |a0| |#1|)) (-344 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2105 (((-3 (-2 (|:| -2123 (-344 |#2|)) (|:| |coeff| (-344 |#2|))) #1#) (-344 |#2|) (-1 |#2| |#2|) (-344 |#2|)) 202 T ELT)) (-2101 (((-3 (-2 (|:| |answer| (-344 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2123 (-344 |#2|)) (|:| |coeff| (-344 |#2|))) #1#) (-344 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-344 |#2|)) 205 T ELT)) (-2109 (((-2 (|:| |ir| (-514 (-344 |#2|))) (|:| |specpart| (-344 |#2|)) (|:| |polypart| |#2|)) (-344 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2110 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2104 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-344 |#2|)) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 |#2|)) (|:| |logand| (-344 |#2|))))))) (|:| |a0| |#1|)) #1#) (-344 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3121 |#1|) (|:| |sol?| (-83))) (-479) |#1|) (-579 (-344 |#2|))) 178 T ELT)) (-2108 (((-3 (-558 |#1| |#2|) #1#) (-558 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3121 |#1|) (|:| |sol?| (-83))) (-479) |#1|)) 166 T ELT)) (-2099 (((-2 (|:| |answer| (-514 (-344 |#2|))) (|:| |a0| |#1|)) (-344 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3121 |#1|) (|:| |sol?| (-83))) (-479) |#1|)) 189 T ELT)) (-2102 (((-3 (-2 (|:| |answer| (-344 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2123 (-344 |#2|)) (|:| |coeff| (-344 |#2|))) #1#) (-344 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3121 |#1|) (|:| |sol?| (-83))) (-479) |#1|) (-344 |#2|)) 210 T ELT))) +(((-505 |#1| |#2|) (-10 -7 (-15 -2098 ((-2 (|:| |answer| (-514 (-344 |#2|))) (|:| |a0| |#1|)) (-344 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2099 ((-2 (|:| |answer| (-514 (-344 |#2|))) (|:| |a0| |#1|)) (-344 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3121 |#1|) (|:| |sol?| (-83))) (-479) |#1|))) (-15 -2100 ((-2 (|:| |answer| (-514 (-344 |#2|))) (|:| |a0| |#1|)) (-344 |#2|) (-1 |#2| |#2|) (-1 (-3 (-579 |#1|) #1#) (-479) |#1| |#1|))) (-15 -2101 ((-3 (-2 (|:| |answer| (-344 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2123 (-344 |#2|)) (|:| |coeff| (-344 |#2|))) #1#) (-344 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-344 |#2|))) (-15 -2102 ((-3 (-2 (|:| |answer| (-344 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2123 (-344 |#2|)) (|:| |coeff| (-344 |#2|))) #1#) (-344 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3121 |#1|) (|:| |sol?| (-83))) (-479) |#1|) (-344 |#2|))) (-15 -2103 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-344 |#2|)) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 |#2|)) (|:| |logand| (-344 |#2|))))))) (|:| |a0| |#1|)) #1#) (-344 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-579 (-344 |#2|)))) (-15 -2104 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-344 |#2|)) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 |#2|)) (|:| |logand| (-344 |#2|))))))) (|:| |a0| |#1|)) #1#) (-344 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3121 |#1|) (|:| |sol?| (-83))) (-479) |#1|) (-579 (-344 |#2|)))) (-15 -2105 ((-3 (-2 (|:| -2123 (-344 |#2|)) (|:| |coeff| (-344 |#2|))) #1#) (-344 |#2|) (-1 |#2| |#2|) (-344 |#2|))) (-15 -2106 ((-3 (-2 (|:| |mainpart| (-344 |#2|)) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| (-344 |#2|)) (|:| |logand| (-344 |#2|)))))) #1#) (-344 |#2|) (-1 |#2| |#2|) (-579 (-344 |#2|)))) (-15 -2107 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2108 ((-3 (-558 |#1| |#2|) #1#) (-558 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3121 |#1|) (|:| |sol?| (-83))) (-479) |#1|))) (-15 -2109 ((-2 (|:| |ir| (-514 (-344 |#2|))) (|:| |specpart| (-344 |#2|)) (|:| |polypart| |#2|)) (-344 |#2|) (-1 |#2| |#2|))) (-15 -2110 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-308) (-1145 |#1|)) (T -505)) +((-2110 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-505 *5 *3)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |ir| (-514 (-344 *6))) (|:| |specpart| (-344 *6)) (|:| |polypart| *6))) (-5 *1 (-505 *5 *6)) (-5 *3 (-344 *6)))) (-2108 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-558 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3121 *4) (|:| |sol?| (-83))) (-479) *4)) (-4 *4 (-308)) (-4 *5 (-1145 *4)) (-5 *1 (-505 *4 *5)))) (-2107 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2123 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-308)) (-5 *1 (-505 *4 *2)) (-4 *2 (-1145 *4)))) (-2106 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-579 (-344 *7))) (-4 *7 (-1145 *6)) (-5 *3 (-344 *7)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *6 *7)))) (-2105 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -2123 (-344 *6)) (|:| |coeff| (-344 *6)))) (-5 *1 (-505 *5 *6)) (-5 *3 (-344 *6)))) (-2104 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3121 *7) (|:| |sol?| (-83))) (-479) *7)) (-5 *6 (-579 (-344 *8))) (-4 *7 (-308)) (-4 *8 (-1145 *7)) (-5 *3 (-344 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-505 *7 *8)))) (-2103 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2123 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-579 (-344 *8))) (-4 *7 (-308)) (-4 *8 (-1145 *7)) (-5 *3 (-344 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-505 *7 *8)))) (-2102 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3121 *6) (|:| |sol?| (-83))) (-479) *6)) (-4 *6 (-308)) (-4 *7 (-1145 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-344 *7)) (|:| |a0| *6)) (-2 (|:| -2123 (-344 *7)) (|:| |coeff| (-344 *7))) "failed")) (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7)))) (-2101 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2123 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-308)) (-4 *7 (-1145 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-344 *7)) (|:| |a0| *6)) (-2 (|:| -2123 (-344 *7)) (|:| |coeff| (-344 *7))) "failed")) (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7)))) (-2100 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-579 *6) "failed") (-479) *6 *6)) (-4 *6 (-308)) (-4 *7 (-1145 *6)) (-5 *2 (-2 (|:| |answer| (-514 (-344 *7))) (|:| |a0| *6))) (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7)))) (-2099 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3121 *6) (|:| |sol?| (-83))) (-479) *6)) (-4 *6 (-308)) (-4 *7 (-1145 *6)) (-5 *2 (-2 (|:| |answer| (-514 (-344 *7))) (|:| |a0| *6))) (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7)))) (-2098 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2123 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-308)) (-4 *7 (-1145 *6)) (-5 *2 (-2 (|:| |answer| (-514 (-344 *7))) (|:| |a0| *6))) (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7))))) +((-2111 (((-3 |#2| "failed") |#2| (-1080) (-1080)) 10 T ELT))) +(((-506 |#1| |#2|) (-10 -7 (-15 -2111 ((-3 |#2| "failed") |#2| (-1080) (-1080)))) (-13 (-254) (-118) (-944 (-479)) (-576 (-479))) (-13 (-1105) (-865) (-1043) (-29 |#1|))) (T -506)) +((-2111 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *1 (-506 *4 *2)) (-4 *2 (-13 (-1105) (-865) (-1043) (-29 *4)))))) +((-2540 (((-628 (-1128)) $ (-1128)) 27 T ELT)) (-2541 (((-628 (-483)) $ (-483)) 26 T ELT)) (-2539 (((-688) $ (-100)) 28 T ELT)) (-2542 (((-628 (-99)) $ (-99)) 25 T ELT)) (-1987 (((-628 (-1128)) $) 12 T ELT)) (-1983 (((-628 (-1126)) $) 8 T ELT)) (-1985 (((-628 (-1125)) $) 10 T ELT)) (-1988 (((-628 (-483)) $) 13 T ELT)) (-1984 (((-628 (-481)) $) 9 T ELT)) (-1986 (((-628 (-480)) $) 11 T ELT)) (-1982 (((-688) $ (-100)) 7 T ELT)) (-1989 (((-628 (-99)) $) 14 T ELT)) (-1688 (($ $) 6 T ELT))) +(((-507) (-111)) (T -507)) +NIL +(-13 (-460) (-764)) +(((-145) . T) ((-460) . T) ((-764) . T)) +((-2540 (((-628 (-1128)) $ (-1128)) NIL T ELT)) (-2541 (((-628 (-483)) $ (-483)) NIL T ELT)) (-2539 (((-688) $ (-100)) NIL T ELT)) (-2542 (((-628 (-99)) $ (-99)) NIL T ELT)) (-1987 (((-628 (-1128)) $) NIL T ELT)) (-1983 (((-628 (-1126)) $) NIL T ELT)) (-1985 (((-628 (-1125)) $) NIL T ELT)) (-1988 (((-628 (-483)) $) NIL T ELT)) (-1984 (((-628 (-481)) $) NIL T ELT)) (-1986 (((-628 (-480)) $) NIL T ELT)) (-1982 (((-688) $ (-100)) NIL T ELT)) (-1989 (((-628 (-99)) $) NIL T ELT)) (-2543 (((-83) $) NIL T ELT)) (-2112 (($ (-332)) 14 T ELT) (($ (-1063)) 16 T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1688 (($ $) NIL T ELT))) +(((-508) (-13 (-507) (-548 (-766)) (-10 -8 (-15 -2112 ($ (-332))) (-15 -2112 ($ (-1063))) (-15 -2543 ((-83) $))))) (T -508)) +((-2112 (*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-508)))) (-2112 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-508)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-508))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3442 (($) 7 T CONST)) (-3226 (((-1063) $) NIL T ELT)) (-2115 (($) 6 T CONST)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 15 T ELT)) (-2113 (($) 9 T CONST)) (-2114 (($) 8 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 11 T ELT))) +(((-509) (-13 (-1006) (-10 -8 (-15 -2115 ($) -3934) (-15 -3442 ($) -3934) (-15 -2114 ($) -3934) (-15 -2113 ($) -3934)))) (T -509)) +((-2115 (*1 *1) (-5 *1 (-509))) (-3442 (*1 *1) (-5 *1 (-509))) (-2114 (*1 *1) (-5 *1 (-509))) (-2113 (*1 *1) (-5 *1 (-509)))) +((-2553 (((-83) $ $) NIL T ELT)) (-2116 (((-628 $) (-425)) 23 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2118 (($ (-1063)) 16 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 33 T ELT)) (-2117 (((-164 4 (-99)) $) 24 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 26 T ELT))) +(((-510) (-13 (-1006) (-10 -8 (-15 -2118 ($ (-1063))) (-15 -2117 ((-164 4 (-99)) $)) (-15 -2116 ((-628 $) (-425)))))) (T -510)) +((-2118 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-510)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-164 4 (-99))) (-5 *1 (-510)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-425)) (-5 *2 (-628 (-510))) (-5 *1 (-510))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3022 (($ $ (-479)) 73 T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2596 (($ (-1075 (-479)) (-479)) 79 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) 64 T ELT)) (-2597 (($ $) 43 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3754 (((-688) $) 16 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2599 (((-479)) 37 T ELT)) (-2598 (((-479) $) 41 T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3751 (($ $ (-479)) 24 T ELT)) (-3448 (((-3 $ #1#) $ $) 70 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) 17 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 71 T ELT)) (-2600 (((-1059 (-479)) $) 19 T ELT)) (-2876 (($ $) 26 T ELT)) (-3928 (((-766) $) 100 T ELT) (($ (-479)) 59 T ELT) (($ $) NIL T ELT)) (-3110 (((-688)) 15 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3752 (((-479) $ (-479)) 46 T ELT)) (-2645 (($) 44 T CONST)) (-2651 (($) 21 T CONST)) (-3041 (((-83) $ $) 51 T ELT)) (-3819 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3821 (($ $ $) 57 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 60 T ELT) (($ $ $) 61 T ELT))) +(((-511 |#1| |#2|) (-773 |#1|) (-479) (-83)) (T -511)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 30 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 (($ $ (-824)) NIL (|has| $ (-314)) ELT) (($ $) NIL T ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) 59 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 $ #1#) $) 95 T ELT)) (-3140 (($ $) 94 T ELT)) (-1780 (($ (-1169 $)) 93 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) 47 T ELT)) (-2979 (($) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) 61 T ELT)) (-1668 (((-83) $) NIL T ELT)) (-1752 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) 49 (|has| $ (-314)) ELT)) (-1998 (((-83) $) NIL (|has| $ (-314)) ELT)) (-3116 (($ $ (-824)) NIL (|has| $ (-314)) ELT) (($ $) NIL T ELT)) (-3427 (((-628 $) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 $) $ (-824)) NIL (|has| $ (-314)) ELT) (((-1075 $) $) 104 T ELT)) (-1997 (((-824) $) 67 T ELT)) (-1615 (((-1075 $) $) NIL (|has| $ (-314)) ELT)) (-1614 (((-3 (-1075 $) #1#) $ $) NIL (|has| $ (-314)) ELT) (((-1075 $) $) NIL (|has| $ (-314)) ELT)) (-1616 (($ $ (-1075 $)) NIL (|has| $ (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL T CONST)) (-2387 (($ (-824)) 60 T ELT)) (-3913 (((-83) $) 87 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($) 28 (|has| $ (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) 54 T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-824)) 86 T ELT) (((-737 (-824))) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-3 (-688) #1#) $ $) NIL T ELT) (((-688) $) NIL T ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3930 (((-824) $) 85 T ELT) (((-737 (-824)) $) NIL T ELT)) (-3169 (((-1075 $)) 102 T ELT)) (-1662 (($) 66 T ELT)) (-1617 (($) 50 (|has| $ (-314)) ELT)) (-3208 (((-626 $) (-1169 $)) NIL T ELT) (((-1169 $) $) 91 T ELT)) (-3954 (((-479) $) 42 T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) 45 T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT)) (-2687 (((-628 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3110 (((-688)) 51 T CONST)) (-1254 (((-83) $ $) 107 T ELT)) (-1999 (((-1169 $) (-824)) 97 T ELT) (((-1169 $)) 96 T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) 31 T CONST)) (-2651 (($) 27 T CONST)) (-3910 (($ $ (-688)) NIL (|has| $ (-314)) ELT) (($ $) NIL (|has| $ (-314)) ELT)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 34 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT))) +(((-512 |#1|) (-13 (-295) (-276 $) (-549 (-479))) (-824)) (T -512)) +NIL +((-2119 (((-1175) (-1063)) 10 T ELT))) +(((-513) (-10 -7 (-15 -2119 ((-1175) (-1063))))) (T -513)) +((-2119 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-513))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) 77 T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-2123 ((|#1| $) 30 T ELT)) (-2121 (((-579 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2124 (($ |#1| (-579 (-2 (|:| |scalar| (-344 (-479))) (|:| |coeff| (-1075 |#1|)) (|:| |logand| (-1075 |#1|)))) (-579 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2122 (((-579 (-2 (|:| |scalar| (-344 (-479))) (|:| |coeff| (-1075 |#1|)) (|:| |logand| (-1075 |#1|)))) $) 31 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2817 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1080)) 49 (|has| |#1| (-944 (-1080))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2120 (((-83) $) 35 T ELT)) (-3740 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1080)) 90 (|has| |#1| (-803 (-1080))) ELT)) (-3928 (((-766) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 18 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 86 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 16 T ELT) (($ (-344 (-479)) $) 41 T ELT) (($ $ (-344 (-479))) NIL T ELT))) +(((-514 |#1|) (-13 (-650 (-344 (-479))) (-944 |#1|) (-10 -8 (-15 -2124 ($ |#1| (-579 (-2 (|:| |scalar| (-344 (-479))) (|:| |coeff| (-1075 |#1|)) (|:| |logand| (-1075 |#1|)))) (-579 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2123 (|#1| $)) (-15 -2122 ((-579 (-2 (|:| |scalar| (-344 (-479))) (|:| |coeff| (-1075 |#1|)) (|:| |logand| (-1075 |#1|)))) $)) (-15 -2121 ((-579 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2120 ((-83) $)) (-15 -2817 ($ |#1| |#1|)) (-15 -3740 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-803 (-1080))) (-15 -3740 (|#1| $ (-1080))) |%noBranch|) (IF (|has| |#1| (-944 (-1080))) (-15 -2817 ($ |#1| (-1080))) |%noBranch|))) (-308)) (T -514)) +((-2124 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-579 (-2 (|:| |scalar| (-344 (-479))) (|:| |coeff| (-1075 *2)) (|:| |logand| (-1075 *2))))) (-5 *4 (-579 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-308)) (-5 *1 (-514 *2)))) (-2123 (*1 *2 *1) (-12 (-5 *1 (-514 *2)) (-4 *2 (-308)))) (-2122 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |scalar| (-344 (-479))) (|:| |coeff| (-1075 *3)) (|:| |logand| (-1075 *3))))) (-5 *1 (-514 *3)) (-4 *3 (-308)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-514 *3)) (-4 *3 (-308)))) (-2120 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-514 *3)) (-4 *3 (-308)))) (-2817 (*1 *1 *2 *2) (-12 (-5 *1 (-514 *2)) (-4 *2 (-308)))) (-3740 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-514 *2)) (-4 *2 (-308)))) (-3740 (*1 *2 *1 *3) (-12 (-4 *2 (-308)) (-4 *2 (-803 *3)) (-5 *1 (-514 *2)) (-5 *3 (-1080)))) (-2817 (*1 *1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *1 (-514 *2)) (-4 *2 (-944 *3)) (-4 *2 (-308))))) +((-3940 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-514 |#2|) (-1 |#2| |#1|) (-514 |#1|)) 30 T ELT))) +(((-515 |#1| |#2|) (-10 -7 (-15 -3940 ((-514 |#2|) (-1 |#2| |#1|) (-514 |#1|))) (-15 -3940 ((-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2123 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3940 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3940 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-308) (-308)) (T -515)) +((-3940 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-515 *5 *6)))) (-3940 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-308)) (-4 *2 (-308)) (-5 *1 (-515 *5 *2)))) (-3940 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2123 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-2 (|:| -2123 *6) (|:| |coeff| *6))) (-5 *1 (-515 *5 *6)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-514 *5)) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-514 *6)) (-5 *1 (-515 *5 *6))))) +((-3400 (((-514 |#2|) (-514 |#2|)) 42 T ELT)) (-3945 (((-579 |#2|) (-514 |#2|)) 44 T ELT)) (-2135 ((|#2| (-514 |#2|)) 50 T ELT))) +(((-516 |#1| |#2|) (-10 -7 (-15 -3400 ((-514 |#2|) (-514 |#2|))) (-15 -3945 ((-579 |#2|) (-514 |#2|))) (-15 -2135 (|#2| (-514 |#2|)))) (-13 (-386) (-944 (-479)) (-576 (-479))) (-13 (-29 |#1|) (-1105))) (T -516)) +((-2135 (*1 *2 *3) (-12 (-5 *3 (-514 *2)) (-4 *2 (-13 (-29 *4) (-1105))) (-5 *1 (-516 *4 *2)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-514 *5)) (-4 *5 (-13 (-29 *4) (-1105))) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-579 *5)) (-5 *1 (-516 *4 *5)))) (-3400 (*1 *2 *2) (-12 (-5 *2 (-514 *4)) (-4 *4 (-13 (-29 *3) (-1105))) (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-516 *3 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2127 (($ (-440) (-527)) 14 T ELT)) (-2125 (($ (-440) (-527) $) 16 T ELT)) (-2126 (($ (-440) (-527)) 15 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-1085)) 7 T ELT) (((-1085) $) 6 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-517) (-13 (-1006) (-424 (-1085)) (-10 -8 (-15 -2127 ($ (-440) (-527))) (-15 -2126 ($ (-440) (-527))) (-15 -2125 ($ (-440) (-527) $))))) (T -517)) +((-2127 (*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-527)) (-5 *1 (-517)))) (-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-527)) (-5 *1 (-517)))) (-2125 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-527)) (-5 *1 (-517))))) +((-2131 (((-83) |#1|) 16 T ELT)) (-2132 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2129 (((-2 (|:| -2679 |#1|) (|:| -2388 (-688))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-688)) 18 T ELT)) (-2128 (((-83) |#1| (-688)) 19 T ELT)) (-2133 ((|#1| |#1|) 41 T ELT)) (-2130 ((|#1| |#1| (-688)) 44 T ELT))) +(((-518 |#1|) (-10 -7 (-15 -2128 ((-83) |#1| (-688))) (-15 -2129 ((-3 |#1| #1="failed") |#1| (-688))) (-15 -2129 ((-2 (|:| -2679 |#1|) (|:| -2388 (-688))) |#1|)) (-15 -2130 (|#1| |#1| (-688))) (-15 -2131 ((-83) |#1|)) (-15 -2132 ((-3 |#1| #1#) |#1|)) (-15 -2133 (|#1| |#1|))) (-478)) (T -518)) +((-2133 (*1 *2 *2) (-12 (-5 *1 (-518 *2)) (-4 *2 (-478)))) (-2132 (*1 *2 *2) (|partial| -12 (-5 *1 (-518 *2)) (-4 *2 (-478)))) (-2131 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-518 *3)) (-4 *3 (-478)))) (-2130 (*1 *2 *2 *3) (-12 (-5 *3 (-688)) (-5 *1 (-518 *2)) (-4 *2 (-478)))) (-2129 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2679 *3) (|:| -2388 (-688)))) (-5 *1 (-518 *3)) (-4 *3 (-478)))) (-2129 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-688)) (-5 *1 (-518 *2)) (-4 *2 (-478)))) (-2128 (*1 *2 *3 *4) (-12 (-5 *4 (-688)) (-5 *2 (-83)) (-5 *1 (-518 *3)) (-4 *3 (-478))))) +((-2134 (((-1075 |#1|) (-824)) 44 T ELT))) +(((-519 |#1|) (-10 -7 (-15 -2134 ((-1075 |#1|) (-824)))) (-295)) (T -519)) +((-2134 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-519 *4)) (-4 *4 (-295))))) +((-3400 (((-514 (-344 (-851 |#1|))) (-514 (-344 (-851 |#1|)))) 27 T ELT)) (-3794 (((-3 (-261 |#1|) (-579 (-261 |#1|))) (-344 (-851 |#1|)) (-1080)) 33 (|has| |#1| (-118)) ELT)) (-3945 (((-579 (-261 |#1|)) (-514 (-344 (-851 |#1|)))) 19 T ELT)) (-2136 (((-261 |#1|) (-344 (-851 |#1|)) (-1080)) 31 (|has| |#1| (-118)) ELT)) (-2135 (((-261 |#1|) (-514 (-344 (-851 |#1|)))) 21 T ELT))) +(((-520 |#1|) (-10 -7 (-15 -3400 ((-514 (-344 (-851 |#1|))) (-514 (-344 (-851 |#1|))))) (-15 -3945 ((-579 (-261 |#1|)) (-514 (-344 (-851 |#1|))))) (-15 -2135 ((-261 |#1|) (-514 (-344 (-851 |#1|))))) (IF (|has| |#1| (-118)) (PROGN (-15 -3794 ((-3 (-261 |#1|) (-579 (-261 |#1|))) (-344 (-851 |#1|)) (-1080))) (-15 -2136 ((-261 |#1|) (-344 (-851 |#1|)) (-1080)))) |%noBranch|)) (-13 (-386) (-944 (-479)) (-576 (-479)))) (T -520)) +((-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-118)) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-261 *5)) (-5 *1 (-520 *5)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-118)) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (-261 *5) (-579 (-261 *5)))) (-5 *1 (-520 *5)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-514 (-344 (-851 *4)))) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-261 *4)) (-5 *1 (-520 *4)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-514 (-344 (-851 *4)))) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-579 (-261 *4))) (-5 *1 (-520 *4)))) (-3400 (*1 *2 *2) (-12 (-5 *2 (-514 (-344 (-851 *3)))) (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-520 *3))))) +((-2138 (((-579 (-626 (-479))) (-579 (-824)) (-579 (-807 (-479)))) 80 T ELT) (((-579 (-626 (-479))) (-579 (-824))) 81 T ELT) (((-626 (-479)) (-579 (-824)) (-807 (-479))) 74 T ELT)) (-2137 (((-688) (-579 (-824))) 71 T ELT))) +(((-521) (-10 -7 (-15 -2137 ((-688) (-579 (-824)))) (-15 -2138 ((-626 (-479)) (-579 (-824)) (-807 (-479)))) (-15 -2138 ((-579 (-626 (-479))) (-579 (-824)))) (-15 -2138 ((-579 (-626 (-479))) (-579 (-824)) (-579 (-807 (-479))))))) (T -521)) +((-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-824))) (-5 *4 (-579 (-807 (-479)))) (-5 *2 (-579 (-626 (-479)))) (-5 *1 (-521)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-579 (-824))) (-5 *2 (-579 (-626 (-479)))) (-5 *1 (-521)))) (-2138 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-824))) (-5 *4 (-807 (-479))) (-5 *2 (-626 (-479))) (-5 *1 (-521)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-579 (-824))) (-5 *2 (-688)) (-5 *1 (-521))))) +((-3197 (((-579 |#5|) |#5| (-83)) 97 T ELT)) (-2139 (((-83) |#5| (-579 |#5|)) 34 T ELT))) +(((-522 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3197 ((-579 |#5|) |#5| (-83))) (-15 -2139 ((-83) |#5| (-579 |#5|)))) (-13 (-254) (-118)) (-711) (-750) (-970 |#1| |#2| |#3|) (-1013 |#1| |#2| |#3| |#4|)) (T -522)) +((-2139 (*1 *2 *3 *4) (-12 (-5 *4 (-579 *3)) (-4 *3 (-1013 *5 *6 *7 *8)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-522 *5 *6 *7 *8 *3)))) (-3197 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-579 *3)) (-5 *1 (-522 *5 *6 *7 *8 *3)) (-4 *3 (-1013 *5 *6 *7 *8))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3510 (((-1039) $) 12 T ELT)) (-3511 (((-1039) $) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-523) (-13 (-988) (-10 -8 (-15 -3511 ((-1039) $)) (-15 -3510 ((-1039) $))))) (T -523)) +((-3511 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-523)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-523))))) +((-3514 (((-2 (|:| |num| |#4|) (|:| |den| (-479))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-479))) |#4| |#2| (-994 |#4|)) 32 T ELT))) +(((-524 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3514 ((-2 (|:| |num| |#4|) (|:| |den| (-479))) |#4| |#2| (-994 |#4|))) (-15 -3514 ((-2 (|:| |num| |#4|) (|:| |den| (-479))) |#4| |#2|))) (-711) (-750) (-490) (-855 |#3| |#1| |#2|)) (T -524)) +((-3514 (*1 *2 *3 *4) (-12 (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-490)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-479)))) (-5 *1 (-524 *5 *4 *6 *3)) (-4 *3 (-855 *6 *5 *4)))) (-3514 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-994 *3)) (-4 *3 (-855 *7 *6 *4)) (-4 *6 (-711)) (-4 *4 (-750)) (-4 *7 (-490)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-479)))) (-5 *1 (-524 *6 *4 *7 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 71 T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-479)) 58 T ELT) (($ $ (-479) (-479)) 59 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) $) 65 T ELT)) (-2170 (($ $) 109 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2168 (((-766) (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) (-933 (-744 (-479))) (-1080) |#1| (-344 (-479))) 232 T ELT)) (-3800 (($ (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|)))) 36 T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2877 (((-83) $) NIL T ELT)) (-3754 (((-479) $) 63 T ELT) (((-479) $ (-479)) 64 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3759 (($ $ (-824)) 83 T ELT)) (-3797 (($ (-1 |#1| (-479)) $) 80 T ELT)) (-3919 (((-83) $) 26 T ELT)) (-2878 (($ |#1| (-479)) 22 T ELT) (($ $ (-987) (-479)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-479))) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2174 (($ (-933 (-744 (-479))) (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|)))) 13 T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3794 (($ $) 120 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2171 (((-3 $ #1#) $ $ (-83)) 108 T ELT)) (-2169 (($ $ $) 116 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2172 (((-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) $) 15 T ELT)) (-2173 (((-933 (-744 (-479))) $) 14 T ELT)) (-3751 (($ $ (-479)) 47 T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-3750 (((-1059 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-479)))) ELT)) (-3782 ((|#1| $ (-479)) 62 T ELT) (($ $ $) NIL (|has| (-479) (-1016)) ELT)) (-3740 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-479) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-479) |#1|))) ELT)) (-3930 (((-479) $) NIL T ELT)) (-2876 (($ $) 48 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) 29 T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ |#1|) 28 (|has| |#1| (-144)) ELT)) (-3659 ((|#1| $ (-479)) 61 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 39 T CONST)) (-3755 ((|#1| $) NIL T ELT)) (-2149 (($ $) 192 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2161 (($ $) 167 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2151 (($ $) 189 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2163 (($ $) 164 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2147 (($ $) 194 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2159 (($ $) 170 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2166 (($ $ (-344 (-479))) 157 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2167 (($ $ |#1|) 128 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2164 (($ $) 161 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2165 (($ $) 159 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2146 (($ $) 195 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2158 (($ $) 171 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2148 (($ $) 193 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2160 (($ $) 169 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2150 (($ $) 190 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2162 (($ $) 165 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2143 (($ $) 200 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2155 (($ $) 180 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2145 (($ $) 197 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2157 (($ $) 176 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2141 (($ $) 204 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2153 (($ $) 184 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2140 (($ $) 206 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2152 (($ $) 186 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2142 (($ $) 202 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2154 (($ $) 182 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2144 (($ $) 199 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2156 (($ $) 178 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3752 ((|#1| $ (-479)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-479)))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-2645 (($) 30 T CONST)) (-2651 (($) 40 T CONST)) (-2654 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-479) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-479) |#1|))) ELT)) (-3041 (((-83) $ $) 73 T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3821 (($ $ $) 88 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 111 T ELT)) (* (($ (-824) $) 98 T ELT) (($ (-688) $) 96 T ELT) (($ (-479) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-525 |#1|) (-13 (-1148 |#1| (-479)) (-10 -8 (-15 -2174 ($ (-933 (-744 (-479))) (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))))) (-15 -2173 ((-933 (-744 (-479))) $)) (-15 -2172 ((-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) $)) (-15 -3800 ($ (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))))) (-15 -3919 ((-83) $)) (-15 -3797 ($ (-1 |#1| (-479)) $)) (-15 -2171 ((-3 $ "failed") $ $ (-83))) (-15 -2170 ($ $)) (-15 -2169 ($ $ $)) (-15 -2168 ((-766) (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) (-933 (-744 (-479))) (-1080) |#1| (-344 (-479)))) (IF (|has| |#1| (-38 (-344 (-479)))) (PROGN (-15 -3794 ($ $)) (-15 -2167 ($ $ |#1|)) (-15 -2166 ($ $ (-344 (-479)))) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $)) (-15 -2152 ($ $)) (-15 -2151 ($ $)) (-15 -2150 ($ $)) (-15 -2149 ($ $)) (-15 -2148 ($ $)) (-15 -2147 ($ $)) (-15 -2146 ($ $)) (-15 -2145 ($ $)) (-15 -2144 ($ $)) (-15 -2143 ($ $)) (-15 -2142 ($ $)) (-15 -2141 ($ $)) (-15 -2140 ($ $))) |%noBranch|))) (-955)) (T -525)) +((-3919 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-525 *3)) (-4 *3 (-955)))) (-2174 (*1 *1 *2 *3) (-12 (-5 *2 (-933 (-744 (-479)))) (-5 *3 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *4)))) (-4 *4 (-955)) (-5 *1 (-525 *4)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-933 (-744 (-479)))) (-5 *1 (-525 *3)) (-4 *3 (-955)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *3)))) (-5 *1 (-525 *3)) (-4 *3 (-955)))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *3)))) (-4 *3 (-955)) (-5 *1 (-525 *3)))) (-3797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-479))) (-4 *3 (-955)) (-5 *1 (-525 *3)))) (-2171 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-83)) (-5 *1 (-525 *3)) (-4 *3 (-955)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-955)))) (-2169 (*1 *1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-955)))) (-2168 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *6)))) (-5 *4 (-933 (-744 (-479)))) (-5 *5 (-1080)) (-5 *7 (-344 (-479))) (-4 *6 (-955)) (-5 *2 (-766)) (-5 *1 (-525 *6)))) (-3794 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-525 *3)) (-4 *3 (-38 *2)) (-4 *3 (-955)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2152 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2151 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2150 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2149 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2148 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2147 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2146 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2145 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2144 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2143 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2142 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2141 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) (-2140 (*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 62 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3800 (($ (-1059 |#1|)) 9 T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ #1#) $) 44 T ELT)) (-2877 (((-83) $) 56 T ELT)) (-3754 (((-688) $) 61 T ELT) (((-688) $ (-688)) 60 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) 46 (|has| |#1| (-490)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3799 (((-1059 |#1|) $) 25 T ELT)) (-3110 (((-688)) 55 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) 10 T CONST)) (-2651 (($) 14 T CONST)) (-3041 (((-83) $ $) 24 T ELT)) (-3819 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3821 (($ $ $) 27 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 53 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-479)) 38 T ELT))) +(((-526 |#1|) (-13 (-955) (-80 |#1| |#1|) (-10 -8 (-15 -3799 ((-1059 |#1|) $)) (-15 -3800 ($ (-1059 |#1|))) (-15 -2877 ((-83) $)) (-15 -3754 ((-688) $)) (-15 -3754 ((-688) $ (-688))) (-15 * ($ $ (-479))) (IF (|has| |#1| (-490)) (-6 (-490)) |%noBranch|))) (-955)) (T -526)) +((-3799 (*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-526 *3)) (-4 *3 (-955)))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-526 *3)))) (-2877 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-526 *3)) (-4 *3 (-955)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-526 *3)) (-4 *3 (-955)))) (-3754 (*1 *2 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-526 *3)) (-4 *3 (-955)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-526 *3)) (-4 *3 (-955))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2177 (($) 8 T CONST)) (-2178 (($) 7 T CONST)) (-2175 (($ $ (-579 $)) 16 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2179 (($) 6 T CONST)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-1085)) 15 T ELT) (((-1085) $) 10 T ELT)) (-2176 (($) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-527) (-13 (-1006) (-424 (-1085)) (-10 -8 (-15 -2179 ($) -3934) (-15 -2178 ($) -3934) (-15 -2177 ($) -3934) (-15 -2176 ($) -3934) (-15 -2175 ($ $ (-579 $)))))) (T -527)) +((-2179 (*1 *1) (-5 *1 (-527))) (-2178 (*1 *1) (-5 *1 (-527))) (-2177 (*1 *1) (-5 *1 (-527))) (-2176 (*1 *1) (-5 *1 (-527))) (-2175 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-527))) (-5 *1 (-527))))) +((-3940 (((-531 |#2|) (-1 |#2| |#1|) (-531 |#1|)) 15 T ELT))) +(((-528 |#1| |#2|) (-13 (-1119) (-10 -7 (-15 -3940 ((-531 |#2|) (-1 |#2| |#1|) (-531 |#1|))))) (-1119) (-1119)) (T -528)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-531 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-531 *6)) (-5 *1 (-528 *5 *6))))) +((-3940 (((-1059 |#3|) (-1 |#3| |#1| |#2|) (-531 |#1|) (-1059 |#2|)) 20 T ELT) (((-1059 |#3|) (-1 |#3| |#1| |#2|) (-1059 |#1|) (-531 |#2|)) 19 T ELT) (((-531 |#3|) (-1 |#3| |#1| |#2|) (-531 |#1|) (-531 |#2|)) 18 T ELT))) +(((-529 |#1| |#2| |#3|) (-10 -7 (-15 -3940 ((-531 |#3|) (-1 |#3| |#1| |#2|) (-531 |#1|) (-531 |#2|))) (-15 -3940 ((-1059 |#3|) (-1 |#3| |#1| |#2|) (-1059 |#1|) (-531 |#2|))) (-15 -3940 ((-1059 |#3|) (-1 |#3| |#1| |#2|) (-531 |#1|) (-1059 |#2|)))) (-1119) (-1119) (-1119)) (T -529)) +((-3940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-531 *6)) (-5 *5 (-1059 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1059 *8)) (-5 *1 (-529 *6 *7 *8)))) (-3940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1059 *6)) (-5 *5 (-531 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1059 *8)) (-5 *1 (-529 *6 *7 *8)))) (-3940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-531 *6)) (-5 *5 (-531 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-531 *8)) (-5 *1 (-529 *6 *7 *8))))) +((-2184 ((|#3| |#3| (-579 (-546 |#3|)) (-579 (-1080))) 57 T ELT)) (-2183 (((-140 |#2|) |#3|) 122 T ELT)) (-2180 ((|#3| (-140 |#2|)) 46 T ELT)) (-2181 ((|#2| |#3|) 21 T ELT)) (-2182 ((|#3| |#2|) 35 T ELT))) +(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -2180 (|#3| (-140 |#2|))) (-15 -2181 (|#2| |#3|)) (-15 -2182 (|#3| |#2|)) (-15 -2183 ((-140 |#2|) |#3|)) (-15 -2184 (|#3| |#3| (-579 (-546 |#3|)) (-579 (-1080))))) (-490) (-13 (-358 |#1|) (-909) (-1105)) (-13 (-358 (-140 |#1|)) (-909) (-1105))) (T -530)) +((-2184 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-579 (-546 *2))) (-5 *4 (-579 (-1080))) (-4 *2 (-13 (-358 (-140 *5)) (-909) (-1105))) (-4 *5 (-490)) (-5 *1 (-530 *5 *6 *2)) (-4 *6 (-13 (-358 *5) (-909) (-1105))))) (-2183 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-140 *5)) (-5 *1 (-530 *4 *5 *3)) (-4 *5 (-13 (-358 *4) (-909) (-1105))) (-4 *3 (-13 (-358 (-140 *4)) (-909) (-1105))))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *2 (-13 (-358 (-140 *4)) (-909) (-1105))) (-5 *1 (-530 *4 *3 *2)) (-4 *3 (-13 (-358 *4) (-909) (-1105))))) (-2181 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *2 (-13 (-358 *4) (-909) (-1105))) (-5 *1 (-530 *4 *2 *3)) (-4 *3 (-13 (-358 (-140 *4)) (-909) (-1105))))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-140 *5)) (-4 *5 (-13 (-358 *4) (-909) (-1105))) (-4 *4 (-490)) (-4 *2 (-13 (-358 (-140 *4)) (-909) (-1105))) (-5 *1 (-530 *4 *5 *2))))) +((-3692 (($ (-1 (-83) |#1|) $) 19 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3439 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3438 (($ (-1 (-83) |#1|) $) 15 T ELT)) (-3437 (($ (-1 (-83) |#1|) $) 17 T ELT)) (-3512 (((-1059 |#1|) $) 20 T ELT)) (-3928 (((-766) $) 25 T ELT))) +(((-531 |#1|) (-13 (-548 (-766)) (-10 -8 (-15 -3940 ($ (-1 |#1| |#1|) $)) (-15 -3438 ($ (-1 (-83) |#1|) $)) (-15 -3437 ($ (-1 (-83) |#1|) $)) (-15 -3692 ($ (-1 (-83) |#1|) $)) (-15 -3439 ($ (-1 |#1| |#1|) |#1|)) (-15 -3512 ((-1059 |#1|) $)))) (-1119)) (T -531)) +((-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) (-3438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) (-3437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) (-3692 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) (-3439 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-531 *3)) (-4 *3 (-1119))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3820 (($ (-688)) NIL (|has| |#1| (-23)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) NIL T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) NIL T ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3817 (((-626 |#1|) $ $) NIL (|has| |#1| (-955)) ELT)) (-3596 (($ (-688) |#1|) NIL T ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3814 ((|#1| $) NIL (-12 (|has| |#1| (-909)) (|has| |#1| (-955))) ELT)) (-3815 ((|#1| $) NIL (-12 (|has| |#1| (-909)) (|has| |#1| (-955))) ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) |#1|) NIL T ELT) ((|#1| $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-3818 ((|#1| $ $) NIL (|has| |#1| (-955)) ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-3816 (($ $ $) NIL (|has| |#1| (-955)) ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) NIL T ELT)) (-3784 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3819 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3821 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-479) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-659)) ELT) (($ $ |#1|) NIL (|has| |#1| (-659)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-532 |#1| |#2|) (-1168 |#1|) (-1119) (-479)) (T -532)) +NIL +((-2185 (((-1175) $ |#2| |#2|) 35 T ELT)) (-2187 ((|#2| $) 23 T ELT)) (-2188 ((|#2| $) 21 T ELT)) (-1937 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3940 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3783 ((|#3| $) 26 T ELT)) (-2186 (($ $ |#3|) 33 T ELT)) (-2189 (((-83) |#3| $) 17 T ELT)) (-2192 (((-579 |#3|) $) 15 T ELT)) (-3782 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-533 |#1| |#2| |#3|) (-10 -7 (-15 -2185 ((-1175) |#1| |#2| |#2|)) (-15 -2186 (|#1| |#1| |#3|)) (-15 -3783 (|#3| |#1|)) (-15 -2187 (|#2| |#1|)) (-15 -2188 (|#2| |#1|)) (-15 -2189 ((-83) |#3| |#1|)) (-15 -2192 ((-579 |#3|) |#1|)) (-15 -3782 (|#3| |#1| |#2|)) (-15 -3782 (|#3| |#1| |#2| |#3|)) (-15 -1937 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3940 (|#1| (-1 |#3| |#3|) |#1|))) (-534 |#2| |#3|) (-1006) (-1119)) (T -533)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#2| (-72)) ELT)) (-2185 (((-1175) $ |#1| |#1|) 44 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -3978)) ELT)) (-3706 (($) 7 T CONST)) (-1564 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) 55 T ELT)) (-2874 (((-579 |#2|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2187 ((|#1| $) 47 (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#2|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#2| $) 27 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 ((|#1| $) 48 (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| |#2| (-1006)) ELT)) (-2190 (((-579 |#1|) $) 50 T ELT)) (-2191 (((-83) |#1| $) 51 T ELT)) (-3227 (((-1024) $) 21 (|has| |#2| (-1006)) ELT)) (-3783 ((|#2| $) 46 (|has| |#1| (-750)) ELT)) (-2186 (($ $ |#2|) 45 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#2|))) 26 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) 25 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) 23 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#2| $) 49 (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#2| $) 28 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#2| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#2| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#2| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-534 |#1| |#2|) (-111) (-1006) (-1119)) (T -534)) +((-2192 (*1 *2 *1) (-12 (-4 *1 (-534 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1119)) (-5 *2 (-579 *4)))) (-2191 (*1 *2 *3 *1) (-12 (-4 *1 (-534 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1119)) (-5 *2 (-83)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-534 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1119)) (-5 *2 (-579 *3)))) (-2189 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-534 *4 *3)) (-4 *4 (-1006)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-83)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-534 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1006)) (-4 *2 (-750)))) (-2187 (*1 *2 *1) (-12 (-4 *1 (-534 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1006)) (-4 *2 (-750)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-534 *3 *2)) (-4 *3 (-1006)) (-4 *3 (-750)) (-4 *2 (-1119)))) (-2186 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-534 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1119)))) (-2185 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-534 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1119)) (-5 *2 (-1175))))) +(-13 (-423 |t#2|) (-240 |t#1| |t#2|) (-10 -8 (-15 -2192 ((-579 |t#2|) $)) (-15 -2191 ((-83) |t#1| $)) (-15 -2190 ((-579 |t#1|) $)) (IF (|has| |t#2| (-1006)) (IF (|has| $ (-6 -3977)) (-15 -2189 ((-83) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-750)) (PROGN (-15 -2188 (|t#1| $)) (-15 -2187 (|t#1| $)) (-15 -3783 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3978)) (PROGN (-15 -2186 ($ $ |t#2|)) (-15 -2185 ((-1175) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#2| (-1006)) (|has| |#2| (-72))) ((-548 (-766)) OR (|has| |#2| (-1006)) (|has| |#2| (-548 (-766)))) ((-238 |#1| |#2|) . T) ((-240 |#1| |#2|) . T) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-423 |#2|) . T) ((-448 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-1006) |has| |#2| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT) (((-1120) $) 15 T ELT) (($ (-579 (-1120))) 14 T ELT)) (-2193 (((-579 (-1120)) $) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-535) (-13 (-988) (-548 (-1120)) (-10 -8 (-15 -3928 ($ (-579 (-1120)))) (-15 -2193 ((-579 (-1120)) $))))) (T -535)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-535)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-535))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1760 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1300 (((-3 $ #1#) $ $) NIL T ELT)) (-3207 (((-1169 (-626 |#1|))) NIL (|has| |#2| (-355 |#1|)) ELT) (((-1169 (-626 |#1|)) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1717 (((-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3706 (($) NIL T CONST)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1691 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1776 (((-626 |#1|)) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1715 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1774 (((-626 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) $ (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2391 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1888 (((-1075 (-851 |#1|))) NIL (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-308))) ELT)) (-2394 (($ $ (-824)) NIL T ELT)) (-1713 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1693 (((-1075 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1778 ((|#1|) NIL (|has| |#2| (-355 |#1|)) ELT) ((|#1| (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1711 (((-1075 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1705 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1780 (($ (-1169 |#1|)) NIL (|has| |#2| (-355 |#1|)) ELT) (($ (-1169 |#1|) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3449 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-3093 (((-824)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1702 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2418 (($ $ (-824)) NIL T ELT)) (-1698 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1696 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1700 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1692 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1777 (((-626 |#1|)) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1716 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1775 (((-626 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) $ (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2392 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1892 (((-1075 (-851 |#1|))) NIL (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-308))) ELT)) (-2393 (($ $ (-824)) NIL T ELT)) (-1714 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1694 (((-1075 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1779 ((|#1|) NIL (|has| |#2| (-355 |#1|)) ELT) ((|#1| (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1712 (((-1075 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1706 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1697 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1699 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1701 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1704 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3782 ((|#1| $ (-479)) NIL (|has| |#2| (-355 |#1|)) ELT)) (-3208 (((-626 |#1|) (-1169 $)) NIL (|has| |#2| (-355 |#1|)) ELT) (((-1169 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) (-1169 $) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT) (((-1169 |#1|) $ (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3954 (($ (-1169 |#1|)) NIL (|has| |#2| (-355 |#1|)) ELT) (((-1169 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT)) (-1880 (((-579 (-851 |#1|))) NIL (|has| |#2| (-355 |#1|)) ELT) (((-579 (-851 |#1|)) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3928 (((-766) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL (|has| |#2| (-355 |#1|)) ELT)) (-1695 (((-579 (-1169 |#1|))) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-2421 (($ $ $ $) NIL T ELT)) (-1708 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2530 (($ (-626 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1707 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1703 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2645 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) 24 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-536 |#1| |#2|) (-13 (-677 |#1|) (-548 |#2|) (-10 -8 (-15 -3928 ($ |#2|)) (IF (|has| |#2| (-355 |#1|)) (-6 (-355 |#1|)) |%noBranch|) (IF (|has| |#2| (-312 |#1|)) (-6 (-312 |#1|)) |%noBranch|))) (-144) (-677 |#1|)) (T -536)) +((-3928 (*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-536 *3 *2)) (-4 *2 (-677 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-99)) 6 T ELT) (((-99) $) 7 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-537) (-13 (-1006) (-424 (-99)))) (T -537)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2195 (($) 10 T CONST)) (-2217 (($) 8 T CONST)) (-2194 (($) 11 T CONST)) (-2213 (($) 9 T CONST)) (-2210 (($) 12 T CONST)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT))) +(((-538) (-13 (-1006) (-600) (-10 -8 (-15 -2217 ($) -3934) (-15 -2213 ($) -3934) (-15 -2195 ($) -3934) (-15 -2194 ($) -3934) (-15 -2210 ($) -3934)))) (T -538)) +((-2217 (*1 *1) (-5 *1 (-538))) (-2213 (*1 *1) (-5 *1 (-538))) (-2195 (*1 *1) (-5 *1 (-538))) (-2194 (*1 *1) (-5 *1 (-538))) (-2210 (*1 *1) (-5 *1 (-538)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2206 (($) 11 T CONST)) (-2200 (($) 17 T CONST)) (-2196 (($) 21 T CONST)) (-2198 (($) 19 T CONST)) (-2203 (($) 14 T CONST)) (-2197 (($) 20 T CONST)) (-2205 (($) 12 T CONST)) (-2204 (($) 13 T CONST)) (-2199 (($) 18 T CONST)) (-2202 (($) 15 T CONST)) (-2201 (($) 16 T CONST)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (((-99) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-539) (-13 (-1006) (-548 (-99)) (-10 -8 (-15 -2206 ($) -3934) (-15 -2205 ($) -3934) (-15 -2204 ($) -3934) (-15 -2203 ($) -3934) (-15 -2202 ($) -3934) (-15 -2201 ($) -3934) (-15 -2200 ($) -3934) (-15 -2199 ($) -3934) (-15 -2198 ($) -3934) (-15 -2197 ($) -3934) (-15 -2196 ($) -3934)))) (T -539)) +((-2206 (*1 *1) (-5 *1 (-539))) (-2205 (*1 *1) (-5 *1 (-539))) (-2204 (*1 *1) (-5 *1 (-539))) (-2203 (*1 *1) (-5 *1 (-539))) (-2202 (*1 *1) (-5 *1 (-539))) (-2201 (*1 *1) (-5 *1 (-539))) (-2200 (*1 *1) (-5 *1 (-539))) (-2199 (*1 *1) (-5 *1 (-539))) (-2198 (*1 *1) (-5 *1 (-539))) (-2197 (*1 *1) (-5 *1 (-539))) (-2196 (*1 *1) (-5 *1 (-539)))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2208 (($) 13 T CONST)) (-2207 (($) 14 T CONST)) (-2214 (($) 11 T CONST)) (-2217 (($) 8 T CONST)) (-2215 (($) 10 T CONST)) (-2216 (($) 9 T CONST)) (-2213 (($) 12 T CONST)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT))) +(((-540) (-13 (-1006) (-600) (-10 -8 (-15 -2217 ($) -3934) (-15 -2216 ($) -3934) (-15 -2215 ($) -3934) (-15 -2214 ($) -3934) (-15 -2213 ($) -3934) (-15 -2208 ($) -3934) (-15 -2207 ($) -3934)))) (T -540)) +((-2217 (*1 *1) (-5 *1 (-540))) (-2216 (*1 *1) (-5 *1 (-540))) (-2215 (*1 *1) (-5 *1 (-540))) (-2214 (*1 *1) (-5 *1 (-540))) (-2213 (*1 *1) (-5 *1 (-540))) (-2208 (*1 *1) (-5 *1 (-540))) (-2207 (*1 *1) (-5 *1 (-540)))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2212 (($) 13 T CONST)) (-2209 (($) 16 T CONST)) (-2214 (($) 11 T CONST)) (-2217 (($) 8 T CONST)) (-2215 (($) 10 T CONST)) (-2216 (($) 9 T CONST)) (-2211 (($) 14 T CONST)) (-2213 (($) 12 T CONST)) (-2210 (($) 15 T CONST)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT))) +(((-541) (-13 (-1006) (-600) (-10 -8 (-15 -2217 ($) -3934) (-15 -2216 ($) -3934) (-15 -2215 ($) -3934) (-15 -2214 ($) -3934) (-15 -2213 ($) -3934) (-15 -2212 ($) -3934) (-15 -2211 ($) -3934) (-15 -2210 ($) -3934) (-15 -2209 ($) -3934)))) (T -541)) +((-2217 (*1 *1) (-5 *1 (-541))) (-2216 (*1 *1) (-5 *1 (-541))) (-2215 (*1 *1) (-5 *1 (-541))) (-2214 (*1 *1) (-5 *1 (-541))) (-2213 (*1 *1) (-5 *1 (-541))) (-2212 (*1 *1) (-5 *1 (-541))) (-2211 (*1 *1) (-5 *1 (-541))) (-2210 (*1 *1) (-5 *1 (-541))) (-2209 (*1 *1) (-5 *1 (-541)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 19 T ELT) (($ (-537)) 12 T ELT) (((-537) $) 11 T ELT) (($ (-99)) NIL T ELT) (((-99) $) 14 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-542) (-13 (-1006) (-424 (-537)) (-424 (-99)))) (T -542)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-1685 (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) 40 T ELT)) (-3581 (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2185 (((-1175) $ (-1063) (-1063)) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ (-1063) |#1|) 50 T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#1| #1="failed") (-1063) $) 53 T ELT)) (-3706 (($) NIL T CONST)) (-1689 (($ $ (-1063)) 25 T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT)) (-3387 (((-3 |#1| #1#) (-1063) $) 54 T ELT) (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3388 (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT)) (-3824 (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT)) (-1686 (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1564 ((|#1| $ (-1063) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-1063)) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2258 (($ $) 55 T ELT)) (-1690 (($ (-332)) 23 T ELT) (($ (-332) (-1063)) 22 T ELT)) (-3524 (((-332) $) 41 T ELT)) (-2187 (((-1063) $) NIL (|has| (-1063) (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (((-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT)) (-2188 (((-1063) $) NIL (|has| (-1063) (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2219 (((-579 (-1063)) $) 46 T ELT)) (-2220 (((-83) (-1063) $) NIL T ELT)) (-1687 (((-1063) $) 42 T ELT)) (-1263 (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2190 (((-579 (-1063)) $) NIL T ELT)) (-2191 (((-83) (-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 ((|#1| $) NIL (|has| (-1063) (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) #1#) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2186 (($ $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (($ $ (-579 (-245 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) 44 T ELT)) (-3782 ((|#1| $ (-1063) |#1|) NIL T ELT) ((|#1| $ (-1063)) 49 T ELT)) (-1454 (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (((-688) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (((-688) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL T ELT)) (-3928 (((-766) $) 21 T ELT)) (-1688 (($ $) 26 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1265 (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 20 T ELT)) (-3939 (((-688) $) 48 (|has| $ (-6 -3977)) ELT))) +(((-543 |#1|) (-13 (-310 (-332) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) (-1097 (-1063) |#1|) (-10 -8 (-6 -3977) (-15 -2258 ($ $)))) (-1006)) (T -543)) +((-2258 (*1 *1 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-1006))))) +((-3229 (((-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2219 (((-579 |#2|) $) 20 T ELT)) (-2220 (((-83) |#2| $) 12 T ELT))) +(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2219 ((-579 |#2|) |#1|)) (-15 -2220 ((-83) |#2| |#1|)) (-15 -3229 ((-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) |#1|))) (-545 |#2| |#3|) (-1006) (-1006)) (T -544)) +NIL +((-2553 (((-83) $ $) 19 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-3706 (($) 7 T CONST)) (-1341 (($ $) 62 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3977)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-2219 (((-579 |#1|) $) 67 T ELT)) (-2220 (((-83) |#1| $) 68 T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-3227 (((-1024) $) 21 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-1454 (($) 53 T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 63 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3928 (((-766) $) 17 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-545 |#1| |#2|) (-111) (-1006) (-1006)) (T -545)) +((-2220 (*1 *2 *3 *1) (-12 (-4 *1 (-545 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-83)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-545 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-579 *3)))) (-3387 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-545 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-2218 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-545 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) +(-13 (-181 (-2 (|:| -3842 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -2220 ((-83) |t#1| $)) (-15 -2219 ((-579 |t#1|) $)) (-15 -3387 ((-3 |t#2| "failed") |t#1| $)) (-15 -2218 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-76 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72))) ((-548 (-766)) OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766)))) ((-122 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-549 (-468)) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ((-181 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-190 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ((-423 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-448 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ((-1006) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-2221 (((-3 (-1080) "failed") $) 46 T ELT)) (-1301 (((-1175) $ (-688)) 22 T ELT)) (-3401 (((-688) $) 20 T ELT)) (-3577 (((-84) $) 9 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2222 (($ (-84) (-579 |#1|) (-688)) 32 T ELT) (($ (-1080)) 33 T ELT)) (-2618 (((-83) $ (-84)) 15 T ELT) (((-83) $ (-1080)) 13 T ELT)) (-2588 (((-688) $) 17 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3954 (((-794 (-479)) $) 99 (|has| |#1| (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) 106 (|has| |#1| (-549 (-794 (-324)))) ELT) (((-468) $) 92 (|has| |#1| (-549 (-468))) ELT)) (-3928 (((-766) $) 74 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2223 (((-579 |#1|) $) 19 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 51 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 53 T ELT))) +(((-546 |#1|) (-13 (-103) (-750) (-788 |#1|) (-10 -8 (-15 -3577 ((-84) $)) (-15 -2223 ((-579 |#1|) $)) (-15 -2588 ((-688) $)) (-15 -2222 ($ (-84) (-579 |#1|) (-688))) (-15 -2222 ($ (-1080))) (-15 -2221 ((-3 (-1080) "failed") $)) (-15 -2618 ((-83) $ (-84))) (-15 -2618 ((-83) $ (-1080))) (IF (|has| |#1| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|))) (-1006)) (T -546)) +((-3577 (*1 *2 *1) (-12 (-5 *2 (-84)) (-5 *1 (-546 *3)) (-4 *3 (-1006)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-546 *3)) (-4 *3 (-1006)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-546 *3)) (-4 *3 (-1006)))) (-2222 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-84)) (-5 *3 (-579 *5)) (-5 *4 (-688)) (-4 *5 (-1006)) (-5 *1 (-546 *5)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-546 *3)) (-4 *3 (-1006)))) (-2221 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080)) (-5 *1 (-546 *3)) (-4 *3 (-1006)))) (-2618 (*1 *2 *1 *3) (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-546 *4)) (-4 *4 (-1006)))) (-2618 (*1 *2 *1 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-83)) (-5 *1 (-546 *4)) (-4 *4 (-1006))))) +((-2224 (((-546 |#2|) |#1|) 17 T ELT)) (-2225 (((-3 |#1| "failed") (-546 |#2|)) 21 T ELT))) +(((-547 |#1| |#2|) (-10 -7 (-15 -2224 ((-546 |#2|) |#1|)) (-15 -2225 ((-3 |#1| "failed") (-546 |#2|)))) (-1006) (-1006)) (T -547)) +((-2225 (*1 *2 *3) (|partial| -12 (-5 *3 (-546 *4)) (-4 *4 (-1006)) (-4 *2 (-1006)) (-5 *1 (-547 *2 *4)))) (-2224 (*1 *2 *3) (-12 (-5 *2 (-546 *4)) (-5 *1 (-547 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) +((-3928 ((|#1| $) 6 T ELT))) +(((-548 |#1|) (-111) (-1119)) (T -548)) +((-3928 (*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-1119))))) +(-13 (-10 -8 (-15 -3928 (|t#1| $)))) +((-3954 ((|#1| $) 6 T ELT))) +(((-549 |#1|) (-111) (-1119)) (T -549)) +((-3954 (*1 *2 *1) (-12 (-4 *1 (-549 *2)) (-4 *2 (-1119))))) +(-13 (-10 -8 (-15 -3954 (|t#1| $)))) +((-2226 (((-3 (-1075 (-344 |#2|)) #1="failed") (-344 |#2|) (-344 |#2|) (-344 |#2|) (-1 (-342 |#2|) |#2|)) 15 T ELT) (((-3 (-1075 (-344 |#2|)) #1#) (-344 |#2|) (-344 |#2|) (-344 |#2|)) 16 T ELT))) +(((-550 |#1| |#2|) (-10 -7 (-15 -2226 ((-3 (-1075 (-344 |#2|)) #1="failed") (-344 |#2|) (-344 |#2|) (-344 |#2|))) (-15 -2226 ((-3 (-1075 (-344 |#2|)) #1#) (-344 |#2|) (-344 |#2|) (-344 |#2|) (-1 (-342 |#2|) |#2|)))) (-13 (-118) (-27) (-944 (-479)) (-944 (-344 (-479)))) (-1145 |#1|)) (T -550)) +((-2226 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-118) (-27) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-1075 (-344 *6))) (-5 *1 (-550 *5 *6)) (-5 *3 (-344 *6)))) (-2226 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-118) (-27) (-944 (-479)) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) (-5 *2 (-1075 (-344 *5))) (-5 *1 (-550 *4 *5)) (-5 *3 (-344 *5))))) +((-3928 (($ |#1|) 6 T ELT))) +(((-551 |#1|) (-111) (-1119)) (T -551)) +((-3928 (*1 *1 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-1119))))) +(-13 (-10 -8 (-15 -3928 ($ |t#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) NIL T ELT)) (-2227 (($) 11 T CONST)) (-2840 (($) 13 T CONST)) (-3120 (((-688)) 36 T ELT)) (-2979 (($) NIL T ELT)) (-2546 (($ $ $) 25 T ELT)) (-2545 (($ $) 23 T ELT)) (-1997 (((-824) $) 43 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) 42 T ELT)) (-2838 (($ $ $) 26 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2839 (($) 9 T CONST)) (-2837 (($ $ $) 27 T ELT)) (-3928 (((-766) $) 34 T ELT)) (-3548 (((-83) $ (|[\|\|]| -2839)) 20 T ELT) (((-83) $ (|[\|\|]| -2227)) 22 T ELT) (((-83) $ (|[\|\|]| -2840)) 18 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2547 (($ $ $) 24 T ELT)) (-2298 (($ $ $) NIL T ELT)) (-3041 (((-83) $ $) 16 T ELT)) (-2299 (($ $ $) NIL T ELT))) +(((-552) (-13 (-874) (-314) (-10 -8 (-15 -2227 ($) -3934) (-15 -3548 ((-83) $ (|[\|\|]| -2839))) (-15 -3548 ((-83) $ (|[\|\|]| -2227))) (-15 -3548 ((-83) $ (|[\|\|]| -2840)))))) (T -552)) +((-2227 (*1 *1) (-5 *1 (-552))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2839)) (-5 *2 (-83)) (-5 *1 (-552)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2227)) (-5 *2 (-83)) (-5 *1 (-552)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2840)) (-5 *2 (-83)) (-5 *1 (-552))))) +((-3954 (($ |#1|) 6 T ELT))) +(((-553 |#1|) (-111) (-1119)) (T -553)) +((-3954 (*1 *1 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1119))))) +(-13 (-10 -8 (-15 -3954 ($ |t#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| |#1| (-749)) ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2983 ((|#1| $) 13 T ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2982 ((|#3| $) 15 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3110 (((-688)) 20 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3365 (($ $) NIL (|has| |#1| (-749)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) 12 T CONST)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3931 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-554 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-749)) (-6 (-749)) |%noBranch|) (-15 -3931 ($ $ |#3|)) (-15 -3931 ($ |#1| |#3|)) (-15 -2983 (|#1| $)) (-15 -2982 (|#3| $)))) (-38 |#2|) (-144) (|SubsetCategory| (-659) |#2|)) (T -554)) +((-3931 (*1 *1 *1 *2) (-12 (-4 *4 (-144)) (-5 *1 (-554 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-3931 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-554 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-2983 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-38 *3)) (-5 *1 (-554 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2982 (*1 *2 *1) (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-554 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-555 |#1| |#2|) (-10 -7 (-15 -3928 (|#1| |#2|)) (-15 -3928 (|#1| (-479))) (-15 -3928 ((-766) |#1|))) (-556 |#2|) (-955)) (T -555)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) +(((-556 |#1|) (-111) (-955)) (T -556)) +((-3928 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-955))))) +(-13 (-955) (-586 |t#1|) (-10 -8 (-15 -3928 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-659) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2228 ((|#2| |#2| (-1080) (-1080)) 16 T ELT))) +(((-557 |#1| |#2|) (-10 -7 (-15 -2228 (|#2| |#2| (-1080) (-1080)))) (-13 (-254) (-118) (-944 (-479)) (-576 (-479))) (-13 (-1105) (-865) (-29 |#1|))) (T -557)) +((-2228 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-1105) (-865) (-29 *4)))))) +((-2553 (((-83) $ $) 64 T ELT)) (-3172 (((-83) $) 58 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-2229 ((|#1| $) 55 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3733 (((-2 (|:| -1750 $) (|:| -1749 (-344 |#2|))) (-344 |#2|)) 111 (|has| |#1| (-308)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) 27 T ELT)) (-3449 (((-3 $ #1#) $) 88 T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3754 (((-479) $) 22 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) 40 T ELT)) (-2878 (($ |#1| (-479)) 24 T ELT)) (-3158 ((|#1| $) 57 T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) 101 (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3448 (((-3 $ #1#) $ $) 93 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-1595 (((-688) $) 115 (|has| |#1| (-308)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 114 (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-688)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT)) (-3930 (((-479) $) 38 T ELT)) (-3954 (((-344 |#2|) $) 47 T ELT)) (-3928 (((-766) $) 69 T ELT) (($ (-479)) 35 T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3659 ((|#1| $ (-479)) 72 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 32 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2645 (($) 9 T CONST)) (-2651 (($) 14 T CONST)) (-2654 (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-688)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) 21 T ELT)) (-3819 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 90 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-558 |#1| |#2|) (-13 (-182 |#2|) (-490) (-549 (-344 |#2|)) (-349 |#1|) (-944 |#2|) (-10 -8 (-15 -3919 ((-83) $)) (-15 -3930 ((-479) $)) (-15 -3754 ((-479) $)) (-15 -3941 ($ $)) (-15 -3158 (|#1| $)) (-15 -2229 (|#1| $)) (-15 -3659 (|#1| $ (-479))) (-15 -2878 ($ |#1| (-479))) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-6 (-254)) (-15 -3733 ((-2 (|:| -1750 $) (|:| -1749 (-344 |#2|))) (-344 |#2|)))) |%noBranch|))) (-490) (-1145 |#1|)) (T -558)) +((-3919 (*1 *2 *1) (-12 (-4 *3 (-490)) (-5 *2 (-83)) (-5 *1 (-558 *3 *4)) (-4 *4 (-1145 *3)))) (-3930 (*1 *2 *1) (-12 (-4 *3 (-490)) (-5 *2 (-479)) (-5 *1 (-558 *3 *4)) (-4 *4 (-1145 *3)))) (-3754 (*1 *2 *1) (-12 (-4 *3 (-490)) (-5 *2 (-479)) (-5 *1 (-558 *3 *4)) (-4 *4 (-1145 *3)))) (-3941 (*1 *1 *1) (-12 (-4 *2 (-490)) (-5 *1 (-558 *2 *3)) (-4 *3 (-1145 *2)))) (-3158 (*1 *2 *1) (-12 (-4 *2 (-490)) (-5 *1 (-558 *2 *3)) (-4 *3 (-1145 *2)))) (-2229 (*1 *2 *1) (-12 (-4 *2 (-490)) (-5 *1 (-558 *2 *3)) (-4 *3 (-1145 *2)))) (-3659 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *2 (-490)) (-5 *1 (-558 *2 *4)) (-4 *4 (-1145 *2)))) (-2878 (*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-4 *2 (-490)) (-5 *1 (-558 *2 *4)) (-4 *4 (-1145 *2)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *4 (-490)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -1750 (-558 *4 *5)) (|:| -1749 (-344 *5)))) (-5 *1 (-558 *4 *5)) (-5 *3 (-344 *5))))) +((-3664 (((-579 |#6|) (-579 |#4|) (-83)) 54 T ELT)) (-2230 ((|#6| |#6|) 48 T ELT))) +(((-559 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2230 (|#6| |#6|)) (-15 -3664 ((-579 |#6|) (-579 |#4|) (-83)))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|) (-976 |#1| |#2| |#3| |#4|) (-1013 |#1| |#2| |#3| |#4|)) (T -559)) +((-3664 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 *10)) (-5 *1 (-559 *5 *6 *7 *8 *9 *10)) (-4 *9 (-976 *5 *6 *7 *8)) (-4 *10 (-1013 *5 *6 *7 *8)))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *1 (-559 *3 *4 *5 *6 *7 *2)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *2 (-1013 *3 *4 *5 *6))))) +((-2231 (((-83) |#3| (-688) (-579 |#3|)) 30 T ELT)) (-2232 (((-3 (-2 (|:| |polfac| (-579 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-579 (-1075 |#3|)))) "failed") |#3| (-579 (-1075 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1767 (-579 (-2 (|:| |irr| |#4|) (|:| -2382 (-479)))))) (-579 |#3|) (-579 |#1|) (-579 |#3|)) 68 T ELT))) +(((-560 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2231 ((-83) |#3| (-688) (-579 |#3|))) (-15 -2232 ((-3 (-2 (|:| |polfac| (-579 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-579 (-1075 |#3|)))) "failed") |#3| (-579 (-1075 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1767 (-579 (-2 (|:| |irr| |#4|) (|:| -2382 (-479)))))) (-579 |#3|) (-579 |#1|) (-579 |#3|)))) (-750) (-711) (-254) (-855 |#3| |#2| |#1|)) (T -560)) +((-2232 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1767 (-579 (-2 (|:| |irr| *10) (|:| -2382 (-479))))))) (-5 *6 (-579 *3)) (-5 *7 (-579 *8)) (-4 *8 (-750)) (-4 *3 (-254)) (-4 *10 (-855 *3 *9 *8)) (-4 *9 (-711)) (-5 *2 (-2 (|:| |polfac| (-579 *10)) (|:| |correct| *3) (|:| |corrfact| (-579 (-1075 *3))))) (-5 *1 (-560 *8 *9 *3 *10)) (-5 *4 (-579 (-1075 *3))))) (-2231 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-688)) (-5 *5 (-579 *3)) (-4 *3 (-254)) (-4 *6 (-750)) (-4 *7 (-711)) (-5 *2 (-83)) (-5 *1 (-560 *6 *7 *3 *8)) (-4 *8 (-855 *3 *7 *6))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3510 (((-1039) $) 12 T ELT)) (-3511 (((-1039) $) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-561) (-13 (-988) (-10 -8 (-15 -3511 ((-1039) $)) (-15 -3510 ((-1039) $))))) (T -561)) +((-3511 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-561)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-561))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3916 (((-579 |#1|) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ "failed") $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3918 (($ $) 77 T ELT)) (-3924 (((-602 |#1| |#2|) $) 60 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 81 T ELT)) (-2233 (((-579 (-245 |#2|)) $ $) 42 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3925 (($ (-602 |#1| |#2|)) 56 T ELT)) (-2994 (($ $ $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-3928 (((-766) $) 66 T ELT) (((-1185 |#1| |#2|) $) NIL T ELT) (((-1190 |#1| |#2|) $) 74 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2651 (($) 61 T CONST)) (-2234 (((-579 (-2 (|:| |k| (-610 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2235 (((-579 (-602 |#1| |#2|)) (-579 |#1|)) 73 T ELT)) (-2650 (((-579 (-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3041 (((-83) $ $) 62 T ELT)) (-3931 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-562 |#1| |#2| |#3|) (-13 (-407) (-10 -8 (-15 -3925 ($ (-602 |#1| |#2|))) (-15 -3924 ((-602 |#1| |#2|) $)) (-15 -2650 ((-579 (-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|))) $)) (-15 -3928 ((-1185 |#1| |#2|) $)) (-15 -3928 ((-1190 |#1| |#2|) $)) (-15 -3918 ($ $)) (-15 -3916 ((-579 |#1|) $)) (-15 -2235 ((-579 (-602 |#1| |#2|)) (-579 |#1|))) (-15 -2234 ((-579 (-2 (|:| |k| (-610 |#1|)) (|:| |c| |#2|))) $)) (-15 -2233 ((-579 (-245 |#2|)) $ $)))) (-750) (-13 (-144) (-650 (-344 (-479)))) (-824)) (T -562)) +((-3925 (*1 *1 *2) (-12 (-5 *2 (-602 *3 *4)) (-4 *3 (-750)) (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-5 *1 (-562 *3 *4 *5)) (-14 *5 (-824)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-602 *3 *4)) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |k| (-797 *3)) (|:| |c| *4)))) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) (-3918 (*1 *1 *1) (-12 (-5 *1 (-562 *2 *3 *4)) (-4 *2 (-750)) (-4 *3 (-13 (-144) (-650 (-344 (-479))))) (-14 *4 (-824)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-579 *4)) (-4 *4 (-750)) (-5 *2 (-579 (-602 *4 *5))) (-5 *1 (-562 *4 *5 *6)) (-4 *5 (-13 (-144) (-650 (-344 (-479))))) (-14 *6 (-824)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |k| (-610 *3)) (|:| |c| *4)))) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) (-2233 (*1 *2 *1 *1) (-12 (-5 *2 (-579 (-245 *4))) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824))))) +((-3664 (((-579 (-1050 |#1| (-464 (-767 |#2|)) (-767 |#2|) (-697 |#1| (-767 |#2|)))) (-579 (-697 |#1| (-767 |#2|))) (-83)) 103 T ELT) (((-579 (-952 |#1| |#2|)) (-579 (-697 |#1| (-767 |#2|))) (-83)) 77 T ELT)) (-2236 (((-83) (-579 (-697 |#1| (-767 |#2|)))) 26 T ELT)) (-2240 (((-579 (-1050 |#1| (-464 (-767 |#2|)) (-767 |#2|) (-697 |#1| (-767 |#2|)))) (-579 (-697 |#1| (-767 |#2|))) (-83)) 102 T ELT)) (-2239 (((-579 (-952 |#1| |#2|)) (-579 (-697 |#1| (-767 |#2|))) (-83)) 76 T ELT)) (-2238 (((-579 (-697 |#1| (-767 |#2|))) (-579 (-697 |#1| (-767 |#2|)))) 30 T ELT)) (-2237 (((-3 (-579 (-697 |#1| (-767 |#2|))) "failed") (-579 (-697 |#1| (-767 |#2|)))) 29 T ELT))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2236 ((-83) (-579 (-697 |#1| (-767 |#2|))))) (-15 -2237 ((-3 (-579 (-697 |#1| (-767 |#2|))) "failed") (-579 (-697 |#1| (-767 |#2|))))) (-15 -2238 ((-579 (-697 |#1| (-767 |#2|))) (-579 (-697 |#1| (-767 |#2|))))) (-15 -2239 ((-579 (-952 |#1| |#2|)) (-579 (-697 |#1| (-767 |#2|))) (-83))) (-15 -2240 ((-579 (-1050 |#1| (-464 (-767 |#2|)) (-767 |#2|) (-697 |#1| (-767 |#2|)))) (-579 (-697 |#1| (-767 |#2|))) (-83))) (-15 -3664 ((-579 (-952 |#1| |#2|)) (-579 (-697 |#1| (-767 |#2|))) (-83))) (-15 -3664 ((-579 (-1050 |#1| (-464 (-767 |#2|)) (-767 |#2|) (-697 |#1| (-767 |#2|)))) (-579 (-697 |#1| (-767 |#2|))) (-83)))) (-386) (-579 (-1080))) (T -563)) +((-3664 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) (-14 *6 (-579 (-1080))) (-5 *2 (-579 (-1050 *5 (-464 (-767 *6)) (-767 *6) (-697 *5 (-767 *6))))) (-5 *1 (-563 *5 *6)))) (-3664 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) (-14 *6 (-579 (-1080))) (-5 *2 (-579 (-952 *5 *6))) (-5 *1 (-563 *5 *6)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) (-14 *6 (-579 (-1080))) (-5 *2 (-579 (-1050 *5 (-464 (-767 *6)) (-767 *6) (-697 *5 (-767 *6))))) (-5 *1 (-563 *5 *6)))) (-2239 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) (-14 *6 (-579 (-1080))) (-5 *2 (-579 (-952 *5 *6))) (-5 *1 (-563 *5 *6)))) (-2238 (*1 *2 *2) (-12 (-5 *2 (-579 (-697 *3 (-767 *4)))) (-4 *3 (-386)) (-14 *4 (-579 (-1080))) (-5 *1 (-563 *3 *4)))) (-2237 (*1 *2 *2) (|partial| -12 (-5 *2 (-579 (-697 *3 (-767 *4)))) (-4 *3 (-386)) (-14 *4 (-579 (-1080))) (-5 *1 (-563 *3 *4)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-579 (-697 *4 (-767 *5)))) (-4 *4 (-386)) (-14 *5 (-579 (-1080))) (-5 *2 (-83)) (-5 *1 (-563 *4 *5))))) +((-3577 (((-84) (-84)) 88 T ELT)) (-2244 ((|#2| |#2|) 28 T ELT)) (-2817 ((|#2| |#2| (-997 |#2|)) 84 T ELT) ((|#2| |#2| (-1080)) 50 T ELT)) (-2242 ((|#2| |#2|) 27 T ELT)) (-2243 ((|#2| |#2|) 29 T ELT)) (-2241 (((-83) (-84)) 33 T ELT)) (-2246 ((|#2| |#2|) 24 T ELT)) (-2247 ((|#2| |#2|) 26 T ELT)) (-2245 ((|#2| |#2|) 25 T ELT))) +(((-564 |#1| |#2|) (-10 -7 (-15 -2241 ((-83) (-84))) (-15 -3577 ((-84) (-84))) (-15 -2247 (|#2| |#2|)) (-15 -2246 (|#2| |#2|)) (-15 -2245 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -2817 (|#2| |#2| (-1080))) (-15 -2817 (|#2| |#2| (-997 |#2|)))) (-490) (-13 (-358 |#1|) (-909) (-1105))) (T -564)) +((-2817 (*1 *2 *2 *3) (-12 (-5 *3 (-997 *2)) (-4 *2 (-13 (-358 *4) (-909) (-1105))) (-4 *4 (-490)) (-5 *1 (-564 *4 *2)))) (-2817 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *1 (-564 *4 *2)) (-4 *2 (-13 (-358 *4) (-909) (-1105))))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) (-4 *2 (-13 (-358 *3) (-909) (-1105))))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) (-4 *2 (-13 (-358 *3) (-909) (-1105))))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) (-4 *2 (-13 (-358 *3) (-909) (-1105))))) (-2245 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) (-4 *2 (-13 (-358 *3) (-909) (-1105))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) (-4 *2 (-13 (-358 *3) (-909) (-1105))))) (-2247 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) (-4 *2 (-13 (-358 *3) (-909) (-1105))))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-564 *3 *4)) (-4 *4 (-13 (-358 *3) (-909) (-1105))))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-564 *4 *5)) (-4 *5 (-13 (-358 *4) (-909) (-1105)))))) +((-3474 (($ $) 38 T ELT)) (-3621 (($ $) 21 T ELT)) (-3472 (($ $) 37 T ELT)) (-3620 (($ $) 22 T ELT)) (-3476 (($ $) 36 T ELT)) (-3619 (($ $) 23 T ELT)) (-3609 (($) 48 T ELT)) (-3924 (($ $) 45 T ELT)) (-2244 (($ $) 17 T ELT)) (-2817 (($ $ (-997 $)) 7 T ELT) (($ $ (-1080)) 6 T ELT)) (-3925 (($ $) 46 T ELT)) (-2242 (($ $) 15 T ELT)) (-2243 (($ $) 16 T ELT)) (-3477 (($ $) 35 T ELT)) (-3618 (($ $) 24 T ELT)) (-3475 (($ $) 34 T ELT)) (-3617 (($ $) 25 T ELT)) (-3473 (($ $) 33 T ELT)) (-3616 (($ $) 26 T ELT)) (-3480 (($ $) 44 T ELT)) (-3468 (($ $) 32 T ELT)) (-3478 (($ $) 43 T ELT)) (-3466 (($ $) 31 T ELT)) (-3482 (($ $) 42 T ELT)) (-3470 (($ $) 30 T ELT)) (-3483 (($ $) 41 T ELT)) (-3471 (($ $) 29 T ELT)) (-3481 (($ $) 40 T ELT)) (-3469 (($ $) 28 T ELT)) (-3479 (($ $) 39 T ELT)) (-3467 (($ $) 27 T ELT)) (-2246 (($ $) 19 T ELT)) (-2247 (($ $) 20 T ELT)) (-2245 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-565) (-111)) (T -565)) +((-2247 (*1 *1 *1) (-4 *1 (-565))) (-2246 (*1 *1 *1) (-4 *1 (-565))) (-2245 (*1 *1 *1) (-4 *1 (-565))) (-2244 (*1 *1 *1) (-4 *1 (-565))) (-2243 (*1 *1 *1) (-4 *1 (-565))) (-2242 (*1 *1 *1) (-4 *1 (-565)))) +(-13 (-865) (-1105) (-10 -8 (-15 -2247 ($ $)) (-15 -2246 ($ $)) (-15 -2245 ($ $)) (-15 -2244 ($ $)) (-15 -2243 ($ $)) (-15 -2242 ($ $)))) +(((-35) . T) ((-66) . T) ((-236) . T) ((-427) . T) ((-865) . T) ((-1105) . T) ((-1108) . T)) +((-2257 (((-415 |#1| |#2|) (-203 |#1| |#2|)) 65 T ELT)) (-2250 (((-579 (-203 |#1| |#2|)) (-579 (-415 |#1| |#2|))) 90 T ELT)) (-2251 (((-415 |#1| |#2|) (-579 (-415 |#1| |#2|)) (-767 |#1|)) 92 T ELT) (((-415 |#1| |#2|) (-579 (-415 |#1| |#2|)) (-579 (-415 |#1| |#2|)) (-767 |#1|)) 91 T ELT)) (-2248 (((-2 (|:| |gblist| (-579 (-203 |#1| |#2|))) (|:| |gvlist| (-579 (-479)))) (-579 (-415 |#1| |#2|))) 136 T ELT)) (-2255 (((-579 (-415 |#1| |#2|)) (-767 |#1|) (-579 (-415 |#1| |#2|)) (-579 (-415 |#1| |#2|))) 105 T ELT)) (-2249 (((-2 (|:| |glbase| (-579 (-203 |#1| |#2|))) (|:| |glval| (-579 (-479)))) (-579 (-203 |#1| |#2|))) 147 T ELT)) (-2253 (((-1169 |#2|) (-415 |#1| |#2|) (-579 (-415 |#1| |#2|))) 70 T ELT)) (-2252 (((-579 (-415 |#1| |#2|)) (-579 (-415 |#1| |#2|))) 47 T ELT)) (-2256 (((-203 |#1| |#2|) (-203 |#1| |#2|) (-579 (-203 |#1| |#2|))) 61 T ELT)) (-2254 (((-203 |#1| |#2|) (-579 |#2|) (-203 |#1| |#2|) (-579 (-203 |#1| |#2|))) 113 T ELT))) +(((-566 |#1| |#2|) (-10 -7 (-15 -2248 ((-2 (|:| |gblist| (-579 (-203 |#1| |#2|))) (|:| |gvlist| (-579 (-479)))) (-579 (-415 |#1| |#2|)))) (-15 -2249 ((-2 (|:| |glbase| (-579 (-203 |#1| |#2|))) (|:| |glval| (-579 (-479)))) (-579 (-203 |#1| |#2|)))) (-15 -2250 ((-579 (-203 |#1| |#2|)) (-579 (-415 |#1| |#2|)))) (-15 -2251 ((-415 |#1| |#2|) (-579 (-415 |#1| |#2|)) (-579 (-415 |#1| |#2|)) (-767 |#1|))) (-15 -2251 ((-415 |#1| |#2|) (-579 (-415 |#1| |#2|)) (-767 |#1|))) (-15 -2252 ((-579 (-415 |#1| |#2|)) (-579 (-415 |#1| |#2|)))) (-15 -2253 ((-1169 |#2|) (-415 |#1| |#2|) (-579 (-415 |#1| |#2|)))) (-15 -2254 ((-203 |#1| |#2|) (-579 |#2|) (-203 |#1| |#2|) (-579 (-203 |#1| |#2|)))) (-15 -2255 ((-579 (-415 |#1| |#2|)) (-767 |#1|) (-579 (-415 |#1| |#2|)) (-579 (-415 |#1| |#2|)))) (-15 -2256 ((-203 |#1| |#2|) (-203 |#1| |#2|) (-579 (-203 |#1| |#2|)))) (-15 -2257 ((-415 |#1| |#2|) (-203 |#1| |#2|)))) (-579 (-1080)) (-386)) (T -566)) +((-2257 (*1 *2 *3) (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-386)) (-5 *2 (-415 *4 *5)) (-5 *1 (-566 *4 *5)))) (-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-579 (-203 *4 *5))) (-5 *2 (-203 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-386)) (-5 *1 (-566 *4 *5)))) (-2255 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-579 (-415 *4 *5))) (-5 *3 (-767 *4)) (-14 *4 (-579 (-1080))) (-4 *5 (-386)) (-5 *1 (-566 *4 *5)))) (-2254 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-579 *6)) (-5 *4 (-579 (-203 *5 *6))) (-4 *6 (-386)) (-5 *2 (-203 *5 *6)) (-14 *5 (-579 (-1080))) (-5 *1 (-566 *5 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-415 *5 *6))) (-5 *3 (-415 *5 *6)) (-14 *5 (-579 (-1080))) (-4 *6 (-386)) (-5 *2 (-1169 *6)) (-5 *1 (-566 *5 *6)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-579 (-415 *3 *4))) (-14 *3 (-579 (-1080))) (-4 *4 (-386)) (-5 *1 (-566 *3 *4)))) (-2251 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-415 *5 *6))) (-5 *4 (-767 *5)) (-14 *5 (-579 (-1080))) (-5 *2 (-415 *5 *6)) (-5 *1 (-566 *5 *6)) (-4 *6 (-386)))) (-2251 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-579 (-415 *5 *6))) (-5 *4 (-767 *5)) (-14 *5 (-579 (-1080))) (-5 *2 (-415 *5 *6)) (-5 *1 (-566 *5 *6)) (-4 *6 (-386)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-579 (-415 *4 *5))) (-14 *4 (-579 (-1080))) (-4 *5 (-386)) (-5 *2 (-579 (-203 *4 *5))) (-5 *1 (-566 *4 *5)))) (-2249 (*1 *2 *3) (-12 (-14 *4 (-579 (-1080))) (-4 *5 (-386)) (-5 *2 (-2 (|:| |glbase| (-579 (-203 *4 *5))) (|:| |glval| (-579 (-479))))) (-5 *1 (-566 *4 *5)) (-5 *3 (-579 (-203 *4 *5))))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-579 (-415 *4 *5))) (-14 *4 (-579 (-1080))) (-4 *5 (-386)) (-5 *2 (-2 (|:| |gblist| (-579 (-203 *4 *5))) (|:| |gvlist| (-579 (-479))))) (-5 *1 (-566 *4 *5))))) +((-2553 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-72))) ELT)) (-3581 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) NIL T ELT)) (-2185 (((-1175) $ (-1063) (-1063)) NIL (|has| $ (-6 -3978)) ELT)) (-3770 (((-51) $ (-1063) (-51)) NIL T ELT) (((-51) $ (-1080) (-51)) 16 T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 (-51) #1="failed") (-1063) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT)) (-3387 (($ (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 (-51) #1#) (-1063) $) NIL T ELT)) (-3388 (($ (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $ (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT) (((-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $ (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 (((-51) $ (-1063) (-51)) NIL (|has| $ (-6 -3978)) ELT)) (-3097 (((-51) $ (-1063)) NIL T ELT)) (-2874 (((-579 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 (-51)) $) NIL (|has| $ (-6 -3977)) ELT)) (-2258 (($ $) NIL T ELT)) (-2187 (((-1063) $) NIL (|has| (-1063) (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 (-51)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT) (((-83) (-51) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-51) (-1006))) ELT)) (-2188 (((-1063) $) NIL (|has| (-1063) (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2259 (($ (-332)) 8 T ELT)) (-3226 (((-1063) $) NIL (OR (|has| (-51) (-1006)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT)) (-2219 (((-579 (-1063)) $) NIL T ELT)) (-2220 (((-83) (-1063) $) NIL T ELT)) (-1263 (((-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) $) NIL T ELT)) (-2190 (((-579 (-1063)) $) NIL T ELT)) (-2191 (((-83) (-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL (OR (|has| (-51) (-1006)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT)) (-3783 (((-51) $) NIL (|has| (-1063) (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) #1#) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2186 (($ $ (-51)) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT) (($ $ (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT) (($ $ (-579 (-51)) (-579 (-51))) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1006))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1006))) ELT) (($ $ (-245 (-51))) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1006))) ELT) (($ $ (-579 (-245 (-51)))) NIL (-12 (|has| (-51) (-256 (-51))) (|has| (-51) (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) (-51) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-51) (-1006))) ELT)) (-2192 (((-579 (-51)) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 (((-51) $ (-1063)) NIL T ELT) (((-51) $ (-1063) (-51)) NIL T ELT) (((-51) $ (-1080)) 14 T ELT)) (-1454 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-1006))) ELT) (((-688) (-51) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-51) (-1006))) ELT) (((-688) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) NIL T ELT)) (-3928 (((-766) $) NIL (OR (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-548 (-766))) (|has| (-51) (-548 (-766)))) ELT)) (-1254 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))))) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) (-51)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| (-51))) (-72))) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-567) (-13 (-1097 (-1063) (-51)) (-238 (-1080) (-51)) (-10 -8 (-15 -2259 ($ (-332))) (-15 -2258 ($ $)) (-15 -3770 ((-51) $ (-1080) (-51)))))) (T -567)) +((-2259 (*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-567)))) (-2258 (*1 *1 *1) (-5 *1 (-567))) (-3770 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1080)) (-5 *1 (-567))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1760 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1300 (((-3 $ #1#) $ $) NIL T ELT)) (-3207 (((-1169 (-626 |#1|))) NIL (|has| |#2| (-355 |#1|)) ELT) (((-1169 (-626 |#1|)) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1717 (((-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3706 (($) NIL T CONST)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1691 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1776 (((-626 |#1|)) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1715 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1774 (((-626 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) $ (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2391 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1888 (((-1075 (-851 |#1|))) NIL (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-308))) ELT)) (-2394 (($ $ (-824)) NIL T ELT)) (-1713 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1693 (((-1075 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1778 ((|#1|) NIL (|has| |#2| (-355 |#1|)) ELT) ((|#1| (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1711 (((-1075 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1705 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1780 (($ (-1169 |#1|)) NIL (|has| |#2| (-355 |#1|)) ELT) (($ (-1169 |#1|) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3449 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-3093 (((-824)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1702 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2418 (($ $ (-824)) NIL T ELT)) (-1698 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1696 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1700 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1692 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1777 (((-626 |#1|)) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1716 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1775 (((-626 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) $ (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2392 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1892 (((-1075 (-851 |#1|))) NIL (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-308))) ELT)) (-2393 (($ $ (-824)) NIL T ELT)) (-1714 ((|#1| $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1694 (((-1075 |#1|) $) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-1779 ((|#1|) NIL (|has| |#2| (-355 |#1|)) ELT) ((|#1| (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1712 (((-1075 |#1|) $) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1706 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1697 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1699 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1701 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1704 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3782 ((|#1| $ (-479)) NIL (|has| |#2| (-355 |#1|)) ELT)) (-3208 (((-626 |#1|) (-1169 $)) NIL (|has| |#2| (-355 |#1|)) ELT) (((-1169 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT) (((-626 |#1|) (-1169 $) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT) (((-1169 |#1|) $ (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3954 (($ (-1169 |#1|)) NIL (|has| |#2| (-355 |#1|)) ELT) (((-1169 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT)) (-1880 (((-579 (-851 |#1|))) NIL (|has| |#2| (-355 |#1|)) ELT) (((-579 (-851 |#1|)) (-1169 $)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-3928 (((-766) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL (|has| |#2| (-355 |#1|)) ELT)) (-1695 (((-579 (-1169 |#1|))) NIL (OR (-12 (|has| |#2| (-312 |#1|)) (|has| |#1| (-490))) (-12 (|has| |#2| (-355 |#1|)) (|has| |#1| (-490)))) ELT)) (-2421 (($ $ $ $) NIL T ELT)) (-1708 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2530 (($ (-626 |#1|) $) NIL (|has| |#2| (-355 |#1|)) ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1707 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-1703 (((-83)) NIL (|has| |#2| (-312 |#1|)) ELT)) (-2645 (($) 18 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) 19 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-568 |#1| |#2|) (-13 (-677 |#1|) (-548 |#2|) (-10 -8 (-15 -3928 ($ |#2|)) (IF (|has| |#2| (-355 |#1|)) (-6 (-355 |#1|)) |%noBranch|) (IF (|has| |#2| (-312 |#1|)) (-6 (-312 |#1|)) |%noBranch|))) (-144) (-677 |#1|)) (T -568)) +((-3928 (*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-568 *3 *2)) (-4 *2 (-677 *3))))) +((-3931 (($ $ |#2|) 10 T ELT))) +(((-569 |#1| |#2|) (-10 -7 (-15 -3931 (|#1| |#1| |#2|))) (-570 |#2|) (-144)) (T -569)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3512 (($ $ $) 39 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 38 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-570 |#1|) (-111) (-144)) (T -570)) +((-3512 (*1 *1 *1 *1) (-12 (-4 *1 (-570 *2)) (-4 *2 (-144)))) (-3931 (*1 *1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-144)) (-4 *2 (-308))))) +(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3512 ($ $ $)) (IF (|has| |t#1| (-308)) (-15 -3931 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) . T) ((-650 |#1|) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2261 (((-3 (-744 |#2|) #1="failed") |#2| (-245 |#2|) (-1063)) 105 T ELT) (((-3 (-744 |#2|) (-2 (|:| |leftHandLimit| (-3 (-744 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-744 |#2|) #1#))) #1#) |#2| (-245 (-744 |#2|))) 130 T ELT)) (-2260 (((-3 (-737 |#2|) #1#) |#2| (-245 (-737 |#2|))) 135 T ELT))) +(((-571 |#1| |#2|) (-10 -7 (-15 -2261 ((-3 (-744 |#2|) (-2 (|:| |leftHandLimit| (-3 (-744 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-744 |#2|) #1#))) #1#) |#2| (-245 (-744 |#2|)))) (-15 -2260 ((-3 (-737 |#2|) #1#) |#2| (-245 (-737 |#2|)))) (-15 -2261 ((-3 (-744 |#2|) #1#) |#2| (-245 |#2|) (-1063)))) (-13 (-386) (-944 (-479)) (-576 (-479))) (-13 (-27) (-1105) (-358 |#1|))) (T -571)) +((-2261 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-245 *3)) (-5 *5 (-1063)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-744 *3)) (-5 *1 (-571 *6 *3)))) (-2260 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-245 (-737 *3))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-737 *3)) (-5 *1 (-571 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-744 *3))) (-4 *3 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (-744 *3) (-2 (|:| |leftHandLimit| (-3 (-744 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-744 *3) #1#))) "failed")) (-5 *1 (-571 *5 *3))))) +((-2261 (((-3 (-744 (-344 (-851 |#1|))) #1="failed") (-344 (-851 |#1|)) (-245 (-344 (-851 |#1|))) (-1063)) 86 T ELT) (((-3 (-744 (-344 (-851 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-744 (-344 (-851 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-744 (-344 (-851 |#1|))) #1#))) #1#) (-344 (-851 |#1|)) (-245 (-344 (-851 |#1|)))) 20 T ELT) (((-3 (-744 (-344 (-851 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-744 (-344 (-851 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-744 (-344 (-851 |#1|))) #1#))) #1#) (-344 (-851 |#1|)) (-245 (-744 (-851 |#1|)))) 35 T ELT)) (-2260 (((-737 (-344 (-851 |#1|))) (-344 (-851 |#1|)) (-245 (-344 (-851 |#1|)))) 23 T ELT) (((-737 (-344 (-851 |#1|))) (-344 (-851 |#1|)) (-245 (-737 (-851 |#1|)))) 43 T ELT))) +(((-572 |#1|) (-10 -7 (-15 -2261 ((-3 (-744 (-344 (-851 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-744 (-344 (-851 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-744 (-344 (-851 |#1|))) #1#))) #1#) (-344 (-851 |#1|)) (-245 (-744 (-851 |#1|))))) (-15 -2261 ((-3 (-744 (-344 (-851 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-744 (-344 (-851 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-744 (-344 (-851 |#1|))) #1#))) #1#) (-344 (-851 |#1|)) (-245 (-344 (-851 |#1|))))) (-15 -2260 ((-737 (-344 (-851 |#1|))) (-344 (-851 |#1|)) (-245 (-737 (-851 |#1|))))) (-15 -2260 ((-737 (-344 (-851 |#1|))) (-344 (-851 |#1|)) (-245 (-344 (-851 |#1|))))) (-15 -2261 ((-3 (-744 (-344 (-851 |#1|))) #1#) (-344 (-851 |#1|)) (-245 (-344 (-851 |#1|))) (-1063)))) (-386)) (T -572)) +((-2261 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-245 (-344 (-851 *6)))) (-5 *5 (-1063)) (-5 *3 (-344 (-851 *6))) (-4 *6 (-386)) (-5 *2 (-744 *3)) (-5 *1 (-572 *6)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-344 (-851 *5)))) (-5 *3 (-344 (-851 *5))) (-4 *5 (-386)) (-5 *2 (-737 *3)) (-5 *1 (-572 *5)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-737 (-851 *5)))) (-4 *5 (-386)) (-5 *2 (-737 (-344 (-851 *5)))) (-5 *1 (-572 *5)) (-5 *3 (-344 (-851 *5))))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-344 (-851 *5)))) (-5 *3 (-344 (-851 *5))) (-4 *5 (-386)) (-5 *2 (-3 (-744 *3) (-2 (|:| |leftHandLimit| (-3 (-744 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-744 *3) #1#))) #2="failed")) (-5 *1 (-572 *5)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-245 (-744 (-851 *5)))) (-4 *5 (-386)) (-5 *2 (-3 (-744 (-344 (-851 *5))) (-2 (|:| |leftHandLimit| (-3 (-744 (-344 (-851 *5))) #1#)) (|:| |rightHandLimit| (-3 (-744 (-344 (-851 *5))) #1#))) #2#)) (-5 *1 (-572 *5)) (-5 *3 (-344 (-851 *5)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) 11 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2836 (($ (-166 |#1|)) 12 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-767 |#1|)) 7 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT))) +(((-573 |#1|) (-13 (-746) (-551 (-767 |#1|)) (-10 -8 (-15 -2836 ($ (-166 |#1|))))) (-579 (-1080))) (T -573)) +((-2836 (*1 *1 *2) (-12 (-5 *2 (-166 *3)) (-14 *3 (-579 (-1080))) (-5 *1 (-573 *3))))) +((-2264 (((-3 (-1169 (-344 |#1|)) #1="failed") (-1169 |#2|) |#2|) 64 (-2545 (|has| |#1| (-308))) ELT) (((-3 (-1169 |#1|) #1#) (-1169 |#2|) |#2|) 49 (|has| |#1| (-308)) ELT)) (-2262 (((-83) (-1169 |#2|)) 33 T ELT)) (-2263 (((-3 (-1169 |#1|) #1#) (-1169 |#2|)) 40 T ELT))) +(((-574 |#1| |#2|) (-10 -7 (-15 -2262 ((-83) (-1169 |#2|))) (-15 -2263 ((-3 (-1169 |#1|) #1="failed") (-1169 |#2|))) (IF (|has| |#1| (-308)) (-15 -2264 ((-3 (-1169 |#1|) #1#) (-1169 |#2|) |#2|)) (-15 -2264 ((-3 (-1169 (-344 |#1|)) #1#) (-1169 |#2|) |#2|)))) (-490) (-13 (-955) (-576 |#1|))) (T -574)) +((-2264 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 *5))) (-2545 (-4 *5 (-308))) (-4 *5 (-490)) (-5 *2 (-1169 (-344 *5))) (-5 *1 (-574 *5 *4)))) (-2264 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 *5))) (-4 *5 (-308)) (-4 *5 (-490)) (-5 *2 (-1169 *5)) (-5 *1 (-574 *5 *4)))) (-2263 (*1 *2 *3) (|partial| -12 (-5 *3 (-1169 *5)) (-4 *5 (-13 (-955) (-576 *4))) (-4 *4 (-490)) (-5 *2 (-1169 *4)) (-5 *1 (-574 *4 *5)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-13 (-955) (-576 *4))) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-574 *4 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3756 (((-579 (-776 (-573 |#2|) |#1|)) $) NIL T ELT)) (-1300 (((-3 $ "failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-2878 (($ |#1| (-573 |#2|)) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2265 (($ (-579 |#1|)) 25 T ELT)) (-1972 (((-573 |#2|) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3893 (((-105)) 16 T ELT)) (-3208 (((-1169 |#1|) $) 44 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-573 |#2|)) 11 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 20 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 17 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-575 |#1| |#2|) (-13 (-1177 |#1|) (-551 (-573 |#2|)) (-443 |#1| (-573 |#2|)) (-10 -8 (-15 -2265 ($ (-579 |#1|))) (-15 -3208 ((-1169 |#1|) $)))) (-308) (-579 (-1080))) (T -575)) +((-2265 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-308)) (-5 *1 (-575 *3 *4)) (-14 *4 (-579 (-1080))))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-575 *3 *4)) (-4 *3 (-308)) (-14 *4 (-579 (-1080)))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-2266 (((-626 |#1|) (-626 $)) 35 T ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 34 T ELT)) (-2267 (((-626 |#1|) (-1169 $)) 37 T ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 36 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-576 |#1|) (-111) (-955)) (T -576)) +((-2267 (*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-576 *4)) (-4 *4 (-955)) (-5 *2 (-626 *4)))) (-2267 (*1 *2 *3 *1) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-576 *4)) (-4 *4 (-955)) (-5 *2 (-2 (|:| |mat| (-626 *4)) (|:| |vec| (-1169 *4)))))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-626 *1)) (-4 *1 (-576 *4)) (-4 *4 (-955)) (-5 *2 (-626 *4)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *1)) (-5 *4 (-1169 *1)) (-4 *1 (-576 *5)) (-4 *5 (-955)) (-5 *2 (-2 (|:| |mat| (-626 *5)) (|:| |vec| (-1169 *5))))))) +(-13 (-586 |t#1|) (-10 -8 (-15 -2267 ((-626 |t#1|) (-1169 $))) (-15 -2267 ((-2 (|:| |mat| (-626 |t#1|)) (|:| |vec| (-1169 |t#1|))) (-1169 $) $)) (-15 -2266 ((-626 |t#1|) (-626 $))) (-15 -2266 ((-2 (|:| |mat| (-626 |t#1|)) (|:| |vec| (-1169 |t#1|))) (-626 $) (-1169 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ "failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2268 (($ (-579 |#1|)) 23 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3782 ((|#1| $ (-575 |#1| |#2|)) 46 T ELT)) (-3893 (((-105)) 13 T ELT)) (-3208 (((-1169 |#1|) $) 42 T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 18 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 14 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-577 |#1| |#2|) (-13 (-1177 |#1|) (-238 (-575 |#1| |#2|) |#1|) (-10 -8 (-15 -2268 ($ (-579 |#1|))) (-15 -3208 ((-1169 |#1|) $)))) (-308) (-579 (-1080))) (T -577)) +((-2268 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-308)) (-5 *1 (-577 *3 *4)) (-14 *4 (-579 (-1080))))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-1169 *3)) (-5 *1 (-577 *3 *4)) (-4 *3 (-308)) (-14 *4 (-579 (-1080)))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-578 |#1|) (-111) (-1016)) (T -578)) +NIL +(-13 (-584 |t#1|) (-957 |t#1|)) +(((-72) . T) ((-548 (-766)) . T) ((-584 |#1|) . T) ((-957 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) NIL T ELT)) (-3777 ((|#1| $) NIL T ELT)) (-3779 (($ $) NIL T ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3767 (($ $ (-479)) 71 (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) $) NIL (|has| |#1| (-750)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-1718 (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT) (($ (-1 (-83) |#1| |#1|) $) 68 (|has| $ (-6 -3978)) ELT)) (-2894 (($ $) NIL (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $) NIL T ELT)) (-3424 (((-83) $ (-688)) NIL T ELT)) (-3010 ((|#1| $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3769 (($ $ $) 26 (|has| $ (-6 -3978)) ELT)) (-3768 ((|#1| $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3771 ((|#1| $ |#1|) 24 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-6 -3978)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-6 -3978)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) NIL (|has| $ (-6 -3978)) ELT)) (-2271 (($ $ $) 77 (|has| |#1| (-1006)) ELT)) (-2270 (($ $ $) 78 (|has| |#1| (-1006)) ELT)) (-2269 (($ $ $) 81 (|has| |#1| (-1006)) ELT)) (-1558 (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3778 ((|#1| $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) 31 (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) 32 T ELT)) (-3781 (($ $) 21 T ELT) (($ $ (-688)) 36 T ELT)) (-2355 (($ $) 66 (|has| |#1| (-1006)) ELT)) (-1341 (($ $) 76 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3387 (($ |#1| $) NIL (|has| |#1| (-1006)) ELT) (($ (-1 (-83) |#1|) $) NIL T ELT)) (-3388 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1564 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) NIL T ELT)) (-3425 (((-83) $) NIL T ELT)) (-3401 (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) (-1 (-83) |#1|) $) NIL T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2273 (((-83) $) 9 T ELT)) (-3016 (((-579 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-2274 (($) 7 T CONST)) (-3596 (($ (-688) |#1|) NIL T ELT)) (-3701 (((-83) $ (-688)) NIL T ELT)) (-2187 (((-479) $) 35 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2841 (($ $ $) NIL (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 69 T ELT)) (-3500 (($ $ $) NIL (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 64 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3516 (($ |#1|) NIL T ELT)) (-3698 (((-83) $ (-688)) NIL T ELT)) (-3015 (((-579 |#1|) $) NIL T ELT)) (-3509 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) 62 (|has| |#1| (-1006)) ELT)) (-3780 ((|#1| $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3591 (($ $ $ (-479)) NIL T ELT) (($ |#1| $ (-479)) NIL T ELT)) (-2291 (($ $ $ (-479)) NIL T ELT) (($ |#1| $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 16 T ELT) (($ $ (-688)) NIL T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3426 (((-83) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 15 T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) 20 T ELT)) (-3547 (($) 19 T ELT)) (-3782 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT) ((|#1| $ (-479)) 80 T ELT) ((|#1| $ (-479) |#1|) NIL T ELT)) (-3014 (((-479) $ $) NIL T ELT)) (-1559 (($ $ (-1136 (-479))) NIL T ELT) (($ $ (-479)) NIL T ELT)) (-2292 (($ $ (-1136 (-479))) NIL T ELT) (($ $ (-479)) NIL T ELT)) (-3615 (((-83) $) 39 T ELT)) (-3774 (($ $) NIL T ELT)) (-3772 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-3775 (((-688) $) NIL T ELT)) (-3776 (($ $) 44 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 40 T ELT)) (-3954 (((-468) $) 89 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 29 T ELT)) (-3443 (($ |#1| $) 10 T ELT)) (-3773 (($ $ $) 65 T ELT) (($ $ |#1|) NIL T ELT)) (-3784 (($ $ $) 75 T ELT) (($ |#1| $) 14 T ELT) (($ (-579 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3928 (((-766) $) 54 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2272 (($ $ $) 11 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 58 (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) 13 (|has| $ (-6 -3977)) ELT))) +(((-579 |#1|) (-13 (-604 |#1|) (-10 -8 (-15 -2274 ($) -3934) (-15 -2273 ((-83) $)) (-15 -3443 ($ |#1| $)) (-15 -2272 ($ $ $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -2271 ($ $ $)) (-15 -2270 ($ $ $)) (-15 -2269 ($ $ $))) |%noBranch|))) (-1119)) (T -579)) +((-2274 (*1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1119)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-579 *3)) (-4 *3 (-1119)))) (-3443 (*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1119)))) (-2272 (*1 *1 *1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1119)))) (-2271 (*1 *1 *1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1006)) (-4 *2 (-1119)))) (-2270 (*1 *1 *1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1006)) (-4 *2 (-1119)))) (-2269 (*1 *1 *1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1006)) (-4 *2 (-1119))))) +((-3823 (((-579 |#2|) (-1 |#2| |#1| |#2|) (-579 |#1|) |#2|) 16 T ELT)) (-3824 ((|#2| (-1 |#2| |#1| |#2|) (-579 |#1|) |#2|) 18 T ELT)) (-3940 (((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|)) 13 T ELT))) +(((-580 |#1| |#2|) (-10 -7 (-15 -3823 ((-579 |#2|) (-1 |#2| |#1| |#2|) (-579 |#1|) |#2|)) (-15 -3824 (|#2| (-1 |#2| |#1| |#2|) (-579 |#1|) |#2|)) (-15 -3940 ((-579 |#2|) (-1 |#2| |#1|) (-579 |#1|)))) (-1119) (-1119)) (T -580)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-579 *6)) (-5 *1 (-580 *5 *6)))) (-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-579 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-580 *5 *2)))) (-3823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-579 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-579 *5)) (-5 *1 (-580 *6 *5))))) +((-3404 ((|#2| (-579 |#1|) (-579 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-579 |#1|) (-579 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-579 |#1|) (-579 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-579 |#1|) (-579 |#2|) |#2|) 17 T ELT) ((|#2| (-579 |#1|) (-579 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-579 |#1|) (-579 |#2|)) 12 T ELT))) +(((-581 |#1| |#2|) (-10 -7 (-15 -3404 ((-1 |#2| |#1|) (-579 |#1|) (-579 |#2|))) (-15 -3404 (|#2| (-579 |#1|) (-579 |#2|) |#1|)) (-15 -3404 ((-1 |#2| |#1|) (-579 |#1|) (-579 |#2|) |#2|)) (-15 -3404 (|#2| (-579 |#1|) (-579 |#2|) |#1| |#2|)) (-15 -3404 ((-1 |#2| |#1|) (-579 |#1|) (-579 |#2|) (-1 |#2| |#1|))) (-15 -3404 (|#2| (-579 |#1|) (-579 |#2|) |#1| (-1 |#2| |#1|)))) (-1006) (-1119)) (T -581)) +((-3404 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1006)) (-4 *2 (-1119)) (-5 *1 (-581 *5 *2)))) (-3404 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-579 *5)) (-5 *4 (-579 *6)) (-4 *5 (-1006)) (-4 *6 (-1119)) (-5 *1 (-581 *5 *6)))) (-3404 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 *2)) (-4 *5 (-1006)) (-4 *2 (-1119)) (-5 *1 (-581 *5 *2)))) (-3404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 *6)) (-5 *4 (-579 *5)) (-4 *6 (-1006)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *6)) (-5 *1 (-581 *6 *5)))) (-3404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 *2)) (-4 *5 (-1006)) (-4 *2 (-1119)) (-5 *1 (-581 *5 *2)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 *6)) (-4 *5 (-1006)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-581 *5 *6))))) +((-3940 (((-579 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-579 |#2|)) 21 T ELT))) +(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -3940 ((-579 |#3|) (-1 |#3| |#1| |#2|) (-579 |#1|) (-579 |#2|)))) (-1119) (-1119) (-1119)) (T -582)) +((-3940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-579 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-579 *8)) (-5 *1 (-582 *6 *7 *8))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 11 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-583 |#1|) (-13 (-988) (-548 |#1|)) (-1006)) (T -583)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-584 |#1|) (-111) (-1016)) (T -584)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-584 *2)) (-4 *2 (-1016))))) +(-13 (-1006) (-10 -8 (-15 * ($ |t#1| $)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2275 (($ |#1| |#1| $) 45 T ELT)) (-1558 (($ (-1 (-83) |#1|) $) 61 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2355 (($ $) 47 T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3387 (($ |#1| $) 58 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) |#1|) $) 60 (|has| $ (-6 -3977)) ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#1|) $) 9 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 41 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 49 T ELT)) (-3591 (($ |#1| $) 30 T ELT) (($ |#1| $ (-688)) 44 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-1264 ((|#1| $) 52 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 23 T ELT)) (-3547 (($) 29 T ELT)) (-2276 (((-83) $) 56 T ELT)) (-2354 (((-579 (-2 (|:| |entry| |#1|) (|:| -1934 (-688)))) $) 69 T ELT)) (-1454 (($) 26 T ELT) (($ (-579 |#1|)) 19 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 65 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) 20 T ELT)) (-3954 (((-468) $) 36 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) NIL T ELT)) (-3928 (((-766) $) 14 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 24 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 71 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 17 (|has| $ (-6 -3977)) ELT))) +(((-585 |#1|) (-13 (-630 |#1|) (-10 -8 (-6 -3977) (-15 -2276 ((-83) $)) (-15 -2275 ($ |#1| |#1| $)))) (-1006)) (T -585)) +((-2276 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-585 *3)) (-4 *3 (-1006)))) (-2275 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1006))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-586 |#1|) (-111) (-963)) (T -586)) +NIL +(-13 (-21) (-584 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688) $) 17 T ELT)) (-2282 (($ $ |#1|) 68 T ELT)) (-2284 (($ $) 39 T ELT)) (-2285 (($ $) 37 T ELT)) (-3141 (((-3 |#1| "failed") $) 60 T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-2280 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3515 (((-766) $ (-1 (-766) (-766) (-766)) (-1 (-766) (-766) (-766)) (-479)) 55 T ELT)) (-2286 ((|#1| $ (-479)) 35 T ELT)) (-2287 ((|#2| $ (-479)) 34 T ELT)) (-2277 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2278 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2283 (($) 13 T ELT)) (-2289 (($ |#1| |#2|) 24 T ELT)) (-2288 (($ (-579 (-2 (|:| |gen| |#1|) (|:| -3925 |#2|)))) 25 T ELT)) (-2290 (((-579 (-2 (|:| |gen| |#1|) (|:| -3925 |#2|))) $) 14 T ELT)) (-2281 (($ |#1| $) 69 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2279 (((-83) $ $) 74 T ELT)) (-3928 (((-766) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 27 T ELT))) +(((-587 |#1| |#2| |#3|) (-13 (-1006) (-944 |#1|) (-10 -8 (-15 -3515 ((-766) $ (-1 (-766) (-766) (-766)) (-1 (-766) (-766) (-766)) (-479))) (-15 -2290 ((-579 (-2 (|:| |gen| |#1|) (|:| -3925 |#2|))) $)) (-15 -2289 ($ |#1| |#2|)) (-15 -2288 ($ (-579 (-2 (|:| |gen| |#1|) (|:| -3925 |#2|))))) (-15 -2287 (|#2| $ (-479))) (-15 -2286 (|#1| $ (-479))) (-15 -2285 ($ $)) (-15 -2284 ($ $)) (-15 -3120 ((-688) $)) (-15 -2283 ($)) (-15 -2282 ($ $ |#1|)) (-15 -2281 ($ |#1| $)) (-15 -2280 ($ |#1| |#2| $)) (-15 -2280 ($ $ $)) (-15 -2279 ((-83) $ $)) (-15 -2278 ($ (-1 |#2| |#2|) $)) (-15 -2277 ($ (-1 |#1| |#1|) $)))) (-1006) (-23) |#2|) (T -587)) +((-3515 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-766) (-766) (-766))) (-5 *4 (-479)) (-5 *2 (-766)) (-5 *1 (-587 *5 *6 *7)) (-4 *5 (-1006)) (-4 *6 (-23)) (-14 *7 *6))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 *4)))) (-5 *1 (-587 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) (-2289 (*1 *1 *2 *3) (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 *4)))) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-587 *3 *4 *5)))) (-2287 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *2 (-23)) (-5 *1 (-587 *4 *2 *5)) (-4 *4 (-1006)) (-14 *5 *2))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *2 (-1006)) (-5 *1 (-587 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-587 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) (-2283 (*1 *1) (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2282 (*1 *1 *1 *2) (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2281 (*1 *1 *2 *1) (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2280 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2280 (*1 *1 *1 *1) (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) (-2279 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-587 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) (-2278 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-587 *3 *4 *5)) (-4 *3 (-1006)))) (-2277 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-587 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2188 (((-479) $) 30 T ELT)) (-2291 (($ |#2| $ (-479)) 26 T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) 12 T ELT)) (-2191 (((-83) (-479) $) 17 T ELT)) (-3784 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT))) +(((-588 |#1| |#2|) (-10 -7 (-15 -2291 (|#1| |#1| |#1| (-479))) (-15 -2291 (|#1| |#2| |#1| (-479))) (-15 -3784 (|#1| (-579 |#1|))) (-15 -3784 (|#1| |#1| |#1|)) (-15 -3784 (|#1| |#2| |#1|)) (-15 -3784 (|#1| |#1| |#2|)) (-15 -2188 ((-479) |#1|)) (-15 -2190 ((-579 (-479)) |#1|)) (-15 -2191 ((-83) (-479) |#1|))) (-589 |#2|) (-1119)) (T -588)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) 44 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ (-479) |#1|) 56 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-1341 (($ $) 84 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#1| $) 83 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) 57 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 55 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) |#1|) 74 T ELT)) (-2187 (((-479) $) 47 (|has| (-479) (-750)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 48 (|has| (-479) (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) 66 T ELT) (($ $ $ (-479)) 65 T ELT)) (-2190 (((-579 (-479)) $) 50 T ELT)) (-2191 (((-83) (-479) $) 51 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 46 (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2186 (($ $ |#1|) 45 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ (-479) |#1|) 54 T ELT) ((|#1| $ (-479)) 53 T ELT) (($ $ (-1136 (-479))) 75 T ELT)) (-2292 (($ $ (-479)) 68 T ELT) (($ $ (-1136 (-479))) 67 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 85 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 76 T ELT)) (-3784 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-579 $)) 70 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-589 |#1|) (-111) (-1119)) (T -589)) +((-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) (-3784 (*1 *1 *1 *2) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1119)))) (-3784 (*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1119)))) (-3784 (*1 *1 *1 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1119)))) (-3784 (*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) (-3940 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) (-2292 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) (-2292 (*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-479))) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) (-2291 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-589 *2)) (-4 *2 (-1119)))) (-2291 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) (-3770 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1136 (-479))) (|has| *1 (-6 -3978)) (-4 *1 (-589 *2)) (-4 *2 (-1119))))) +(-13 (-534 (-479) |t#1|) (-122 |t#1|) (-238 (-1136 (-479)) $) (-10 -8 (-15 -3596 ($ (-688) |t#1|)) (-15 -3784 ($ $ |t#1|)) (-15 -3784 ($ |t#1| $)) (-15 -3784 ($ $ $)) (-15 -3784 ($ (-579 $))) (-15 -3940 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2292 ($ $ (-479))) (-15 -2292 ($ $ (-1136 (-479)))) (-15 -2291 ($ |t#1| $ (-479))) (-15 -2291 ($ $ $ (-479))) (IF (|has| $ (-6 -3978)) (-15 -3770 (|t#1| $ (-1136 (-479)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 (-479) |#1|) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-534 (-479) |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 15 T ELT)) (-1300 (((-3 $ "failed") $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| |#1| (-708)) ELT)) (-3706 (($) NIL T CONST)) (-3170 (((-83) $) NIL (|has| |#1| (-708)) ELT)) (-2983 ((|#1| $) 23 T ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-708)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-708)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-708)) ELT)) (-3226 (((-1063) $) 48 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2982 ((|#3| $) 24 T ELT)) (-3928 (((-766) $) 43 T ELT)) (-1254 (((-83) $ $) 22 T ELT)) (-3365 (($ $) NIL (|has| |#1| (-708)) ELT)) (-2645 (($) 10 T CONST)) (-2551 (((-83) $ $) NIL (|has| |#1| (-708)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-708)) ELT)) (-3041 (((-83) $ $) 20 T ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-708)) ELT)) (-2670 (((-83) $ $) 26 (|has| |#1| (-708)) ELT)) (-3931 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3819 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 29 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-590 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-708)) (-6 (-708)) |%noBranch|) (-15 -3931 ($ $ |#3|)) (-15 -3931 ($ |#1| |#3|)) (-15 -2983 (|#1| $)) (-15 -2982 (|#3| $)))) (-650 |#2|) (-144) (|SubsetCategory| (-659) |#2|)) (T -590)) +((-3931 (*1 *1 *1 *2) (-12 (-4 *4 (-144)) (-5 *1 (-590 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-3931 (*1 *1 *2 *3) (-12 (-4 *4 (-144)) (-5 *1 (-590 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-2983 (*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-650 *3)) (-5 *1 (-590 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-2982 (*1 *2 *1) (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-590 *3 *4 *2)) (-4 *3 (-650 *4))))) +((-3555 (((-3 |#2| #1="failed") |#3| |#2| (-1080) |#2| (-579 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-579 |#2|))) #1#) |#3| |#2| (-1080)) 44 T ELT))) +(((-591 |#1| |#2| |#3|) (-10 -7 (-15 -3555 ((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-579 |#2|))) #1="failed") |#3| |#2| (-1080))) (-15 -3555 ((-3 |#2| #1#) |#3| |#2| (-1080) |#2| (-579 |#2|)))) (-13 (-254) (-944 (-479)) (-576 (-479)) (-118)) (-13 (-29 |#1|) (-1105) (-865)) (-596 |#2|)) (T -591)) +((-3555 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-579 *2)) (-4 *2 (-13 (-29 *6) (-1105) (-865))) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *1 (-591 *6 *2 *3)) (-4 *3 (-596 *2)))) (-3555 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1080)) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-4 *4 (-13 (-29 *6) (-1105) (-865))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1999 (-579 *4)))) (-5 *1 (-591 *6 *4 *3)) (-4 *3 (-596 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2293 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2295 (($ $ $) 28 (|has| |#1| (-308)) ELT)) (-2296 (($ $ (-688)) 31 (|has| |#1| (-308)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2521 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2520 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2534 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-688)) NIL T ELT)) (-2532 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-2531 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-2805 (((-688) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2525 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2524 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2526 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT)) (-3782 ((|#1| $ |#1|) 24 T ELT)) (-2297 (($ $ $) 33 (|has| |#1| (-308)) ELT)) (-3930 (((-688) $) NIL T ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT)) (-3928 (((-766) $) 20 T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (($ |#1|) NIL T ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-688)) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2530 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2505 (($ $) NIL T ELT)) (-2645 (($) 21 T CONST)) (-2651 (($) 8 T CONST)) (-2654 (($) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-592 |#1| |#2|) (-596 |#1|) (-955) (-1 |#1| |#1|)) (T -592)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2293 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2295 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2296 (($ $ (-688)) NIL (|has| |#1| (-308)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2521 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2520 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2534 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-688)) NIL T ELT)) (-2532 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-2531 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-2805 (((-688) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2525 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2524 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2526 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT)) (-3782 ((|#1| $ |#1|) NIL T ELT)) (-2297 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3930 (((-688) $) NIL T ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (($ |#1|) NIL T ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-688)) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2530 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2505 (($ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-593 |#1|) (-596 |#1|) (-188)) (T -593)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2293 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2295 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2296 (($ $ (-688)) NIL (|has| |#1| (-308)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2521 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2520 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2534 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-688)) NIL T ELT)) (-2532 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-2531 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-2805 (((-688) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2525 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2524 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2526 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT)) (-3782 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2297 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3930 (((-688) $) NIL T ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (($ |#1|) NIL T ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-688)) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2530 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2505 (($ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-594 |#1| |#2|) (-13 (-596 |#1|) (-238 |#2| |#2|)) (-188) (-13 (-586 |#1|) (-10 -8 (-15 -3740 ($ $))))) (T -594)) +NIL +((-2293 (($ $) 29 T ELT)) (-2505 (($ $) 27 T ELT)) (-2654 (($) 13 T ELT))) +(((-595 |#1| |#2|) (-10 -7 (-15 -2293 (|#1| |#1|)) (-15 -2505 (|#1| |#1|)) (-15 -2654 (|#1|))) (-596 |#2|) (-955)) (T -595)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2293 (($ $) 93 (|has| |#1| (-308)) ELT)) (-2295 (($ $ $) 95 (|has| |#1| (-308)) ELT)) (-2296 (($ $ (-688)) 94 (|has| |#1| (-308)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-2521 (($ $ $) 55 (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) 56 (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) 58 (|has| |#1| (-308)) ELT)) (-2519 (($ $ $) 53 (|has| |#1| (-308)) ELT)) (-2518 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 52 (|has| |#1| (-308)) ELT)) (-2520 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-308)) ELT)) (-2534 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 57 (|has| |#1| (-308)) ELT)) (-3141 (((-3 (-479) #2="failed") $) 85 (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #2#) $) 82 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3140 (((-479) $) 84 (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) 81 (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 80 T ELT)) (-3941 (($ $) 74 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3485 (($ $) 65 (|has| |#1| (-386)) ELT)) (-2397 (((-83) $) 40 T ELT)) (-2878 (($ |#1| (-688)) 72 T ELT)) (-2532 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 67 (|has| |#1| (-490)) ELT)) (-2531 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 68 (|has| |#1| (-490)) ELT)) (-2805 (((-688) $) 76 T ELT)) (-2527 (($ $ $) 62 (|has| |#1| (-308)) ELT)) (-2528 (($ $ $) 63 (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) 51 (|has| |#1| (-308)) ELT)) (-2525 (($ $ $) 60 (|has| |#1| (-308)) ELT)) (-2524 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 59 (|has| |#1| (-308)) ELT)) (-2526 (((-3 $ #1#) $ $) 61 (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 64 (|has| |#1| (-308)) ELT)) (-3158 ((|#1| $) 75 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3448 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-490)) ELT)) (-3782 ((|#1| $ |#1|) 98 T ELT)) (-2297 (($ $ $) 92 (|has| |#1| (-308)) ELT)) (-3930 (((-688) $) 77 T ELT)) (-2802 ((|#1| $) 66 (|has| |#1| (-386)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 (-479))) 83 (|has| |#1| (-944 (-344 (-479)))) ELT) (($ |#1|) 78 T ELT)) (-3799 (((-579 |#1|) $) 71 T ELT)) (-3659 ((|#1| $ (-688)) 73 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2530 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2505 (($ $) 96 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($) 97 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-596 |#1|) (-111) (-955)) (T -596)) +((-2654 (*1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)))) (-2505 (*1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)))) (-2295 (*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2296 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-596 *3)) (-4 *3 (-955)) (-4 *3 (-308)))) (-2293 (*1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2297 (*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) +(-13 (-755 |t#1|) (-238 |t#1| |t#1|) (-10 -8 (-15 -2654 ($)) (-15 -2505 ($ $)) (IF (|has| |t#1| (-308)) (PROGN (-15 -2295 ($ $ $)) (-15 -2296 ($ $ (-688))) (-15 -2293 ($ $)) (-15 -2297 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-551 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-238 |#1| |#1|) . T) ((-349 |#1|) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 |#1|) |has| |#1| (-144)) ((-650 |#1|) |has| |#1| (-144)) ((-659) . T) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-755 |#1|) . T)) +((-2294 (((-579 (-593 (-344 |#2|))) (-593 (-344 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3714 (((-579 (-593 (-344 |#2|))) (-593 (-344 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-579 (-593 (-344 |#2|))) (-593 (-344 |#2|)) (-1 (-579 |#1|) |#2|)) 19 T ELT))) +(((-597 |#1| |#2|) (-10 -7 (-15 -3714 ((-579 (-593 (-344 |#2|))) (-593 (-344 |#2|)) (-1 (-579 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3714 ((-579 (-593 (-344 |#2|))) (-593 (-344 |#2|)))) (-15 -2294 ((-579 (-593 (-344 |#2|))) (-593 (-344 |#2|))))) |%noBranch|)) (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479)))) (-1145 |#1|)) (T -597)) +((-2294 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) (-5 *2 (-579 (-593 (-344 *5)))) (-5 *1 (-597 *4 *5)) (-5 *3 (-593 (-344 *5))))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) (-5 *2 (-579 (-593 (-344 *5)))) (-5 *1 (-597 *4 *5)) (-5 *3 (-593 (-344 *5))))) (-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-579 *5) *6)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) (-5 *2 (-579 (-593 (-344 *6)))) (-5 *1 (-597 *5 *6)) (-5 *3 (-593 (-344 *6)))))) +((-2295 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2296 ((|#2| |#2| (-688) (-1 |#1| |#1|)) 45 T ELT)) (-2297 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-598 |#1| |#2|) (-10 -7 (-15 -2295 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2296 (|#2| |#2| (-688) (-1 |#1| |#1|))) (-15 -2297 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-308) (-596 |#1|)) (T -598)) +((-2297 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-598 *4 *2)) (-4 *2 (-596 *4)))) (-2296 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-688)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-5 *1 (-598 *5 *2)) (-4 *2 (-596 *5)))) (-2295 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-598 *4 *2)) (-4 *2 (-596 *4))))) +((-2298 (($ $ $) 9 T ELT))) +(((-599 |#1|) (-10 -7 (-15 -2298 (|#1| |#1| |#1|))) (-600)) (T -599)) +NIL +((-2300 (($ $) 8 T ELT)) (-2298 (($ $ $) 6 T ELT)) (-2299 (($ $ $) 7 T ELT))) +(((-600) (-111)) (T -600)) +((-2300 (*1 *1 *1) (-4 *1 (-600))) (-2299 (*1 *1 *1 *1) (-4 *1 (-600))) (-2298 (*1 *1 *1 *1) (-4 *1 (-600)))) +(-13 (-1119) (-10 -8 (-15 -2300 ($ $)) (-15 -2299 ($ $ $)) (-15 -2298 ($ $ $)))) +(((-1119) . T)) +((-2301 (((-3 (-579 (-1075 |#1|)) "failed") (-579 (-1075 |#1|)) (-1075 |#1|)) 33 T ELT))) +(((-601 |#1|) (-10 -7 (-15 -2301 ((-3 (-579 (-1075 |#1|)) "failed") (-579 (-1075 |#1|)) (-1075 |#1|)))) (-815)) (T -601)) +((-2301 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 (-1075 *4))) (-5 *3 (-1075 *4)) (-4 *4 (-815)) (-5 *1 (-601 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3916 (((-579 |#1|) $) 85 T ELT)) (-3929 (($ $ (-688)) 95 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3921 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 50 T ELT)) (-3141 (((-3 (-610 |#1|) #1#) $) NIL T ELT)) (-3140 (((-610 |#1|) $) NIL T ELT)) (-3941 (($ $) 94 T ELT)) (-2405 (((-688) $) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-3920 (($ (-610 |#1|) |#2|) 70 T ELT)) (-3918 (($ $) 90 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3922 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 49 T ELT)) (-1737 (((-2 (|:| |k| (-610 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2879 (((-610 |#1|) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3750 (($ $ |#1| $) 32 T ELT) (($ $ (-579 |#1|) (-579 $)) 34 T ELT)) (-3930 (((-688) $) 92 T ELT)) (-3512 (($ $ $) 20 T ELT) (($ (-610 |#1|) (-610 |#1|)) 79 T ELT) (($ (-610 |#1|) $) 77 T ELT) (($ $ (-610 |#1|)) 78 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1185 |#1| |#2|) $) 60 T ELT) (((-1194 |#1| |#2|) $) 43 T ELT) (($ (-610 |#1|)) 27 T ELT)) (-3799 (((-579 |#2|) $) NIL T ELT)) (-3659 ((|#2| $ (-610 |#1|)) NIL T ELT)) (-3936 ((|#2| (-1194 |#1| |#2|) $) 45 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 23 T CONST)) (-2650 (((-579 (-2 (|:| |k| (-610 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3927 (((-3 $ #1#) (-1185 |#1| |#2|)) 62 T ELT)) (-1721 (($ (-610 |#1|)) 14 T ELT)) (-3041 (((-83) $ $) 46 T ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 31 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-610 |#1|)) NIL T ELT))) +(((-602 |#1| |#2|) (-13 (-320 |#1| |#2|) (-329 |#2| (-610 |#1|)) (-10 -8 (-15 -3927 ((-3 $ "failed") (-1185 |#1| |#2|))) (-15 -3512 ($ (-610 |#1|) (-610 |#1|))) (-15 -3512 ($ (-610 |#1|) $)) (-15 -3512 ($ $ (-610 |#1|))))) (-750) (-144)) (T -602)) +((-3927 (*1 *1 *2) (|partial| -12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) (-5 *1 (-602 *3 *4)))) (-3512 (*1 *1 *2 *2) (-12 (-5 *2 (-610 *3)) (-4 *3 (-750)) (-5 *1 (-602 *3 *4)) (-4 *4 (-144)))) (-3512 (*1 *1 *2 *1) (-12 (-5 *2 (-610 *3)) (-4 *3 (-750)) (-5 *1 (-602 *3 *4)) (-4 *4 (-144)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-610 *3)) (-4 *3 (-750)) (-5 *1 (-602 *3 *4)) (-4 *4 (-144))))) +((-1720 (((-83) $) NIL T ELT) (((-83) (-1 (-83) |#2| |#2|) $) 59 T ELT)) (-1718 (($ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $) 12 T ELT)) (-1558 (($ (-1 (-83) |#2|) $) 29 T ELT)) (-2284 (($ $) 65 T ELT)) (-2355 (($ $) 74 T ELT)) (-3387 (($ |#2| $) NIL T ELT) (($ (-1 (-83) |#2|) $) 43 T ELT)) (-3824 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3401 (((-479) |#2| $ (-479)) 71 T ELT) (((-479) |#2| $) NIL T ELT) (((-479) (-1 (-83) |#2|) $) 54 T ELT)) (-3596 (($ (-688) |#2|) 63 T ELT)) (-2841 (($ $ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $ $) 31 T ELT)) (-3500 (($ $ $) NIL T ELT) (($ (-1 (-83) |#2| |#2|) $ $) 24 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3516 (($ |#2|) 15 T ELT)) (-3591 (($ $ $ (-479)) 42 T ELT) (($ |#2| $ (-479)) 40 T ELT)) (-1342 (((-3 |#2| "failed") (-1 (-83) |#2|) $) 53 T ELT)) (-1559 (($ $ (-1136 (-479))) 51 T ELT) (($ $ (-479)) 44 T ELT)) (-1719 (($ $ $ (-479)) 70 T ELT)) (-3382 (($ $) 68 T ELT)) (-2670 (((-83) $ $) 76 T ELT))) +(((-603 |#1| |#2|) (-10 -7 (-15 -3516 (|#1| |#2|)) (-15 -1559 (|#1| |#1| (-479))) (-15 -1559 (|#1| |#1| (-1136 (-479)))) (-15 -3387 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3591 (|#1| |#2| |#1| (-479))) (-15 -3591 (|#1| |#1| |#1| (-479))) (-15 -2841 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -1558 (|#1| (-1 (-83) |#2|) |#1|)) (-15 -3387 (|#1| |#2| |#1|)) (-15 -2355 (|#1| |#1|)) (-15 -2841 (|#1| |#1| |#1|)) (-15 -3500 (|#1| (-1 (-83) |#2| |#2|) |#1| |#1|)) (-15 -1720 ((-83) (-1 (-83) |#2| |#2|) |#1|)) (-15 -3401 ((-479) (-1 (-83) |#2|) |#1|)) (-15 -3401 ((-479) |#2| |#1|)) (-15 -3401 ((-479) |#2| |#1| (-479))) (-15 -3500 (|#1| |#1| |#1|)) (-15 -1720 ((-83) |#1|)) (-15 -1719 (|#1| |#1| |#1| (-479))) (-15 -2284 (|#1| |#1|)) (-15 -1718 (|#1| (-1 (-83) |#2| |#2|) |#1|)) (-15 -1718 (|#1| |#1|)) (-15 -2670 ((-83) |#1| |#1|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3824 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1342 ((-3 |#2| "failed") (-1 (-83) |#2|) |#1|)) (-15 -3596 (|#1| (-688) |#2|)) (-15 -3940 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3940 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3382 (|#1| |#1|))) (-604 |#2|) (-1119)) (T -603)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 52 T ELT)) (-3777 ((|#1| $) 71 T ELT)) (-3779 (($ $) 73 T ELT)) (-2185 (((-1175) $ (-479) (-479)) 107 (|has| $ (-6 -3978)) ELT)) (-3767 (($ $ (-479)) 58 (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) $) 153 (|has| |#1| (-750)) ELT) (((-83) (-1 (-83) |#1| |#1|) $) 147 T ELT)) (-1718 (($ $) 157 (-12 (|has| |#1| (-750)) (|has| $ (-6 -3978))) ELT) (($ (-1 (-83) |#1| |#1|) $) 156 (|has| $ (-6 -3978)) ELT)) (-2894 (($ $) 152 (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $) 146 T ELT)) (-3424 (((-83) $ (-688)) 90 T ELT)) (-3010 ((|#1| $ |#1|) 43 (|has| $ (-6 -3978)) ELT)) (-3769 (($ $ $) 62 (|has| $ (-6 -3978)) ELT)) (-3768 ((|#1| $ |#1|) 60 (|has| $ (-6 -3978)) ELT)) (-3771 ((|#1| $ |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3978)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3978)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3978)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 127 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-479) |#1|) 96 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 45 (|has| $ (-6 -3978)) ELT)) (-1558 (($ (-1 (-83) |#1|) $) 140 T ELT)) (-3692 (($ (-1 (-83) |#1|) $) 112 (|has| $ (-6 -3977)) ELT)) (-3778 ((|#1| $) 72 T ELT)) (-3706 (($) 7 T CONST)) (-2284 (($ $) 155 (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) 145 T ELT)) (-3781 (($ $) 79 T ELT) (($ $ (-688)) 77 T ELT)) (-2355 (($ $) 142 (|has| |#1| (-1006)) ELT)) (-1341 (($ $) 109 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ |#1| $) 141 (|has| |#1| (-1006)) ELT) (($ (-1 (-83) |#1|) $) 136 T ELT)) (-3388 (($ (-1 (-83) |#1|) $) 113 (|has| $ (-6 -3977)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1564 ((|#1| $ (-479) |#1|) 95 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 97 T ELT)) (-3425 (((-83) $) 93 T ELT)) (-3401 (((-479) |#1| $ (-479)) 150 (|has| |#1| (-1006)) ELT) (((-479) |#1| $) 149 (|has| |#1| (-1006)) ELT) (((-479) (-1 (-83) |#1|) $) 148 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 54 T ELT)) (-3012 (((-83) $ $) 46 (|has| |#1| (-1006)) ELT)) (-3596 (($ (-688) |#1|) 119 T ELT)) (-3701 (((-83) $ (-688)) 91 T ELT)) (-2187 (((-479) $) 105 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) 163 (|has| |#1| (-750)) ELT)) (-2841 (($ $ $) 143 (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 139 T ELT)) (-3500 (($ $ $) 151 (|has| |#1| (-750)) ELT) (($ (-1 (-83) |#1| |#1|) $ $) 144 T ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 104 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) 162 (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3516 (($ |#1|) 133 T ELT)) (-3698 (((-83) $ (-688)) 92 T ELT)) (-3015 (((-579 |#1|) $) 49 T ELT)) (-3509 (((-83) $) 53 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3780 ((|#1| $) 76 T ELT) (($ $ (-688)) 74 T ELT)) (-3591 (($ $ $ (-479)) 138 T ELT) (($ |#1| $ (-479)) 137 T ELT)) (-2291 (($ $ $ (-479)) 126 T ELT) (($ |#1| $ (-479)) 125 T ELT)) (-2190 (((-579 (-479)) $) 102 T ELT)) (-2191 (((-83) (-479) $) 101 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 82 T ELT) (($ $ (-688)) 80 T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2186 (($ $ |#1|) 106 (|has| $ (-6 -3978)) ELT)) (-3426 (((-83) $) 94 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) 100 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1136 (-479))) 118 T ELT) ((|#1| $ (-479)) 99 T ELT) ((|#1| $ (-479) |#1|) 98 T ELT)) (-3014 (((-479) $ $) 48 T ELT)) (-1559 (($ $ (-1136 (-479))) 135 T ELT) (($ $ (-479)) 134 T ELT)) (-2292 (($ $ (-1136 (-479))) 124 T ELT) (($ $ (-479)) 123 T ELT)) (-3615 (((-83) $) 50 T ELT)) (-3774 (($ $) 68 T ELT)) (-3772 (($ $) 65 (|has| $ (-6 -3978)) ELT)) (-3775 (((-688) $) 69 T ELT)) (-3776 (($ $) 70 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1719 (($ $ $ (-479)) 154 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 108 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 117 T ELT)) (-3773 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-3784 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-579 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) 55 T ELT)) (-3013 (((-83) $ $) 47 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) 161 (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) 159 (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) 160 (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 158 (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-604 |#1|) (-111) (-1119)) (T -604)) +((-3516 (*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1119))))) +(-13 (-1054 |t#1|) (-318 |t#1|) (-234 |t#1|) (-10 -8 (-15 -3516 ($ |t#1|)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 (-479) |#1|) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-234 |#1|) . T) ((-318 |#1|) . T) ((-423 |#1|) . T) ((-534 (-479) |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-589 |#1|) . T) ((-750) |has| |#1| (-750)) ((-753) |has| |#1| (-750)) ((-917 |#1|) . T) ((-1006) OR (|has| |#1| (-1006)) (|has| |#1| (-750))) ((-1054 |#1|) . T) ((-1119) . T) ((-1158 |#1|) . T)) +((-3555 (((-579 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -1999 (-579 |#3|)))) |#4| (-579 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -1999 (-579 |#3|))) |#4| |#3|) 60 T ELT)) (-3093 (((-688) |#4| |#3|) 18 T ELT)) (-3322 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2302 (((-83) |#4| |#3|) 14 T ELT))) +(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3555 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -1999 (-579 |#3|))) |#4| |#3|)) (-15 -3555 ((-579 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -1999 (-579 |#3|)))) |#4| (-579 |#3|))) (-15 -3322 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2302 ((-83) |#4| |#3|)) (-15 -3093 ((-688) |#4| |#3|))) (-308) (-13 (-318 |#1|) (-10 -7 (-6 -3978))) (-13 (-318 |#1|) (-10 -7 (-6 -3978))) (-623 |#1| |#2| |#3|)) (T -605)) +((-3093 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-4 *4 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-5 *2 (-688)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) (-2302 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-4 *4 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-5 *2 (-83)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) (-3322 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-308)) (-4 *5 (-13 (-318 *4) (-10 -7 (-6 -3978)))) (-4 *2 (-13 (-318 *4) (-10 -7 (-6 -3978)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-623 *4 *5 *2)))) (-3555 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-4 *7 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-5 *2 (-579 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -1999 (-579 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-579 *7)) (-4 *3 (-623 *5 *6 *7)))) (-3555 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-4 *4 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1999 (-579 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4))))) +((-3555 (((-579 (-2 (|:| |particular| (-3 (-1169 |#1|) #1="failed")) (|:| -1999 (-579 (-1169 |#1|))))) (-579 (-579 |#1|)) (-579 (-1169 |#1|))) 22 T ELT) (((-579 (-2 (|:| |particular| (-3 (-1169 |#1|) #1#)) (|:| -1999 (-579 (-1169 |#1|))))) (-626 |#1|) (-579 (-1169 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1169 |#1|) #1#)) (|:| -1999 (-579 (-1169 |#1|)))) (-579 (-579 |#1|)) (-1169 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1169 |#1|) #1#)) (|:| -1999 (-579 (-1169 |#1|)))) (-626 |#1|) (-1169 |#1|)) 14 T ELT)) (-3093 (((-688) (-626 |#1|) (-1169 |#1|)) 30 T ELT)) (-3322 (((-3 (-1169 |#1|) #1#) (-626 |#1|) (-1169 |#1|)) 24 T ELT)) (-2302 (((-83) (-626 |#1|) (-1169 |#1|)) 27 T ELT))) +(((-606 |#1|) (-10 -7 (-15 -3555 ((-2 (|:| |particular| (-3 (-1169 |#1|) #1="failed")) (|:| -1999 (-579 (-1169 |#1|)))) (-626 |#1|) (-1169 |#1|))) (-15 -3555 ((-2 (|:| |particular| (-3 (-1169 |#1|) #1#)) (|:| -1999 (-579 (-1169 |#1|)))) (-579 (-579 |#1|)) (-1169 |#1|))) (-15 -3555 ((-579 (-2 (|:| |particular| (-3 (-1169 |#1|) #1#)) (|:| -1999 (-579 (-1169 |#1|))))) (-626 |#1|) (-579 (-1169 |#1|)))) (-15 -3555 ((-579 (-2 (|:| |particular| (-3 (-1169 |#1|) #1#)) (|:| -1999 (-579 (-1169 |#1|))))) (-579 (-579 |#1|)) (-579 (-1169 |#1|)))) (-15 -3322 ((-3 (-1169 |#1|) #1#) (-626 |#1|) (-1169 |#1|))) (-15 -2302 ((-83) (-626 |#1|) (-1169 |#1|))) (-15 -3093 ((-688) (-626 |#1|) (-1169 |#1|)))) (-308)) (T -606)) +((-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-308)) (-5 *2 (-688)) (-5 *1 (-606 *5)))) (-2302 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-308)) (-5 *2 (-83)) (-5 *1 (-606 *5)))) (-3322 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1169 *4)) (-5 *3 (-626 *4)) (-4 *4 (-308)) (-5 *1 (-606 *4)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-579 *5))) (-4 *5 (-308)) (-5 *2 (-579 (-2 (|:| |particular| (-3 (-1169 *5) #1="failed")) (|:| -1999 (-579 (-1169 *5)))))) (-5 *1 (-606 *5)) (-5 *4 (-579 (-1169 *5))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-4 *5 (-308)) (-5 *2 (-579 (-2 (|:| |particular| (-3 (-1169 *5) #1#)) (|:| -1999 (-579 (-1169 *5)))))) (-5 *1 (-606 *5)) (-5 *4 (-579 (-1169 *5))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-579 *5))) (-4 *5 (-308)) (-5 *2 (-2 (|:| |particular| (-3 (-1169 *5) #1#)) (|:| -1999 (-579 (-1169 *5))))) (-5 *1 (-606 *5)) (-5 *4 (-1169 *5)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |particular| (-3 (-1169 *5) #1#)) (|:| -1999 (-579 (-1169 *5))))) (-5 *1 (-606 *5)) (-5 *4 (-1169 *5))))) +((-2303 (((-2 (|:| |particular| (-3 (-1169 (-344 |#4|)) "failed")) (|:| -1999 (-579 (-1169 (-344 |#4|))))) (-579 |#4|) (-579 |#3|)) 51 T ELT))) +(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2303 ((-2 (|:| |particular| (-3 (-1169 (-344 |#4|)) "failed")) (|:| -1999 (-579 (-1169 (-344 |#4|))))) (-579 |#4|) (-579 |#3|)))) (-490) (-711) (-750) (-855 |#1| |#2| |#3|)) (T -607)) +((-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *7)) (-4 *7 (-750)) (-4 *8 (-855 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-5 *2 (-2 (|:| |particular| (-3 (-1169 (-344 *8)) "failed")) (|:| -1999 (-579 (-1169 (-344 *8)))))) (-5 *1 (-607 *5 *6 *7 *8))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1760 (((-3 $ #1="failed")) NIL (|has| |#2| (-490)) ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3105 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1#) $ $) NIL T ELT)) (-3207 (((-1169 (-626 |#2|))) NIL T ELT) (((-1169 (-626 |#2|)) (-1169 $)) NIL T ELT)) (-3107 (((-83) $) NIL T ELT)) (-1717 (((-1169 $)) 41 T ELT)) (-3315 (($ |#2|) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3094 (($ $) NIL (|has| |#2| (-254)) ELT)) (-3096 (((-194 |#1| |#2|) $ (-479)) NIL T ELT)) (-1894 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL (|has| |#2| (-490)) ELT)) (-1691 (((-3 $ #1#)) NIL (|has| |#2| (-490)) ELT)) (-1776 (((-626 |#2|)) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-1715 ((|#2| $) NIL T ELT)) (-1774 (((-626 |#2|) $) NIL T ELT) (((-626 |#2|) $ (-1169 $)) NIL T ELT)) (-2391 (((-3 $ #1#) $) NIL (|has| |#2| (-490)) ELT)) (-1888 (((-1075 (-851 |#2|))) NIL (|has| |#2| (-308)) ELT)) (-2394 (($ $ (-824)) NIL T ELT)) (-1713 ((|#2| $) NIL T ELT)) (-1693 (((-1075 |#2|) $) NIL (|has| |#2| (-490)) ELT)) (-1778 ((|#2|) NIL T ELT) ((|#2| (-1169 $)) NIL T ELT)) (-1711 (((-1075 |#2|) $) NIL T ELT)) (-1705 (((-83)) NIL T ELT)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) ((|#2| $) NIL T ELT)) (-1780 (($ (-1169 |#2|)) NIL T ELT) (($ (-1169 |#2|) (-1169 $)) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#2|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3093 (((-688) $) NIL (|has| |#2| (-490)) ELT) (((-824)) 42 T ELT)) (-3097 ((|#2| $ (-479) (-479)) NIL T ELT)) (-1702 (((-83)) NIL T ELT)) (-2418 (($ $ (-824)) NIL T ELT)) (-2874 (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-3092 (((-688) $) NIL (|has| |#2| (-490)) ELT)) (-3091 (((-579 (-194 |#1| |#2|)) $) NIL (|has| |#2| (-490)) ELT)) (-3099 (((-688) $) NIL T ELT)) (-1698 (((-83)) NIL T ELT)) (-3098 (((-688) $) NIL T ELT)) (-3309 ((|#2| $) NIL (|has| |#2| (-6 (-3979 #2="*"))) ELT)) (-3103 (((-479) $) NIL T ELT)) (-3101 (((-479) $) NIL T ELT)) (-2593 (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-3102 (((-479) $) NIL T ELT)) (-3100 (((-479) $) NIL T ELT)) (-3108 (($ (-579 (-579 |#2|))) NIL T ELT)) (-1937 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3576 (((-579 (-579 |#2|)) $) NIL T ELT)) (-1696 (((-83)) NIL T ELT)) (-1700 (((-83)) NIL T ELT)) (-1895 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-579 $))) #1#)) NIL (|has| |#2| (-490)) ELT)) (-1692 (((-3 $ #1#)) NIL (|has| |#2| (-490)) ELT)) (-1777 (((-626 |#2|)) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-1716 ((|#2| $) NIL T ELT)) (-1775 (((-626 |#2|) $) NIL T ELT) (((-626 |#2|) $ (-1169 $)) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-2392 (((-3 $ #1#) $) NIL (|has| |#2| (-490)) ELT)) (-1892 (((-1075 (-851 |#2|))) NIL (|has| |#2| (-308)) ELT)) (-2393 (($ $ (-824)) NIL T ELT)) (-1714 ((|#2| $) NIL T ELT)) (-1694 (((-1075 |#2|) $) NIL (|has| |#2| (-490)) ELT)) (-1779 ((|#2|) NIL T ELT) ((|#2| (-1169 $)) NIL T ELT)) (-1712 (((-1075 |#2|) $) NIL T ELT)) (-1706 (((-83)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1697 (((-83)) NIL T ELT)) (-1699 (((-83)) NIL T ELT)) (-1701 (((-83)) NIL T ELT)) (-3572 (((-3 $ #1#) $) NIL (|has| |#2| (-308)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1704 (((-83)) NIL T ELT)) (-3448 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-490)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ (-479) (-479) |#2|) NIL T ELT) ((|#2| $ (-479) (-479)) 27 T ELT) ((|#2| $ (-479)) NIL T ELT)) (-3740 (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-688)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT)) (-3311 ((|#2| $) NIL T ELT)) (-3314 (($ (-579 |#2|)) NIL T ELT)) (-3106 (((-83) $) NIL T ELT)) (-3313 (((-194 |#1| |#2|) $) NIL T ELT)) (-3310 ((|#2| $) NIL (|has| |#2| (-6 (-3979 #2#))) ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3208 (((-626 |#2|) (-1169 $)) NIL T ELT) (((-1169 |#2|) $) NIL T ELT) (((-626 |#2|) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 |#2|) $ (-1169 $)) 30 T ELT)) (-3954 (($ (-1169 |#2|)) NIL T ELT) (((-1169 |#2|) $) NIL T ELT)) (-1880 (((-579 (-851 |#2|))) NIL T ELT) (((-579 (-851 |#2|)) (-1169 $)) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-1710 (((-83)) NIL T ELT)) (-3095 (((-194 |#1| |#2|) $ (-479)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (($ |#2|) NIL T ELT) (((-626 |#2|) $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) 40 T ELT)) (-1695 (((-579 (-1169 |#2|))) NIL (|has| |#2| (-490)) ELT)) (-2421 (($ $ $ $) NIL T ELT)) (-1708 (((-83)) NIL T ELT)) (-2530 (($ (-626 |#2|) $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3104 (((-83) $) NIL T ELT)) (-2419 (($ $ $) NIL T ELT)) (-1709 (((-83)) NIL T ELT)) (-1707 (((-83)) NIL T ELT)) (-1703 (((-83)) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-688)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#2| (-308)) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-194 |#1| |#2|) $ (-194 |#1| |#2|)) NIL T ELT) (((-194 |#1| |#2|) (-194 |#1| |#2|) $) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-608 |#1| |#2|) (-13 (-1027 |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) (-548 (-626 |#2|)) (-355 |#2|)) (-824) (-144)) (T -608)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3232 (((-579 (-1039)) $) 12 T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-609) (-13 (-988) (-10 -8 (-15 -3232 ((-579 (-1039)) $))))) (T -609)) +((-3232 (*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-609))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3916 (((-579 |#1|) $) NIL T ELT)) (-3121 (($ $) 62 T ELT)) (-2649 (((-83) $) NIL T ELT)) (-3141 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-2306 (((-3 $ #1#) (-733 |#1|)) 28 T ELT)) (-2308 (((-83) (-733 |#1|)) 18 T ELT)) (-2307 (($ (-733 |#1|)) 29 T ELT)) (-2496 (((-83) $ $) 36 T ELT)) (-3815 (((-824) $) 43 T ELT)) (-3122 (($ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3714 (((-579 $) (-733 |#1|)) 20 T ELT)) (-3928 (((-766) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-733 |#1|) $) 47 T ELT) (((-614 |#1|) $) 52 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2305 (((-58 (-579 $)) (-579 |#1|) (-824)) 67 T ELT)) (-2304 (((-579 $) (-579 |#1|) (-824)) 70 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 63 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 46 T ELT))) +(((-610 |#1|) (-13 (-750) (-944 |#1|) (-10 -8 (-15 -2649 ((-83) $)) (-15 -3122 ($ $)) (-15 -3121 ($ $)) (-15 -3815 ((-824) $)) (-15 -2496 ((-83) $ $)) (-15 -3928 ((-733 |#1|) $)) (-15 -3928 ((-614 |#1|) $)) (-15 -3714 ((-579 $) (-733 |#1|))) (-15 -2308 ((-83) (-733 |#1|))) (-15 -2307 ($ (-733 |#1|))) (-15 -2306 ((-3 $ "failed") (-733 |#1|))) (-15 -3916 ((-579 |#1|) $)) (-15 -2305 ((-58 (-579 $)) (-579 |#1|) (-824))) (-15 -2304 ((-579 $) (-579 |#1|) (-824))))) (-750)) (T -610)) +((-2649 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) (-3122 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-750)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-750)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) (-2496 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-733 *3)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-733 *4)) (-4 *4 (-750)) (-5 *2 (-579 (-610 *4))) (-5 *1 (-610 *4)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-733 *4)) (-4 *4 (-750)) (-5 *2 (-83)) (-5 *1 (-610 *4)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-733 *3)) (-4 *3 (-750)) (-5 *1 (-610 *3)))) (-2306 (*1 *1 *2) (|partial| -12 (-5 *2 (-733 *3)) (-4 *3 (-750)) (-5 *1 (-610 *3)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *5)) (-5 *4 (-824)) (-4 *5 (-750)) (-5 *2 (-58 (-579 (-610 *5)))) (-5 *1 (-610 *5)))) (-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *5)) (-5 *4 (-824)) (-4 *5 (-750)) (-5 *2 (-579 (-610 *5))) (-5 *1 (-610 *5))))) +((-3384 ((|#2| $) 100 T ELT)) (-3779 (($ $) 121 T ELT)) (-3424 (((-83) $ (-688)) 35 T ELT)) (-3781 (($ $) 109 T ELT) (($ $ (-688)) 112 T ELT)) (-3425 (((-83) $) 122 T ELT)) (-3016 (((-579 $) $) 96 T ELT)) (-3012 (((-83) $ $) 92 T ELT)) (-3701 (((-83) $ (-688)) 33 T ELT)) (-2187 (((-479) $) 66 T ELT)) (-2188 (((-479) $) 65 T ELT)) (-3698 (((-83) $ (-688)) 31 T ELT)) (-3509 (((-83) $) 98 T ELT)) (-3780 ((|#2| $) 113 T ELT) (($ $ (-688)) 117 T ELT)) (-2291 (($ $ $ (-479)) 83 T ELT) (($ |#2| $ (-479)) 82 T ELT)) (-2190 (((-579 (-479)) $) 64 T ELT)) (-2191 (((-83) (-479) $) 59 T ELT)) (-3783 ((|#2| $) NIL T ELT) (($ $ (-688)) 108 T ELT)) (-3751 (($ $ (-479)) 125 T ELT)) (-3426 (((-83) $) 124 T ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 42 T ELT)) (-2192 (((-579 |#2|) $) 46 T ELT)) (-3782 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1136 (-479))) 79 T ELT) ((|#2| $ (-479)) 57 T ELT) ((|#2| $ (-479) |#2|) 58 T ELT)) (-3014 (((-479) $ $) 91 T ELT)) (-2292 (($ $ (-1136 (-479))) 78 T ELT) (($ $ (-479)) 72 T ELT)) (-3615 (((-83) $) 87 T ELT)) (-3774 (($ $) 105 T ELT)) (-3775 (((-688) $) 104 T ELT)) (-3776 (($ $) 103 T ELT)) (-3512 (($ (-579 |#2|)) 53 T ELT)) (-2876 (($ $) 126 T ELT)) (-3504 (((-579 $) $) 90 T ELT)) (-3013 (((-83) $ $) 89 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 41 T ELT)) (-3041 (((-83) $ $) 20 T ELT)) (-3939 (((-688) $) 39 T ELT))) +(((-611 |#1| |#2|) (-10 -7 (-15 -3041 ((-83) |#1| |#1|)) (-15 -2876 (|#1| |#1|)) (-15 -3751 (|#1| |#1| (-479))) (-15 -3424 ((-83) |#1| (-688))) (-15 -3701 ((-83) |#1| (-688))) (-15 -3698 ((-83) |#1| (-688))) (-15 -3425 ((-83) |#1|)) (-15 -3426 ((-83) |#1|)) (-15 -3782 (|#2| |#1| (-479) |#2|)) (-15 -3782 (|#2| |#1| (-479))) (-15 -2192 ((-579 |#2|) |#1|)) (-15 -2191 ((-83) (-479) |#1|)) (-15 -2190 ((-579 (-479)) |#1|)) (-15 -2188 ((-479) |#1|)) (-15 -2187 ((-479) |#1|)) (-15 -3512 (|#1| (-579 |#2|))) (-15 -3782 (|#1| |#1| (-1136 (-479)))) (-15 -2292 (|#1| |#1| (-479))) (-15 -2292 (|#1| |#1| (-1136 (-479)))) (-15 -2291 (|#1| |#2| |#1| (-479))) (-15 -2291 (|#1| |#1| |#1| (-479))) (-15 -3774 (|#1| |#1|)) (-15 -3775 ((-688) |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-688))) (-15 -3782 (|#2| |#1| "last")) (-15 -3780 (|#2| |#1|)) (-15 -3781 (|#1| |#1| (-688))) (-15 -3782 (|#1| |#1| "rest")) (-15 -3781 (|#1| |#1|)) (-15 -3783 (|#1| |#1| (-688))) (-15 -3782 (|#2| |#1| "first")) (-15 -3783 (|#2| |#1|)) (-15 -3012 ((-83) |#1| |#1|)) (-15 -3013 ((-83) |#1| |#1|)) (-15 -3014 ((-479) |#1| |#1|)) (-15 -3615 ((-83) |#1|)) (-15 -3782 (|#2| |#1| "value")) (-15 -3384 (|#2| |#1|)) (-15 -3509 ((-83) |#1|)) (-15 -3016 ((-579 |#1|) |#1|)) (-15 -3504 ((-579 |#1|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#2|) |#1|)) (-15 -3939 ((-688) |#1|))) (-612 |#2|) (-1119)) (T -611)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 52 T ELT)) (-3777 ((|#1| $) 71 T ELT)) (-3779 (($ $) 73 T ELT)) (-2185 (((-1175) $ (-479) (-479)) 107 (|has| $ (-6 -3978)) ELT)) (-3767 (($ $ (-479)) 58 (|has| $ (-6 -3978)) ELT)) (-3424 (((-83) $ (-688)) 90 T ELT)) (-3010 ((|#1| $ |#1|) 43 (|has| $ (-6 -3978)) ELT)) (-3769 (($ $ $) 62 (|has| $ (-6 -3978)) ELT)) (-3768 ((|#1| $ |#1|) 60 (|has| $ (-6 -3978)) ELT)) (-3771 ((|#1| $ |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3978)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3978)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3978)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 127 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-479) |#1|) 96 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 45 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 112 T ELT)) (-3778 ((|#1| $) 72 T ELT)) (-3706 (($) 7 T CONST)) (-2310 (($ $) 135 T ELT)) (-3781 (($ $) 79 T ELT) (($ $ (-688)) 77 T ELT)) (-1341 (($ $) 109 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#1| $) 110 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 113 T ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1564 ((|#1| $ (-479) |#1|) 95 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 97 T ELT)) (-3425 (((-83) $) 93 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2309 (((-688) $) 134 T ELT)) (-3016 (((-579 $) $) 54 T ELT)) (-3012 (((-83) $ $) 46 (|has| |#1| (-1006)) ELT)) (-3596 (($ (-688) |#1|) 119 T ELT)) (-3701 (((-83) $ (-688)) 91 T ELT)) (-2187 (((-479) $) 105 (|has| (-479) (-750)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 104 (|has| (-479) (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3698 (((-83) $ (-688)) 92 T ELT)) (-3015 (((-579 |#1|) $) 49 T ELT)) (-3509 (((-83) $) 53 T ELT)) (-2312 (($ $) 137 T ELT)) (-2313 (((-83) $) 138 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3780 ((|#1| $) 76 T ELT) (($ $ (-688)) 74 T ELT)) (-2291 (($ $ $ (-479)) 126 T ELT) (($ |#1| $ (-479)) 125 T ELT)) (-2190 (((-579 (-479)) $) 102 T ELT)) (-2191 (((-83) (-479) $) 101 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-2311 ((|#1| $) 136 T ELT)) (-3783 ((|#1| $) 82 T ELT) (($ $ (-688)) 80 T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2186 (($ $ |#1|) 106 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-479)) 133 T ELT)) (-3426 (((-83) $) 94 T ELT)) (-2314 (((-83) $) 139 T ELT)) (-2315 (((-83) $) 140 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) 100 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1136 (-479))) 118 T ELT) ((|#1| $ (-479)) 99 T ELT) ((|#1| $ (-479) |#1|) 98 T ELT)) (-3014 (((-479) $ $) 48 T ELT)) (-2292 (($ $ (-1136 (-479))) 124 T ELT) (($ $ (-479)) 123 T ELT)) (-3615 (((-83) $) 50 T ELT)) (-3774 (($ $) 68 T ELT)) (-3772 (($ $) 65 (|has| $ (-6 -3978)) ELT)) (-3775 (((-688) $) 69 T ELT)) (-3776 (($ $) 70 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 108 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 117 T ELT)) (-3773 (($ $ $) 67 (|has| $ (-6 -3978)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3978)) ELT)) (-3784 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-579 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-2876 (($ $) 132 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) 55 T ELT)) (-3013 (((-83) $ $) 47 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-612 |#1|) (-111) (-1119)) (T -612)) +((-3388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-612 *3)) (-4 *3 (-1119)))) (-3692 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-612 *3)) (-4 *3 (-1119)))) (-2315 (*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1119)) (-5 *2 (-83)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1119)) (-5 *2 (-83)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1119)) (-5 *2 (-83)))) (-2312 (*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1119)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1119)))) (-2310 (*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1119)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1119)) (-5 *2 (-688)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-612 *3)) (-4 *3 (-1119)))) (-2876 (*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1119))))) +(-13 (-1054 |t#1|) (-10 -8 (-15 -3388 ($ (-1 (-83) |t#1|) $)) (-15 -3692 ($ (-1 (-83) |t#1|) $)) (-15 -2315 ((-83) $)) (-15 -2314 ((-83) $)) (-15 -2313 ((-83) $)) (-15 -2312 ($ $)) (-15 -2311 (|t#1| $)) (-15 -2310 ($ $)) (-15 -2309 ((-688) $)) (-15 -3751 ($ $ (-479))) (-15 -2876 ($ $)))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 (-479) |#1|) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-534 (-479) |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-589 |#1|) . T) ((-917 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1054 |#1|) . T) ((-1119) . T) ((-1158 |#1|) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3162 (((-417) $) 15 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 24 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-1039) $) 17 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-613) (-13 (-988) (-10 -8 (-15 -3162 ((-417) $)) (-15 -3217 ((-1039) $))))) (T -613)) +((-3162 (*1 *2 *1) (-12 (-5 *2 (-417)) (-5 *1 (-613)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-613))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3916 (((-579 |#1|) $) 15 T ELT)) (-3121 (($ $) 19 T ELT)) (-2649 (((-83) $) 20 T ELT)) (-3141 (((-3 |#1| "failed") $) 23 T ELT)) (-3140 ((|#1| $) 21 T ELT)) (-3781 (($ $) 37 T ELT)) (-3918 (($ $) 25 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-2496 (((-83) $ $) 46 T ELT)) (-3815 (((-824) $) 40 T ELT)) (-3122 (($ $) 18 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 ((|#1| $) 36 T ELT)) (-3928 (((-766) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-733 |#1|) $) 28 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 13 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-614 |#1|) (-13 (-750) (-944 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3928 ((-733 |#1|) $)) (-15 -3783 (|#1| $)) (-15 -3122 ($ $)) (-15 -3815 ((-824) $)) (-15 -2496 ((-83) $ $)) (-15 -3918 ($ $)) (-15 -3781 ($ $)) (-15 -2649 ((-83) $)) (-15 -3121 ($ $)) (-15 -3916 ((-579 |#1|) $)))) (-750)) (T -614)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-733 *3)) (-5 *1 (-614 *3)) (-4 *3 (-750)))) (-3783 (*1 *2 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) (-3122 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-614 *3)) (-4 *3 (-750)))) (-2496 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-614 *3)) (-4 *3 (-750)))) (-3918 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-614 *3)) (-4 *3 (-750)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-614 *3)) (-4 *3 (-750))))) +((-2324 ((|#1| (-1 |#1| (-688) |#1|) (-688) |#1|) 11 T ELT)) (-2316 ((|#1| (-1 |#1| |#1|) (-688) |#1|) 9 T ELT))) +(((-615 |#1|) (-10 -7 (-15 -2316 (|#1| (-1 |#1| |#1|) (-688) |#1|)) (-15 -2324 (|#1| (-1 |#1| (-688) |#1|) (-688) |#1|))) (-1006)) (T -615)) +((-2324 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-688) *2)) (-5 *4 (-688)) (-4 *2 (-1006)) (-5 *1 (-615 *2)))) (-2316 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-688)) (-4 *2 (-1006)) (-5 *1 (-615 *2))))) +((-2318 ((|#2| |#1| |#2|) 9 T ELT)) (-2317 ((|#1| |#1| |#2|) 8 T ELT))) +(((-616 |#1| |#2|) (-10 -7 (-15 -2317 (|#1| |#1| |#2|)) (-15 -2318 (|#2| |#1| |#2|))) (-1006) (-1006)) (T -616)) +((-2318 (*1 *2 *3 *2) (-12 (-5 *1 (-616 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-2317 (*1 *2 *2 *3) (-12 (-5 *1 (-616 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) +((-2319 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-617 |#1| |#2| |#3|) (-10 -7 (-15 -2319 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1006) (-1006) (-1006)) (T -617)) +((-2319 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)) (-5 *1 (-617 *5 *6 *2))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3301 (((-1120) $) 22 T ELT)) (-3300 (((-579 (-1120)) $) 20 T ELT)) (-2320 (($ (-579 (-1120)) (-1120)) 15 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 30 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT) (((-1120) $) 23 T ELT) (($ (-1019)) 11 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-618) (-13 (-988) (-548 (-1120)) (-10 -8 (-15 -3928 ($ (-1019))) (-15 -2320 ($ (-579 (-1120)) (-1120))) (-15 -3300 ((-579 (-1120)) $)) (-15 -3301 ((-1120) $))))) (T -618)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1019)) (-5 *1 (-618)))) (-2320 (*1 *1 *2 *3) (-12 (-5 *2 (-579 (-1120))) (-5 *3 (-1120)) (-5 *1 (-618)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-618)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-618))))) +((-2324 (((-1 |#1| (-688) |#1|) (-1 |#1| (-688) |#1|)) 26 T ELT)) (-2321 (((-1 |#1|) |#1|) 8 T ELT)) (-2323 ((|#1| |#1|) 19 T ELT)) (-2322 (((-579 |#1|) (-1 (-579 |#1|) (-579 |#1|)) (-479)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3928 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-688)) 23 T ELT))) +(((-619 |#1|) (-10 -7 (-15 -2321 ((-1 |#1|) |#1|)) (-15 -3928 ((-1 |#1|) |#1|)) (-15 -2322 (|#1| (-1 |#1| |#1|))) (-15 -2322 ((-579 |#1|) (-1 (-579 |#1|) (-579 |#1|)) (-479))) (-15 -2323 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-688))) (-15 -2324 ((-1 |#1| (-688) |#1|) (-1 |#1| (-688) |#1|)))) (-1006)) (T -619)) +((-2324 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-688) *3)) (-4 *3 (-1006)) (-5 *1 (-619 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-688)) (-4 *4 (-1006)) (-5 *1 (-619 *4)))) (-2323 (*1 *2 *2) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1006)))) (-2322 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-579 *5) (-579 *5))) (-5 *4 (-479)) (-5 *2 (-579 *5)) (-5 *1 (-619 *5)) (-4 *5 (-1006)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-619 *2)) (-4 *2 (-1006)))) (-3928 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-619 *3)) (-4 *3 (-1006)))) (-2321 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-619 *3)) (-4 *3 (-1006))))) +((-2327 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2326 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3934 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2325 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-620 |#1| |#2|) (-10 -7 (-15 -2325 ((-1 |#2| |#1|) |#2|)) (-15 -2326 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3934 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2327 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1006) (-1006)) (T -620)) +((-2327 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4)) (-5 *1 (-620 *4 *5)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4)) (-5 *1 (-620 *4 *5)) (-4 *4 (-1006)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-5 *2 (-1 *5)) (-5 *1 (-620 *4 *5)))) (-2325 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-620 *4 *3)) (-4 *4 (-1006)) (-4 *3 (-1006))))) +((-2332 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2328 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2329 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2330 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2331 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2328 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2329 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2330 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2331 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2332 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1006) (-1006) (-1006)) (T -621)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-1 *7 *5)) (-5 *1 (-621 *5 *6 *7)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-621 *4 *5 *6)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-621 *4 *5 *6)) (-4 *4 (-1006)))) (-2330 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-621 *4 *5 *6)) (-4 *5 (-1006)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-621 *4 *5 *6)))) (-2328 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1006)) (-4 *4 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *5)) (-5 *1 (-621 *5 *4 *6))))) +((-3820 (($ (-688) (-688)) 42 T ELT)) (-2337 (($ $ $) 73 T ELT)) (-3396 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3105 (((-83) $) 36 T ELT)) (-2336 (($ $ (-479) (-479)) 84 T ELT)) (-2335 (($ $ (-479) (-479)) 85 T ELT)) (-2334 (($ $ (-479) (-479) (-479) (-479)) 90 T ELT)) (-2339 (($ $) 71 T ELT)) (-3107 (((-83) $) 15 T ELT)) (-2333 (($ $ (-479) (-479) $) 91 T ELT)) (-3770 ((|#2| $ (-479) (-479) |#2|) NIL T ELT) (($ $ (-579 (-479)) (-579 (-479)) $) 89 T ELT)) (-3315 (($ (-688) |#2|) 55 T ELT)) (-3108 (($ (-579 (-579 |#2|))) 51 T ELT) (($ (-688) (-688) (-1 |#2| (-479) (-479))) 53 T ELT)) (-3576 (((-579 (-579 |#2|)) $) 80 T ELT)) (-2338 (($ $ $) 72 T ELT)) (-3448 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3782 ((|#2| $ (-479) (-479)) NIL T ELT) ((|#2| $ (-479) (-479) |#2|) NIL T ELT) (($ $ (-579 (-479)) (-579 (-479))) 88 T ELT)) (-3314 (($ (-579 |#2|)) 56 T ELT) (($ (-579 $)) 58 T ELT)) (-3106 (((-83) $) 28 T ELT)) (-3928 (($ |#4|) 63 T ELT) (((-766) $) NIL T ELT)) (-3104 (((-83) $) 38 T ELT)) (-3931 (($ $ |#2|) 124 T ELT)) (-3819 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3821 (($ $ $) 93 T ELT)) (** (($ $ (-688)) 111 T ELT) (($ $ (-479)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-479) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3928 ((-766) |#1|)) (-15 ** (|#1| |#1| (-479))) (-15 -3931 (|#1| |#1| |#2|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-688))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-479) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1|)) (-15 -3819 (|#1| |#1| |#1|)) (-15 -3821 (|#1| |#1| |#1|)) (-15 -2333 (|#1| |#1| (-479) (-479) |#1|)) (-15 -2334 (|#1| |#1| (-479) (-479) (-479) (-479))) (-15 -2335 (|#1| |#1| (-479) (-479))) (-15 -2336 (|#1| |#1| (-479) (-479))) (-15 -3770 (|#1| |#1| (-579 (-479)) (-579 (-479)) |#1|)) (-15 -3782 (|#1| |#1| (-579 (-479)) (-579 (-479)))) (-15 -3576 ((-579 (-579 |#2|)) |#1|)) (-15 -2337 (|#1| |#1| |#1|)) (-15 -2338 (|#1| |#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -3396 (|#1| |#3|)) (-15 -3928 (|#1| |#4|)) (-15 -3314 (|#1| (-579 |#1|))) (-15 -3314 (|#1| (-579 |#2|))) (-15 -3315 (|#1| (-688) |#2|)) (-15 -3108 (|#1| (-688) (-688) (-1 |#2| (-479) (-479)))) (-15 -3108 (|#1| (-579 (-579 |#2|)))) (-15 -3820 (|#1| (-688) (-688))) (-15 -3104 ((-83) |#1|)) (-15 -3105 ((-83) |#1|)) (-15 -3106 ((-83) |#1|)) (-15 -3107 ((-83) |#1|)) (-15 -3770 (|#2| |#1| (-479) (-479) |#2|)) (-15 -3782 (|#2| |#1| (-479) (-479) |#2|)) (-15 -3782 (|#2| |#1| (-479) (-479)))) (-623 |#2| |#3| |#4|) (-955) (-318 |#2|) (-318 |#2|)) (T -622)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3820 (($ (-688) (-688)) 103 T ELT)) (-2337 (($ $ $) 92 T ELT)) (-3396 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3105 (((-83) $) 105 T ELT)) (-2336 (($ $ (-479) (-479)) 88 T ELT)) (-2335 (($ $ (-479) (-479)) 87 T ELT)) (-2334 (($ $ (-479) (-479) (-479) (-479)) 86 T ELT)) (-2339 (($ $) 94 T ELT)) (-3107 (((-83) $) 107 T ELT)) (-2333 (($ $ (-479) (-479) $) 85 T ELT)) (-3770 ((|#1| $ (-479) (-479) |#1|) 48 T ELT) (($ $ (-579 (-479)) (-579 (-479)) $) 89 T ELT)) (-1246 (($ $ (-479) |#2|) 46 T ELT)) (-1245 (($ $ (-479) |#3|) 45 T ELT)) (-3315 (($ (-688) |#1|) 100 T ELT)) (-3706 (($) 7 T CONST)) (-3094 (($ $) 72 (|has| |#1| (-254)) ELT)) (-3096 ((|#2| $ (-479)) 50 T ELT)) (-3093 (((-688) $) 71 (|has| |#1| (-490)) ELT)) (-1564 ((|#1| $ (-479) (-479) |#1|) 47 T ELT)) (-3097 ((|#1| $ (-479) (-479)) 52 T ELT)) (-2874 (((-579 |#1|) $) 30 T ELT)) (-3092 (((-688) $) 70 (|has| |#1| (-490)) ELT)) (-3091 (((-579 |#3|) $) 69 (|has| |#1| (-490)) ELT)) (-3099 (((-688) $) 55 T ELT)) (-3596 (($ (-688) (-688) |#1|) 61 T ELT)) (-3098 (((-688) $) 54 T ELT)) (-3309 ((|#1| $) 67 (|has| |#1| (-6 (-3979 #1="*"))) ELT)) (-3103 (((-479) $) 59 T ELT)) (-3101 (((-479) $) 57 T ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3102 (((-479) $) 58 T ELT)) (-3100 (((-479) $) 56 T ELT)) (-3108 (($ (-579 (-579 |#1|))) 102 T ELT) (($ (-688) (-688) (-1 |#1| (-479) (-479))) 101 T ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3576 (((-579 (-579 |#1|)) $) 91 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3572 (((-3 $ "failed") $) 66 (|has| |#1| (-308)) ELT)) (-2338 (($ $ $) 93 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-2186 (($ $ |#1|) 60 T ELT)) (-3448 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-490)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ (-479) (-479)) 53 T ELT) ((|#1| $ (-479) (-479) |#1|) 51 T ELT) (($ $ (-579 (-479)) (-579 (-479))) 90 T ELT)) (-3314 (($ (-579 |#1|)) 99 T ELT) (($ (-579 $)) 98 T ELT)) (-3106 (((-83) $) 106 T ELT)) (-3310 ((|#1| $) 68 (|has| |#1| (-6 (-3979 #1#))) ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3095 ((|#3| $ (-479)) 49 T ELT)) (-3928 (($ |#3|) 97 T ELT) (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3104 (((-83) $) 104 T ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3931 (($ $ |#1|) 73 (|has| |#1| (-308)) ELT)) (-3819 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-3821 (($ $ $) 84 T ELT)) (** (($ $ (-688)) 75 T ELT) (($ $ (-479)) 65 (|has| |#1| (-308)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-479) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-623 |#1| |#2| |#3|) (-111) (-955) (-318 |t#1|) (-318 |t#1|)) (T -623)) +((-3107 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-83)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-83)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-83)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-83)))) (-3820 (*1 *1 *2 *2) (-12 (-5 *2 (-688)) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3108 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3108 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-688)) (-5 *3 (-1 *4 (-479) (-479))) (-4 *4 (-955)) (-4 *1 (-623 *4 *5 *6)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)))) (-3315 (*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3928 (*1 *1 *2) (-12 (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *2)) (-4 *4 (-318 *3)) (-4 *2 (-318 *3)))) (-3396 (*1 *1 *2) (-12 (-4 *3 (-955)) (-4 *1 (-623 *3 *2 *4)) (-4 *2 (-318 *3)) (-4 *4 (-318 *3)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (-2339 (*1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (-2338 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (-2337 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-579 (-579 *3))))) (-3782 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-579 (-479))) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3770 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-579 (-479))) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-2336 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-2335 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-2334 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-2333 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3821 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (-3819 (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (-3819 (*1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-623 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *2 (-318 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-623 *3 *2 *4)) (-4 *3 (-955)) (-4 *2 (-318 *3)) (-4 *4 (-318 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)) (-4 *2 (-490)))) (-3931 (*1 *1 *1 *2) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)) (-4 *2 (-308)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)) (-4 *2 (-254)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-4 *3 (-490)) (-5 *2 (-688)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-4 *3 (-490)) (-5 *2 (-688)))) (-3091 (*1 *2 *1) (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-4 *3 (-490)) (-5 *2 (-579 *5)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)) (|has| *2 (-6 (-3979 #1="*"))) (-4 *2 (-955)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)) (|has| *2 (-6 (-3979 #1#))) (-4 *2 (-955)))) (-3572 (*1 *1 *1) (|partial| -12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)) (-4 *2 (-308)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-4 *3 (-308))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -3978) (-6 -3977) (-15 -3107 ((-83) $)) (-15 -3106 ((-83) $)) (-15 -3105 ((-83) $)) (-15 -3104 ((-83) $)) (-15 -3820 ($ (-688) (-688))) (-15 -3108 ($ (-579 (-579 |t#1|)))) (-15 -3108 ($ (-688) (-688) (-1 |t#1| (-479) (-479)))) (-15 -3315 ($ (-688) |t#1|)) (-15 -3314 ($ (-579 |t#1|))) (-15 -3314 ($ (-579 $))) (-15 -3928 ($ |t#3|)) (-15 -3396 ($ |t#2|)) (-15 -3396 ($ $)) (-15 -2339 ($ $)) (-15 -2338 ($ $ $)) (-15 -2337 ($ $ $)) (-15 -3576 ((-579 (-579 |t#1|)) $)) (-15 -3782 ($ $ (-579 (-479)) (-579 (-479)))) (-15 -3770 ($ $ (-579 (-479)) (-579 (-479)) $)) (-15 -2336 ($ $ (-479) (-479))) (-15 -2335 ($ $ (-479) (-479))) (-15 -2334 ($ $ (-479) (-479) (-479) (-479))) (-15 -2333 ($ $ (-479) (-479) $)) (-15 -3821 ($ $ $)) (-15 -3819 ($ $ $)) (-15 -3819 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-479) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-688))) (IF (|has| |t#1| (-490)) (-15 -3448 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -3931 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-254)) (-15 -3094 ($ $)) |%noBranch|) (IF (|has| |t#1| (-490)) (PROGN (-15 -3093 ((-688) $)) (-15 -3092 ((-688) $)) (-15 -3091 ((-579 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3979 "*"))) (PROGN (-15 -3310 (|t#1| $)) (-15 -3309 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -3572 ((-3 $ "failed") $)) (-15 ** ($ $ (-479)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-57 |#1| |#2| |#3|) . T) ((-1119) . T)) +((-3824 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3940 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-624 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3940 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3940 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3824 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-955) (-318 |#1|) (-318 |#1|) (-623 |#1| |#2| |#3|) (-955) (-318 |#5|) (-318 |#5|) (-623 |#5| |#6| |#7|)) (T -624)) +((-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-955)) (-4 *2 (-955)) (-4 *6 (-318 *5)) (-4 *7 (-318 *5)) (-4 *8 (-318 *2)) (-4 *9 (-318 *2)) (-5 *1 (-624 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-623 *5 *6 *7)) (-4 *10 (-623 *2 *8 *9)))) (-3940 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-955)) (-4 *8 (-955)) (-4 *6 (-318 *5)) (-4 *7 (-318 *5)) (-4 *2 (-623 *8 *9 *10)) (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-623 *5 *6 *7)) (-4 *9 (-318 *8)) (-4 *10 (-318 *8)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-955)) (-4 *8 (-955)) (-4 *6 (-318 *5)) (-4 *7 (-318 *5)) (-4 *2 (-623 *8 *9 *10)) (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-623 *5 *6 *7)) (-4 *9 (-318 *8)) (-4 *10 (-318 *8))))) +((-3094 ((|#4| |#4|) 90 (|has| |#1| (-254)) ELT)) (-3093 (((-688) |#4|) 92 (|has| |#1| (-490)) ELT)) (-3092 (((-688) |#4|) 94 (|has| |#1| (-490)) ELT)) (-3091 (((-579 |#3|) |#4|) 101 (|has| |#1| (-490)) ELT)) (-2367 (((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|) 124 (|has| |#1| (-254)) ELT)) (-3309 ((|#1| |#4|) 52 T ELT)) (-2344 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-490)) ELT)) (-3572 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-308)) ELT)) (-2343 ((|#4| |#4|) 76 (|has| |#1| (-490)) ELT)) (-2341 ((|#4| |#4| |#1| (-479) (-479)) 60 T ELT)) (-2340 ((|#4| |#4| (-479) (-479)) 55 T ELT)) (-2342 ((|#4| |#4| |#1| (-479) (-479)) 65 T ELT)) (-3310 ((|#1| |#4|) 96 T ELT)) (-2505 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-490)) ELT))) +(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3310 (|#1| |#4|)) (-15 -3309 (|#1| |#4|)) (-15 -2340 (|#4| |#4| (-479) (-479))) (-15 -2341 (|#4| |#4| |#1| (-479) (-479))) (-15 -2342 (|#4| |#4| |#1| (-479) (-479))) (IF (|has| |#1| (-490)) (PROGN (-15 -3093 ((-688) |#4|)) (-15 -3092 ((-688) |#4|)) (-15 -3091 ((-579 |#3|) |#4|)) (-15 -2343 (|#4| |#4|)) (-15 -2344 ((-3 |#4| #1="failed") |#4|)) (-15 -2505 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-254)) (PROGN (-15 -3094 (|#4| |#4|)) (-15 -2367 ((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3572 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-144) (-318 |#1|) (-318 |#1|) (-623 |#1| |#2| |#3|)) (T -625)) +((-3572 (*1 *2 *2) (|partial| -12 (-4 *3 (-308)) (-4 *3 (-144)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-2367 (*1 *2 *3 *3) (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-625 *3 *4 *5 *6)) (-4 *6 (-623 *3 *4 *5)))) (-3094 (*1 *2 *2) (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-2505 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-2344 (*1 *2 *2) (|partial| -12 (-4 *3 (-490)) (-4 *3 (-144)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-490)) (-4 *3 (-144)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-3091 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-579 *6)) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3092 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-688)) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-688)) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-2342 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-479)) (-4 *3 (-144)) (-4 *5 (-318 *3)) (-4 *6 (-318 *3)) (-5 *1 (-625 *3 *5 *6 *2)) (-4 *2 (-623 *3 *5 *6)))) (-2341 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-479)) (-4 *3 (-144)) (-4 *5 (-318 *3)) (-4 *6 (-318 *3)) (-5 *1 (-625 *3 *5 *6 *2)) (-4 *2 (-623 *3 *5 *6)))) (-2340 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-479)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *1 (-625 *4 *5 *6 *2)) (-4 *2 (-623 *4 *5 *6)))) (-3309 (*1 *2 *3) (-12 (-4 *4 (-318 *2)) (-4 *5 (-318 *2)) (-4 *2 (-144)) (-5 *1 (-625 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) (-3310 (*1 *2 *3) (-12 (-4 *4 (-318 *2)) (-4 *5 (-318 *2)) (-4 *2 (-144)) (-5 *1 (-625 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3820 (($ (-688) (-688)) 63 T ELT)) (-2337 (($ $ $) NIL T ELT)) (-3396 (($ (-1169 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3105 (((-83) $) NIL T ELT)) (-2336 (($ $ (-479) (-479)) 22 T ELT)) (-2335 (($ $ (-479) (-479)) NIL T ELT)) (-2334 (($ $ (-479) (-479) (-479) (-479)) NIL T ELT)) (-2339 (($ $) NIL T ELT)) (-3107 (((-83) $) NIL T ELT)) (-2333 (($ $ (-479) (-479) $) NIL T ELT)) (-3770 ((|#1| $ (-479) (-479) |#1|) NIL T ELT) (($ $ (-579 (-479)) (-579 (-479)) $) NIL T ELT)) (-1246 (($ $ (-479) (-1169 |#1|)) NIL T ELT)) (-1245 (($ $ (-479) (-1169 |#1|)) NIL T ELT)) (-3315 (($ (-688) |#1|) 37 T ELT)) (-3706 (($) NIL T CONST)) (-3094 (($ $) 46 (|has| |#1| (-254)) ELT)) (-3096 (((-1169 |#1|) $ (-479)) NIL T ELT)) (-3093 (((-688) $) 48 (|has| |#1| (-490)) ELT)) (-1564 ((|#1| $ (-479) (-479) |#1|) 68 T ELT)) (-3097 ((|#1| $ (-479) (-479)) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL T ELT)) (-3092 (((-688) $) 50 (|has| |#1| (-490)) ELT)) (-3091 (((-579 (-1169 |#1|)) $) 53 (|has| |#1| (-490)) ELT)) (-3099 (((-688) $) 32 T ELT)) (-3596 (($ (-688) (-688) |#1|) 28 T ELT)) (-3098 (((-688) $) 33 T ELT)) (-3309 ((|#1| $) 44 (|has| |#1| (-6 (-3979 #1="*"))) ELT)) (-3103 (((-479) $) 10 T ELT)) (-3101 (((-479) $) 11 T ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3102 (((-479) $) 14 T ELT)) (-3100 (((-479) $) 64 T ELT)) (-3108 (($ (-579 (-579 |#1|))) NIL T ELT) (($ (-688) (-688) (-1 |#1| (-479) (-479))) NIL T ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3576 (((-579 (-579 |#1|)) $) 75 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3572 (((-3 $ #2="failed") $) 57 (|has| |#1| (-308)) ELT)) (-2338 (($ $ $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-2186 (($ $ |#1|) NIL T ELT)) (-3448 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-490)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) (-479)) NIL T ELT) ((|#1| $ (-479) (-479) |#1|) NIL T ELT) (($ $ (-579 (-479)) (-579 (-479))) NIL T ELT)) (-3314 (($ (-579 |#1|)) NIL T ELT) (($ (-579 $)) NIL T ELT) (($ (-1169 |#1|)) 69 T ELT)) (-3106 (((-83) $) NIL T ELT)) (-3310 ((|#1| $) 42 (|has| |#1| (-6 (-3979 #1#))) ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) 79 (|has| |#1| (-549 (-468))) ELT)) (-3095 (((-1169 |#1|) $ (-479)) NIL T ELT)) (-3928 (($ (-1169 |#1|)) NIL T ELT) (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3104 (((-83) $) NIL T ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-688)) 38 T ELT) (($ $ (-479)) 61 (|has| |#1| (-308)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-479) $) NIL T ELT) (((-1169 |#1|) $ (-1169 |#1|)) NIL T ELT) (((-1169 |#1|) (-1169 |#1|) $) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-626 |#1|) (-13 (-623 |#1| (-1169 |#1|) (-1169 |#1|)) (-10 -8 (-15 -3314 ($ (-1169 |#1|))) (IF (|has| |#1| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3572 ((-3 $ "failed") $)) |%noBranch|))) (-955)) (T -626)) +((-3572 (*1 *1 *1) (|partial| -12 (-5 *1 (-626 *2)) (-4 *2 (-308)) (-4 *2 (-955)))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-955)) (-5 *1 (-626 *3))))) +((-2350 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)) 37 T ELT)) (-2349 (((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|) 32 T ELT)) (-2351 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-688)) 43 T ELT)) (-2346 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)) 25 T ELT)) (-2347 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|)) 29 T ELT) (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 27 T ELT)) (-2348 (((-626 |#1|) (-626 |#1|) |#1| (-626 |#1|)) 31 T ELT)) (-2345 (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 23 T ELT)) (** (((-626 |#1|) (-626 |#1|) (-688)) 46 T ELT))) +(((-627 |#1|) (-10 -7 (-15 -2345 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -2346 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -2347 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -2347 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -2348 ((-626 |#1|) (-626 |#1|) |#1| (-626 |#1|))) (-15 -2349 ((-626 |#1|) (-626 |#1|) (-626 |#1|) |#1|)) (-15 -2350 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -2351 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-626 |#1|) (-688))) (-15 ** ((-626 |#1|) (-626 |#1|) (-688)))) (-955)) (T -627)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-688)) (-4 *4 (-955)) (-5 *1 (-627 *4)))) (-2351 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-688)) (-4 *4 (-955)) (-5 *1 (-627 *4)))) (-2350 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3)))) (-2349 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3)))) (-2348 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3)))) (-2347 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3)))) (-2347 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3)))) (-2346 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3)))) (-2345 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3))))) +((-3141 (((-3 |#1| "failed") $) 18 T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-2352 (($) 7 T CONST)) (-2353 (($ |#1|) 8 T ELT)) (-3928 (($ |#1|) 16 T ELT) (((-766) $) 23 T ELT)) (-3548 (((-83) $ (|[\|\|]| |#1|)) 14 T ELT) (((-83) $ (|[\|\|]| -2352)) 11 T ELT)) (-3554 ((|#1| $) 15 T ELT))) +(((-628 |#1|) (-13 (-1165) (-944 |#1|) (-548 (-766)) (-10 -8 (-15 -2353 ($ |#1|)) (-15 -3548 ((-83) $ (|[\|\|]| |#1|))) (-15 -3548 ((-83) $ (|[\|\|]| -2352))) (-15 -3554 (|#1| $)) (-15 -2352 ($) -3934))) (-548 (-766))) (T -628)) +((-2353 (*1 *1 *2) (-12 (-5 *1 (-628 *2)) (-4 *2 (-548 (-766))))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-548 (-766))) (-5 *2 (-83)) (-5 *1 (-628 *4)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2352)) (-5 *2 (-83)) (-5 *1 (-628 *4)) (-4 *4 (-548 (-766))))) (-3554 (*1 *2 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-548 (-766))))) (-2352 (*1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-548 (-766)))))) +((-3723 (((-2 (|:| |num| (-626 |#1|)) (|:| |den| |#1|)) (-626 |#2|)) 20 T ELT)) (-3721 ((|#1| (-626 |#2|)) 9 T ELT)) (-3722 (((-626 |#1|) (-626 |#2|)) 18 T ELT))) +(((-629 |#1| |#2|) (-10 -7 (-15 -3721 (|#1| (-626 |#2|))) (-15 -3722 ((-626 |#1|) (-626 |#2|))) (-15 -3723 ((-2 (|:| |num| (-626 |#1|)) (|:| |den| |#1|)) (-626 |#2|)))) (-490) (-898 |#1|)) (T -629)) +((-3723 (*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-898 *4)) (-4 *4 (-490)) (-5 *2 (-2 (|:| |num| (-626 *4)) (|:| |den| *4))) (-5 *1 (-629 *4 *5)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-626 *5)) (-4 *5 (-898 *4)) (-4 *4 (-490)) (-5 *2 (-626 *4)) (-5 *1 (-629 *4 *5)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-626 *4)) (-4 *4 (-898 *2)) (-4 *2 (-490)) (-5 *1 (-629 *2 *4))))) +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-1558 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-2355 (($ $) 66 T ELT)) (-1341 (($ $) 62 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ |#1| $) 51 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3388 (($ |#1| $) 61 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT) (($ |#1| $ (-688)) 67 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-2354 (((-579 (-2 (|:| |entry| |#1|) (|:| -1934 (-688)))) $) 65 T ELT)) (-1454 (($) 53 T ELT) (($ (-579 |#1|)) 52 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 63 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 54 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-630 |#1|) (-111) (-1006)) (T -630)) +((-3591 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-630 *2)) (-4 *2 (-1006)))) (-2355 (*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1006)))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-630 *3)) (-4 *3 (-1006)) (-5 *2 (-579 (-2 (|:| |entry| *3) (|:| -1934 (-688)))))))) +(-13 (-190 |t#1|) (-10 -8 (-15 -3591 ($ |t#1| $ (-688))) (-15 -2355 ($ $)) (-15 -2354 ((-579 (-2 (|:| |entry| |t#1|) (|:| -1934 (-688)))) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2358 (((-579 |#1|) (-579 (-2 (|:| -3714 |#1|) (|:| -3930 (-479)))) (-479)) 66 T ELT)) (-2356 ((|#1| |#1| (-479)) 63 T ELT)) (-3128 ((|#1| |#1| |#1| (-479)) 46 T ELT)) (-3714 (((-579 |#1|) |#1| (-479)) 49 T ELT)) (-2359 ((|#1| |#1| (-479) |#1| (-479)) 40 T ELT)) (-2357 (((-579 (-2 (|:| -3714 |#1|) (|:| -3930 (-479)))) |#1| (-479)) 62 T ELT))) +(((-631 |#1|) (-10 -7 (-15 -3128 (|#1| |#1| |#1| (-479))) (-15 -2356 (|#1| |#1| (-479))) (-15 -3714 ((-579 |#1|) |#1| (-479))) (-15 -2357 ((-579 (-2 (|:| -3714 |#1|) (|:| -3930 (-479)))) |#1| (-479))) (-15 -2358 ((-579 |#1|) (-579 (-2 (|:| -3714 |#1|) (|:| -3930 (-479)))) (-479))) (-15 -2359 (|#1| |#1| (-479) |#1| (-479)))) (-1145 (-479))) (T -631)) +((-2359 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-631 *2)) (-4 *2 (-1145 *3)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-2 (|:| -3714 *5) (|:| -3930 (-479))))) (-5 *4 (-479)) (-4 *5 (-1145 *4)) (-5 *2 (-579 *5)) (-5 *1 (-631 *5)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *4 (-479)) (-5 *2 (-579 (-2 (|:| -3714 *3) (|:| -3930 *4)))) (-5 *1 (-631 *3)) (-4 *3 (-1145 *4)))) (-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-479)) (-5 *2 (-579 *3)) (-5 *1 (-631 *3)) (-4 *3 (-1145 *4)))) (-2356 (*1 *2 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-631 *2)) (-4 *2 (-1145 *3)))) (-3128 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-631 *2)) (-4 *2 (-1145 *3))))) +((-2363 (((-1 (-848 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177) (-177))) 17 T ELT)) (-2360 (((-1037 (-177)) (-1037 (-177)) (-1 (-848 (-177)) (-177) (-177)) (-994 (-177)) (-994 (-177)) (-579 (-218))) 53 T ELT) (((-1037 (-177)) (-1 (-848 (-177)) (-177) (-177)) (-994 (-177)) (-994 (-177)) (-579 (-218))) 55 T ELT) (((-1037 (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined") (-994 (-177)) (-994 (-177)) (-579 (-218))) 57 T ELT)) (-2362 (((-1037 (-177)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-579 (-218))) NIL T ELT)) (-2361 (((-1037 (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1#) (-994 (-177)) (-994 (-177)) (-579 (-218))) 58 T ELT))) +(((-632) (-10 -7 (-15 -2360 ((-1037 (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined") (-994 (-177)) (-994 (-177)) (-579 (-218)))) (-15 -2360 ((-1037 (-177)) (-1 (-848 (-177)) (-177) (-177)) (-994 (-177)) (-994 (-177)) (-579 (-218)))) (-15 -2360 ((-1037 (-177)) (-1037 (-177)) (-1 (-848 (-177)) (-177) (-177)) (-994 (-177)) (-994 (-177)) (-579 (-218)))) (-15 -2361 ((-1037 (-177)) (-1 (-177) (-177) (-177)) (-3 (-1 (-177) (-177) (-177) (-177)) #1#) (-994 (-177)) (-994 (-177)) (-579 (-218)))) (-15 -2362 ((-1037 (-177)) (-261 (-479)) (-261 (-479)) (-261 (-479)) (-1 (-177) (-177)) (-994 (-177)) (-579 (-218)))) (-15 -2363 ((-1 (-848 (-177)) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177)) (-1 (-177) (-177) (-177) (-177)))))) (T -632)) +((-2363 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-1 (-177) (-177) (-177) (-177))) (-5 *2 (-1 (-848 (-177)) (-177) (-177))) (-5 *1 (-632)))) (-2362 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) (-5 *6 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-632)))) (-2361 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) #1="undefined")) (-5 *5 (-994 (-177))) (-5 *6 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-632)))) (-2360 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1037 (-177))) (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-177))) (-5 *5 (-579 (-218))) (-5 *1 (-632)))) (-2360 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-177))) (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-632)))) (-2360 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) #1#)) (-5 *5 (-994 (-177))) (-5 *6 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-632))))) +((-3714 (((-342 (-1075 |#4|)) (-1075 |#4|)) 87 T ELT) (((-342 |#4|) |#4|) 270 T ELT))) +(((-633 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3714 ((-342 |#4|) |#4|)) (-15 -3714 ((-342 (-1075 |#4|)) (-1075 |#4|)))) (-750) (-711) (-295) (-855 |#3| |#2| |#1|)) (T -633)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-295)) (-4 *7 (-855 *6 *5 *4)) (-5 *2 (-342 (-1075 *7))) (-5 *1 (-633 *4 *5 *6 *7)) (-5 *3 (-1075 *7)))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-295)) (-5 *2 (-342 *3)) (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-855 *6 *5 *4))))) +((-2366 (((-626 |#1|) (-626 |#1|) |#1| |#1|) 85 T ELT)) (-3094 (((-626 |#1|) (-626 |#1|) |#1|) 66 T ELT)) (-2365 (((-626 |#1|) (-626 |#1|) |#1|) 86 T ELT)) (-2364 (((-626 |#1|) (-626 |#1|)) 67 T ELT)) (-2367 (((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|) 84 T ELT))) +(((-634 |#1|) (-10 -7 (-15 -2364 ((-626 |#1|) (-626 |#1|))) (-15 -3094 ((-626 |#1|) (-626 |#1|) |#1|)) (-15 -2365 ((-626 |#1|) (-626 |#1|) |#1|)) (-15 -2366 ((-626 |#1|) (-626 |#1|) |#1| |#1|)) (-15 -2367 ((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|))) (-254)) (T -634)) +((-2367 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-634 *3)) (-4 *3 (-254)))) (-2366 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-254)) (-5 *1 (-634 *3)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-254)) (-5 *1 (-634 *3)))) (-3094 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-254)) (-5 *1 (-634 *3)))) (-2364 (*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-254)) (-5 *1 (-634 *3))))) +((-2373 (((-1 |#4| |#2| |#3|) |#1| (-1080) (-1080)) 19 T ELT)) (-2368 (((-1 |#4| |#2| |#3|) (-1080)) 12 T ELT))) +(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2368 ((-1 |#4| |#2| |#3|) (-1080))) (-15 -2373 ((-1 |#4| |#2| |#3|) |#1| (-1080) (-1080)))) (-549 (-468)) (-1119) (-1119) (-1119)) (T -635)) +((-2373 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1080)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-549 (-468))) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)))) (-2368 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-549 (-468))) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119))))) +((-2369 (((-1 (-177) (-177) (-177)) |#1| (-1080) (-1080)) 43 T ELT) (((-1 (-177) (-177)) |#1| (-1080)) 48 T ELT))) +(((-636 |#1|) (-10 -7 (-15 -2369 ((-1 (-177) (-177)) |#1| (-1080))) (-15 -2369 ((-1 (-177) (-177) (-177)) |#1| (-1080) (-1080)))) (-549 (-468))) (T -636)) +((-2369 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1080)) (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-636 *3)) (-4 *3 (-549 (-468))))) (-2369 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-5 *2 (-1 (-177) (-177))) (-5 *1 (-636 *3)) (-4 *3 (-549 (-468)))))) +((-2370 (((-1080) |#1| (-1080) (-579 (-1080))) 10 T ELT) (((-1080) |#1| (-1080) (-1080) (-1080)) 13 T ELT) (((-1080) |#1| (-1080) (-1080)) 12 T ELT) (((-1080) |#1| (-1080)) 11 T ELT))) +(((-637 |#1|) (-10 -7 (-15 -2370 ((-1080) |#1| (-1080))) (-15 -2370 ((-1080) |#1| (-1080) (-1080))) (-15 -2370 ((-1080) |#1| (-1080) (-1080) (-1080))) (-15 -2370 ((-1080) |#1| (-1080) (-579 (-1080))))) (-549 (-468))) (T -637)) +((-2370 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-579 (-1080))) (-5 *2 (-1080)) (-5 *1 (-637 *3)) (-4 *3 (-549 (-468))))) (-2370 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-637 *3)) (-4 *3 (-549 (-468))))) (-2370 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-637 *3)) (-4 *3 (-549 (-468))))) (-2370 (*1 *2 *3 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-637 *3)) (-4 *3 (-549 (-468)))))) +((-2371 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-638 |#1| |#2|) (-10 -7 (-15 -2371 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1119) (-1119)) (T -638)) +((-2371 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-638 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))))) +((-2372 (((-1 |#3| |#2|) (-1080)) 11 T ELT)) (-2373 (((-1 |#3| |#2|) |#1| (-1080)) 21 T ELT))) +(((-639 |#1| |#2| |#3|) (-10 -7 (-15 -2372 ((-1 |#3| |#2|) (-1080))) (-15 -2373 ((-1 |#3| |#2|) |#1| (-1080)))) (-549 (-468)) (-1119) (-1119)) (T -639)) +((-2373 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *3 *5 *6)) (-4 *3 (-549 (-468))) (-4 *5 (-1119)) (-4 *6 (-1119)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *4 *5 *6)) (-4 *4 (-549 (-468))) (-4 *5 (-1119)) (-4 *6 (-1119))))) +((-2376 (((-3 (-579 (-1075 |#4|)) #1="failed") (-1075 |#4|) (-579 |#2|) (-579 (-1075 |#4|)) (-579 |#3|) (-579 |#4|) (-579 (-579 (-2 (|:| -3063 (-688)) (|:| |pcoef| |#4|)))) (-579 (-688)) (-1169 (-579 (-1075 |#3|))) |#3|) 92 T ELT)) (-2375 (((-3 (-579 (-1075 |#4|)) #1#) (-1075 |#4|) (-579 |#2|) (-579 (-1075 |#3|)) (-579 |#3|) (-579 |#4|) (-579 (-688)) |#3|) 110 T ELT)) (-2374 (((-3 (-579 (-1075 |#4|)) #1#) (-1075 |#4|) (-579 |#2|) (-579 |#3|) (-579 (-688)) (-579 (-1075 |#4|)) (-1169 (-579 (-1075 |#3|))) |#3|) 48 T ELT))) +(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2374 ((-3 (-579 (-1075 |#4|)) #1="failed") (-1075 |#4|) (-579 |#2|) (-579 |#3|) (-579 (-688)) (-579 (-1075 |#4|)) (-1169 (-579 (-1075 |#3|))) |#3|)) (-15 -2375 ((-3 (-579 (-1075 |#4|)) #1#) (-1075 |#4|) (-579 |#2|) (-579 (-1075 |#3|)) (-579 |#3|) (-579 |#4|) (-579 (-688)) |#3|)) (-15 -2376 ((-3 (-579 (-1075 |#4|)) #1#) (-1075 |#4|) (-579 |#2|) (-579 (-1075 |#4|)) (-579 |#3|) (-579 |#4|) (-579 (-579 (-2 (|:| -3063 (-688)) (|:| |pcoef| |#4|)))) (-579 (-688)) (-1169 (-579 (-1075 |#3|))) |#3|))) (-711) (-750) (-254) (-855 |#3| |#1| |#2|)) (T -640)) +((-2376 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-579 (-1075 *13))) (-5 *3 (-1075 *13)) (-5 *4 (-579 *12)) (-5 *5 (-579 *10)) (-5 *6 (-579 *13)) (-5 *7 (-579 (-579 (-2 (|:| -3063 (-688)) (|:| |pcoef| *13))))) (-5 *8 (-579 (-688))) (-5 *9 (-1169 (-579 (-1075 *10)))) (-4 *12 (-750)) (-4 *10 (-254)) (-4 *13 (-855 *10 *11 *12)) (-4 *11 (-711)) (-5 *1 (-640 *11 *12 *10 *13)))) (-2375 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-579 *11)) (-5 *5 (-579 (-1075 *9))) (-5 *6 (-579 *9)) (-5 *7 (-579 *12)) (-5 *8 (-579 (-688))) (-4 *11 (-750)) (-4 *9 (-254)) (-4 *12 (-855 *9 *10 *11)) (-4 *10 (-711)) (-5 *2 (-579 (-1075 *12))) (-5 *1 (-640 *10 *11 *9 *12)) (-5 *3 (-1075 *12)))) (-2374 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-579 (-1075 *11))) (-5 *3 (-1075 *11)) (-5 *4 (-579 *10)) (-5 *5 (-579 *8)) (-5 *6 (-579 (-688))) (-5 *7 (-1169 (-579 (-1075 *8)))) (-4 *10 (-750)) (-4 *8 (-254)) (-4 *11 (-855 *8 *9 *10)) (-4 *9 (-711)) (-5 *1 (-640 *9 *10 *8 *11))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3941 (($ $) 53 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2878 (($ |#1| (-688)) 51 T ELT)) (-2805 (((-688) $) 55 T ELT)) (-3158 ((|#1| $) 54 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3930 (((-688) $) 56 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-144)) ELT)) (-3659 ((|#1| $ (-688)) 52 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) +(((-641 |#1|) (-111) (-955)) (T -641)) +((-3930 (*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-955)))) (-3941 (*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-955)))) (-3659 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-641 *2)) (-4 *2 (-955)))) (-2878 (*1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-641 *2)) (-4 *2 (-955))))) +(-13 (-955) (-80 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3930 ((-688) $)) (-15 -2805 ((-688) $)) (-15 -3158 (|t#1| $)) (-15 -3941 ($ $)) (-15 -3659 (|t#1| $ (-688))) (-15 -2878 ($ |t#1| (-688))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 |#1|) |has| |#1| (-144)) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 |#1|) |has| |#1| (-144)) ((-650 |#1|) |has| |#1| (-144)) ((-659) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3940 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-642 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3940 (|#6| (-1 |#4| |#1|) |#3|))) (-490) (-1145 |#1|) (-1145 (-344 |#2|)) (-490) (-1145 |#4|) (-1145 (-344 |#5|))) (T -642)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-490)) (-4 *7 (-490)) (-4 *6 (-1145 *5)) (-4 *2 (-1145 (-344 *8))) (-5 *1 (-642 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1145 (-344 *6))) (-4 *8 (-1145 *7))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2377 (((-1063) (-766)) 36 T ELT)) (-3599 (((-1175) (-1063)) 29 T ELT)) (-2379 (((-1063) (-766)) 26 T ELT)) (-2378 (((-1063) (-766)) 27 T ELT)) (-3928 (((-766) $) NIL T ELT) (((-1063) (-766)) 25 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-643) (-13 (-1006) (-10 -7 (-15 -3928 ((-1063) (-766))) (-15 -2379 ((-1063) (-766))) (-15 -2378 ((-1063) (-766))) (-15 -2377 ((-1063) (-766))) (-15 -3599 ((-1175) (-1063)))))) (T -643)) +((-3928 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1063)) (-5 *1 (-643)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1063)) (-5 *1 (-643)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1063)) (-5 *1 (-643)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1063)) (-5 *1 (-643)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-643))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2549 (($ $ $) NIL T ELT)) (-3824 (($ |#1| |#2|) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2599 ((|#2| $) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-2389 (((-3 $ #1#) $ $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT))) +(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-308) (-10 -8 (-15 -2599 (|#2| $)) (-15 -3928 (|#1| $)) (-15 -3824 ($ |#1| |#2|)) (-15 -2389 ((-3 $ #1="failed") $ $)))) (-144) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -644)) +((-2599 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3928 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3824 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2389 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 37 T ELT)) (-3749 (((-1169 |#1|) $ (-688)) NIL T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3747 (($ (-1075 |#1|)) NIL T ELT)) (-3068 (((-1075 $) $ (-987)) NIL T ELT) (((-1075 |#1|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-987))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3737 (($ $ $) NIL (|has| |#1| (-490)) ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3120 (((-688)) 55 (|has| |#1| (-314)) ELT)) (-3743 (($ $ (-688)) NIL T ELT)) (-3742 (($ $ (-688)) NIL T ELT)) (-2386 ((|#2| |#2|) 51 T ELT)) (-3733 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-386)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-987) #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-987) $) NIL T ELT)) (-3738 (($ $ $ (-987)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) NIL (|has| |#1| (-144)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) 72 T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3824 (($ |#2|) 49 T ELT)) (-3449 (((-3 $ #1#) $) 98 T ELT)) (-2979 (($) 59 (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3741 (($ $ $) NIL T ELT)) (-3735 (($ $ $) NIL (|has| |#1| (-490)) ELT)) (-3734 (((-2 (|:| -3936 |#1|) (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT) (($ $ (-987)) NIL (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-815)) ELT)) (-2382 (((-863 $)) 89 T ELT)) (-1612 (($ $ |#1| (-688) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-987) (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-987) (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-3754 (((-688) $ $) NIL (|has| |#1| (-490)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-1056)) ELT)) (-3069 (($ (-1075 |#1|) (-987)) NIL T ELT) (($ (-1075 $) (-987)) NIL T ELT)) (-3759 (($ $ (-688)) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-688)) 86 T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-987)) NIL T ELT) (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-2599 ((|#2|) 52 T ELT)) (-2805 (((-688) $) NIL T ELT) (((-688) $ (-987)) NIL T ELT) (((-579 (-688)) $ (-579 (-987))) NIL T ELT)) (-1613 (($ (-1 (-688) (-688)) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3748 (((-1075 |#1|) $) NIL T ELT)) (-3067 (((-3 (-987) #1#) $) NIL T ELT)) (-1997 (((-824) $) NIL (|has| |#1| (-314)) ELT)) (-3064 ((|#2| $) 48 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) 35 T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3744 (((-2 (|:| -1961 $) (|:| -2887 $)) $ (-688)) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-987)) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3794 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3428 (($) NIL (|has| |#1| (-1056)) CONST)) (-2387 (($ (-824)) NIL (|has| |#1| (-314)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-2380 (($ $) 88 (|has| |#1| (-295)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-815)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-987) |#1|) NIL T ELT) (($ $ (-579 (-987)) (-579 |#1|)) NIL T ELT) (($ $ (-987) $) NIL T ELT) (($ $ (-579 (-987)) (-579 $)) NIL T ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-344 $) (-344 $) (-344 $)) NIL (|has| |#1| (-490)) ELT) ((|#1| (-344 $) |#1|) NIL (|has| |#1| (-308)) ELT) (((-344 $) $ (-344 $)) NIL (|has| |#1| (-490)) ELT)) (-3746 (((-3 $ #1#) $ (-688)) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 99 (|has| |#1| (-308)) ELT)) (-3739 (($ $ (-987)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) NIL (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987))) NIL T ELT) (($ $ (-987)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-3930 (((-688) $) 39 T ELT) (((-688) $ (-987)) NIL T ELT) (((-579 (-688)) $ (-579 (-987))) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-987) (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-987) (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-987) (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT) (($ $ (-987)) NIL (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-2381 (((-863 $)) 43 T ELT)) (-3736 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT) (((-3 (-344 $) #1#) (-344 $) $) NIL (|has| |#1| (-490)) ELT)) (-3928 (((-766) $) 69 T ELT) (($ (-479)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-987)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-688)) 71 T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) 26 T CONST)) (-2385 (((-1169 |#1|) $) 84 T ELT)) (-2384 (($ (-1169 |#1|)) 58 T ELT)) (-2651 (($) 9 T CONST)) (-2654 (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987))) NIL T ELT) (($ $ (-987)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-2383 (((-1169 |#1|) $) NIL T ELT)) (-3041 (((-83) $ $) 77 T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 40 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 93 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT))) +(((-645 |#1| |#2|) (-13 (-1145 |#1|) (-551 |#2|) (-10 -8 (-15 -2386 (|#2| |#2|)) (-15 -2599 (|#2|)) (-15 -3824 ($ |#2|)) (-15 -3064 (|#2| $)) (-15 -2385 ((-1169 |#1|) $)) (-15 -2384 ($ (-1169 |#1|))) (-15 -2383 ((-1169 |#1|) $)) (-15 -2382 ((-863 $))) (-15 -2381 ((-863 $))) (IF (|has| |#1| (-295)) (-15 -2380 ($ $)) |%noBranch|) (IF (|has| |#1| (-314)) (-6 (-314)) |%noBranch|))) (-955) (-1145 |#1|)) (T -645)) +((-2386 (*1 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1145 *3)))) (-2599 (*1 *2) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-955)))) (-3824 (*1 *1 *2) (-12 (-4 *3 (-955)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1145 *3)))) (-3064 (*1 *2 *1) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-955)))) (-2385 (*1 *2 *1) (-12 (-4 *3 (-955)) (-5 *2 (-1169 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1145 *3)))) (-2384 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-955)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1145 *3)))) (-2383 (*1 *2 *1) (-12 (-4 *3 (-955)) (-5 *2 (-1169 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1145 *3)))) (-2382 (*1 *2) (-12 (-4 *3 (-955)) (-5 *2 (-863 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1145 *3)))) (-2381 (*1 *2) (-12 (-4 *3 (-955)) (-5 *2 (-863 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1145 *3)))) (-2380 (*1 *1 *1) (-12 (-4 *2 (-295)) (-4 *2 (-955)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1145 *2))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 ((|#1| $) 13 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2388 ((|#2| $) 12 T ELT)) (-3512 (($ |#1| |#2|) 16 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-2 (|:| -2387 |#1|) (|:| -2388 |#2|))) 15 T ELT) (((-2 (|:| -2387 |#1|) (|:| -2388 |#2|)) $) 14 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 11 T ELT))) +(((-646 |#1| |#2| |#3|) (-13 (-750) (-424 (-2 (|:| -2387 |#1|) (|:| -2388 |#2|))) (-10 -8 (-15 -2388 (|#2| $)) (-15 -2387 (|#1| $)) (-15 -3512 ($ |#1| |#2|)))) (-750) (-1006) (-1 (-83) (-2 (|:| -2387 |#1|) (|:| -2388 |#2|)) (-2 (|:| -2387 |#1|) (|:| -2388 |#2|)))) (T -646)) +((-2388 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-750)) (-14 *4 (-1 (-83) (-2 (|:| -2387 *3) (|:| -2388 *2)) (-2 (|:| -2387 *3) (|:| -2388 *2)))))) (-2387 (*1 *2 *1) (-12 (-4 *2 (-750)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1006)) (-14 *4 (-1 (-83) (-2 (|:| -2387 *2) (|:| -2388 *3)) (-2 (|:| -2387 *2) (|:| -2388 *3)))))) (-3512 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-750)) (-4 *3 (-1006)) (-14 *4 (-1 (-83) (-2 (|:| -2387 *2) (|:| -2388 *3)) (-2 (|:| -2387 *2) (|:| -2388 *3))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 66 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-84) #1#) $) 107 T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-84) $) 39 T ELT)) (-3449 (((-3 $ #1#) $) 102 T ELT)) (-2501 ((|#2| (-84) |#2|) 93 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2500 (($ |#1| (-306 (-84))) 14 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2502 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2503 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3782 ((|#2| $ |#2|) 33 T ELT)) (-2504 ((|#1| |#1|) 112 (|has| |#1| (-144)) ELT)) (-3928 (((-766) $) 73 T ELT) (($ (-479)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-84)) 23 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2505 (($ $) 111 (|has| |#1| (-144)) ELT) (($ $ $) 115 (|has| |#1| (-144)) ELT)) (-2645 (($) 21 T CONST)) (-2651 (($) 9 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 83 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ (-84) (-479)) NIL T ELT) (($ $ (-479)) 64 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-144)) ELT) (($ $ |#1|) 109 (|has| |#1| (-144)) ELT))) +(((-647 |#1| |#2|) (-13 (-955) (-944 |#1|) (-944 (-84)) (-238 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-6 (-38 |#1|)) (-15 -2505 ($ $)) (-15 -2505 ($ $ $)) (-15 -2504 (|#1| |#1|))) |%noBranch|) (-15 -2503 ($ $ (-1 |#2| |#2|))) (-15 -2502 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-84) (-479))) (-15 ** ($ $ (-479))) (-15 -2501 (|#2| (-84) |#2|)) (-15 -2500 ($ |#1| (-306 (-84)))))) (-955) (-586 |#1|)) (T -647)) +((-2505 (*1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-955)) (-5 *1 (-647 *2 *3)) (-4 *3 (-586 *2)))) (-2505 (*1 *1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-955)) (-5 *1 (-647 *2 *3)) (-4 *3 (-586 *2)))) (-2504 (*1 *2 *2) (-12 (-4 *2 (-144)) (-4 *2 (-955)) (-5 *1 (-647 *2 *3)) (-4 *3 (-586 *2)))) (-2503 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-586 *3)) (-4 *3 (-955)) (-5 *1 (-647 *3 *4)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-586 *3)) (-4 *3 (-955)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-479)) (-4 *4 (-955)) (-5 *1 (-647 *4 *5)) (-4 *5 (-586 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *3 (-955)) (-5 *1 (-647 *3 *4)) (-4 *4 (-586 *3)))) (-2501 (*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-4 *4 (-955)) (-5 *1 (-647 *4 *2)) (-4 *2 (-586 *4)))) (-2500 (*1 *1 *2 *3) (-12 (-5 *3 (-306 (-84))) (-4 *2 (-955)) (-5 *1 (-647 *2 *4)) (-4 *4 (-586 *2))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 33 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3824 (($ |#1| |#2|) 25 T ELT)) (-3449 (((-3 $ #1#) $) 51 T ELT)) (-2397 (((-83) $) 35 T ELT)) (-2599 ((|#2| $) 12 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 52 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2389 (((-3 $ #1#) $ $) 50 T ELT)) (-3928 (((-766) $) 24 T ELT) (($ (-479)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3110 (((-688)) 28 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 16 T CONST)) (-2651 (($) 30 T CONST)) (-3041 (((-83) $ $) 41 T ELT)) (-3819 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3821 (($ $ $) 43 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-955) (-10 -8 (-15 -2599 (|#2| $)) (-15 -3928 (|#1| $)) (-15 -3824 ($ |#1| |#2|)) (-15 -2389 ((-3 $ #1="failed") $ $)) (-15 -3449 ((-3 $ #1#) $)) (-15 -2469 ($ $)))) (-144) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -648)) +((-3449 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2599 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3928 (*1 *2 *1) (-12 (-4 *2 (-144)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3824 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2389 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2469 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-649 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 * (|#1| (-824) |#1|))) (-650 |#2|) (-144)) (T -649)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-650 |#1|) (-111) (-144)) (T -650)) +NIL +(-13 (-80 |t#1| |t#1|) (-578 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-2426 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3829 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2390 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 16 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3750 ((|#1| $ |#1|) 24 T ELT) (((-737 |#1|) $ (-737 |#1|)) 32 T ELT)) (-2994 (($ $ $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-3928 (((-766) $) 39 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2651 (($) 9 T CONST)) (-3041 (((-83) $ $) 48 T ELT)) (-3931 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-651 |#1|) (-13 (-407) (-10 -8 (-15 -2390 ($ |#1| |#1| |#1| |#1|)) (-15 -2426 ($ |#1|)) (-15 -3829 ($ |#1|)) (-15 -3449 ($)) (-15 -2426 ($ $ |#1|)) (-15 -3829 ($ $ |#1|)) (-15 -3449 ($ $)) (-15 -3750 (|#1| $ |#1|)) (-15 -3750 ((-737 |#1|) $ (-737 |#1|))))) (-308)) (T -651)) +((-2390 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) (-2426 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) (-3829 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) (-3449 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) (-2426 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) (-3449 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) (-3750 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) (-3750 (*1 *2 *1 *2) (-12 (-5 *2 (-737 *3)) (-4 *3 (-308)) (-5 *1 (-651 *3))))) +((-2394 (($ $ (-824)) 19 T ELT)) (-2393 (($ $ (-824)) 20 T ELT)) (** (($ $ (-824)) 10 T ELT))) +(((-652 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-824))) (-15 -2393 (|#1| |#1| (-824))) (-15 -2394 (|#1| |#1| (-824)))) (-653)) (T -652)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-2394 (($ $ (-824)) 19 T ELT)) (-2393 (($ $ (-824)) 18 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (** (($ $ (-824)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-653) (-111)) (T -653)) +((* (*1 *1 *1 *1) (-4 *1 (-653))) (-2394 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-824)))) (-2393 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-824)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-824))))) +(-13 (-1006) (-10 -8 (-15 * ($ $ $)) (-15 -2394 ($ $ (-824))) (-15 -2393 ($ $ (-824))) (-15 ** ($ $ (-824))))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2394 (($ $ (-824)) NIL T ELT) (($ $ (-688)) 18 T ELT)) (-2397 (((-83) $) 10 T ELT)) (-2393 (($ $ (-824)) NIL T ELT) (($ $ (-688)) 19 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 16 T ELT))) +(((-654 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-688))) (-15 -2393 (|#1| |#1| (-688))) (-15 -2394 (|#1| |#1| (-688))) (-15 -2397 ((-83) |#1|)) (-15 ** (|#1| |#1| (-824))) (-15 -2393 (|#1| |#1| (-824))) (-15 -2394 (|#1| |#1| (-824)))) (-655)) (T -654)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-2391 (((-3 $ "failed") $) 22 T ELT)) (-2394 (($ $ (-824)) 19 T ELT) (($ $ (-688)) 27 T ELT)) (-3449 (((-3 $ "failed") $) 24 T ELT)) (-2397 (((-83) $) 28 T ELT)) (-2392 (((-3 $ "failed") $) 23 T ELT)) (-2393 (($ $ (-824)) 18 T ELT) (($ $ (-688)) 26 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2651 (($) 29 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (** (($ $ (-824)) 17 T ELT) (($ $ (-688)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-655) (-111)) (T -655)) +((-2651 (*1 *1) (-4 *1 (-655))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-83)))) (-2394 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-688)))) (-2393 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-688)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-688)))) (-3449 (*1 *1 *1) (|partial| -4 *1 (-655))) (-2392 (*1 *1 *1) (|partial| -4 *1 (-655))) (-2391 (*1 *1 *1) (|partial| -4 *1 (-655)))) +(-13 (-653) (-10 -8 (-15 -2651 ($) -3934) (-15 -2397 ((-83) $)) (-15 -2394 ($ $ (-688))) (-15 -2393 ($ $ (-688))) (-15 ** ($ $ (-688))) (-15 -3449 ((-3 $ "failed") $)) (-15 -2392 ((-3 $ "failed") $)) (-15 -2391 ((-3 $ "failed") $)))) +(((-72) . T) ((-548 (-766)) . T) ((-653) . T) ((-1006) . T) ((-1119) . T)) +((-3120 (((-688)) 39 T ELT)) (-3141 (((-3 (-479) #1="failed") $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3140 (((-479) $) NIL T ELT) (((-344 (-479)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3824 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-344 |#3|)) 49 T ELT)) (-3449 (((-3 $ #1#) $) 69 T ELT)) (-2979 (($) 43 T ELT)) (-3116 ((|#2| $) 21 T ELT)) (-2396 (($) 18 T ELT)) (-3740 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $) NIL T ELT)) (-2395 (((-626 |#2|) (-1169 $) (-1 |#2| |#2|)) 64 T ELT)) (-3954 (((-1169 |#2|) $) NIL T ELT) (($ (-1169 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2434 ((|#3| $) 36 T ELT)) (-1999 (((-1169 $)) 33 T ELT))) +(((-656 |#1| |#2| |#3|) (-10 -7 (-15 -3740 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -2979 (|#1|)) (-15 -3120 ((-688))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|) (-688))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2395 ((-626 |#2|) (-1169 |#1|) (-1 |#2| |#2|))) (-15 -3824 ((-3 |#1| #1="failed") (-344 |#3|))) (-15 -3954 (|#1| |#3|)) (-15 -3824 (|#1| |#3|)) (-15 -2396 (|#1|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3954 (|#3| |#1|)) (-15 -3954 (|#1| (-1169 |#2|))) (-15 -3954 ((-1169 |#2|) |#1|)) (-15 -1999 ((-1169 |#1|))) (-15 -2434 (|#3| |#1|)) (-15 -3116 (|#2| |#1|)) (-15 -3449 ((-3 |#1| #1#) |#1|))) (-657 |#2| |#3|) (-144) (-1145 |#2|)) (T -656)) +((-3120 (*1 *2) (-12 (-4 *4 (-144)) (-4 *5 (-1145 *4)) (-5 *2 (-688)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 111 (|has| |#1| (-308)) ELT)) (-2050 (($ $) 112 (|has| |#1| (-308)) ELT)) (-2048 (((-83) $) 114 (|has| |#1| (-308)) ELT)) (-1770 (((-626 |#1|) (-1169 $)) 58 T ELT) (((-626 |#1|)) 74 T ELT)) (-3312 ((|#1| $) 64 T ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) 164 (|has| |#1| (-295)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 131 (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) 132 (|has| |#1| (-308)) ELT)) (-1596 (((-83) $ $) 122 (|has| |#1| (-308)) ELT)) (-3120 (((-688)) 105 (|has| |#1| (-314)) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 (-479) #1="failed") $) 191 (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) 189 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3140 (((-479) $) 190 (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) 188 (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 187 T ELT)) (-1780 (($ (-1169 |#1|) (-1169 $)) 60 T ELT) (($ (-1169 |#1|)) 77 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-295)) ELT)) (-2549 (($ $ $) 126 (|has| |#1| (-308)) ELT)) (-1769 (((-626 |#1|) $ (-1169 $)) 65 T ELT) (((-626 |#1|) $) 72 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 183 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 182 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 181 T ELT) (((-626 |#1|) (-626 $)) 180 T ELT)) (-3824 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-344 |#2|)) 172 (|has| |#1| (-308)) ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3093 (((-824)) 66 T ELT)) (-2979 (($) 108 (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) 125 (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 120 (|has| |#1| (-308)) ELT)) (-2818 (($) 166 (|has| |#1| (-295)) ELT)) (-1668 (((-83) $) 167 (|has| |#1| (-295)) ELT)) (-1752 (($ $ (-688)) 158 (|has| |#1| (-295)) ELT) (($ $) 157 (|has| |#1| (-295)) ELT)) (-3705 (((-83) $) 133 (|has| |#1| (-308)) ELT)) (-3754 (((-824) $) 169 (|has| |#1| (-295)) ELT) (((-737 (-824)) $) 155 (|has| |#1| (-295)) ELT)) (-2397 (((-83) $) 40 T ELT)) (-3116 ((|#1| $) 63 T ELT)) (-3427 (((-628 $) $) 159 (|has| |#1| (-295)) ELT)) (-1593 (((-3 (-579 $) #2="failed") (-579 $) $) 129 (|has| |#1| (-308)) ELT)) (-2001 ((|#2| $) 56 (|has| |#1| (-308)) ELT)) (-1997 (((-824) $) 107 (|has| |#1| (-314)) ELT)) (-3064 ((|#2| $) 173 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 185 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 184 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 179 T ELT) (((-626 |#1|) (-1169 $)) 178 T ELT)) (-1879 (($ (-579 $)) 118 (|has| |#1| (-308)) ELT) (($ $ $) 117 (|has| |#1| (-308)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 134 (|has| |#1| (-308)) ELT)) (-3428 (($) 160 (|has| |#1| (-295)) CONST)) (-2387 (($ (-824)) 106 (|has| |#1| (-314)) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2396 (($) 177 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 119 (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) 116 (|has| |#1| (-308)) ELT) (($ $ $) 115 (|has| |#1| (-308)) ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) 163 (|has| |#1| (-295)) ELT)) (-3714 (((-342 $) $) 130 (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 127 (|has| |#1| (-308)) ELT)) (-3448 (((-3 $ "failed") $ $) 110 (|has| |#1| (-308)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 121 (|has| |#1| (-308)) ELT)) (-1595 (((-688) $) 123 (|has| |#1| (-308)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 124 (|has| |#1| (-308)) ELT)) (-3739 ((|#1| (-1169 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1753 (((-688) $) 168 (|has| |#1| (-295)) ELT) (((-3 (-688) "failed") $ $) 156 (|has| |#1| (-295)) ELT)) (-3740 (($ $ (-688)) 153 (OR (-2547 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) 151 (OR (-2547 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 147 (-2547 (|has| |#1| (-805 (-1080))) (|has| |#1| (-308))) ELT) (($ $ (-1080) (-688)) 146 (-2547 (|has| |#1| (-805 (-1080))) (|has| |#1| (-308))) ELT) (($ $ (-579 (-1080))) 145 (-2547 (|has| |#1| (-805 (-1080))) (|has| |#1| (-308))) ELT) (($ $ (-1080)) 143 (-2547 (|has| |#1| (-805 (-1080))) (|has| |#1| (-308))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-688)) 141 (|has| |#1| (-308)) ELT)) (-2395 (((-626 |#1|) (-1169 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-308)) ELT)) (-3169 ((|#2|) 176 T ELT)) (-1662 (($) 165 (|has| |#1| (-295)) ELT)) (-3208 (((-1169 |#1|) $ (-1169 $)) 62 T ELT) (((-626 |#1|) (-1169 $) (-1169 $)) 61 T ELT) (((-1169 |#1|) $) 79 T ELT) (((-626 |#1|) (-1169 $)) 78 T ELT)) (-3954 (((-1169 |#1|) $) 76 T ELT) (($ (-1169 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-2688 (((-3 (-1169 $) "failed") (-626 $)) 162 (|has| |#1| (-295)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-308)) ELT) (($ (-344 (-479))) 104 (OR (|has| |#1| (-308)) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-2687 (($ $) 161 (|has| |#1| (-295)) ELT) (((-628 $) $) 55 (|has| |#1| (-116)) ELT)) (-2434 ((|#2| $) 57 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-1999 (((-1169 $)) 80 T ELT)) (-2049 (((-83) $ $) 113 (|has| |#1| (-308)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-688)) 154 (OR (-2547 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) 152 (OR (-2547 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 150 (-2547 (|has| |#1| (-805 (-1080))) (|has| |#1| (-308))) ELT) (($ $ (-1080) (-688)) 149 (-2547 (|has| |#1| (-805 (-1080))) (|has| |#1| (-308))) ELT) (($ $ (-579 (-1080))) 148 (-2547 (|has| |#1| (-805 (-1080))) (|has| |#1| (-308))) ELT) (($ $ (-1080)) 144 (-2547 (|has| |#1| (-805 (-1080))) (|has| |#1| (-308))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-688)) 139 (|has| |#1| (-308)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 138 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 135 (|has| |#1| (-308)) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-344 (-479)) $) 137 (|has| |#1| (-308)) ELT) (($ $ (-344 (-479))) 136 (|has| |#1| (-308)) ELT))) +(((-657 |#1| |#2|) (-111) (-144) (-1145 |t#1|)) (T -657)) +((-2396 (*1 *1) (-12 (-4 *2 (-144)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1145 *2)))) (-3169 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1145 *3)))) (-3824 (*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1145 *3)))) (-3954 (*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1145 *3)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1145 *3)))) (-3824 (*1 *1 *2) (|partial| -12 (-5 *2 (-344 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-308)) (-4 *3 (-144)) (-4 *1 (-657 *3 *4)))) (-2395 (*1 *2 *3 *4) (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-4 *1 (-657 *5 *6)) (-4 *5 (-144)) (-4 *6 (-1145 *5)) (-5 *2 (-626 *5))))) +(-13 (-347 |t#1| |t#2|) (-144) (-549 |t#2|) (-349 |t#1|) (-323 |t#1|) (-10 -8 (-15 -2396 ($)) (-15 -3169 (|t#2|)) (-15 -3824 ($ |t#2|)) (-15 -3954 ($ |t#2|)) (-15 -3064 (|t#2| $)) (IF (|has| |t#1| (-314)) (-6 (-314)) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-6 (-308)) (-6 (-182 |t#1|)) (-15 -3824 ((-3 $ "failed") (-344 |t#2|))) (-15 -2395 ((-626 |t#1|) (-1169 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-295)) (-6 (-295)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-295)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-295)) (|has| |#1| (-308))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-551 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-548 (-766)) . T) ((-144) . T) ((-549 |#2|) . T) ((-184 $) OR (|has| |#1| (-295)) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (-12 (|has| |#1| (-188)) (|has| |#1| (-308)))) ((-182 |#1|) |has| |#1| (-308)) ((-188) OR (|has| |#1| (-295)) (-12 (|has| |#1| (-188)) (|has| |#1| (-308)))) ((-187) OR (|has| |#1| (-295)) (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (-12 (|has| |#1| (-188)) (|has| |#1| (-308)))) ((-222 |#1|) |has| |#1| (-308)) ((-198) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-242) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-254) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-308) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-339) |has| |#1| (-295)) ((-314) OR (|has| |#1| (-295)) (|has| |#1| (-314))) ((-295) |has| |#1| (-295)) ((-316 |#1| |#2|) . T) ((-347 |#1| |#2|) . T) ((-323 |#1|) . T) ((-349 |#1|) . T) ((-386) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-490) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-584 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-586 (-479)) |has| |#1| (-576 (-479))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-578 |#1|) . T) ((-578 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-576 (-479)) |has| |#1| (-576 (-479))) ((-576 |#1|) . T) ((-650 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-650 |#1|) . T) ((-650 $) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-659) . T) ((-800 $ (-1080)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080))))) ((-803 (-1080)) -12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080)))) ((-805 (-1080)) OR (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) (-12 (|has| |#1| (-308)) (|has| |#1| (-803 (-1080))))) ((-826) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-957 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-957 |#1|) . T) ((-957 $) . T) ((-962 (-344 (-479))) OR (|has| |#1| (-295)) (|has| |#1| (-308))) ((-962 |#1|) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1056) |has| |#1| (-295)) ((-1119) . T) ((-1124) OR (|has| |#1| (-295)) (|has| |#1| (-308)))) +((-3706 (($) 11 T CONST)) (-3449 (((-3 $ "failed") $) 14 T ELT)) (-2397 (((-83) $) 10 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 20 T ELT))) +(((-658 |#1|) (-10 -7 (-15 -3449 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-688))) (-15 -2397 ((-83) |#1|)) (-15 -3706 (|#1|) -3934) (-15 ** (|#1| |#1| (-824)))) (-659)) (T -658)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3706 (($) 23 T CONST)) (-3449 (((-3 $ "failed") $) 20 T ELT)) (-2397 (((-83) $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2651 (($) 24 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (** (($ $ (-824)) 17 T ELT) (($ $ (-688)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-659) (-111)) (T -659)) +((-2651 (*1 *1) (-4 *1 (-659))) (-3706 (*1 *1) (-4 *1 (-659))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-83)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-688)))) (-3449 (*1 *1 *1) (|partial| -4 *1 (-659)))) +(-13 (-1016) (-10 -8 (-15 -2651 ($) -3934) (-15 -3706 ($) -3934) (-15 -2397 ((-83) $)) (-15 ** ($ $ (-688))) (-15 -3449 ((-3 $ "failed") $)))) +(((-72) . T) ((-548 (-766)) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2398 (((-2 (|:| -3074 (-342 |#2|)) (|:| |special| (-342 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3400 (((-2 (|:| -3074 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2399 ((|#2| (-344 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3417 (((-2 (|:| |poly| |#2|) (|:| -3074 (-344 |#2|)) (|:| |special| (-344 |#2|))) (-344 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-660 |#1| |#2|) (-10 -7 (-15 -3400 ((-2 (|:| -3074 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2398 ((-2 (|:| -3074 (-342 |#2|)) (|:| |special| (-342 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2399 (|#2| (-344 |#2|) (-1 |#2| |#2|))) (-15 -3417 ((-2 (|:| |poly| |#2|) (|:| -3074 (-344 |#2|)) (|:| |special| (-344 |#2|))) (-344 |#2|) (-1 |#2| |#2|)))) (-308) (-1145 |#1|)) (T -660)) +((-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3074 (-344 *6)) (|:| |special| (-344 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-344 *6)))) (-2399 (*1 *2 *3 *4) (-12 (-5 *3 (-344 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1145 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-308)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -3074 (-342 *3)) (|:| |special| (-342 *3)))) (-5 *1 (-660 *5 *3)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -3074 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3))))) +((-2400 ((|#7| (-579 |#5|) |#6|) NIL T ELT)) (-3940 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3940 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2400 (|#7| (-579 |#5|) |#6|))) (-750) (-711) (-711) (-955) (-955) (-855 |#4| |#2| |#1|) (-855 |#5| |#3| |#1|)) (T -661)) +((-2400 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *9)) (-4 *9 (-955)) (-4 *5 (-750)) (-4 *6 (-711)) (-4 *8 (-955)) (-4 *2 (-855 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-711)) (-4 *4 (-855 *8 *6 *5)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-955)) (-4 *9 (-955)) (-4 *5 (-750)) (-4 *6 (-711)) (-4 *2 (-855 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-711)) (-4 *4 (-855 *8 *6 *5))))) +((-3940 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3940 (|#7| (-1 |#2| |#1|) |#6|))) (-750) (-750) (-711) (-711) (-955) (-855 |#5| |#3| |#1|) (-855 |#5| |#4| |#2|)) (T -662)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-750)) (-4 *6 (-750)) (-4 *7 (-711)) (-4 *9 (-955)) (-4 *2 (-855 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-711)) (-4 *4 (-855 *9 *7 *5))))) +((-3714 (((-342 |#4|) |#4|) 42 T ELT))) +(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3714 ((-342 |#4|) |#4|))) (-711) (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ "failed") (-1080))))) (-254) (-855 (-851 |#3|) |#1| |#2|)) (T -663)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ "failed") (-1080)))))) (-4 *6 (-254)) (-5 *2 (-342 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-855 (-851 *6) *4 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-767 |#1|)) $) NIL T ELT)) (-3068 (((-1075 $) $ (-767 |#1|)) NIL T ELT) (((-1075 |#2|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#2| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#2| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#2| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-767 |#1|))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#2| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#2| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-3 (-767 |#1|) #1#) $) NIL T ELT)) (-3140 ((|#2| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-767 |#1|) $) NIL T ELT)) (-3738 (($ $ $ (-767 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#2|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#2| (-386)) ELT) (($ $ (-767 |#1|)) NIL (|has| |#2| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#2| (-815)) ELT)) (-1612 (($ $ |#2| (-464 (-767 |#1|)) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-767 |#1|) (-790 (-324))) (|has| |#2| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-767 |#1|) (-790 (-479))) (|has| |#2| (-790 (-479)))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3069 (($ (-1075 |#2|) (-767 |#1|)) NIL T ELT) (($ (-1075 $) (-767 |#1|)) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#2| (-464 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-767 |#1|)) NIL T ELT)) (-2805 (((-464 (-767 |#1|)) $) NIL T ELT) (((-688) $ (-767 |#1|)) NIL T ELT) (((-579 (-688)) $ (-579 (-767 |#1|))) NIL T ELT)) (-1613 (($ (-1 (-464 (-767 |#1|)) (-464 (-767 |#1|))) $) NIL T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3067 (((-3 (-767 |#1|) #1#) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) NIL (|has| |#2| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-767 |#1|)) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#2| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#2| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) NIL (|has| |#2| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#2| (-815)) ELT)) (-3448 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-767 |#1|) |#2|) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 |#2|)) NIL T ELT) (($ $ (-767 |#1|) $) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 $)) NIL T ELT)) (-3739 (($ $ (-767 |#1|)) NIL (|has| |#2| (-144)) ELT)) (-3740 (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|)) NIL T ELT)) (-3930 (((-464 (-767 |#1|)) $) NIL T ELT) (((-688) $ (-767 |#1|)) NIL T ELT) (((-579 (-688)) $ (-579 (-767 |#1|))) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-767 |#1|) (-549 (-794 (-324)))) (|has| |#2| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-767 |#1|) (-549 (-794 (-479)))) (|has| |#2| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-767 |#1|) (-549 (-468))) (|has| |#2| (-549 (-468)))) ELT)) (-2802 ((|#2| $) NIL (|has| |#2| (-386)) ELT) (($ $ (-767 |#1|)) NIL (|has| |#2| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-767 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-490)) ELT) (($ (-344 (-479))) NIL (OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479))))) ELT)) (-3799 (((-579 |#2|) $) NIL T ELT)) (-3659 ((|#2| $ (-464 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-815))) (|has| |#2| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#2| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#2| (-490)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-579 (-767 |#1|)) (-579 (-688))) NIL T ELT) (($ $ (-767 |#1|) (-688)) NIL T ELT) (($ $ (-579 (-767 |#1|))) NIL T ELT) (($ $ (-767 |#1|)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-664 |#1| |#2|) (-855 |#2| (-464 (-767 |#1|)) (-767 |#1|)) (-579 (-1080)) (-955)) (T -664)) +NIL +((-2401 (((-2 (|:| -2468 (-851 |#3|)) (|:| -2045 (-851 |#3|))) |#4|) 14 T ELT)) (-2971 ((|#4| |#4| |#2|) 33 T ELT)) (-2404 ((|#4| (-344 (-851 |#3|)) |#2|) 62 T ELT)) (-2403 ((|#4| (-1075 (-851 |#3|)) |#2|) 74 T ELT)) (-2402 ((|#4| (-1075 |#4|) |#2|) 49 T ELT)) (-2970 ((|#4| |#4| |#2|) 52 T ELT)) (-3714 (((-342 |#4|) |#4|) 40 T ELT))) +(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2401 ((-2 (|:| -2468 (-851 |#3|)) (|:| -2045 (-851 |#3|))) |#4|)) (-15 -2970 (|#4| |#4| |#2|)) (-15 -2402 (|#4| (-1075 |#4|) |#2|)) (-15 -2971 (|#4| |#4| |#2|)) (-15 -2403 (|#4| (-1075 (-851 |#3|)) |#2|)) (-15 -2404 (|#4| (-344 (-851 |#3|)) |#2|)) (-15 -3714 ((-342 |#4|) |#4|))) (-711) (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)))) (-490) (-855 (-344 (-851 |#3|)) |#1| |#2|)) (T -665)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) (-4 *6 (-490)) (-5 *2 (-342 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-855 (-344 (-851 *6)) *4 *5)))) (-2404 (*1 *2 *3 *4) (-12 (-4 *6 (-490)) (-4 *2 (-855 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-344 (-851 *6))) (-4 *5 (-711)) (-4 *4 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))))) (-2403 (*1 *2 *3 *4) (-12 (-5 *3 (-1075 (-851 *6))) (-4 *6 (-490)) (-4 *2 (-855 (-344 (-851 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-711)) (-4 *4 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))))) (-2971 (*1 *2 *2 *3) (-12 (-4 *4 (-711)) (-4 *3 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) (-4 *5 (-490)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-855 (-344 (-851 *5)) *4 *3)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-1075 *2)) (-4 *2 (-855 (-344 (-851 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-711)) (-4 *4 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) (-4 *6 (-490)))) (-2970 (*1 *2 *2 *3) (-12 (-4 *4 (-711)) (-4 *3 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) (-4 *5 (-490)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-855 (-344 (-851 *5)) *4 *3)))) (-2401 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) (-4 *6 (-490)) (-5 *2 (-2 (|:| -2468 (-851 *6)) (|:| -2045 (-851 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-855 (-344 (-851 *6)) *4 *5))))) +((-3714 (((-342 |#4|) |#4|) 54 T ELT))) +(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3714 ((-342 |#4|) |#4|))) (-711) (-750) (-13 (-254) (-118)) (-855 (-344 |#3|) |#1| |#2|)) (T -666)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-13 (-254) (-118))) (-5 *2 (-342 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-855 (-344 *6) *4 *5))))) +((-3940 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18 T ELT))) +(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -3940 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-955) (-955) (-659)) (T -667)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-955)) (-4 *6 (-955)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 36 T ELT)) (-3756 (((-579 (-2 (|:| -3936 |#1|) (|:| -3920 |#2|))) $) 37 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3120 (((-688)) 22 (-12 (|has| |#2| (-314)) (|has| |#1| (-314))) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3140 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3941 (($ $) 99 (|has| |#2| (-750)) ELT)) (-3449 (((-3 $ #1#) $) 83 T ELT)) (-2979 (($) 48 (-12 (|has| |#2| (-314)) (|has| |#1| (-314))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) 70 T ELT)) (-2806 (((-579 $) $) 52 T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| |#2|) 17 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-1997 (((-824) $) 43 (-12 (|has| |#2| (-314)) (|has| |#1| (-314))) ELT)) (-2879 ((|#2| $) 98 (|has| |#2| (-750)) ELT)) (-3158 ((|#1| $) 97 (|has| |#2| (-750)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) 35 (-12 (|has| |#2| (-314)) (|has| |#1| (-314))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 96 T ELT) (($ (-479)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-579 (-2 (|:| -3936 |#1|) (|:| -3920 |#2|)))) 11 T ELT)) (-3799 (((-579 |#1|) $) 54 T ELT)) (-3659 ((|#1| $ |#2|) 114 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 12 T CONST)) (-2651 (($) 44 T CONST)) (-3041 (((-83) $ $) 104 T ELT)) (-3819 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 33 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) +(((-668 |#1| |#2|) (-13 (-955) (-944 |#2|) (-944 |#1|) (-10 -8 (-15 -2878 ($ |#1| |#2|)) (-15 -3659 (|#1| $ |#2|)) (-15 -3928 ($ (-579 (-2 (|:| -3936 |#1|) (|:| -3920 |#2|))))) (-15 -3756 ((-579 (-2 (|:| -3936 |#1|) (|:| -3920 |#2|))) $)) (-15 -3940 ($ (-1 |#1| |#1|) $)) (-15 -3919 ((-83) $)) (-15 -3799 ((-579 |#1|) $)) (-15 -2806 ((-579 $) $)) (-15 -2405 ((-688) $)) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-314)) (IF (|has| |#2| (-314)) (-6 (-314)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-750)) (PROGN (-15 -2879 (|#2| $)) (-15 -3158 (|#1| $)) (-15 -3941 ($ $))) |%noBranch|))) (-955) (-659)) (T -668)) +((-2878 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-955)) (-4 *3 (-659)))) (-3659 (*1 *2 *1 *3) (-12 (-4 *2 (-955)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-579 (-2 (|:| -3936 *3) (|:| -3920 *4)))) (-4 *3 (-955)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| -3936 *3) (|:| -3920 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-955)) (-4 *4 (-659)))) (-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-668 *3 *4)) (-4 *3 (-955)) (-4 *4 (-659)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-955)) (-4 *4 (-659)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-579 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-955)) (-4 *4 (-659)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-668 *3 *4)) (-4 *3 (-955)) (-4 *4 (-659)))) (-2879 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-750)) (-5 *1 (-668 *3 *2)) (-4 *3 (-955)))) (-3158 (*1 *2 *1) (-12 (-4 *2 (-955)) (-5 *1 (-668 *2 *3)) (-4 *3 (-750)) (-4 *3 (-659)))) (-3941 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-750)) (-4 *2 (-955)) (-4 *3 (-659))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3218 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3220 (($ $ $) 99 T ELT)) (-3219 (((-83) $ $) 107 T ELT)) (-3223 (($ (-579 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1558 (($ (-1 (-83) |#1|) $) 86 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2355 (($ $) 88 T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3387 (($ |#1| $) 71 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3977)) ELT) (($ |#1| $ (-479)) 78 T ELT) (($ (-1 (-83) |#1|) $ (-479)) 81 T ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (($ |#1| $ (-479)) 83 T ELT) (($ (-1 (-83) |#1|) $ (-479)) 84 T ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3225 (((-83) $ $) 106 T ELT)) (-2406 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-579 |#1|)) 23 T ELT)) (-2593 (((-579 |#1|) $) 38 T ELT)) (-3229 (((-83) |#1| $) 66 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3222 (($ $ $) 97 T ELT)) (-1263 ((|#1| $) 63 T ELT)) (-3591 (($ |#1| $) 64 T ELT) (($ |#1| $ (-688)) 89 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-1264 ((|#1| $) 62 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 57 T ELT)) (-3547 (($) 14 T ELT)) (-2354 (((-579 (-2 (|:| |entry| |#1|) (|:| -1934 (-688)))) $) 56 T ELT)) (-3221 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1454 (($) 16 T ELT) (($ (-579 |#1|)) 25 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 69 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) 82 T ELT)) (-3954 (((-468) $) 36 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 22 T ELT)) (-3928 (((-766) $) 50 T ELT)) (-3224 (($ (-579 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1265 (($ (-579 |#1|)) 24 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 103 T ELT)) (-3939 (((-688) $) 68 (|has| $ (-6 -3977)) ELT))) +(((-669 |#1|) (-13 (-670 |#1|) (-10 -8 (-6 -3977) (-6 -3978) (-15 -2406 ($)) (-15 -2406 ($ |#1|)) (-15 -2406 ($ (-579 |#1|))) (-15 -2593 ((-579 |#1|) $)) (-15 -3388 ($ |#1| $ (-479))) (-15 -3388 ($ (-1 (-83) |#1|) $ (-479))) (-15 -3387 ($ |#1| $ (-479))) (-15 -3387 ($ (-1 (-83) |#1|) $ (-479))))) (-1006)) (T -669)) +((-2406 (*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1006)))) (-2406 (*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1006)))) (-2406 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-669 *3)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-669 *3)) (-4 *3 (-1006)))) (-3388 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *1 (-669 *2)) (-4 *2 (-1006)))) (-3388 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-479)) (-4 *4 (-1006)) (-5 *1 (-669 *4)))) (-3387 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *1 (-669 *2)) (-4 *2 (-1006)))) (-3387 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-479)) (-4 *4 (-1006)) (-5 *1 (-669 *4))))) +((-2553 (((-83) $ $) 19 T ELT)) (-3218 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3220 (($ $ $) 77 T ELT)) (-3219 (((-83) $ $) 78 T ELT)) (-3223 (($ (-579 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1558 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-2355 (($ $) 66 T ELT)) (-1341 (($ $) 62 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ |#1| $) 51 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3388 (($ |#1| $) 61 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3225 (((-83) $ $) 69 T ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 T ELT)) (-3222 (($ $ $) 74 T ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT) (($ |#1| $ (-688)) 67 T ELT)) (-3227 (((-1024) $) 21 T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-2354 (((-579 (-2 (|:| |entry| |#1|) (|:| -1934 (-688)))) $) 65 T ELT)) (-3221 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1454 (($) 53 T ELT) (($ (-579 |#1|)) 52 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 63 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 54 T ELT)) (-3928 (((-766) $) 17 T ELT)) (-3224 (($ (-579 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1254 (((-83) $ $) 20 T ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 T ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-670 |#1|) (-111) (-1006)) (T -670)) +NIL +(-13 (-630 |t#1|) (-1004 |t#1|)) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-548 (-766)) . T) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-630 |#1|) . T) ((-1004 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2407 (((-1175) (-1063)) 8 T ELT))) +(((-671) (-10 -7 (-15 -2407 ((-1175) (-1063))))) (T -671)) +((-2407 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-671))))) +((-2408 (((-579 |#1|) (-579 |#1|) (-579 |#1|)) 15 T ELT))) +(((-672 |#1|) (-10 -7 (-15 -2408 ((-579 |#1|) (-579 |#1|) (-579 |#1|)))) (-750)) (T -672)) +((-2408 (*1 *2 *2 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-672 *3))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 |#2|) $) 156 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 149 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 148 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 146 (|has| |#1| (-490)) ELT)) (-3474 (($ $) 105 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 88 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3022 (($ $) 87 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3472 (($ $) 104 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 89 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3476 (($ $) 103 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 90 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) 22 T CONST)) (-3941 (($ $) 140 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3796 (((-851 |#1|) $ (-688)) 118 T ELT) (((-851 |#1|) $ (-688) (-688)) 117 T ELT)) (-2877 (((-83) $) 157 T ELT)) (-3609 (($) 115 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-688) $ |#2|) 120 T ELT) (((-688) $ |#2| (-688)) 119 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 86 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3919 (((-83) $) 138 T ELT)) (-2878 (($ $ (-579 |#2|) (-579 (-464 |#2|))) 155 T ELT) (($ $ |#2| (-464 |#2|)) 154 T ELT) (($ |#1| (-464 |#2|)) 139 T ELT) (($ $ |#2| (-688)) 122 T ELT) (($ $ (-579 |#2|) (-579 (-688))) 121 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-3924 (($ $) 112 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) 135 T ELT)) (-3158 ((|#1| $) 134 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3794 (($ $ |#2|) 116 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3751 (($ $ (-688)) 123 T ELT)) (-3448 (((-3 $ "failed") $ $) 150 (|has| |#1| (-490)) ELT)) (-3925 (($ $) 113 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (($ $ |#2| $) 131 T ELT) (($ $ (-579 |#2|) (-579 $)) 130 T ELT) (($ $ (-579 (-245 $))) 129 T ELT) (($ $ (-245 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-579 $) (-579 $)) 126 T ELT)) (-3740 (($ $ (-579 |#2|) (-579 (-688))) 49 T ELT) (($ $ |#2| (-688)) 48 T ELT) (($ $ (-579 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-3930 (((-464 |#2|) $) 136 T ELT)) (-3477 (($ $) 102 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 91 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 101 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 92 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 100 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 93 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) 158 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-144)) ELT) (($ $) 151 (|has| |#1| (-490)) ELT) (($ (-344 (-479))) 143 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3659 ((|#1| $ (-464 |#2|)) 141 T ELT) (($ $ |#2| (-688)) 125 T ELT) (($ $ (-579 |#2|) (-579 (-688))) 124 T ELT)) (-2687 (((-628 $) $) 152 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-3480 (($ $) 111 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 99 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) 147 (|has| |#1| (-490)) ELT)) (-3478 (($ $) 110 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 98 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 109 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 97 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3483 (($ $) 108 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 96 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 107 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 95 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 106 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 94 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-579 |#2|) (-579 (-688))) 52 T ELT) (($ $ |#2| (-688)) 51 T ELT) (($ $ (-579 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 142 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 85 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 145 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) 144 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) +(((-673 |#1| |#2|) (-111) (-955) (-750)) (T -673)) +((-3659 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-673 *4 *2)) (-4 *4 (-955)) (-4 *2 (-750)))) (-3659 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 *5)) (-5 *3 (-579 (-688))) (-4 *1 (-673 *4 *5)) (-4 *4 (-955)) (-4 *5 (-750)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-673 *3 *4)) (-4 *3 (-955)) (-4 *4 (-750)))) (-2878 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-673 *4 *2)) (-4 *4 (-955)) (-4 *2 (-750)))) (-2878 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 *5)) (-5 *3 (-579 (-688))) (-4 *1 (-673 *4 *5)) (-4 *4 (-955)) (-4 *5 (-750)))) (-3754 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-955)) (-4 *3 (-750)) (-5 *2 (-688)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-688)) (-4 *1 (-673 *4 *3)) (-4 *4 (-955)) (-4 *3 (-750)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-673 *4 *5)) (-4 *4 (-955)) (-4 *5 (-750)) (-5 *2 (-851 *4)))) (-3796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-4 *1 (-673 *4 *5)) (-4 *4 (-955)) (-4 *5 (-750)) (-5 *2 (-851 *4)))) (-3794 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-955)) (-4 *2 (-750)) (-4 *3 (-38 (-344 (-479))))))) +(-13 (-803 |t#2|) (-880 |t#1| (-464 |t#2|) |t#2|) (-448 |t#2| $) (-256 $) (-10 -8 (-15 -3659 ($ $ |t#2| (-688))) (-15 -3659 ($ $ (-579 |t#2|) (-579 (-688)))) (-15 -3751 ($ $ (-688))) (-15 -2878 ($ $ |t#2| (-688))) (-15 -2878 ($ $ (-579 |t#2|) (-579 (-688)))) (-15 -3754 ((-688) $ |t#2|)) (-15 -3754 ((-688) $ |t#2| (-688))) (-15 -3796 ((-851 |t#1|) $ (-688))) (-15 -3796 ((-851 |t#1|) $ (-688) (-688))) (IF (|has| |t#1| (-38 (-344 (-479)))) (PROGN (-15 -3794 ($ $ |t#2|)) (-6 (-909)) (-6 (-1105))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-464 |#2|)) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-490)) ((-35) |has| |#1| (-38 (-344 (-479)))) ((-66) |has| |#1| (-38 (-344 (-479)))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-551 (-479)) . T) ((-551 |#1|) |has| |#1| (-144)) ((-551 $) |has| |#1| (-490)) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-236) |has| |#1| (-38 (-344 (-479)))) ((-242) |has| |#1| (-490)) ((-256 $) . T) ((-427) |has| |#1| (-38 (-344 (-479)))) ((-448 |#2| $) . T) ((-448 $ $) . T) ((-490) |has| |#1| (-490)) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) |has| |#1| (-490)) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) |has| |#1| (-490)) ((-659) . T) ((-800 $ |#2|) . T) ((-803 |#2|) . T) ((-805 |#2|) . T) ((-880 |#1| (-464 |#2|) |#2|) . T) ((-909) |has| |#1| (-38 (-344 (-479)))) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1105) |has| |#1| (-38 (-344 (-479)))) ((-1108) |has| |#1| (-38 (-344 (-479)))) ((-1119) . T)) +((-3714 (((-342 (-1075 |#4|)) (-1075 |#4|)) 30 T ELT) (((-342 |#4|) |#4|) 26 T ELT))) +(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3714 ((-342 |#4|) |#4|)) (-15 -3714 ((-342 (-1075 |#4|)) (-1075 |#4|)))) (-750) (-711) (-13 (-254) (-118)) (-855 |#3| |#2| |#1|)) (T -674)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-855 *6 *5 *4)) (-5 *2 (-342 (-1075 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1075 *7)))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-13 (-254) (-118))) (-5 *2 (-342 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-855 *6 *5 *4))))) +((-2411 (((-342 |#4|) |#4| |#2|) 142 T ELT)) (-2409 (((-342 |#4|) |#4|) NIL T ELT)) (-3953 (((-342 (-1075 |#4|)) (-1075 |#4|)) 129 T ELT) (((-342 |#4|) |#4|) 52 T ELT)) (-2413 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-579 (-2 (|:| -3714 (-1075 |#4|)) (|:| -2388 (-479)))))) (-1075 |#4|) (-579 |#2|) (-579 (-579 |#3|))) 81 T ELT)) (-2417 (((-1075 |#3|) (-1075 |#3|) (-479)) 169 T ELT)) (-2416 (((-579 (-688)) (-1075 |#4|) (-579 |#2|) (-688)) 75 T ELT)) (-3064 (((-3 (-579 (-1075 |#4|)) "failed") (-1075 |#4|) (-1075 |#3|) (-1075 |#3|) |#4| (-579 |#2|) (-579 (-688)) (-579 |#3|)) 79 T ELT)) (-2414 (((-2 (|:| |upol| (-1075 |#3|)) (|:| |Lval| (-579 |#3|)) (|:| |Lfact| (-579 (-2 (|:| -3714 (-1075 |#3|)) (|:| -2388 (-479))))) (|:| |ctpol| |#3|)) (-1075 |#4|) (-579 |#2|) (-579 (-579 |#3|))) 27 T ELT)) (-2412 (((-2 (|:| -1991 (-1075 |#4|)) (|:| |polval| (-1075 |#3|))) (-1075 |#4|) (-1075 |#3|) (-479)) 72 T ELT)) (-2410 (((-479) (-579 (-2 (|:| -3714 (-1075 |#3|)) (|:| -2388 (-479))))) 165 T ELT)) (-2415 ((|#4| (-479) (-342 |#4|)) 73 T ELT)) (-3339 (((-83) (-579 (-2 (|:| -3714 (-1075 |#3|)) (|:| -2388 (-479)))) (-579 (-2 (|:| -3714 (-1075 |#3|)) (|:| -2388 (-479))))) NIL T ELT))) +(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3953 ((-342 |#4|) |#4|)) (-15 -3953 ((-342 (-1075 |#4|)) (-1075 |#4|))) (-15 -2409 ((-342 |#4|) |#4|)) (-15 -2410 ((-479) (-579 (-2 (|:| -3714 (-1075 |#3|)) (|:| -2388 (-479)))))) (-15 -2411 ((-342 |#4|) |#4| |#2|)) (-15 -2412 ((-2 (|:| -1991 (-1075 |#4|)) (|:| |polval| (-1075 |#3|))) (-1075 |#4|) (-1075 |#3|) (-479))) (-15 -2413 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-579 (-2 (|:| -3714 (-1075 |#4|)) (|:| -2388 (-479)))))) (-1075 |#4|) (-579 |#2|) (-579 (-579 |#3|)))) (-15 -2414 ((-2 (|:| |upol| (-1075 |#3|)) (|:| |Lval| (-579 |#3|)) (|:| |Lfact| (-579 (-2 (|:| -3714 (-1075 |#3|)) (|:| -2388 (-479))))) (|:| |ctpol| |#3|)) (-1075 |#4|) (-579 |#2|) (-579 (-579 |#3|)))) (-15 -2415 (|#4| (-479) (-342 |#4|))) (-15 -3339 ((-83) (-579 (-2 (|:| -3714 (-1075 |#3|)) (|:| -2388 (-479)))) (-579 (-2 (|:| -3714 (-1075 |#3|)) (|:| -2388 (-479)))))) (-15 -3064 ((-3 (-579 (-1075 |#4|)) "failed") (-1075 |#4|) (-1075 |#3|) (-1075 |#3|) |#4| (-579 |#2|) (-579 (-688)) (-579 |#3|))) (-15 -2416 ((-579 (-688)) (-1075 |#4|) (-579 |#2|) (-688))) (-15 -2417 ((-1075 |#3|) (-1075 |#3|) (-479)))) (-711) (-750) (-254) (-855 |#3| |#1| |#2|)) (T -675)) +((-2417 (*1 *2 *2 *3) (-12 (-5 *2 (-1075 *6)) (-5 *3 (-479)) (-4 *6 (-254)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5)))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1075 *9)) (-5 *4 (-579 *7)) (-4 *7 (-750)) (-4 *9 (-855 *8 *6 *7)) (-4 *6 (-711)) (-4 *8 (-254)) (-5 *2 (-579 (-688))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-688)))) (-3064 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1075 *11)) (-5 *6 (-579 *10)) (-5 *7 (-579 (-688))) (-5 *8 (-579 *11)) (-4 *10 (-750)) (-4 *11 (-254)) (-4 *9 (-711)) (-4 *5 (-855 *11 *9 *10)) (-5 *2 (-579 (-1075 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1075 *5)))) (-3339 (*1 *2 *3 *3) (-12 (-5 *3 (-579 (-2 (|:| -3714 (-1075 *6)) (|:| -2388 (-479))))) (-4 *6 (-254)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-479)) (-5 *4 (-342 *2)) (-4 *2 (-855 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-254)))) (-2414 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1075 *9)) (-5 *4 (-579 *7)) (-5 *5 (-579 (-579 *8))) (-4 *7 (-750)) (-4 *8 (-254)) (-4 *9 (-855 *8 *6 *7)) (-4 *6 (-711)) (-5 *2 (-2 (|:| |upol| (-1075 *8)) (|:| |Lval| (-579 *8)) (|:| |Lfact| (-579 (-2 (|:| -3714 (-1075 *8)) (|:| -2388 (-479))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-2413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-579 *7)) (-5 *5 (-579 (-579 *8))) (-4 *7 (-750)) (-4 *8 (-254)) (-4 *6 (-711)) (-4 *9 (-855 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-579 (-2 (|:| -3714 (-1075 *9)) (|:| -2388 (-479))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1075 *9)))) (-2412 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-479)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-254)) (-4 *9 (-855 *8 *6 *7)) (-5 *2 (-2 (|:| -1991 (-1075 *9)) (|:| |polval| (-1075 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1075 *9)) (-5 *4 (-1075 *8)))) (-2411 (*1 *2 *3 *4) (-12 (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-254)) (-5 *2 (-342 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-855 *6 *5 *4)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| -3714 (-1075 *6)) (|:| -2388 (-479))))) (-4 *6 (-254)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-479)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5)))) (-2409 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) (-5 *2 (-342 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-855 *6 *4 *5)))) (-3953 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-342 (-1075 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1075 *7)))) (-3953 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) (-5 *2 (-342 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-855 *6 *4 *5))))) +((-2418 (($ $ (-824)) 17 T ELT))) +(((-676 |#1| |#2|) (-10 -7 (-15 -2418 (|#1| |#1| (-824)))) (-677 |#2|) (-144)) (T -676)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-2394 (($ $ (-824)) 36 T ELT)) (-2418 (($ $ (-824)) 43 T ELT)) (-2393 (($ $ (-824)) 37 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2420 (($ $ $) 33 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2421 (($ $ $ $) 34 T ELT)) (-2419 (($ $ $) 32 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 38 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-677 |#1|) (-111) (-144)) (T -677)) +((-2418 (*1 *1 *1 *2) (-12 (-5 *2 (-824)) (-4 *1 (-677 *3)) (-4 *3 (-144))))) +(-13 (-679) (-650 |t#1|) (-10 -8 (-15 -2418 ($ $ (-824))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-679) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2420 (($ $ $) 10 T ELT)) (-2421 (($ $ $ $) 9 T ELT)) (-2419 (($ $ $) 12 T ELT))) +(((-678 |#1|) (-10 -7 (-15 -2419 (|#1| |#1| |#1|)) (-15 -2420 (|#1| |#1| |#1|)) (-15 -2421 (|#1| |#1| |#1| |#1|))) (-679)) (T -678)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-2394 (($ $ (-824)) 36 T ELT)) (-2393 (($ $ (-824)) 37 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2420 (($ $ $) 33 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2421 (($ $ $ $) 34 T ELT)) (-2419 (($ $ $) 32 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 38 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-679) (-111)) (T -679)) +((-2421 (*1 *1 *1 *1 *1) (-4 *1 (-679))) (-2420 (*1 *1 *1 *1) (-4 *1 (-679))) (-2419 (*1 *1 *1 *1) (-4 *1 (-679)))) +(-13 (-21) (-653) (-10 -8 (-15 -2421 ($ $ $ $)) (-15 -2420 ($ $ $)) (-15 -2419 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-653) . T) ((-1006) . T) ((-1119) . T)) +((-3928 (((-766) $) NIL T ELT) (($ (-479)) 10 T ELT))) +(((-680 |#1|) (-10 -7 (-15 -3928 (|#1| (-479))) (-15 -3928 ((-766) |#1|))) (-681)) (T -680)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-2391 (((-3 $ #1="failed") $) 48 T ELT)) (-2394 (($ $ (-824)) 36 T ELT) (($ $ (-688)) 43 T ELT)) (-3449 (((-3 $ #1#) $) 46 T ELT)) (-2397 (((-83) $) 42 T ELT)) (-2392 (((-3 $ #1#) $) 47 T ELT)) (-2393 (($ $ (-824)) 37 T ELT) (($ $ (-688)) 44 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2420 (($ $ $) 33 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 39 T ELT)) (-3110 (((-688)) 40 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2421 (($ $ $ $) 34 T ELT)) (-2419 (($ $ $) 32 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 41 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 38 T ELT) (($ $ (-688)) 45 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-681) (-111)) (T -681)) +((-3110 (*1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-688)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-681))))) +(-13 (-679) (-655) (-10 -8 (-15 -3110 ((-688)) -3934) (-15 -3928 ($ (-479))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-653) . T) ((-655) . T) ((-679) . T) ((-1006) . T) ((-1119) . T)) +((-2423 (((-579 (-2 (|:| |outval| (-140 |#1|)) (|:| |outmult| (-479)) (|:| |outvect| (-579 (-626 (-140 |#1|)))))) (-626 (-140 (-344 (-479)))) |#1|) 33 T ELT)) (-2422 (((-579 (-140 |#1|)) (-626 (-140 (-344 (-479)))) |#1|) 23 T ELT)) (-2434 (((-851 (-140 (-344 (-479)))) (-626 (-140 (-344 (-479)))) (-1080)) 20 T ELT) (((-851 (-140 (-344 (-479)))) (-626 (-140 (-344 (-479))))) 19 T ELT))) +(((-682 |#1|) (-10 -7 (-15 -2434 ((-851 (-140 (-344 (-479)))) (-626 (-140 (-344 (-479)))))) (-15 -2434 ((-851 (-140 (-344 (-479)))) (-626 (-140 (-344 (-479)))) (-1080))) (-15 -2422 ((-579 (-140 |#1|)) (-626 (-140 (-344 (-479)))) |#1|)) (-15 -2423 ((-579 (-2 (|:| |outval| (-140 |#1|)) (|:| |outmult| (-479)) (|:| |outvect| (-579 (-626 (-140 |#1|)))))) (-626 (-140 (-344 (-479)))) |#1|))) (-13 (-308) (-749))) (T -682)) +((-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-140 (-344 (-479))))) (-5 *2 (-579 (-2 (|:| |outval| (-140 *4)) (|:| |outmult| (-479)) (|:| |outvect| (-579 (-626 (-140 *4))))))) (-5 *1 (-682 *4)) (-4 *4 (-13 (-308) (-749))))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-140 (-344 (-479))))) (-5 *2 (-579 (-140 *4))) (-5 *1 (-682 *4)) (-4 *4 (-13 (-308) (-749))))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-140 (-344 (-479))))) (-5 *4 (-1080)) (-5 *2 (-851 (-140 (-344 (-479))))) (-5 *1 (-682 *5)) (-4 *5 (-13 (-308) (-749))))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-626 (-140 (-344 (-479))))) (-5 *2 (-851 (-140 (-344 (-479))))) (-5 *1 (-682 *4)) (-4 *4 (-13 (-308) (-749)))))) +((-2601 (((-146 (-479)) |#1|) 27 T ELT))) +(((-683 |#1|) (-10 -7 (-15 -2601 ((-146 (-479)) |#1|))) (-341)) (T -683)) +((-2601 (*1 *2 *3) (-12 (-5 *2 (-146 (-479))) (-5 *1 (-683 *3)) (-4 *3 (-341))))) +((-2527 ((|#1| |#1| |#1|) 28 T ELT)) (-2528 ((|#1| |#1| |#1|) 27 T ELT)) (-2517 ((|#1| |#1| |#1|) 38 T ELT)) (-2525 ((|#1| |#1| |#1|) 33 T ELT)) (-2526 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2533 (((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|) 26 T ELT))) +(((-684 |#1| |#2|) (-10 -7 (-15 -2533 ((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -2526 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2525 (|#1| |#1| |#1|)) (-15 -2517 (|#1| |#1| |#1|))) (-641 |#2|) (-308)) (T -684)) +((-2517 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) (-2525 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) (-2526 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) (-2527 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) (-2528 (*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) (-2533 (*1 *2 *3 *3) (-12 (-4 *4 (-308)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-684 *3 *4)) (-4 *3 (-641 *4))))) +((-2540 (((-628 (-1128)) $ (-1128)) 27 T ELT)) (-2541 (((-628 (-483)) $ (-483)) 26 T ELT)) (-2539 (((-688) $ (-100)) 28 T ELT)) (-2542 (((-628 (-99)) $ (-99)) 25 T ELT)) (-1987 (((-628 (-1128)) $) 12 T ELT)) (-1983 (((-628 (-1126)) $) 8 T ELT)) (-1985 (((-628 (-1125)) $) 10 T ELT)) (-1988 (((-628 (-483)) $) 13 T ELT)) (-1984 (((-628 (-481)) $) 9 T ELT)) (-1986 (((-628 (-480)) $) 11 T ELT)) (-1982 (((-688) $ (-100)) 7 T ELT)) (-1989 (((-628 (-99)) $) 14 T ELT)) (-2424 (((-83) $) 32 T ELT)) (-2425 (((-628 $) |#1| (-859)) 33 T ELT)) (-1688 (($ $) 6 T ELT))) +(((-685 |#1|) (-111) (-1006)) (T -685)) +((-2425 (*1 *2 *3 *4) (-12 (-5 *4 (-859)) (-4 *3 (-1006)) (-5 *2 (-628 *1)) (-4 *1 (-685 *3)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1006)) (-5 *2 (-83))))) +(-13 (-507) (-10 -8 (-15 -2425 ((-628 $) |t#1| (-859))) (-15 -2424 ((-83) $)))) +(((-145) . T) ((-460) . T) ((-507) . T) ((-764) . T)) +((-3901 (((-2 (|:| -1999 (-626 (-479))) (|:| |basisDen| (-479)) (|:| |basisInv| (-626 (-479)))) (-479)) 72 T ELT)) (-3900 (((-2 (|:| -1999 (-626 (-479))) (|:| |basisDen| (-479)) (|:| |basisInv| (-626 (-479))))) 70 T ELT)) (-3739 (((-479)) 86 T ELT))) +(((-686 |#1| |#2|) (-10 -7 (-15 -3739 ((-479))) (-15 -3900 ((-2 (|:| -1999 (-626 (-479))) (|:| |basisDen| (-479)) (|:| |basisInv| (-626 (-479)))))) (-15 -3901 ((-2 (|:| -1999 (-626 (-479))) (|:| |basisDen| (-479)) (|:| |basisInv| (-626 (-479)))) (-479)))) (-1145 (-479)) (-347 (-479) |#1|)) (T -686)) +((-3901 (*1 *2 *3) (-12 (-5 *3 (-479)) (-4 *4 (-1145 *3)) (-5 *2 (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-686 *4 *5)) (-4 *5 (-347 *3 *4)))) (-3900 (*1 *2) (-12 (-4 *3 (-1145 (-479))) (-5 *2 (-2 (|:| -1999 (-626 (-479))) (|:| |basisDen| (-479)) (|:| |basisInv| (-626 (-479))))) (-5 *1 (-686 *3 *4)) (-4 *4 (-347 (-479) *3)))) (-3739 (*1 *2) (-12 (-4 *3 (-1145 *2)) (-5 *2 (-479)) (-5 *1 (-686 *3 *4)) (-4 *4 (-347 *2 *3))))) +((-2493 (((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-851 |#1|))) 19 T ELT) (((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-851 |#1|)) (-579 (-1080))) 18 T ELT)) (-3555 (((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-851 |#1|))) 21 T ELT) (((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-851 |#1|)) (-579 (-1080))) 20 T ELT))) +(((-687 |#1|) (-10 -7 (-15 -2493 ((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-851 |#1|)) (-579 (-1080)))) (-15 -2493 ((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-851 |#1|)))) (-15 -3555 ((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-851 |#1|)) (-579 (-1080)))) (-15 -3555 ((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-851 |#1|))))) (-490)) (T -687)) +((-3555 (*1 *2 *3) (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *4)))))) (-5 *1 (-687 *4)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-579 (-1080))) (-4 *5 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *5)))))) (-5 *1 (-687 *5)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *4)))))) (-5 *1 (-687 *4)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-579 (-1080))) (-4 *5 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *5)))))) (-5 *1 (-687 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2468 (($ $ $) 10 T ELT)) (-1300 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2426 (($ $ (-479)) 11 T ELT)) (-3706 (($) NIL T CONST)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($ $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3128 (($ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 6 T CONST)) (-2651 (($) NIL T CONST)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-688)) NIL T ELT) (($ $ (-824)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-688) (-13 (-711) (-659) (-10 -8 (-15 -2548 ($ $ $)) (-15 -2549 ($ $ $)) (-15 -3128 ($ $ $)) (-15 -2864 ((-2 (|:| -1961 $) (|:| -2887 $)) $ $)) (-15 -3448 ((-3 $ "failed") $ $)) (-15 -2426 ($ $ (-479))) (-15 -2979 ($ $)) (-6 (-3979 "*"))))) (T -688)) +((-2548 (*1 *1 *1 *1) (-5 *1 (-688))) (-2549 (*1 *1 *1 *1) (-5 *1 (-688))) (-3128 (*1 *1 *1 *1) (-5 *1 (-688))) (-2864 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1961 (-688)) (|:| -2887 (-688)))) (-5 *1 (-688)))) (-3448 (*1 *1 *1 *1) (|partial| -5 *1 (-688))) (-2426 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-688)))) (-2979 (*1 *1 *1) (-5 *1 (-688)))) +((-479) (|%not| (|%ilt| |#1| 0))) +((-3555 (((-3 |#2| "failed") |#2| |#2| (-84) (-1080)) 37 T ELT))) +(((-689 |#1| |#2|) (-10 -7 (-15 -3555 ((-3 |#2| "failed") |#2| |#2| (-84) (-1080)))) (-13 (-254) (-944 (-479)) (-576 (-479)) (-118)) (-13 (-29 |#1|) (-1105) (-865))) (T -689)) +((-3555 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *1 (-689 *5 *2)) (-4 *2 (-13 (-29 *5) (-1105) (-865)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 7 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 9 T ELT))) +(((-690) (-1006)) (T -690)) +NIL +((-3928 (((-690) |#1|) 8 T ELT))) +(((-691 |#1|) (-10 -7 (-15 -3928 ((-690) |#1|))) (-1119)) (T -691)) +((-3928 (*1 *2 *3) (-12 (-5 *2 (-690)) (-5 *1 (-691 *3)) (-4 *3 (-1119))))) +((-3116 ((|#2| |#4|) 35 T ELT))) +(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3116 (|#2| |#4|))) (-386) (-1145 |#1|) (-657 |#1| |#2|) (-1145 |#3|)) (T -692)) +((-3116 (*1 *2 *3) (-12 (-4 *4 (-386)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-692 *4 *2 *5 *3)) (-4 *3 (-1145 *5))))) +((-3449 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2429 (((-1175) (-1063) (-1063) |#4| |#5|) 33 T ELT)) (-2427 ((|#4| |#4| |#5|) 74 T ELT)) (-2428 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#5|) 79 T ELT)) (-2430 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|) 16 T ELT))) +(((-693 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3449 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2427 (|#4| |#4| |#5|)) (-15 -2428 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#5|)) (-15 -2429 ((-1175) (-1063) (-1063) |#4| |#5|)) (-15 -2430 ((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|) (-976 |#1| |#2| |#3| |#4|)) (T -693)) +((-2430 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) (-5 *1 (-693 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-2429 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1063)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *4 (-970 *6 *7 *8)) (-5 *2 (-1175)) (-5 *1 (-693 *6 *7 *8 *4 *5)) (-4 *5 (-976 *6 *7 *8 *4)))) (-2428 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-693 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-2427 (*1 *2 *2 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *2 (-970 *4 *5 *6)) (-5 *1 (-693 *4 *5 *6 *2 *3)) (-4 *3 (-976 *4 *5 *6 *2)))) (-3449 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-693 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) +((-3141 (((-3 (-1075 (-1075 |#1|)) "failed") |#4|) 53 T ELT)) (-2431 (((-579 |#4|) |#4|) 22 T ELT)) (-3910 ((|#4| |#4|) 17 T ELT))) +(((-694 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2431 ((-579 |#4|) |#4|)) (-15 -3141 ((-3 (-1075 (-1075 |#1|)) "failed") |#4|)) (-15 -3910 (|#4| |#4|))) (-295) (-276 |#1|) (-1145 |#2|) (-1145 |#3|) (-824)) (T -694)) +((-3910 (*1 *2 *2) (-12 (-4 *3 (-295)) (-4 *4 (-276 *3)) (-4 *5 (-1145 *4)) (-5 *1 (-694 *3 *4 *5 *2 *6)) (-4 *2 (-1145 *5)) (-14 *6 (-824)))) (-3141 (*1 *2 *3) (|partial| -12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1145 *5)) (-5 *2 (-1075 (-1075 *4))) (-5 *1 (-694 *4 *5 *6 *3 *7)) (-4 *3 (-1145 *6)) (-14 *7 (-824)))) (-2431 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1145 *5)) (-5 *2 (-579 *3)) (-5 *1 (-694 *4 *5 *6 *3 *7)) (-4 *3 (-1145 *6)) (-14 *7 (-824))))) +((-2432 (((-2 (|:| |deter| (-579 (-1075 |#5|))) (|:| |dterm| (-579 (-579 (-2 (|:| -3063 (-688)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-579 |#1|)) (|:| |nlead| (-579 |#5|))) (-1075 |#5|) (-579 |#1|) (-579 |#5|)) 72 T ELT)) (-2433 (((-579 (-688)) |#1|) 20 T ELT))) +(((-695 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2432 ((-2 (|:| |deter| (-579 (-1075 |#5|))) (|:| |dterm| (-579 (-579 (-2 (|:| -3063 (-688)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-579 |#1|)) (|:| |nlead| (-579 |#5|))) (-1075 |#5|) (-579 |#1|) (-579 |#5|))) (-15 -2433 ((-579 (-688)) |#1|))) (-1145 |#4|) (-711) (-750) (-254) (-855 |#4| |#2| |#3|)) (T -695)) +((-2433 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) (-5 *2 (-579 (-688))) (-5 *1 (-695 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *6)) (-4 *7 (-855 *6 *4 *5)))) (-2432 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1145 *9)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *9 (-254)) (-4 *10 (-855 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-579 (-1075 *10))) (|:| |dterm| (-579 (-579 (-2 (|:| -3063 (-688)) (|:| |pcoef| *10))))) (|:| |nfacts| (-579 *6)) (|:| |nlead| (-579 *10)))) (-5 *1 (-695 *6 *7 *8 *9 *10)) (-5 *3 (-1075 *10)) (-5 *4 (-579 *6)) (-5 *5 (-579 *10))))) +((-2436 (((-579 (-2 (|:| |outval| |#1|) (|:| |outmult| (-479)) (|:| |outvect| (-579 (-626 |#1|))))) (-626 (-344 (-479))) |#1|) 31 T ELT)) (-2435 (((-579 |#1|) (-626 (-344 (-479))) |#1|) 21 T ELT)) (-2434 (((-851 (-344 (-479))) (-626 (-344 (-479))) (-1080)) 18 T ELT) (((-851 (-344 (-479))) (-626 (-344 (-479)))) 17 T ELT))) +(((-696 |#1|) (-10 -7 (-15 -2434 ((-851 (-344 (-479))) (-626 (-344 (-479))))) (-15 -2434 ((-851 (-344 (-479))) (-626 (-344 (-479))) (-1080))) (-15 -2435 ((-579 |#1|) (-626 (-344 (-479))) |#1|)) (-15 -2436 ((-579 (-2 (|:| |outval| |#1|) (|:| |outmult| (-479)) (|:| |outvect| (-579 (-626 |#1|))))) (-626 (-344 (-479))) |#1|))) (-13 (-308) (-749))) (T -696)) +((-2436 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-344 (-479)))) (-5 *2 (-579 (-2 (|:| |outval| *4) (|:| |outmult| (-479)) (|:| |outvect| (-579 (-626 *4)))))) (-5 *1 (-696 *4)) (-4 *4 (-13 (-308) (-749))))) (-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-344 (-479)))) (-5 *2 (-579 *4)) (-5 *1 (-696 *4)) (-4 *4 (-13 (-308) (-749))))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-626 (-344 (-479)))) (-5 *4 (-1080)) (-5 *2 (-851 (-344 (-479)))) (-5 *1 (-696 *5)) (-4 *5 (-13 (-308) (-749))))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-626 (-344 (-479)))) (-5 *2 (-851 (-344 (-479)))) (-5 *1 (-696 *4)) (-4 *4 (-13 (-308) (-749)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 36 T ELT)) (-3066 (((-579 |#2|) $) NIL T ELT)) (-3068 (((-1075 $) $ |#2|) NIL T ELT) (((-1075 |#1|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 |#2|)) NIL T ELT)) (-3779 (($ $) 30 T ELT)) (-3150 (((-83) $ $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3737 (($ $ $) 110 (|has| |#1| (-490)) ELT)) (-3132 (((-579 $) $ $) 123 (|has| |#1| (-490)) ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-851 (-344 (-479)))) NIL (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#2| (-549 (-1080)))) ELT) (((-3 $ #1#) (-851 (-479))) NIL (OR (-12 (|has| |#1| (-38 (-479))) (|has| |#2| (-549 (-1080))) (-2545 (|has| |#1| (-38 (-344 (-479)))))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#2| (-549 (-1080))))) ELT) (((-3 $ #1#) (-851 |#1|)) NIL (OR (-12 (|has| |#2| (-549 (-1080))) (-2545 (|has| |#1| (-38 (-344 (-479))))) (-2545 (|has| |#1| (-38 (-479))))) (-12 (|has| |#1| (-38 (-479))) (|has| |#2| (-549 (-1080))) (-2545 (|has| |#1| (-38 (-344 (-479))))) (-2545 (|has| |#1| (-478)))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#2| (-549 (-1080))) (-2545 (|has| |#1| (-898 (-479)))))) ELT) (((-3 (-1029 |#1| |#2|) #1#) $) 21 T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) ((|#2| $) NIL T ELT) (($ (-851 (-344 (-479)))) NIL (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#2| (-549 (-1080)))) ELT) (($ (-851 (-479))) NIL (OR (-12 (|has| |#1| (-38 (-479))) (|has| |#2| (-549 (-1080))) (-2545 (|has| |#1| (-38 (-344 (-479)))))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#2| (-549 (-1080))))) ELT) (($ (-851 |#1|)) NIL (OR (-12 (|has| |#2| (-549 (-1080))) (-2545 (|has| |#1| (-38 (-344 (-479))))) (-2545 (|has| |#1| (-38 (-479))))) (-12 (|has| |#1| (-38 (-479))) (|has| |#2| (-549 (-1080))) (-2545 (|has| |#1| (-38 (-344 (-479))))) (-2545 (|has| |#1| (-478)))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#2| (-549 (-1080))) (-2545 (|has| |#1| (-898 (-479)))))) ELT) (((-1029 |#1| |#2|) $) NIL T ELT)) (-3738 (($ $ $ |#2|) NIL (|has| |#1| (-144)) ELT) (($ $ $) 121 (|has| |#1| (-490)) ELT)) (-3941 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3676 (((-83) $ $) NIL T ELT) (((-83) $ (-579 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3156 (((-83) $) NIL T ELT)) (-3734 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 81 T ELT)) (-3127 (($ $) 136 (|has| |#1| (-386)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT) (($ $ |#2|) NIL (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-815)) ELT)) (-3138 (($ $) NIL (|has| |#1| (-490)) ELT)) (-3139 (($ $) NIL (|has| |#1| (-490)) ELT)) (-3149 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3148 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1612 (($ $ |#1| (-464 |#2|) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| |#1| (-790 (-324))) (|has| |#2| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| |#1| (-790 (-479))) (|has| |#2| (-790 (-479)))) ELT)) (-2397 (((-83) $) 57 T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3677 (((-83) $ $) NIL T ELT) (((-83) $ (-579 $)) NIL T ELT)) (-3129 (($ $ $ $ $) 107 (|has| |#1| (-490)) ELT)) (-3164 ((|#2| $) 22 T ELT)) (-3069 (($ (-1075 |#1|) |#2|) NIL T ELT) (($ (-1075 $) |#2|) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-464 |#2|)) NIL T ELT) (($ $ |#2| (-688)) 38 T ELT) (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT)) (-3143 (($ $ $) 63 T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ |#2|) NIL T ELT)) (-3157 (((-83) $) NIL T ELT)) (-2805 (((-464 |#2|) $) NIL T ELT) (((-688) $ |#2|) NIL T ELT) (((-579 (-688)) $ (-579 |#2|)) NIL T ELT)) (-3163 (((-688) $) 23 T ELT)) (-1613 (($ (-1 (-464 |#2|) (-464 |#2|)) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3067 (((-3 |#2| #1#) $) NIL T ELT)) (-3124 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3125 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3152 (((-579 $) $) NIL T ELT)) (-3155 (($ $) 39 T ELT)) (-3126 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3153 (((-579 $) $) 43 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-3154 (($ $) 41 T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3142 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3463 (-688))) $ $) 96 T ELT)) (-3144 (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $) 78 T ELT) (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $ |#2|) NIL T ELT)) (-3145 (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -2887 $)) $ $) NIL T ELT) (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -2887 $)) $ $ |#2|) NIL T ELT)) (-3147 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3146 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3174 (($ $ $) 125 (|has| |#1| (-490)) ELT)) (-3160 (((-579 $) $) 32 T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| |#2|) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3673 (((-83) $ $) NIL T ELT) (((-83) $ (-579 $)) NIL T ELT)) (-3668 (($ $ $) NIL T ELT)) (-3428 (($ $) 24 T ELT)) (-3681 (((-83) $ $) NIL T ELT)) (-3674 (((-83) $ $) NIL T ELT) (((-83) $ (-579 $)) NIL T ELT)) (-3669 (($ $ $) NIL T ELT)) (-3162 (($ $) 26 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3133 (((-2 (|:| -3128 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-490)) ELT)) (-3134 (((-2 (|:| -3128 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-490)) ELT)) (-1785 (((-83) $) 56 T ELT)) (-1784 ((|#1| $) 58 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-386)) ELT)) (-3128 ((|#1| |#1| $) 133 (|has| |#1| (-386)) ELT) (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-815)) ELT)) (-3135 (((-2 (|:| -3128 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-490)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-490)) ELT)) (-3136 (($ $ |#1|) 129 (|has| |#1| (-490)) ELT) (($ $ $) NIL (|has| |#1| (-490)) ELT)) (-3137 (($ $ |#1|) 128 (|has| |#1| (-490)) ELT) (($ $ $) NIL (|has| |#1| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-579 |#2|) (-579 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-579 |#2|) (-579 $)) NIL T ELT)) (-3739 (($ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT) (($ $ |#2| (-688)) NIL T ELT) (($ $ (-579 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3930 (((-464 |#2|) $) NIL T ELT) (((-688) $ |#2|) 45 T ELT) (((-579 (-688)) $ (-579 |#2|)) NIL T ELT)) (-3161 (($ $) NIL T ELT)) (-3159 (($ $) 35 T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| |#1| (-549 (-794 (-324)))) (|has| |#2| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| |#1| (-549 (-794 (-479)))) (|has| |#2| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| |#1| (-549 (-468))) (|has| |#2| (-549 (-468)))) ELT) (($ (-851 (-344 (-479)))) NIL (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#2| (-549 (-1080)))) ELT) (($ (-851 (-479))) NIL (OR (-12 (|has| |#1| (-38 (-479))) (|has| |#2| (-549 (-1080))) (-2545 (|has| |#1| (-38 (-344 (-479)))))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#2| (-549 (-1080))))) ELT) (($ (-851 |#1|)) NIL (|has| |#2| (-549 (-1080))) ELT) (((-1063) $) NIL (-12 (|has| |#1| (-944 (-479))) (|has| |#2| (-549 (-1080)))) ELT) (((-851 |#1|) $) NIL (|has| |#2| (-549 (-1080))) ELT)) (-2802 ((|#1| $) 132 (|has| |#1| (-386)) ELT) (($ $ |#2|) NIL (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-851 |#1|) $) NIL (|has| |#2| (-549 (-1080))) ELT) (((-1029 |#1| |#2|) $) 18 T ELT) (($ (-1029 |#1| |#2|)) 19 T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-464 |#2|)) NIL T ELT) (($ $ |#2| (-688)) 47 T ELT) (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) 13 T CONST)) (-3151 (((-3 (-83) #1#) $ $) NIL T ELT)) (-2651 (($) 37 T CONST)) (-3130 (($ $ $ $ (-688)) 105 (|has| |#1| (-490)) ELT)) (-3131 (($ $ $ (-688)) 104 (|has| |#1| (-490)) ELT)) (-2654 (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT) (($ $ |#2| (-688)) NIL T ELT) (($ $ (-579 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3821 (($ $ $) 85 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 70 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-697 |#1| |#2|) (-13 (-970 |#1| (-464 |#2|) |#2|) (-548 (-1029 |#1| |#2|)) (-944 (-1029 |#1| |#2|))) (-955) (-750)) (T -697)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 12 T ELT)) (-3749 (((-1169 |#1|) $ (-688)) NIL T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3747 (($ (-1075 |#1|)) NIL T ELT)) (-3068 (((-1075 $) $ (-987)) NIL T ELT) (((-1075 |#1|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-987))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2440 (((-579 $) $ $) 54 (|has| |#1| (-490)) ELT)) (-3737 (($ $ $) 50 (|has| |#1| (-490)) ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3743 (($ $ (-688)) NIL T ELT)) (-3742 (($ $ (-688)) NIL T ELT)) (-3733 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-386)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-987) #1#) $) NIL T ELT) (((-3 (-1075 |#1|) #1#) $) 10 T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-987) $) NIL T ELT) (((-1075 |#1|) $) NIL T ELT)) (-3738 (($ $ $ (-987)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) 58 (|has| |#1| (-144)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3741 (($ $ $) NIL T ELT)) (-3735 (($ $ $) 87 (|has| |#1| (-490)) ELT)) (-3734 (((-2 (|:| -3936 |#1|) (|:| -1961 $) (|:| -2887 $)) $ $) 86 (|has| |#1| (-490)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT) (($ $ (-987)) NIL (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| (-688) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-987) (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-987) (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-3754 (((-688) $ $) NIL (|has| |#1| (-490)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-1056)) ELT)) (-3069 (($ (-1075 |#1|) (-987)) NIL T ELT) (($ (-1075 $) (-987)) NIL T ELT)) (-3759 (($ $ (-688)) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-688)) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-3143 (($ $ $) 27 T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-987)) NIL T ELT) (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-2805 (((-688) $) NIL T ELT) (((-688) $ (-987)) NIL T ELT) (((-579 (-688)) $ (-579 (-987))) NIL T ELT)) (-1613 (($ (-1 (-688) (-688)) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3748 (((-1075 |#1|) $) NIL T ELT)) (-3067 (((-3 (-987) #1#) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3142 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3463 (-688))) $ $) 37 T ELT)) (-2442 (($ $ $) 41 T ELT)) (-2441 (($ $ $) 47 T ELT)) (-3144 (((-2 (|:| -3936 |#1|) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $) 46 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3174 (($ $ $) 56 (|has| |#1| (-490)) ELT)) (-3744 (((-2 (|:| -1961 $) (|:| -2887 $)) $ (-688)) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-987)) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3794 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3428 (($) NIL (|has| |#1| (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-3133 (((-2 (|:| -3128 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-490)) ELT)) (-3134 (((-2 (|:| -3128 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-490)) ELT)) (-2437 (((-2 (|:| -3738 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-490)) ELT)) (-2438 (((-2 (|:| -3738 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-490)) ELT)) (-1785 (((-83) $) 13 T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3720 (($ $ (-688) |#1| $) 26 T ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-815)) ELT)) (-3135 (((-2 (|:| -3128 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-490)) ELT)) (-2439 (((-2 (|:| -3738 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-490)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-987) |#1|) NIL T ELT) (($ $ (-579 (-987)) (-579 |#1|)) NIL T ELT) (($ $ (-987) $) NIL T ELT) (($ $ (-579 (-987)) (-579 $)) NIL T ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-344 $) (-344 $) (-344 $)) NIL (|has| |#1| (-490)) ELT) ((|#1| (-344 $) |#1|) NIL (|has| |#1| (-308)) ELT) (((-344 $) $ (-344 $)) NIL (|has| |#1| (-490)) ELT)) (-3746 (((-3 $ #1#) $ (-688)) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3739 (($ $ (-987)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) NIL (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987))) NIL T ELT) (($ $ (-987)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-3930 (((-688) $) NIL T ELT) (((-688) $ (-987)) NIL T ELT) (((-579 (-688)) $ (-579 (-987))) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-987) (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-987) (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-987) (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT) (($ $ (-987)) NIL (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3736 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT) (((-3 (-344 $) #1#) (-344 $) $) NIL (|has| |#1| (-490)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-987)) NIL T ELT) (((-1075 |#1|) $) 7 T ELT) (($ (-1075 |#1|)) 8 T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-688)) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) 28 T CONST)) (-2651 (($) 32 T CONST)) (-2654 (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987))) NIL T ELT) (($ $ (-987)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-698 |#1|) (-13 (-1145 |#1|) (-548 (-1075 |#1|)) (-944 (-1075 |#1|)) (-10 -8 (-15 -3720 ($ $ (-688) |#1| $)) (-15 -3143 ($ $ $)) (-15 -3142 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3463 (-688))) $ $)) (-15 -2442 ($ $ $)) (-15 -3144 ((-2 (|:| -3936 |#1|) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $)) (-15 -2441 ($ $ $)) (IF (|has| |#1| (-490)) (PROGN (-15 -2440 ((-579 $) $ $)) (-15 -3174 ($ $ $)) (-15 -3135 ((-2 (|:| -3128 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3134 ((-2 (|:| -3128 $) (|:| |coef1| $)) $ $)) (-15 -3133 ((-2 (|:| -3128 $) (|:| |coef2| $)) $ $)) (-15 -2439 ((-2 (|:| -3738 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2438 ((-2 (|:| -3738 |#1|) (|:| |coef1| $)) $ $)) (-15 -2437 ((-2 (|:| -3738 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-955)) (T -698)) +((-3720 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-688)) (-5 *1 (-698 *3)) (-4 *3 (-955)))) (-3143 (*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-955)))) (-3142 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-698 *3)) (|:| |polden| *3) (|:| -3463 (-688)))) (-5 *1 (-698 *3)) (-4 *3 (-955)))) (-2442 (*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-955)))) (-3144 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3936 *3) (|:| |gap| (-688)) (|:| -1961 (-698 *3)) (|:| -2887 (-698 *3)))) (-5 *1 (-698 *3)) (-4 *3 (-955)))) (-2441 (*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-955)))) (-2440 (*1 *2 *1 *1) (-12 (-5 *2 (-579 (-698 *3))) (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955)))) (-3174 (*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-490)) (-4 *2 (-955)))) (-3135 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3128 (-698 *3)) (|:| |coef1| (-698 *3)) (|:| |coef2| (-698 *3)))) (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955)))) (-3134 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3128 (-698 *3)) (|:| |coef1| (-698 *3)))) (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955)))) (-3133 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3128 (-698 *3)) (|:| |coef2| (-698 *3)))) (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955)))) (-2439 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3738 *3) (|:| |coef1| (-698 *3)) (|:| |coef2| (-698 *3)))) (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955)))) (-2438 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3738 *3) (|:| |coef1| (-698 *3)))) (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955)))) (-2437 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3738 *3) (|:| |coef2| (-698 *3)))) (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955))))) +((-3940 (((-698 |#2|) (-1 |#2| |#1|) (-698 |#1|)) 13 T ELT))) +(((-699 |#1| |#2|) (-10 -7 (-15 -3940 ((-698 |#2|) (-1 |#2| |#1|) (-698 |#1|)))) (-955) (-955)) (T -699)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-698 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-5 *2 (-698 *6)) (-5 *1 (-699 *5 *6))))) +((-2444 ((|#1| (-688) |#1|) 33 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2786 ((|#1| (-688) |#1|) 23 T ELT)) (-2443 ((|#1| (-688) |#1|) 35 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-700 |#1|) (-10 -7 (-15 -2786 (|#1| (-688) |#1|)) (IF (|has| |#1| (-38 (-344 (-479)))) (PROGN (-15 -2443 (|#1| (-688) |#1|)) (-15 -2444 (|#1| (-688) |#1|))) |%noBranch|)) (-144)) (T -700)) +((-2444 (*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-700 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-144)))) (-2443 (*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-700 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-144)))) (-2786 (*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-700 *2)) (-4 *2 (-144))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |#4|)))) (-579 |#4|)) 90 T ELT)) (-3664 (((-579 $) (-579 |#4|)) 91 T ELT) (((-579 $) (-579 |#4|) (-83)) 118 T ELT)) (-3066 (((-579 |#3|) $) 37 T ELT)) (-2893 (((-83) $) 30 T ELT)) (-2884 (((-83) $) 21 (|has| |#1| (-490)) ELT)) (-3675 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3670 ((|#4| |#4| $) 97 T ELT)) (-3757 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| $) 133 T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3692 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3977)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3706 (($) 46 T CONST)) (-2889 (((-83) $) 26 (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) 28 (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) 27 (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) 29 (|has| |#1| (-490)) ELT)) (-3671 (((-579 |#4|) (-579 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) 22 (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) 23 (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ "failed") (-579 |#4|)) 40 T ELT)) (-3140 (($ (-579 |#4|)) 39 T ELT)) (-3781 (((-3 $ #1#) $) 87 T ELT)) (-3667 ((|#4| |#4| $) 94 T ELT)) (-1341 (($ $) 69 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#4| $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-490)) ELT)) (-3676 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3665 ((|#4| |#4| $) 92 T ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3977)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#4|)) (|:| -1690 (-579 |#4|))) $) 110 T ELT)) (-3181 (((-83) |#4| $) 143 T ELT)) (-3179 (((-83) |#4| $) 140 T ELT)) (-3182 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2874 (((-579 |#4|) $) 53 (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3164 ((|#3| $) 38 T ELT)) (-2593 (((-579 |#4|) $) 54 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2899 (((-579 |#3|) $) 36 T ELT)) (-2898 (((-83) |#3| $) 35 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3175 (((-3 |#4| (-579 $)) |#4| |#4| $) 135 T ELT)) (-3174 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| |#4| $) 134 T ELT)) (-3780 (((-3 |#4| #1#) $) 88 T ELT)) (-3176 (((-579 $) |#4| $) 136 T ELT)) (-3178 (((-3 (-83) (-579 $)) |#4| $) 139 T ELT)) (-3177 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3222 (((-579 $) |#4| $) 132 T ELT) (((-579 $) (-579 |#4|) $) 131 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 130 T ELT) (((-579 $) |#4| (-579 $)) 129 T ELT)) (-3422 (($ |#4| $) 124 T ELT) (($ (-579 |#4|) $) 123 T ELT)) (-3679 (((-579 |#4|) $) 112 T ELT)) (-3673 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3668 ((|#4| |#4| $) 95 T ELT)) (-3681 (((-83) $ $) 115 T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-490)) ELT)) (-3674 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3669 ((|#4| |#4| $) 96 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3783 (((-3 |#4| #1#) $) 89 T ELT)) (-1342 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3661 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3751 (($ $ |#4|) 82 T ELT) (((-579 $) |#4| $) 122 T ELT) (((-579 $) |#4| (-579 $)) 121 T ELT) (((-579 $) (-579 |#4|) $) 120 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 119 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) 42 T ELT)) (-3385 (((-83) $) 45 T ELT)) (-3547 (($) 44 T ELT)) (-3930 (((-688) $) 111 T ELT)) (-1934 (((-688) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 43 T ELT)) (-3954 (((-468) $) 70 (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) 61 T ELT)) (-2895 (($ $ |#3|) 32 T ELT)) (-2897 (($ $ |#3|) 34 T ELT)) (-3666 (($ $) 93 T ELT)) (-2896 (($ $ |#3|) 33 T ELT)) (-3928 (((-766) $) 13 T ELT) (((-579 |#4|) $) 41 T ELT)) (-3660 (((-688) $) 81 (|has| |#3| (-314)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3672 (((-83) $ (-1 (-83) |#4| (-579 |#4|))) 103 T ELT)) (-3173 (((-579 $) |#4| $) 128 T ELT) (((-579 $) |#4| (-579 $)) 127 T ELT) (((-579 $) (-579 |#4|) $) 126 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 125 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 |#3|) $) 86 T ELT)) (-3180 (((-83) |#4| $) 142 T ELT)) (-3915 (((-83) |#3| $) 85 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3939 (((-688) $) 47 (|has| $ (-6 -3977)) ELT))) +(((-701 |#1| |#2| |#3| |#4|) (-111) (-386) (-711) (-750) (-970 |t#1| |t#2| |t#3|)) (T -701)) +NIL +(-13 (-976 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-548 (-579 |#4|)) . T) ((-548 (-766)) . T) ((-122 |#4|) . T) ((-549 (-468)) |has| |#4| (-549 (-468))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-423 |#4|) . T) ((-448 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-883 |#1| |#2| |#3| |#4|) . T) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1119) . T)) +((-2447 (((-3 (-324) #1="failed") (-261 |#1|) (-824)) 60 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-3 (-324) #1#) (-261 |#1|)) 52 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-3 (-324) #1#) (-344 (-851 |#1|)) (-824)) 39 (|has| |#1| (-490)) ELT) (((-3 (-324) #1#) (-344 (-851 |#1|))) 35 (|has| |#1| (-490)) ELT) (((-3 (-324) #1#) (-851 |#1|) (-824)) 30 (|has| |#1| (-955)) ELT) (((-3 (-324) #1#) (-851 |#1|)) 24 (|has| |#1| (-955)) ELT)) (-2445 (((-324) (-261 |#1|) (-824)) 92 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-324) (-261 |#1|)) 87 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-324) (-344 (-851 |#1|)) (-824)) 84 (|has| |#1| (-490)) ELT) (((-324) (-344 (-851 |#1|))) 81 (|has| |#1| (-490)) ELT) (((-324) (-851 |#1|) (-824)) 80 (|has| |#1| (-955)) ELT) (((-324) (-851 |#1|)) 77 (|has| |#1| (-955)) ELT) (((-324) |#1| (-824)) 73 T ELT) (((-324) |#1|) 22 T ELT)) (-2448 (((-3 (-140 (-324)) #1#) (-261 (-140 |#1|)) (-824)) 68 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-3 (-140 (-324)) #1#) (-261 (-140 |#1|))) 58 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-3 (-140 (-324)) #1#) (-261 |#1|) (-824)) 61 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-3 (-140 (-324)) #1#) (-261 |#1|)) 59 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-3 (-140 (-324)) #1#) (-344 (-851 (-140 |#1|))) (-824)) 44 (|has| |#1| (-490)) ELT) (((-3 (-140 (-324)) #1#) (-344 (-851 (-140 |#1|)))) 43 (|has| |#1| (-490)) ELT) (((-3 (-140 (-324)) #1#) (-344 (-851 |#1|)) (-824)) 38 (|has| |#1| (-490)) ELT) (((-3 (-140 (-324)) #1#) (-344 (-851 |#1|))) 37 (|has| |#1| (-490)) ELT) (((-3 (-140 (-324)) #1#) (-851 |#1|) (-824)) 28 (|has| |#1| (-955)) ELT) (((-3 (-140 (-324)) #1#) (-851 |#1|)) 26 (|has| |#1| (-955)) ELT) (((-3 (-140 (-324)) #1#) (-851 (-140 |#1|)) (-824)) 18 (|has| |#1| (-144)) ELT) (((-3 (-140 (-324)) #1#) (-851 (-140 |#1|))) 15 (|has| |#1| (-144)) ELT)) (-2446 (((-140 (-324)) (-261 (-140 |#1|)) (-824)) 95 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-140 (-324)) (-261 (-140 |#1|))) 94 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-140 (-324)) (-261 |#1|) (-824)) 93 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-140 (-324)) (-261 |#1|)) 91 (-12 (|has| |#1| (-490)) (|has| |#1| (-750))) ELT) (((-140 (-324)) (-344 (-851 (-140 |#1|))) (-824)) 86 (|has| |#1| (-490)) ELT) (((-140 (-324)) (-344 (-851 (-140 |#1|)))) 85 (|has| |#1| (-490)) ELT) (((-140 (-324)) (-344 (-851 |#1|)) (-824)) 83 (|has| |#1| (-490)) ELT) (((-140 (-324)) (-344 (-851 |#1|))) 82 (|has| |#1| (-490)) ELT) (((-140 (-324)) (-851 |#1|) (-824)) 79 (|has| |#1| (-955)) ELT) (((-140 (-324)) (-851 |#1|)) 78 (|has| |#1| (-955)) ELT) (((-140 (-324)) (-851 (-140 |#1|)) (-824)) 75 (|has| |#1| (-144)) ELT) (((-140 (-324)) (-851 (-140 |#1|))) 74 (|has| |#1| (-144)) ELT) (((-140 (-324)) (-140 |#1|) (-824)) 17 (|has| |#1| (-144)) ELT) (((-140 (-324)) (-140 |#1|)) 13 (|has| |#1| (-144)) ELT) (((-140 (-324)) |#1| (-824)) 27 T ELT) (((-140 (-324)) |#1|) 25 T ELT))) +(((-702 |#1|) (-10 -7 (-15 -2445 ((-324) |#1|)) (-15 -2445 ((-324) |#1| (-824))) (-15 -2446 ((-140 (-324)) |#1|)) (-15 -2446 ((-140 (-324)) |#1| (-824))) (IF (|has| |#1| (-144)) (PROGN (-15 -2446 ((-140 (-324)) (-140 |#1|))) (-15 -2446 ((-140 (-324)) (-140 |#1|) (-824))) (-15 -2446 ((-140 (-324)) (-851 (-140 |#1|)))) (-15 -2446 ((-140 (-324)) (-851 (-140 |#1|)) (-824)))) |%noBranch|) (IF (|has| |#1| (-955)) (PROGN (-15 -2445 ((-324) (-851 |#1|))) (-15 -2445 ((-324) (-851 |#1|) (-824))) (-15 -2446 ((-140 (-324)) (-851 |#1|))) (-15 -2446 ((-140 (-324)) (-851 |#1|) (-824)))) |%noBranch|) (IF (|has| |#1| (-490)) (PROGN (-15 -2445 ((-324) (-344 (-851 |#1|)))) (-15 -2445 ((-324) (-344 (-851 |#1|)) (-824))) (-15 -2446 ((-140 (-324)) (-344 (-851 |#1|)))) (-15 -2446 ((-140 (-324)) (-344 (-851 |#1|)) (-824))) (-15 -2446 ((-140 (-324)) (-344 (-851 (-140 |#1|))))) (-15 -2446 ((-140 (-324)) (-344 (-851 (-140 |#1|))) (-824))) (IF (|has| |#1| (-750)) (PROGN (-15 -2445 ((-324) (-261 |#1|))) (-15 -2445 ((-324) (-261 |#1|) (-824))) (-15 -2446 ((-140 (-324)) (-261 |#1|))) (-15 -2446 ((-140 (-324)) (-261 |#1|) (-824))) (-15 -2446 ((-140 (-324)) (-261 (-140 |#1|)))) (-15 -2446 ((-140 (-324)) (-261 (-140 |#1|)) (-824)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-15 -2448 ((-3 (-140 (-324)) #1="failed") (-851 (-140 |#1|)))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-851 (-140 |#1|)) (-824)))) |%noBranch|) (IF (|has| |#1| (-955)) (PROGN (-15 -2447 ((-3 (-324) #1#) (-851 |#1|))) (-15 -2447 ((-3 (-324) #1#) (-851 |#1|) (-824))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-851 |#1|))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-851 |#1|) (-824)))) |%noBranch|) (IF (|has| |#1| (-490)) (PROGN (-15 -2447 ((-3 (-324) #1#) (-344 (-851 |#1|)))) (-15 -2447 ((-3 (-324) #1#) (-344 (-851 |#1|)) (-824))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-344 (-851 |#1|)))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-344 (-851 |#1|)) (-824))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-344 (-851 (-140 |#1|))))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-344 (-851 (-140 |#1|))) (-824))) (IF (|has| |#1| (-750)) (PROGN (-15 -2447 ((-3 (-324) #1#) (-261 |#1|))) (-15 -2447 ((-3 (-324) #1#) (-261 |#1|) (-824))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-261 |#1|))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-261 |#1|) (-824))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-261 (-140 |#1|)))) (-15 -2448 ((-3 (-140 (-324)) #1#) (-261 (-140 |#1|)) (-824)))) |%noBranch|)) |%noBranch|)) (-549 (-324))) (T -702)) +((-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2448 (*1 *2 *3) (|partial| -12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-490)) (-4 *4 (-750)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2448 (*1 *2 *3) (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-490)) (-4 *4 (-750)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2447 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5)))) (-2447 (*1 *2 *3) (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-490)) (-4 *4 (-750)) (-4 *4 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *4)))) (-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-344 (-851 (-140 *5)))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2448 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 (-851 (-140 *4)))) (-4 *4 (-490)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2448 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2447 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5)))) (-2447 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-4 *4 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *4)))) (-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-851 *5)) (-5 *4 (-824)) (-4 *5 (-955)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2448 (*1 *2 *3) (|partial| -12 (-5 *3 (-851 *4)) (-4 *4 (-955)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2447 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-851 *5)) (-5 *4 (-824)) (-4 *5 (-955)) (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5)))) (-2447 (*1 *2 *3) (|partial| -12 (-5 *3 (-851 *4)) (-4 *4 (-955)) (-4 *4 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *4)))) (-2448 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-851 (-140 *5))) (-5 *4 (-824)) (-4 *5 (-144)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2448 (*1 *2 *3) (|partial| -12 (-5 *3 (-851 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-490)) (-4 *4 (-750)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-261 *5)) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-261 *4)) (-4 *4 (-490)) (-4 *4 (-750)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-261 *5)) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-261 *4)) (-4 *4 (-490)) (-4 *4 (-750)) (-4 *4 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 (-140 *5)))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-344 (-851 (-140 *4)))) (-4 *4 (-490)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-4 *4 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-824)) (-4 *5 (-955)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-851 *4)) (-4 *4 (-955)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-824)) (-4 *5 (-955)) (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-851 *4)) (-4 *4 (-955)) (-4 *4 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-851 (-140 *5))) (-5 *4 (-824)) (-4 *5 (-144)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-851 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-140 *5)) (-5 *4 (-824)) (-4 *5 (-144)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-140 *4)) (-4 *4 (-144)) (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-824)) (-5 *2 (-140 (-324))) (-5 *1 (-702 *3)) (-4 *3 (-549 (-324))))) (-2446 (*1 *2 *3) (-12 (-5 *2 (-140 (-324))) (-5 *1 (-702 *3)) (-4 *3 (-549 (-324))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *4 (-824)) (-5 *2 (-324)) (-5 *1 (-702 *3)) (-4 *3 (-549 *2)))) (-2445 (*1 *2 *3) (-12 (-5 *2 (-324)) (-5 *1 (-702 *3)) (-4 *3 (-549 *2))))) +((-2452 (((-824) (-1063)) 90 T ELT)) (-2454 (((-3 (-324) "failed") (-1063)) 36 T ELT)) (-2453 (((-324) (-1063)) 34 T ELT)) (-2450 (((-824) (-1063)) 64 T ELT)) (-2451 (((-1063) (-824)) 74 T ELT)) (-2449 (((-1063) (-824)) 63 T ELT))) +(((-703) (-10 -7 (-15 -2449 ((-1063) (-824))) (-15 -2450 ((-824) (-1063))) (-15 -2451 ((-1063) (-824))) (-15 -2452 ((-824) (-1063))) (-15 -2453 ((-324) (-1063))) (-15 -2454 ((-3 (-324) "failed") (-1063))))) (T -703)) +((-2454 (*1 *2 *3) (|partial| -12 (-5 *3 (-1063)) (-5 *2 (-324)) (-5 *1 (-703)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-324)) (-5 *1 (-703)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-824)) (-5 *1 (-703)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1063)) (-5 *1 (-703)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-824)) (-5 *1 (-703)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1063)) (-5 *1 (-703))))) +((-2457 (((-1175) (-1169 (-324)) (-479) (-324) (-2 (|:| |tryValue| (-324)) (|:| |did| (-324)) (|:| -1463 (-324))) (-324) (-1169 (-324)) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324))) 54 T ELT) (((-1175) (-1169 (-324)) (-479) (-324) (-2 (|:| |tryValue| (-324)) (|:| |did| (-324)) (|:| -1463 (-324))) (-324) (-1169 (-324)) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324))) 51 T ELT)) (-2458 (((-1175) (-1169 (-324)) (-479) (-324) (-324) (-479) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324))) 61 T ELT)) (-2456 (((-1175) (-1169 (-324)) (-479) (-324) (-324) (-324) (-324) (-479) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324))) 49 T ELT)) (-2455 (((-1175) (-1169 (-324)) (-479) (-324) (-324) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324))) 63 T ELT) (((-1175) (-1169 (-324)) (-479) (-324) (-324) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324))) 62 T ELT))) +(((-704) (-10 -7 (-15 -2455 ((-1175) (-1169 (-324)) (-479) (-324) (-324) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324)))) (-15 -2455 ((-1175) (-1169 (-324)) (-479) (-324) (-324) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)))) (-15 -2456 ((-1175) (-1169 (-324)) (-479) (-324) (-324) (-324) (-324) (-479) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324)))) (-15 -2457 ((-1175) (-1169 (-324)) (-479) (-324) (-2 (|:| |tryValue| (-324)) (|:| |did| (-324)) (|:| -1463 (-324))) (-324) (-1169 (-324)) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324)))) (-15 -2457 ((-1175) (-1169 (-324)) (-479) (-324) (-2 (|:| |tryValue| (-324)) (|:| |did| (-324)) (|:| -1463 (-324))) (-324) (-1169 (-324)) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)) (-1169 (-324)))) (-15 -2458 ((-1175) (-1169 (-324)) (-479) (-324) (-324) (-479) (-1 (-1175) (-1169 (-324)) (-1169 (-324)) (-324)))))) (T -704)) +((-2458 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-479)) (-5 *6 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704)))) (-2457 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-479)) (-5 *6 (-2 (|:| |tryValue| (-324)) (|:| |did| (-324)) (|:| -1463 (-324)))) (-5 *7 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704)))) (-2457 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-479)) (-5 *6 (-2 (|:| |tryValue| (-324)) (|:| |did| (-324)) (|:| -1463 (-324)))) (-5 *7 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704)))) (-2456 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-479)) (-5 *6 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704)))) (-2455 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-479)) (-5 *6 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704)))) (-2455 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-479)) (-5 *6 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704))))) +((-2467 (((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479)) 65 T ELT)) (-2464 (((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479)) 40 T ELT)) (-2466 (((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479)) 64 T ELT)) (-2463 (((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479)) 38 T ELT)) (-2465 (((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479)) 63 T ELT)) (-2462 (((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479)) 24 T ELT)) (-2461 (((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479) (-479)) 41 T ELT)) (-2460 (((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479) (-479)) 39 T ELT)) (-2459 (((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479) (-479)) 37 T ELT))) +(((-705) (-10 -7 (-15 -2459 ((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479) (-479))) (-15 -2460 ((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479) (-479))) (-15 -2461 ((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479) (-479))) (-15 -2462 ((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479))) (-15 -2463 ((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479))) (-15 -2464 ((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479))) (-15 -2465 ((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479))) (-15 -2466 ((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479))) (-15 -2467 ((-2 (|:| -3384 (-324)) (|:| -1584 (-324)) (|:| |totalpts| (-479)) (|:| |success| (-83))) (-1 (-324) (-324)) (-324) (-324) (-324) (-324) (-479) (-479))))) (T -705)) +((-2467 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) (-5 *1 (-705)) (-5 *5 (-479)))) (-2466 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) (-5 *1 (-705)) (-5 *5 (-479)))) (-2465 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) (-5 *1 (-705)) (-5 *5 (-479)))) (-2464 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) (-5 *1 (-705)) (-5 *5 (-479)))) (-2463 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) (-5 *1 (-705)) (-5 *5 (-479)))) (-2462 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) (-5 *1 (-705)) (-5 *5 (-479)))) (-2461 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) (-5 *1 (-705)) (-5 *5 (-479)))) (-2460 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) (-5 *1 (-705)) (-5 *5 (-479)))) (-2459 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) (-5 *1 (-705)) (-5 *5 (-479))))) +((-3687 (((-1115 |#1|) |#1| (-177) (-479)) 69 T ELT))) +(((-706 |#1|) (-10 -7 (-15 -3687 ((-1115 |#1|) |#1| (-177) (-479)))) (-881)) (T -706)) +((-3687 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-177)) (-5 *5 (-479)) (-5 *2 (-1115 *3)) (-5 *1 (-706 *3)) (-4 *3 (-881))))) +((-3605 (((-479) $) 17 T ELT)) (-3171 (((-83) $) 10 T ELT)) (-3365 (($ $) 19 T ELT))) +(((-707 |#1|) (-10 -7 (-15 -3365 (|#1| |#1|)) (-15 -3605 ((-479) |#1|)) (-15 -3171 ((-83) |#1|))) (-708)) (T -707)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 31 T ELT)) (-1300 (((-3 $ "failed") $ $) 34 T ELT)) (-3605 (((-479) $) 37 T ELT)) (-3706 (($) 30 T CONST)) (-3170 (((-83) $) 28 T ELT)) (-3171 (((-83) $) 38 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3365 (($ $) 36 T ELT)) (-2645 (($) 29 T CONST)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT)) (-3819 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3821 (($ $ $) 25 T ELT)) (* (($ (-824) $) 26 T ELT) (($ (-688) $) 32 T ELT) (($ (-479) $) 39 T ELT))) +(((-708) (-111)) (T -708)) +((-3171 (*1 *2 *1) (-12 (-4 *1 (-708)) (-5 *2 (-83)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-708)) (-5 *2 (-479)))) (-3365 (*1 *1 *1) (-4 *1 (-708)))) +(-13 (-715) (-21) (-10 -8 (-15 -3171 ((-83) $)) (-15 -3605 ((-479) $)) (-15 -3365 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-710) . T) ((-712) . T) ((-715) . T) ((-750) . T) ((-753) . T) ((-1006) . T) ((-1119) . T)) +((-3170 (((-83) $) 10 T ELT))) +(((-709 |#1|) (-10 -7 (-15 -3170 ((-83) |#1|))) (-710)) (T -709)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 31 T ELT)) (-3706 (($) 30 T CONST)) (-3170 (((-83) $) 28 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 29 T CONST)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT)) (-3821 (($ $ $) 25 T ELT)) (* (($ (-824) $) 26 T ELT) (($ (-688) $) 32 T ELT))) (((-710) (-111)) (T -710)) -((-2463 (*1 *1 *1 *1) (-4 *1 (-710)))) -(-13 (-714) (-10 -8 (-15 -2463 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-749) . T) ((-752) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT)) (-3815 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT))) +((-3170 (*1 *2 *1) (-12 (-4 *1 (-710)) (-5 *2 (-83))))) +(-13 (-712) (-23) (-10 -8 (-15 -3170 ((-83) $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-548 (-766)) . T) ((-712) . T) ((-750) . T) ((-753) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 31 T ELT)) (-2468 (($ $ $) 35 T ELT)) (-1300 (((-3 $ "failed") $ $) 34 T ELT)) (-3706 (($) 30 T CONST)) (-3170 (((-83) $) 28 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 29 T CONST)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT)) (-3821 (($ $ $) 25 T ELT)) (* (($ (-824) $) 26 T ELT) (($ (-688) $) 32 T ELT))) (((-711) (-111)) (T -711)) -NIL -(-13 (-749) (-25)) -(((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-749) . T) ((-752) . T) ((-1003) . T) ((-1114) . T)) -((-3170 (((-83) $) 42 T ELT)) (-3138 (((-3 (-478) #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3137 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) 78 T ELT)) (-3004 (((-83) $) 72 T ELT)) (-3003 (((-343 (-478)) $) 76 T ELT)) (-3113 ((|#2| $) 26 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2464 (($ $) 58 T ELT)) (-3948 (((-467) $) 67 T ELT)) (-2990 (($ $) 21 T ELT)) (-3922 (((-765) $) 53 T ELT) (($ (-478)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-343 (-478))) NIL T ELT)) (-3107 (((-687)) 10 T CONST)) (-3360 ((|#2| $) 71 T ELT)) (-3037 (((-83) $ $) 30 T ELT)) (-2666 (((-83) $ $) 69 T ELT)) (-3813 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 31 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-712 |#1| |#2|) (-10 -7 (-15 -2666 ((-83) |#1| |#1|)) (-15 -3948 ((-467) |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -3005 ((-3 (-343 (-478)) #1="failed") |#1|)) (-15 -3003 ((-343 (-478)) |#1|)) (-15 -3004 ((-83) |#1|)) (-15 -3360 (|#2| |#1|)) (-15 -3113 (|#2| |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -3934 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3922 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3107 ((-687)) -3928) (-15 -3922 (|#1| (-478))) (-15 * (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 -3170 ((-83) |#1|)) (-15 * (|#1| (-823) |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-713 |#2|) (-144)) (T -712)) -((-3107 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-712 *3 *4)) (-4 *3 (-713 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3117 (((-687)) 64 (|has| |#1| (-313)) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 (-478) #1="failed") $) 106 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 103 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3137 (((-478) $) 105 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 102 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 101 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3619 ((|#1| $) 90 T ELT)) (-3005 (((-3 (-343 (-478)) "failed") $) 77 (|has| |#1| (-477)) ELT)) (-3004 (((-83) $) 79 (|has| |#1| (-477)) ELT)) (-3003 (((-343 (-478)) $) 78 (|has| |#1| (-477)) ELT)) (-2975 (($) 67 (|has| |#1| (-313)) ELT)) (-2392 (((-83) $) 40 T ELT)) (-2469 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3113 ((|#1| $) 82 T ELT)) (-2511 (($ $ $) 68 (|has| |#1| (-749)) ELT)) (-2838 (($ $ $) 69 (|has| |#1| (-749)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-1992 (((-823) $) 66 (|has| |#1| (-313)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 76 (|has| |#1| (-308)) ELT)) (-2382 (($ (-823)) 65 (|has| |#1| (-313)) ELT)) (-2466 ((|#1| $) 87 T ELT)) (-2467 ((|#1| $) 88 T ELT)) (-2468 ((|#1| $) 89 T ELT)) (-2987 ((|#1| $) 83 T ELT)) (-2988 ((|#1| $) 84 T ELT)) (-2989 ((|#1| $) 85 T ELT)) (-2465 ((|#1| $) 86 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) 98 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 96 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 95 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) 94 (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) |#1|) 93 (|has| |#1| (-447 (-1075) |#1|)) ELT)) (-3776 (($ $ |#1|) 99 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3948 (((-467) $) 74 (|has| |#1| (-548 (-467))) ELT)) (-2990 (($ $) 91 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-343 (-478))) 104 (|has| |#1| (-943 (-343 (-478)))) ELT)) (-2683 (((-627 $) $) 75 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-3360 ((|#1| $) 80 (|has| |#1| (-965)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2546 (((-83) $ $) 70 (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) 72 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 71 (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 73 (|has| |#1| (-749)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-713 |#1|) (-111) (-144)) (T -713)) -((-2990 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2468 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2466 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-2469 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) (-3005 (*1 *2 *1) (|partial| -12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) (-2464 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)) (-4 *2 (-308))))) -(-13 (-38 |t#1|) (-348 |t#1|) (-284 |t#1|) (-10 -8 (-15 -2990 ($ $)) (-15 -3619 (|t#1| $)) (-15 -2468 (|t#1| $)) (-15 -2467 (|t#1| $)) (-15 -2466 (|t#1| $)) (-15 -2465 (|t#1| $)) (-15 -2989 (|t#1| $)) (-15 -2988 (|t#1| $)) (-15 -2987 (|t#1| $)) (-15 -3113 (|t#1| $)) (-15 -2469 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-313)) (-6 (-313)) |%noBranch|) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-965)) (-15 -3360 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-477)) (PROGN (-15 -3004 ((-83) $)) (-15 -3003 ((-343 (-478)) $)) (-15 -3005 ((-3 (-343 (-478)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -2464 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-313) |has| |#1| (-313)) ((-284 |#1|) . T) ((-348 |#1|) . T) ((-447 (-1075) |#1|) |has| |#1| (-447 (-1075) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-658) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 31 T ELT)) (-1295 (((-3 $ "failed") $ $) 34 T ELT)) (-3700 (($) 30 T CONST)) (-3168 (((-83) $) 28 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 29 T CONST)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT)) (-3815 (($ $ $) 25 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT))) -(((-714) (-111)) (T -714)) -NIL -(-13 (-709) (-102)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-709) . T) ((-711) . T) ((-749) . T) ((-752) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3117 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-902 |#1|) #1#) $) 35 T ELT) (((-3 (-478) #1#) $) NIL (OR (|has| (-902 |#1|) (-943 (-478))) (|has| |#1| (-943 (-478)))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (OR (|has| (-902 |#1|) (-943 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3137 ((|#1| $) NIL T ELT) (((-902 |#1|) $) 33 T ELT) (((-478) $) NIL (OR (|has| (-902 |#1|) (-943 (-478))) (|has| |#1| (-943 (-478)))) ELT) (((-343 (-478)) $) NIL (OR (|has| (-902 |#1|) (-943 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3619 ((|#1| $) 16 T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-477)) ELT)) (-3004 (((-83) $) NIL (|has| |#1| (-477)) ELT)) (-3003 (((-343 (-478)) $) NIL (|has| |#1| (-477)) ELT)) (-2975 (($) NIL (|has| |#1| (-313)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2469 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-902 |#1|) (-902 |#1|)) 29 T ELT)) (-3113 ((|#1| $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1992 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2382 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-2466 ((|#1| $) 22 T ELT)) (-2467 ((|#1| $) 20 T ELT)) (-2468 ((|#1| $) 18 T ELT)) (-2987 ((|#1| $) 26 T ELT)) (-2988 ((|#1| $) 25 T ELT)) (-2989 ((|#1| $) 24 T ELT)) (-2465 ((|#1| $) 23 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) NIL (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) |#1|) NIL (|has| |#1| (-447 (-1075) |#1|)) ELT)) (-3776 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-2990 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-902 |#1|)) 30 T ELT) (($ (-343 (-478))) NIL (OR (|has| (-902 |#1|) (-943 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3360 ((|#1| $) NIL (|has| |#1| (-965)) ELT)) (-2640 (($) 8 T CONST)) (-2647 (($) 12 T CONST)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-715 |#1|) (-13 (-713 |#1|) (-348 (-902 |#1|)) (-10 -8 (-15 -2469 ($ (-902 |#1|) (-902 |#1|))))) (-144)) (T -715)) -((-2469 (*1 *1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-144)) (-5 *1 (-715 *3))))) -((-3934 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#3| (-1 |#4| |#2|) |#1|))) (-713 |#2|) (-144) (-713 |#4|) (-144)) (T -716)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-713 *6)) (-5 *1 (-716 *4 *5 *2 *6)) (-4 *4 (-713 *5))))) -((-2470 (((-2 (|:| |particular| |#2|) (|:| -1994 (-578 |#2|))) |#3| |#2| (-1075)) 19 T ELT))) -(((-717 |#1| |#2| |#3|) (-10 -7 (-15 -2470 ((-2 (|:| |particular| |#2|) (|:| -1994 (-578 |#2|))) |#3| |#2| (-1075)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1100) (-864)) (-595 |#2|)) (T -717)) -((-2470 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1075)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-4 *4 (-13 (-29 *6) (-1100) (-864))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1994 (-578 *4)))) (-5 *1 (-717 *6 *4 *3)) (-4 *3 (-595 *4))))) -((-3549 (((-3 |#2| #1="failed") |#2| (-84) (-245 |#2|) (-578 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-245 |#2|) (-84) (-245 |#2|) (-578 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1994 (-578 |#2|))) |#2| #1#) |#2| (-84) (-1075)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1994 (-578 |#2|))) |#2| #1#) (-245 |#2|) (-84) (-1075)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1994 (-578 (-1164 |#2|)))) #1#) (-578 |#2|) (-578 (-84)) (-1075)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1994 (-578 (-1164 |#2|)))) #1#) (-578 (-245 |#2|)) (-578 (-84)) (-1075)) 26 T ELT) (((-3 (-578 (-1164 |#2|)) #1#) (-625 |#2|) (-1075)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1994 (-578 (-1164 |#2|)))) #1#) (-625 |#2|) (-1164 |#2|) (-1075)) 35 T ELT))) -(((-718 |#1| |#2|) (-10 -7 (-15 -3549 ((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1994 (-578 (-1164 |#2|)))) #1="failed") (-625 |#2|) (-1164 |#2|) (-1075))) (-15 -3549 ((-3 (-578 (-1164 |#2|)) #1#) (-625 |#2|) (-1075))) (-15 -3549 ((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1994 (-578 (-1164 |#2|)))) #1#) (-578 (-245 |#2|)) (-578 (-84)) (-1075))) (-15 -3549 ((-3 (-2 (|:| |particular| (-1164 |#2|)) (|:| -1994 (-578 (-1164 |#2|)))) #1#) (-578 |#2|) (-578 (-84)) (-1075))) (-15 -3549 ((-3 (-2 (|:| |particular| |#2|) (|:| -1994 (-578 |#2|))) |#2| #1#) (-245 |#2|) (-84) (-1075))) (-15 -3549 ((-3 (-2 (|:| |particular| |#2|) (|:| -1994 (-578 |#2|))) |#2| #1#) |#2| (-84) (-1075))) (-15 -3549 ((-3 |#2| #1#) (-245 |#2|) (-84) (-245 |#2|) (-578 |#2|))) (-15 -3549 ((-3 |#2| #1#) |#2| (-84) (-245 |#2|) (-578 |#2|)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1100) (-864))) (T -718)) -((-3549 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-245 *2)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1100) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-718 *6 *2)))) (-3549 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-245 *2)) (-5 *4 (-84)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1100) (-864))) (-5 *1 (-718 *6 *2)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))))) (-3549 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-84)) (-5 *5 (-1075)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1994 (-578 *3))) *3 #1="failed")) (-5 *1 (-718 *6 *3)) (-4 *3 (-13 (-29 *6) (-1100) (-864))))) (-3549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1100) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1994 (-578 *7))) *7 #1#)) (-5 *1 (-718 *6 *7)))) (-3549 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-84))) (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1100) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-2 (|:| |particular| (-1164 *7)) (|:| -1994 (-578 (-1164 *7))))) (-5 *1 (-718 *6 *7)))) (-3549 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 (-245 *7))) (-5 *4 (-578 (-84))) (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1100) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-2 (|:| |particular| (-1164 *7)) (|:| -1994 (-578 (-1164 *7))))) (-5 *1 (-718 *6 *7)))) (-3549 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-625 *6)) (-5 *4 (-1075)) (-4 *6 (-13 (-29 *5) (-1100) (-864))) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-1164 *6))) (-5 *1 (-718 *5 *6)))) (-3549 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-625 *7)) (-5 *5 (-1075)) (-4 *7 (-13 (-29 *6) (-1100) (-864))) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-2 (|:| |particular| (-1164 *7)) (|:| -1994 (-578 (-1164 *7))))) (-5 *1 (-718 *6 *7)) (-5 *4 (-1164 *7))))) -((-3447 ((|#2| |#2| (-1075)) 17 T ELT)) (-2471 ((|#2| |#2| (-1075)) 56 T ELT)) (-2472 (((-1 |#2| |#2|) (-1075)) 11 T ELT))) -(((-719 |#1| |#2|) (-10 -7 (-15 -3447 (|#2| |#2| (-1075))) (-15 -2471 (|#2| |#2| (-1075))) (-15 -2472 ((-1 |#2| |#2|) (-1075)))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118)) (-13 (-29 |#1|) (-1100) (-864))) (T -719)) -((-2472 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-1 *5 *5)) (-5 *1 (-719 *4 *5)) (-4 *5 (-13 (-29 *4) (-1100) (-864))))) (-2471 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-719 *4 *2)) (-4 *2 (-13 (-29 *4) (-1100) (-864))))) (-3447 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-719 *4 *2)) (-4 *2 (-13 (-29 *4) (-1100) (-864)))))) -((-2473 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1994 (-578 |#4|))) (-592 |#4|) |#4|) 33 T ELT))) -(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1994 (-578 |#4|))) (-592 |#4|) |#4|))) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))) (-1140 |#1|) (-1140 (-343 |#2|)) (-287 |#1| |#2| |#3|)) (T -720)) -((-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *4)) (-4 *4 (-287 *5 *6 *7)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1994 (-578 *4)))) (-5 *1 (-720 *5 *6 *7 *4))))) -((-3717 (((-2 (|:| -3246 |#3|) (|:| |rh| (-578 (-343 |#2|)))) |#4| (-578 (-343 |#2|))) 53 T ELT)) (-2475 (((-578 (-2 (|:| -3749 |#2|) (|:| -3207 |#2|))) |#4| |#2|) 62 T ELT) (((-578 (-2 (|:| -3749 |#2|) (|:| -3207 |#2|))) |#4|) 61 T ELT) (((-578 (-2 (|:| -3749 |#2|) (|:| -3207 |#2|))) |#3| |#2|) 20 T ELT) (((-578 (-2 (|:| -3749 |#2|) (|:| -3207 |#2|))) |#3|) 21 T ELT)) (-2476 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2474 ((|#2| |#3| (-578 (-343 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-343 |#2|)) 105 T ELT))) -(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2474 ((-3 |#2| "failed") |#3| (-343 |#2|))) (-15 -2474 (|#2| |#3| (-578 (-343 |#2|)))) (-15 -2475 ((-578 (-2 (|:| -3749 |#2|) (|:| -3207 |#2|))) |#3|)) (-15 -2475 ((-578 (-2 (|:| -3749 |#2|) (|:| -3207 |#2|))) |#3| |#2|)) (-15 -2476 (|#2| |#3| |#1|)) (-15 -2475 ((-578 (-2 (|:| -3749 |#2|) (|:| -3207 |#2|))) |#4|)) (-15 -2475 ((-578 (-2 (|:| -3749 |#2|) (|:| -3207 |#2|))) |#4| |#2|)) (-15 -2476 (|#2| |#4| |#1|)) (-15 -3717 ((-2 (|:| -3246 |#3|) (|:| |rh| (-578 (-343 |#2|)))) |#4| (-578 (-343 |#2|))))) (-13 (-308) (-118) (-943 (-343 (-478)))) (-1140 |#1|) (-595 |#2|) (-595 (-343 |#2|))) (T -721)) -((-3717 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) (-5 *2 (-2 (|:| -3246 *7) (|:| |rh| (-578 (-343 *6))))) (-5 *1 (-721 *5 *6 *7 *3)) (-5 *4 (-578 (-343 *6))) (-4 *7 (-595 *6)) (-4 *3 (-595 (-343 *6))))) (-2476 (*1 *2 *3 *4) (-12 (-4 *2 (-1140 *4)) (-5 *1 (-721 *4 *2 *5 *3)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-595 *2)) (-4 *3 (-595 (-343 *2))))) (-2475 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *4 (-1140 *5)) (-5 *2 (-578 (-2 (|:| -3749 *4) (|:| -3207 *4)))) (-5 *1 (-721 *5 *4 *6 *3)) (-4 *6 (-595 *4)) (-4 *3 (-595 (-343 *4))))) (-2475 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) (-5 *2 (-578 (-2 (|:| -3749 *5) (|:| -3207 *5)))) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *6 (-595 *5)) (-4 *3 (-595 (-343 *5))))) (-2476 (*1 *2 *3 *4) (-12 (-4 *2 (-1140 *4)) (-5 *1 (-721 *4 *2 *3 *5)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) (-4 *5 (-595 (-343 *2))))) (-2475 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *4 (-1140 *5)) (-5 *2 (-578 (-2 (|:| -3749 *4) (|:| -3207 *4)))) (-5 *1 (-721 *5 *4 *3 *6)) (-4 *3 (-595 *4)) (-4 *6 (-595 (-343 *4))))) (-2475 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) (-5 *2 (-578 (-2 (|:| -3749 *5) (|:| -3207 *5)))) (-5 *1 (-721 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-595 (-343 *5))))) (-2474 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-343 *2))) (-4 *2 (-1140 *5)) (-5 *1 (-721 *5 *2 *3 *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) (-4 *6 (-595 (-343 *2))))) (-2474 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-343 *2)) (-4 *2 (-1140 *5)) (-5 *1 (-721 *5 *2 *3 *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) (-4 *6 (-595 *4))))) -((-2484 (((-578 (-2 (|:| |frac| (-343 |#2|)) (|:| -3246 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1070 |#2|)) (-1 (-341 |#2|) |#2|)) 156 T ELT)) (-2485 (((-578 (-2 (|:| |poly| |#2|) (|:| -3246 |#3|))) |#3| (-1 (-578 |#1|) |#2|)) 52 T ELT)) (-2478 (((-578 (-2 (|:| |deg| (-687)) (|:| -3246 |#2|))) |#3|) 123 T ELT)) (-2477 ((|#2| |#3|) 42 T ELT)) (-2479 (((-578 (-2 (|:| -3928 |#1|) (|:| -3246 |#3|))) |#3| (-1 (-578 |#1|) |#2|)) 100 T ELT)) (-2480 ((|#3| |#3| (-343 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#2| |#3|)) (-15 -2478 ((-578 (-2 (|:| |deg| (-687)) (|:| -3246 |#2|))) |#3|)) (-15 -2479 ((-578 (-2 (|:| -3928 |#1|) (|:| -3246 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -2485 ((-578 (-2 (|:| |poly| |#2|) (|:| -3246 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -2484 ((-578 (-2 (|:| |frac| (-343 |#2|)) (|:| -3246 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1070 |#2|)) (-1 (-341 |#2|) |#2|))) (-15 -2480 (|#3| |#3| |#2|)) (-15 -2480 (|#3| |#3| (-343 |#2|)))) (-13 (-308) (-118) (-943 (-343 (-478)))) (-1140 |#1|) (-595 |#2|) (-595 (-343 |#2|))) (T -722)) -((-2480 (*1 *2 *2 *3) (-12 (-5 *3 (-343 *5)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) (-5 *1 (-722 *4 *5 *2 *6)) (-4 *2 (-595 *5)) (-4 *6 (-595 *3)))) (-2480 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-1140 *4)) (-5 *1 (-722 *4 *3 *2 *5)) (-4 *2 (-595 *3)) (-4 *5 (-595 (-343 *3))))) (-2484 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-578 *7) *7 (-1070 *7))) (-5 *5 (-1 (-341 *7) *7)) (-4 *7 (-1140 *6)) (-4 *6 (-13 (-308) (-118) (-943 (-343 (-478))))) (-5 *2 (-578 (-2 (|:| |frac| (-343 *7)) (|:| -3246 *3)))) (-5 *1 (-722 *6 *7 *3 *8)) (-4 *3 (-595 *7)) (-4 *8 (-595 (-343 *7))))) (-2485 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -3246 *3)))) (-5 *1 (-722 *5 *6 *3 *7)) (-4 *3 (-595 *6)) (-4 *7 (-595 (-343 *6))))) (-2479 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) (-5 *2 (-578 (-2 (|:| -3928 *5) (|:| -3246 *3)))) (-5 *1 (-722 *5 *6 *3 *7)) (-4 *3 (-595 *6)) (-4 *7 (-595 (-343 *6))))) (-2478 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) (-5 *2 (-578 (-2 (|:| |deg| (-687)) (|:| -3246 *5)))) (-5 *1 (-722 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-595 (-343 *5))))) (-2477 (*1 *2 *3) (-12 (-4 *2 (-1140 *4)) (-5 *1 (-722 *4 *2 *3 *5)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) (-4 *5 (-595 (-343 *2)))))) -((-2481 (((-2 (|:| -1994 (-578 (-343 |#2|))) (|:| |mat| (-625 |#1|))) (-593 |#2| (-343 |#2|)) (-578 (-343 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-343 |#2|) #1="failed")) (|:| -1994 (-578 (-343 |#2|)))) (-593 |#2| (-343 |#2|)) (-343 |#2|)) 145 T ELT) (((-2 (|:| -1994 (-578 (-343 |#2|))) (|:| |mat| (-625 |#1|))) (-592 (-343 |#2|)) (-578 (-343 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-343 |#2|) #1#)) (|:| -1994 (-578 (-343 |#2|)))) (-592 (-343 |#2|)) (-343 |#2|)) 138 T ELT)) (-2482 ((|#2| (-593 |#2| (-343 |#2|))) 86 T ELT) ((|#2| (-592 (-343 |#2|))) 89 T ELT))) -(((-723 |#1| |#2|) (-10 -7 (-15 -2481 ((-2 (|:| |particular| (-3 (-343 |#2|) #1="failed")) (|:| -1994 (-578 (-343 |#2|)))) (-592 (-343 |#2|)) (-343 |#2|))) (-15 -2481 ((-2 (|:| -1994 (-578 (-343 |#2|))) (|:| |mat| (-625 |#1|))) (-592 (-343 |#2|)) (-578 (-343 |#2|)))) (-15 -2481 ((-2 (|:| |particular| (-3 (-343 |#2|) #1#)) (|:| -1994 (-578 (-343 |#2|)))) (-593 |#2| (-343 |#2|)) (-343 |#2|))) (-15 -2481 ((-2 (|:| -1994 (-578 (-343 |#2|))) (|:| |mat| (-625 |#1|))) (-593 |#2| (-343 |#2|)) (-578 (-343 |#2|)))) (-15 -2482 (|#2| (-592 (-343 |#2|)))) (-15 -2482 (|#2| (-593 |#2| (-343 |#2|))))) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))) (-1140 |#1|)) (T -723)) -((-2482 (*1 *2 *3) (-12 (-5 *3 (-593 *2 (-343 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-723 *4 *2)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-592 (-343 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-723 *4 *2)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-343 *6))) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-2 (|:| -1994 (-578 (-343 *6))) (|:| |mat| (-625 *5)))) (-5 *1 (-723 *5 *6)) (-5 *4 (-578 (-343 *6))))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-343 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1994 (-578 *4)))) (-5 *1 (-723 *5 *6)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-343 *6))) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-2 (|:| -1994 (-578 (-343 *6))) (|:| |mat| (-625 *5)))) (-5 *1 (-723 *5 *6)) (-5 *4 (-578 (-343 *6))))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-343 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1994 (-578 *4)))) (-5 *1 (-723 *5 *6))))) -((-2483 (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#1|))) |#5| |#4|) 49 T ELT))) -(((-724 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2483 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#1|))) |#5| |#4|))) (-308) (-595 |#1|) (-1140 |#1|) (-656 |#1| |#3|) (-595 |#4|)) (T -724)) -((-2483 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *7 (-1140 *5)) (-4 *4 (-656 *5 *7)) (-5 *2 (-2 (|:| |mat| (-625 *6)) (|:| |vec| (-1164 *5)))) (-5 *1 (-724 *5 *6 *7 *4 *3)) (-4 *6 (-595 *5)) (-4 *3 (-595 *4))))) -((-2484 (((-578 (-2 (|:| |frac| (-343 |#2|)) (|:| -3246 (-593 |#2| (-343 |#2|))))) (-593 |#2| (-343 |#2|)) (-1 (-341 |#2|) |#2|)) 47 T ELT)) (-2486 (((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-341 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-341 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-578 (-343 |#2|)) (-592 (-343 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-341 |#2|) |#2|)) 38 T ELT) (((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|)) 39 T ELT) (((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-341 |#2|) |#2|)) 36 T ELT) (((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|)) 37 T ELT)) (-2485 (((-578 (-2 (|:| |poly| |#2|) (|:| -3246 (-593 |#2| (-343 |#2|))))) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|)) 96 T ELT))) -(((-725 |#1| |#2|) (-10 -7 (-15 -2486 ((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -2486 ((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-341 |#2|) |#2|))) (-15 -2486 ((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -2486 ((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-341 |#2|) |#2|))) (-15 -2484 ((-578 (-2 (|:| |frac| (-343 |#2|)) (|:| -3246 (-593 |#2| (-343 |#2|))))) (-593 |#2| (-343 |#2|)) (-1 (-341 |#2|) |#2|))) (-15 -2485 ((-578 (-2 (|:| |poly| |#2|) (|:| -3246 (-593 |#2| (-343 |#2|))))) (-593 |#2| (-343 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2486 ((-578 (-343 |#2|)) (-592 (-343 |#2|)))) (-15 -2486 ((-578 (-343 |#2|)) (-592 (-343 |#2|)) (-1 (-341 |#2|) |#2|))) (-15 -2486 ((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)))) (-15 -2486 ((-578 (-343 |#2|)) (-593 |#2| (-343 |#2|)) (-1 (-341 |#2|) |#2|)))) |%noBranch|)) (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))) (-1140 |#1|)) (T -725)) -((-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-593 *5 (-343 *5))) (-4 *5 (-1140 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-343 *5))) (-5 *1 (-725 *4 *5)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) (-2486 (*1 *2 *3) (-12 (-5 *3 (-592 (-343 *5))) (-4 *5 (-1140 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-343 *5))) (-5 *1 (-725 *4 *5)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -3246 (-593 *6 (-343 *6)))))) (-5 *1 (-725 *5 *6)) (-5 *3 (-593 *6 (-343 *6))))) (-2484 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-5 *2 (-578 (-2 (|:| |frac| (-343 *6)) (|:| -3246 (-593 *6 (-343 *6)))))) (-5 *1 (-725 *5 *6)) (-5 *3 (-593 *6 (-343 *6))))) (-2486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-593 *7 (-343 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-341 *7) *7)) (-4 *6 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *7 (-1140 *6)) (-5 *2 (-578 (-343 *7))) (-5 *1 (-725 *6 *7)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) (-2486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-343 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-341 *7) *7)) (-4 *6 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *7 (-1140 *6)) (-5 *2 (-578 (-343 *7))) (-5 *1 (-725 *6 *7)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6))))) -((-2487 (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#1|))) (-625 |#2|) (-1164 |#1|)) 110 T ELT) (((-2 (|:| A (-625 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1164 |#1|)) (|:| -3246 |#2|) (|:| |rh| |#1|))))) (-625 |#1|) (-1164 |#1|)) 15 T ELT)) (-2488 (((-2 (|:| |particular| (-3 (-1164 |#1|) #1="failed")) (|:| -1994 (-578 (-1164 |#1|)))) (-625 |#2|) (-1164 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -1994 (-578 |#1|))) |#2| |#1|)) 116 T ELT)) (-3549 (((-3 (-2 (|:| |particular| (-1164 |#1|)) (|:| -1994 (-625 |#1|))) #1#) (-625 |#1|) (-1164 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1994 (-578 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-726 |#1| |#2|) (-10 -7 (-15 -2487 ((-2 (|:| A (-625 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1164 |#1|)) (|:| -3246 |#2|) (|:| |rh| |#1|))))) (-625 |#1|) (-1164 |#1|))) (-15 -2487 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#1|))) (-625 |#2|) (-1164 |#1|))) (-15 -3549 ((-3 (-2 (|:| |particular| (-1164 |#1|)) (|:| -1994 (-625 |#1|))) #1="failed") (-625 |#1|) (-1164 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1994 (-578 |#1|))) #1#) |#2| |#1|))) (-15 -2488 ((-2 (|:| |particular| (-3 (-1164 |#1|) #1#)) (|:| -1994 (-578 (-1164 |#1|)))) (-625 |#2|) (-1164 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -1994 (-578 |#1|))) |#2| |#1|)))) (-308) (-595 |#1|)) (T -726)) -((-2488 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1994 (-578 *6))) *7 *6)) (-4 *6 (-308)) (-4 *7 (-595 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1164 *6) "failed")) (|:| -1994 (-578 (-1164 *6))))) (-5 *1 (-726 *6 *7)) (-5 *4 (-1164 *6)))) (-3549 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1994 (-578 *6))) "failed") *7 *6)) (-4 *6 (-308)) (-4 *7 (-595 *6)) (-5 *2 (-2 (|:| |particular| (-1164 *6)) (|:| -1994 (-625 *6)))) (-5 *1 (-726 *6 *7)) (-5 *3 (-625 *6)) (-5 *4 (-1164 *6)))) (-2487 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-595 *5)) (-5 *2 (-2 (|:| |mat| (-625 *6)) (|:| |vec| (-1164 *5)))) (-5 *1 (-726 *5 *6)) (-5 *3 (-625 *6)) (-5 *4 (-1164 *5)))) (-2487 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 (-2 (|:| A (-625 *5)) (|:| |eqs| (-578 (-2 (|:| C (-625 *5)) (|:| |g| (-1164 *5)) (|:| -3246 *6) (|:| |rh| *5)))))) (-5 *1 (-726 *5 *6)) (-5 *3 (-625 *5)) (-5 *4 (-1164 *5)) (-4 *6 (-595 *5))))) -((-2489 (((-625 |#1|) (-578 |#1|) (-687)) 14 T ELT) (((-625 |#1|) (-578 |#1|)) 15 T ELT)) (-2490 (((-3 (-1164 |#1|) #1="failed") |#2| |#1| (-578 |#1|)) 39 T ELT)) (-3317 (((-3 |#1| #1#) |#2| |#1| (-578 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-727 |#1| |#2|) (-10 -7 (-15 -2489 ((-625 |#1|) (-578 |#1|))) (-15 -2489 ((-625 |#1|) (-578 |#1|) (-687))) (-15 -2490 ((-3 (-1164 |#1|) #1="failed") |#2| |#1| (-578 |#1|))) (-15 -3317 ((-3 |#1| #1#) |#2| |#1| (-578 |#1|) (-1 |#1| |#1|)))) (-308) (-595 |#1|)) (T -727)) -((-3317 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-578 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-308)) (-5 *1 (-727 *2 *3)) (-4 *3 (-595 *2)))) (-2490 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-578 *4)) (-4 *4 (-308)) (-5 *2 (-1164 *4)) (-5 *1 (-727 *4 *3)) (-4 *3 (-595 *4)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-687)) (-4 *5 (-308)) (-5 *2 (-625 *5)) (-5 *1 (-727 *5 *6)) (-4 *6 (-595 *5)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-308)) (-5 *2 (-625 *4)) (-5 *1 (-727 *4 *5)) (-4 *5 (-595 *4))))) -((-2548 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3170 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3683 (($ (-823)) NIL (|has| |#2| (-954)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-2463 (($ $ $) NIL (|has| |#2| (-710)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-102)) ELT)) (-3117 (((-687)) NIL (|has| |#2| (-313)) ELT)) (-3764 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1003)) ELT)) (-3137 (((-478) $) NIL (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) ((|#2| $) NIL (|has| |#2| (-1003)) ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-625 $)) NIL (|has| |#2| (-954)) ELT)) (-3444 (((-3 $ #1#) $) NIL (|has| |#2| (-954)) ELT)) (-2975 (($) NIL (|has| |#2| (-313)) ELT)) (-1559 ((|#2| $ (-478) |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ (-478)) NIL T ELT)) (-3168 (((-83) $) NIL (|has| |#2| (-710)) ELT)) (-2870 (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) NIL (|has| |#2| (-954)) ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-2588 (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-1932 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1992 (((-823) $) NIL (|has| |#2| (-313)) ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| |#2| (-575 (-478))) (|has| |#2| (-954))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL (|has| |#2| (-954)) ELT) (((-625 |#2|) (-1164 $)) NIL (|has| |#2| (-954)) ELT)) (-3222 (((-1059) $) NIL (|has| |#2| (-1003)) ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-2382 (($ (-823)) NIL (|has| |#2| (-313)) ELT)) (-3223 (((-1020) $) NIL (|has| |#2| (-1003)) ELT)) (-3777 ((|#2| $) NIL (|has| (-478) (-749)) ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ (-478) |#2|) NIL T ELT) ((|#2| $ (-478)) NIL T ELT)) (-3812 ((|#2| $ $) NIL (|has| |#2| (-954)) ELT)) (-1451 (($ (-1164 |#2|)) NIL T ELT)) (-3887 (((-105)) NIL (|has| |#2| (-308)) ELT)) (-3734 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-1164 |#2|) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#2| (-943 (-478))) (|has| |#2| (-1003))) (|has| |#2| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#2| (-943 (-343 (-478)))) (|has| |#2| (-1003))) ELT) (($ |#2|) NIL (|has| |#2| (-1003)) ELT) (((-765) $) NIL (|has| |#2| (-547 (-765))) ELT)) (-3107 (((-687)) NIL (|has| |#2| (-954)) CONST)) (-1249 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2640 (($) NIL (|has| |#2| (-23)) CONST)) (-2647 (($) NIL (|has| |#2| (-954)) CONST)) (-2650 (($ $ (-687)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#2| (-804 (-1075))) (|has| |#2| (-954))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-954)) ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#2| (-954)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2666 (((-83) $ $) 11 (|has| |#2| (-749)) ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3815 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-687)) NIL (|has| |#2| (-954)) ELT) (($ $ (-823)) NIL (|has| |#2| (-954)) ELT)) (* (($ $ $) NIL (|has| |#2| (-954)) ELT) (($ $ |#2|) NIL (|has| |#2| (-658)) ELT) (($ |#2| $) NIL (|has| |#2| (-658)) ELT) (($ (-478) $) NIL (|has| |#2| (-21)) ELT) (($ (-687) $) NIL (|has| |#2| (-23)) ELT) (($ (-823) $) NIL (|has| |#2| (-25)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-728 |#1| |#2| |#3|) (-193 |#1| |#2|) (-687) (-710) (-1 (-83) (-1164 |#2|) (-1164 |#2|))) (T -728)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1471 (((-578 (-687)) $) NIL T ELT) (((-578 (-687)) $ (-1075)) NIL T ELT)) (-1505 (((-687) $) NIL T ELT) (((-687) $ (-1075)) NIL T ELT)) (-3063 (((-578 (-731 (-1075))) $) NIL T ELT)) (-3065 (((-1070 $) $ (-731 (-1075))) NIL T ELT) (((-1070 |#1|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-731 (-1075)))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-1467 (($ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-731 (-1075)) #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL T ELT) (((-3 (-1025 |#1| (-1075)) #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-731 (-1075)) $) NIL T ELT) (((-1075) $) NIL T ELT) (((-1025 |#1| (-1075)) $) NIL T ELT)) (-3732 (($ $ $ (-731 (-1075))) NIL (|has| |#1| (-144)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-731 (-1075))) NIL (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| (-463 (-731 (-1075))) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-731 (-1075)) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-731 (-1075)) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3748 (((-687) $ (-1075)) NIL T ELT) (((-687) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3066 (($ (-1070 |#1|) (-731 (-1075))) NIL T ELT) (($ (-1070 $) (-731 (-1075))) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-463 (-731 (-1075)))) NIL T ELT) (($ $ (-731 (-1075)) (-687)) NIL T ELT) (($ $ (-578 (-731 (-1075))) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-731 (-1075))) NIL T ELT)) (-2801 (((-463 (-731 (-1075))) $) NIL T ELT) (((-687) $ (-731 (-1075))) NIL T ELT) (((-578 (-687)) $ (-578 (-731 (-1075)))) NIL T ELT)) (-1608 (($ (-1 (-463 (-731 (-1075))) (-463 (-731 (-1075)))) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1506 (((-1 $ (-687)) (-1075)) NIL T ELT) (((-1 $ (-687)) $) NIL (|has| |#1| (-188)) ELT)) (-3064 (((-3 (-731 (-1075)) #1#) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1469 (((-731 (-1075)) $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1470 (((-83) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-731 (-1075))) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-1468 (($ $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-731 (-1075)) |#1|) NIL T ELT) (($ $ (-578 (-731 (-1075))) (-578 |#1|)) NIL T ELT) (($ $ (-731 (-1075)) $) NIL T ELT) (($ $ (-578 (-731 (-1075))) (-578 $)) NIL T ELT) (($ $ (-1075) $) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 (-1075)) (-578 $)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1075) |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3733 (($ $ (-731 (-1075))) NIL (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 (-731 (-1075))) (-578 (-687))) NIL T ELT) (($ $ (-731 (-1075)) (-687)) NIL T ELT) (($ $ (-578 (-731 (-1075)))) NIL T ELT) (($ $ (-731 (-1075))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-1472 (((-578 (-1075)) $) NIL T ELT)) (-3924 (((-463 (-731 (-1075))) $) NIL T ELT) (((-687) $ (-731 (-1075))) NIL T ELT) (((-578 (-687)) $ (-578 (-731 (-1075)))) NIL T ELT) (((-687) $ (-1075)) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-731 (-1075)) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-731 (-1075)) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-731 (-1075)) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-731 (-1075))) NIL (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-731 (-1075))) NIL T ELT) (($ (-1075)) NIL T ELT) (($ (-1025 |#1| (-1075))) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-463 (-731 (-1075)))) NIL T ELT) (($ $ (-731 (-1075)) (-687)) NIL T ELT) (($ $ (-578 (-731 (-1075))) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-578 (-731 (-1075))) (-578 (-687))) NIL T ELT) (($ $ (-731 (-1075)) (-687)) NIL T ELT) (($ $ (-578 (-731 (-1075)))) NIL T ELT) (($ $ (-731 (-1075))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-729 |#1|) (-13 (-210 |#1| (-1075) (-731 (-1075)) (-463 (-731 (-1075)))) (-943 (-1025 |#1| (-1075)))) (-954)) (T -729)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#2| (-308)) ELT)) (-2045 (($ $) NIL (|has| |#2| (-308)) ELT)) (-2043 (((-83) $) NIL (|has| |#2| (-308)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| |#2| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#2| (-308)) ELT)) (-1591 (((-83) $ $) NIL (|has| |#2| (-308)) ELT)) (-3700 (($) NIL T CONST)) (-2544 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#2| (-308)) ELT)) (-3699 (((-83) $) NIL (|has| |#2| (-308)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#2| (-308)) ELT)) (-1874 (($ (-578 $)) NIL (|has| |#2| (-308)) ELT) (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 20 (|has| |#2| (-308)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#2| (-308)) ELT) (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#2| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#2| (-308)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#2| (-308)) ELT)) (-1590 (((-687) $) NIL (|has| |#2| (-308)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3734 (($ $) 13 T ELT) (($ $ (-687)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-343 (-478))) NIL (|has| |#2| (-308)) ELT) (($ $) NIL (|has| |#2| (-308)) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#2| (-308)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) 15 (|has| |#2| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT) (($ $ (-478)) 18 (|has| |#2| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-308)) ELT))) -(((-730 |#1| |#2| |#3|) (-13 (-80 $ $) (-188) (-423 |#2|) (-10 -7 (IF (|has| |#2| (-308)) (-6 (-308)) |%noBranch|))) (-1003) (-802 |#1|) |#1|) (T -730)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-1505 (((-687) $) NIL T ELT)) (-3807 ((|#1| $) 10 T ELT)) (-3138 (((-3 |#1| "failed") $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-3748 (((-687) $) 11 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-1506 (($ |#1| (-687)) 9 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3734 (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2650 (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT))) -(((-731 |#1|) (-225 |#1|) (-749)) (T -731)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3910 (((-578 |#1|) $) 39 T ELT)) (-3117 (((-687) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3915 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3138 (((-3 |#1| #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-3775 (($ $) 43 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-1733 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2281 ((|#1| $ (-478)) NIL T ELT)) (-2282 (((-687) $ (-478)) NIL T ELT)) (-3912 (($ $) 55 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-2272 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2273 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3916 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2491 (((-83) $ $) 52 T ELT)) (-3809 (((-687) $) 35 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1734 (($ $ $) NIL T ELT)) (-1735 (($ $ $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 ((|#1| $) 42 T ELT)) (-1762 (((-578 (-2 (|:| |gen| |#1|) (|:| -3919 (-687)))) $) NIL T ELT)) (-2860 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2545 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2647 (($) 7 T CONST)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 54 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ |#1| (-687)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-732 |#1|) (-13 (-329 |#1|) (-747) (-10 -8 (-15 -3777 (|#1| $)) (-15 -3775 ($ $)) (-15 -3912 ($ $)) (-15 -2491 ((-83) $ $)) (-15 -3916 ((-3 $ #1="failed") $ |#1|)) (-15 -3915 ((-3 $ #1#) $ |#1|)) (-15 -2545 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3809 ((-687) $)) (-15 -3910 ((-578 |#1|) $)))) (-749)) (T -732)) -((-3777 (*1 *2 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-3775 (*1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-3912 (*1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-2491 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-732 *3)) (-4 *3 (-749)))) (-3916 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-3915 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) (-2545 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-732 *3)) (|:| |rm| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-749)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-732 *3)) (-4 *3 (-749)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-732 *3)) (-4 *3 (-749))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3599 (((-478) $) 65 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3168 (((-83) $) 63 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3169 (((-83) $) 64 T ELT)) (-2511 (($ $ $) 57 T ELT)) (-2838 (($ $ $) 58 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-3360 (($ $) 66 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2546 (((-83) $ $) 59 T ELT)) (-2547 (((-83) $ $) 61 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 60 T ELT)) (-2666 (((-83) $ $) 62 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-733) (-111)) (T -733)) -NIL -(-13 (-489) (-748)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2492 ((|#1| $) 10 T ELT)) (-2493 (($ |#1|) 9 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2874 (($ |#2| (-687)) NIL T ELT)) (-2801 (((-687) $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3734 (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-687)) NIL (|has| |#1| (-188)) ELT)) (-3924 (((-687) $) NIL T ELT)) (-3922 (((-765) $) 17 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-144)) ELT)) (-3653 ((|#2| $ (-687)) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-687)) NIL (|has| |#1| (-188)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-734 |#1| |#2|) (-13 (-640 |#2|) (-10 -8 (IF (|has| |#1| (-188)) (-6 (-188)) |%noBranch|) (-15 -2493 ($ |#1|)) (-15 -2492 (|#1| $)))) (-640 |#2|) (-954)) (T -734)) -((-2493 (*1 *1 *2) (-12 (-4 *3 (-954)) (-5 *1 (-734 *2 *3)) (-4 *2 (-640 *3)))) (-2492 (*1 *2 *1) (-12 (-4 *2 (-640 *3)) (-5 *1 (-734 *2 *3)) (-4 *3 (-954))))) -((-2548 (((-83) $ $) 19 T ELT)) (-3214 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3216 (($ $ $) 77 T ELT)) (-3215 (((-83) $ $) 78 T ELT)) (-3219 (($ (-578 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1553 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-2350 (($ $) 66 T ELT)) (-1336 (($ $) 62 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ |#1| $) 51 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3383 (($ |#1| $) 61 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3221 (((-83) $ $) 69 T ELT)) (-2511 ((|#1| $) 83 T ELT)) (-2837 (($ $ $) 86 T ELT)) (-3495 (($ $ $) 85 T ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2838 ((|#1| $) 84 T ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 T ELT)) (-3218 (($ $ $) 74 T ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT) (($ |#1| $ (-687)) 67 T ELT)) (-3223 (((-1020) $) 21 T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-2349 (((-578 (-2 (|:| |entry| |#1|) (|:| -1929 (-687)))) $) 65 T ELT)) (-3217 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1449 (($) 53 T ELT) (($ (-578 |#1|)) 52 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 63 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 54 T ELT)) (-3922 (((-765) $) 17 T ELT)) (-3220 (($ (-578 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1249 (((-83) $ $) 20 T ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-735 |#1|) (-111) (-749)) (T -735)) -((-2511 (*1 *2 *1) (-12 (-4 *1 (-735 *2)) (-4 *2 (-749))))) -(-13 (-669 |t#1|) (-874 |t#1|) (-10 -8 (-15 -2511 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-547 (-765)) . T) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-629 |#1|) . T) ((-669 |#1|) . T) ((-874 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3599 (((-478) $) NIL (|has| |#1| (-748)) ELT)) (-3700 (($) NIL (|has| |#1| (-21)) CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 9 T ELT)) (-3444 (((-3 $ #1#) $) 42 (|has| |#1| (-748)) ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) 51 (|has| |#1| (-477)) ELT)) (-3004 (((-83) $) 46 (|has| |#1| (-477)) ELT)) (-3003 (((-343 (-478)) $) 48 (|has| |#1| (-477)) ELT)) (-3168 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2392 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-3169 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2494 (($) 13 T ELT)) (-2504 (((-83) $) 12 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2505 (((-83) $) 11 T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 8 T ELT) (($ (-478)) NIL (OR (|has| |#1| (-748)) (|has| |#1| (-943 (-478)))) ELT)) (-3107 (((-687)) 36 (|has| |#1| (-748)) CONST)) (-1249 (((-83) $ $) 53 T ELT)) (-3360 (($ $) NIL (|has| |#1| (-748)) ELT)) (-2640 (($) 23 (|has| |#1| (-21)) CONST)) (-2647 (($) 33 (|has| |#1| (-748)) CONST)) (-2546 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-3037 (((-83) $ $) 21 T ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2666 (((-83) $ $) 45 (|has| |#1| (-748)) ELT)) (-3813 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3815 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-823)) NIL (|has| |#1| (-748)) ELT) (($ $ (-687)) NIL (|has| |#1| (-748)) ELT)) (* (($ $ $) 39 (|has| |#1| (-748)) ELT) (($ (-478) $) 27 (|has| |#1| (-21)) ELT) (($ (-687) $) NIL (|has| |#1| (-21)) ELT) (($ (-823) $) NIL (|has| |#1| (-21)) ELT))) -(((-736 |#1|) (-13 (-1003) (-348 |#1|) (-10 -8 (-15 -2494 ($)) (-15 -2505 ((-83) $)) (-15 -2504 ((-83) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-748)) (-6 (-748)) |%noBranch|) (IF (|has| |#1| (-477)) (PROGN (-15 -3004 ((-83) $)) (-15 -3003 ((-343 (-478)) $)) (-15 -3005 ((-3 (-343 (-478)) "failed") $))) |%noBranch|))) (-1003)) (T -736)) -((-2494 (*1 *1) (-12 (-5 *1 (-736 *2)) (-4 *2 (-1003)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-1003)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-1003)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1003)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1003)))) (-3005 (*1 *2 *1) (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1003))))) -((-3934 (((-736 |#2|) (-1 |#2| |#1|) (-736 |#1|) (-736 |#2|)) 12 T ELT) (((-736 |#2|) (-1 |#2| |#1|) (-736 |#1|)) 13 T ELT))) -(((-737 |#1| |#2|) (-10 -7 (-15 -3934 ((-736 |#2|) (-1 |#2| |#1|) (-736 |#1|))) (-15 -3934 ((-736 |#2|) (-1 |#2| |#1|) (-736 |#1|) (-736 |#2|)))) (-1003) (-1003)) (T -737)) -((-3934 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-736 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-737 *5 *6)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-736 *6)) (-5 *1 (-737 *5 *6))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-84) #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-84) $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2496 ((|#1| (-84) |#1|) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2495 (($ |#1| (-306 (-84))) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2497 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2498 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3776 ((|#1| $ |#1|) NIL T ELT)) (-2499 ((|#1| |#1|) NIL (|has| |#1| (-144)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-84)) NIL T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2500 (($ $) NIL (|has| |#1| (-144)) ELT) (($ $ $) NIL (|has| |#1| (-144)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ (-84) (-478)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) -(((-738 |#1|) (-13 (-954) (-943 |#1|) (-943 (-84)) (-238 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-6 (-38 |#1|)) (-15 -2500 ($ $)) (-15 -2500 ($ $ $)) (-15 -2499 (|#1| |#1|))) |%noBranch|) (-15 -2498 ($ $ (-1 |#1| |#1|))) (-15 -2497 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-84) (-478))) (-15 ** ($ $ (-478))) (-15 -2496 (|#1| (-84) |#1|)) (-15 -2495 ($ |#1| (-306 (-84)))))) (-954)) (T -738)) -((-2500 (*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954)))) (-2500 (*1 *1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954)))) (-2499 (*1 *2 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954)))) (-2498 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-738 *3)))) (-2497 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-738 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-478)) (-5 *1 (-738 *4)) (-4 *4 (-954)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-738 *3)) (-4 *3 (-954)))) (-2496 (*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-5 *1 (-738 *2)) (-4 *2 (-954)))) (-2495 (*1 *1 *2 *3) (-12 (-5 *3 (-306 (-84))) (-5 *1 (-738 *2)) (-4 *2 (-954))))) -((-2613 (((-83) $ |#2|) 14 T ELT)) (-3922 (((-765) $) 11 T ELT))) -(((-739 |#1| |#2|) (-10 -7 (-15 -2613 ((-83) |#1| |#2|)) (-15 -3922 ((-765) |#1|))) (-740 |#2|) (-1003)) (T -739)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3518 ((|#1| $) 19 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2613 (((-83) $ |#1|) 17 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2501 (((-55) $) 18 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-740 |#1|) (-111) (-1003)) (T -740)) -((-3518 (*1 *2 *1) (-12 (-4 *1 (-740 *2)) (-4 *2 (-1003)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-740 *3)) (-4 *3 (-1003)) (-5 *2 (-55)))) (-2613 (*1 *2 *1 *3) (-12 (-4 *1 (-740 *3)) (-4 *3 (-1003)) (-5 *2 (-83))))) -(-13 (-1003) (-10 -8 (-15 -3518 (|t#1| $)) (-15 -2501 ((-55) $)) (-15 -2613 ((-83) $ |t#1|)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2502 (((-165 (-435)) (-1059)) 9 T ELT))) -(((-741) (-10 -7 (-15 -2502 ((-165 (-435)) (-1059))))) (T -741)) -((-2502 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-165 (-435))) (-5 *1 (-741))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3298 (((-1016) $) 10 T ELT)) (-3518 (((-439) $) 9 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2613 (((-83) $ (-439)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3507 (($ (-439) (-1016)) 8 T ELT)) (-3922 (((-765) $) 25 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2501 (((-55) $) 20 T ELT)) (-3037 (((-83) $ $) 12 T ELT))) -(((-742) (-13 (-740 (-439)) (-10 -8 (-15 -3298 ((-1016) $)) (-15 -3507 ($ (-439) (-1016)))))) (T -742)) -((-3298 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-742)))) (-3507 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1016)) (-5 *1 (-742))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-2503 (((-1020) $) 31 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3599 (((-478) $) NIL (|has| |#1| (-748)) ELT)) (-3700 (($) NIL (|has| |#1| (-21)) CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 9 T ELT)) (-3444 (((-3 $ #1#) $) 57 (|has| |#1| (-748)) ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) 65 (|has| |#1| (-477)) ELT)) (-3004 (((-83) $) 60 (|has| |#1| (-477)) ELT)) (-3003 (((-343 (-478)) $) 63 (|has| |#1| (-477)) ELT)) (-3168 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2507 (($) 14 T ELT)) (-2392 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-3169 (((-83) $) NIL (|has| |#1| (-748)) ELT)) (-2506 (($) 16 T ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-748)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2504 (((-83) $) 12 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2505 (((-83) $) 11 T ELT)) (-3922 (((-765) $) 24 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 8 T ELT) (($ (-478)) NIL (OR (|has| |#1| (-748)) (|has| |#1| (-943 (-478)))) ELT)) (-3107 (((-687)) 50 (|has| |#1| (-748)) CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3360 (($ $) NIL (|has| |#1| (-748)) ELT)) (-2640 (($) 37 (|has| |#1| (-21)) CONST)) (-2647 (($) 47 (|has| |#1| (-748)) CONST)) (-2546 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-3037 (((-83) $ $) 35 T ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-748)) ELT)) (-2666 (((-83) $ $) 59 (|has| |#1| (-748)) ELT)) (-3813 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3815 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-823)) NIL (|has| |#1| (-748)) ELT) (($ $ (-687)) NIL (|has| |#1| (-748)) ELT)) (* (($ $ $) 54 (|has| |#1| (-748)) ELT) (($ (-478) $) 41 (|has| |#1| (-21)) ELT) (($ (-687) $) NIL (|has| |#1| (-21)) ELT) (($ (-823) $) NIL (|has| |#1| (-21)) ELT))) -(((-743 |#1|) (-13 (-1003) (-348 |#1|) (-10 -8 (-15 -2507 ($)) (-15 -2506 ($)) (-15 -2505 ((-83) $)) (-15 -2504 ((-83) $)) (-15 -2503 ((-1020) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-748)) (-6 (-748)) |%noBranch|) (IF (|has| |#1| (-477)) (PROGN (-15 -3004 ((-83) $)) (-15 -3003 ((-343 (-478)) $)) (-15 -3005 ((-3 (-343 (-478)) "failed") $))) |%noBranch|))) (-1003)) (T -743)) -((-2507 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1003)))) (-2506 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1003)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-1003)))) (-2504 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-1003)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-743 *3)) (-4 *3 (-1003)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1003)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1003)))) (-3005 (*1 *2 *1) (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1003))))) -((-3934 (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|) (-743 |#2|)) 13 T ELT) (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|)) 14 T ELT))) -(((-744 |#1| |#2|) (-10 -7 (-15 -3934 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|))) (-15 -3934 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|) (-743 |#2|)))) (-1003) (-1003)) (T -744)) -((-3934 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-744 *5 *6)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3117 (((-687)) 27 T ELT)) (-2975 (($) 30 T ELT)) (-2511 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2838 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-1992 (((-823) $) 29 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2382 (($ (-823)) 28 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT))) -(((-745) (-111)) (T -745)) -((-2511 (*1 *1) (-4 *1 (-745))) (-2838 (*1 *1) (-4 *1 (-745)))) -(-13 (-749) (-313) (-10 -8 (-15 -2511 ($) -3928) (-15 -2838 ($) -3928))) -(((-72) . T) ((-547 (-765)) . T) ((-313) . T) ((-749) . T) ((-752) . T) ((-1003) . T) ((-1114) . T)) -((-2509 (((-83) (-1164 |#2|) (-1164 |#2|)) 19 T ELT)) (-2510 (((-83) (-1164 |#2|) (-1164 |#2|)) 20 T ELT)) (-2508 (((-83) (-1164 |#2|) (-1164 |#2|)) 16 T ELT))) -(((-746 |#1| |#2|) (-10 -7 (-15 -2508 ((-83) (-1164 |#2|) (-1164 |#2|))) (-15 -2509 ((-83) (-1164 |#2|) (-1164 |#2|))) (-15 -2510 ((-83) (-1164 |#2|) (-1164 |#2|)))) (-687) (-709)) (T -746)) -((-2510 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) (-14 *4 (-687)))) (-2509 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) (-14 *4 (-687)))) (-2508 (*1 *2 *3 *3) (-12 (-5 *3 (-1164 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) (-14 *4 (-687))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3700 (($) 29 T CONST)) (-3444 (((-3 $ "failed") $) 32 T ELT)) (-2392 (((-83) $) 30 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2647 (($) 28 T CONST)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT)) (** (($ $ (-823)) 26 T ELT) (($ $ (-687)) 31 T ELT)) (* (($ $ $) 25 T ELT))) -(((-747) (-111)) (T -747)) -NIL -(-13 (-759) (-658)) -(((-72) . T) ((-547 (-765)) . T) ((-658) . T) ((-759) . T) ((-749) . T) ((-752) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 31 T ELT)) (-1295 (((-3 $ "failed") $ $) 34 T ELT)) (-3599 (((-478) $) 37 T ELT)) (-3700 (($) 30 T CONST)) (-3444 (((-3 $ "failed") $) 49 T ELT)) (-3168 (((-83) $) 28 T ELT)) (-2392 (((-83) $) 51 T ELT)) (-3169 (((-83) $) 38 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 53 T ELT)) (-3107 (((-687)) 54 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-3360 (($ $) 36 T ELT)) (-2640 (($) 29 T CONST)) (-2647 (($) 52 T CONST)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT)) (-3813 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3815 (($ $ $) 25 T ELT)) (** (($ $ (-687)) 50 T ELT) (($ $ (-823)) 47 T ELT)) (* (($ (-823) $) 26 T ELT) (($ (-687) $) 32 T ELT) (($ (-478) $) 39 T ELT) (($ $ $) 48 T ELT))) +((-2468 (*1 *1 *1 *1) (-4 *1 (-711)))) +(-13 (-715) (-10 -8 (-15 -2468 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-710) . T) ((-712) . T) ((-715) . T) ((-750) . T) ((-753) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT)) (-3821 (($ $ $) 25 T ELT)) (* (($ (-824) $) 26 T ELT))) +(((-712) (-111)) (T -712)) +NIL +(-13 (-750) (-25)) +(((-25) . T) ((-72) . T) ((-548 (-766)) . T) ((-750) . T) ((-753) . T) ((-1006) . T) ((-1119) . T)) +((-3172 (((-83) $) 42 T ELT)) (-3141 (((-3 (-479) #1="failed") $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3140 (((-479) $) NIL T ELT) (((-344 (-479)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) 78 T ELT)) (-3008 (((-83) $) 72 T ELT)) (-3007 (((-344 (-479)) $) 76 T ELT)) (-3116 ((|#2| $) 26 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2469 (($ $) 58 T ELT)) (-3954 (((-468) $) 67 T ELT)) (-2994 (($ $) 21 T ELT)) (-3928 (((-766) $) 53 T ELT) (($ (-479)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-344 (-479))) NIL T ELT)) (-3110 (((-688)) 10 T CONST)) (-3365 ((|#2| $) 71 T ELT)) (-3041 (((-83) $ $) 30 T ELT)) (-2670 (((-83) $ $) 69 T ELT)) (-3819 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 31 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-713 |#1| |#2|) (-10 -7 (-15 -2670 ((-83) |#1| |#1|)) (-15 -3954 ((-468) |#1|)) (-15 -2469 (|#1| |#1|)) (-15 -3009 ((-3 (-344 (-479)) #1="failed") |#1|)) (-15 -3007 ((-344 (-479)) |#1|)) (-15 -3008 ((-83) |#1|)) (-15 -3365 (|#2| |#1|)) (-15 -3116 (|#2| |#1|)) (-15 -2994 (|#1| |#1|)) (-15 -3940 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3928 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3110 ((-688)) -3934) (-15 -3928 (|#1| (-479))) (-15 * (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 -3172 ((-83) |#1|)) (-15 * (|#1| (-824) |#1|)) (-15 -3821 (|#1| |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -3041 ((-83) |#1| |#1|))) (-714 |#2|) (-144)) (T -713)) +((-3110 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-688)) (-5 *1 (-713 *3 *4)) (-4 *3 (-714 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3120 (((-688)) 64 (|has| |#1| (-314)) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 (-479) #1="failed") $) 106 (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) 103 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3140 (((-479) $) 105 (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) 102 (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 101 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3625 ((|#1| $) 90 T ELT)) (-3009 (((-3 (-344 (-479)) "failed") $) 77 (|has| |#1| (-478)) ELT)) (-3008 (((-83) $) 79 (|has| |#1| (-478)) ELT)) (-3007 (((-344 (-479)) $) 78 (|has| |#1| (-478)) ELT)) (-2979 (($) 67 (|has| |#1| (-314)) ELT)) (-2397 (((-83) $) 40 T ELT)) (-2474 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3116 ((|#1| $) 82 T ELT)) (-2516 (($ $ $) 68 (|has| |#1| (-750)) ELT)) (-2842 (($ $ $) 69 (|has| |#1| (-750)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-1997 (((-824) $) 66 (|has| |#1| (-314)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 76 (|has| |#1| (-308)) ELT)) (-2387 (($ (-824)) 65 (|has| |#1| (-314)) ELT)) (-2471 ((|#1| $) 87 T ELT)) (-2472 ((|#1| $) 88 T ELT)) (-2473 ((|#1| $) 89 T ELT)) (-2991 ((|#1| $) 83 T ELT)) (-2992 ((|#1| $) 84 T ELT)) (-2993 ((|#1| $) 85 T ELT)) (-2470 ((|#1| $) 86 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) 98 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 96 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-245 |#1|))) 95 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) 94 (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) |#1|) 93 (|has| |#1| (-448 (-1080) |#1|)) ELT)) (-3782 (($ $ |#1|) 99 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3954 (((-468) $) 74 (|has| |#1| (-549 (-468))) ELT)) (-2994 (($ $) 91 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-344 (-479))) 104 (|has| |#1| (-944 (-344 (-479)))) ELT)) (-2687 (((-628 $) $) 75 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-3365 ((|#1| $) 80 (|has| |#1| (-966)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2551 (((-83) $ $) 70 (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) 72 (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 71 (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 73 (|has| |#1| (-750)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-714 |#1|) (-111) (-144)) (T -714)) +((-2994 (*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-2472 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-2471 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-2470 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-2474 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)) (-4 *2 (-966)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-83)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-344 (-479))))) (-3009 (*1 *2 *1) (|partial| -12 (-4 *1 (-714 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-344 (-479))))) (-2469 (*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)) (-4 *2 (-308))))) +(-13 (-38 |t#1|) (-349 |t#1|) (-284 |t#1|) (-10 -8 (-15 -2994 ($ $)) (-15 -3625 (|t#1| $)) (-15 -2473 (|t#1| $)) (-15 -2472 (|t#1| $)) (-15 -2471 (|t#1| $)) (-15 -2470 (|t#1| $)) (-15 -2993 (|t#1| $)) (-15 -2992 (|t#1| $)) (-15 -2991 (|t#1| $)) (-15 -3116 (|t#1| $)) (-15 -2474 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-314)) (-6 (-314)) |%noBranch|) (IF (|has| |t#1| (-750)) (-6 (-750)) |%noBranch|) (IF (|has| |t#1| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-966)) (-15 -3365 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-478)) (PROGN (-15 -3008 ((-83) $)) (-15 -3007 ((-344 (-479)) $)) (-15 -3009 ((-3 (-344 (-479)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -2469 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-314) |has| |#1| (-314)) ((-284 |#1|) . T) ((-349 |#1|) . T) ((-448 (-1080) |#1|) |has| |#1| (-448 (-1080) |#1|)) ((-448 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 |#1|) . T) ((-650 |#1|) . T) ((-659) . T) ((-750) |has| |#1| (-750)) ((-753) |has| |#1| (-750)) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 31 T ELT)) (-1300 (((-3 $ "failed") $ $) 34 T ELT)) (-3706 (($) 30 T CONST)) (-3170 (((-83) $) 28 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 29 T CONST)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT)) (-3821 (($ $ $) 25 T ELT)) (* (($ (-824) $) 26 T ELT) (($ (-688) $) 32 T ELT))) +(((-715) (-111)) (T -715)) +NIL +(-13 (-710) (-102)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-710) . T) ((-712) . T) ((-750) . T) ((-753) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3120 (((-688)) NIL (|has| |#1| (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-903 |#1|) #1#) $) 35 T ELT) (((-3 (-479) #1#) $) NIL (OR (|has| (-903 |#1|) (-944 (-479))) (|has| |#1| (-944 (-479)))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (OR (|has| (-903 |#1|) (-944 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-3140 ((|#1| $) NIL T ELT) (((-903 |#1|) $) 33 T ELT) (((-479) $) NIL (OR (|has| (-903 |#1|) (-944 (-479))) (|has| |#1| (-944 (-479)))) ELT) (((-344 (-479)) $) NIL (OR (|has| (-903 |#1|) (-944 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3625 ((|#1| $) 16 T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-478)) ELT)) (-3008 (((-83) $) NIL (|has| |#1| (-478)) ELT)) (-3007 (((-344 (-479)) $) NIL (|has| |#1| (-478)) ELT)) (-2979 (($) NIL (|has| |#1| (-314)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2474 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-903 |#1|) (-903 |#1|)) 29 T ELT)) (-3116 ((|#1| $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1997 (((-824) $) NIL (|has| |#1| (-314)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2387 (($ (-824)) NIL (|has| |#1| (-314)) ELT)) (-2471 ((|#1| $) 22 T ELT)) (-2472 ((|#1| $) 20 T ELT)) (-2473 ((|#1| $) 18 T ELT)) (-2991 ((|#1| $) 26 T ELT)) (-2992 ((|#1| $) 25 T ELT)) (-2993 ((|#1| $) 24 T ELT)) (-2470 ((|#1| $) 23 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) NIL (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) |#1|) NIL (|has| |#1| (-448 (-1080) |#1|)) ELT)) (-3782 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-2994 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-903 |#1|)) 30 T ELT) (($ (-344 (-479))) NIL (OR (|has| (-903 |#1|) (-944 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3365 ((|#1| $) NIL (|has| |#1| (-966)) ELT)) (-2645 (($) 8 T CONST)) (-2651 (($) 12 T CONST)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-716 |#1|) (-13 (-714 |#1|) (-349 (-903 |#1|)) (-10 -8 (-15 -2474 ($ (-903 |#1|) (-903 |#1|))))) (-144)) (T -716)) +((-2474 (*1 *1 *2 *2) (-12 (-5 *2 (-903 *3)) (-4 *3 (-144)) (-5 *1 (-716 *3))))) +((-3940 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#3| (-1 |#4| |#2|) |#1|))) (-714 |#2|) (-144) (-714 |#4|) (-144)) (T -717)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-714 *6)) (-5 *1 (-717 *4 *5 *2 *6)) (-4 *4 (-714 *5))))) +((-2475 (((-2 (|:| |particular| |#2|) (|:| -1999 (-579 |#2|))) |#3| |#2| (-1080)) 19 T ELT))) +(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -2475 ((-2 (|:| |particular| |#2|) (|:| -1999 (-579 |#2|))) |#3| |#2| (-1080)))) (-13 (-254) (-944 (-479)) (-576 (-479)) (-118)) (-13 (-29 |#1|) (-1105) (-865)) (-596 |#2|)) (T -718)) +((-2475 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1080)) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-4 *4 (-13 (-29 *6) (-1105) (-865))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1999 (-579 *4)))) (-5 *1 (-718 *6 *4 *3)) (-4 *3 (-596 *4))))) +((-3555 (((-3 |#2| #1="failed") |#2| (-84) (-245 |#2|) (-579 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-245 |#2|) (-84) (-245 |#2|) (-579 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-579 |#2|))) |#2| #1#) |#2| (-84) (-1080)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-579 |#2|))) |#2| #1#) (-245 |#2|) (-84) (-1080)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -1999 (-579 (-1169 |#2|)))) #1#) (-579 |#2|) (-579 (-84)) (-1080)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -1999 (-579 (-1169 |#2|)))) #1#) (-579 (-245 |#2|)) (-579 (-84)) (-1080)) 26 T ELT) (((-3 (-579 (-1169 |#2|)) #1#) (-626 |#2|) (-1080)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -1999 (-579 (-1169 |#2|)))) #1#) (-626 |#2|) (-1169 |#2|) (-1080)) 35 T ELT))) +(((-719 |#1| |#2|) (-10 -7 (-15 -3555 ((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -1999 (-579 (-1169 |#2|)))) #1="failed") (-626 |#2|) (-1169 |#2|) (-1080))) (-15 -3555 ((-3 (-579 (-1169 |#2|)) #1#) (-626 |#2|) (-1080))) (-15 -3555 ((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -1999 (-579 (-1169 |#2|)))) #1#) (-579 (-245 |#2|)) (-579 (-84)) (-1080))) (-15 -3555 ((-3 (-2 (|:| |particular| (-1169 |#2|)) (|:| -1999 (-579 (-1169 |#2|)))) #1#) (-579 |#2|) (-579 (-84)) (-1080))) (-15 -3555 ((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-579 |#2|))) |#2| #1#) (-245 |#2|) (-84) (-1080))) (-15 -3555 ((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-579 |#2|))) |#2| #1#) |#2| (-84) (-1080))) (-15 -3555 ((-3 |#2| #1#) (-245 |#2|) (-84) (-245 |#2|) (-579 |#2|))) (-15 -3555 ((-3 |#2| #1#) |#2| (-84) (-245 |#2|) (-579 |#2|)))) (-13 (-254) (-944 (-479)) (-576 (-479)) (-118)) (-13 (-29 |#1|) (-1105) (-865))) (T -719)) +((-3555 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-84)) (-5 *4 (-245 *2)) (-5 *5 (-579 *2)) (-4 *2 (-13 (-29 *6) (-1105) (-865))) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *1 (-719 *6 *2)))) (-3555 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-245 *2)) (-5 *4 (-84)) (-5 *5 (-579 *2)) (-4 *2 (-13 (-29 *6) (-1105) (-865))) (-5 *1 (-719 *6 *2)) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))))) (-3555 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-84)) (-5 *5 (-1080)) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1999 (-579 *3))) *3 #1="failed")) (-5 *1 (-719 *6 *3)) (-4 *3 (-13 (-29 *6) (-1105) (-865))))) (-3555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-1080)) (-4 *7 (-13 (-29 *6) (-1105) (-865))) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1999 (-579 *7))) *7 #1#)) (-5 *1 (-719 *6 *7)))) (-3555 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-579 *7)) (-5 *4 (-579 (-84))) (-5 *5 (-1080)) (-4 *7 (-13 (-29 *6) (-1105) (-865))) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-2 (|:| |particular| (-1169 *7)) (|:| -1999 (-579 (-1169 *7))))) (-5 *1 (-719 *6 *7)))) (-3555 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-579 (-245 *7))) (-5 *4 (-579 (-84))) (-5 *5 (-1080)) (-4 *7 (-13 (-29 *6) (-1105) (-865))) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-2 (|:| |particular| (-1169 *7)) (|:| -1999 (-579 (-1169 *7))))) (-5 *1 (-719 *6 *7)))) (-3555 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-626 *6)) (-5 *4 (-1080)) (-4 *6 (-13 (-29 *5) (-1105) (-865))) (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-579 (-1169 *6))) (-5 *1 (-719 *5 *6)))) (-3555 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-626 *7)) (-5 *5 (-1080)) (-4 *7 (-13 (-29 *6) (-1105) (-865))) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-2 (|:| |particular| (-1169 *7)) (|:| -1999 (-579 (-1169 *7))))) (-5 *1 (-719 *6 *7)) (-5 *4 (-1169 *7))))) +((-3452 ((|#2| |#2| (-1080)) 17 T ELT)) (-2476 ((|#2| |#2| (-1080)) 56 T ELT)) (-2477 (((-1 |#2| |#2|) (-1080)) 11 T ELT))) +(((-720 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2| (-1080))) (-15 -2476 (|#2| |#2| (-1080))) (-15 -2477 ((-1 |#2| |#2|) (-1080)))) (-13 (-254) (-944 (-479)) (-576 (-479)) (-118)) (-13 (-29 |#1|) (-1105) (-865))) (T -720)) +((-2477 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-1 *5 *5)) (-5 *1 (-720 *4 *5)) (-4 *5 (-13 (-29 *4) (-1105) (-865))))) (-2476 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *1 (-720 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-865))))) (-3452 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *1 (-720 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-865)))))) +((-2478 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1999 (-579 |#4|))) (-593 |#4|) |#4|) 33 T ELT))) +(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2478 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1999 (-579 |#4|))) (-593 |#4|) |#4|))) (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479)))) (-1145 |#1|) (-1145 (-344 |#2|)) (-287 |#1| |#2| |#3|)) (T -721)) +((-2478 (*1 *2 *3 *4) (-12 (-5 *3 (-593 *4)) (-4 *4 (-287 *5 *6 *7)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-579 *4)))) (-5 *1 (-721 *5 *6 *7 *4))))) +((-3723 (((-2 (|:| -3250 |#3|) (|:| |rh| (-579 (-344 |#2|)))) |#4| (-579 (-344 |#2|))) 53 T ELT)) (-2480 (((-579 (-2 (|:| -3755 |#2|) (|:| -3210 |#2|))) |#4| |#2|) 62 T ELT) (((-579 (-2 (|:| -3755 |#2|) (|:| -3210 |#2|))) |#4|) 61 T ELT) (((-579 (-2 (|:| -3755 |#2|) (|:| -3210 |#2|))) |#3| |#2|) 20 T ELT) (((-579 (-2 (|:| -3755 |#2|) (|:| -3210 |#2|))) |#3|) 21 T ELT)) (-2481 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2479 ((|#2| |#3| (-579 (-344 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-344 |#2|)) 105 T ELT))) +(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2479 ((-3 |#2| "failed") |#3| (-344 |#2|))) (-15 -2479 (|#2| |#3| (-579 (-344 |#2|)))) (-15 -2480 ((-579 (-2 (|:| -3755 |#2|) (|:| -3210 |#2|))) |#3|)) (-15 -2480 ((-579 (-2 (|:| -3755 |#2|) (|:| -3210 |#2|))) |#3| |#2|)) (-15 -2481 (|#2| |#3| |#1|)) (-15 -2480 ((-579 (-2 (|:| -3755 |#2|) (|:| -3210 |#2|))) |#4|)) (-15 -2480 ((-579 (-2 (|:| -3755 |#2|) (|:| -3210 |#2|))) |#4| |#2|)) (-15 -2481 (|#2| |#4| |#1|)) (-15 -3723 ((-2 (|:| -3250 |#3|) (|:| |rh| (-579 (-344 |#2|)))) |#4| (-579 (-344 |#2|))))) (-13 (-308) (-118) (-944 (-344 (-479)))) (-1145 |#1|) (-596 |#2|) (-596 (-344 |#2|))) (T -722)) +((-3723 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) (-5 *2 (-2 (|:| -3250 *7) (|:| |rh| (-579 (-344 *6))))) (-5 *1 (-722 *5 *6 *7 *3)) (-5 *4 (-579 (-344 *6))) (-4 *7 (-596 *6)) (-4 *3 (-596 (-344 *6))))) (-2481 (*1 *2 *3 *4) (-12 (-4 *2 (-1145 *4)) (-5 *1 (-722 *4 *2 *5 *3)) (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *5 (-596 *2)) (-4 *3 (-596 (-344 *2))))) (-2480 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *4 (-1145 *5)) (-5 *2 (-579 (-2 (|:| -3755 *4) (|:| -3210 *4)))) (-5 *1 (-722 *5 *4 *6 *3)) (-4 *6 (-596 *4)) (-4 *3 (-596 (-344 *4))))) (-2480 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) (-5 *2 (-579 (-2 (|:| -3755 *5) (|:| -3210 *5)))) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *6 (-596 *5)) (-4 *3 (-596 (-344 *5))))) (-2481 (*1 *2 *3 *4) (-12 (-4 *2 (-1145 *4)) (-5 *1 (-722 *4 *2 *3 *5)) (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *3 (-596 *2)) (-4 *5 (-596 (-344 *2))))) (-2480 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *4 (-1145 *5)) (-5 *2 (-579 (-2 (|:| -3755 *4) (|:| -3210 *4)))) (-5 *1 (-722 *5 *4 *3 *6)) (-4 *3 (-596 *4)) (-4 *6 (-596 (-344 *4))))) (-2480 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) (-5 *2 (-579 (-2 (|:| -3755 *5) (|:| -3210 *5)))) (-5 *1 (-722 *4 *5 *3 *6)) (-4 *3 (-596 *5)) (-4 *6 (-596 (-344 *5))))) (-2479 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-344 *2))) (-4 *2 (-1145 *5)) (-5 *1 (-722 *5 *2 *3 *6)) (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *3 (-596 *2)) (-4 *6 (-596 (-344 *2))))) (-2479 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-344 *2)) (-4 *2 (-1145 *5)) (-5 *1 (-722 *5 *2 *3 *6)) (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *3 (-596 *2)) (-4 *6 (-596 *4))))) +((-2489 (((-579 (-2 (|:| |frac| (-344 |#2|)) (|:| -3250 |#3|))) |#3| (-1 (-579 |#2|) |#2| (-1075 |#2|)) (-1 (-342 |#2|) |#2|)) 156 T ELT)) (-2490 (((-579 (-2 (|:| |poly| |#2|) (|:| -3250 |#3|))) |#3| (-1 (-579 |#1|) |#2|)) 52 T ELT)) (-2483 (((-579 (-2 (|:| |deg| (-688)) (|:| -3250 |#2|))) |#3|) 123 T ELT)) (-2482 ((|#2| |#3|) 42 T ELT)) (-2484 (((-579 (-2 (|:| -3934 |#1|) (|:| -3250 |#3|))) |#3| (-1 (-579 |#1|) |#2|)) 100 T ELT)) (-2485 ((|#3| |#3| (-344 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2482 (|#2| |#3|)) (-15 -2483 ((-579 (-2 (|:| |deg| (-688)) (|:| -3250 |#2|))) |#3|)) (-15 -2484 ((-579 (-2 (|:| -3934 |#1|) (|:| -3250 |#3|))) |#3| (-1 (-579 |#1|) |#2|))) (-15 -2490 ((-579 (-2 (|:| |poly| |#2|) (|:| -3250 |#3|))) |#3| (-1 (-579 |#1|) |#2|))) (-15 -2489 ((-579 (-2 (|:| |frac| (-344 |#2|)) (|:| -3250 |#3|))) |#3| (-1 (-579 |#2|) |#2| (-1075 |#2|)) (-1 (-342 |#2|) |#2|))) (-15 -2485 (|#3| |#3| |#2|)) (-15 -2485 (|#3| |#3| (-344 |#2|)))) (-13 (-308) (-118) (-944 (-344 (-479)))) (-1145 |#1|) (-596 |#2|) (-596 (-344 |#2|))) (T -723)) +((-2485 (*1 *2 *2 *3) (-12 (-5 *3 (-344 *5)) (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) (-5 *1 (-723 *4 *5 *2 *6)) (-4 *2 (-596 *5)) (-4 *6 (-596 *3)))) (-2485 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *3 (-1145 *4)) (-5 *1 (-723 *4 *3 *2 *5)) (-4 *2 (-596 *3)) (-4 *5 (-596 (-344 *3))))) (-2489 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-579 *7) *7 (-1075 *7))) (-5 *5 (-1 (-342 *7) *7)) (-4 *7 (-1145 *6)) (-4 *6 (-13 (-308) (-118) (-944 (-344 (-479))))) (-5 *2 (-579 (-2 (|:| |frac| (-344 *7)) (|:| -3250 *3)))) (-5 *1 (-723 *6 *7 *3 *8)) (-4 *3 (-596 *7)) (-4 *8 (-596 (-344 *7))))) (-2490 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-579 *5) *6)) (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) (-5 *2 (-579 (-2 (|:| |poly| *6) (|:| -3250 *3)))) (-5 *1 (-723 *5 *6 *3 *7)) (-4 *3 (-596 *6)) (-4 *7 (-596 (-344 *6))))) (-2484 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-579 *5) *6)) (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) (-5 *2 (-579 (-2 (|:| -3934 *5) (|:| -3250 *3)))) (-5 *1 (-723 *5 *6 *3 *7)) (-4 *3 (-596 *6)) (-4 *7 (-596 (-344 *6))))) (-2483 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) (-5 *2 (-579 (-2 (|:| |deg| (-688)) (|:| -3250 *5)))) (-5 *1 (-723 *4 *5 *3 *6)) (-4 *3 (-596 *5)) (-4 *6 (-596 (-344 *5))))) (-2482 (*1 *2 *3) (-12 (-4 *2 (-1145 *4)) (-5 *1 (-723 *4 *2 *3 *5)) (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *3 (-596 *2)) (-4 *5 (-596 (-344 *2)))))) +((-2486 (((-2 (|:| -1999 (-579 (-344 |#2|))) (|:| |mat| (-626 |#1|))) (-594 |#2| (-344 |#2|)) (-579 (-344 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-344 |#2|) #1="failed")) (|:| -1999 (-579 (-344 |#2|)))) (-594 |#2| (-344 |#2|)) (-344 |#2|)) 145 T ELT) (((-2 (|:| -1999 (-579 (-344 |#2|))) (|:| |mat| (-626 |#1|))) (-593 (-344 |#2|)) (-579 (-344 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-344 |#2|) #1#)) (|:| -1999 (-579 (-344 |#2|)))) (-593 (-344 |#2|)) (-344 |#2|)) 138 T ELT)) (-2487 ((|#2| (-594 |#2| (-344 |#2|))) 86 T ELT) ((|#2| (-593 (-344 |#2|))) 89 T ELT))) +(((-724 |#1| |#2|) (-10 -7 (-15 -2486 ((-2 (|:| |particular| (-3 (-344 |#2|) #1="failed")) (|:| -1999 (-579 (-344 |#2|)))) (-593 (-344 |#2|)) (-344 |#2|))) (-15 -2486 ((-2 (|:| -1999 (-579 (-344 |#2|))) (|:| |mat| (-626 |#1|))) (-593 (-344 |#2|)) (-579 (-344 |#2|)))) (-15 -2486 ((-2 (|:| |particular| (-3 (-344 |#2|) #1#)) (|:| -1999 (-579 (-344 |#2|)))) (-594 |#2| (-344 |#2|)) (-344 |#2|))) (-15 -2486 ((-2 (|:| -1999 (-579 (-344 |#2|))) (|:| |mat| (-626 |#1|))) (-594 |#2| (-344 |#2|)) (-579 (-344 |#2|)))) (-15 -2487 (|#2| (-593 (-344 |#2|)))) (-15 -2487 (|#2| (-594 |#2| (-344 |#2|))))) (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479)))) (-1145 |#1|)) (T -724)) +((-2487 (*1 *2 *3) (-12 (-5 *3 (-594 *2 (-344 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-724 *4 *2)) (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-593 (-344 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-724 *4 *2)) (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6 (-344 *6))) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-2 (|:| -1999 (-579 (-344 *6))) (|:| |mat| (-626 *5)))) (-5 *1 (-724 *5 *6)) (-5 *4 (-579 (-344 *6))))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6 (-344 *6))) (-5 *4 (-344 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1999 (-579 *4)))) (-5 *1 (-724 *5 *6)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-593 (-344 *6))) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-2 (|:| -1999 (-579 (-344 *6))) (|:| |mat| (-626 *5)))) (-5 *1 (-724 *5 *6)) (-5 *4 (-579 (-344 *6))))) (-2486 (*1 *2 *3 *4) (-12 (-5 *3 (-593 (-344 *6))) (-5 *4 (-344 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1999 (-579 *4)))) (-5 *1 (-724 *5 *6))))) +((-2488 (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#1|))) |#5| |#4|) 49 T ELT))) +(((-725 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2488 ((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#1|))) |#5| |#4|))) (-308) (-596 |#1|) (-1145 |#1|) (-657 |#1| |#3|) (-596 |#4|)) (T -725)) +((-2488 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *7 (-1145 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| |mat| (-626 *6)) (|:| |vec| (-1169 *5)))) (-5 *1 (-725 *5 *6 *7 *4 *3)) (-4 *6 (-596 *5)) (-4 *3 (-596 *4))))) +((-2489 (((-579 (-2 (|:| |frac| (-344 |#2|)) (|:| -3250 (-594 |#2| (-344 |#2|))))) (-594 |#2| (-344 |#2|)) (-1 (-342 |#2|) |#2|)) 47 T ELT)) (-2491 (((-579 (-344 |#2|)) (-594 |#2| (-344 |#2|)) (-1 (-342 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-579 (-344 |#2|)) (-594 |#2| (-344 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-579 (-344 |#2|)) (-593 (-344 |#2|)) (-1 (-342 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-579 (-344 |#2|)) (-593 (-344 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-579 (-344 |#2|)) (-594 |#2| (-344 |#2|)) (-1 (-579 |#1|) |#2|) (-1 (-342 |#2|) |#2|)) 38 T ELT) (((-579 (-344 |#2|)) (-594 |#2| (-344 |#2|)) (-1 (-579 |#1|) |#2|)) 39 T ELT) (((-579 (-344 |#2|)) (-593 (-344 |#2|)) (-1 (-579 |#1|) |#2|) (-1 (-342 |#2|) |#2|)) 36 T ELT) (((-579 (-344 |#2|)) (-593 (-344 |#2|)) (-1 (-579 |#1|) |#2|)) 37 T ELT)) (-2490 (((-579 (-2 (|:| |poly| |#2|) (|:| -3250 (-594 |#2| (-344 |#2|))))) (-594 |#2| (-344 |#2|)) (-1 (-579 |#1|) |#2|)) 96 T ELT))) +(((-726 |#1| |#2|) (-10 -7 (-15 -2491 ((-579 (-344 |#2|)) (-593 (-344 |#2|)) (-1 (-579 |#1|) |#2|))) (-15 -2491 ((-579 (-344 |#2|)) (-593 (-344 |#2|)) (-1 (-579 |#1|) |#2|) (-1 (-342 |#2|) |#2|))) (-15 -2491 ((-579 (-344 |#2|)) (-594 |#2| (-344 |#2|)) (-1 (-579 |#1|) |#2|))) (-15 -2491 ((-579 (-344 |#2|)) (-594 |#2| (-344 |#2|)) (-1 (-579 |#1|) |#2|) (-1 (-342 |#2|) |#2|))) (-15 -2489 ((-579 (-2 (|:| |frac| (-344 |#2|)) (|:| -3250 (-594 |#2| (-344 |#2|))))) (-594 |#2| (-344 |#2|)) (-1 (-342 |#2|) |#2|))) (-15 -2490 ((-579 (-2 (|:| |poly| |#2|) (|:| -3250 (-594 |#2| (-344 |#2|))))) (-594 |#2| (-344 |#2|)) (-1 (-579 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2491 ((-579 (-344 |#2|)) (-593 (-344 |#2|)))) (-15 -2491 ((-579 (-344 |#2|)) (-593 (-344 |#2|)) (-1 (-342 |#2|) |#2|))) (-15 -2491 ((-579 (-344 |#2|)) (-594 |#2| (-344 |#2|)))) (-15 -2491 ((-579 (-344 |#2|)) (-594 |#2| (-344 |#2|)) (-1 (-342 |#2|) |#2|)))) |%noBranch|)) (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479)))) (-1145 |#1|)) (T -726)) +((-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6 (-344 *6))) (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-579 (-344 *6))) (-5 *1 (-726 *5 *6)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-594 *5 (-344 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-579 (-344 *5))) (-5 *1 (-726 *4 *5)))) (-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-593 (-344 *6))) (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-579 (-344 *6))) (-5 *1 (-726 *5 *6)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-593 (-344 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-579 (-344 *5))) (-5 *1 (-726 *4 *5)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-579 *5) *6)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) (-5 *2 (-579 (-2 (|:| |poly| *6) (|:| -3250 (-594 *6 (-344 *6)))))) (-5 *1 (-726 *5 *6)) (-5 *3 (-594 *6 (-344 *6))))) (-2489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-5 *2 (-579 (-2 (|:| |frac| (-344 *6)) (|:| -3250 (-594 *6 (-344 *6)))))) (-5 *1 (-726 *5 *6)) (-5 *3 (-594 *6 (-344 *6))))) (-2491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-594 *7 (-344 *7))) (-5 *4 (-1 (-579 *6) *7)) (-5 *5 (-1 (-342 *7) *7)) (-4 *6 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-4 *7 (-1145 *6)) (-5 *2 (-579 (-344 *7))) (-5 *1 (-726 *6 *7)))) (-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-594 *6 (-344 *6))) (-5 *4 (-1 (-579 *5) *6)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) (-5 *2 (-579 (-344 *6))) (-5 *1 (-726 *5 *6)))) (-2491 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-593 (-344 *7))) (-5 *4 (-1 (-579 *6) *7)) (-5 *5 (-1 (-342 *7) *7)) (-4 *6 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-4 *7 (-1145 *6)) (-5 *2 (-579 (-344 *7))) (-5 *1 (-726 *6 *7)))) (-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-593 (-344 *6))) (-5 *4 (-1 (-579 *5) *6)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) (-5 *2 (-579 (-344 *6))) (-5 *1 (-726 *5 *6))))) +((-2492 (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#1|))) (-626 |#2|) (-1169 |#1|)) 110 T ELT) (((-2 (|:| A (-626 |#1|)) (|:| |eqs| (-579 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1169 |#1|)) (|:| -3250 |#2|) (|:| |rh| |#1|))))) (-626 |#1|) (-1169 |#1|)) 15 T ELT)) (-2493 (((-2 (|:| |particular| (-3 (-1169 |#1|) #1="failed")) (|:| -1999 (-579 (-1169 |#1|)))) (-626 |#2|) (-1169 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -1999 (-579 |#1|))) |#2| |#1|)) 116 T ELT)) (-3555 (((-3 (-2 (|:| |particular| (-1169 |#1|)) (|:| -1999 (-626 |#1|))) #1#) (-626 |#1|) (-1169 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-579 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-727 |#1| |#2|) (-10 -7 (-15 -2492 ((-2 (|:| A (-626 |#1|)) (|:| |eqs| (-579 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1169 |#1|)) (|:| -3250 |#2|) (|:| |rh| |#1|))))) (-626 |#1|) (-1169 |#1|))) (-15 -2492 ((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#1|))) (-626 |#2|) (-1169 |#1|))) (-15 -3555 ((-3 (-2 (|:| |particular| (-1169 |#1|)) (|:| -1999 (-626 |#1|))) #1="failed") (-626 |#1|) (-1169 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-579 |#1|))) #1#) |#2| |#1|))) (-15 -2493 ((-2 (|:| |particular| (-3 (-1169 |#1|) #1#)) (|:| -1999 (-579 (-1169 |#1|)))) (-626 |#2|) (-1169 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -1999 (-579 |#1|))) |#2| |#1|)))) (-308) (-596 |#1|)) (T -727)) +((-2493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1999 (-579 *6))) *7 *6)) (-4 *6 (-308)) (-4 *7 (-596 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1169 *6) "failed")) (|:| -1999 (-579 (-1169 *6))))) (-5 *1 (-727 *6 *7)) (-5 *4 (-1169 *6)))) (-3555 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1999 (-579 *6))) "failed") *7 *6)) (-4 *6 (-308)) (-4 *7 (-596 *6)) (-5 *2 (-2 (|:| |particular| (-1169 *6)) (|:| -1999 (-626 *6)))) (-5 *1 (-727 *6 *7)) (-5 *3 (-626 *6)) (-5 *4 (-1169 *6)))) (-2492 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-596 *5)) (-5 *2 (-2 (|:| |mat| (-626 *6)) (|:| |vec| (-1169 *5)))) (-5 *1 (-727 *5 *6)) (-5 *3 (-626 *6)) (-5 *4 (-1169 *5)))) (-2492 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 (-2 (|:| A (-626 *5)) (|:| |eqs| (-579 (-2 (|:| C (-626 *5)) (|:| |g| (-1169 *5)) (|:| -3250 *6) (|:| |rh| *5)))))) (-5 *1 (-727 *5 *6)) (-5 *3 (-626 *5)) (-5 *4 (-1169 *5)) (-4 *6 (-596 *5))))) +((-2494 (((-626 |#1|) (-579 |#1|) (-688)) 14 T ELT) (((-626 |#1|) (-579 |#1|)) 15 T ELT)) (-2495 (((-3 (-1169 |#1|) #1="failed") |#2| |#1| (-579 |#1|)) 39 T ELT)) (-3322 (((-3 |#1| #1#) |#2| |#1| (-579 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-728 |#1| |#2|) (-10 -7 (-15 -2494 ((-626 |#1|) (-579 |#1|))) (-15 -2494 ((-626 |#1|) (-579 |#1|) (-688))) (-15 -2495 ((-3 (-1169 |#1|) #1="failed") |#2| |#1| (-579 |#1|))) (-15 -3322 ((-3 |#1| #1#) |#2| |#1| (-579 |#1|) (-1 |#1| |#1|)))) (-308) (-596 |#1|)) (T -728)) +((-3322 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-579 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-308)) (-5 *1 (-728 *2 *3)) (-4 *3 (-596 *2)))) (-2495 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-579 *4)) (-4 *4 (-308)) (-5 *2 (-1169 *4)) (-5 *1 (-728 *4 *3)) (-4 *3 (-596 *4)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *5)) (-5 *4 (-688)) (-4 *5 (-308)) (-5 *2 (-626 *5)) (-5 *1 (-728 *5 *6)) (-4 *6 (-596 *5)))) (-2494 (*1 *2 *3) (-12 (-5 *3 (-579 *4)) (-4 *4 (-308)) (-5 *2 (-626 *4)) (-5 *1 (-728 *4 *5)) (-4 *5 (-596 *4))))) +((-2553 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-3172 (((-83) $) NIL (|has| |#2| (-23)) ELT)) (-3689 (($ (-824)) NIL (|has| |#2| (-955)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-2468 (($ $ $) NIL (|has| |#2| (-711)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-102)) ELT)) (-3120 (((-688)) NIL (|has| |#2| (-314)) ELT)) (-3770 ((|#2| $ (-479) |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (-12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1006)) ELT)) (-3140 (((-479) $) NIL (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) ELT) (((-344 (-479)) $) NIL (-12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) ((|#2| $) NIL (|has| |#2| (-1006)) ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL (|has| |#2| (-955)) ELT) (((-626 |#2|) (-626 $)) NIL (|has| |#2| (-955)) ELT)) (-3449 (((-3 $ #1#) $) NIL (|has| |#2| (-955)) ELT)) (-2979 (($) NIL (|has| |#2| (-314)) ELT)) (-1564 ((|#2| $ (-479) |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ (-479)) NIL T ELT)) (-3170 (((-83) $) NIL (|has| |#2| (-711)) ELT)) (-2874 (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) NIL (|has| |#2| (-955)) ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#2| (-750)) ELT)) (-2593 (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#2| (-750)) ELT)) (-1937 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1997 (((-824) $) NIL (|has| |#2| (-314)) ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| |#2| (-576 (-479))) (|has| |#2| (-955))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL (|has| |#2| (-955)) ELT) (((-626 |#2|) (-1169 $)) NIL (|has| |#2| (-955)) ELT)) (-3226 (((-1063) $) NIL (|has| |#2| (-1006)) ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-2387 (($ (-824)) NIL (|has| |#2| (-314)) ELT)) (-3227 (((-1024) $) NIL (|has| |#2| (-1006)) ELT)) (-3783 ((|#2| $) NIL (|has| (-479) (-750)) ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ (-479) |#2|) NIL T ELT) ((|#2| $ (-479)) NIL T ELT)) (-3818 ((|#2| $ $) NIL (|has| |#2| (-955)) ELT)) (-1456 (($ (-1169 |#2|)) NIL T ELT)) (-3893 (((-105)) NIL (|has| |#2| (-308)) ELT)) (-3740 (($ $ (-688)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-955)) ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL (|has| |#2| (-955)) ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-1169 |#2|) $) NIL T ELT) (($ (-479)) NIL (OR (-12 (|has| |#2| (-944 (-479))) (|has| |#2| (-1006))) (|has| |#2| (-955))) ELT) (($ (-344 (-479))) NIL (-12 (|has| |#2| (-944 (-344 (-479)))) (|has| |#2| (-1006))) ELT) (($ |#2|) NIL (|has| |#2| (-1006)) ELT) (((-766) $) NIL (|has| |#2| (-548 (-766))) ELT)) (-3110 (((-688)) NIL (|has| |#2| (-955)) CONST)) (-1254 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2645 (($) NIL (|has| |#2| (-23)) CONST)) (-2651 (($) NIL (|has| |#2| (-955)) CONST)) (-2654 (($ $ (-688)) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $) NIL (-12 (|has| |#2| (-187)) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#2| (-805 (-1080))) (|has| |#2| (-955))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-955)) ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL (|has| |#2| (-955)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#2| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-2670 (((-83) $ $) 11 (|has| |#2| (-750)) ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3821 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-688)) NIL (|has| |#2| (-955)) ELT) (($ $ (-824)) NIL (|has| |#2| (-955)) ELT)) (* (($ $ $) NIL (|has| |#2| (-955)) ELT) (($ $ |#2|) NIL (|has| |#2| (-659)) ELT) (($ |#2| $) NIL (|has| |#2| (-659)) ELT) (($ (-479) $) NIL (|has| |#2| (-21)) ELT) (($ (-688) $) NIL (|has| |#2| (-23)) ELT) (($ (-824) $) NIL (|has| |#2| (-25)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-729 |#1| |#2| |#3|) (-193 |#1| |#2|) (-688) (-711) (-1 (-83) (-1169 |#2|) (-1169 |#2|))) (T -729)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1476 (((-579 (-688)) $) NIL T ELT) (((-579 (-688)) $ (-1080)) NIL T ELT)) (-1510 (((-688) $) NIL T ELT) (((-688) $ (-1080)) NIL T ELT)) (-3066 (((-579 (-732 (-1080))) $) NIL T ELT)) (-3068 (((-1075 $) $ (-732 (-1080))) NIL T ELT) (((-1075 |#1|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-732 (-1080)))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-1472 (($ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-732 (-1080)) #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL T ELT) (((-3 (-1029 |#1| (-1080)) #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-732 (-1080)) $) NIL T ELT) (((-1080) $) NIL T ELT) (((-1029 |#1| (-1080)) $) NIL T ELT)) (-3738 (($ $ $ (-732 (-1080))) NIL (|has| |#1| (-144)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT) (($ $ (-732 (-1080))) NIL (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| (-464 (-732 (-1080))) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-732 (-1080)) (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-732 (-1080)) (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-3754 (((-688) $ (-1080)) NIL T ELT) (((-688) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3069 (($ (-1075 |#1|) (-732 (-1080))) NIL T ELT) (($ (-1075 $) (-732 (-1080))) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-464 (-732 (-1080)))) NIL T ELT) (($ $ (-732 (-1080)) (-688)) NIL T ELT) (($ $ (-579 (-732 (-1080))) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-732 (-1080))) NIL T ELT)) (-2805 (((-464 (-732 (-1080))) $) NIL T ELT) (((-688) $ (-732 (-1080))) NIL T ELT) (((-579 (-688)) $ (-579 (-732 (-1080)))) NIL T ELT)) (-1613 (($ (-1 (-464 (-732 (-1080))) (-464 (-732 (-1080)))) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1511 (((-1 $ (-688)) (-1080)) NIL T ELT) (((-1 $ (-688)) $) NIL (|has| |#1| (-188)) ELT)) (-3067 (((-3 (-732 (-1080)) #1#) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1474 (((-732 (-1080)) $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1475 (((-83) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-732 (-1080))) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-1473 (($ $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-815)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-732 (-1080)) |#1|) NIL T ELT) (($ $ (-579 (-732 (-1080))) (-579 |#1|)) NIL T ELT) (($ $ (-732 (-1080)) $) NIL T ELT) (($ $ (-579 (-732 (-1080))) (-579 $)) NIL T ELT) (($ $ (-1080) $) NIL (|has| |#1| (-188)) ELT) (($ $ (-579 (-1080)) (-579 $)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1080) |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3739 (($ $ (-732 (-1080))) NIL (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 (-732 (-1080))) (-579 (-688))) NIL T ELT) (($ $ (-732 (-1080)) (-688)) NIL T ELT) (($ $ (-579 (-732 (-1080)))) NIL T ELT) (($ $ (-732 (-1080))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT)) (-1477 (((-579 (-1080)) $) NIL T ELT)) (-3930 (((-464 (-732 (-1080))) $) NIL T ELT) (((-688) $ (-732 (-1080))) NIL T ELT) (((-579 (-688)) $ (-579 (-732 (-1080)))) NIL T ELT) (((-688) $ (-1080)) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-732 (-1080)) (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-732 (-1080)) (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-732 (-1080)) (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT) (($ $ (-732 (-1080))) NIL (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-732 (-1080))) NIL T ELT) (($ (-1080)) NIL T ELT) (($ (-1029 |#1| (-1080))) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-464 (-732 (-1080)))) NIL T ELT) (($ $ (-732 (-1080)) (-688)) NIL T ELT) (($ $ (-579 (-732 (-1080))) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-579 (-732 (-1080))) (-579 (-688))) NIL T ELT) (($ $ (-732 (-1080)) (-688)) NIL T ELT) (($ $ (-579 (-732 (-1080)))) NIL T ELT) (($ $ (-732 (-1080))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-730 |#1|) (-13 (-210 |#1| (-1080) (-732 (-1080)) (-464 (-732 (-1080)))) (-944 (-1029 |#1| (-1080)))) (-955)) (T -730)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#2| (-308)) ELT)) (-2050 (($ $) NIL (|has| |#2| (-308)) ELT)) (-2048 (((-83) $) NIL (|has| |#2| (-308)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#2| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#2| (-308)) ELT)) (-1596 (((-83) $ $) NIL (|has| |#2| (-308)) ELT)) (-3706 (($) NIL T CONST)) (-2549 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#2| (-308)) ELT)) (-3705 (((-83) $) NIL (|has| |#2| (-308)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#2| (-308)) ELT)) (-1879 (($ (-579 $)) NIL (|has| |#2| (-308)) ELT) (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 20 (|has| |#2| (-308)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#2| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#2| (-308)) ELT) (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#2| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#2| (-308)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#2| (-308)) ELT)) (-1595 (((-688) $) NIL (|has| |#2| (-308)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3740 (($ $) 13 T ELT) (($ $ (-688)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-344 (-479))) NIL (|has| |#2| (-308)) ELT) (($ $) NIL (|has| |#2| (-308)) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#2| (-308)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) 15 (|has| |#2| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-688)) NIL T ELT) (($ $ (-824)) NIL T ELT) (($ $ (-479)) 18 (|has| |#2| (-308)) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-344 (-479)) $) NIL (|has| |#2| (-308)) ELT) (($ $ (-344 (-479))) NIL (|has| |#2| (-308)) ELT))) +(((-731 |#1| |#2| |#3|) (-13 (-80 $ $) (-188) (-424 |#2|) (-10 -7 (IF (|has| |#2| (-308)) (-6 (-308)) |%noBranch|))) (-1006) (-803 |#1|) |#1|) (T -731)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-1510 (((-688) $) NIL T ELT)) (-3813 ((|#1| $) 10 T ELT)) (-3141 (((-3 |#1| "failed") $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-3754 (((-688) $) 11 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-1511 (($ |#1| (-688)) 9 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3740 (($ $ (-688)) NIL T ELT) (($ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2654 (($ $ (-688)) NIL T ELT) (($ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT))) +(((-732 |#1|) (-225 |#1|) (-750)) (T -732)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3916 (((-579 |#1|) $) 39 T ELT)) (-3120 (((-688) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3921 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3141 (((-3 |#1| #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-3781 (($ $) 43 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-1738 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2286 ((|#1| $ (-479)) NIL T ELT)) (-2287 (((-688) $ (-479)) NIL T ELT)) (-3918 (($ $) 55 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-2277 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2278 (($ (-1 (-688) (-688)) $) NIL T ELT)) (-3922 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2496 (((-83) $ $) 52 T ELT)) (-3815 (((-688) $) 35 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1739 (($ $ $) NIL T ELT)) (-1740 (($ $ $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 ((|#1| $) 42 T ELT)) (-1767 (((-579 (-2 (|:| |gen| |#1|) (|:| -3925 (-688)))) $) NIL T ELT)) (-2864 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2550 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2651 (($) 7 T CONST)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 54 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ |#1| (-688)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-733 |#1|) (-13 (-330 |#1|) (-748) (-10 -8 (-15 -3783 (|#1| $)) (-15 -3781 ($ $)) (-15 -3918 ($ $)) (-15 -2496 ((-83) $ $)) (-15 -3922 ((-3 $ #1="failed") $ |#1|)) (-15 -3921 ((-3 $ #1#) $ |#1|)) (-15 -2550 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3815 ((-688) $)) (-15 -3916 ((-579 |#1|) $)))) (-750)) (T -733)) +((-3783 (*1 *2 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) (-3918 (*1 *1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) (-2496 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-733 *3)) (-4 *3 (-750)))) (-3922 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) (-3921 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) (-2550 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-733 *3)) (|:| |rm| (-733 *3)))) (-5 *1 (-733 *3)) (-4 *3 (-750)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-733 *3)) (-4 *3 (-750)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-733 *3)) (-4 *3 (-750))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3605 (((-479) $) 65 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3170 (((-83) $) 63 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3171 (((-83) $) 64 T ELT)) (-2516 (($ $ $) 57 T ELT)) (-2842 (($ $ $) 58 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-3365 (($ $) 66 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2551 (((-83) $ $) 59 T ELT)) (-2552 (((-83) $ $) 61 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 60 T ELT)) (-2670 (((-83) $ $) 62 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-734) (-111)) (T -734)) +NIL +(-13 (-490) (-749)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-242) . T) ((-490) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-578 $) . T) ((-650 $) . T) ((-659) . T) ((-708) . T) ((-710) . T) ((-712) . T) ((-715) . T) ((-749) . T) ((-750) . T) ((-753) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2497 ((|#1| $) 10 T ELT)) (-2498 (($ |#1|) 9 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2878 (($ |#2| (-688)) NIL T ELT)) (-2805 (((-688) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3740 (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-688)) NIL (|has| |#1| (-188)) ELT)) (-3930 (((-688) $) NIL T ELT)) (-3928 (((-766) $) 17 T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-144)) ELT)) (-3659 ((|#2| $ (-688)) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $) NIL (|has| |#1| (-188)) ELT) (($ $ (-688)) NIL (|has| |#1| (-188)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-735 |#1| |#2|) (-13 (-641 |#2|) (-10 -8 (IF (|has| |#1| (-188)) (-6 (-188)) |%noBranch|) (-15 -2498 ($ |#1|)) (-15 -2497 (|#1| $)))) (-641 |#2|) (-955)) (T -735)) +((-2498 (*1 *1 *2) (-12 (-4 *3 (-955)) (-5 *1 (-735 *2 *3)) (-4 *2 (-641 *3)))) (-2497 (*1 *2 *1) (-12 (-4 *2 (-641 *3)) (-5 *1 (-735 *2 *3)) (-4 *3 (-955))))) +((-2553 (((-83) $ $) 19 T ELT)) (-3218 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3220 (($ $ $) 77 T ELT)) (-3219 (((-83) $ $) 78 T ELT)) (-3223 (($ (-579 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1558 (($ (-1 (-83) |#1|) $) 49 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 59 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-2355 (($ $) 66 T ELT)) (-1341 (($ $) 62 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ |#1| $) 51 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) |#1|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3388 (($ |#1| $) 61 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 58 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3225 (((-83) $ $) 69 T ELT)) (-2516 ((|#1| $) 83 T ELT)) (-2841 (($ $ $) 86 T ELT)) (-3500 (($ $ $) 85 T ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2842 ((|#1| $) 84 T ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 T ELT)) (-3222 (($ $ $) 74 T ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT) (($ |#1| $ (-688)) 67 T ELT)) (-3227 (((-1024) $) 21 T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 55 T ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-2354 (((-579 (-2 (|:| |entry| |#1|) (|:| -1934 (-688)))) $) 65 T ELT)) (-3221 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1454 (($) 53 T ELT) (($ (-579 |#1|)) 52 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 63 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 54 T ELT)) (-3928 (((-766) $) 17 T ELT)) (-3224 (($ (-579 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1254 (((-83) $ $) 20 T ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 T ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-736 |#1|) (-111) (-750)) (T -736)) +((-2516 (*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-750))))) +(-13 (-670 |t#1|) (-875 |t#1|) (-10 -8 (-15 -2516 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-548 (-766)) . T) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-190 |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-630 |#1|) . T) ((-670 |#1|) . T) ((-875 |#1|) . T) ((-1004 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3605 (((-479) $) NIL (|has| |#1| (-749)) ELT)) (-3706 (($) NIL (|has| |#1| (-21)) CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 9 T ELT)) (-3449 (((-3 $ #1#) $) 42 (|has| |#1| (-749)) ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) 51 (|has| |#1| (-478)) ELT)) (-3008 (((-83) $) 46 (|has| |#1| (-478)) ELT)) (-3007 (((-344 (-479)) $) 48 (|has| |#1| (-478)) ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-2397 (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2499 (($) 13 T ELT)) (-2509 (((-83) $) 12 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2510 (((-83) $) 11 T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (($ |#1|) 8 T ELT) (($ (-479)) NIL (OR (|has| |#1| (-749)) (|has| |#1| (-944 (-479)))) ELT)) (-3110 (((-688)) 36 (|has| |#1| (-749)) CONST)) (-1254 (((-83) $ $) 53 T ELT)) (-3365 (($ $) NIL (|has| |#1| (-749)) ELT)) (-2645 (($) 23 (|has| |#1| (-21)) CONST)) (-2651 (($) 33 (|has| |#1| (-749)) CONST)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3041 (((-83) $ $) 21 T ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2670 (((-83) $ $) 45 (|has| |#1| (-749)) ELT)) (-3819 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3821 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-824)) NIL (|has| |#1| (-749)) ELT) (($ $ (-688)) NIL (|has| |#1| (-749)) ELT)) (* (($ $ $) 39 (|has| |#1| (-749)) ELT) (($ (-479) $) 27 (|has| |#1| (-21)) ELT) (($ (-688) $) NIL (|has| |#1| (-21)) ELT) (($ (-824) $) NIL (|has| |#1| (-21)) ELT))) +(((-737 |#1|) (-13 (-1006) (-349 |#1|) (-10 -8 (-15 -2499 ($)) (-15 -2510 ((-83) $)) (-15 -2509 ((-83) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-15 -3008 ((-83) $)) (-15 -3007 ((-344 (-479)) $)) (-15 -3009 ((-3 (-344 (-479)) "failed") $))) |%noBranch|))) (-1006)) (T -737)) +((-2499 (*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1006)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-737 *3)) (-4 *3 (-1006)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-737 *3)) (-4 *3 (-1006)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-737 *3)) (-4 *3 (-478)) (-4 *3 (-1006)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-737 *3)) (-4 *3 (-478)) (-4 *3 (-1006)))) (-3009 (*1 *2 *1) (|partial| -12 (-5 *2 (-344 (-479))) (-5 *1 (-737 *3)) (-4 *3 (-478)) (-4 *3 (-1006))))) +((-3940 (((-737 |#2|) (-1 |#2| |#1|) (-737 |#1|) (-737 |#2|)) 12 T ELT) (((-737 |#2|) (-1 |#2| |#1|) (-737 |#1|)) 13 T ELT))) +(((-738 |#1| |#2|) (-10 -7 (-15 -3940 ((-737 |#2|) (-1 |#2| |#1|) (-737 |#1|))) (-15 -3940 ((-737 |#2|) (-1 |#2| |#1|) (-737 |#1|) (-737 |#2|)))) (-1006) (-1006)) (T -738)) +((-3940 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-737 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-737 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-738 *5 *6)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-737 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-737 *6)) (-5 *1 (-738 *5 *6))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-84) #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-84) $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2501 ((|#1| (-84) |#1|) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2500 (($ |#1| (-306 (-84))) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2502 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2503 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3782 ((|#1| $ |#1|) NIL T ELT)) (-2504 ((|#1| |#1|) NIL (|has| |#1| (-144)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-84)) NIL T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2505 (($ $) NIL (|has| |#1| (-144)) ELT) (($ $ $) NIL (|has| |#1| (-144)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ (-84) (-479)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) +(((-739 |#1|) (-13 (-955) (-944 |#1|) (-944 (-84)) (-238 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |#1| (-144)) (PROGN (-6 (-38 |#1|)) (-15 -2505 ($ $)) (-15 -2505 ($ $ $)) (-15 -2504 (|#1| |#1|))) |%noBranch|) (-15 -2503 ($ $ (-1 |#1| |#1|))) (-15 -2502 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-84) (-479))) (-15 ** ($ $ (-479))) (-15 -2501 (|#1| (-84) |#1|)) (-15 -2500 ($ |#1| (-306 (-84)))))) (-955)) (T -739)) +((-2505 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-144)) (-4 *2 (-955)))) (-2505 (*1 *1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-144)) (-4 *2 (-955)))) (-2504 (*1 *2 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-144)) (-4 *2 (-955)))) (-2503 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-739 *3)))) (-2502 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-739 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-479)) (-5 *1 (-739 *4)) (-4 *4 (-955)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-739 *3)) (-4 *3 (-955)))) (-2501 (*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-5 *1 (-739 *2)) (-4 *2 (-955)))) (-2500 (*1 *1 *2 *3) (-12 (-5 *3 (-306 (-84))) (-5 *1 (-739 *2)) (-4 *2 (-955))))) +((-2618 (((-83) $ |#2|) 14 T ELT)) (-3928 (((-766) $) 11 T ELT))) +(((-740 |#1| |#2|) (-10 -7 (-15 -2618 ((-83) |#1| |#2|)) (-15 -3928 ((-766) |#1|))) (-741 |#2|) (-1006)) (T -740)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3524 ((|#1| $) 19 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2618 (((-83) $ |#1|) 17 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2506 (((-55) $) 18 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-741 |#1|) (-111) (-1006)) (T -741)) +((-3524 (*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-1006)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-741 *3)) (-4 *3 (-1006)) (-5 *2 (-55)))) (-2618 (*1 *2 *1 *3) (-12 (-4 *1 (-741 *3)) (-4 *3 (-1006)) (-5 *2 (-83))))) +(-13 (-1006) (-10 -8 (-15 -3524 (|t#1| $)) (-15 -2506 ((-55) $)) (-15 -2618 ((-83) $ |t#1|)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2507 (((-165 (-436)) (-1063)) 9 T ELT))) +(((-742) (-10 -7 (-15 -2507 ((-165 (-436)) (-1063))))) (T -742)) +((-2507 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-165 (-436))) (-5 *1 (-742))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3302 (((-1019) $) 10 T ELT)) (-3524 (((-440) $) 9 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2618 (((-83) $ (-440)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3512 (($ (-440) (-1019)) 8 T ELT)) (-3928 (((-766) $) 25 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2506 (((-55) $) 20 T ELT)) (-3041 (((-83) $ $) 12 T ELT))) +(((-743) (-13 (-741 (-440)) (-10 -8 (-15 -3302 ((-1019) $)) (-15 -3512 ($ (-440) (-1019)))))) (T -743)) +((-3302 (*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-743)))) (-3512 (*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1019)) (-5 *1 (-743))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL (|has| |#1| (-21)) ELT)) (-2508 (((-1024) $) 31 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3605 (((-479) $) NIL (|has| |#1| (-749)) ELT)) (-3706 (($) NIL (|has| |#1| (-21)) CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 9 T ELT)) (-3449 (((-3 $ #1#) $) 57 (|has| |#1| (-749)) ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) 65 (|has| |#1| (-478)) ELT)) (-3008 (((-83) $) 60 (|has| |#1| (-478)) ELT)) (-3007 (((-344 (-479)) $) 63 (|has| |#1| (-478)) ELT)) (-3170 (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-2512 (($) 14 T ELT)) (-2397 (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-3171 (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-2511 (($) 16 T ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2509 (((-83) $) 12 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2510 (((-83) $) 11 T ELT)) (-3928 (((-766) $) 24 T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (($ |#1|) 8 T ELT) (($ (-479)) NIL (OR (|has| |#1| (-749)) (|has| |#1| (-944 (-479)))) ELT)) (-3110 (((-688)) 50 (|has| |#1| (-749)) CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3365 (($ $) NIL (|has| |#1| (-749)) ELT)) (-2645 (($) 37 (|has| |#1| (-21)) CONST)) (-2651 (($) 47 (|has| |#1| (-749)) CONST)) (-2551 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3041 (((-83) $ $) 35 T ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2670 (((-83) $ $) 59 (|has| |#1| (-749)) ELT)) (-3819 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3821 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-824)) NIL (|has| |#1| (-749)) ELT) (($ $ (-688)) NIL (|has| |#1| (-749)) ELT)) (* (($ $ $) 54 (|has| |#1| (-749)) ELT) (($ (-479) $) 41 (|has| |#1| (-21)) ELT) (($ (-688) $) NIL (|has| |#1| (-21)) ELT) (($ (-824) $) NIL (|has| |#1| (-21)) ELT))) +(((-744 |#1|) (-13 (-1006) (-349 |#1|) (-10 -8 (-15 -2512 ($)) (-15 -2511 ($)) (-15 -2510 ((-83) $)) (-15 -2509 ((-83) $)) (-15 -2508 ((-1024) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-15 -3008 ((-83) $)) (-15 -3007 ((-344 (-479)) $)) (-15 -3009 ((-3 (-344 (-479)) "failed") $))) |%noBranch|))) (-1006)) (T -744)) +((-2512 (*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1006)))) (-2511 (*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1006)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-744 *3)) (-4 *3 (-1006)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-744 *3)) (-4 *3 (-1006)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-744 *3)) (-4 *3 (-1006)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-744 *3)) (-4 *3 (-478)) (-4 *3 (-1006)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-744 *3)) (-4 *3 (-478)) (-4 *3 (-1006)))) (-3009 (*1 *2 *1) (|partial| -12 (-5 *2 (-344 (-479))) (-5 *1 (-744 *3)) (-4 *3 (-478)) (-4 *3 (-1006))))) +((-3940 (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|) (-744 |#2|)) 13 T ELT) (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|)) 14 T ELT))) +(((-745 |#1| |#2|) (-10 -7 (-15 -3940 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|))) (-15 -3940 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|) (-744 |#2|)))) (-1006) (-1006)) (T -745)) +((-3940 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *1 (-745 *5 *6)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3120 (((-688)) 27 T ELT)) (-2979 (($) 30 T ELT)) (-2516 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2842 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-1997 (((-824) $) 29 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2387 (($ (-824)) 28 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT))) +(((-746) (-111)) (T -746)) +((-2516 (*1 *1) (-4 *1 (-746))) (-2842 (*1 *1) (-4 *1 (-746)))) +(-13 (-750) (-314) (-10 -8 (-15 -2516 ($) -3934) (-15 -2842 ($) -3934))) +(((-72) . T) ((-548 (-766)) . T) ((-314) . T) ((-750) . T) ((-753) . T) ((-1006) . T) ((-1119) . T)) +((-2514 (((-83) (-1169 |#2|) (-1169 |#2|)) 19 T ELT)) (-2515 (((-83) (-1169 |#2|) (-1169 |#2|)) 20 T ELT)) (-2513 (((-83) (-1169 |#2|) (-1169 |#2|)) 16 T ELT))) +(((-747 |#1| |#2|) (-10 -7 (-15 -2513 ((-83) (-1169 |#2|) (-1169 |#2|))) (-15 -2514 ((-83) (-1169 |#2|) (-1169 |#2|))) (-15 -2515 ((-83) (-1169 |#2|) (-1169 |#2|)))) (-688) (-710)) (T -747)) +((-2515 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-747 *4 *5)) (-14 *4 (-688)))) (-2514 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-747 *4 *5)) (-14 *4 (-688)))) (-2513 (*1 *2 *3 *3) (-12 (-5 *3 (-1169 *5)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-747 *4 *5)) (-14 *4 (-688))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3706 (($) 29 T CONST)) (-3449 (((-3 $ "failed") $) 32 T ELT)) (-2397 (((-83) $) 30 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2651 (($) 28 T CONST)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT)) (** (($ $ (-824)) 26 T ELT) (($ $ (-688)) 31 T ELT)) (* (($ $ $) 25 T ELT))) (((-748) (-111)) (T -748)) NIL -(-13 (-707) (-954) (-658)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-749) . T) ((-752) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT))) +(-13 (-760) (-659)) +(((-72) . T) ((-548 (-766)) . T) ((-659) . T) ((-760) . T) ((-750) . T) ((-753) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 31 T ELT)) (-1300 (((-3 $ "failed") $ $) 34 T ELT)) (-3605 (((-479) $) 37 T ELT)) (-3706 (($) 30 T CONST)) (-3449 (((-3 $ "failed") $) 49 T ELT)) (-3170 (((-83) $) 28 T ELT)) (-2397 (((-83) $) 51 T ELT)) (-3171 (((-83) $) 38 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 53 T ELT)) (-3110 (((-688)) 54 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-3365 (($ $) 36 T ELT)) (-2645 (($) 29 T CONST)) (-2651 (($) 52 T CONST)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT)) (-3819 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-3821 (($ $ $) 25 T ELT)) (** (($ $ (-688)) 50 T ELT) (($ $ (-824)) 47 T ELT)) (* (($ (-824) $) 26 T ELT) (($ (-688) $) 32 T ELT) (($ (-479) $) 39 T ELT) (($ $ $) 48 T ELT))) (((-749) (-111)) (T -749)) NIL -(-13 (-1003) (-752)) -(((-72) . T) ((-547 (-765)) . T) ((-752) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3922 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-765) $) 15 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 12 T ELT))) -(((-750 |#1| |#2|) (-13 (-752) (-423 |#1|) (-10 -7 (IF (|has| |#1| (-547 (-765))) (-6 (-547 (-765))) |%noBranch|))) (-1114) (-1 (-83) |#1| |#1|)) (T -750)) -NIL -((-2511 (($ $ $) 16 T ELT)) (-2838 (($ $ $) 15 T ELT)) (-1249 (((-83) $ $) 17 T ELT)) (-2546 (((-83) $ $) 12 T ELT)) (-2547 (((-83) $ $) 9 T ELT)) (-3037 (((-83) $ $) 14 T ELT)) (-2665 (((-83) $ $) 11 T ELT))) -(((-751 |#1|) (-10 -7 (-15 -2511 (|#1| |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -2546 ((-83) |#1| |#1|)) (-15 -2665 ((-83) |#1| |#1|)) (-15 -2547 ((-83) |#1| |#1|)) (-15 -1249 ((-83) |#1| |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-752)) (T -751)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-2511 (($ $ $) 10 T ELT)) (-2838 (($ $ $) 11 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2546 (((-83) $ $) 12 T ELT)) (-2547 (((-83) $ $) 14 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 13 T ELT)) (-2666 (((-83) $ $) 15 T ELT))) -(((-752) (-111)) (T -752)) -((-2666 (*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) (-2665 (*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) (-2546 (*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) (-2838 (*1 *1 *1 *1) (-4 *1 (-752))) (-2511 (*1 *1 *1 *1) (-4 *1 (-752)))) -(-13 (-72) (-10 -8 (-15 -2666 ((-83) $ $)) (-15 -2547 ((-83) $ $)) (-15 -2665 ((-83) $ $)) (-15 -2546 ((-83) $ $)) (-15 -2838 ($ $ $)) (-15 -2511 ($ $ $)))) -(((-72) . T) ((-1114) . T)) -((-2516 (($ $ $) 49 T ELT)) (-2517 (($ $ $) 48 T ELT)) (-2518 (($ $ $) 46 T ELT)) (-2514 (($ $ $) 55 T ELT)) (-2513 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 50 T ELT)) (-2515 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3138 (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3480 (($ $) 39 T ELT)) (-2522 (($ $ $) 43 T ELT)) (-2523 (($ $ $) 42 T ELT)) (-2512 (($ $ $) 51 T ELT)) (-2520 (($ $ $) 57 T ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 45 T ELT)) (-2521 (((-3 $ #1#) $ $) 52 T ELT)) (-3443 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2798 ((|#2| $) 36 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3793 (((-578 |#2|) $) 21 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-753 |#1| |#2|) (-10 -7 (-15 -2512 (|#1| |#1| |#1|)) (-15 -2513 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2391 |#1|)) |#1| |#1|)) (-15 -2514 (|#1| |#1| |#1|)) (-15 -2515 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1|)) (-15 -2517 (|#1| |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -2519 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2391 |#1|)) |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -2521 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2522 (|#1| |#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -2798 (|#2| |#1|)) (-15 -3443 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3793 ((-578 |#2|) |#1|)) (-15 -3922 (|#1| |#2|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3922 (|#1| (-478))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|)) (-15 -3922 ((-765) |#1|))) (-754 |#2|) (-954)) (T -753)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-2516 (($ $ $) 55 (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) 56 (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) 58 (|has| |#1| (-308)) ELT)) (-2514 (($ $ $) 53 (|has| |#1| (-308)) ELT)) (-2513 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 52 (|has| |#1| (-308)) ELT)) (-2515 (((-3 $ "failed") $ $) 54 (|has| |#1| (-308)) ELT)) (-2529 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 57 (|has| |#1| (-308)) ELT)) (-3138 (((-3 (-478) #1="failed") $) 85 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 82 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3137 (((-478) $) 84 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 81 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 80 T ELT)) (-3935 (($ $) 74 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3480 (($ $) 65 (|has| |#1| (-385)) ELT)) (-2392 (((-83) $) 40 T ELT)) (-2874 (($ |#1| (-687)) 72 T ELT)) (-2527 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 67 (|has| |#1| (-489)) ELT)) (-2526 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 68 (|has| |#1| (-489)) ELT)) (-2801 (((-687) $) 76 T ELT)) (-2522 (($ $ $) 62 (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) 63 (|has| |#1| (-308)) ELT)) (-2512 (($ $ $) 51 (|has| |#1| (-308)) ELT)) (-2520 (($ $ $) 60 (|has| |#1| (-308)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 59 (|has| |#1| (-308)) ELT)) (-2521 (((-3 $ "failed") $ $) 61 (|has| |#1| (-308)) ELT)) (-2528 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 64 (|has| |#1| (-308)) ELT)) (-3155 ((|#1| $) 75 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3443 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-489)) ELT)) (-3924 (((-687) $) 77 T ELT)) (-2798 ((|#1| $) 66 (|has| |#1| (-385)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 83 (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) 78 T ELT)) (-3793 (((-578 |#1|) $) 71 T ELT)) (-3653 ((|#1| $ (-687)) 73 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2525 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-754 |#1|) (-111) (-954)) (T -754)) -((-3924 (*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-3155 (*1 *2 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-3935 (*1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-2874 (*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-578 *3)))) (-2525 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) (-3443 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) (-2526 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-754 *3)))) (-2527 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-754 *3)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-385)))) (-3480 (*1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-385)))) (-2528 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-754 *3)))) (-2523 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2522 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2521 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2519 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2391 *1))) (-4 *1 (-754 *3)))) (-2518 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2529 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-754 *3)))) (-2517 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2516 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2515 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2514 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-2513 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2391 *1))) (-4 *1 (-754 *3)))) (-2512 (*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) -(-13 (-954) (-80 |t#1| |t#1|) (-348 |t#1|) (-10 -8 (-15 -3924 ((-687) $)) (-15 -2801 ((-687) $)) (-15 -3155 (|t#1| $)) (-15 -3935 ($ $)) (-15 -3653 (|t#1| $ (-687))) (-15 -2874 ($ |t#1| (-687))) (-15 -3793 ((-578 |t#1|) $)) (-15 -2525 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-15 -3443 ((-3 $ "failed") $ |t#1|)) (-15 -2526 ((-2 (|:| -1956 $) (|:| -2883 $)) $ $)) (-15 -2527 ((-2 (|:| -1956 $) (|:| -2883 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-385)) (PROGN (-15 -2798 (|t#1| $)) (-15 -3480 ($ $))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -2528 ((-2 (|:| -1956 $) (|:| -2883 $)) $ $)) (-15 -2523 ($ $ $)) (-15 -2522 ($ $ $)) (-15 -2521 ((-3 $ "failed") $ $)) (-15 -2520 ($ $ $)) (-15 -2519 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $)) (-15 -2518 ($ $ $)) (-15 -2529 ((-2 (|:| -1956 $) (|:| -2883 $)) $ $)) (-15 -2517 ($ $ $)) (-15 -2516 ($ $ $)) (-15 -2515 ((-3 $ "failed") $ $)) (-15 -2514 ($ $ $)) (-15 -2513 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $)) (-15 -2512 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-348 |#1|) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-658) . T) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2524 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2529 (((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-308)) ELT)) (-2527 (((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-489)) ELT)) (-2526 (((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-489)) ELT)) (-2528 (((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-308)) ELT)) (-2525 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-755 |#1| |#2|) (-10 -7 (-15 -2524 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2525 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-489)) (PROGN (-15 -2526 ((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2527 ((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2528 ((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2529 ((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-954) (-754 |#1|)) (T -755)) -((-2529 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-755 *5 *3)) (-4 *3 (-754 *5)))) (-2528 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-755 *5 *3)) (-4 *3 (-754 *5)))) (-2527 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-489)) (-4 *5 (-954)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-755 *5 *3)) (-4 *3 (-754 *5)))) (-2526 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-489)) (-4 *5 (-954)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-755 *5 *3)) (-4 *3 (-754 *5)))) (-2525 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-954)) (-5 *1 (-755 *2 *3)) (-4 *3 (-754 *2)))) (-2524 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-954)) (-5 *1 (-755 *5 *2)) (-4 *2 (-754 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2516 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2514 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2513 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2515 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2529 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 34 (|has| |#1| (-308)) ELT)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3509 (((-765) $ (-765)) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-687)) NIL T ELT)) (-2527 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 30 (|has| |#1| (-489)) ELT)) (-2526 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 28 (|has| |#1| (-489)) ELT)) (-2801 (((-687) $) NIL T ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2512 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2528 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 32 (|has| |#1| (-308)) ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3924 (((-687) $) NIL T ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (($ |#1|) NIL T ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-687)) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2525 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) 23 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 19 T ELT) (($ $ (-687)) 24 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-756 |#1| |#2| |#3|) (-13 (-754 |#1|) (-10 -8 (-15 -3509 ((-765) $ (-765))))) (-954) (-69 |#1|) (-1 |#1| |#1|)) (T -756)) -((-3509 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-756 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2516 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2518 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2514 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2513 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-2515 (((-3 $ #1#) $ $) NIL (|has| |#2| (-308)) ELT)) (-2529 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) ((|#2| $) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#2| (-385)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2874 (($ |#2| (-687)) 17 T ELT)) (-2527 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#2| (-489)) ELT)) (-2526 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#2| (-489)) ELT)) (-2801 (((-687) $) NIL T ELT)) (-2522 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2512 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2520 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2519 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-2521 (((-3 $ #1#) $ $) NIL (|has| |#2| (-308)) ELT)) (-2528 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3155 ((|#2| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3443 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT)) (-3924 (((-687) $) NIL T ELT)) (-2798 ((|#2| $) NIL (|has| |#2| (-385)) ELT)) (-3922 (((-765) $) 24 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (($ |#2|) NIL T ELT) (($ (-1161 |#1|)) 19 T ELT)) (-3793 (((-578 |#2|) $) NIL T ELT)) (-3653 ((|#2| $ (-687)) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2525 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) 13 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-757 |#1| |#2| |#3| |#4|) (-13 (-754 |#2|) (-550 (-1161 |#1|))) (-1075) (-954) (-69 |#2|) (-1 |#2| |#2|)) (T -757)) -NIL -((-2532 ((|#1| (-687) |#1|) 45 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2531 ((|#1| (-687) (-687) |#1|) 36 T ELT) ((|#1| (-687) |#1|) 24 T ELT)) (-2530 ((|#1| (-687) |#1|) 40 T ELT)) (-2781 ((|#1| (-687) |#1|) 38 T ELT)) (-2780 ((|#1| (-687) |#1|) 37 T ELT))) -(((-758 |#1|) (-10 -7 (-15 -2780 (|#1| (-687) |#1|)) (-15 -2781 (|#1| (-687) |#1|)) (-15 -2530 (|#1| (-687) |#1|)) (-15 -2531 (|#1| (-687) |#1|)) (-15 -2531 (|#1| (-687) (-687) |#1|)) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -2532 (|#1| (-687) |#1|)) |%noBranch|)) (-144)) (T -758)) -((-2532 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-144)))) (-2531 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) (-2531 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) (-2530 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) (-2781 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) (-2780 (*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144))))) -((-2548 (((-83) $ $) 7 T ELT)) (-2511 (($ $ $) 23 T ELT)) (-2838 (($ $ $) 22 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2546 (((-83) $ $) 21 T ELT)) (-2547 (((-83) $ $) 19 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 20 T ELT)) (-2666 (((-83) $ $) 18 T ELT)) (** (($ $ (-823)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-759) (-111)) (T -759)) -NIL -(-13 (-749) (-1013)) -(((-72) . T) ((-547 (-765)) . T) ((-749) . T) ((-752) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3379 (((-478) $) 14 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 20 T ELT) (($ (-478)) 13 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 10 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 12 T ELT))) -(((-760) (-13 (-749) (-10 -8 (-15 -3922 ($ (-478))) (-15 -3379 ((-478) $))))) (T -760)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-760)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-760))))) -((-2533 (((-1170) (-578 (-51))) 23 T ELT)) (-3437 (((-1170) (-1059) (-765)) 13 T ELT) (((-1170) (-765)) 8 T ELT) (((-1170) (-1059)) 10 T ELT))) -(((-761) (-10 -7 (-15 -3437 ((-1170) (-1059))) (-15 -3437 ((-1170) (-765))) (-15 -3437 ((-1170) (-1059) (-765))) (-15 -2533 ((-1170) (-578 (-51)))))) (T -761)) -((-2533 (*1 *2 *3) (-12 (-5 *3 (-578 (-51))) (-5 *2 (-1170)) (-5 *1 (-761)))) (-3437 (*1 *2 *3 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-765)) (-5 *2 (-1170)) (-5 *1 (-761)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-761)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-761))))) -((-2535 (((-627 (-1123)) $ (-1123)) 15 T ELT)) (-2536 (((-627 (-482)) $ (-482)) 12 T ELT)) (-2534 (((-687) $ (-100)) 30 T ELT))) -(((-762 |#1|) (-10 -7 (-15 -2534 ((-687) |#1| (-100))) (-15 -2535 ((-627 (-1123)) |#1| (-1123))) (-15 -2536 ((-627 (-482)) |#1| (-482)))) (-763)) (T -762)) -NIL -((-2535 (((-627 (-1123)) $ (-1123)) 8 T ELT)) (-2536 (((-627 (-482)) $ (-482)) 9 T ELT)) (-2534 (((-687) $ (-100)) 7 T ELT)) (-2537 (((-627 (-99)) $ (-99)) 10 T ELT)) (-1683 (($ $) 6 T ELT))) -(((-763) (-111)) (T -763)) -((-2537 (*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-99))) (-5 *3 (-99)))) (-2536 (*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-482))) (-5 *3 (-482)))) (-2535 (*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-1123))) (-5 *3 (-1123)))) (-2534 (*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *3 (-100)) (-5 *2 (-687))))) -(-13 (-145) (-10 -8 (-15 -2537 ((-627 (-99)) $ (-99))) (-15 -2536 ((-627 (-482)) $ (-482))) (-15 -2535 ((-627 (-1123)) $ (-1123))) (-15 -2534 ((-687) $ (-100))))) +(-13 (-708) (-955) (-659)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-659) . T) ((-708) . T) ((-710) . T) ((-712) . T) ((-715) . T) ((-750) . T) ((-753) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT))) +(((-750) (-111)) (T -750)) +NIL +(-13 (-1006) (-753)) +(((-72) . T) ((-548 (-766)) . T) ((-753) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3928 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-766) $) 15 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 12 T ELT))) +(((-751 |#1| |#2|) (-13 (-753) (-424 |#1|) (-10 -7 (IF (|has| |#1| (-548 (-766))) (-6 (-548 (-766))) |%noBranch|))) (-1119) (-1 (-83) |#1| |#1|)) (T -751)) +NIL +((-2516 (($ $ $) 16 T ELT)) (-2842 (($ $ $) 15 T ELT)) (-1254 (((-83) $ $) 17 T ELT)) (-2551 (((-83) $ $) 12 T ELT)) (-2552 (((-83) $ $) 9 T ELT)) (-3041 (((-83) $ $) 14 T ELT)) (-2669 (((-83) $ $) 11 T ELT))) +(((-752 |#1|) (-10 -7 (-15 -2516 (|#1| |#1| |#1|)) (-15 -2842 (|#1| |#1| |#1|)) (-15 -2551 ((-83) |#1| |#1|)) (-15 -2669 ((-83) |#1| |#1|)) (-15 -2552 ((-83) |#1| |#1|)) (-15 -1254 ((-83) |#1| |#1|)) (-15 -3041 ((-83) |#1| |#1|))) (-753)) (T -752)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-2516 (($ $ $) 10 T ELT)) (-2842 (($ $ $) 11 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2551 (((-83) $ $) 12 T ELT)) (-2552 (((-83) $ $) 14 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 13 T ELT)) (-2670 (((-83) $ $) 15 T ELT))) +(((-753) (-111)) (T -753)) +((-2670 (*1 *2 *1 *1) (-12 (-4 *1 (-753)) (-5 *2 (-83)))) (-2552 (*1 *2 *1 *1) (-12 (-4 *1 (-753)) (-5 *2 (-83)))) (-2669 (*1 *2 *1 *1) (-12 (-4 *1 (-753)) (-5 *2 (-83)))) (-2551 (*1 *2 *1 *1) (-12 (-4 *1 (-753)) (-5 *2 (-83)))) (-2842 (*1 *1 *1 *1) (-4 *1 (-753))) (-2516 (*1 *1 *1 *1) (-4 *1 (-753)))) +(-13 (-72) (-10 -8 (-15 -2670 ((-83) $ $)) (-15 -2552 ((-83) $ $)) (-15 -2669 ((-83) $ $)) (-15 -2551 ((-83) $ $)) (-15 -2842 ($ $ $)) (-15 -2516 ($ $ $)))) +(((-72) . T) ((-1119) . T)) +((-2521 (($ $ $) 49 T ELT)) (-2522 (($ $ $) 48 T ELT)) (-2523 (($ $ $) 46 T ELT)) (-2519 (($ $ $) 55 T ELT)) (-2518 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 50 T ELT)) (-2520 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3141 (((-3 (-479) #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3485 (($ $) 39 T ELT)) (-2527 (($ $ $) 43 T ELT)) (-2528 (($ $ $) 42 T ELT)) (-2517 (($ $ $) 51 T ELT)) (-2525 (($ $ $) 57 T ELT)) (-2524 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 45 T ELT)) (-2526 (((-3 $ #1#) $ $) 52 T ELT)) (-3448 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2802 ((|#2| $) 36 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3799 (((-579 |#2|) $) 21 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-754 |#1| |#2|) (-10 -7 (-15 -2517 (|#1| |#1| |#1|)) (-15 -2518 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2396 |#1|)) |#1| |#1|)) (-15 -2519 (|#1| |#1| |#1|)) (-15 -2520 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2521 (|#1| |#1| |#1|)) (-15 -2522 (|#1| |#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -2524 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2396 |#1|)) |#1| |#1|)) (-15 -2525 (|#1| |#1| |#1|)) (-15 -2526 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -2802 (|#2| |#1|)) (-15 -3448 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3799 ((-579 |#2|) |#1|)) (-15 -3928 (|#1| |#2|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3928 (|#1| (-479))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 * (|#1| (-824) |#1|)) (-15 -3928 ((-766) |#1|))) (-755 |#2|) (-955)) (T -754)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-2521 (($ $ $) 55 (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) 56 (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) 58 (|has| |#1| (-308)) ELT)) (-2519 (($ $ $) 53 (|has| |#1| (-308)) ELT)) (-2518 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 52 (|has| |#1| (-308)) ELT)) (-2520 (((-3 $ "failed") $ $) 54 (|has| |#1| (-308)) ELT)) (-2534 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 57 (|has| |#1| (-308)) ELT)) (-3141 (((-3 (-479) #1="failed") $) 85 (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) 82 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3140 (((-479) $) 84 (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) 81 (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 80 T ELT)) (-3941 (($ $) 74 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3485 (($ $) 65 (|has| |#1| (-386)) ELT)) (-2397 (((-83) $) 40 T ELT)) (-2878 (($ |#1| (-688)) 72 T ELT)) (-2532 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 67 (|has| |#1| (-490)) ELT)) (-2531 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 68 (|has| |#1| (-490)) ELT)) (-2805 (((-688) $) 76 T ELT)) (-2527 (($ $ $) 62 (|has| |#1| (-308)) ELT)) (-2528 (($ $ $) 63 (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) 51 (|has| |#1| (-308)) ELT)) (-2525 (($ $ $) 60 (|has| |#1| (-308)) ELT)) (-2524 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 59 (|has| |#1| (-308)) ELT)) (-2526 (((-3 $ "failed") $ $) 61 (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 64 (|has| |#1| (-308)) ELT)) (-3158 ((|#1| $) 75 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3448 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-490)) ELT)) (-3930 (((-688) $) 77 T ELT)) (-2802 ((|#1| $) 66 (|has| |#1| (-386)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 (-479))) 83 (|has| |#1| (-944 (-344 (-479)))) ELT) (($ |#1|) 78 T ELT)) (-3799 (((-579 |#1|) $) 71 T ELT)) (-3659 ((|#1| $ (-688)) 73 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2530 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-755 |#1|) (-111) (-955)) (T -755)) +((-3930 (*1 *2 *1) (-12 (-4 *1 (-755 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-755 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)))) (-3941 (*1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)))) (-3659 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-755 *2)) (-4 *2 (-955)))) (-2878 (*1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-755 *2)) (-4 *2 (-955)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-755 *3)) (-4 *3 (-955)) (-5 *2 (-579 *3)))) (-2530 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-490)))) (-2531 (*1 *2 *1 *1) (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-755 *3)))) (-2532 (*1 *2 *1 *1) (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-755 *3)))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-386)))) (-3485 (*1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-386)))) (-2533 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-755 *3)))) (-2528 (*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2527 (*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2526 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2525 (*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2524 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-955)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2396 *1))) (-4 *1 (-755 *3)))) (-2523 (*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2534 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-755 *3)))) (-2522 (*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2521 (*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2520 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2519 (*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-2518 (*1 *2 *1 *1) (-12 (-4 *3 (-308)) (-4 *3 (-955)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2396 *1))) (-4 *1 (-755 *3)))) (-2517 (*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) +(-13 (-955) (-80 |t#1| |t#1|) (-349 |t#1|) (-10 -8 (-15 -3930 ((-688) $)) (-15 -2805 ((-688) $)) (-15 -3158 (|t#1| $)) (-15 -3941 ($ $)) (-15 -3659 (|t#1| $ (-688))) (-15 -2878 ($ |t#1| (-688))) (-15 -3799 ((-579 |t#1|) $)) (-15 -2530 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-490)) (PROGN (-15 -3448 ((-3 $ "failed") $ |t#1|)) (-15 -2531 ((-2 (|:| -1961 $) (|:| -2887 $)) $ $)) (-15 -2532 ((-2 (|:| -1961 $) (|:| -2887 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-386)) (PROGN (-15 -2802 (|t#1| $)) (-15 -3485 ($ $))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -2533 ((-2 (|:| -1961 $) (|:| -2887 $)) $ $)) (-15 -2528 ($ $ $)) (-15 -2527 ($ $ $)) (-15 -2526 ((-3 $ "failed") $ $)) (-15 -2525 ($ $ $)) (-15 -2524 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $)) (-15 -2523 ($ $ $)) (-15 -2534 ((-2 (|:| -1961 $) (|:| -2887 $)) $ $)) (-15 -2522 ($ $ $)) (-15 -2521 ($ $ $)) (-15 -2520 ((-3 $ "failed") $ $)) (-15 -2519 ($ $ $)) (-15 -2518 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $)) (-15 -2517 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-551 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-349 |#1|) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 |#1|) |has| |#1| (-144)) ((-650 |#1|) |has| |#1| (-144)) ((-659) . T) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2529 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2534 (((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-308)) ELT)) (-2532 (((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-490)) ELT)) (-2531 (((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-490)) ELT)) (-2533 (((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-308)) ELT)) (-2530 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-756 |#1| |#2|) (-10 -7 (-15 -2529 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2530 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-490)) (PROGN (-15 -2531 ((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2532 ((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2533 ((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2534 ((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-955) (-755 |#1|)) (T -756)) +((-2534 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-955)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-756 *5 *3)) (-4 *3 (-755 *5)))) (-2533 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-955)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-756 *5 *3)) (-4 *3 (-755 *5)))) (-2532 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-490)) (-4 *5 (-955)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-756 *5 *3)) (-4 *3 (-755 *5)))) (-2531 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-490)) (-4 *5 (-955)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-756 *5 *3)) (-4 *3 (-755 *5)))) (-2530 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-955)) (-5 *1 (-756 *2 *3)) (-4 *3 (-755 *2)))) (-2529 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-955)) (-5 *1 (-756 *5 *2)) (-4 *2 (-755 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2521 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2519 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2518 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2520 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2534 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 34 (|has| |#1| (-308)) ELT)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3515 (((-766) $ (-766)) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-688)) NIL T ELT)) (-2532 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 30 (|has| |#1| (-490)) ELT)) (-2531 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 28 (|has| |#1| (-490)) ELT)) (-2805 (((-688) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2528 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2525 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2524 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-2526 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2533 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 32 (|has| |#1| (-308)) ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT)) (-3930 (((-688) $) NIL T ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (($ |#1|) NIL T ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-688)) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2530 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) 23 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) 19 T ELT) (($ $ (-688)) 24 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-757 |#1| |#2| |#3|) (-13 (-755 |#1|) (-10 -8 (-15 -3515 ((-766) $ (-766))))) (-955) (-69 |#1|) (-1 |#1| |#1|)) (T -757)) +((-3515 (*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-757 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2521 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2522 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2523 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2519 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2518 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-2520 (((-3 $ #1#) $ $) NIL (|has| |#2| (-308)) ELT)) (-2534 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) ((|#2| $) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#2| (-386)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2878 (($ |#2| (-688)) 17 T ELT)) (-2532 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#2| (-490)) ELT)) (-2531 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#2| (-490)) ELT)) (-2805 (((-688) $) NIL T ELT)) (-2527 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2528 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2517 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2525 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-2524 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-2526 (((-3 $ #1#) $ $) NIL (|has| |#2| (-308)) ELT)) (-2533 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3158 ((|#2| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3448 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-490)) ELT)) (-3930 (((-688) $) NIL T ELT)) (-2802 ((|#2| $) NIL (|has| |#2| (-386)) ELT)) (-3928 (((-766) $) 24 T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (($ |#2|) NIL T ELT) (($ (-1166 |#1|)) 19 T ELT)) (-3799 (((-579 |#2|) $) NIL T ELT)) (-3659 ((|#2| $ (-688)) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2530 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) 13 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-758 |#1| |#2| |#3| |#4|) (-13 (-755 |#2|) (-551 (-1166 |#1|))) (-1080) (-955) (-69 |#2|) (-1 |#2| |#2|)) (T -758)) +NIL +((-2537 ((|#1| (-688) |#1|) 45 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2536 ((|#1| (-688) (-688) |#1|) 36 T ELT) ((|#1| (-688) |#1|) 24 T ELT)) (-2535 ((|#1| (-688) |#1|) 40 T ELT)) (-2785 ((|#1| (-688) |#1|) 38 T ELT)) (-2784 ((|#1| (-688) |#1|) 37 T ELT))) +(((-759 |#1|) (-10 -7 (-15 -2784 (|#1| (-688) |#1|)) (-15 -2785 (|#1| (-688) |#1|)) (-15 -2535 (|#1| (-688) |#1|)) (-15 -2536 (|#1| (-688) |#1|)) (-15 -2536 (|#1| (-688) (-688) |#1|)) (IF (|has| |#1| (-38 (-344 (-479)))) (-15 -2537 (|#1| (-688) |#1|)) |%noBranch|)) (-144)) (T -759)) +((-2537 (*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-144)))) (-2536 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144)))) (-2536 (*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144)))) (-2535 (*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144)))) (-2785 (*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144)))) (-2784 (*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144))))) +((-2553 (((-83) $ $) 7 T ELT)) (-2516 (($ $ $) 23 T ELT)) (-2842 (($ $ $) 22 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2551 (((-83) $ $) 21 T ELT)) (-2552 (((-83) $ $) 19 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 20 T ELT)) (-2670 (((-83) $ $) 18 T ELT)) (** (($ $ (-824)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-760) (-111)) (T -760)) +NIL +(-13 (-750) (-1016)) +(((-72) . T) ((-548 (-766)) . T) ((-750) . T) ((-753) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3384 (((-479) $) 14 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 20 T ELT) (($ (-479)) 13 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 10 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 12 T ELT))) +(((-761) (-13 (-750) (-10 -8 (-15 -3928 ($ (-479))) (-15 -3384 ((-479) $))))) (T -761)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-761)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-761))))) +((-2538 (((-1175) (-579 (-51))) 23 T ELT)) (-3442 (((-1175) (-1063) (-766)) 13 T ELT) (((-1175) (-766)) 8 T ELT) (((-1175) (-1063)) 10 T ELT))) +(((-762) (-10 -7 (-15 -3442 ((-1175) (-1063))) (-15 -3442 ((-1175) (-766))) (-15 -3442 ((-1175) (-1063) (-766))) (-15 -2538 ((-1175) (-579 (-51)))))) (T -762)) +((-2538 (*1 *2 *3) (-12 (-5 *3 (-579 (-51))) (-5 *2 (-1175)) (-5 *1 (-762)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-1063)) (-5 *4 (-766)) (-5 *2 (-1175)) (-5 *1 (-762)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-762)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-762))))) +((-2540 (((-628 (-1128)) $ (-1128)) 15 T ELT)) (-2541 (((-628 (-483)) $ (-483)) 12 T ELT)) (-2539 (((-688) $ (-100)) 30 T ELT))) +(((-763 |#1|) (-10 -7 (-15 -2539 ((-688) |#1| (-100))) (-15 -2540 ((-628 (-1128)) |#1| (-1128))) (-15 -2541 ((-628 (-483)) |#1| (-483)))) (-764)) (T -763)) +NIL +((-2540 (((-628 (-1128)) $ (-1128)) 8 T ELT)) (-2541 (((-628 (-483)) $ (-483)) 9 T ELT)) (-2539 (((-688) $ (-100)) 7 T ELT)) (-2542 (((-628 (-99)) $ (-99)) 10 T ELT)) (-1688 (($ $) 6 T ELT))) +(((-764) (-111)) (T -764)) +((-2542 (*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *2 (-628 (-99))) (-5 *3 (-99)))) (-2541 (*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *2 (-628 (-483))) (-5 *3 (-483)))) (-2540 (*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *2 (-628 (-1128))) (-5 *3 (-1128)))) (-2539 (*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *3 (-100)) (-5 *2 (-688))))) +(-13 (-145) (-10 -8 (-15 -2542 ((-628 (-99)) $ (-99))) (-15 -2541 ((-628 (-483)) $ (-483))) (-15 -2540 ((-628 (-1128)) $ (-1128))) (-15 -2539 ((-688) $ (-100))))) (((-145) . T)) -((-2535 (((-627 (-1123)) $ (-1123)) NIL T ELT)) (-2536 (((-627 (-482)) $ (-482)) NIL T ELT)) (-2534 (((-687) $ (-100)) NIL T ELT)) (-2537 (((-627 (-99)) $ (-99)) 22 T ELT)) (-2539 (($ (-331)) 12 T ELT) (($ (-1059)) 14 T ELT)) (-2538 (((-83) $) 19 T ELT)) (-3922 (((-765) $) 26 T ELT)) (-1683 (($ $) 23 T ELT))) -(((-764) (-13 (-763) (-547 (-765)) (-10 -8 (-15 -2539 ($ (-331))) (-15 -2539 ($ (-1059))) (-15 -2538 ((-83) $))))) (T -764)) -((-2539 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-764)))) (-2539 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-764)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-764))))) -((-2548 (((-83) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2569 (($ $ $) 125 T ELT)) (-2584 (((-478) $) 31 T ELT) (((-478)) 36 T ELT)) (-2579 (($ (-478)) 53 T ELT)) (-2576 (($ $ $) 54 T ELT) (($ (-578 $)) 84 T ELT)) (-2560 (($ $ (-578 $)) 82 T ELT)) (-2581 (((-478) $) 34 T ELT)) (-2563 (($ $ $) 73 T ELT)) (-3508 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2582 (((-478) $) 33 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-3511 (($ $) 114 T ELT)) (-2567 (($ $ $) 129 T ELT)) (-2550 (($ (-578 $)) 61 T ELT)) (-3516 (($ $ (-578 $)) 79 T ELT)) (-2578 (($ (-478) (-478)) 55 T ELT)) (-2591 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3118 (($ $ (-478)) 43 T ELT) (($ $) 46 T ELT)) (-2544 (($ $ $) 97 T ELT)) (-2565 (($ $ $) 132 T ELT)) (-2559 (($ $) 115 T ELT)) (-2543 (($ $ $) 98 T ELT)) (-2555 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2818 (((-1170) $) 10 T ELT)) (-2558 (($ $) 118 T ELT) (($ $ (-687)) 122 T ELT)) (-2561 (($ $ $) 75 T ELT)) (-2562 (($ $ $) 74 T ELT)) (-2575 (($ $ (-578 $)) 110 T ELT)) (-2573 (($ $ $) 113 T ELT)) (-2552 (($ (-578 $)) 59 T ELT)) (-2553 (($ $) 70 T ELT) (($ (-578 $)) 71 T ELT)) (-2556 (($ $ $) 123 T ELT)) (-2557 (($ $) 116 T ELT)) (-2568 (($ $ $) 128 T ELT)) (-3509 (($ (-478)) 21 T ELT) (($ (-1075)) 23 T ELT) (($ (-1059)) 30 T ELT) (($ (-177)) 25 T ELT)) (-2541 (($ $ $) 101 T ELT)) (-2540 (($ $) 102 T ELT)) (-2586 (((-1170) (-1059)) 15 T ELT)) (-2587 (($ (-1059)) 14 T ELT)) (-3105 (($ (-578 (-578 $))) 58 T ELT)) (-3119 (($ $ (-478)) 42 T ELT) (($ $) 45 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2571 (($ $ $) 131 T ELT)) (-3447 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2572 (((-83) $) 108 T ELT)) (-2574 (($ $ (-578 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2580 (($ (-478)) 39 T ELT)) (-2583 (((-478) $) 32 T ELT) (((-478)) 35 T ELT)) (-2577 (($ $ $) 40 T ELT) (($ (-578 $)) 83 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3443 (($ $ $) 99 T ELT)) (-3541 (($) 13 T ELT)) (-3776 (($ $ (-578 $)) 109 T ELT)) (-2585 (((-1059) (-1059)) 8 T ELT)) (-3812 (($ $) 117 T ELT) (($ $ (-687)) 121 T ELT)) (-2545 (($ $ $) 96 T ELT)) (-3734 (($ $ (-687)) 139 T ELT)) (-2551 (($ (-578 $)) 60 T ELT)) (-3922 (((-765) $) 19 T ELT)) (-3749 (($ $ (-478)) 41 T ELT) (($ $) 44 T ELT)) (-2554 (($ $) 68 T ELT) (($ (-578 $)) 69 T ELT)) (-3220 (($ $) 66 T ELT) (($ (-578 $)) 67 T ELT)) (-2570 (($ $) 124 T ELT)) (-2549 (($ (-578 $)) 65 T ELT)) (-3083 (($ $ $) 105 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2566 (($ $ $) 130 T ELT)) (-2542 (($ $ $) 100 T ELT)) (-3713 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2546 (($ $ $) 89 T ELT)) (-2547 (($ $ $) 87 T ELT)) (-3037 (((-83) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2665 (($ $ $) 88 T ELT)) (-2666 (($ $ $) 86 T ELT)) (-3925 (($ $ $) 94 T ELT)) (-3813 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3815 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-765) (-13 (-1003) (-10 -8 (-15 -2818 ((-1170) $)) (-15 -2587 ($ (-1059))) (-15 -2586 ((-1170) (-1059))) (-15 -3509 ($ (-478))) (-15 -3509 ($ (-1075))) (-15 -3509 ($ (-1059))) (-15 -3509 ($ (-177))) (-15 -3541 ($)) (-15 -2585 ((-1059) (-1059))) (-15 -2584 ((-478) $)) (-15 -2583 ((-478) $)) (-15 -2584 ((-478))) (-15 -2583 ((-478))) (-15 -2582 ((-478) $)) (-15 -2581 ((-478) $)) (-15 -2580 ($ (-478))) (-15 -2579 ($ (-478))) (-15 -2578 ($ (-478) (-478))) (-15 -3119 ($ $ (-478))) (-15 -3118 ($ $ (-478))) (-15 -3749 ($ $ (-478))) (-15 -3119 ($ $)) (-15 -3118 ($ $)) (-15 -3749 ($ $)) (-15 -2577 ($ $ $)) (-15 -2576 ($ $ $)) (-15 -2577 ($ (-578 $))) (-15 -2576 ($ (-578 $))) (-15 -2575 ($ $ (-578 $))) (-15 -2574 ($ $ (-578 $))) (-15 -2574 ($ $ $ $)) (-15 -2573 ($ $ $)) (-15 -2572 ((-83) $)) (-15 -3776 ($ $ (-578 $))) (-15 -3511 ($ $)) (-15 -2571 ($ $ $)) (-15 -2570 ($ $)) (-15 -3105 ($ (-578 (-578 $)))) (-15 -2569 ($ $ $)) (-15 -2591 ($ $)) (-15 -2591 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3734 ($ $ (-687))) (-15 -3083 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $ $)) (-15 -3516 ($ $ (-578 $))) (-15 -2560 ($ $ (-578 $))) (-15 -2559 ($ $)) (-15 -3812 ($ $)) (-15 -3812 ($ $ (-687))) (-15 -2558 ($ $)) (-15 -2558 ($ $ (-687))) (-15 -2557 ($ $)) (-15 -2556 ($ $ $)) (-15 -3508 ($ $)) (-15 -3508 ($ $ $)) (-15 -3508 ($ $ $ $)) (-15 -2555 ($ $)) (-15 -2555 ($ $ $)) (-15 -2555 ($ $ $ $)) (-15 -3447 ($ $)) (-15 -3447 ($ $ $)) (-15 -3447 ($ $ $ $)) (-15 -3220 ($ $)) (-15 -3220 ($ (-578 $))) (-15 -2554 ($ $)) (-15 -2554 ($ (-578 $))) (-15 -2553 ($ $)) (-15 -2553 ($ (-578 $))) (-15 -2552 ($ (-578 $))) (-15 -2551 ($ (-578 $))) (-15 -2550 ($ (-578 $))) (-15 -2549 ($ (-578 $))) (-15 -3037 ($ $ $)) (-15 -2548 ($ $ $)) (-15 -2666 ($ $ $)) (-15 -2547 ($ $ $)) (-15 -2665 ($ $ $)) (-15 -2546 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -3813 ($ $ $)) (-15 -3813 ($ $)) (-15 * ($ $ $)) (-15 -3925 ($ $ $)) (-15 ** ($ $ $)) (-15 -2545 ($ $ $)) (-15 -2544 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -3443 ($ $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ($ $ $)) (-15 -2540 ($ $)) (-15 -3713 ($ $ $)) (-15 -3713 ($ $))))) (T -765)) -((-2818 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-765)))) (-2587 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-765)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-765)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-765)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-765)))) (-3509 (*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-765)))) (-3541 (*1 *1) (-5 *1 (-765))) (-2585 (*1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-765)))) (-2584 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2583 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2584 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2583 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2582 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2579 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-2578 (*1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3119 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3749 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) (-3119 (*1 *1 *1) (-5 *1 (-765))) (-3118 (*1 *1 *1) (-5 *1 (-765))) (-3749 (*1 *1 *1) (-5 *1 (-765))) (-2577 (*1 *1 *1 *1) (-5 *1 (-765))) (-2576 (*1 *1 *1 *1) (-5 *1 (-765))) (-2577 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2575 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2574 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2574 (*1 *1 *1 *1 *1) (-5 *1 (-765))) (-2573 (*1 *1 *1 *1) (-5 *1 (-765))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-765)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-3511 (*1 *1 *1) (-5 *1 (-765))) (-2571 (*1 *1 *1 *1) (-5 *1 (-765))) (-2570 (*1 *1 *1) (-5 *1 (-765))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-765)))) (-5 *1 (-765)))) (-2569 (*1 *1 *1 *1) (-5 *1 (-765))) (-2591 (*1 *1 *1) (-5 *1 (-765))) (-2591 (*1 *1 *1 *1) (-5 *1 (-765))) (-2568 (*1 *1 *1 *1) (-5 *1 (-765))) (-2567 (*1 *1 *1 *1) (-5 *1 (-765))) (-2566 (*1 *1 *1 *1) (-5 *1 (-765))) (-2565 (*1 *1 *1 *1) (-5 *1 (-765))) (-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) (-3083 (*1 *1 *1 *1) (-5 *1 (-765))) (-2564 (*1 *1 *1 *1) (-5 *1 (-765))) (-2563 (*1 *1 *1 *1) (-5 *1 (-765))) (-2562 (*1 *1 *1 *1) (-5 *1 (-765))) (-2561 (*1 *1 *1 *1) (-5 *1 (-765))) (-3516 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2560 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2559 (*1 *1 *1) (-5 *1 (-765))) (-3812 (*1 *1 *1) (-5 *1 (-765))) (-3812 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) (-2558 (*1 *1 *1) (-5 *1 (-765))) (-2558 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) (-2557 (*1 *1 *1) (-5 *1 (-765))) (-2556 (*1 *1 *1 *1) (-5 *1 (-765))) (-3508 (*1 *1 *1) (-5 *1 (-765))) (-3508 (*1 *1 *1 *1) (-5 *1 (-765))) (-3508 (*1 *1 *1 *1 *1) (-5 *1 (-765))) (-2555 (*1 *1 *1) (-5 *1 (-765))) (-2555 (*1 *1 *1 *1) (-5 *1 (-765))) (-2555 (*1 *1 *1 *1 *1) (-5 *1 (-765))) (-3447 (*1 *1 *1) (-5 *1 (-765))) (-3447 (*1 *1 *1 *1) (-5 *1 (-765))) (-3447 (*1 *1 *1 *1 *1) (-5 *1 (-765))) (-3220 (*1 *1 *1) (-5 *1 (-765))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2554 (*1 *1 *1) (-5 *1 (-765))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2553 (*1 *1 *1) (-5 *1 (-765))) (-2553 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2552 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-2549 (*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) (-3037 (*1 *1 *1 *1) (-5 *1 (-765))) (-2548 (*1 *1 *1 *1) (-5 *1 (-765))) (-2666 (*1 *1 *1 *1) (-5 *1 (-765))) (-2547 (*1 *1 *1 *1) (-5 *1 (-765))) (-2665 (*1 *1 *1 *1) (-5 *1 (-765))) (-2546 (*1 *1 *1 *1) (-5 *1 (-765))) (-3815 (*1 *1 *1 *1) (-5 *1 (-765))) (-3813 (*1 *1 *1 *1) (-5 *1 (-765))) (-3813 (*1 *1 *1) (-5 *1 (-765))) (* (*1 *1 *1 *1) (-5 *1 (-765))) (-3925 (*1 *1 *1 *1) (-5 *1 (-765))) (** (*1 *1 *1 *1) (-5 *1 (-765))) (-2545 (*1 *1 *1 *1) (-5 *1 (-765))) (-2544 (*1 *1 *1 *1) (-5 *1 (-765))) (-2543 (*1 *1 *1 *1) (-5 *1 (-765))) (-3443 (*1 *1 *1 *1) (-5 *1 (-765))) (-2542 (*1 *1 *1 *1) (-5 *1 (-765))) (-2541 (*1 *1 *1 *1) (-5 *1 (-765))) (-2540 (*1 *1 *1) (-5 *1 (-765))) (-3713 (*1 *1 *1 *1) (-5 *1 (-765))) (-3713 (*1 *1 *1) (-5 *1 (-765)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3807 (((-3 $ "failed") (-1075)) 36 T ELT)) (-3117 (((-687)) 32 T ELT)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) 29 T ELT)) (-3222 (((-1059) $) 43 T ELT)) (-2382 (($ (-823)) 28 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3948 (((-1075) $) 13 T ELT) (((-467) $) 19 T ELT) (((-793 (-323)) $) 26 T ELT) (((-793 (-478)) $) 22 T ELT)) (-3922 (((-765) $) 16 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 40 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 38 T ELT))) -(((-766 |#1|) (-13 (-745) (-548 (-1075)) (-548 (-467)) (-548 (-793 (-323))) (-548 (-793 (-478))) (-10 -8 (-15 -3807 ((-3 $ "failed") (-1075))))) (-578 (-1075))) (T -766)) -((-3807 (*1 *1 *2) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-766 *3)) (-14 *3 (-578 *2))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3518 (((-439) $) 12 T ELT)) (-2588 (((-578 (-374)) $) 14 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 22 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 17 T ELT))) -(((-767) (-13 (-1003) (-10 -8 (-15 -3518 ((-439) $)) (-15 -2588 ((-578 (-374)) $))))) (T -767)) -((-3518 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-767)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-578 (-374))) (-5 *1 (-767))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-850 |#1|)) NIL T ELT) (((-850 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT)) (-3107 (((-687)) NIL T CONST)) (-3899 (((-1170) (-687)) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) -(((-768 |#1| |#2| |#3| |#4|) (-13 (-954) (-423 (-850 |#1|)) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3925 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3899 ((-1170) (-687))))) (-954) (-578 (-1075)) (-578 (-687)) (-687)) (T -768)) -((-3925 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-768 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *2 (-954)) (-14 *3 (-578 (-1075))) (-14 *4 (-578 (-687))) (-14 *5 (-687)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-768 *4 *5 *6 *7)) (-4 *4 (-954)) (-14 *5 (-578 (-1075))) (-14 *6 (-578 *3)) (-14 *7 *3)))) -((-2589 (((-3 (-146 |#3|) #1="failed") (-687) (-687) |#2| |#2|) 38 T ELT)) (-2590 (((-3 (-343 |#3|) #1#) (-687) (-687) |#2| |#2|) 29 T ELT))) -(((-769 |#1| |#2| |#3|) (-10 -7 (-15 -2590 ((-3 (-343 |#3|) #1="failed") (-687) (-687) |#2| |#2|)) (-15 -2589 ((-3 (-146 |#3|) #1#) (-687) (-687) |#2| |#2|))) (-308) (-1157 |#1|) (-1140 |#1|)) (T -769)) -((-2589 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-687)) (-4 *5 (-308)) (-5 *2 (-146 *6)) (-5 *1 (-769 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1140 *5)))) (-2590 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-687)) (-4 *5 (-308)) (-5 *2 (-343 *6)) (-5 *1 (-769 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1140 *5))))) -((-2590 (((-3 (-343 (-1133 |#2| |#1|)) #1="failed") (-687) (-687) (-1154 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-343 (-1133 |#2| |#1|)) #1#) (-687) (-687) (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|)) 28 T ELT))) -(((-770 |#1| |#2| |#3|) (-10 -7 (-15 -2590 ((-3 (-343 (-1133 |#2| |#1|)) #1="failed") (-687) (-687) (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|))) (-15 -2590 ((-3 (-343 (-1133 |#2| |#1|)) #1#) (-687) (-687) (-1154 |#1| |#2| |#3|)))) (-308) (-1075) |#1|) (T -770)) -((-2590 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-687)) (-5 *4 (-1154 *5 *6 *7)) (-4 *5 (-308)) (-14 *6 (-1075)) (-14 *7 *5) (-5 *2 (-343 (-1133 *6 *5))) (-5 *1 (-770 *5 *6 *7)))) (-2590 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-687)) (-5 *4 (-1154 *5 *6 *7)) (-4 *5 (-308)) (-14 *6 (-1075)) (-14 *7 *5) (-5 *2 (-343 (-1133 *6 *5))) (-5 *1 (-770 *5 *6 *7))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3018 (($ $ (-478)) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2591 (($ (-1070 (-478)) (-478)) NIL T ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2592 (($ $) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3748 (((-687) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2594 (((-478)) NIL T ELT)) (-2593 (((-478) $) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3745 (($ $ (-478)) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-2595 (((-1055 (-478)) $) NIL T ELT)) (-2872 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3746 (((-478) $ (-478)) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-771 |#1|) (-772 |#1|) (-478)) (T -771)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3018 (($ $ (-478)) 75 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3700 (($) 22 T CONST)) (-2591 (($ (-1070 (-478)) (-478)) 74 T ELT)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2592 (($ $) 77 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-3748 (((-687) $) 82 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-2594 (((-478)) 79 T ELT)) (-2593 (((-478) $) 78 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3745 (($ $ (-478)) 81 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-2595 (((-1055 (-478)) $) 83 T ELT)) (-2872 (($ $) 80 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-3746 (((-478) $ (-478)) 76 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-772 |#1|) (-111) (-478)) (T -772)) -((-2595 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-1055 (-478))))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-687)))) (-3745 (*1 *1 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-2872 (*1 *1 *1) (-4 *1 (-772 *2))) (-2594 (*1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-2592 (*1 *1 *1) (-4 *1 (-772 *2))) (-3746 (*1 *2 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-3018 (*1 *1 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) (-2591 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *3 (-478)) (-4 *1 (-772 *4))))) -(-13 (-254) (-118) (-10 -8 (-15 -2595 ((-1055 (-478)) $)) (-15 -3748 ((-687) $)) (-15 -3745 ($ $ (-478))) (-15 -2872 ($ $)) (-15 -2594 ((-478))) (-15 -2593 ((-478) $)) (-15 -2592 ($ $)) (-15 -3746 ((-478) $ (-478))) (-15 -3018 ($ $ (-478))) (-15 -2591 ($ (-1070 (-478)) (-478))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-254) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 (((-771 |#1|) $) NIL (|has| (-771 |#1|) (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-771 |#1|) (-814)) ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| (-771 |#1|) (-814)) ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| (-771 |#1|) (-733)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-771 |#1|) #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL (|has| (-771 |#1|) (-943 (-1075))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-771 |#1|) (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| (-771 |#1|) (-943 (-478))) ELT)) (-3137 (((-771 |#1|) $) NIL T ELT) (((-1075) $) NIL (|has| (-771 |#1|) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL (|has| (-771 |#1|) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-771 |#1|) (-943 (-478))) ELT)) (-3706 (($ $) NIL T ELT) (($ (-478) $) NIL T ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| (-771 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| (-771 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-771 |#1|))) (|:| |vec| (-1164 (-771 |#1|)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-771 |#1|)) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-771 |#1|) (-477)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3168 (((-83) $) NIL (|has| (-771 |#1|) (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-771 |#1|) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-771 |#1|) (-789 (-323))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL T ELT)) (-2979 (((-771 |#1|) $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| (-771 |#1|) (-1052)) ELT)) (-3169 (((-83) $) NIL (|has| (-771 |#1|) (-733)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-3934 (($ (-1 (-771 |#1|) (-771 |#1|)) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| (-771 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| (-771 |#1|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-771 |#1|))) (|:| |vec| (-1164 (-771 |#1|)))) (-1164 $) $) NIL T ELT) (((-625 (-771 |#1|)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-771 |#1|) (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL (|has| (-771 |#1|) (-254)) ELT)) (-3111 (((-771 |#1|) $) NIL (|has| (-771 |#1|) (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-771 |#1|) (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-771 |#1|) (-814)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3744 (($ $ (-578 (-771 |#1|)) (-578 (-771 |#1|))) NIL (|has| (-771 |#1|) (-256 (-771 |#1|))) ELT) (($ $ (-771 |#1|) (-771 |#1|)) NIL (|has| (-771 |#1|) (-256 (-771 |#1|))) ELT) (($ $ (-245 (-771 |#1|))) NIL (|has| (-771 |#1|) (-256 (-771 |#1|))) ELT) (($ $ (-578 (-245 (-771 |#1|)))) NIL (|has| (-771 |#1|) (-256 (-771 |#1|))) ELT) (($ $ (-578 (-1075)) (-578 (-771 |#1|))) NIL (|has| (-771 |#1|) (-447 (-1075) (-771 |#1|))) ELT) (($ $ (-1075) (-771 |#1|)) NIL (|has| (-771 |#1|) (-447 (-1075) (-771 |#1|))) ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ $ (-771 |#1|)) NIL (|has| (-771 |#1|) (-238 (-771 |#1|) (-771 |#1|))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $ (-1 (-771 |#1|) (-771 |#1|))) NIL T ELT) (($ $ (-1 (-771 |#1|) (-771 |#1|)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-771 |#1|) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-771 |#1|) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-771 |#1|) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-771 |#1|) (-804 (-1075))) ELT) (($ $) NIL (|has| (-771 |#1|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-771 |#1|) (-187)) ELT)) (-2976 (($ $) NIL T ELT)) (-2978 (((-771 |#1|) $) NIL T ELT)) (-3948 (((-793 (-478)) $) NIL (|has| (-771 |#1|) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-771 |#1|) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-771 |#1|) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-771 |#1|) (-926)) ELT) (((-177) $) NIL (|has| (-771 |#1|) (-926)) ELT)) (-2596 (((-146 (-343 (-478))) $) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-771 |#1|) (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-771 |#1|)) NIL T ELT) (($ (-1075)) NIL (|has| (-771 |#1|) (-943 (-1075))) ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-771 |#1|) (-814))) (|has| (-771 |#1|) (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-3112 (((-771 |#1|) $) NIL (|has| (-771 |#1|) (-477)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3746 (((-343 (-478)) $ (-478)) NIL T ELT)) (-3360 (($ $) NIL (|has| (-771 |#1|) (-733)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1 (-771 |#1|) (-771 |#1|))) NIL T ELT) (($ $ (-1 (-771 |#1|) (-771 |#1|)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-771 |#1|) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-771 |#1|) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-771 |#1|) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-771 |#1|) (-804 (-1075))) ELT) (($ $) NIL (|has| (-771 |#1|) (-187)) ELT) (($ $ (-687)) NIL (|has| (-771 |#1|) (-187)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| (-771 |#1|) (-749)) ELT)) (-3925 (($ $ $) NIL T ELT) (($ (-771 |#1|) (-771 |#1|)) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-771 |#1|) $) NIL T ELT) (($ $ (-771 |#1|)) NIL T ELT))) -(((-773 |#1|) (-13 (-897 (-771 |#1|)) (-10 -8 (-15 -3746 ((-343 (-478)) $ (-478))) (-15 -2596 ((-146 (-343 (-478))) $)) (-15 -3706 ($ $)) (-15 -3706 ($ (-478) $)))) (-478)) (T -773)) -((-3746 (*1 *2 *1 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-773 *4)) (-14 *4 *3) (-5 *3 (-478)))) (-2596 (*1 *2 *1) (-12 (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-773 *3)) (-14 *3 (-478)))) (-3706 (*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-14 *2 (-478)))) (-3706 (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-773 *3)) (-14 *3 *2)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 ((|#2| $) NIL (|has| |#2| (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| |#2| (-733)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL (|has| |#2| (-943 (-1075))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT)) (-3137 ((|#2| $) NIL T ELT) (((-1075) $) NIL (|has| |#2| (-943 (-1075))) ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT)) (-3706 (($ $) 35 T ELT) (($ (-478) $) 38 T ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) 64 T ELT)) (-2975 (($) NIL (|has| |#2| (-477)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3168 (((-83) $) NIL (|has| |#2| (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| |#2| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| |#2| (-789 (-323))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL T ELT)) (-2979 ((|#2| $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| |#2| (-1052)) ELT)) (-3169 (((-83) $) NIL (|has| |#2| (-733)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#2| (-749)) ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 60 T ELT)) (-3423 (($) NIL (|has| |#2| (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL (|has| |#2| (-254)) ELT)) (-3111 ((|#2| $) NIL (|has| |#2| (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3744 (($ $ (-578 |#2|) (-578 |#2|)) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ (-245 |#2|)) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ (-578 (-245 |#2|))) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ (-578 (-1075)) (-578 |#2|)) NIL (|has| |#2| (-447 (-1075) |#2|)) ELT) (($ $ (-1075) |#2|) NIL (|has| |#2| (-447 (-1075) |#2|)) ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ $ |#2|) NIL (|has| |#2| (-238 |#2| |#2|)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT)) (-2976 (($ $) NIL T ELT)) (-2978 ((|#2| $) NIL T ELT)) (-3948 (((-793 (-478)) $) NIL (|has| |#2| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| |#2| (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| |#2| (-548 (-467))) ELT) (((-323) $) NIL (|has| |#2| (-926)) ELT) (((-177) $) NIL (|has| |#2| (-926)) ELT)) (-2596 (((-146 (-343 (-478))) $) 78 T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3922 (((-765) $) 105 T ELT) (($ (-478)) 20 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1075)) NIL (|has| |#2| (-943 (-1075))) ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-3112 ((|#2| $) NIL (|has| |#2| (-477)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3746 (((-343 (-478)) $ (-478)) 71 T ELT)) (-3360 (($ $) NIL (|has| |#2| (-733)) ELT)) (-2640 (($) 15 T CONST)) (-2647 (($) 17 T CONST)) (-2650 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3037 (((-83) $ $) 46 T ELT)) (-2665 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#2| (-749)) ELT)) (-3925 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3813 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3815 (($ $ $) 48 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) 61 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-774 |#1| |#2|) (-13 (-897 |#2|) (-10 -8 (-15 -3746 ((-343 (-478)) $ (-478))) (-15 -2596 ((-146 (-343 (-478))) $)) (-15 -3706 ($ $)) (-15 -3706 ($ (-478) $)))) (-478) (-772 |#1|)) (T -774)) -((-3746 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-343 (-478))) (-5 *1 (-774 *4 *5)) (-5 *3 (-478)) (-4 *5 (-772 *4)))) (-2596 (*1 *2 *1) (-12 (-14 *3 (-478)) (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-774 *3 *4)) (-4 *4 (-772 *3)))) (-3706 (*1 *1 *1) (-12 (-14 *2 (-478)) (-5 *1 (-774 *2 *3)) (-4 *3 (-772 *2)))) (-3706 (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-14 *3 *2) (-5 *1 (-774 *3 *4)) (-4 *4 (-772 *3))))) -((-2548 (((-83) $ $) NIL (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ELT)) (-3772 ((|#2| $) 12 T ELT)) (-2597 (($ |#1| |#2|) 9 T ELT)) (-3222 (((-1059) $) NIL (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ELT)) (-3223 (((-1020) $) NIL (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ELT)) (-3777 ((|#1| $) 11 T ELT)) (-3507 (($ |#1| |#2|) 10 T ELT)) (-3922 (((-765) $) 18 (OR (-12 (|has| |#1| (-547 (-765))) (|has| |#2| (-547 (-765)))) (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003)))) ELT)) (-1249 (((-83) $ $) NIL (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ELT)) (-3037 (((-83) $ $) 23 (-12 (|has| |#1| (-1003)) (|has| |#2| (-1003))) ELT))) -(((-775 |#1| |#2|) (-13 (-1114) (-10 -8 (IF (|has| |#1| (-547 (-765))) (IF (|has| |#2| (-547 (-765))) (-6 (-547 (-765))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1003)) (IF (|has| |#2| (-1003)) (-6 (-1003)) |%noBranch|) |%noBranch|) (-15 -2597 ($ |#1| |#2|)) (-15 -3507 ($ |#1| |#2|)) (-15 -3777 (|#1| $)) (-15 -3772 (|#2| $)))) (-1114) (-1114)) (T -775)) -((-2597 (*1 *1 *2 *3) (-12 (-5 *1 (-775 *2 *3)) (-4 *2 (-1114)) (-4 *3 (-1114)))) (-3507 (*1 *1 *2 *3) (-12 (-5 *1 (-775 *2 *3)) (-4 *2 (-1114)) (-4 *3 (-1114)))) (-3777 (*1 *2 *1) (-12 (-4 *2 (-1114)) (-5 *1 (-775 *2 *3)) (-4 *3 (-1114)))) (-3772 (*1 *2 *1) (-12 (-4 *2 (-1114)) (-5 *1 (-775 *3 *2)) (-4 *3 (-1114))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2938 (((-478) $) 16 T ELT)) (-2599 (($ (-128)) 13 T ELT)) (-2598 (($ (-128)) 14 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2937 (((-128) $) 15 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2601 (($ (-128)) 11 T ELT)) (-2602 (($ (-128)) 10 T ELT)) (-3922 (((-765) $) 24 T ELT) (($ (-128)) 17 T ELT)) (-2600 (($ (-128)) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-776) (-13 (-1003) (-550 (-128)) (-10 -8 (-15 -2602 ($ (-128))) (-15 -2601 ($ (-128))) (-15 -2600 ($ (-128))) (-15 -2599 ($ (-128))) (-15 -2598 ($ (-128))) (-15 -2937 ((-128) $)) (-15 -2938 ((-478) $))))) (T -776)) -((-2602 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-776))))) -((-3922 (((-261 (-478)) (-343 (-850 (-48)))) 23 T ELT) (((-261 (-478)) (-850 (-48))) 18 T ELT))) -(((-777) (-10 -7 (-15 -3922 ((-261 (-478)) (-850 (-48)))) (-15 -3922 ((-261 (-478)) (-343 (-850 (-48))))))) (T -777)) -((-3922 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 (-48)))) (-5 *2 (-261 (-478))) (-5 *1 (-777)))) (-3922 (*1 *2 *3) (-12 (-5 *3 (-850 (-48))) (-5 *2 (-261 (-478))) (-5 *1 (-777))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3542 (((-83) $ (|[\|\|]| (-439))) 9 T ELT) (((-83) $ (|[\|\|]| (-1059))) 13 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3548 (((-439) $) 10 T ELT) (((-1059) $) 14 T ELT)) (-3037 (((-83) $ $) 15 T ELT))) -(((-778) (-13 (-986) (-1160) (-10 -8 (-15 -3542 ((-83) $ (|[\|\|]| (-439)))) (-15 -3548 ((-439) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-1059)))) (-15 -3548 ((-1059) $))))) (T -778)) -((-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)) (-5 *1 (-778)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-778)))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-83)) (-5 *1 (-778)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-778))))) -((-3934 (((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)) 15 T ELT))) -(((-779 |#1| |#2|) (-10 -7 (-15 -3934 ((-780 |#2|) (-1 |#2| |#1|) (-780 |#1|)))) (-1114) (-1114)) (T -779)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-780 *6)) (-5 *1 (-779 *5 *6))))) -((-3348 (($ |#1| |#1|) 8 T ELT)) (-2605 ((|#1| $ (-687)) 15 T ELT))) -(((-780 |#1|) (-10 -8 (-15 -3348 ($ |#1| |#1|)) (-15 -2605 (|#1| $ (-687)))) (-1114)) (T -780)) -((-2605 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-780 *2)) (-4 *2 (-1114)))) (-3348 (*1 *1 *2 *2) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1114))))) -((-3934 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 15 T ELT))) -(((-781 |#1| |#2|) (-10 -7 (-15 -3934 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) (-1114) (-1114)) (T -781)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))) -((-3348 (($ |#1| |#1| |#1|) 8 T ELT)) (-2605 ((|#1| $ (-687)) 15 T ELT))) -(((-782 |#1|) (-10 -8 (-15 -3348 ($ |#1| |#1| |#1|)) (-15 -2605 (|#1| $ (-687)))) (-1114)) (T -782)) -((-2605 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-782 *2)) (-4 *2 (-1114)))) (-3348 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1114))))) -((-2603 (((-578 (-1080)) (-1059)) 9 T ELT))) -(((-783) (-10 -7 (-15 -2603 ((-578 (-1080)) (-1059))))) (T -783)) -((-2603 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-578 (-1080))) (-5 *1 (-783))))) -((-3934 (((-785 |#2|) (-1 |#2| |#1|) (-785 |#1|)) 15 T ELT))) -(((-784 |#1| |#2|) (-10 -7 (-15 -3934 ((-785 |#2|) (-1 |#2| |#1|) (-785 |#1|)))) (-1114) (-1114)) (T -784)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-785 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-785 *6)) (-5 *1 (-784 *5 *6))))) -((-2604 (($ |#1| |#1| |#1|) 8 T ELT)) (-2605 ((|#1| $ (-687)) 15 T ELT))) -(((-785 |#1|) (-10 -8 (-15 -2604 ($ |#1| |#1| |#1|)) (-15 -2605 (|#1| $ (-687)))) (-1114)) (T -785)) -((-2605 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-785 *2)) (-4 *2 (-1114)))) (-2604 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-785 *2)) (-4 *2 (-1114))))) -((-2608 (((-1055 (-578 (-478))) (-578 (-478)) (-1055 (-578 (-478)))) 41 T ELT)) (-2607 (((-1055 (-578 (-478))) (-578 (-478)) (-578 (-478))) 31 T ELT)) (-2609 (((-1055 (-578 (-478))) (-578 (-478))) 53 T ELT) (((-1055 (-578 (-478))) (-578 (-478)) (-578 (-478))) 50 T ELT)) (-2610 (((-1055 (-578 (-478))) (-478)) 55 T ELT)) (-2606 (((-1055 (-578 (-823))) (-1055 (-578 (-823)))) 22 T ELT)) (-2990 (((-578 (-823)) (-578 (-823))) 18 T ELT))) -(((-786) (-10 -7 (-15 -2990 ((-578 (-823)) (-578 (-823)))) (-15 -2606 ((-1055 (-578 (-823))) (-1055 (-578 (-823))))) (-15 -2607 ((-1055 (-578 (-478))) (-578 (-478)) (-578 (-478)))) (-15 -2608 ((-1055 (-578 (-478))) (-578 (-478)) (-1055 (-578 (-478))))) (-15 -2609 ((-1055 (-578 (-478))) (-578 (-478)) (-578 (-478)))) (-15 -2609 ((-1055 (-578 (-478))) (-578 (-478)))) (-15 -2610 ((-1055 (-578 (-478))) (-478))))) (T -786)) -((-2610 (*1 *2 *3) (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-478)))) (-2609 (*1 *2 *3) (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478))))) (-2609 (*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478))))) (-2608 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *3 (-578 (-478))) (-5 *1 (-786)))) (-2607 (*1 *2 *3 *3) (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478))))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-1055 (-578 (-823)))) (-5 *1 (-786)))) (-2990 (*1 *2 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-786))))) -((-3948 (((-793 (-323)) $) 9 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-793 (-478)) $) 8 (|has| |#1| (-548 (-793 (-478)))) ELT))) -(((-787 |#1|) (-111) (-1114)) (T -787)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-548 (-793 (-478)))) (-6 (-548 (-793 (-478)))) |%noBranch|) (IF (|has| |t#1| (-548 (-793 (-323)))) (-6 (-548 (-793 (-323)))) |%noBranch|))) -(((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3590 (($) 14 T ELT)) (-2612 (($ (-791 |#1| |#2|) (-791 |#1| |#3|)) 28 T ELT)) (-2611 (((-791 |#1| |#3|) $) 16 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2620 (((-83) $) 22 T ELT)) (-2619 (($) 19 T ELT)) (-3922 (((-765) $) 31 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2831 (((-791 |#1| |#2|) $) 15 T ELT)) (-3037 (((-83) $ $) 26 T ELT))) -(((-788 |#1| |#2| |#3|) (-13 (-1003) (-10 -8 (-15 -2620 ((-83) $)) (-15 -2619 ($)) (-15 -3590 ($)) (-15 -2612 ($ (-791 |#1| |#2|) (-791 |#1| |#3|))) (-15 -2831 ((-791 |#1| |#2|) $)) (-15 -2611 ((-791 |#1| |#3|) $)))) (-1003) (-1003) (-603 |#2|)) (T -788)) -((-2620 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-83)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-2619 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-788 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3590 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-788 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-791 *4 *5)) (-5 *3 (-791 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-788 *4 *5 *6)))) (-2831 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-791 *3 *4)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-2611 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-791 *3 *5)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-2777 (((-791 |#1| $) $ (-793 |#1|) (-791 |#1| $)) 17 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-789 |#1|) (-111) (-1003)) (T -789)) -((-2777 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-791 *4 *1)) (-5 *3 (-793 *4)) (-4 *1 (-789 *4)) (-4 *4 (-1003))))) -(-13 (-1003) (-10 -8 (-15 -2777 ((-791 |t#1| $) $ (-793 |t#1|) (-791 |t#1| $))))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2613 (((-83) (-578 |#2|) |#3|) 23 T ELT) (((-83) |#2| |#3|) 18 T ELT)) (-2614 (((-791 |#1| |#2|) |#2| |#3|) 45 (-12 (-2540 (|has| |#2| (-943 (-1075)))) (-2540 (|has| |#2| (-954)))) ELT) (((-578 (-245 (-850 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-954)) (-2540 (|has| |#2| (-943 (-1075))))) ELT) (((-578 (-245 |#2|)) |#2| |#3|) 36 (|has| |#2| (-943 (-1075))) ELT) (((-788 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|) 21 T ELT))) -(((-790 |#1| |#2| |#3|) (-10 -7 (-15 -2613 ((-83) |#2| |#3|)) (-15 -2613 ((-83) (-578 |#2|) |#3|)) (-15 -2614 ((-788 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|)) (IF (|has| |#2| (-943 (-1075))) (-15 -2614 ((-578 (-245 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-954)) (-15 -2614 ((-578 (-245 (-850 |#2|))) |#2| |#3|)) (-15 -2614 ((-791 |#1| |#2|) |#2| |#3|))))) (-1003) (-789 |#1|) (-548 (-793 |#1|))) (T -790)) -((-2614 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-791 *5 *3)) (-5 *1 (-790 *5 *3 *4)) (-2540 (-4 *3 (-943 (-1075)))) (-2540 (-4 *3 (-954))) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5))))) (-2614 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-578 (-245 (-850 *3)))) (-5 *1 (-790 *5 *3 *4)) (-4 *3 (-954)) (-2540 (-4 *3 (-943 (-1075)))) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5))))) (-2614 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-578 (-245 *3))) (-5 *1 (-790 *5 *3 *4)) (-4 *3 (-943 (-1075))) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5))))) (-2614 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-789 *5)) (-5 *2 (-788 *5 *6 (-578 *6))) (-5 *1 (-790 *5 *6 *4)) (-5 *3 (-578 *6)) (-4 *4 (-548 (-793 *5))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-4 *6 (-789 *5)) (-4 *5 (-1003)) (-5 *2 (-83)) (-5 *1 (-790 *5 *6 *4)) (-4 *4 (-548 (-793 *5))))) (-2613 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-83)) (-5 *1 (-790 *5 *3 *4)) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3214 (($ $ $) 40 T ELT)) (-2642 (((-3 (-83) #1="failed") $ (-793 |#1|)) 37 T ELT)) (-3590 (($) 12 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2616 (($ (-793 |#1|) |#2| $) 20 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2618 (((-3 |#2| #1#) (-793 |#1|) $) 51 T ELT)) (-2620 (((-83) $) 15 T ELT)) (-2619 (($) 13 T ELT)) (-3237 (((-578 (-2 (|:| -3836 (-1075)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3507 (($ (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| |#2|)))) 23 T ELT)) (-3922 (((-765) $) 45 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2615 (($ (-793 |#1|) |#2| $ |#2|) 49 T ELT)) (-2617 (($ (-793 |#1|) |#2| $) 48 T ELT)) (-3037 (((-83) $ $) 42 T ELT))) -(((-791 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2620 ((-83) $)) (-15 -2619 ($)) (-15 -3590 ($)) (-15 -3214 ($ $ $)) (-15 -2618 ((-3 |#2| #1="failed") (-793 |#1|) $)) (-15 -2617 ($ (-793 |#1|) |#2| $)) (-15 -2616 ($ (-793 |#1|) |#2| $)) (-15 -2615 ($ (-793 |#1|) |#2| $ |#2|)) (-15 -3237 ((-578 (-2 (|:| -3836 (-1075)) (|:| |entry| |#2|))) $)) (-15 -3507 ($ (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| |#2|))))) (-15 -2642 ((-3 (-83) #1#) $ (-793 |#1|))))) (-1003) (-1003)) (T -791)) -((-2620 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-791 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2619 (*1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3590 (*1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3214 (*1 *1 *1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-2618 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-793 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-791 *4 *2)))) (-2617 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-793 *4)) (-4 *4 (-1003)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1003)))) (-2616 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-793 *4)) (-4 *4 (-1003)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1003)))) (-2615 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-793 *4)) (-4 *4 (-1003)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1003)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| *4)))) (-5 *1 (-791 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| *4)))) (-4 *4 (-1003)) (-5 *1 (-791 *3 *4)) (-4 *3 (-1003)))) (-2642 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-793 *4)) (-4 *4 (-1003)) (-5 *2 (-83)) (-5 *1 (-791 *4 *5)) (-4 *5 (-1003))))) -((-3934 (((-791 |#1| |#3|) (-1 |#3| |#2|) (-791 |#1| |#2|)) 22 T ELT))) -(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -3934 ((-791 |#1| |#3|) (-1 |#3| |#2|) (-791 |#1| |#2|)))) (-1003) (-1003) (-1003)) (T -792)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-791 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-791 *5 *7)) (-5 *1 (-792 *5 *6 *7))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2628 (($ $ (-578 (-51))) 74 T ELT)) (-3063 (((-578 $) $) 139 T ELT)) (-2625 (((-2 (|:| |var| (-578 (-1075))) (|:| |pred| (-51))) $) 30 T ELT)) (-3240 (((-83) $) 35 T ELT)) (-2626 (($ $ (-578 (-1075)) (-51)) 31 T ELT)) (-2629 (($ $ (-578 (-51))) 73 T ELT)) (-3138 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1075) #1#) $) 167 T ELT)) (-3137 ((|#1| $) 68 T ELT) (((-1075) $) NIL T ELT)) (-2623 (($ $) 126 T ELT)) (-2635 (((-83) $) 55 T ELT)) (-2630 (((-578 (-51)) $) 50 T ELT)) (-2627 (($ (-1075) (-83) (-83) (-83)) 75 T ELT)) (-2621 (((-3 (-578 $) #1#) (-578 $)) 82 T ELT)) (-2632 (((-83) $) 58 T ELT)) (-2633 (((-83) $) 57 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) 41 T ELT)) (-2638 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2806 (((-3 (-2 (|:| |val| $) (|:| -2383 $)) #1#) $) 97 T ELT)) (-2803 (((-3 (-578 $) #1#) $) 40 T ELT)) (-2639 (((-3 (-578 $) #1#) $ (-84)) 124 T ELT) (((-3 (-2 (|:| -2493 (-84)) (|:| |arg| (-578 $))) #1#) $) 107 T ELT)) (-2637 (((-3 (-578 $) #1#) $) 42 T ELT)) (-2805 (((-3 (-2 (|:| |val| $) (|:| -2383 (-687))) #1#) $) 45 T ELT)) (-2636 (((-83) $) 34 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2624 (((-83) $) 28 T ELT)) (-2631 (((-83) $) 52 T ELT)) (-2622 (((-578 (-51)) $) 130 T ELT)) (-2634 (((-83) $) 56 T ELT)) (-3776 (($ (-84) (-578 $)) 104 T ELT)) (-3300 (((-687) $) 33 T ELT)) (-3377 (($ $) 72 T ELT)) (-3948 (($ (-578 $)) 69 T ELT)) (-3929 (((-83) $) 32 T ELT)) (-3922 (((-765) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1075)) 76 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2643 (($ $ (-51)) 129 T ELT)) (-2640 (($) 103 T CONST)) (-2647 (($) 83 T CONST)) (-3037 (((-83) $ $) 93 T ELT)) (-3925 (($ $ $) 117 T ELT)) (-3815 (($ $ $) 121 T ELT)) (** (($ $ (-687)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-793 |#1|) (-13 (-1003) (-943 |#1|) (-943 (-1075)) (-10 -8 (-15 -2640 ($) -3928) (-15 -2647 ($) -3928) (-15 -2803 ((-3 (-578 $) #1="failed") $)) (-15 -2804 ((-3 (-578 $) #1#) $)) (-15 -2639 ((-3 (-578 $) #1#) $ (-84))) (-15 -2639 ((-3 (-2 (|:| -2493 (-84)) (|:| |arg| (-578 $))) #1#) $)) (-15 -2805 ((-3 (-2 (|:| |val| $) (|:| -2383 (-687))) #1#) $)) (-15 -2638 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2637 ((-3 (-578 $) #1#) $)) (-15 -2806 ((-3 (-2 (|:| |val| $) (|:| -2383 $)) #1#) $)) (-15 -3776 ($ (-84) (-578 $))) (-15 -3815 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-687))) (-15 ** ($ $ $)) (-15 -3925 ($ $ $)) (-15 -3300 ((-687) $)) (-15 -3948 ($ (-578 $))) (-15 -3377 ($ $)) (-15 -2636 ((-83) $)) (-15 -2635 ((-83) $)) (-15 -3240 ((-83) $)) (-15 -3929 ((-83) $)) (-15 -2634 ((-83) $)) (-15 -2633 ((-83) $)) (-15 -2632 ((-83) $)) (-15 -2631 ((-83) $)) (-15 -2630 ((-578 (-51)) $)) (-15 -2629 ($ $ (-578 (-51)))) (-15 -2628 ($ $ (-578 (-51)))) (-15 -2627 ($ (-1075) (-83) (-83) (-83))) (-15 -2626 ($ $ (-578 (-1075)) (-51))) (-15 -2625 ((-2 (|:| |var| (-578 (-1075))) (|:| |pred| (-51))) $)) (-15 -2624 ((-83) $)) (-15 -2623 ($ $)) (-15 -2643 ($ $ (-51))) (-15 -2622 ((-578 (-51)) $)) (-15 -3063 ((-578 $) $)) (-15 -2621 ((-3 (-578 $) #1#) (-578 $))))) (-1003)) (T -793)) -((-2640 (*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) (-2647 (*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) (-2803 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2804 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2639 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-578 (-793 *4))) (-5 *1 (-793 *4)) (-4 *4 (-1003)))) (-2639 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2493 (-84)) (|:| |arg| (-578 (-793 *3))))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2805 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-793 *3)) (|:| -2383 (-687)))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2638 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-793 *3)) (|:| |den| (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2637 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2806 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-793 *3)) (|:| -2383 (-793 *3)))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-3776 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 (-793 *4))) (-5 *1 (-793 *4)) (-4 *4 (-1003)))) (-3815 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) (-3925 (*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-3377 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2633 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2629 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2628 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2627 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-83)) (-5 *1 (-793 *4)) (-4 *4 (-1003)))) (-2626 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-51)) (-5 *1 (-793 *4)) (-4 *4 (-1003)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-578 (-1075))) (|:| |pred| (-51)))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2623 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) (-2643 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) (-2621 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -((-3190 (((-793 |#1|) (-793 |#1|) (-578 (-1075)) (-1 (-83) (-578 |#2|))) 32 T ELT) (((-793 |#1|) (-793 |#1|) (-578 (-1 (-83) |#2|))) 46 T ELT) (((-793 |#1|) (-793 |#1|) (-1 (-83) |#2|)) 35 T ELT)) (-2642 (((-83) (-578 |#2|) (-793 |#1|)) 42 T ELT) (((-83) |#2| (-793 |#1|)) 36 T ELT)) (-2641 (((-1 (-83) |#2|) (-793 |#1|)) 16 T ELT)) (-2644 (((-578 |#2|) (-793 |#1|)) 24 T ELT)) (-2643 (((-793 |#1|) (-793 |#1|) |#2|) 20 T ELT))) -(((-794 |#1| |#2|) (-10 -7 (-15 -3190 ((-793 |#1|) (-793 |#1|) (-1 (-83) |#2|))) (-15 -3190 ((-793 |#1|) (-793 |#1|) (-578 (-1 (-83) |#2|)))) (-15 -3190 ((-793 |#1|) (-793 |#1|) (-578 (-1075)) (-1 (-83) (-578 |#2|)))) (-15 -2641 ((-1 (-83) |#2|) (-793 |#1|))) (-15 -2642 ((-83) |#2| (-793 |#1|))) (-15 -2642 ((-83) (-578 |#2|) (-793 |#1|))) (-15 -2643 ((-793 |#1|) (-793 |#1|) |#2|)) (-15 -2644 ((-578 |#2|) (-793 |#1|)))) (-1003) (-1114)) (T -794)) -((-2644 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-1003)) (-5 *2 (-578 *5)) (-5 *1 (-794 *4 *5)) (-4 *5 (-1114)))) (-2643 (*1 *2 *2 *3) (-12 (-5 *2 (-793 *4)) (-4 *4 (-1003)) (-5 *1 (-794 *4 *3)) (-4 *3 (-1114)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-4 *6 (-1114)) (-5 *2 (-83)) (-5 *1 (-794 *5 *6)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-5 *2 (-83)) (-5 *1 (-794 *5 *3)) (-4 *3 (-1114)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-793 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-794 *4 *5)) (-4 *5 (-1114)))) (-3190 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-793 *5)) (-5 *3 (-578 (-1075))) (-5 *4 (-1 (-83) (-578 *6))) (-4 *5 (-1003)) (-4 *6 (-1114)) (-5 *1 (-794 *5 *6)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *2 (-793 *4)) (-5 *3 (-578 (-1 (-83) *5))) (-4 *4 (-1003)) (-4 *5 (-1114)) (-5 *1 (-794 *4 *5)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *2 (-793 *4)) (-5 *3 (-1 (-83) *5)) (-4 *4 (-1003)) (-4 *5 (-1114)) (-5 *1 (-794 *4 *5))))) -((-3934 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 19 T ELT))) -(((-795 |#1| |#2|) (-10 -7 (-15 -3934 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1003) (-1003)) (T -795)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-793 *6)) (-5 *1 (-795 *5 *6))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3910 (((-578 |#1|) $) 20 T ELT)) (-2645 (((-83) $) 49 T ELT)) (-3138 (((-3 (-609 |#1|) "failed") $) 55 T ELT)) (-3137 (((-609 |#1|) $) 53 T ELT)) (-3775 (($ $) 24 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3809 (((-687) $) 60 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 (((-609 |#1|) $) 22 T ELT)) (-3922 (((-765) $) 47 T ELT) (($ (-609 |#1|)) 27 T ELT) (((-732 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2647 (($) 11 T CONST)) (-2646 (((-578 (-609 |#1|)) $) 28 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 14 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 66 T ELT))) -(((-796 |#1|) (-13 (-749) (-943 (-609 |#1|)) (-10 -8 (-15 -2647 ($) -3928) (-15 -3922 ((-732 |#1|) $)) (-15 -3922 ($ |#1|)) (-15 -3777 ((-609 |#1|) $)) (-15 -3809 ((-687) $)) (-15 -2646 ((-578 (-609 |#1|)) $)) (-15 -3775 ($ $)) (-15 -2645 ((-83) $)) (-15 -3910 ((-578 |#1|) $)))) (-749)) (T -796)) -((-2647 (*1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-3922 (*1 *1 *2) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) (-3777 (*1 *2 *1) (-12 (-5 *2 (-609 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-578 (-609 *3))) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-3775 (*1 *1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749))))) -((-3451 ((|#1| |#1| |#1|) 19 T ELT))) -(((-797 |#1| |#2|) (-10 -7 (-15 -3451 (|#1| |#1| |#1|))) (-1140 |#2|) (-954)) (T -797)) -((-3451 (*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-797 *2 *3)) (-4 *2 (-1140 *3))))) -((-2650 ((|#2| $ |#3|) 10 T ELT))) -(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2650 (|#2| |#1| |#3|))) (-799 |#2| |#3|) (-1114) (-1114)) (T -798)) -NIL -((-3734 ((|#1| $ |#2|) 7 T ELT)) (-2650 ((|#1| $ |#2|) 6 T ELT))) -(((-799 |#1| |#2|) (-111) (-1114) (-1114)) (T -799)) -((-3734 (*1 *2 *1 *3) (-12 (-4 *1 (-799 *2 *3)) (-4 *3 (-1114)) (-4 *2 (-1114)))) (-2650 (*1 *2 *1 *3) (-12 (-4 *1 (-799 *2 *3)) (-4 *3 (-1114)) (-4 *2 (-1114))))) -(-13 (-1114) (-10 -8 (-15 -3734 (|t#1| $ |t#2|)) (-15 -2650 (|t#1| $ |t#2|)))) -(((-1114) . T)) -((-2649 ((|#1| |#1| (-687)) 26 T ELT)) (-2648 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3412 (((-3 (-2 (|:| -3119 |#1|) (|:| -3118 |#1|)) #1#) |#1| (-687) (-687)) 29 T ELT) (((-578 |#1|) |#1|) 38 T ELT))) -(((-800 |#1| |#2|) (-10 -7 (-15 -3412 ((-578 |#1|) |#1|)) (-15 -3412 ((-3 (-2 (|:| -3119 |#1|) (|:| -3118 |#1|)) #1="failed") |#1| (-687) (-687))) (-15 -2648 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2649 (|#1| |#1| (-687)))) (-1140 |#2|) (-308)) (T -800)) -((-2649 (*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-308)) (-5 *1 (-800 *2 *4)) (-4 *2 (-1140 *4)))) (-2648 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-308)) (-5 *1 (-800 *2 *3)) (-4 *2 (-1140 *3)))) (-3412 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-687)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -3119 *3) (|:| -3118 *3))) (-5 *1 (-800 *3 *5)) (-4 *3 (-1140 *5)))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-800 *3 *4)) (-4 *3 (-1140 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3734 (($ $ (-578 |#2|) (-578 (-687))) 44 T ELT) (($ $ |#2| (-687)) 43 T ELT) (($ $ (-578 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2650 (($ $ (-578 |#2|) (-578 (-687))) 47 T ELT) (($ $ |#2| (-687)) 46 T ELT) (($ $ (-578 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-801 |#1| |#2|) (-111) (-954) (-1003)) (T -801)) -NIL -(-13 (-80 |t#1| |t#1|) (-804 |t#2|) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-649 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-799 $ |#2|) . T) ((-804 |#2|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3734 (($ $ (-578 |#1|) (-578 (-687))) 49 T ELT) (($ $ |#1| (-687)) 48 T ELT) (($ $ (-578 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-578 |#1|) (-578 (-687))) 52 T ELT) (($ $ |#1| (-687)) 51 T ELT) (($ $ (-578 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-802 |#1|) (-111) (-1003)) (T -802)) -NIL -(-13 (-954) (-804 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-799 $ |#1|) . T) ((-804 |#1|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3734 (($ $ |#2|) NIL T ELT) (($ $ (-578 |#2|)) 10 T ELT) (($ $ |#2| (-687)) 12 T ELT) (($ $ (-578 |#2|) (-578 (-687))) 15 T ELT)) (-2650 (($ $ |#2|) 16 T ELT) (($ $ (-578 |#2|)) 18 T ELT) (($ $ |#2| (-687)) 19 T ELT) (($ $ (-578 |#2|) (-578 (-687))) 21 T ELT))) -(((-803 |#1| |#2|) (-10 -7 (-15 -2650 (|#1| |#1| (-578 |#2|) (-578 (-687)))) (-15 -2650 (|#1| |#1| |#2| (-687))) (-15 -2650 (|#1| |#1| (-578 |#2|))) (-15 -3734 (|#1| |#1| (-578 |#2|) (-578 (-687)))) (-15 -3734 (|#1| |#1| |#2| (-687))) (-15 -3734 (|#1| |#1| (-578 |#2|))) (-15 -2650 (|#1| |#1| |#2|)) (-15 -3734 (|#1| |#1| |#2|))) (-804 |#2|) (-1003)) (T -803)) -NIL -((-3734 (($ $ |#1|) 7 T ELT) (($ $ (-578 |#1|)) 15 T ELT) (($ $ |#1| (-687)) 14 T ELT) (($ $ (-578 |#1|) (-578 (-687))) 13 T ELT)) (-2650 (($ $ |#1|) 6 T ELT) (($ $ (-578 |#1|)) 12 T ELT) (($ $ |#1| (-687)) 11 T ELT) (($ $ (-578 |#1|) (-578 (-687))) 10 T ELT))) -(((-804 |#1|) (-111) (-1003)) (T -804)) -((-3734 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-804 *3)) (-4 *3 (-1003)))) (-3734 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-804 *2)) (-4 *2 (-1003)))) (-3734 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-687))) (-4 *1 (-804 *4)) (-4 *4 (-1003)))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-804 *3)) (-4 *3 (-1003)))) (-2650 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-804 *2)) (-4 *2 (-1003)))) (-2650 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-687))) (-4 *1 (-804 *4)) (-4 *4 (-1003))))) -(-13 (-799 $ |t#1|) (-10 -8 (-15 -3734 ($ $ (-578 |t#1|))) (-15 -3734 ($ $ |t#1| (-687))) (-15 -3734 ($ $ (-578 |t#1|) (-578 (-687)))) (-15 -2650 ($ $ (-578 |t#1|))) (-15 -2650 ($ $ |t#1| (-687))) (-15 -2650 ($ $ (-578 |t#1|) (-578 (-687)))))) -(((-799 $ |#1|) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 26 T ELT)) (-3006 ((|#1| $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1276 (($ $ $) NIL (|has| $ (-6 -3972)) ELT)) (-1277 (($ $ $) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3972)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3972)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3118 (($ $) 25 T ELT)) (-2651 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) NIL T ELT)) (-3008 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3119 (($ $) 23 T ELT)) (-3011 (((-578 |#1|) $) NIL T ELT)) (-3504 (((-83) $) 20 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3010 (((-478) $ $) NIL T ELT)) (-3609 (((-83) $) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-1101 |#1|) $) 9 T ELT) (((-765) $) 29 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) NIL T ELT)) (-3009 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 21 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-805 |#1|) (-13 (-90 |#1|) (-547 (-1101 |#1|)) (-10 -8 (-15 -2651 ($ |#1|)) (-15 -2651 ($ $ $)))) (-1003)) (T -805)) -((-2651 (*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1003)))) (-2651 (*1 *1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1003))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2667 (((-999 |#1|) $) 61 T ELT)) (-2890 (((-578 $) (-578 $)) 104 T ELT)) (-3599 (((-478) $) 84 T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ "failed") $) NIL T ELT)) (-3748 (((-687) $) 81 T ELT)) (-2671 (((-999 |#1|) $ |#1|) 71 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2654 (((-83) $) 89 T ELT)) (-2656 (((-687) $) 85 T ELT)) (-2511 (($ $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-2838 (($ $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-2660 (((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $) 56 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 131 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2653 (((-999 |#1|) $) 136 (|has| |#1| (-313)) ELT)) (-2655 (((-83) $) 82 T ELT)) (-3776 ((|#1| $ |#1|) 69 T ELT)) (-3924 (((-687) $) 63 T ELT)) (-2662 (($ (-578 (-578 |#1|))) 119 T ELT)) (-2657 (((-877) $) 75 T ELT)) (-2663 (($ (-578 |#1|)) 32 T ELT)) (-2990 (($ $ $) NIL T ELT)) (-2415 (($ $ $) NIL T ELT)) (-2659 (($ (-578 (-578 |#1|))) 58 T ELT)) (-2658 (($ (-578 (-578 |#1|))) 124 T ELT)) (-2652 (($ (-578 |#1|)) 133 T ELT)) (-3922 (((-765) $) 118 T ELT) (($ (-578 (-578 |#1|))) 92 T ELT) (($ (-578 |#1|)) 93 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2647 (($) 24 T CONST)) (-2546 (((-83) $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-2547 (((-83) $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-3037 (((-83) $ $) 67 T ELT)) (-2665 (((-83) $ $) NIL (OR (|has| |#1| (-313)) (|has| |#1| (-749))) ELT)) (-2666 (((-83) $ $) 91 T ELT)) (-3925 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-806 |#1|) (-13 (-808 |#1|) (-10 -8 (-15 -2660 ((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $)) (-15 -2659 ($ (-578 (-578 |#1|)))) (-15 -3922 ($ (-578 (-578 |#1|)))) (-15 -3922 ($ (-578 |#1|))) (-15 -2658 ($ (-578 (-578 |#1|)))) (-15 -3924 ((-687) $)) (-15 -2657 ((-877) $)) (-15 -3748 ((-687) $)) (-15 -2656 ((-687) $)) (-15 -3599 ((-478) $)) (-15 -2655 ((-83) $)) (-15 -2654 ((-83) $)) (-15 -2890 ((-578 $) (-578 $))) (IF (|has| |#1| (-313)) (-15 -2653 ((-999 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-477)) (-15 -2652 ($ (-578 |#1|))) (IF (|has| |#1| (-313)) (-15 -2652 ($ (-578 |#1|))) |%noBranch|)))) (-1003)) (T -806)) -((-2660 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-578 *3)) (|:| |image| (-578 *3)))) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) (-2659 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-5 *1 (-806 *3)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-5 *1 (-806 *3)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-806 *3)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-5 *1 (-806 *3)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) (-2890 (*1 *2 *2) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-999 *3)) (-5 *1 (-806 *3)) (-4 *3 (-313)) (-4 *3 (-1003)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-806 *3))))) -((-2661 ((|#2| (-1042 |#1| |#2|)) 48 T ELT))) -(((-807 |#1| |#2|) (-10 -7 (-15 -2661 (|#2| (-1042 |#1| |#2|)))) (-823) (-13 (-954) (-10 -7 (-6 (-3973 "*"))))) (T -807)) -((-2661 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *2)) (-14 *4 (-823)) (-4 *2 (-13 (-954) (-10 -7 (-6 (-3973 "*"))))) (-5 *1 (-807 *4 *2))))) -((-2548 (((-83) $ $) 7 T ELT)) (-2667 (((-999 |#1|) $) 42 T ELT)) (-3700 (($) 23 T CONST)) (-3444 (((-3 $ "failed") $) 20 T ELT)) (-2671 (((-999 |#1|) $ |#1|) 41 T ELT)) (-2392 (((-83) $) 22 T ELT)) (-2511 (($ $ $) 35 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-2838 (($ $ $) 36 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 30 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3776 ((|#1| $ |#1|) 45 T ELT)) (-2662 (($ (-578 (-578 |#1|))) 43 T ELT)) (-2663 (($ (-578 |#1|)) 44 T ELT)) (-2990 (($ $ $) 27 T ELT)) (-2415 (($ $ $) 26 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2647 (($) 24 T CONST)) (-2546 (((-83) $ $) 37 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-2547 (((-83) $ $) 39 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 38 (OR (|has| |#1| (-749)) (|has| |#1| (-313))) ELT)) (-2666 (((-83) $ $) 40 T ELT)) (-3925 (($ $ $) 29 T ELT)) (** (($ $ (-823)) 17 T ELT) (($ $ (-687)) 21 T ELT) (($ $ (-478)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-808 |#1|) (-111) (-1003)) (T -808)) -((-2663 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-4 *1 (-808 *3)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-4 *1 (-808 *3)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1003)) (-5 *2 (-999 *3)))) (-2671 (*1 *2 *1 *3) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1003)) (-5 *2 (-999 *3)))) (-2666 (*1 *2 *1 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1003)) (-5 *2 (-83))))) -(-13 (-406) (-238 |t#1| |t#1|) (-10 -8 (-15 -2663 ($ (-578 |t#1|))) (-15 -2662 ($ (-578 (-578 |t#1|)))) (-15 -2667 ((-999 |t#1|) $)) (-15 -2671 ((-999 |t#1|) $ |t#1|)) (-15 -2666 ((-83) $ $)) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#1| (-313)) (-6 (-749)) |%noBranch|))) -(((-72) . T) ((-547 (-765)) . T) ((-238 |#1| |#1|) . T) ((-406) . T) ((-658) . T) ((-749) OR (|has| |#1| (-749)) (|has| |#1| (-313))) ((-752) OR (|has| |#1| (-749)) (|has| |#1| (-313))) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-2673 (((-578 (-578 (-687))) $) 163 T ELT)) (-2669 (((-578 (-687)) (-806 |#1|) $) 191 T ELT)) (-2668 (((-578 (-687)) (-806 |#1|) $) 192 T ELT)) (-2667 (((-999 |#1|) $) 155 T ELT)) (-2674 (((-578 (-806 |#1|)) $) 152 T ELT)) (-2975 (((-806 |#1|) $ (-478)) 157 T ELT) (((-806 |#1|) $) 158 T ELT)) (-2672 (($ (-578 (-806 |#1|))) 165 T ELT)) (-3748 (((-687) $) 159 T ELT)) (-2670 (((-999 (-999 |#1|)) $) 189 T ELT)) (-2671 (((-999 |#1|) $ |#1|) 180 T ELT) (((-999 (-999 |#1|)) $ (-999 |#1|)) 201 T ELT) (((-999 (-578 |#1|)) $ (-578 |#1|)) 204 T ELT)) (-3225 (((-83) (-806 |#1|) $) 140 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2664 (((-1170) $) 145 T ELT) (((-1170) $ (-478) (-478)) 205 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2676 (((-578 (-806 |#1|)) $) 146 T ELT)) (-3776 (((-806 |#1|) $ (-687)) 153 T ELT)) (-3924 (((-687) $) 160 T ELT)) (-3922 (((-765) $) 177 T ELT) (((-578 (-806 |#1|)) $) 28 T ELT) (($ (-578 (-806 |#1|))) 164 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2675 (((-578 |#1|) $) 162 T ELT)) (-3037 (((-83) $ $) 198 T ELT)) (-2665 (((-83) $ $) 195 T ELT)) (-2666 (((-83) $ $) 194 T ELT))) -(((-809 |#1|) (-13 (-1003) (-10 -8 (-15 -3922 ((-578 (-806 |#1|)) $)) (-15 -2676 ((-578 (-806 |#1|)) $)) (-15 -3776 ((-806 |#1|) $ (-687))) (-15 -2975 ((-806 |#1|) $ (-478))) (-15 -2975 ((-806 |#1|) $)) (-15 -3748 ((-687) $)) (-15 -3924 ((-687) $)) (-15 -2675 ((-578 |#1|) $)) (-15 -2674 ((-578 (-806 |#1|)) $)) (-15 -2673 ((-578 (-578 (-687))) $)) (-15 -3922 ($ (-578 (-806 |#1|)))) (-15 -2672 ($ (-578 (-806 |#1|)))) (-15 -2671 ((-999 |#1|) $ |#1|)) (-15 -2670 ((-999 (-999 |#1|)) $)) (-15 -2671 ((-999 (-999 |#1|)) $ (-999 |#1|))) (-15 -2671 ((-999 (-578 |#1|)) $ (-578 |#1|))) (-15 -3225 ((-83) (-806 |#1|) $)) (-15 -2669 ((-578 (-687)) (-806 |#1|) $)) (-15 -2668 ((-578 (-687)) (-806 |#1|) $)) (-15 -2667 ((-999 |#1|) $)) (-15 -2666 ((-83) $ $)) (-15 -2665 ((-83) $ $)) (-15 -2664 ((-1170) $)) (-15 -2664 ((-1170) $ (-478) (-478))))) (-1003)) (T -809)) -((-3922 (*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-806 *4)) (-5 *1 (-809 *4)) (-4 *4 (-1003)))) (-2975 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *2 (-806 *4)) (-5 *1 (-809 *4)) (-4 *4 (-1003)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-3748 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-687)))) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-578 (-806 *3))) (-4 *3 (-1003)) (-5 *1 (-809 *3)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-578 (-806 *3))) (-4 *3 (-1003)) (-5 *1 (-809 *3)))) (-2671 (*1 *2 *1 *3) (-12 (-5 *2 (-999 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-999 (-999 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2671 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-999 (-999 *4))) (-5 *1 (-809 *4)) (-5 *3 (-999 *4)))) (-2671 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-999 (-578 *4))) (-5 *1 (-809 *4)) (-5 *3 (-578 *4)))) (-3225 (*1 *2 *3 *1) (-12 (-5 *3 (-806 *4)) (-4 *4 (-1003)) (-5 *2 (-83)) (-5 *1 (-809 *4)))) (-2669 (*1 *2 *3 *1) (-12 (-5 *3 (-806 *4)) (-4 *4 (-1003)) (-5 *2 (-578 (-687))) (-5 *1 (-809 *4)))) (-2668 (*1 *2 *3 *1) (-12 (-5 *3 (-806 *4)) (-4 *4 (-1003)) (-5 *2 (-578 (-687))) (-5 *1 (-809 *4)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-999 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2666 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2665 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2664 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) (-2664 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-809 *4)) (-4 *4 (-1003))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-3908 (((-83) $) NIL T ELT)) (-3905 (((-687)) NIL T ELT)) (-3307 (($ $ (-823)) NIL (|has| $ (-313)) ELT) (($ $) NIL T ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 $ #1#) $) NIL T ELT)) (-3137 (($ $) NIL T ELT)) (-1775 (($ (-1164 $)) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-2814 (($) NIL T ELT)) (-1663 (((-83) $) NIL T ELT)) (-1747 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3748 (((-736 (-823)) $) NIL T ELT) (((-823) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-1995 (($) NIL (|has| $ (-313)) ELT)) (-1993 (((-83) $) NIL (|has| $ (-313)) ELT)) (-3113 (($ $ (-823)) NIL (|has| $ (-313)) ELT) (($ $) NIL T ELT)) (-3422 (((-627 $) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1996 (((-1070 $) $ (-823)) NIL (|has| $ (-313)) ELT) (((-1070 $) $) NIL T ELT)) (-1992 (((-823) $) NIL T ELT)) (-1610 (((-1070 $) $) NIL (|has| $ (-313)) ELT)) (-1609 (((-3 (-1070 $) #1#) $ $) NIL (|has| $ (-313)) ELT) (((-1070 $) $) NIL (|has| $ (-313)) ELT)) (-1611 (($ $ (-1070 $)) NIL (|has| $ (-313)) ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL T CONST)) (-2382 (($ (-823)) NIL T ELT)) (-3907 (((-83) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($) NIL (|has| $ (-313)) ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-3906 (((-823)) NIL T ELT) (((-736 (-823))) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-1748 (((-3 (-687) #1#) $ $) NIL T ELT) (((-687) $) NIL T ELT)) (-3887 (((-105)) NIL T ELT)) (-3734 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3924 (((-823) $) NIL T ELT) (((-736 (-823)) $) NIL T ELT)) (-3167 (((-1070 $)) NIL T ELT)) (-1657 (($) NIL T ELT)) (-1612 (($) NIL (|has| $ (-313)) ELT)) (-3205 (((-625 $) (-1164 $)) NIL T ELT) (((-1164 $) $) NIL T ELT)) (-3948 (((-478) $) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT)) (-2683 (((-627 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $) (-823)) NIL T ELT) (((-1164 $)) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3909 (((-83) $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3904 (($ $ (-687)) NIL (|has| $ (-313)) ELT) (($ $) NIL (|has| $ (-313)) ELT)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) -(((-810 |#1|) (-13 (-295) (-276 $) (-548 (-478))) (-823)) (T -810)) -NIL -((-2678 (((-3 (-578 (-1070 |#4|)) #1="failed") (-578 (-1070 |#4|)) (-1070 |#4|)) 164 T ELT)) (-2681 ((|#1|) 101 T ELT)) (-2680 (((-341 (-1070 |#4|)) (-1070 |#4|)) 173 T ELT)) (-2682 (((-341 (-1070 |#4|)) (-578 |#3|) (-1070 |#4|)) 83 T ELT)) (-2679 (((-341 (-1070 |#4|)) (-1070 |#4|)) 183 T ELT)) (-2677 (((-3 (-578 (-1070 |#4|)) #1#) (-578 (-1070 |#4|)) (-1070 |#4|) |#3|) 117 T ELT))) -(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2678 ((-3 (-578 (-1070 |#4|)) #1="failed") (-578 (-1070 |#4|)) (-1070 |#4|))) (-15 -2679 ((-341 (-1070 |#4|)) (-1070 |#4|))) (-15 -2680 ((-341 (-1070 |#4|)) (-1070 |#4|))) (-15 -2681 (|#1|)) (-15 -2677 ((-3 (-578 (-1070 |#4|)) #1#) (-578 (-1070 |#4|)) (-1070 |#4|) |#3|)) (-15 -2682 ((-341 (-1070 |#4|)) (-578 |#3|) (-1070 |#4|)))) (-814) (-710) (-749) (-854 |#1| |#2| |#3|)) (T -811)) -((-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *7)) (-4 *7 (-749)) (-4 *5 (-814)) (-4 *6 (-710)) (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-341 (-1070 *8))) (-5 *1 (-811 *5 *6 *7 *8)) (-5 *4 (-1070 *8)))) (-2677 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-578 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-854 *5 *6 *4)) (-4 *5 (-814)) (-4 *6 (-710)) (-4 *4 (-749)) (-5 *1 (-811 *5 *6 *4 *7)))) (-2681 (*1 *2) (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-814)) (-5 *1 (-811 *2 *3 *4 *5)) (-4 *5 (-854 *2 *3 *4)))) (-2680 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-341 (-1070 *7))) (-5 *1 (-811 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-2679 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-341 (-1070 *7))) (-5 *1 (-811 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) (-2678 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1070 *7))) (-5 *3 (-1070 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-811 *4 *5 *6 *7))))) -((-2678 (((-3 (-578 (-1070 |#2|)) "failed") (-578 (-1070 |#2|)) (-1070 |#2|)) 39 T ELT)) (-2681 ((|#1|) 71 T ELT)) (-2680 (((-341 (-1070 |#2|)) (-1070 |#2|)) 125 T ELT)) (-2682 (((-341 (-1070 |#2|)) (-1070 |#2|)) 109 T ELT)) (-2679 (((-341 (-1070 |#2|)) (-1070 |#2|)) 136 T ELT))) -(((-812 |#1| |#2|) (-10 -7 (-15 -2678 ((-3 (-578 (-1070 |#2|)) "failed") (-578 (-1070 |#2|)) (-1070 |#2|))) (-15 -2679 ((-341 (-1070 |#2|)) (-1070 |#2|))) (-15 -2680 ((-341 (-1070 |#2|)) (-1070 |#2|))) (-15 -2681 (|#1|)) (-15 -2682 ((-341 (-1070 |#2|)) (-1070 |#2|)))) (-814) (-1140 |#1|)) (T -812)) -((-2682 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-1140 *4)) (-5 *2 (-341 (-1070 *5))) (-5 *1 (-812 *4 *5)) (-5 *3 (-1070 *5)))) (-2681 (*1 *2) (-12 (-4 *2 (-814)) (-5 *1 (-812 *2 *3)) (-4 *3 (-1140 *2)))) (-2680 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-1140 *4)) (-5 *2 (-341 (-1070 *5))) (-5 *1 (-812 *4 *5)) (-5 *3 (-1070 *5)))) (-2679 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-1140 *4)) (-5 *2 (-341 (-1070 *5))) (-5 *1 (-812 *4 *5)) (-5 *3 (-1070 *5)))) (-2678 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-814)) (-5 *1 (-812 *4 *5))))) -((-2685 (((-3 (-578 (-1070 $)) "failed") (-578 (-1070 $)) (-1070 $)) 46 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 18 T ELT)) (-2683 (((-627 $) $) 40 T ELT))) -(((-813 |#1|) (-10 -7 (-15 -2683 ((-627 |#1|) |#1|)) (-15 -2685 ((-3 (-578 (-1070 |#1|)) "failed") (-578 (-1070 |#1|)) (-1070 |#1|))) (-15 -2689 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)))) (-814)) (T -813)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 72 T ELT)) (-3751 (($ $) 63 T ELT)) (-3947 (((-341 $) $) 64 T ELT)) (-2685 (((-3 (-578 (-1070 $)) "failed") (-578 (-1070 $)) (-1070 $)) 69 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3699 (((-83) $) 65 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 70 T ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 71 T ELT)) (-3708 (((-341 $) $) 62 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2684 (((-3 (-1164 $) "failed") (-625 $)) 68 (|has| $ (-116)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-2683 (((-627 $) $) 67 (|has| $ (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-814) (-111)) (T -814)) -((-2689 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-814)))) (-2688 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1070 *1))) (-5 *3 (-1070 *1)))) (-2687 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1070 *1))) (-5 *3 (-1070 *1)))) (-2686 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1070 *1))) (-5 *3 (-1070 *1)))) (-2685 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1070 *1))) (-5 *3 (-1070 *1)) (-4 *1 (-814)))) (-2684 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-116)) (-4 *1 (-814)) (-5 *2 (-1164 *1)))) (-2683 (*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-116)) (-4 *1 (-814))))) -(-13 (-1119) (-10 -8 (-15 -2688 ((-341 (-1070 $)) (-1070 $))) (-15 -2687 ((-341 (-1070 $)) (-1070 $))) (-15 -2686 ((-341 (-1070 $)) (-1070 $))) (-15 -2689 ((-1070 $) (-1070 $) (-1070 $))) (-15 -2685 ((-3 (-578 (-1070 $)) "failed") (-578 (-1070 $)) (-1070 $))) (IF (|has| $ (-116)) (PROGN (-15 -2684 ((-3 (-1164 $) "failed") (-625 $))) (-15 -2683 ((-627 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) . T)) -((-2691 (((-3 (-2 (|:| -3748 (-687)) (|:| -2365 |#5|)) #1="failed") (-279 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2690 (((-83) (-279 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3748 (((-3 (-687) #1#) (-279 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-815 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3748 ((-3 (-687) #1="failed") (-279 |#2| |#3| |#4| |#5|))) (-15 -2690 ((-83) (-279 |#2| |#3| |#4| |#5|))) (-15 -2691 ((-3 (-2 (|:| -3748 (-687)) (|:| -2365 |#5|)) #1#) (-279 |#2| |#3| |#4| |#5|)))) (-13 (-489) (-943 (-478))) (-357 |#1|) (-1140 |#2|) (-1140 (-343 |#3|)) (-287 |#2| |#3| |#4|)) (T -815)) -((-2691 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-2 (|:| -3748 (-687)) (|:| -2365 *8))) (-5 *1 (-815 *4 *5 *6 *7 *8)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-83)) (-5 *1 (-815 *4 *5 *6 *7 *8)))) (-3748 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-687)) (-5 *1 (-815 *4 *5 *6 *7 *8))))) -((-2691 (((-3 (-2 (|:| -3748 (-687)) (|:| -2365 |#3|)) #1="failed") (-279 (-343 (-478)) |#1| |#2| |#3|)) 64 T ELT)) (-2690 (((-83) (-279 (-343 (-478)) |#1| |#2| |#3|)) 16 T ELT)) (-3748 (((-3 (-687) #1#) (-279 (-343 (-478)) |#1| |#2| |#3|)) 14 T ELT))) -(((-816 |#1| |#2| |#3|) (-10 -7 (-15 -3748 ((-3 (-687) #1="failed") (-279 (-343 (-478)) |#1| |#2| |#3|))) (-15 -2690 ((-83) (-279 (-343 (-478)) |#1| |#2| |#3|))) (-15 -2691 ((-3 (-2 (|:| -3748 (-687)) (|:| -2365 |#3|)) #1#) (-279 (-343 (-478)) |#1| |#2| |#3|)))) (-1140 (-343 (-478))) (-1140 (-343 |#1|)) (-287 (-343 (-478)) |#1| |#2|)) (T -816)) -((-2691 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) (-4 *4 (-1140 (-343 (-478)))) (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-2 (|:| -3748 (-687)) (|:| -2365 *6))) (-5 *1 (-816 *4 *5 *6)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) (-4 *4 (-1140 (-343 (-478)))) (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-83)) (-5 *1 (-816 *4 *5 *6)))) (-3748 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) (-4 *4 (-1140 (-343 (-478)))) (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-687)) (-5 *1 (-816 *4 *5 *6))))) -((-2696 ((|#2| |#2|) 26 T ELT)) (-2694 (((-478) (-578 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))))) 15 T ELT)) (-2692 (((-823) (-478)) 38 T ELT)) (-2695 (((-478) |#2|) 45 T ELT)) (-2693 (((-478) |#2|) 21 T ELT) (((-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))) |#1|) 20 T ELT))) -(((-817 |#1| |#2|) (-10 -7 (-15 -2692 ((-823) (-478))) (-15 -2693 ((-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))) |#1|)) (-15 -2693 ((-478) |#2|)) (-15 -2694 ((-478) (-578 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478)))))) (-15 -2695 ((-478) |#2|)) (-15 -2696 (|#2| |#2|))) (-1140 (-343 (-478))) (-1140 (-343 |#1|))) (T -817)) -((-2696 (*1 *2 *2) (-12 (-4 *3 (-1140 (-343 (-478)))) (-5 *1 (-817 *3 *2)) (-4 *2 (-1140 (-343 *3))))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-1140 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1140 (-343 *4))))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))))) (-4 *4 (-1140 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *5)) (-4 *5 (-1140 (-343 *4))))) (-2693 (*1 *2 *3) (-12 (-4 *4 (-1140 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *3)) (-4 *3 (-1140 (-343 *4))))) (-2693 (*1 *2 *3) (-12 (-4 *3 (-1140 (-343 (-478)))) (-5 *2 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478)))) (-5 *1 (-817 *3 *4)) (-4 *4 (-1140 (-343 *3))))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-478)) (-4 *4 (-1140 (-343 *3))) (-5 *2 (-823)) (-5 *1 (-817 *4 *5)) (-4 *5 (-1140 (-343 *4)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 ((|#1| $) 99 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2544 (($ $ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) 93 T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-2704 (($ |#1| (-341 |#1|)) 91 T ELT)) (-2698 (((-1070 |#1|) |#1| |#1|) 52 T ELT)) (-2697 (($ $) 60 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2699 (((-478) $) 96 T ELT)) (-2700 (($ $ (-478)) 98 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-2701 ((|#1| $) 95 T ELT)) (-2702 (((-341 |#1|) $) 94 T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) 92 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-2703 (($ $) 49 T ELT)) (-3922 (((-765) $) 123 T ELT) (($ (-478)) 72 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 40 T ELT) (((-343 |#1|) $) 77 T ELT) (($ (-343 (-341 |#1|))) 85 T ELT)) (-3107 (((-687)) 70 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2640 (($) 24 T CONST)) (-2647 (($) 12 T CONST)) (-3037 (((-83) $ $) 86 T ELT)) (-3925 (($ $ $) NIL T ELT)) (-3813 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 48 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-818 |#1|) (-13 (-308) (-38 |#1|) (-10 -8 (-15 -3922 ((-343 |#1|) $)) (-15 -3922 ($ (-343 (-341 |#1|)))) (-15 -2703 ($ $)) (-15 -2702 ((-341 |#1|) $)) (-15 -2701 (|#1| $)) (-15 -2700 ($ $ (-478))) (-15 -2699 ((-478) $)) (-15 -2698 ((-1070 |#1|) |#1| |#1|)) (-15 -2697 ($ $)) (-15 -2704 ($ |#1| (-341 |#1|))) (-15 -3110 (|#1| $)))) (-254)) (T -818)) -((-3922 (*1 *2 *1) (-12 (-5 *2 (-343 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-343 (-341 *3))) (-4 *3 (-254)) (-5 *1 (-818 *3)))) (-2703 (*1 *1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-341 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-2701 (*1 *2 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254)))) (-2700 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-2698 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) (-2697 (*1 *1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254)))) (-2704 (*1 *1 *2 *3) (-12 (-5 *3 (-341 *2)) (-4 *2 (-254)) (-5 *1 (-818 *2)))) (-3110 (*1 *2 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254))))) -((-2704 (((-51) (-850 |#1|) (-341 (-850 |#1|)) (-1075)) 17 T ELT) (((-51) (-343 (-850 |#1|)) (-1075)) 18 T ELT))) -(((-819 |#1|) (-10 -7 (-15 -2704 ((-51) (-343 (-850 |#1|)) (-1075))) (-15 -2704 ((-51) (-850 |#1|) (-341 (-850 |#1|)) (-1075)))) (-13 (-254) (-118))) (T -819)) -((-2704 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-341 (-850 *6))) (-5 *5 (-1075)) (-5 *3 (-850 *6)) (-4 *6 (-13 (-254) (-118))) (-5 *2 (-51)) (-5 *1 (-819 *6)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-51)) (-5 *1 (-819 *5))))) -((-2705 ((|#4| (-578 |#4|)) 148 T ELT) (((-1070 |#4|) (-1070 |#4|) (-1070 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3125 (((-1070 |#4|) (-578 (-1070 |#4|))) 141 T ELT) (((-1070 |#4|) (-1070 |#4|) (-1070 |#4|)) 61 T ELT) ((|#4| (-578 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3125 (|#4| |#4| |#4|)) (-15 -3125 (|#4| (-578 |#4|))) (-15 -3125 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -3125 ((-1070 |#4|) (-578 (-1070 |#4|)))) (-15 -2705 (|#4| |#4| |#4|)) (-15 -2705 ((-1070 |#4|) (-1070 |#4|) (-1070 |#4|))) (-15 -2705 (|#4| (-578 |#4|)))) (-710) (-749) (-254) (-854 |#3| |#1| |#2|)) (T -820)) -((-2705 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *6 *4 *5)) (-5 *1 (-820 *4 *5 *6 *2)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)))) (-2705 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *6)))) (-2705 (*1 *2 *2 *2) (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *2)) (-4 *2 (-854 *5 *3 *4)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-578 (-1070 *7))) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-1070 *7)) (-5 *1 (-820 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) (-3125 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *6)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *6 *4 *5)) (-5 *1 (-820 *4 *5 *6 *2)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)))) (-3125 (*1 *2 *2 *2) (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *2)) (-4 *2 (-854 *5 *3 *4))))) -((-2718 (((-809 (-478)) (-877)) 38 T ELT) (((-809 (-478)) (-578 (-478))) 34 T ELT)) (-2706 (((-809 (-478)) (-578 (-478))) 66 T ELT) (((-809 (-478)) (-823)) 67 T ELT)) (-2717 (((-809 (-478))) 39 T ELT)) (-2715 (((-809 (-478))) 53 T ELT) (((-809 (-478)) (-578 (-478))) 52 T ELT)) (-2714 (((-809 (-478))) 51 T ELT) (((-809 (-478)) (-578 (-478))) 50 T ELT)) (-2713 (((-809 (-478))) 49 T ELT) (((-809 (-478)) (-578 (-478))) 48 T ELT)) (-2712 (((-809 (-478))) 47 T ELT) (((-809 (-478)) (-578 (-478))) 46 T ELT)) (-2711 (((-809 (-478))) 45 T ELT) (((-809 (-478)) (-578 (-478))) 44 T ELT)) (-2716 (((-809 (-478))) 55 T ELT) (((-809 (-478)) (-578 (-478))) 54 T ELT)) (-2710 (((-809 (-478)) (-578 (-478))) 71 T ELT) (((-809 (-478)) (-823)) 73 T ELT)) (-2709 (((-809 (-478)) (-578 (-478))) 68 T ELT) (((-809 (-478)) (-823)) 69 T ELT)) (-2707 (((-809 (-478)) (-578 (-478))) 64 T ELT) (((-809 (-478)) (-823)) 65 T ELT)) (-2708 (((-809 (-478)) (-578 (-823))) 57 T ELT))) -(((-821) (-10 -7 (-15 -2706 ((-809 (-478)) (-823))) (-15 -2706 ((-809 (-478)) (-578 (-478)))) (-15 -2707 ((-809 (-478)) (-823))) (-15 -2707 ((-809 (-478)) (-578 (-478)))) (-15 -2708 ((-809 (-478)) (-578 (-823)))) (-15 -2709 ((-809 (-478)) (-823))) (-15 -2709 ((-809 (-478)) (-578 (-478)))) (-15 -2710 ((-809 (-478)) (-823))) (-15 -2710 ((-809 (-478)) (-578 (-478)))) (-15 -2711 ((-809 (-478)) (-578 (-478)))) (-15 -2711 ((-809 (-478)))) (-15 -2712 ((-809 (-478)) (-578 (-478)))) (-15 -2712 ((-809 (-478)))) (-15 -2713 ((-809 (-478)) (-578 (-478)))) (-15 -2713 ((-809 (-478)))) (-15 -2714 ((-809 (-478)) (-578 (-478)))) (-15 -2714 ((-809 (-478)))) (-15 -2715 ((-809 (-478)) (-578 (-478)))) (-15 -2715 ((-809 (-478)))) (-15 -2716 ((-809 (-478)) (-578 (-478)))) (-15 -2716 ((-809 (-478)))) (-15 -2717 ((-809 (-478)))) (-15 -2718 ((-809 (-478)) (-578 (-478)))) (-15 -2718 ((-809 (-478)) (-877))))) (T -821)) -((-2718 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2717 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2716 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2715 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2714 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2713 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2712 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2711 (*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2707 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -((-2720 (((-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1075))) 14 T ELT)) (-2719 (((-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1075))) 13 T ELT))) -(((-822 |#1|) (-10 -7 (-15 -2719 ((-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1075)))) (-15 -2720 ((-578 (-850 |#1|)) (-578 (-850 |#1|)) (-578 (-1075))))) (-385)) (T -822)) -((-2720 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-850 *4))) (-5 *3 (-578 (-1075))) (-4 *4 (-385)) (-5 *1 (-822 *4)))) (-2719 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-850 *4))) (-5 *3 (-578 (-1075))) (-4 *4 (-385)) (-5 *1 (-822 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ "failed") $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3125 (($ $ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2647 (($) NIL T CONST)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-823) (-13 (-711) (-658) (-10 -8 (-15 -3125 ($ $ $)) (-6 (-3973 "*"))))) (T -823)) -((-3125 (*1 *1 *1 *1) (-5 *1 (-823)))) -((-687) (|%ilt| 0 |#1|)) -((-3922 (((-261 |#1|) (-410)) 16 T ELT))) -(((-824 |#1|) (-10 -7 (-15 -3922 ((-261 |#1|) (-410)))) (-489)) (T -824)) -((-3922 (*1 *2 *3) (-12 (-5 *3 (-410)) (-5 *2 (-261 *4)) (-5 *1 (-824 *4)) (-4 *4 (-489))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-825) (-111)) (T -825)) -((-2722 (*1 *2 *3) (-12 (-4 *1 (-825)) (-5 *2 (-2 (|:| -3930 (-578 *1)) (|:| -2391 *1))) (-5 *3 (-578 *1)))) (-2721 (*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *2 (-627 (-578 *1))) (-5 *3 (-578 *1))))) -(-13 (-385) (-10 -8 (-15 -2722 ((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $))) (-15 -2721 ((-627 (-578 $)) (-578 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3087 (((-1070 |#2|) (-578 |#2|) (-578 |#2|)) 17 T ELT) (((-1133 |#1| |#2|) (-1133 |#1| |#2|) (-578 |#2|) (-578 |#2|)) 13 T ELT))) -(((-826 |#1| |#2|) (-10 -7 (-15 -3087 ((-1133 |#1| |#2|) (-1133 |#1| |#2|) (-578 |#2|) (-578 |#2|))) (-15 -3087 ((-1070 |#2|) (-578 |#2|) (-578 |#2|)))) (-1075) (-308)) (T -826)) -((-3087 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-308)) (-5 *2 (-1070 *5)) (-5 *1 (-826 *4 *5)) (-14 *4 (-1075)))) (-3087 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1133 *4 *5)) (-5 *3 (-578 *5)) (-14 *4 (-1075)) (-4 *5 (-308)) (-5 *1 (-826 *4 *5))))) -((-2723 ((|#2| (-578 |#1|) (-578 |#1|)) 28 T ELT))) -(((-827 |#1| |#2|) (-10 -7 (-15 -2723 (|#2| (-578 |#1|) (-578 |#1|)))) (-308) (-1140 |#1|)) (T -827)) -((-2723 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-308)) (-4 *2 (-1140 *4)) (-5 *1 (-827 *4 *2))))) -((-2725 (((-478) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-1059)) 175 T ELT)) (-2744 ((|#4| |#4|) 194 T ELT)) (-2729 (((-578 (-343 (-850 |#1|))) (-578 (-1075))) 146 T ELT)) (-2743 (((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))) (-625 |#4|) (-578 (-343 (-850 |#1|))) (-578 (-578 |#4|)) (-687) (-687) (-478)) 88 T ELT)) (-2733 (((-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))) (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))) (-578 |#4|)) 69 T ELT)) (-2742 (((-625 |#4|) (-625 |#4|) (-578 |#4|)) 65 T ELT)) (-2726 (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-1059)) 187 T ELT)) (-2724 (((-478) (-625 |#4|) (-823) (-1059)) 167 T ELT) (((-478) (-625 |#4|) (-578 (-1075)) (-823) (-1059)) 166 T ELT) (((-478) (-625 |#4|) (-578 |#4|) (-823) (-1059)) 165 T ELT) (((-478) (-625 |#4|) (-1059)) 154 T ELT) (((-478) (-625 |#4|) (-578 (-1075)) (-1059)) 153 T ELT) (((-478) (-625 |#4|) (-578 |#4|) (-1059)) 152 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-823)) 151 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 (-1075)) (-823)) 150 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 |#4|) (-823)) 149 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|)) 148 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 (-1075))) 147 T ELT) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 |#4|)) 143 T ELT)) (-2730 ((|#4| (-850 |#1|)) 80 T ELT)) (-2740 (((-83) (-578 |#4|) (-578 (-578 |#4|))) 191 T ELT)) (-2739 (((-578 (-578 (-478))) (-478) (-478)) 161 T ELT)) (-2738 (((-578 (-578 |#4|)) (-578 (-578 |#4|))) 106 T ELT)) (-2737 (((-687) (-578 (-2 (|:| -3090 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|))))) 100 T ELT)) (-2736 (((-687) (-578 (-2 (|:| -3090 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|))))) 99 T ELT)) (-2745 (((-83) (-578 (-850 |#1|))) 19 T ELT) (((-83) (-578 |#4|)) 15 T ELT)) (-2731 (((-2 (|:| |sysok| (-83)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|)) 84 T ELT)) (-2735 (((-578 |#4|) |#4|) 57 T ELT)) (-2728 (((-578 (-343 (-850 |#1|))) (-578 |#4|)) 142 T ELT) (((-625 (-343 (-850 |#1|))) (-625 |#4|)) 66 T ELT) (((-343 (-850 |#1|)) |#4|) 139 T ELT)) (-2727 (((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))))))) (|:| |rgsz| (-478))) (-625 |#4|) (-578 (-343 (-850 |#1|))) (-687) (-1059) (-478)) 112 T ELT)) (-2732 (((-578 (-2 (|:| -3090 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|)))) (-625 |#4|) (-687)) 98 T ELT)) (-2741 (((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) (-625 |#4|) (-687)) 121 T ELT)) (-2734 (((-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))) (-2 (|:| |mat| (-625 (-343 (-850 |#1|)))) (|:| |vec| (-578 (-343 (-850 |#1|)))) (|:| -3090 (-687)) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) 56 T ELT))) -(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2724 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 |#4|))) (-15 -2724 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 (-1075)))) (-15 -2724 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|))) (-15 -2724 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 |#4|) (-823))) (-15 -2724 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-578 (-1075)) (-823))) (-15 -2724 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-625 |#4|) (-823))) (-15 -2724 ((-478) (-625 |#4|) (-578 |#4|) (-1059))) (-15 -2724 ((-478) (-625 |#4|) (-578 (-1075)) (-1059))) (-15 -2724 ((-478) (-625 |#4|) (-1059))) (-15 -2724 ((-478) (-625 |#4|) (-578 |#4|) (-823) (-1059))) (-15 -2724 ((-478) (-625 |#4|) (-578 (-1075)) (-823) (-1059))) (-15 -2724 ((-478) (-625 |#4|) (-823) (-1059))) (-15 -2725 ((-478) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-1059))) (-15 -2726 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|))))))))) (-1059))) (-15 -2727 ((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))))))) (|:| |rgsz| (-478))) (-625 |#4|) (-578 (-343 (-850 |#1|))) (-687) (-1059) (-478))) (-15 -2728 ((-343 (-850 |#1|)) |#4|)) (-15 -2728 ((-625 (-343 (-850 |#1|))) (-625 |#4|))) (-15 -2728 ((-578 (-343 (-850 |#1|))) (-578 |#4|))) (-15 -2729 ((-578 (-343 (-850 |#1|))) (-578 (-1075)))) (-15 -2730 (|#4| (-850 |#1|))) (-15 -2731 ((-2 (|:| |sysok| (-83)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|))) (-15 -2732 ((-578 (-2 (|:| -3090 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|)))) (-625 |#4|) (-687))) (-15 -2733 ((-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))) (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))) (-578 |#4|))) (-15 -2734 ((-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))) (-2 (|:| |mat| (-625 (-343 (-850 |#1|)))) (|:| |vec| (-578 (-343 (-850 |#1|)))) (|:| -3090 (-687)) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (-15 -2735 ((-578 |#4|) |#4|)) (-15 -2736 ((-687) (-578 (-2 (|:| -3090 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -2737 ((-687) (-578 (-2 (|:| -3090 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -2738 ((-578 (-578 |#4|)) (-578 (-578 |#4|)))) (-15 -2739 ((-578 (-578 (-478))) (-478) (-478))) (-15 -2740 ((-83) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2741 ((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) (-625 |#4|) (-687))) (-15 -2742 ((-625 |#4|) (-625 |#4|) (-578 |#4|))) (-15 -2743 ((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-850 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 |#1|)))) (|:| -1994 (-578 (-1164 (-343 (-850 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))) (-625 |#4|) (-578 (-343 (-850 |#1|))) (-578 (-578 |#4|)) (-687) (-687) (-478))) (-15 -2744 (|#4| |#4|)) (-15 -2745 ((-83) (-578 |#4|))) (-15 -2745 ((-83) (-578 (-850 |#1|))))) (-13 (-254) (-118)) (-13 (-749) (-548 (-1075))) (-710) (-854 |#1| |#3| |#2|)) (T -828)) -((-2745 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-83)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-83)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-749) (-548 (-1075)))) (-4 *5 (-710)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-854 *3 *5 *4)))) (-2743 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) (-5 *4 (-625 *12)) (-5 *5 (-578 (-343 (-850 *9)))) (-5 *6 (-578 (-578 *12))) (-5 *7 (-687)) (-5 *8 (-478)) (-4 *9 (-13 (-254) (-118))) (-4 *12 (-854 *9 *11 *10)) (-4 *10 (-13 (-749) (-548 (-1075)))) (-4 *11 (-710)) (-5 *2 (-2 (|:| |eqzro| (-578 *12)) (|:| |neqzro| (-578 *12)) (|:| |wcond| (-578 (-850 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *9)))) (|:| -1994 (-578 (-1164 (-343 (-850 *9))))))))) (-5 *1 (-828 *9 *10 *11 *12)))) (-2742 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-687)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (-5 *1 (-828 *5 *6 *7 *8)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) (-5 *2 (-83)) (-5 *1 (-828 *5 *6 *7 *8)))) (-2739 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-578 (-578 (-478)))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-478)) (-4 *7 (-854 *4 *6 *5)))) (-2738 (*1 *2 *2) (-12 (-5 *2 (-578 (-578 *6))) (-4 *6 (-854 *3 *5 *4)) (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-749) (-548 (-1075)))) (-4 *5 (-710)) (-5 *1 (-828 *3 *4 *5 *6)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3090 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-687)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3090 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-687)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2735 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-578 *3)) (-5 *1 (-828 *4 *5 *6 *3)) (-4 *3 (-854 *4 *6 *5)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-625 (-343 (-850 *4)))) (|:| |vec| (-578 (-343 (-850 *4)))) (|:| -3090 (-687)) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-2 (|:| |partsol| (-1164 (-343 (-850 *4)))) (|:| -1994 (-578 (-1164 (-343 (-850 *4))))))) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5)))) (-2733 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1164 (-343 (-850 *4)))) (|:| -1994 (-578 (-1164 (-343 (-850 *4))))))) (-5 *3 (-578 *7)) (-4 *4 (-13 (-254) (-118))) (-4 *7 (-854 *4 *6 *5)) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *1 (-828 *4 *5 *6 *7)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| -3090 (-687)) (|:| |eqns| (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478)))))) (|:| |fgb| (-578 *8))))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-687)))) (-2731 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-4 *7 (-854 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-83)) (|:| |z0| (-578 *7)) (|:| |n0| (-578 *7)))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-850 *4)) (-4 *4 (-13 (-254) (-118))) (-4 *2 (-854 *4 *6 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-578 (-1075))) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-578 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-578 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-625 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)))) (-2728 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-343 (-850 *4))) (-5 *1 (-828 *4 *5 *6 *3)) (-4 *3 (-854 *4 *6 *5)))) (-2727 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-625 *11)) (-5 *4 (-578 (-343 (-850 *8)))) (-5 *5 (-687)) (-5 *6 (-1059)) (-4 *8 (-13 (-254) (-118))) (-4 *11 (-854 *8 *10 *9)) (-4 *9 (-13 (-749) (-548 (-1075)))) (-4 *10 (-710)) (-5 *2 (-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 *11)) (|:| |neqzro| (-578 *11)) (|:| |wcond| (-578 (-850 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *8)))) (|:| -1994 (-578 (-1164 (-343 (-850 *8)))))))))) (|:| |rgsz| (-478)))) (-5 *1 (-828 *8 *9 *10 *11)) (-5 *7 (-478)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-850 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *4)))) (|:| -1994 (-578 (-1164 (-343 (-850 *4)))))))))) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *5)))) (|:| -1994 (-578 (-1164 (-343 (-850 *5)))))))))) (-5 *4 (-1059)) (-4 *5 (-13 (-254) (-118))) (-4 *8 (-854 *5 *7 *6)) (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *5 *6 *7 *8)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-823)) (-5 *5 (-1059)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1075)))) (-4 *8 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *6 *7 *8 *9)))) (-2724 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *10)) (-5 *4 (-578 (-1075))) (-5 *5 (-823)) (-5 *6 (-1059)) (-4 *10 (-854 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) (-4 *8 (-13 (-749) (-548 (-1075)))) (-4 *9 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *7 *8 *9 *10)))) (-2724 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *10)) (-5 *4 (-578 *10)) (-5 *5 (-823)) (-5 *6 (-1059)) (-4 *10 (-854 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) (-4 *8 (-13 (-749) (-548 (-1075)))) (-4 *9 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *7 *8 *9 *10)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-1059)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *5 *6 *7 *8)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 (-1075))) (-5 *5 (-1059)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1075)))) (-4 *8 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *6 *7 *8 *9)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 *9)) (-5 *5 (-1059)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1075)))) (-4 *8 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *6 *7 *8 *9)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-823)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *5)))) (|:| -1994 (-578 (-1164 (-343 (-850 *5)))))))))) (-5 *1 (-828 *5 *6 *7 *8)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 (-1075))) (-5 *5 (-823)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1075)))) (-4 *8 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-850 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *6)))) (|:| -1994 (-578 (-1164 (-343 (-850 *6)))))))))) (-5 *1 (-828 *6 *7 *8 *9)))) (-2724 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *5 (-823)) (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1075)))) (-4 *8 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-850 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *6)))) (|:| -1994 (-578 (-1164 (-343 (-850 *6)))))))))) (-5 *1 (-828 *6 *7 *8 *9)) (-5 *4 (-578 *9)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-850 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *4)))) (|:| -1994 (-578 (-1164 (-343 (-850 *4)))))))))) (-5 *1 (-828 *4 *5 *6 *7)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-578 (-1075))) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *5)))) (|:| -1994 (-578 (-1164 (-343 (-850 *5)))))))))) (-5 *1 (-828 *5 *6 *7 *8)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-850 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1164 (-343 (-850 *5)))) (|:| -1994 (-578 (-1164 (-343 (-850 *5)))))))))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) -((-3850 (($ $ (-992 (-177))) 125 T ELT) (($ $ (-992 (-177)) (-992 (-177))) 126 T ELT)) (-2877 (((-992 (-177)) $) 73 T ELT)) (-2878 (((-992 (-177)) $) 72 T ELT)) (-2769 (((-992 (-177)) $) 74 T ELT)) (-2750 (((-478) (-478)) 66 T ELT)) (-2754 (((-478) (-478)) 61 T ELT)) (-2752 (((-478) (-478)) 64 T ELT)) (-2748 (((-83) (-83)) 68 T ELT)) (-2751 (((-478)) 65 T ELT)) (-3115 (($ $ (-992 (-177))) 129 T ELT) (($ $) 130 T ELT)) (-2771 (($ (-1 (-847 (-177)) (-177)) (-992 (-177))) 148 T ELT) (($ (-1 (-847 (-177)) (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177))) 149 T ELT)) (-2757 (($ (-1 (-177) (-177)) (-992 (-177))) 156 T ELT) (($ (-1 (-177) (-177))) 160 T ELT)) (-2770 (($ (-1 (-177) (-177)) (-992 (-177))) 144 T ELT) (($ (-1 (-177) (-177)) (-992 (-177)) (-992 (-177))) 145 T ELT) (($ (-578 (-1 (-177) (-177))) (-992 (-177))) 153 T ELT) (($ (-578 (-1 (-177) (-177))) (-992 (-177)) (-992 (-177))) 154 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-992 (-177))) 146 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177))) 147 T ELT) (($ $ (-992 (-177))) 131 T ELT)) (-2756 (((-83) $) 69 T ELT)) (-2747 (((-478)) 70 T ELT)) (-2755 (((-478)) 59 T ELT)) (-2753 (((-478)) 62 T ELT)) (-2879 (((-578 (-578 (-847 (-177)))) $) 35 T ELT)) (-2746 (((-83) (-83)) 71 T ELT)) (-3922 (((-765) $) 174 T ELT)) (-2749 (((-83)) 67 T ELT))) -(((-829) (-13 (-859) (-10 -8 (-15 -2770 ($ (-1 (-177) (-177)) (-992 (-177)))) (-15 -2770 ($ (-1 (-177) (-177)) (-992 (-177)) (-992 (-177)))) (-15 -2770 ($ (-578 (-1 (-177) (-177))) (-992 (-177)))) (-15 -2770 ($ (-578 (-1 (-177) (-177))) (-992 (-177)) (-992 (-177)))) (-15 -2770 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-992 (-177)))) (-15 -2770 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177)))) (-15 -2771 ($ (-1 (-847 (-177)) (-177)) (-992 (-177)))) (-15 -2771 ($ (-1 (-847 (-177)) (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177)))) (-15 -2757 ($ (-1 (-177) (-177)) (-992 (-177)))) (-15 -2757 ($ (-1 (-177) (-177)))) (-15 -2770 ($ $ (-992 (-177)))) (-15 -2756 ((-83) $)) (-15 -3850 ($ $ (-992 (-177)))) (-15 -3850 ($ $ (-992 (-177)) (-992 (-177)))) (-15 -3115 ($ $ (-992 (-177)))) (-15 -3115 ($ $)) (-15 -2769 ((-992 (-177)) $)) (-15 -2755 ((-478))) (-15 -2754 ((-478) (-478))) (-15 -2753 ((-478))) (-15 -2752 ((-478) (-478))) (-15 -2751 ((-478))) (-15 -2750 ((-478) (-478))) (-15 -2749 ((-83))) (-15 -2748 ((-83) (-83))) (-15 -2747 ((-478))) (-15 -2746 ((-83) (-83)))))) (T -829)) -((-2770 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) (-2770 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) (-2770 (*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1 (-177) (-177)))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) (-2770 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-1 (-177) (-177)))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) (-2770 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) (-2770 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) (-2771 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) (-2771 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) (-2757 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) (-2757 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-829)))) (-2770 (*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-829)))) (-3850 (*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) (-3850 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) (-3115 (*1 *1 *1) (-5 *1 (-829))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) (-2755 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2754 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2753 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2752 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2751 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2749 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829)))) (-2748 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829)))) (-2747 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) -((-2757 (((-829) |#1| (-1075)) 17 T ELT) (((-829) |#1| (-1075) (-992 (-177))) 21 T ELT)) (-2770 (((-829) |#1| |#1| (-1075) (-992 (-177))) 19 T ELT) (((-829) |#1| (-1075) (-992 (-177))) 15 T ELT))) -(((-830 |#1|) (-10 -7 (-15 -2770 ((-829) |#1| (-1075) (-992 (-177)))) (-15 -2770 ((-829) |#1| |#1| (-1075) (-992 (-177)))) (-15 -2757 ((-829) |#1| (-1075) (-992 (-177)))) (-15 -2757 ((-829) |#1| (-1075)))) (-548 (-467))) (T -830)) -((-2757 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467))))) (-2757 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-992 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467))))) (-2770 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-992 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467))))) (-2770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1075)) (-5 *5 (-992 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467)))))) -((-3850 (($ $ (-992 (-177)) (-992 (-177)) (-992 (-177))) 123 T ELT)) (-2876 (((-992 (-177)) $) 64 T ELT)) (-2877 (((-992 (-177)) $) 63 T ELT)) (-2878 (((-992 (-177)) $) 62 T ELT)) (-2768 (((-578 (-578 (-177))) $) 69 T ELT)) (-2769 (((-992 (-177)) $) 65 T ELT)) (-2762 (((-478) (-478)) 57 T ELT)) (-2766 (((-478) (-478)) 52 T ELT)) (-2764 (((-478) (-478)) 55 T ELT)) (-2760 (((-83) (-83)) 59 T ELT)) (-2763 (((-478)) 56 T ELT)) (-3115 (($ $ (-992 (-177))) 126 T ELT) (($ $) 127 T ELT)) (-2771 (($ (-1 (-847 (-177)) (-177)) (-992 (-177))) 133 T ELT) (($ (-1 (-847 (-177)) (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177))) 134 T ELT)) (-2770 (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-992 (-177))) 140 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177))) 141 T ELT) (($ $ (-992 (-177))) 129 T ELT)) (-2759 (((-478)) 60 T ELT)) (-2767 (((-478)) 50 T ELT)) (-2765 (((-478)) 53 T ELT)) (-2879 (((-578 (-578 (-847 (-177)))) $) 157 T ELT)) (-2758 (((-83) (-83)) 61 T ELT)) (-3922 (((-765) $) 155 T ELT)) (-2761 (((-83)) 58 T ELT))) -(((-831) (-13 (-880) (-10 -8 (-15 -2771 ($ (-1 (-847 (-177)) (-177)) (-992 (-177)))) (-15 -2771 ($ (-1 (-847 (-177)) (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177)))) (-15 -2770 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-992 (-177)))) (-15 -2770 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177)) (-992 (-177)))) (-15 -2770 ($ $ (-992 (-177)))) (-15 -3850 ($ $ (-992 (-177)) (-992 (-177)) (-992 (-177)))) (-15 -3115 ($ $ (-992 (-177)))) (-15 -3115 ($ $)) (-15 -2769 ((-992 (-177)) $)) (-15 -2768 ((-578 (-578 (-177))) $)) (-15 -2767 ((-478))) (-15 -2766 ((-478) (-478))) (-15 -2765 ((-478))) (-15 -2764 ((-478) (-478))) (-15 -2763 ((-478))) (-15 -2762 ((-478) (-478))) (-15 -2761 ((-83))) (-15 -2760 ((-83) (-83))) (-15 -2759 ((-478))) (-15 -2758 ((-83) (-83)))))) (T -831)) -((-2771 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-831)))) (-2771 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-831)))) (-2770 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-831)))) (-2770 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-831)))) (-2770 (*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-831)))) (-3850 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-831)))) (-3115 (*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-831)))) (-3115 (*1 *1 *1) (-5 *1 (-831))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-831)))) (-2768 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-177)))) (-5 *1 (-831)))) (-2767 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2765 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2763 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2762 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2761 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831)))) (-2759 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) -((-2772 (((-578 (-992 (-177))) (-578 (-578 (-847 (-177))))) 34 T ELT))) -(((-832) (-10 -7 (-15 -2772 ((-578 (-992 (-177))) (-578 (-578 (-847 (-177)))))))) (T -832)) -((-2772 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-578 (-992 (-177)))) (-5 *1 (-832))))) -((-2774 (((-261 (-478)) (-1075)) 16 T ELT)) (-2775 (((-261 (-478)) (-1075)) 14 T ELT)) (-3928 (((-261 (-478)) (-1075)) 12 T ELT)) (-2773 (((-261 (-478)) (-1075) (-439)) 19 T ELT))) -(((-833) (-10 -7 (-15 -2773 ((-261 (-478)) (-1075) (-439))) (-15 -3928 ((-261 (-478)) (-1075))) (-15 -2774 ((-261 (-478)) (-1075))) (-15 -2775 ((-261 (-478)) (-1075))))) (T -833)) -((-2775 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-439)) (-5 *2 (-261 (-478))) (-5 *1 (-833))))) -((-2774 ((|#2| |#2|) 28 T ELT)) (-2775 ((|#2| |#2|) 29 T ELT)) (-3928 ((|#2| |#2|) 27 T ELT)) (-2773 ((|#2| |#2| (-439)) 26 T ELT))) -(((-834 |#1| |#2|) (-10 -7 (-15 -2773 (|#2| |#2| (-439))) (-15 -3928 (|#2| |#2|)) (-15 -2774 (|#2| |#2|)) (-15 -2775 (|#2| |#2|))) (-1003) (-357 |#1|)) (T -834)) -((-2775 (*1 *2 *2) (-12 (-4 *3 (-1003)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3)))) (-2774 (*1 *2 *2) (-12 (-4 *3 (-1003)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3)))) (-3928 (*1 *2 *2) (-12 (-4 *3 (-1003)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3)))) (-2773 (*1 *2 *2 *3) (-12 (-5 *3 (-439)) (-4 *4 (-1003)) (-5 *1 (-834 *4 *2)) (-4 *2 (-357 *4))))) -((-2777 (((-791 |#1| |#3|) |#2| (-793 |#1|) (-791 |#1| |#3|)) 25 T ELT)) (-2776 (((-1 (-83) |#2|) (-1 (-83) |#3|)) 13 T ELT))) -(((-835 |#1| |#2| |#3|) (-10 -7 (-15 -2776 ((-1 (-83) |#2|) (-1 (-83) |#3|))) (-15 -2777 ((-791 |#1| |#3|) |#2| (-793 |#1|) (-791 |#1| |#3|)))) (-1003) (-789 |#1|) (-13 (-1003) (-943 |#2|))) (T -835)) -((-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *6)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-943 *3))) (-4 *3 (-789 *5)) (-5 *1 (-835 *5 *3 *6)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-1 (-83) *6)) (-4 *6 (-13 (-1003) (-943 *5))) (-4 *5 (-789 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-835 *4 *5 *6))))) -((-2777 (((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)) 30 T ELT))) -(((-836 |#1| |#2| |#3|) (-10 -7 (-15 -2777 ((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)))) (-1003) (-13 (-489) (-789 |#1|)) (-13 (-357 |#2|) (-548 (-793 |#1|)) (-789 |#1|) (-943 (-545 $)))) (T -836)) -((-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-357 *6) (-548 *4) (-789 *5) (-943 (-545 $)))) (-5 *4 (-793 *5)) (-4 *6 (-13 (-489) (-789 *5))) (-5 *1 (-836 *5 *6 *3))))) -((-2777 (((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|)) 13 T ELT))) -(((-837 |#1|) (-10 -7 (-15 -2777 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|)))) (-477)) (T -837)) -((-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 (-478) *3)) (-5 *4 (-793 (-478))) (-4 *3 (-477)) (-5 *1 (-837 *3))))) -((-2777 (((-791 |#1| |#2|) (-545 |#2|) (-793 |#1|) (-791 |#1| |#2|)) 57 T ELT))) -(((-838 |#1| |#2|) (-10 -7 (-15 -2777 ((-791 |#1| |#2|) (-545 |#2|) (-793 |#1|) (-791 |#1| |#2|)))) (-1003) (-13 (-1003) (-943 (-545 $)) (-548 (-793 |#1|)) (-789 |#1|))) (T -838)) -((-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *6)) (-5 *3 (-545 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-943 (-545 $)) (-548 *4) (-789 *5))) (-5 *4 (-793 *5)) (-5 *1 (-838 *5 *6))))) -((-2777 (((-788 |#1| |#2| |#3|) |#3| (-793 |#1|) (-788 |#1| |#2| |#3|)) 17 T ELT))) -(((-839 |#1| |#2| |#3|) (-10 -7 (-15 -2777 ((-788 |#1| |#2| |#3|) |#3| (-793 |#1|) (-788 |#1| |#2| |#3|)))) (-1003) (-789 |#1|) (-603 |#2|)) (T -839)) -((-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-788 *5 *6 *3)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-4 *6 (-789 *5)) (-4 *3 (-603 *6)) (-5 *1 (-839 *5 *6 *3))))) -((-2777 (((-791 |#1| |#5|) |#5| (-793 |#1|) (-791 |#1| |#5|)) 17 (|has| |#3| (-789 |#1|)) ELT) (((-791 |#1| |#5|) |#5| (-793 |#1|) (-791 |#1| |#5|) (-1 (-791 |#1| |#5|) |#3| (-793 |#1|) (-791 |#1| |#5|))) 16 T ELT))) -(((-840 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2777 ((-791 |#1| |#5|) |#5| (-793 |#1|) (-791 |#1| |#5|) (-1 (-791 |#1| |#5|) |#3| (-793 |#1|) (-791 |#1| |#5|)))) (IF (|has| |#3| (-789 |#1|)) (-15 -2777 ((-791 |#1| |#5|) |#5| (-793 |#1|) (-791 |#1| |#5|))) |%noBranch|)) (-1003) (-710) (-749) (-13 (-954) (-789 |#1|)) (-13 (-854 |#4| |#2| |#3|) (-548 (-793 |#1|)))) (T -840)) -((-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-854 *8 *6 *7) (-548 *4))) (-5 *4 (-793 *5)) (-4 *7 (-789 *5)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-13 (-954) (-789 *5))) (-5 *1 (-840 *5 *6 *7 *8 *3)))) (-2777 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-791 *6 *3) *8 (-793 *6) (-791 *6 *3))) (-4 *8 (-749)) (-5 *2 (-791 *6 *3)) (-5 *4 (-793 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-854 *9 *7 *8) (-548 *4))) (-4 *7 (-710)) (-4 *9 (-13 (-954) (-789 *6))) (-5 *1 (-840 *6 *7 *8 *9 *3))))) -((-3190 (((-261 (-478)) (-1075) (-578 (-1 (-83) |#1|))) 18 T ELT) (((-261 (-478)) (-1075) (-1 (-83) |#1|)) 15 T ELT))) -(((-841 |#1|) (-10 -7 (-15 -3190 ((-261 (-478)) (-1075) (-1 (-83) |#1|))) (-15 -3190 ((-261 (-478)) (-1075) (-578 (-1 (-83) |#1|))))) (-1114)) (T -841)) -((-3190 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-578 (-1 (-83) *5))) (-4 *5 (-1114)) (-5 *2 (-261 (-478))) (-5 *1 (-841 *5)))) (-3190 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-1 (-83) *5)) (-4 *5 (-1114)) (-5 *2 (-261 (-478))) (-5 *1 (-841 *5))))) -((-3190 ((|#2| |#2| (-578 (-1 (-83) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-83) |#3|)) 13 T ELT))) -(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -3190 (|#2| |#2| (-1 (-83) |#3|))) (-15 -3190 (|#2| |#2| (-578 (-1 (-83) |#3|))))) (-1003) (-357 |#1|) (-1114)) (T -842)) -((-3190 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1 (-83) *5))) (-4 *5 (-1114)) (-4 *4 (-1003)) (-5 *1 (-842 *4 *2 *5)) (-4 *2 (-357 *4)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *5)) (-4 *5 (-1114)) (-4 *4 (-1003)) (-5 *1 (-842 *4 *2 *5)) (-4 *2 (-357 *4))))) -((-2777 (((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)) 25 T ELT))) -(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2777 ((-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)))) (-1003) (-13 (-489) (-789 |#1|) (-548 (-793 |#1|))) (-897 |#2|)) (T -843)) -((-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-897 *6)) (-4 *6 (-13 (-489) (-789 *5) (-548 *4))) (-5 *4 (-793 *5)) (-5 *1 (-843 *5 *6 *3))))) -((-2777 (((-791 |#1| (-1075)) (-1075) (-793 |#1|) (-791 |#1| (-1075))) 18 T ELT))) -(((-844 |#1|) (-10 -7 (-15 -2777 ((-791 |#1| (-1075)) (-1075) (-793 |#1|) (-791 |#1| (-1075))))) (-1003)) (T -844)) -((-2777 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-791 *5 (-1075))) (-5 *3 (-1075)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-5 *1 (-844 *5))))) -((-2778 (((-791 |#1| |#3|) (-578 |#3|) (-578 (-793 |#1|)) (-791 |#1| |#3|) (-1 (-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|))) 34 T ELT)) (-2777 (((-791 |#1| |#3|) (-578 |#3|) (-578 (-793 |#1|)) (-1 |#3| (-578 |#3|)) (-791 |#1| |#3|) (-1 (-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|))) 33 T ELT))) -(((-845 |#1| |#2| |#3|) (-10 -7 (-15 -2777 ((-791 |#1| |#3|) (-578 |#3|) (-578 (-793 |#1|)) (-1 |#3| (-578 |#3|)) (-791 |#1| |#3|) (-1 (-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|)))) (-15 -2778 ((-791 |#1| |#3|) (-578 |#3|) (-578 (-793 |#1|)) (-791 |#1| |#3|) (-1 (-791 |#1| |#3|) |#3| (-793 |#1|) (-791 |#1| |#3|))))) (-1003) (-954) (-13 (-954) (-548 (-793 |#1|)) (-943 |#2|))) (T -845)) -((-2778 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-793 *6))) (-5 *5 (-1 (-791 *6 *8) *8 (-793 *6) (-791 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-954) (-548 (-793 *6)) (-943 *7))) (-5 *2 (-791 *6 *8)) (-4 *7 (-954)) (-5 *1 (-845 *6 *7 *8)))) (-2777 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-578 (-793 *7))) (-5 *5 (-1 *9 (-578 *9))) (-5 *6 (-1 (-791 *7 *9) *9 (-793 *7) (-791 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-954) (-548 (-793 *7)) (-943 *8))) (-5 *2 (-791 *7 *9)) (-5 *3 (-578 *9)) (-4 *8 (-954)) (-5 *1 (-845 *7 *8 *9))))) -((-2786 (((-1070 (-343 (-478))) (-478)) 80 T ELT)) (-2785 (((-1070 (-478)) (-478)) 83 T ELT)) (-3311 (((-1070 (-478)) (-478)) 77 T ELT)) (-2784 (((-478) (-1070 (-478))) 73 T ELT)) (-2783 (((-1070 (-343 (-478))) (-478)) 66 T ELT)) (-2782 (((-1070 (-478)) (-478)) 49 T ELT)) (-2781 (((-1070 (-478)) (-478)) 85 T ELT)) (-2780 (((-1070 (-478)) (-478)) 84 T ELT)) (-2779 (((-1070 (-343 (-478))) (-478)) 68 T ELT))) -(((-846) (-10 -7 (-15 -2779 ((-1070 (-343 (-478))) (-478))) (-15 -2780 ((-1070 (-478)) (-478))) (-15 -2781 ((-1070 (-478)) (-478))) (-15 -2782 ((-1070 (-478)) (-478))) (-15 -2783 ((-1070 (-343 (-478))) (-478))) (-15 -2784 ((-478) (-1070 (-478)))) (-15 -3311 ((-1070 (-478)) (-478))) (-15 -2785 ((-1070 (-478)) (-478))) (-15 -2786 ((-1070 (-343 (-478))) (-478))))) (T -846)) -((-2786 (*1 *2 *3) (-12 (-5 *2 (-1070 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2785 (*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-3311 (*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2784 (*1 *2 *3) (-12 (-5 *3 (-1070 (-478))) (-5 *2 (-478)) (-5 *1 (-846)))) (-2783 (*1 *2 *3) (-12 (-5 *2 (-1070 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2782 (*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2781 (*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2780 (*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) (-2779 (*1 *2 *3) (-12 (-5 *2 (-1070 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3814 (($ (-687)) NIL (|has| |#1| (-23)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) NIL T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT)) (-3682 (($ (-578 |#1|)) 9 T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3811 (((-625 |#1|) $ $) NIL (|has| |#1| (-954)) ELT)) (-3590 (($ (-687) |#1|) NIL T ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3808 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3809 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3745 (($ $ (-578 |#1|)) 25 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) 18 T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-3812 ((|#1| $ $) NIL (|has| |#1| (-954)) ELT)) (-3887 (((-823) $) 13 T ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-3810 (($ $ $) 23 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT) (($ (-578 |#1|)) 14 T ELT)) (-3507 (($ (-578 |#1|)) NIL T ELT)) (-3778 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3813 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3815 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-478) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-658)) ELT) (($ $ |#1|) NIL (|has| |#1| (-658)) ELT)) (-3933 (((-687) $) 11 (|has| $ (-6 -3971)) ELT))) -(((-847 |#1|) (-886 |#1|) (-954)) (T -847)) -NIL -((-2789 (((-414 |#1| |#2|) (-850 |#2|)) 22 T ELT)) (-2792 (((-203 |#1| |#2|) (-850 |#2|)) 35 T ELT)) (-2790 (((-850 |#2|) (-414 |#1| |#2|)) 27 T ELT)) (-2788 (((-203 |#1| |#2|) (-414 |#1| |#2|)) 57 T ELT)) (-2791 (((-850 |#2|) (-203 |#1| |#2|)) 32 T ELT)) (-2787 (((-414 |#1| |#2|) (-203 |#1| |#2|)) 48 T ELT))) -(((-848 |#1| |#2|) (-10 -7 (-15 -2787 ((-414 |#1| |#2|) (-203 |#1| |#2|))) (-15 -2788 ((-203 |#1| |#2|) (-414 |#1| |#2|))) (-15 -2789 ((-414 |#1| |#2|) (-850 |#2|))) (-15 -2790 ((-850 |#2|) (-414 |#1| |#2|))) (-15 -2791 ((-850 |#2|) (-203 |#1| |#2|))) (-15 -2792 ((-203 |#1| |#2|) (-850 |#2|)))) (-578 (-1075)) (-954)) (T -848)) -((-2792 (*1 *2 *3) (-12 (-5 *3 (-850 *5)) (-4 *5 (-954)) (-5 *2 (-203 *4 *5)) (-5 *1 (-848 *4 *5)) (-14 *4 (-578 (-1075))))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-954)) (-5 *2 (-850 *5)) (-5 *1 (-848 *4 *5)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-414 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-954)) (-5 *2 (-850 *5)) (-5 *1 (-848 *4 *5)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-850 *5)) (-4 *5 (-954)) (-5 *2 (-414 *4 *5)) (-5 *1 (-848 *4 *5)) (-14 *4 (-578 (-1075))))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-414 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-954)) (-5 *2 (-203 *4 *5)) (-5 *1 (-848 *4 *5)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-954)) (-5 *2 (-414 *4 *5)) (-5 *1 (-848 *4 *5))))) -((-2793 (((-578 |#2|) |#2| |#2|) 10 T ELT)) (-2796 (((-687) (-578 |#1|)) 47 (|has| |#1| (-748)) ELT)) (-2794 (((-578 |#2|) |#2|) 11 T ELT)) (-2797 (((-687) (-578 |#1|) (-478) (-478)) 45 (|has| |#1| (-748)) ELT)) (-2795 ((|#1| |#2|) 37 (|has| |#1| (-748)) ELT))) -(((-849 |#1| |#2|) (-10 -7 (-15 -2793 ((-578 |#2|) |#2| |#2|)) (-15 -2794 ((-578 |#2|) |#2|)) (IF (|has| |#1| (-748)) (PROGN (-15 -2795 (|#1| |#2|)) (-15 -2796 ((-687) (-578 |#1|))) (-15 -2797 ((-687) (-578 |#1|) (-478) (-478)))) |%noBranch|)) (-308) (-1140 |#1|)) (T -849)) -((-2797 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-478)) (-4 *5 (-748)) (-4 *5 (-308)) (-5 *2 (-687)) (-5 *1 (-849 *5 *6)) (-4 *6 (-1140 *5)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-748)) (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-849 *4 *5)) (-4 *5 (-1140 *4)))) (-2795 (*1 *2 *3) (-12 (-4 *2 (-308)) (-4 *2 (-748)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1140 *2)))) (-2794 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-849 *4 *3)) (-4 *3 (-1140 *4)))) (-2793 (*1 *2 *3 *3) (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-849 *4 *3)) (-4 *3 (-1140 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-1075)) $) 16 T ELT)) (-3065 (((-1070 $) $ (-1075)) 21 T ELT) (((-1070 |#1|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-1075))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-1075) #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-1075) $) NIL T ELT)) (-3732 (($ $ $ (-1075)) NIL (|has| |#1| (-144)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-1075)) NIL (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| (-463 (-1075)) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-1075) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-1075) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3066 (($ (-1070 |#1|) (-1075)) NIL T ELT) (($ (-1070 $) (-1075)) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-463 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-1075)) NIL T ELT)) (-2801 (((-463 (-1075)) $) NIL T ELT) (((-687) $ (-1075)) NIL T ELT) (((-578 (-687)) $ (-578 (-1075))) NIL T ELT)) (-1608 (($ (-1 (-463 (-1075)) (-463 (-1075))) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3064 (((-3 (-1075) #1#) $) 19 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-1075)) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3788 (($ $ (-1075)) 29 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-1075) |#1|) NIL T ELT) (($ $ (-578 (-1075)) (-578 |#1|)) NIL T ELT) (($ $ (-1075) $) NIL T ELT) (($ $ (-578 (-1075)) (-578 $)) NIL T ELT)) (-3733 (($ $ (-1075)) NIL (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) NIL T ELT)) (-3924 (((-463 (-1075)) $) NIL T ELT) (((-687) $ (-1075)) NIL T ELT) (((-578 (-687)) $ (-578 (-1075))) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-1075) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-1075) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-1075) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-1075)) NIL (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) 25 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1075)) 27 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-463 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-850 |#1|) (-13 (-854 |#1| (-463 (-1075)) (-1075)) (-10 -8 (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3788 ($ $ (-1075))) |%noBranch|))) (-954)) (T -850)) -((-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-850 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954))))) -((-3934 (((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)) 19 T ELT))) -(((-851 |#1| |#2|) (-10 -7 (-15 -3934 ((-850 |#2|) (-1 |#2| |#1|) (-850 |#1|)))) (-954) (-954)) (T -851)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-5 *2 (-850 *6)) (-5 *1 (-851 *5 *6))))) -((-3065 (((-1133 |#1| (-850 |#2|)) (-850 |#2|) (-1161 |#1|)) 18 T ELT))) -(((-852 |#1| |#2|) (-10 -7 (-15 -3065 ((-1133 |#1| (-850 |#2|)) (-850 |#2|) (-1161 |#1|)))) (-1075) (-954)) (T -852)) -((-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-1161 *5)) (-14 *5 (-1075)) (-4 *6 (-954)) (-5 *2 (-1133 *5 (-850 *6))) (-5 *1 (-852 *5 *6)) (-5 *3 (-850 *6))))) -((-2800 (((-687) $) 88 T ELT) (((-687) $ (-578 |#4|)) 93 T ELT)) (-3751 (($ $) 214 T ELT)) (-3947 (((-341 $) $) 206 T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1="failed") (-578 (-1070 $)) (-1070 $)) 141 T ELT)) (-3138 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3137 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3732 (($ $ $ |#4|) 95 T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) 131 T ELT) (((-625 |#2|) (-625 $)) 121 T ELT)) (-3480 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2799 (((-578 $) $) 77 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 240 T ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 233 T ELT)) (-2802 (((-578 $) $) 34 T ELT)) (-2874 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-687)) NIL T ELT) (($ $ (-578 |#4|) (-578 (-687))) 71 T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ |#4|) 203 T ELT)) (-2804 (((-3 (-578 $) #1#) $) 52 T ELT)) (-2803 (((-3 (-578 $) #1#) $) 39 T ELT)) (-2805 (((-3 (-2 (|:| |var| |#4|) (|:| -2383 (-687))) #1#) $) 57 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 134 T ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 147 T ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 145 T ELT)) (-3708 (((-341 $) $) 165 T ELT)) (-3744 (($ $ (-578 (-245 $))) 24 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-578 |#4|) (-578 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-578 |#4|) (-578 $)) NIL T ELT)) (-3733 (($ $ |#4|) 97 T ELT)) (-3948 (((-793 (-323)) $) 254 T ELT) (((-793 (-478)) $) 247 T ELT) (((-467) $) 262 T ELT)) (-2798 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) 185 T ELT)) (-3653 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-687)) 62 T ELT) (($ $ (-578 |#4|) (-578 (-687))) 69 T ELT)) (-2683 (((-627 $) $) 195 T ELT)) (-1249 (((-83) $ $) 227 T ELT))) -(((-853 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2689 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3947 ((-341 |#1|) |#1|)) (-15 -3751 (|#1| |#1|)) (-15 -2683 ((-627 |#1|) |#1|)) (-15 -3948 ((-467) |#1|)) (-15 -3948 ((-793 (-478)) |#1|)) (-15 -3948 ((-793 (-323)) |#1|)) (-15 -2777 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|))) (-15 -2777 ((-791 (-323) |#1|) |#1| (-793 (-323)) (-791 (-323) |#1|))) (-15 -3708 ((-341 |#1|) |#1|)) (-15 -2687 ((-341 (-1070 |#1|)) (-1070 |#1|))) (-15 -2686 ((-341 (-1070 |#1|)) (-1070 |#1|))) (-15 -2685 ((-3 (-578 (-1070 |#1|)) #1="failed") (-578 (-1070 |#1|)) (-1070 |#1|))) (-15 -2684 ((-3 (-1164 |#1|) #1#) (-625 |#1|))) (-15 -3480 (|#1| |#1| |#4|)) (-15 -2798 (|#1| |#1| |#4|)) (-15 -3733 (|#1| |#1| |#4|)) (-15 -3732 (|#1| |#1| |#1| |#4|)) (-15 -2799 ((-578 |#1|) |#1|)) (-15 -2800 ((-687) |#1| (-578 |#4|))) (-15 -2800 ((-687) |#1|)) (-15 -2805 ((-3 (-2 (|:| |var| |#4|) (|:| -2383 (-687))) #1#) |#1|)) (-15 -2804 ((-3 (-578 |#1|) #1#) |#1|)) (-15 -2803 ((-3 (-578 |#1|) #1#) |#1|)) (-15 -2874 (|#1| |#1| (-578 |#4|) (-578 (-687)))) (-15 -2874 (|#1| |#1| |#4| (-687))) (-15 -3739 ((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1| |#4|)) (-15 -2802 ((-578 |#1|) |#1|)) (-15 -3653 (|#1| |#1| (-578 |#4|) (-578 (-687)))) (-15 -3653 (|#1| |#1| |#4| (-687))) (-15 -2261 ((-625 |#2|) (-625 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-625 (-478)) (-625 |#1|))) (-15 -3138 ((-3 |#4| #1#) |#1|)) (-15 -3137 (|#4| |#1|)) (-15 -3744 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3744 (|#1| |#1| |#4| |#1|)) (-15 -3744 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3744 (|#1| |#1| |#4| |#2|)) (-15 -3744 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3744 (|#1| |#1| |#1| |#1|)) (-15 -3744 (|#1| |#1| (-245 |#1|))) (-15 -3744 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -2874 (|#1| |#2| |#3|)) (-15 -3653 (|#2| |#1| |#3|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -2798 (|#2| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -1249 ((-83) |#1| |#1|))) (-854 |#2| |#3| |#4|) (-954) (-710) (-749)) (T -853)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 |#3|) $) 120 T ELT)) (-3065 (((-1070 $) $ |#3|) 135 T ELT) (((-1070 |#1|) $) 134 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 97 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 98 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 100 (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) 122 T ELT) (((-687) $ (-578 |#3|)) 121 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 110 (|has| |#1| (-814)) ELT)) (-3751 (($ $) 108 (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) 107 (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1="failed") (-578 (-1070 $)) (-1070 $)) 113 (|has| |#1| (-814)) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-343 (-478)) #2#) $) 175 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #2#) $) 173 (|has| |#1| (-943 (-478))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3137 ((|#1| $) 177 T ELT) (((-343 (-478)) $) 176 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 174 (|has| |#1| (-943 (-478))) ELT) ((|#3| $) 151 T ELT)) (-3732 (($ $ $ |#3|) 118 (|has| |#1| (-144)) ELT)) (-3935 (($ $) 168 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 146 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 145 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 144 T ELT) (((-625 |#1|) (-625 $)) 143 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3480 (($ $) 190 (|has| |#1| (-385)) ELT) (($ $ |#3|) 115 (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) 119 T ELT)) (-3699 (((-83) $) 106 (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| |#2| $) 186 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 94 (-12 (|has| |#3| (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 93 (-12 (|has| |#3| (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-2392 (((-83) $) 40 T ELT)) (-2400 (((-687) $) 183 T ELT)) (-3066 (($ (-1070 |#1|) |#3|) 127 T ELT) (($ (-1070 $) |#3|) 126 T ELT)) (-2802 (((-578 $) $) 136 T ELT)) (-3913 (((-83) $) 166 T ELT)) (-2874 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-687)) 129 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 128 T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ |#3|) 130 T ELT)) (-2801 ((|#2| $) 184 T ELT) (((-687) $ |#3|) 132 T ELT) (((-578 (-687)) $ (-578 |#3|)) 131 T ELT)) (-1608 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3064 (((-3 |#3| "failed") $) 133 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 148 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 147 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 142 T ELT) (((-625 |#1|) (-1164 $)) 141 T ELT)) (-2875 (($ $) 163 T ELT)) (-3155 ((|#1| $) 162 T ELT)) (-1874 (($ (-578 $)) 104 (|has| |#1| (-385)) ELT) (($ $ $) 103 (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2804 (((-3 (-578 $) "failed") $) 124 T ELT)) (-2803 (((-3 (-578 $) "failed") $) 125 T ELT)) (-2805 (((-3 (-2 (|:| |var| |#3|) (|:| -2383 (-687))) "failed") $) 123 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1780 (((-83) $) 180 T ELT)) (-1779 ((|#1| $) 181 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 105 (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) 102 (|has| |#1| (-385)) ELT) (($ $ $) 101 (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 112 (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 111 (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) 109 (|has| |#1| (-814)) ELT)) (-3443 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-578 $) (-578 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-578 |#3|) (-578 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-578 |#3|) (-578 $)) 152 T ELT)) (-3733 (($ $ |#3|) 117 (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 |#3|) (-578 (-687))) 49 T ELT) (($ $ |#3| (-687)) 48 T ELT) (($ $ (-578 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-3924 ((|#2| $) 164 T ELT) (((-687) $ |#3|) 140 T ELT) (((-578 (-687)) $ (-578 |#3|)) 139 T ELT)) (-3948 (((-793 (-323)) $) 92 (-12 (|has| |#3| (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) 91 (-12 (|has| |#3| (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) 90 (-12 (|has| |#3| (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2798 ((|#1| $) 189 (|has| |#1| (-385)) ELT) (($ $ |#3|) 116 (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) 114 (-2542 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-489)) ELT) (($ (-343 (-478))) 88 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT)) (-3793 (((-578 |#1|) $) 182 T ELT)) (-3653 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-687)) 138 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 137 T ELT)) (-2683 (((-627 $) $) 89 (OR (-2542 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) 37 T CONST)) (-1606 (($ $ $ (-687)) 187 (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 99 (|has| |#1| (-489)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-578 |#3|) (-578 (-687))) 52 T ELT) (($ $ |#3| (-687)) 51 T ELT) (($ $ (-578 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-854 |#1| |#2| |#3|) (-111) (-954) (-710) (-749)) (T -854)) -((-3480 (*1 *1 *1) (-12 (-4 *1 (-854 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-687)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 (-687))))) (-3653 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-854 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *2 (-749)))) (-3653 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-687))) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)))) (-2802 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-854 *3 *4 *5)))) (-3065 (*1 *2 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-1070 *1)) (-4 *1 (-854 *4 *5 *3)))) (-3065 (*1 *2 *1) (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-1070 *3)))) (-3064 (*1 *2 *1) (|partial| -12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-2801 (*1 *2 *1 *3) (-12 (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-687)))) (-2801 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 (-687))))) (-3739 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-854 *4 *5 *3)))) (-2874 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-854 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *2 (-749)))) (-2874 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-687))) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)))) (-3066 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-954)) (-4 *1 (-854 *4 *5 *3)) (-4 *5 (-710)) (-4 *3 (-749)))) (-3066 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)))) (-2803 (*1 *2 *1) (|partial| -12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-854 *3 *4 *5)))) (-2804 (*1 *2 *1) (|partial| -12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-854 *3 *4 *5)))) (-2805 (*1 *2 *1) (|partial| -12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| |var| *5) (|:| -2383 (-687)))))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-687)))) (-2800 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-687)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *5)))) (-2799 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-854 *3 *4 *5)))) (-3732 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *3 (-144)))) (-3733 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *3 (-144)))) (-2798 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *3 (-385)))) (-3480 (*1 *1 *1 *2) (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *3 (-385)))) (-3751 (*1 *1 *1) (-12 (-4 *1 (-854 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3947 (*1 *2 *1) (-12 (-4 *3 (-385)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-341 *1)) (-4 *1 (-854 *3 *4 *5))))) -(-13 (-802 |t#3|) (-273 |t#1| |t#2|) (-256 $) (-447 |t#3| |t#1|) (-447 |t#3| $) (-943 |t#3|) (-322 |t#1|) (-10 -8 (-15 -3924 ((-687) $ |t#3|)) (-15 -3924 ((-578 (-687)) $ (-578 |t#3|))) (-15 -3653 ($ $ |t#3| (-687))) (-15 -3653 ($ $ (-578 |t#3|) (-578 (-687)))) (-15 -2802 ((-578 $) $)) (-15 -3065 ((-1070 $) $ |t#3|)) (-15 -3065 ((-1070 |t#1|) $)) (-15 -3064 ((-3 |t#3| "failed") $)) (-15 -2801 ((-687) $ |t#3|)) (-15 -2801 ((-578 (-687)) $ (-578 |t#3|))) (-15 -3739 ((-2 (|:| -1956 $) (|:| -2883 $)) $ $ |t#3|)) (-15 -2874 ($ $ |t#3| (-687))) (-15 -2874 ($ $ (-578 |t#3|) (-578 (-687)))) (-15 -3066 ($ (-1070 |t#1|) |t#3|)) (-15 -3066 ($ (-1070 $) |t#3|)) (-15 -2803 ((-3 (-578 $) "failed") $)) (-15 -2804 ((-3 (-578 $) "failed") $)) (-15 -2805 ((-3 (-2 (|:| |var| |t#3|) (|:| -2383 (-687))) "failed") $)) (-15 -2800 ((-687) $)) (-15 -2800 ((-687) $ (-578 |t#3|))) (-15 -3063 ((-578 |t#3|) $)) (-15 -2799 ((-578 $) $)) (IF (|has| |t#1| (-548 (-467))) (IF (|has| |t#3| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-548 (-793 (-478)))) (IF (|has| |t#3| (-548 (-793 (-478)))) (-6 (-548 (-793 (-478)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-548 (-793 (-323)))) (IF (|has| |t#3| (-548 (-793 (-323)))) (-6 (-548 (-793 (-323)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-789 (-478))) (IF (|has| |t#3| (-789 (-478))) (-6 (-789 (-478))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-789 (-323))) (IF (|has| |t#3| (-789 (-323))) (-6 (-789 (-323))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-15 -3732 ($ $ $ |t#3|)) (-15 -3733 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-385)) (PROGN (-6 (-385)) (-15 -2798 ($ $ |t#3|)) (-15 -3480 ($ $)) (-15 -3480 ($ $ |t#3|)) (-15 -3947 ((-341 $) $)) (-15 -3751 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3969)) (-6 -3969) |%noBranch|) (IF (|has| |t#1| (-814)) (-6 (-814)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 |#3|) . T) ((-550 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-548 (-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) ((-242) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-256 $) . T) ((-273 |#1| |#2|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-814)) (|has| |#1| (-385))) ((-447 |#3| |#1|) . T) ((-447 |#3| $) . T) ((-447 $ $) . T) ((-489) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-658) . T) ((-799 $ |#3|) . T) ((-802 |#3|) . T) ((-804 |#3|) . T) ((-789 (-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) ((-814) |has| |#1| (-814)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-943 |#3|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) |has| |#1| (-814))) -((-3063 (((-578 |#2|) |#5|) 40 T ELT)) (-3065 (((-1070 |#5|) |#5| |#2| (-1070 |#5|)) 23 T ELT) (((-343 (-1070 |#5|)) |#5| |#2|) 16 T ELT)) (-3066 ((|#5| (-343 (-1070 |#5|)) |#2|) 30 T ELT)) (-3064 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2804 (((-3 (-578 |#5|) #1#) |#5|) 64 T ELT)) (-2806 (((-3 (-2 (|:| |val| |#5|) (|:| -2383 (-478))) #1#) |#5|) 53 T ELT)) (-2803 (((-3 (-578 |#5|) #1#) |#5|) 66 T ELT)) (-2805 (((-3 (-2 (|:| |var| |#2|) (|:| -2383 (-478))) #1#) |#5|) 56 T ELT))) -(((-855 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3063 ((-578 |#2|) |#5|)) (-15 -3064 ((-3 |#2| #1="failed") |#5|)) (-15 -3065 ((-343 (-1070 |#5|)) |#5| |#2|)) (-15 -3066 (|#5| (-343 (-1070 |#5|)) |#2|)) (-15 -3065 ((-1070 |#5|) |#5| |#2| (-1070 |#5|))) (-15 -2803 ((-3 (-578 |#5|) #1#) |#5|)) (-15 -2804 ((-3 (-578 |#5|) #1#) |#5|)) (-15 -2805 ((-3 (-2 (|:| |var| |#2|) (|:| -2383 (-478))) #1#) |#5|)) (-15 -2806 ((-3 (-2 (|:| |val| |#5|) (|:| -2383 (-478))) #1#) |#5|))) (-710) (-749) (-954) (-854 |#3| |#1| |#2|) (-13 (-308) (-10 -8 (-15 -3922 ($ |#4|)) (-15 -2979 (|#4| $)) (-15 -2978 (|#4| $))))) (T -855)) -((-2806 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2383 (-478)))) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))))) (-2805 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2383 (-478)))) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))))) (-2804 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))))) (-2803 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))))) (-3065 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))) (-4 *7 (-854 *6 *5 *4)) (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) (-5 *1 (-855 *5 *4 *6 *7 *3)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-1070 *2))) (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))) (-5 *1 (-855 *5 *4 *6 *7 *2)) (-4 *7 (-854 *6 *5 *4)))) (-3065 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *5 *4)) (-5 *2 (-343 (-1070 *3))) (-5 *1 (-855 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))))) (-3064 (*1 *2 *3) (|partial| -12 (-4 *4 (-710)) (-4 *5 (-954)) (-4 *6 (-854 *5 *4 *2)) (-4 *2 (-749)) (-5 *1 (-855 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3922 ($ *6)) (-15 -2979 (*6 $)) (-15 -2978 (*6 $))))))) (-3063 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *5)) (-5 *1 (-855 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $)))))))) -((-3934 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-856 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3934 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-710) (-749) (-954) (-854 |#3| |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -3815 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-687)))))) (T -856)) -((-3934 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-749)) (-4 *8 (-954)) (-4 *6 (-710)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -3815 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-687)))))) (-5 *1 (-856 *6 *7 *8 *5 *2)) (-4 *5 (-854 *8 *6 *7))))) -((-2807 (((-2 (|:| -2383 (-687)) (|:| -3930 |#5|) (|:| |radicand| |#5|)) |#3| (-687)) 48 T ELT)) (-2808 (((-2 (|:| -2383 (-687)) (|:| -3930 |#5|) (|:| |radicand| |#5|)) (-343 (-478)) (-687)) 43 T ELT)) (-2810 (((-2 (|:| -2383 (-687)) (|:| -3930 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-687)) 64 T ELT)) (-2809 (((-2 (|:| -2383 (-687)) (|:| -3930 |#5|) (|:| |radicand| |#5|)) |#5| (-687)) 73 (|has| |#3| (-385)) ELT))) -(((-857 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2807 ((-2 (|:| -2383 (-687)) (|:| -3930 |#5|) (|:| |radicand| |#5|)) |#3| (-687))) (-15 -2808 ((-2 (|:| -2383 (-687)) (|:| -3930 |#5|) (|:| |radicand| |#5|)) (-343 (-478)) (-687))) (IF (|has| |#3| (-385)) (-15 -2809 ((-2 (|:| -2383 (-687)) (|:| -3930 |#5|) (|:| |radicand| |#5|)) |#5| (-687))) |%noBranch|) (-15 -2810 ((-2 (|:| -2383 (-687)) (|:| -3930 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-687)))) (-710) (-749) (-489) (-854 |#3| |#1| |#2|) (-13 (-308) (-10 -8 (-15 -3922 ($ |#4|)) (-15 -2979 (|#4| $)) (-15 -2978 (|#4| $))))) (T -857)) -((-2810 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) (-4 *3 (-854 *7 *5 *6)) (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *3) (|:| |radicand| (-578 *3)))) (-5 *1 (-857 *5 *6 *7 *3 *8)) (-5 *4 (-687)) (-4 *8 (-13 (-308) (-10 -8 (-15 -3922 ($ *3)) (-15 -2979 (*3 $)) (-15 -2978 (*3 $))))))) (-2809 (*1 *2 *3 *4) (-12 (-4 *7 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) (-4 *8 (-854 *7 *5 *6)) (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *3) (|:| |radicand| *3))) (-5 *1 (-857 *5 *6 *7 *8 *3)) (-5 *4 (-687)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3922 ($ *8)) (-15 -2979 (*8 $)) (-15 -2978 (*8 $))))))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-478))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) (-4 *8 (-854 *7 *5 *6)) (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *9) (|:| |radicand| *9))) (-5 *1 (-857 *5 *6 *7 *8 *9)) (-5 *4 (-687)) (-4 *9 (-13 (-308) (-10 -8 (-15 -3922 ($ *8)) (-15 -2979 (*8 $)) (-15 -2978 (*8 $))))))) (-2807 (*1 *2 *3 *4) (-12 (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-489)) (-4 *7 (-854 *3 *5 *6)) (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *8) (|:| |radicand| *8))) (-5 *1 (-857 *5 *6 *3 *7 *8)) (-5 *4 (-687)) (-4 *8 (-13 (-308) (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $)))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2811 (($ (-1020)) 8 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 15 T ELT) (((-1020) $) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 11 T ELT))) -(((-858) (-13 (-1003) (-547 (-1020)) (-10 -8 (-15 -2811 ($ (-1020)))))) (T -858)) -((-2811 (*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-858))))) -((-2877 (((-992 (-177)) $) 8 T ELT)) (-2878 (((-992 (-177)) $) 9 T ELT)) (-2879 (((-578 (-578 (-847 (-177)))) $) 10 T ELT)) (-3922 (((-765) $) 6 T ELT))) -(((-859) (-111)) (T -859)) -((-2879 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-578 (-578 (-847 (-177))))))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-992 (-177))))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-992 (-177)))))) -(-13 (-547 (-765)) (-10 -8 (-15 -2879 ((-578 (-578 (-847 (-177)))) $)) (-15 -2878 ((-992 (-177)) $)) (-15 -2877 ((-992 (-177)) $)))) -(((-547 (-765)) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 80 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 81 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3935 (($ $) 32 T ELT)) (-3444 (((-3 $ #1#) $) 43 T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT)) (-1607 (($ $ |#1| |#2| $) 64 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) 18 T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| |#2|) NIL T ELT)) (-2801 ((|#2| $) 25 T ELT)) (-1608 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2875 (($ $) 29 T ELT)) (-3155 ((|#1| $) 27 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) 52 T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-3714 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-102)) (|has| |#1| (-489))) ELT)) (-3443 (((-3 $ #1#) $ $) 92 (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-489)) ELT)) (-3924 ((|#2| $) 23 T ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) 47 T ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) 42 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ |#2|) 38 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 15 T CONST)) (-1606 (($ $ $ (-687)) 76 (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) 86 (|has| |#1| (-489)) ELT)) (-2640 (($) 28 T CONST)) (-2647 (($) 12 T CONST)) (-3037 (((-83) $ $) 85 T ELT)) (-3925 (($ $ |#1|) 93 (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) 71 T ELT) (($ $ (-687)) 69 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-860 |#1| |#2|) (-13 (-273 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-489)) (IF (|has| |#2| (-102)) (-15 -3714 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3969)) (-6 -3969) |%noBranch|))) (-954) (-709)) (T -860)) -((-3714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-860 *3 *2)) (-4 *2 (-102)) (-4 *3 (-489)) (-4 *3 (-954)) (-4 *2 (-709))))) -((-2812 (((-3 (-625 |#1|) "failed") |#2| (-823)) 18 T ELT))) -(((-861 |#1| |#2|) (-10 -7 (-15 -2812 ((-3 (-625 |#1|) "failed") |#2| (-823)))) (-489) (-595 |#1|)) (T -861)) -((-2812 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-823)) (-4 *5 (-489)) (-5 *2 (-625 *5)) (-5 *1 (-861 *5 *3)) (-4 *3 (-595 *5))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) 20 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) 19 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 17 T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) |#1|) 16 T ELT)) (-2182 (((-478) $) 11 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) 21 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) 13 T ELT)) (-3776 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) 18 T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 22 T ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 15 T ELT)) (-3778 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3933 (((-687) $) 8 (|has| $ (-6 -3971)) ELT))) -(((-862 |#1|) (-19 |#1|) (-1114)) (T -862)) -NIL -((-3817 (((-862 |#2|) (-1 |#2| |#1| |#2|) (-862 |#1|) |#2|) 16 T ELT)) (-3818 ((|#2| (-1 |#2| |#1| |#2|) (-862 |#1|) |#2|) 18 T ELT)) (-3934 (((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|)) 13 T ELT))) -(((-863 |#1| |#2|) (-10 -7 (-15 -3817 ((-862 |#2|) (-1 |#2| |#1| |#2|) (-862 |#1|) |#2|)) (-15 -3818 (|#2| (-1 |#2| |#1| |#2|) (-862 |#1|) |#2|)) (-15 -3934 ((-862 |#2|) (-1 |#2| |#1|) (-862 |#1|)))) (-1114) (-1114)) (T -863)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-862 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-862 *6)) (-5 *1 (-863 *5 *6)))) (-3818 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-862 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) (-5 *1 (-863 *5 *2)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-862 *6)) (-4 *6 (-1114)) (-4 *5 (-1114)) (-5 *2 (-862 *5)) (-5 *1 (-863 *6 *5))))) -((-2813 (($ $ (-995 $)) 7 T ELT) (($ $ (-1075)) 6 T ELT))) -(((-864) (-111)) (T -864)) -((-2813 (*1 *1 *1 *2) (-12 (-5 *2 (-995 *1)) (-4 *1 (-864)))) (-2813 (*1 *1 *1 *2) (-12 (-4 *1 (-864)) (-5 *2 (-1075))))) -(-13 (-10 -8 (-15 -2813 ($ $ (-1075))) (-15 -2813 ($ $ (-995 $))))) -((-2814 (((-2 (|:| -3930 (-578 (-478))) (|:| |poly| (-578 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-578 (-850 |#1|)) (-578 (-1075)) (-1075)) 26 T ELT) (((-2 (|:| -3930 (-578 (-478))) (|:| |poly| (-578 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-578 (-850 |#1|)) (-578 (-1075))) 27 T ELT) (((-2 (|:| |coef1| (-478)) (|:| |coef2| (-478)) (|:| |prim| (-1070 |#1|))) (-850 |#1|) (-1075) (-850 |#1|) (-1075)) 49 T ELT))) -(((-865 |#1|) (-10 -7 (-15 -2814 ((-2 (|:| |coef1| (-478)) (|:| |coef2| (-478)) (|:| |prim| (-1070 |#1|))) (-850 |#1|) (-1075) (-850 |#1|) (-1075))) (-15 -2814 ((-2 (|:| -3930 (-578 (-478))) (|:| |poly| (-578 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-578 (-850 |#1|)) (-578 (-1075)))) (-15 -2814 ((-2 (|:| -3930 (-578 (-478))) (|:| |poly| (-578 (-1070 |#1|))) (|:| |prim| (-1070 |#1|))) (-578 (-850 |#1|)) (-578 (-1075)) (-1075)))) (-13 (-308) (-118))) (T -865)) -((-2814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1075))) (-5 *5 (-1075)) (-4 *6 (-13 (-308) (-118))) (-5 *2 (-2 (|:| -3930 (-578 (-478))) (|:| |poly| (-578 (-1070 *6))) (|:| |prim| (-1070 *6)))) (-5 *1 (-865 *6)))) (-2814 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1075))) (-4 *5 (-13 (-308) (-118))) (-5 *2 (-2 (|:| -3930 (-578 (-478))) (|:| |poly| (-578 (-1070 *5))) (|:| |prim| (-1070 *5)))) (-5 *1 (-865 *5)))) (-2814 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-850 *5)) (-5 *4 (-1075)) (-4 *5 (-13 (-308) (-118))) (-5 *2 (-2 (|:| |coef1| (-478)) (|:| |coef2| (-478)) (|:| |prim| (-1070 *5)))) (-5 *1 (-865 *5))))) -((-2817 (((-578 |#1|) |#1| |#1|) 47 T ELT)) (-3699 (((-83) |#1|) 44 T ELT)) (-2816 ((|#1| |#1|) 80 T ELT)) (-2815 ((|#1| |#1|) 79 T ELT))) -(((-866 |#1|) (-10 -7 (-15 -3699 ((-83) |#1|)) (-15 -2815 (|#1| |#1|)) (-15 -2816 (|#1| |#1|)) (-15 -2817 ((-578 |#1|) |#1| |#1|))) (-477)) (T -866)) -((-2817 (*1 *2 *3 *3) (-12 (-5 *2 (-578 *3)) (-5 *1 (-866 *3)) (-4 *3 (-477)))) (-2816 (*1 *2 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-477)))) (-2815 (*1 *2 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-477)))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-866 *3)) (-4 *3 (-477))))) -((-2818 (((-1170) (-765)) 9 T ELT))) -(((-867) (-10 -7 (-15 -2818 ((-1170) (-765))))) (T -867)) -((-2818 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-867))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT)) (-2463 (($ $ $) 65 (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) ELT)) (-1295 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT)) (-3117 (((-687)) 36 (-12 (|has| |#1| (-313)) (|has| |#2| (-313))) ELT)) (-2819 ((|#2| $) 22 T ELT)) (-2820 ((|#1| $) 21 T ELT)) (-3700 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) CONST)) (-3444 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT)) (-2975 (($) NIL (-12 (|has| |#1| (-313)) (|has| |#2| (-313))) ELT)) (-3168 (((-83) $) NIL (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) ELT)) (-2392 (((-83) $) NIL (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT)) (-2511 (($ $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-2838 (($ $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-2821 (($ |#1| |#2|) 20 T ELT)) (-1992 (((-823) $) NIL (-12 (|has| |#1| (-313)) (|has| |#2| (-313))) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 39 (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT)) (-2382 (($ (-823)) NIL (-12 (|has| |#1| (-313)) (|has| |#2| (-313))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2990 (($ $ $) NIL (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT)) (-2415 (($ $ $) NIL (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT)) (-3922 (((-765) $) 14 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) CONST)) (-2647 (($) 25 (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) CONST)) (-2546 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-2547 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-3037 (((-83) $ $) 19 T ELT)) (-2665 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-2666 (((-83) $ $) 69 (OR (-12 (|has| |#1| (-710)) (|has| |#2| (-710))) (-12 (|has| |#1| (-749)) (|has| |#2| (-749)))) ELT)) (-3925 (($ $ $) NIL (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT)) (-3813 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3815 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT)) (** (($ $ (-478)) NIL (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) ELT) (($ $ (-687)) 32 (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT) (($ $ (-823)) NIL (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT)) (* (($ (-478) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-687) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT) (($ (-823) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-710)) (|has| |#2| (-710)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-406)) (|has| |#2| (-406))) (-12 (|has| |#1| (-658)) (|has| |#2| (-658)))) ELT))) -(((-868 |#1| |#2|) (-13 (-1003) (-10 -8 (IF (|has| |#1| (-313)) (IF (|has| |#2| (-313)) (-6 (-313)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-658)) (IF (|has| |#2| (-658)) (-6 (-658)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-102)) (IF (|has| |#2| (-102)) (-6 (-102)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-406)) (IF (|has| |#2| (-406)) (-6 (-406)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-710)) (IF (|has| |#2| (-710)) (-6 (-710)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-749)) (IF (|has| |#2| (-749)) (-6 (-749)) |%noBranch|) |%noBranch|) (-15 -2821 ($ |#1| |#2|)) (-15 -2820 (|#1| $)) (-15 -2819 (|#2| $)))) (-1003) (-1003)) (T -868)) -((-2821 (*1 *1 *2 *3) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-2820 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1003)))) (-2819 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-868 *3 *2)) (-4 *3 (-1003))))) -((-3379 (((-1005) $) 13 T ELT)) (-2822 (($ (-439) (-1005)) 15 T ELT)) (-3518 (((-439) $) 11 T ELT)) (-3922 (((-765) $) 25 T ELT))) -(((-869) (-13 (-547 (-765)) (-10 -8 (-15 -3518 ((-439) $)) (-15 -3379 ((-1005) $)) (-15 -2822 ($ (-439) (-1005)))))) (T -869)) -((-3518 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-869)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-869)))) (-2822 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1005)) (-5 *1 (-869))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) 29 T ELT)) (-2836 (($) 17 T CONST)) (-2541 (($ $ $) NIL T ELT)) (-2540 (($ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2827 (((-627 (-775 $ $)) $) 62 T ELT)) (-2829 (((-627 $) $) 52 T ELT)) (-2826 (((-627 (-775 $ $)) $) 63 T ELT)) (-2825 (((-627 (-775 $ $)) $) 64 T ELT)) (-2830 (((-627 |#1|) $) 43 T ELT)) (-2828 (((-627 (-775 $ $)) $) 61 T ELT)) (-2834 (($ $ $) 38 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2835 (($) 16 T CONST)) (-2833 (($ $ $) 39 T ELT)) (-2823 (($ $ $) 36 T ELT)) (-2824 (($ $ $) 34 T ELT)) (-3922 (((-765) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2542 (($ $ $) NIL T ELT)) (-2293 (($ $ $) 37 T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) 35 T ELT))) -(((-870 |#1|) (-13 (-873) (-550 |#1|) (-10 -8 (-15 -2830 ((-627 |#1|) $)) (-15 -2829 ((-627 $) $)) (-15 -2828 ((-627 (-775 $ $)) $)) (-15 -2827 ((-627 (-775 $ $)) $)) (-15 -2826 ((-627 (-775 $ $)) $)) (-15 -2825 ((-627 (-775 $ $)) $)) (-15 -2824 ($ $ $)) (-15 -2823 ($ $ $)))) (-1003)) (T -870)) -((-2830 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1003)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-627 (-870 *3))) (-5 *1 (-870 *3)) (-4 *3 (-1003)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) (-4 *3 (-1003)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) (-4 *3 (-1003)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) (-4 *3 (-1003)))) (-2825 (*1 *2 *1) (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) (-4 *3 (-1003)))) (-2824 (*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1003)))) (-2823 (*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1003))))) -((-3625 (((-870 |#1|) (-870 |#1|)) 46 T ELT)) (-2832 (((-870 |#1|) (-870 |#1|)) 22 T ELT)) (-2831 (((-999 |#1|) (-870 |#1|)) 41 T ELT))) -(((-871 |#1|) (-13 (-1114) (-10 -7 (-15 -2832 ((-870 |#1|) (-870 |#1|))) (-15 -2831 ((-999 |#1|) (-870 |#1|))) (-15 -3625 ((-870 |#1|) (-870 |#1|))))) (-1003)) (T -871)) -((-2832 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-1003)) (-5 *1 (-871 *3)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-870 *4)) (-4 *4 (-1003)) (-5 *2 (-999 *4)) (-5 *1 (-871 *4)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-1003)) (-5 *1 (-871 *3))))) -((-3934 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 29 T ELT))) -(((-872 |#1| |#2|) (-13 (-1114) (-10 -7 (-15 -3934 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|))))) (-1003) (-1003)) (T -872)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-870 *6)) (-5 *1 (-872 *5 *6))))) -((-2548 (((-83) $ $) 19 T ELT)) (-2295 (($ $) 8 T ELT)) (-2836 (($) 17 T CONST)) (-2541 (($ $ $) 9 T ELT)) (-2540 (($ $) 11 T ELT)) (-3222 (((-1059) $) 23 T ELT)) (-2834 (($ $ $) 15 T ELT)) (-3223 (((-1020) $) 22 T ELT)) (-2835 (($) 16 T CONST)) (-2833 (($ $ $) 14 T ELT)) (-3922 (((-765) $) 21 T ELT)) (-1249 (((-83) $ $) 20 T ELT)) (-2542 (($ $ $) 10 T ELT)) (-2293 (($ $ $) 6 T ELT)) (-3037 (((-83) $ $) 18 T ELT)) (-2294 (($ $ $) 7 T ELT))) -(((-873) (-111)) (T -873)) -((-2836 (*1 *1) (-4 *1 (-873))) (-2835 (*1 *1) (-4 *1 (-873))) (-2834 (*1 *1 *1 *1) (-4 *1 (-873))) (-2833 (*1 *1 *1 *1) (-4 *1 (-873)))) -(-13 (-82) (-1003) (-10 -8 (-15 -2836 ($) -3928) (-15 -2835 ($) -3928) (-15 -2834 ($ $ $)) (-15 -2833 ($ $ $)))) -(((-72) . T) ((-82) . T) ((-547 (-765)) . T) ((-599) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3700 (($) 7 T CONST)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2837 (($ $ $) 47 T ELT)) (-3495 (($ $ $) 48 T ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2838 ((|#1| $) 49 T ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-874 |#1|) (-111) (-749)) (T -874)) -((-2838 (*1 *2 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749)))) (-3495 (*1 *1 *1 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749)))) (-2837 (*1 *1 *1 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3971) (-15 -2838 (|t#1| $)) (-15 -3495 ($ $ $)) (-15 -2837 ($ $ $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2850 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3125 |#2|)) |#2| |#2|) 105 T ELT)) (-3731 ((|#2| |#2| |#2|) 103 T ELT)) (-2851 (((-2 (|:| |coef2| |#2|) (|:| -3125 |#2|)) |#2| |#2|) 107 T ELT)) (-2852 (((-2 (|:| |coef1| |#2|) (|:| -3125 |#2|)) |#2| |#2|) 109 T ELT)) (-2859 (((-2 (|:| |coef2| |#2|) (|:| -2857 |#1|)) |#2| |#2|) 132 (|has| |#1| (-385)) ELT)) (-2866 (((-2 (|:| |coef2| |#2|) (|:| -3732 |#1|)) |#2| |#2|) 56 T ELT)) (-2840 (((-2 (|:| |coef2| |#2|) (|:| -3732 |#1|)) |#2| |#2|) 80 T ELT)) (-2841 (((-2 (|:| |coef1| |#2|) (|:| -3732 |#1|)) |#2| |#2|) 82 T ELT)) (-2849 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2844 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687)) 89 T ELT)) (-2854 (((-2 (|:| |coef2| |#2|) (|:| -3733 |#1|)) |#2|) 121 T ELT)) (-2847 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687)) 92 T ELT)) (-2856 (((-578 (-687)) |#2| |#2|) 102 T ELT)) (-2864 ((|#1| |#2| |#2|) 50 T ELT)) (-2858 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2857 |#1|)) |#2| |#2|) 130 (|has| |#1| (-385)) ELT)) (-2857 ((|#1| |#2| |#2|) 128 (|has| |#1| (-385)) ELT)) (-2865 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3732 |#1|)) |#2| |#2|) 54 T ELT)) (-2839 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3732 |#1|)) |#2| |#2|) 79 T ELT)) (-3732 ((|#1| |#2| |#2|) 76 T ELT)) (-3728 (((-2 (|:| -3930 |#1|) (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2|) 41 T ELT)) (-2863 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2848 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3172 ((|#2| |#2| |#2|) 93 T ELT)) (-2843 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687)) 87 T ELT)) (-2842 ((|#2| |#2| |#2| (-687)) 85 T ELT)) (-3125 ((|#2| |#2| |#2|) 136 (|has| |#1| (-385)) ELT)) (-3443 (((-1164 |#2|) (-1164 |#2|) |#1|) 22 T ELT)) (-2860 (((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2|) 46 T ELT)) (-2853 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3733 |#1|)) |#2|) 119 T ELT)) (-3733 ((|#1| |#2|) 116 T ELT)) (-2846 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687)) 91 T ELT)) (-2845 ((|#2| |#2| |#2| (-687)) 90 T ELT)) (-2855 (((-578 |#2|) |#2| |#2|) 99 T ELT)) (-2862 ((|#2| |#2| |#1| |#1| (-687)) 62 T ELT)) (-2861 ((|#1| |#1| |#1| (-687)) 61 T ELT)) (* (((-1164 |#2|) |#1| (-1164 |#2|)) 17 T ELT))) -(((-875 |#1| |#2|) (-10 -7 (-15 -3732 (|#1| |#2| |#2|)) (-15 -2839 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3732 |#1|)) |#2| |#2|)) (-15 -2840 ((-2 (|:| |coef2| |#2|) (|:| -3732 |#1|)) |#2| |#2|)) (-15 -2841 ((-2 (|:| |coef1| |#2|) (|:| -3732 |#1|)) |#2| |#2|)) (-15 -2842 (|#2| |#2| |#2| (-687))) (-15 -2843 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687))) (-15 -2844 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687))) (-15 -2845 (|#2| |#2| |#2| (-687))) (-15 -2846 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687))) (-15 -2847 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-687))) (-15 -3172 (|#2| |#2| |#2|)) (-15 -2848 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2849 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3731 (|#2| |#2| |#2|)) (-15 -2850 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3125 |#2|)) |#2| |#2|)) (-15 -2851 ((-2 (|:| |coef2| |#2|) (|:| -3125 |#2|)) |#2| |#2|)) (-15 -2852 ((-2 (|:| |coef1| |#2|) (|:| -3125 |#2|)) |#2| |#2|)) (-15 -3733 (|#1| |#2|)) (-15 -2853 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3733 |#1|)) |#2|)) (-15 -2854 ((-2 (|:| |coef2| |#2|) (|:| -3733 |#1|)) |#2|)) (-15 -2855 ((-578 |#2|) |#2| |#2|)) (-15 -2856 ((-578 (-687)) |#2| |#2|)) (IF (|has| |#1| (-385)) (PROGN (-15 -2857 (|#1| |#2| |#2|)) (-15 -2858 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2857 |#1|)) |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef2| |#2|) (|:| -2857 |#1|)) |#2| |#2|)) (-15 -3125 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1164 |#2|) |#1| (-1164 |#2|))) (-15 -3443 ((-1164 |#2|) (-1164 |#2|) |#1|)) (-15 -3728 ((-2 (|:| -3930 |#1|) (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2|)) (-15 -2860 ((-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) |#2| |#2|)) (-15 -2861 (|#1| |#1| |#1| (-687))) (-15 -2862 (|#2| |#2| |#1| |#1| (-687))) (-15 -2863 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2864 (|#1| |#2| |#2|)) (-15 -2865 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3732 |#1|)) |#2| |#2|)) (-15 -2866 ((-2 (|:| |coef2| |#2|) (|:| -3732 |#1|)) |#2| |#2|))) (-489) (-1140 |#1|)) (T -875)) -((-2866 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3732 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2865 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3732 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2864 (*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1140 *2)))) (-2863 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3)))) (-2862 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3)))) (-2861 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *2 (-489)) (-5 *1 (-875 *2 *4)) (-4 *4 (-1140 *2)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-3728 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -3930 *4) (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-3443 (*1 *2 *2 *3) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-489)) (-5 *1 (-875 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-489)) (-5 *1 (-875 *3 *4)))) (-3125 (*1 *2 *2 *2) (-12 (-4 *3 (-385)) (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2857 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2858 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2857 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2857 (*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-4 *2 (-385)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1140 *2)))) (-2856 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 (-687))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2855 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3733 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2853 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3733 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1140 *2)))) (-2852 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3125 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2851 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3125 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2850 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3125 *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-3731 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3)))) (-2849 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2848 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-3172 (*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3)))) (-2847 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) (-4 *3 (-1140 *5)))) (-2846 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) (-4 *3 (-1140 *5)))) (-2845 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-489)) (-5 *1 (-875 *4 *2)) (-4 *2 (-1140 *4)))) (-2844 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) (-4 *3 (-1140 *5)))) (-2843 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) (-4 *3 (-1140 *5)))) (-2842 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-489)) (-5 *1 (-875 *4 *2)) (-4 *2 (-1140 *4)))) (-2841 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3732 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2840 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3732 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-2839 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3732 *4))) (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) (-3732 (*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1140 *2))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3297 (((-1115) $) 14 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3061 (((-1035) $) 11 T ELT)) (-3922 (((-765) $) 21 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-876) (-13 (-986) (-10 -8 (-15 -3061 ((-1035) $)) (-15 -3297 ((-1115) $))))) (T -876)) -((-3061 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-876)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-876))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 40 T ELT)) (-1295 (((-3 $ "failed") $ $) 54 T ELT)) (-3700 (($) NIL T CONST)) (-2868 (((-578 (-775 (-823) (-823))) $) 64 T ELT)) (-3168 (((-83) $) NIL T ELT)) (-2867 (((-823) $) 91 T ELT)) (-2870 (((-578 (-823)) $) 17 T ELT)) (-2869 (((-1055 $) (-687)) 39 T ELT)) (-2871 (($ (-578 (-823))) 16 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2990 (($ $) 67 T ELT)) (-3922 (((-765) $) 87 T ELT) (((-578 (-823)) $) 11 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 10 T CONST)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 44 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 42 T ELT)) (-3815 (($ $ $) 46 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 49 T ELT)) (-3933 (((-687) $) 22 T ELT))) -(((-877) (-13 (-714) (-547 (-578 (-823))) (-10 -8 (-15 -2871 ($ (-578 (-823)))) (-15 -2870 ((-578 (-823)) $)) (-15 -3933 ((-687) $)) (-15 -2869 ((-1055 $) (-687))) (-15 -2868 ((-578 (-775 (-823) (-823))) $)) (-15 -2867 ((-823) $)) (-15 -2990 ($ $))))) (T -877)) -((-2871 (*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-877)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-877)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-877)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1055 (-877))) (-5 *1 (-877)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-578 (-775 (-823) (-823)))) (-5 *1 (-877)))) (-2867 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-877)))) (-2990 (*1 *1 *1) (-5 *1 (-877)))) -((-3925 (($ $ |#2|) 31 T ELT)) (-3813 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-343 (-478)) $) 27 T ELT) (($ $ (-343 (-478))) 29 T ELT))) -(((-878 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-343 (-478)))) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 -3925 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 * (|#1| (-823) |#1|))) (-879 |#2| |#3| |#4|) (-954) (-709) (-749)) (T -878)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 |#3|) $) 92 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3935 (($ $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2873 (((-83) $) 91 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3913 (((-83) $) 79 T ELT)) (-2874 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-578 |#3|) (-578 |#2|)) 93 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2875 (($ $) 82 T ELT)) (-3155 ((|#1| $) 83 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3443 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-3924 ((|#2| $) 81 T ELT)) (-2872 (($ $) 90 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3653 ((|#1| $ |#2|) 76 T ELT)) (-2683 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-879 |#1| |#2| |#3|) (-111) (-954) (-709) (-749)) (T -879)) -((-3155 (*1 *2 *1) (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *3 (-709)) (-4 *4 (-749)) (-4 *2 (-954)))) (-2875 (*1 *1 *1) (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *4 (-749)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-879 *3 *2 *4)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *2 (-709)))) (-2874 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-879 *4 *3 *2)) (-4 *4 (-954)) (-4 *3 (-709)) (-4 *2 (-749)))) (-2874 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 *5)) (-4 *1 (-879 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-709)) (-4 *6 (-749)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-879 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *5 (-749)) (-5 *2 (-578 *5)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-879 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *5 (-749)) (-5 *2 (-83)))) (-2872 (*1 *1 *1) (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *4 (-749))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2874 ($ $ |t#3| |t#2|)) (-15 -2874 ($ $ (-578 |t#3|) (-578 |t#2|))) (-15 -2875 ($ $)) (-15 -3155 (|t#1| $)) (-15 -3924 (|t#2| $)) (-15 -3063 ((-578 |t#3|) $)) (-15 -2873 ((-83) $)) (-15 -2872 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-242) |has| |#1| (-489)) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2876 (((-992 (-177)) $) 8 T ELT)) (-2877 (((-992 (-177)) $) 9 T ELT)) (-2878 (((-992 (-177)) $) 10 T ELT)) (-2879 (((-578 (-578 (-847 (-177)))) $) 11 T ELT)) (-3922 (((-765) $) 6 T ELT))) -(((-880) (-111)) (T -880)) -((-2879 (*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-578 (-578 (-847 (-177))))))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-992 (-177))))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-992 (-177))))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-992 (-177)))))) -(-13 (-547 (-765)) (-10 -8 (-15 -2879 ((-578 (-578 (-847 (-177)))) $)) (-15 -2878 ((-992 (-177)) $)) (-15 -2877 ((-992 (-177)) $)) (-15 -2876 ((-992 (-177)) $)))) -(((-547 (-765)) . T)) -((-3063 (((-578 |#4|) $) 23 T ELT)) (-2889 (((-83) $) 55 T ELT)) (-2880 (((-83) $) 54 T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2885 (((-83) $) 56 T ELT)) (-2887 (((-83) $ $) 62 T ELT)) (-2886 (((-83) $ $) 65 T ELT)) (-2888 (((-83) $) 60 T ELT)) (-2881 (((-578 |#5|) (-578 |#5|) $) 98 T ELT)) (-2882 (((-578 |#5|) (-578 |#5|) $) 95 T ELT)) (-2883 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2895 (((-578 |#4|) $) 27 T ELT)) (-2894 (((-83) |#4| $) 34 T ELT)) (-2884 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2891 (($ $ |#4|) 39 T ELT)) (-2893 (($ $ |#4|) 38 T ELT)) (-2892 (($ $ |#4|) 40 T ELT)) (-3037 (((-83) $ $) 46 T ELT))) -(((-881 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2880 ((-83) |#1|)) (-15 -2881 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -2882 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -2883 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2884 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2885 ((-83) |#1|)) (-15 -2886 ((-83) |#1| |#1|)) (-15 -2887 ((-83) |#1| |#1|)) (-15 -2888 ((-83) |#1|)) (-15 -2889 ((-83) |#1|)) (-15 -2890 ((-2 (|:| |under| |#1|) (|:| -3111 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2891 (|#1| |#1| |#4|)) (-15 -2892 (|#1| |#1| |#4|)) (-15 -2893 (|#1| |#1| |#4|)) (-15 -2894 ((-83) |#4| |#1|)) (-15 -2895 ((-578 |#4|) |#1|)) (-15 -3063 ((-578 |#4|) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-882 |#2| |#3| |#4| |#5|) (-954) (-710) (-749) (-969 |#2| |#3| |#4|)) (T -881)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3063 (((-578 |#3|) $) 37 T ELT)) (-2889 (((-83) $) 30 T ELT)) (-2880 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3686 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 46 T CONST)) (-2885 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3137 (($ (-578 |#4|)) 39 T ELT)) (-1336 (($ $) 69 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#4| $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#4|) $) 53 (|has| $ (-6 -3971)) ELT)) (-3161 ((|#3| $) 38 T ELT)) (-2588 (((-578 |#4|) $) 54 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2895 (((-578 |#3|) $) 36 T ELT)) (-2894 (((-83) |#3| $) 35 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1337 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) 42 T ELT)) (-3380 (((-83) $) 45 T ELT)) (-3541 (($) 44 T ELT)) (-1929 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 43 T ELT)) (-3948 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) 61 T ELT)) (-2891 (($ $ |#3|) 32 T ELT)) (-2893 (($ $ |#3|) 34 T ELT)) (-2892 (($ $ |#3|) 33 T ELT)) (-3922 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (((-687) $) 47 (|has| $ (-6 -3971)) ELT))) -(((-882 |#1| |#2| |#3| |#4|) (-111) (-954) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -882)) -((-3138 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *1 (-882 *3 *4 *5 *6)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *1 (-882 *3 *4 *5 *6)))) (-3161 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-969 *3 *4 *2)) (-4 *2 (-749)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5)))) (-2894 (*1 *2 *3 *1) (-12 (-4 *1 (-882 *4 *5 *3 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-83)))) (-2893 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *5 (-969 *3 *4 *2)))) (-2892 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *5 (-969 *3 *4 *2)))) (-2891 (*1 *1 *1 *2) (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) (-4 *5 (-969 *3 *4 *2)))) (-2890 (*1 *2 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3111 *1) (|:| |upper| *1))) (-4 *1 (-882 *4 *5 *3 *6)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83)))) (-2887 (*1 *2 *1 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83)))) (-2886 (*1 *2 *1 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83)))) (-2884 (*1 *2 *3 *1) (-12 (-4 *1 (-882 *4 *5 *6 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2883 (*1 *2 *3 *1) (-12 (-4 *1 (-882 *4 *5 *6 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2882 (*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)))) (-2881 (*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) -(-13 (-1003) (-122 |t#4|) (-547 (-578 |t#4|)) (-10 -8 (-6 -3971) (-15 -3138 ((-3 $ "failed") (-578 |t#4|))) (-15 -3137 ($ (-578 |t#4|))) (-15 -3161 (|t#3| $)) (-15 -3063 ((-578 |t#3|) $)) (-15 -2895 ((-578 |t#3|) $)) (-15 -2894 ((-83) |t#3| $)) (-15 -2893 ($ $ |t#3|)) (-15 -2892 ($ $ |t#3|)) (-15 -2891 ($ $ |t#3|)) (-15 -2890 ((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |t#3|)) (-15 -2889 ((-83) $)) (IF (|has| |t#1| (-489)) (PROGN (-15 -2888 ((-83) $)) (-15 -2887 ((-83) $ $)) (-15 -2886 ((-83) $ $)) (-15 -2885 ((-83) $)) (-15 -2884 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2883 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2882 ((-578 |t#4|) (-578 |t#4|) $)) (-15 -2881 ((-578 |t#4|) (-578 |t#4|) $)) (-15 -2880 ((-83) $))) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-1003) . T) ((-1114) . T)) -((-2897 (((-578 |#4|) |#4| |#4|) 135 T ELT)) (-2920 (((-578 |#4|) (-578 |#4|) (-83)) 123 (|has| |#1| (-385)) ELT) (((-578 |#4|) (-578 |#4|)) 124 (|has| |#1| (-385)) ELT)) (-2907 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 44 T ELT)) (-2906 (((-83) |#4|) 43 T ELT)) (-2919 (((-578 |#4|) |#4|) 120 (|has| |#1| (-385)) ELT)) (-2902 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-83) |#4|) (-578 |#4|)) 24 T ELT)) (-2903 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-83) |#4|)) (-578 |#4|)) 30 T ELT)) (-2904 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-83) |#4|)) (-578 |#4|)) 31 T ELT)) (-2915 (((-3 (-2 (|:| |bas| (-409 |#1| |#2| |#3| |#4|)) (|:| -3301 (-578 |#4|))) "failed") (-578 |#4|)) 90 T ELT)) (-2917 (((-578 |#4|) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2918 (((-578 |#4|) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2896 (((-578 |#4|) (-578 |#4|)) 126 T ELT)) (-2912 (((-578 |#4|) (-578 |#4|) (-578 |#4|) (-83)) 59 T ELT) (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 61 T ELT)) (-2913 ((|#4| |#4| (-578 |#4|)) 60 T ELT)) (-2921 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 131 (|has| |#1| (-385)) ELT)) (-2923 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 134 (|has| |#1| (-385)) ELT)) (-2922 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 133 (|has| |#1| (-385)) ELT)) (-2898 (((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|))) 105 T ELT) (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 107 T ELT) (((-578 |#4|) (-578 |#4|) |#4|) 139 T ELT) (((-578 |#4|) |#4| |#4|) 136 T ELT) (((-578 |#4|) (-578 |#4|)) 106 T ELT)) (-2926 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 117 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2905 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 52 T ELT)) (-2901 (((-83) (-578 |#4|)) 79 T ELT)) (-2900 (((-83) (-578 |#4|) (-578 (-578 |#4|))) 67 T ELT)) (-2909 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 37 T ELT)) (-2908 (((-83) |#4|) 36 T ELT)) (-2925 (((-578 |#4|) (-578 |#4|)) 116 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2924 (((-578 |#4|) (-578 |#4|)) 115 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2914 (((-578 |#4|) (-578 |#4|)) 83 T ELT)) (-2916 (((-578 |#4|) (-578 |#4|)) 97 T ELT)) (-2899 (((-83) (-578 |#4|) (-578 |#4|)) 65 T ELT)) (-2911 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 50 T ELT)) (-2910 (((-83) |#4|) 45 T ELT))) -(((-883 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2898 ((-578 |#4|) (-578 |#4|))) (-15 -2898 ((-578 |#4|) |#4| |#4|)) (-15 -2896 ((-578 |#4|) (-578 |#4|))) (-15 -2897 ((-578 |#4|) |#4| |#4|)) (-15 -2898 ((-578 |#4|) (-578 |#4|) |#4|)) (-15 -2898 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2898 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|)))) (-15 -2899 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -2900 ((-83) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2901 ((-83) (-578 |#4|))) (-15 -2902 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-83) |#4|) (-578 |#4|))) (-15 -2903 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-83) |#4|)) (-578 |#4|))) (-15 -2904 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-83) |#4|)) (-578 |#4|))) (-15 -2905 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2906 ((-83) |#4|)) (-15 -2907 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2908 ((-83) |#4|)) (-15 -2909 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2910 ((-83) |#4|)) (-15 -2911 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2912 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2912 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-83))) (-15 -2913 (|#4| |#4| (-578 |#4|))) (-15 -2914 ((-578 |#4|) (-578 |#4|))) (-15 -2915 ((-3 (-2 (|:| |bas| (-409 |#1| |#2| |#3| |#4|)) (|:| -3301 (-578 |#4|))) "failed") (-578 |#4|))) (-15 -2916 ((-578 |#4|) (-578 |#4|))) (-15 -2917 ((-578 |#4|) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2918 ((-578 |#4|) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-385)) (PROGN (-15 -2919 ((-578 |#4|) |#4|)) (-15 -2920 ((-578 |#4|) (-578 |#4|))) (-15 -2920 ((-578 |#4|) (-578 |#4|) (-83))) (-15 -2921 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2922 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2923 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |%noBranch|) (IF (|has| |#1| (-254)) (IF (|has| |#1| (-118)) (PROGN (-15 -2924 ((-578 |#4|) (-578 |#4|))) (-15 -2925 ((-578 |#4|) (-578 |#4|))) (-15 -2926 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |%noBranch|) |%noBranch|)) (-489) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -883)) -((-2926 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2925 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2924 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2923 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2922 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2921 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2920 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-83)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2920 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2919 (*1 *2 *3) (-12 (-4 *4 (-385)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2918 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-883 *5 *6 *7 *8)))) (-2917 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-578 *9)) (-5 *3 (-1 (-83) *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) (-5 *1 (-883 *6 *7 *8 *9)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2915 (*1 *2 *3) (|partial| -12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-409 *4 *5 *6 *7)) (|:| -3301 (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *2)))) (-2912 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-83)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2912 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2911 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2909 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2907 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2906 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2905 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-83) *8))) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-83) *8))) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-83) *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *5 *6 *7 *8)))) (-2899 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2898 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-578 *7) (-578 *7))) (-5 *2 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7)))) (-2898 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2898 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *3)))) (-2897 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2896 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) (-2898 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) -((-2927 (((-2 (|:| R (-625 |#1|)) (|:| A (-625 |#1|)) (|:| |Ainv| (-625 |#1|))) (-625 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2929 (((-578 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1164 |#1|)))) (-625 |#1|) (-1164 |#1|)) 45 T ELT)) (-2928 (((-625 |#1|) (-625 |#1|) (-625 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-884 |#1|) (-10 -7 (-15 -2927 ((-2 (|:| R (-625 |#1|)) (|:| A (-625 |#1|)) (|:| |Ainv| (-625 |#1|))) (-625 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2928 ((-625 |#1|) (-625 |#1|) (-625 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2929 ((-578 (-2 (|:| C (-625 |#1|)) (|:| |g| (-1164 |#1|)))) (-625 |#1|) (-1164 |#1|)))) (-308)) (T -884)) -((-2929 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 (-578 (-2 (|:| C (-625 *5)) (|:| |g| (-1164 *5))))) (-5 *1 (-884 *5)) (-5 *3 (-625 *5)) (-5 *4 (-1164 *5)))) (-2928 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-625 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-5 *1 (-884 *5)))) (-2927 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-308)) (-5 *2 (-2 (|:| R (-625 *6)) (|:| A (-625 *6)) (|:| |Ainv| (-625 *6)))) (-5 *1 (-884 *6)) (-5 *3 (-625 *6))))) -((-3947 (((-341 |#4|) |#4|) 61 T ELT))) -(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 ((-341 |#4|) |#4|))) (-749) (-710) (-385) (-854 |#3| |#2| |#1|)) (T -885)) -((-3947 (*1 *2 *3) (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-385)) (-5 *2 (-341 *3)) (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4))))) -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3814 (($ (-687)) 121 (|has| |#1| (-23)) ELT)) (-2180 (((-1170) $ (-478) (-478)) 44 (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3972)) ELT) (($ $) 97 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3972))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-2279 (($ $) 99 (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) 109 T ELT)) (-1336 (($ $) 84 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#1| $) 83 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 55 T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) 106 T ELT) (((-478) |#1| $) 105 (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) 104 (|has| |#1| (-1003)) ELT)) (-3682 (($ (-578 |#1|)) 127 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3811 (((-625 |#1|) $ $) 114 (|has| |#1| (-954)) ELT)) (-3590 (($ (-687) |#1|) 74 T ELT)) (-2182 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3808 ((|#1| $) 111 (-12 (|has| |#1| (-954)) (|has| |#1| (-908))) ELT)) (-3809 ((|#1| $) 112 (-12 (|has| |#1| (-954)) (|has| |#1| (-908))) ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2185 (((-578 (-478)) $) 50 T ELT)) (-2186 (((-83) (-478) $) 51 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2181 (($ $ |#1|) 45 (|has| $ (-6 -3972)) ELT)) (-3745 (($ $ (-578 |#1|)) 125 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1131 (-478))) 75 T ELT)) (-3812 ((|#1| $ $) 115 (|has| |#1| (-954)) ELT)) (-3887 (((-823) $) 126 T ELT)) (-2287 (($ $ (-478)) 68 T ELT) (($ $ (-1131 (-478))) 67 T ELT)) (-3810 (($ $ $) 113 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1714 (($ $ $ (-478)) 100 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT) (($ (-578 |#1|)) 128 T ELT)) (-3507 (($ (-578 |#1|)) 76 T ELT)) (-3778 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) 93 (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3813 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3815 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-478) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-658)) ELT) (($ $ |#1|) 116 (|has| |#1| (-658)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-886 |#1|) (-111) (-954)) (T -886)) -((-3682 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-954)) (-4 *1 (-886 *3)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-886 *3)) (-4 *3 (-954)) (-5 *2 (-823)))) (-3810 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-954)))) (-3745 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-886 *3)) (-4 *3 (-954))))) -(-13 (-1163 |t#1|) (-552 (-578 |t#1|)) (-10 -8 (-15 -3682 ($ (-578 |t#1|))) (-15 -3887 ((-823) $)) (-15 -3810 ($ $ $)) (-15 -3745 ($ $ (-578 |t#1|))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-552 (-578 |#1|)) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-317 |#1|) . T) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-1003) OR (|has| |#1| (-1003)) (|has| |#1| (-749))) ((-1114) . T) ((-1163 |#1|) . T)) -((-3934 (((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|)) 17 T ELT))) -(((-887 |#1| |#2|) (-10 -7 (-15 -3934 ((-847 |#2|) (-1 |#2| |#1|) (-847 |#1|)))) (-954) (-954)) (T -887)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-847 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-5 *2 (-847 *6)) (-5 *1 (-887 *5 *6))))) -((-2932 ((|#1| (-847 |#1|)) 14 T ELT)) (-2931 ((|#1| (-847 |#1|)) 13 T ELT)) (-2930 ((|#1| (-847 |#1|)) 12 T ELT)) (-2934 ((|#1| (-847 |#1|)) 16 T ELT)) (-2938 ((|#1| (-847 |#1|)) 24 T ELT)) (-2933 ((|#1| (-847 |#1|)) 15 T ELT)) (-2935 ((|#1| (-847 |#1|)) 17 T ELT)) (-2937 ((|#1| (-847 |#1|)) 23 T ELT)) (-2936 ((|#1| (-847 |#1|)) 22 T ELT))) -(((-888 |#1|) (-10 -7 (-15 -2930 (|#1| (-847 |#1|))) (-15 -2931 (|#1| (-847 |#1|))) (-15 -2932 (|#1| (-847 |#1|))) (-15 -2933 (|#1| (-847 |#1|))) (-15 -2934 (|#1| (-847 |#1|))) (-15 -2935 (|#1| (-847 |#1|))) (-15 -2936 (|#1| (-847 |#1|))) (-15 -2937 (|#1| (-847 |#1|))) (-15 -2938 (|#1| (-847 |#1|)))) (-954)) (T -888)) -((-2938 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) -((-2956 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2944 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2954 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2942 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2958 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2946 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2939 (((-3 |#1| "failed") |#1| (-687)) 1 T ELT)) (-2941 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2940 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2947 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2957 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2945 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2955 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2943 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2950 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2948 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2952 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2953 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2951 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2949 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-889 |#1|) (-111) (-1100)) (T -889)) -((-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2958 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2957 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2956 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2955 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2954 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2953 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2952 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2951 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2950 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2949 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2948 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2947 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2946 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2945 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2944 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2943 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2942 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2941 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2940 (*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100)))) (-2939 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-687)) (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(-13 (-10 -7 (-15 -2939 ((-3 |t#1| "failed") |t#1| (-687))) (-15 -2940 ((-3 |t#1| "failed") |t#1|)) (-15 -2941 ((-3 |t#1| "failed") |t#1|)) (-15 -2942 ((-3 |t#1| "failed") |t#1|)) (-15 -2943 ((-3 |t#1| "failed") |t#1|)) (-15 -2944 ((-3 |t#1| "failed") |t#1|)) (-15 -2945 ((-3 |t#1| "failed") |t#1|)) (-15 -2946 ((-3 |t#1| "failed") |t#1|)) (-15 -2947 ((-3 |t#1| "failed") |t#1|)) (-15 -2948 ((-3 |t#1| "failed") |t#1|)) (-15 -2949 ((-3 |t#1| "failed") |t#1|)) (-15 -2950 ((-3 |t#1| "failed") |t#1|)) (-15 -2951 ((-3 |t#1| "failed") |t#1|)) (-15 -2952 ((-3 |t#1| "failed") |t#1|)) (-15 -2953 ((-3 |t#1| "failed") |t#1|)) (-15 -2954 ((-3 |t#1| "failed") |t#1|)) (-15 -2955 ((-3 |t#1| "failed") |t#1|)) (-15 -2956 ((-3 |t#1| "failed") |t#1|)) (-15 -2957 ((-3 |t#1| "failed") |t#1|)) (-15 -2958 ((-3 |t#1| "failed") |t#1|)) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)))) -((-2967 ((|#4| |#4| (-578 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2966 ((|#4| |#4| (-578 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3934 ((|#4| (-1 |#4| (-850 |#1|)) |#4|) 33 T ELT))) -(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2966 (|#4| |#4| |#3|)) (-15 -2966 (|#4| |#4| (-578 |#3|))) (-15 -2967 (|#4| |#4| |#3|)) (-15 -2967 (|#4| |#4| (-578 |#3|))) (-15 -3934 (|#4| (-1 |#4| (-850 |#1|)) |#4|))) (-954) (-710) (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ "failed") (-1075))))) (-854 (-850 |#1|) |#2| |#3|)) (T -890)) -((-3934 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-850 *4))) (-4 *4 (-954)) (-4 *2 (-854 (-850 *4) *5 *6)) (-4 *5 (-710)) (-4 *6 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ #1="failed") (-1075)))))) (-5 *1 (-890 *4 *5 *6 *2)))) (-2967 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ #1#) (-1075)))))) (-4 *4 (-954)) (-4 *5 (-710)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *2 (-854 (-850 *4) *5 *6)))) (-2967 (*1 *2 *2 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ #1#) (-1075)))))) (-5 *1 (-890 *4 *5 *3 *2)) (-4 *2 (-854 (-850 *4) *5 *3)))) (-2966 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ #1#) (-1075)))))) (-4 *4 (-954)) (-4 *5 (-710)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *2 (-854 (-850 *4) *5 *6)))) (-2966 (*1 *2 *2 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ #1#) (-1075)))))) (-5 *1 (-890 *4 *5 *3 *2)) (-4 *2 (-854 (-850 *4) *5 *3))))) -((-2968 ((|#2| |#3|) 35 T ELT)) (-3895 (((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|) 79 T ELT)) (-3894 (((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) 100 T ELT))) -(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3894 ((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))))) (-15 -3895 ((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|)) (-15 -2968 (|#2| |#3|))) (-295) (-1140 |#1|) (-1140 |#2|) (-656 |#2| |#3|)) (T -891)) -((-2968 (*1 *2 *3) (-12 (-4 *3 (-1140 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-891 *4 *2 *3 *5)) (-4 *4 (-295)) (-4 *5 (-656 *2 *3)))) (-3895 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 *3)) (-5 *2 (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-891 *4 *3 *5 *6)) (-4 *6 (-656 *3 *5)))) (-3894 (*1 *2) (-12 (-4 *3 (-295)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -1994 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) (-5 *1 (-891 *3 *4 *5 *6)) (-4 *6 (-656 *4 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3378 (((-3 (-83) #1="failed") $) 71 T ELT)) (-3625 (($ $) 36 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2972 (($ $ (-3 (-83) #1#)) 72 T ELT)) (-2973 (($ (-578 |#4|) |#4|) 25 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2969 (($ $) 69 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3380 (((-83) $) 70 T ELT)) (-3541 (($) 30 T ELT)) (-2970 ((|#4| $) 74 T ELT)) (-2971 (((-578 |#4|) $) 73 T ELT)) (-3922 (((-765) $) 68 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-892 |#1| |#2| |#3| |#4|) (-13 (-1003) (-547 (-765)) (-10 -8 (-15 -3541 ($)) (-15 -2973 ($ (-578 |#4|) |#4|)) (-15 -3378 ((-3 (-83) #1="failed") $)) (-15 -2972 ($ $ (-3 (-83) #1#))) (-15 -3380 ((-83) $)) (-15 -2971 ((-578 |#4|) $)) (-15 -2970 (|#4| $)) (-15 -2969 ($ $)) (IF (|has| |#1| (-254)) (IF (|has| |#1| (-118)) (-15 -3625 ($ $)) |%noBranch|) |%noBranch|))) (-385) (-749) (-710) (-854 |#1| |#3| |#2|)) (T -892)) -((-3541 (*1 *1) (-12 (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) (-4 *5 (-854 *2 *4 *3)))) (-2973 (*1 *1 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-854 *4 *6 *5)) (-4 *4 (-385)) (-4 *5 (-749)) (-4 *6 (-710)) (-5 *1 (-892 *4 *5 *6 *3)))) (-3378 (*1 *2 *1) (|partial| -12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) (-2972 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-83) "failed")) (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) (-3380 (*1 *2 *1) (-12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) (-2971 (*1 *2 *1) (-12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-578 *6)) (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) (-2970 (*1 *2 *1) (-12 (-4 *2 (-854 *3 *5 *4)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)))) (-2969 (*1 *1 *1) (-12 (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) (-4 *5 (-854 *2 *4 *3)))) (-3625 (*1 *1 *1) (-12 (-4 *2 (-118)) (-4 *2 (-254)) (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) (-4 *5 (-854 *2 *4 *3))))) -((-2974 (((-892 (-343 (-478)) (-766 |#1|) (-194 |#2| (-687)) (-203 |#1| (-343 (-478)))) (-892 (-343 (-478)) (-766 |#1|) (-194 |#2| (-687)) (-203 |#1| (-343 (-478))))) 82 T ELT))) -(((-893 |#1| |#2|) (-10 -7 (-15 -2974 ((-892 (-343 (-478)) (-766 |#1|) (-194 |#2| (-687)) (-203 |#1| (-343 (-478)))) (-892 (-343 (-478)) (-766 |#1|) (-194 |#2| (-687)) (-203 |#1| (-343 (-478))))))) (-578 (-1075)) (-687)) (T -893)) -((-2974 (*1 *2 *2) (-12 (-5 *2 (-892 (-343 (-478)) (-766 *3) (-194 *4 (-687)) (-203 *3 (-343 (-478))))) (-14 *3 (-578 (-1075))) (-14 *4 (-687)) (-5 *1 (-893 *3 *4))))) -((-3249 (((-83) |#5| |#5|) 44 T ELT)) (-3252 (((-83) |#5| |#5|) 59 T ELT)) (-3257 (((-83) |#5| (-578 |#5|)) 81 T ELT) (((-83) |#5| |#5|) 68 T ELT)) (-3253 (((-83) (-578 |#4|) (-578 |#4|)) 65 T ELT)) (-3259 (((-83) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) 70 T ELT)) (-3248 (((-1170)) 32 T ELT)) (-3247 (((-1170) (-1059) (-1059) (-1059)) 28 T ELT)) (-3258 (((-578 |#5|) (-578 |#5|)) 100 T ELT)) (-3260 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)))) 92 T ELT)) (-3261 (((-578 (-2 (|:| -3246 (-578 |#4|)) (|:| -1583 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-83) (-83)) 122 T ELT)) (-3251 (((-83) |#5| |#5|) 53 T ELT)) (-3256 (((-3 (-83) #1="failed") |#5| |#5|) 78 T ELT)) (-3254 (((-83) (-578 |#4|) (-578 |#4|)) 64 T ELT)) (-3255 (((-83) (-578 |#4|) (-578 |#4|)) 66 T ELT)) (-3675 (((-83) (-578 |#4|) (-578 |#4|)) 67 T ELT)) (-3262 (((-3 (-2 (|:| -3246 (-578 |#4|)) (|:| -1583 |#5|) (|:| |ineq| (-578 |#4|))) #1#) (-578 |#4|) |#5| (-578 |#4|) (-83) (-83) (-83) (-83) (-83)) 117 T ELT)) (-3250 (((-578 |#5|) (-578 |#5|)) 49 T ELT))) -(((-894 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3247 ((-1170) (-1059) (-1059) (-1059))) (-15 -3248 ((-1170))) (-15 -3249 ((-83) |#5| |#5|)) (-15 -3250 ((-578 |#5|) (-578 |#5|))) (-15 -3251 ((-83) |#5| |#5|)) (-15 -3252 ((-83) |#5| |#5|)) (-15 -3253 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3254 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3255 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3675 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3256 ((-3 (-83) #1="failed") |#5| |#5|)) (-15 -3257 ((-83) |#5| |#5|)) (-15 -3257 ((-83) |#5| (-578 |#5|))) (-15 -3258 ((-578 |#5|) (-578 |#5|))) (-15 -3259 ((-83) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)))) (-15 -3260 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) (-15 -3261 ((-578 (-2 (|:| -3246 (-578 |#4|)) (|:| -1583 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-83) (-83))) (-15 -3262 ((-3 (-2 (|:| -3246 (-578 |#4|)) (|:| -1583 |#5|) (|:| |ineq| (-578 |#4|))) #1#) (-578 |#4|) |#5| (-578 |#4|) (-83) (-83) (-83) (-83) (-83)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -894)) -((-3262 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| -3246 (-578 *9)) (|:| -1583 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-894 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-975 *6 *7 *8 *9)))) (-3261 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-83)) (-4 *10 (-975 *6 *7 *8 *9)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -3246 (-578 *9)) (|:| -1583 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-894 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -1583 *7)))) (-4 *6 (-969 *3 *4 *5)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-894 *3 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1583 *8))) (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)))) (-3258 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-894 *3 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-894 *5 *6 *7 *8 *3)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3675 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3255 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3254 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3253 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3252 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3251 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3250 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-894 *3 *4 *5 *6 *7)))) (-3249 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3248 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-894 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3247 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-894 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7))))) -((-3807 (((-1075) $) 15 T ELT)) (-3379 (((-1059) $) 16 T ELT)) (-3207 (($ (-1075) (-1059)) 14 T ELT)) (-3922 (((-765) $) 13 T ELT))) -(((-895) (-13 (-547 (-765)) (-10 -8 (-15 -3207 ($ (-1075) (-1059))) (-15 -3807 ((-1075) $)) (-15 -3379 ((-1059) $))))) (T -895)) -((-3207 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1059)) (-5 *1 (-895)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-895)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-895))))) -((-3138 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1075) #1#) $) 72 T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) 102 T ELT)) (-3137 ((|#2| $) NIL T ELT) (((-1075) $) 67 T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) 99 T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) 121 T ELT) (((-625 |#2|) (-625 $)) 35 T ELT)) (-2975 (($) 105 T ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 82 T ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 91 T ELT)) (-2977 (($ $) 10 T ELT)) (-3422 (((-627 $) $) 27 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3423 (($) 16 T CONST)) (-3109 (($ $) 61 T ELT)) (-3734 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2976 (($ $) 12 T ELT)) (-3948 (((-793 (-478)) $) 77 T ELT) (((-793 (-323)) $) 86 T ELT) (((-467) $) 47 T ELT) (((-323) $) 51 T ELT) (((-177) $) 55 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1075)) 64 T ELT)) (-3107 (((-687)) 38 T CONST)) (-2666 (((-83) $ $) 57 T ELT))) -(((-896 |#1| |#2|) (-10 -7 (-15 -2666 ((-83) |#1| |#1|)) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -3423 (|#1|) -3928) (-15 -3422 ((-627 |#1|) |#1|)) (-15 -3138 ((-3 (-478) #1="failed") |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3948 ((-177) |#1|)) (-15 -3948 ((-323) |#1|)) (-15 -3948 ((-467) |#1|)) (-15 -3922 (|#1| (-1075))) (-15 -3138 ((-3 (-1075) #1#) |#1|)) (-15 -3137 ((-1075) |#1|)) (-15 -2975 (|#1|)) (-15 -3109 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -2977 (|#1| |#1|)) (-15 -2777 ((-791 (-323) |#1|) |#1| (-793 (-323)) (-791 (-323) |#1|))) (-15 -2777 ((-791 (-478) |#1|) |#1| (-793 (-478)) (-791 (-478) |#1|))) (-15 -3948 ((-793 (-323)) |#1|)) (-15 -3948 ((-793 (-478)) |#1|)) (-15 -2261 ((-625 |#2|) (-625 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-625 (-478)) (-625 |#1|))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3934 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3922 (|#1| |#2|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3922 (|#1| |#1|)) (-15 -3107 ((-687)) -3928) (-15 -3922 (|#1| (-478))) (-15 -3922 ((-765) |#1|))) (-897 |#2|) (-489)) (T -896)) -((-3107 (*1 *2) (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-896 *3 *4)) (-4 *3 (-897 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3110 ((|#1| $) 170 (|has| |#1| (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 161 (|has| |#1| (-814)) ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1="failed") (-578 (-1070 $)) (-1070 $)) 164 (|has| |#1| (-814)) ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3599 (((-478) $) 151 (|has| |#1| (-733)) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1075) #2#) $) 159 (|has| |#1| (-943 (-1075))) ELT) (((-3 (-343 (-478)) #2#) $) 142 (|has| |#1| (-943 (-478))) ELT) (((-3 (-478) #2#) $) 140 (|has| |#1| (-943 (-478))) ELT)) (-3137 ((|#1| $) 201 T ELT) (((-1075) $) 160 (|has| |#1| (-943 (-1075))) ELT) (((-343 (-478)) $) 143 (|has| |#1| (-943 (-478))) ELT) (((-478) $) 141 (|has| |#1| (-943 (-478))) ELT)) (-2544 (($ $ $) 68 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 185 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 184 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 183 T ELT) (((-625 |#1|) (-625 $)) 182 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2975 (($) 168 (|has| |#1| (-477)) ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-3699 (((-83) $) 86 T ELT)) (-3168 (((-83) $) 153 (|has| |#1| (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 177 (|has| |#1| (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 176 (|has| |#1| (-789 (-323))) ELT)) (-2392 (((-83) $) 40 T ELT)) (-2977 (($ $) 172 T ELT)) (-2979 ((|#1| $) 174 T ELT)) (-3422 (((-627 $) $) 139 (|has| |#1| (-1052)) ELT)) (-3169 (((-83) $) 152 (|has| |#1| (-733)) ELT)) (-1588 (((-3 (-578 $) #3="failed") (-578 $) $) 65 T ELT)) (-2511 (($ $ $) 144 (|has| |#1| (-749)) ELT)) (-2838 (($ $ $) 145 (|has| |#1| (-749)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 187 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 186 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 181 T ELT) (((-625 |#1|) (-1164 $)) 180 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 85 T ELT)) (-3423 (($) 138 (|has| |#1| (-1052)) CONST)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3109 (($ $) 169 (|has| |#1| (-254)) ELT)) (-3111 ((|#1| $) 166 (|has| |#1| (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 163 (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 162 (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) 198 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 196 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 195 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) 194 (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) |#1|) 193 (|has| |#1| (-447 (-1075) |#1|)) ELT)) (-1590 (((-687) $) 71 T ELT)) (-3776 (($ $ |#1|) 199 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-3734 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 190 T ELT) (($ $) 137 (|has| |#1| (-187)) ELT) (($ $ (-687)) 135 (|has| |#1| (-187)) ELT) (($ $ (-1075)) 133 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 131 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 130 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 129 (|has| |#1| (-804 (-1075))) ELT)) (-2976 (($ $) 171 T ELT)) (-2978 ((|#1| $) 173 T ELT)) (-3948 (((-793 (-478)) $) 179 (|has| |#1| (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) 178 (|has| |#1| (-548 (-793 (-323)))) ELT) (((-467) $) 156 (|has| |#1| (-548 (-467))) ELT) (((-323) $) 155 (|has| |#1| (-926)) ELT) (((-177) $) 154 (|has| |#1| (-926)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) 165 (-2542 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1075)) 158 (|has| |#1| (-943 (-1075))) ELT)) (-2683 (((-627 $) $) 157 (OR (|has| |#1| (-116)) (-2542 (|has| $ (-116)) (|has| |#1| (-814)))) ELT)) (-3107 (((-687)) 37 T CONST)) (-3112 ((|#1| $) 167 (|has| |#1| (-477)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-3360 (($ $) 150 (|has| |#1| (-733)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 188 T ELT) (($ $) 136 (|has| |#1| (-187)) ELT) (($ $ (-687)) 134 (|has| |#1| (-187)) ELT) (($ $ (-1075)) 132 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 128 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 127 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 126 (|has| |#1| (-804 (-1075))) ELT)) (-2546 (((-83) $ $) 146 (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) 148 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 147 (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 149 (|has| |#1| (-749)) ELT)) (-3925 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) -(((-897 |#1|) (-111) (-489)) (T -897)) -((-3925 (*1 *1 *2 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-2979 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-2977 (*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-2976 (*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-254)))) (-3109 (*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-254)))) (-2975 (*1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-477)) (-4 *2 (-489)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-477)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-477))))) -(-13 (-308) (-38 |t#1|) (-943 |t#1|) (-284 |t#1|) (-182 |t#1|) (-322 |t#1|) (-787 |t#1|) (-336 |t#1|) (-10 -8 (-15 -3925 ($ |t#1| |t#1|)) (-15 -2979 (|t#1| $)) (-15 -2978 (|t#1| $)) (-15 -2977 ($ $)) (-15 -2976 ($ $)) (IF (|has| |t#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |t#1| (-943 (-478))) (PROGN (-6 (-943 (-478))) (-6 (-943 (-343 (-478))))) |%noBranch|) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#1| (-733)) (-6 (-733)) |%noBranch|) (IF (|has| |t#1| (-926)) (-6 (-926)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-943 (-1075))) (-6 (-943 (-1075))) |%noBranch|) (IF (|has| |t#1| (-254)) (PROGN (-15 -3110 (|t#1| $)) (-15 -3109 ($ $))) |%noBranch|) (IF (|has| |t#1| (-477)) (PROGN (-15 -2975 ($)) (-15 -3112 (|t#1| $)) (-15 -3111 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-814)) (-6 (-814)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 (-1075)) |has| |#1| (-943 (-1075))) ((-550 |#1|) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-548 (-177)) |has| |#1| (-926)) ((-548 (-323)) |has| |#1| (-926)) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-548 (-793 (-323))) |has| |#1| (-548 (-793 (-323)))) ((-548 (-793 (-478))) |has| |#1| (-548 (-793 (-478)))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-198) . T) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-242) . T) ((-254) . T) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-308) . T) ((-284 |#1|) . T) ((-322 |#1|) . T) ((-336 |#1|) . T) ((-385) . T) ((-447 (-1075) |#1|) |has| |#1| (-447 (-1075) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 |#1|) . T) ((-577 $) . T) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-658) . T) ((-707) |has| |#1| (-733)) ((-709) |has| |#1| (-733)) ((-711) |has| |#1| (-733)) ((-714) |has| |#1| (-733)) ((-733) |has| |#1| (-733)) ((-748) |has| |#1| (-733)) ((-749) OR (|has| |#1| (-749)) (|has| |#1| (-733))) ((-752) OR (|has| |#1| (-749)) (|has| |#1| (-733))) ((-799 $ (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-802 (-1075)) |has| |#1| (-802 (-1075))) ((-804 (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-789 (-323)) |has| |#1| (-789 (-323))) ((-789 (-478)) |has| |#1| (-789 (-478))) ((-787 |#1|) . T) ((-814) |has| |#1| (-814)) ((-825) . T) ((-926) |has| |#1| (-926)) ((-943 (-343 (-478))) |has| |#1| (-943 (-478))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 (-1075)) |has| |#1| (-943 (-1075))) ((-943 |#1|) . T) ((-956 (-343 (-478))) . T) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1052) |has| |#1| (-1052)) ((-1114) . T) ((-1119) . T)) -((-3934 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#4| (-1 |#2| |#1|) |#3|))) (-489) (-489) (-897 |#1|) (-897 |#2|)) (T -898)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-489)) (-4 *6 (-489)) (-4 *2 (-897 *6)) (-5 *1 (-898 *5 *6 *4 *2)) (-4 *4 (-897 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ "failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2980 (($ (-1042 |#1| |#2|)) 11 T ELT)) (-3105 (((-1042 |#1| |#2|) $) 12 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3776 ((|#2| $ (-194 |#1| |#2|)) 16 T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT))) -(((-899 |#1| |#2|) (-13 (-21) (-238 (-194 |#1| |#2|) |#2|) (-10 -8 (-15 -2980 ($ (-1042 |#1| |#2|))) (-15 -3105 ((-1042 |#1| |#2|) $)))) (-823) (-308)) (T -899)) -((-2980 (*1 *1 *2) (-12 (-5 *2 (-1042 *3 *4)) (-14 *3 (-823)) (-4 *4 (-308)) (-5 *1 (-899 *3 *4)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-1042 *3 *4)) (-5 *1 (-899 *3 *4)) (-14 *3 (-823)) (-4 *4 (-308))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3061 (((-1035) $) 10 T ELT)) (-3922 (((-765) $) 16 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-900) (-13 (-986) (-10 -8 (-15 -3061 ((-1035) $))))) (T -900)) -((-3061 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-900))))) -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3700 (($) 7 T CONST)) (-2983 (($ $) 50 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3809 (((-687) $) 49 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-2982 ((|#1| $) 48 T ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2985 ((|#1| |#1| $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-2984 ((|#1| $) 51 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-2981 ((|#1| $) 47 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-901 |#1|) (-111) (-1114)) (T -901)) -((-2985 (*1 *2 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114)))) (-2983 (*1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1114)) (-5 *2 (-687)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3971) (-15 -2985 (|t#1| |t#1| $)) (-15 -2984 (|t#1| $)) (-15 -2983 ($ $)) (-15 -3809 ((-687) $)) (-15 -2982 (|t#1| $)) (-15 -2981 (|t#1| $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3619 ((|#1| $) 12 T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-477)) ELT)) (-3004 (((-83) $) NIL (|has| |#1| (-477)) ELT)) (-3003 (((-343 (-478)) $) NIL (|has| |#1| (-477)) ELT)) (-2986 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3113 ((|#1| $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2987 ((|#1| $) 15 T ELT)) (-2988 ((|#1| $) 14 T ELT)) (-2989 ((|#1| $) 13 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) NIL (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) |#1|) NIL (|has| |#1| (-447 (-1075) |#1|)) ELT)) (-3776 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3734 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-2990 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3360 ((|#1| $) NIL (|has| |#1| (-965)) ELT)) (-2640 (($) 8 T CONST)) (-2647 (($) 10 T CONST)) (-2650 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-308)) ELT))) -(((-902 |#1|) (-904 |#1|) (-144)) (T -902)) -NIL -((-3170 (((-83) $) 43 T ELT)) (-3138 (((-3 (-478) #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3137 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) 78 T ELT)) (-3004 (((-83) $) 72 T ELT)) (-3003 (((-343 (-478)) $) 76 T ELT)) (-2392 (((-83) $) 42 T ELT)) (-3113 ((|#2| $) 22 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2464 (($ $) 58 T ELT)) (-3734 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-3948 (((-467) $) 67 T ELT)) (-2990 (($ $) 17 T ELT)) (-3922 (((-765) $) 53 T ELT) (($ (-478)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-343 (-478))) NIL T ELT)) (-3107 (((-687)) 10 T CONST)) (-3360 ((|#2| $) 71 T ELT)) (-3037 (((-83) $ $) 26 T ELT)) (-2666 (((-83) $ $) 69 T ELT)) (-3813 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3815 (($ $ $) 27 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT))) -(((-903 |#1| |#2|) (-10 -7 (-15 -3922 (|#1| (-343 (-478)))) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1|)) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -2666 ((-83) |#1| |#1|)) (-15 * (|#1| (-343 (-478)) |#1|)) (-15 * (|#1| |#1| (-343 (-478)))) (-15 -2464 (|#1| |#1|)) (-15 -3948 ((-467) |#1|)) (-15 -3005 ((-3 (-343 (-478)) #1="failed") |#1|)) (-15 -3003 ((-343 (-478)) |#1|)) (-15 -3004 ((-83) |#1|)) (-15 -3360 (|#2| |#1|)) (-15 -3113 (|#2| |#1|)) (-15 -2990 (|#1| |#1|)) (-15 -3934 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3922 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3107 ((-687)) -3928) (-15 -3922 (|#1| (-478))) (-15 -2392 ((-83) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 * (|#1| (-687) |#1|)) (-15 -3170 ((-83) |#1|)) (-15 * (|#1| (-823) |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-904 |#2|) (-144)) (T -903)) -((-3107 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 (-478) #1="failed") $) 140 (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 138 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3137 (((-478) $) 139 (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) 137 (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) 136 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 120 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 119 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 118 T ELT) (((-625 |#1|) (-625 $)) 117 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3619 ((|#1| $) 108 T ELT)) (-3005 (((-3 (-343 (-478)) "failed") $) 104 (|has| |#1| (-477)) ELT)) (-3004 (((-83) $) 106 (|has| |#1| (-477)) ELT)) (-3003 (((-343 (-478)) $) 105 (|has| |#1| (-477)) ELT)) (-2986 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3113 ((|#1| $) 110 T ELT)) (-2511 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-2838 (($ $ $) 93 (|has| |#1| (-749)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 122 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 121 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 116 T ELT) (((-625 |#1|) (-1164 $)) 115 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 101 (|has| |#1| (-308)) ELT)) (-2987 ((|#1| $) 111 T ELT)) (-2988 ((|#1| $) 112 T ELT)) (-2989 ((|#1| $) 113 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) 129 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 127 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-245 |#1|))) 126 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) 125 (|has| |#1| (-447 (-1075) |#1|)) ELT) (($ $ (-1075) |#1|) 124 (|has| |#1| (-447 (-1075) |#1|)) ELT)) (-3776 (($ $ |#1|) 130 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3734 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 133 T ELT) (($ $) 91 (|has| |#1| (-187)) ELT) (($ $ (-687)) 89 (|has| |#1| (-187)) ELT) (($ $ (-1075)) 87 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 85 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 84 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 83 (|has| |#1| (-804 (-1075))) ELT)) (-3948 (((-467) $) 102 (|has| |#1| (-548 (-467))) ELT)) (-2990 (($ $) 114 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-343 (-478))) 79 (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2683 (((-627 $) $) 103 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-3360 ((|#1| $) 107 (|has| |#1| (-965)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 131 T ELT) (($ $) 90 (|has| |#1| (-187)) ELT) (($ $ (-687)) 88 (|has| |#1| (-187)) ELT) (($ $ (-1075)) 86 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 82 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 81 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 80 (|has| |#1| (-804 (-1075))) ELT)) (-2546 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 97 (|has| |#1| (-749)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 100 (|has| |#1| (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-343 (-478))) 99 (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) 98 (|has| |#1| (-308)) ELT))) -(((-904 |#1|) (-111) (-144)) (T -904)) -((-2990 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-2986 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) (-3005 (*1 *2 *1) (|partial| -12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478)))))) -(-13 (-38 |t#1|) (-348 |t#1|) (-182 |t#1|) (-284 |t#1|) (-322 |t#1|) (-10 -8 (-15 -2990 ($ $)) (-15 -2989 (|t#1| $)) (-15 -2988 (|t#1| $)) (-15 -2987 (|t#1| $)) (-15 -3113 (|t#1| $)) (-15 -2986 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3619 (|t#1| $)) (IF (|has| |t#1| (-242)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-749)) (-6 (-749)) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-198)) |%noBranch|) (IF (|has| |t#1| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-965)) (-15 -3360 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-477)) (PROGN (-15 -3004 ((-83) $)) (-15 -3003 ((-343 (-478)) $)) (-15 -3005 ((-3 (-343 (-478)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-308)) ((-38 |#1|) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-308)) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-308))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-198) |has| |#1| (-308)) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-242) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-284 |#1|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-447 (-1075) |#1|) |has| |#1| (-447 (-1075) |#1|)) ((-447 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-583 (-343 (-478))) |has| |#1| (-308)) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-308)) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-308)) ((-577 |#1|) . T) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-308)) ((-649 |#1|) . T) ((-658) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-799 $ (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-802 (-1075)) |has| |#1| (-802 (-1075))) ((-804 (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-956 (-343 (-478))) |has| |#1| (-308)) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-961 (-343 (-478))) |has| |#1| (-308)) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3934 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#3| (-1 |#4| |#2|) |#1|))) (-904 |#2|) (-144) (-904 |#4|) (-144)) (T -905)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-904 *6)) (-5 *1 (-905 *4 *5 *2 *6)) (-4 *4 (-904 *5))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3700 (($) NIL T CONST)) (-2983 (($ $) 24 T ELT)) (-2991 (($ (-578 |#1|)) 34 T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3809 (((-687) $) 27 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 29 T ELT)) (-3585 (($ |#1| $) 18 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-2982 ((|#1| $) 28 T ELT)) (-1259 ((|#1| $) 23 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2985 ((|#1| |#1| $) 17 T ELT)) (-3380 (((-83) $) 19 T ELT)) (-3541 (($) NIL T ELT)) (-2984 ((|#1| $) 22 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) NIL T ELT)) (-2981 ((|#1| $) 31 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-906 |#1|) (-13 (-901 |#1|) (-10 -8 (-15 -2991 ($ (-578 |#1|))))) (-1003)) (T -906)) -((-2991 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-906 *3))))) -((-3018 (($ $) 12 T ELT)) (-2992 (($ $ (-478)) 13 T ELT))) -(((-907 |#1|) (-10 -7 (-15 -3018 (|#1| |#1|)) (-15 -2992 (|#1| |#1| (-478)))) (-908)) (T -907)) -NIL -((-3018 (($ $) 6 T ELT)) (-2992 (($ $ (-478)) 7 T ELT)) (** (($ $ (-343 (-478))) 8 T ELT))) -(((-908) (-111)) (T -908)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-908)) (-5 *2 (-343 (-478))))) (-2992 (*1 *1 *1 *2) (-12 (-4 *1 (-908)) (-5 *2 (-478)))) (-3018 (*1 *1 *1) (-4 *1 (-908)))) -(-13 (-10 -8 (-15 -3018 ($ $)) (-15 -2992 ($ $ (-478))) (-15 ** ($ $ (-343 (-478)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1630 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2045 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2043 (((-83) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1765 (((-625 (-343 |#2|)) (-1164 $)) NIL T ELT) (((-625 (-343 |#2|))) NIL T ELT)) (-3307 (((-343 |#2|) $) NIL T ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1591 (((-83) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3117 (((-687)) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1644 (((-83)) NIL T ELT)) (-1643 (((-83) |#1|) 162 T ELT) (((-83) |#2|) 166 T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| (-343 |#2|) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-3 (-343 |#2|) #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| (-343 |#2|) (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| (-343 |#2|) (-943 (-343 (-478)))) ELT) (((-343 |#2|) $) NIL T ELT)) (-1775 (($ (-1164 (-343 |#2|)) (-1164 $)) NIL T ELT) (($ (-1164 (-343 |#2|))) 79 T ELT) (($ (-1164 |#2|) |#2|) NIL T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-343 |#2|) (-295)) ELT)) (-2544 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1764 (((-625 (-343 |#2|)) $ (-1164 $)) NIL T ELT) (((-625 (-343 |#2|)) $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1164 (-343 |#2|)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-343 |#2|)) (-625 $)) NIL T ELT)) (-1635 (((-1164 $) (-1164 $)) NIL T ELT)) (-3818 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-343 |#3|)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-1622 (((-578 (-578 |#1|))) NIL (|has| |#1| (-313)) ELT)) (-1647 (((-83) |#1| |#1|) NIL T ELT)) (-3090 (((-823)) NIL T ELT)) (-2975 (($) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1642 (((-83)) NIL T ELT)) (-1641 (((-83) |#1|) 61 T ELT) (((-83) |#2|) 164 T ELT)) (-2543 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3480 (($ $) NIL T ELT)) (-2814 (($) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1663 (((-83) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1747 (($ $ (-687)) NIL (|has| (-343 |#2|) (-295)) ELT) (($ $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3699 (((-83) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3748 (((-823) $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-736 (-823)) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-3354 (((-687)) NIL T ELT)) (-1636 (((-1164 $) (-1164 $)) NIL T ELT)) (-3113 (((-343 |#2|) $) NIL T ELT)) (-1623 (((-578 (-850 |#1|)) (-1075)) NIL (|has| |#1| (-308)) ELT)) (-3422 (((-627 $) $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1996 ((|#3| $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1992 (((-823) $) NIL (|has| (-343 |#2|) (-313)) ELT)) (-3060 ((|#3| $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| (-343 |#2|) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-343 |#2|))) (|:| |vec| (-1164 (-343 |#2|)))) (-1164 $) $) NIL T ELT) (((-625 (-343 |#2|)) (-1164 $)) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1631 (((-625 (-343 |#2|))) 57 T ELT)) (-1633 (((-625 (-343 |#2|))) 56 T ELT)) (-2464 (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1628 (($ (-1164 |#2|) |#2|) 80 T ELT)) (-1632 (((-625 (-343 |#2|))) 55 T ELT)) (-1634 (((-625 (-343 |#2|))) 54 T ELT)) (-1627 (((-2 (|:| |num| (-625 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1629 (((-2 (|:| |num| (-1164 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1640 (((-1164 $)) 51 T ELT)) (-3894 (((-1164 $)) 50 T ELT)) (-1639 (((-83) $) NIL T ELT)) (-1638 (((-83) $) NIL T ELT) (((-83) $ |#1|) NIL T ELT) (((-83) $ |#2|) NIL T ELT)) (-3423 (($) NIL (|has| (-343 |#2|) (-295)) CONST)) (-2382 (($ (-823)) NIL (|has| (-343 |#2|) (-313)) ELT)) (-1625 (((-3 |#2| #1#)) 70 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1649 (((-687)) NIL T ELT)) (-2391 (($) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3708 (((-341 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-343 |#2|) (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1590 (((-687) $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3776 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1626 (((-3 |#2| #1#)) 68 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3733 (((-343 |#2|) (-1164 $)) NIL T ELT) (((-343 |#2|)) 47 T ELT)) (-1748 (((-687) $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-3 (-687) #1#) $ $) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3734 (($ $ (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-2390 (((-625 (-343 |#2|)) (-1164 $) (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3167 ((|#3|) 58 T ELT)) (-1657 (($) NIL (|has| (-343 |#2|) (-295)) ELT)) (-3205 (((-1164 (-343 |#2|)) $ (-1164 $)) NIL T ELT) (((-625 (-343 |#2|)) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 (-343 |#2|)) $) 81 T ELT) (((-625 (-343 |#2|)) (-1164 $)) NIL T ELT)) (-3948 (((-1164 (-343 |#2|)) $) NIL T ELT) (($ (-1164 (-343 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| (-343 |#2|) (-295)) ELT)) (-1637 (((-1164 $) (-1164 $)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 |#2|)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-2683 (($ $) NIL (|has| (-343 |#2|) (-295)) ELT) (((-627 $) $) NIL (|has| (-343 |#2|) (-116)) ELT)) (-2429 ((|#3| $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1646 (((-83)) 65 T ELT)) (-1645 (((-83) |#1|) 167 T ELT) (((-83) |#2|) 168 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-1624 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1648 (((-83)) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-1 (-343 |#2|) (-343 |#2|))) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-1 (-343 |#2|) (-343 |#2|)) (-687)) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-802 (-1075)))) (-12 (|has| (-343 |#2|) (-308)) (|has| (-343 |#2|) (-804 (-1075))))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-343 |#2|) (-188)) (|has| (-343 |#2|) (-308))) (-12 (|has| (-343 |#2|) (-187)) (|has| (-343 |#2|) (-308))) (|has| (-343 |#2|) (-295))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ $) NIL (|has| (-343 |#2|) (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| (-343 |#2|) (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 |#2|)) NIL T ELT) (($ (-343 |#2|) $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| (-343 |#2|) (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| (-343 |#2|) (-308)) ELT))) -(((-909 |#1| |#2| |#3| |#4| |#5|) (-287 |#1| |#2| |#3|) (-1119) (-1140 |#1|) (-1140 (-343 |#2|)) (-343 |#2|) (-687)) (T -909)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2998 (((-578 (-478)) $) 73 T ELT)) (-2994 (($ (-578 (-478))) 81 T ELT)) (-3110 (((-478) $) 48 (|has| (-478) (-254)) ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL (|has| (-478) (-733)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) 60 T ELT) (((-3 (-1075) #1#) $) NIL (|has| (-478) (-943 (-1075))) ELT) (((-3 (-343 (-478)) #1#) $) 57 (|has| (-478) (-943 (-478))) ELT) (((-3 (-478) #1#) $) 60 (|has| (-478) (-943 (-478))) ELT)) (-3137 (((-478) $) NIL T ELT) (((-1075) $) NIL (|has| (-478) (-943 (-1075))) ELT) (((-343 (-478)) $) NIL (|has| (-478) (-943 (-478))) ELT) (((-478) $) NIL (|has| (-478) (-943 (-478))) ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2975 (($) NIL (|has| (-478) (-477)) ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-2996 (((-578 (-478)) $) 79 T ELT)) (-3168 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (|has| (-478) (-789 (-478))) ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (|has| (-478) (-789 (-323))) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL T ELT)) (-2979 (((-478) $) 45 T ELT)) (-3422 (((-627 $) $) NIL (|has| (-478) (-1052)) ELT)) (-3169 (((-83) $) NIL (|has| (-478) (-733)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-478) (-749)) ELT)) (-3934 (($ (-1 (-478) (-478)) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| (-478) (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL T ELT) (((-625 (-478)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL T ELT)) (-3423 (($) NIL (|has| (-478) (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3109 (($ $) NIL (|has| (-478) (-254)) ELT) (((-343 (-478)) $) 50 T ELT)) (-2997 (((-1055 (-478)) $) 78 T ELT)) (-2993 (($ (-578 (-478)) (-578 (-478))) 82 T ELT)) (-3111 (((-478) $) 64 (|has| (-478) (-477)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| (-478) (-814)) ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-3744 (($ $ (-578 (-478)) (-578 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-478) (-478)) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-245 (-478))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-245 (-478)))) NIL (|has| (-478) (-256 (-478))) ELT) (($ $ (-578 (-1075)) (-578 (-478))) NIL (|has| (-478) (-447 (-1075) (-478))) ELT) (($ $ (-1075) (-478)) NIL (|has| (-478) (-447 (-1075) (-478))) ELT)) (-1590 (((-687) $) NIL T ELT)) (-3776 (($ $ (-478)) NIL (|has| (-478) (-238 (-478) (-478))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $) 15 (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2976 (($ $) NIL T ELT)) (-2978 (((-478) $) 47 T ELT)) (-2995 (((-578 (-478)) $) 80 T ELT)) (-3948 (((-793 (-478)) $) NIL (|has| (-478) (-548 (-793 (-478)))) ELT) (((-793 (-323)) $) NIL (|has| (-478) (-548 (-793 (-323)))) ELT) (((-467) $) NIL (|has| (-478) (-548 (-467))) ELT) (((-323) $) NIL (|has| (-478) (-926)) ELT) (((-177) $) NIL (|has| (-478) (-926)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-478) (-814))) ELT)) (-3922 (((-765) $) 108 T ELT) (($ (-478)) 51 T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 27 T ELT) (($ (-478)) 51 T ELT) (($ (-1075)) NIL (|has| (-478) (-943 (-1075))) ELT) (((-343 (-478)) $) 25 T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-478) (-814))) (|has| (-478) (-116))) ELT)) (-3107 (((-687)) 13 T CONST)) (-3112 (((-478) $) 62 (|has| (-478) (-477)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3360 (($ $) NIL (|has| (-478) (-733)) ELT)) (-2640 (($) 14 T CONST)) (-2647 (($) 17 T CONST)) (-2650 (($ $ (-1 (-478) (-478))) NIL T ELT) (($ $ (-1 (-478) (-478)) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| (-478) (-804 (-1075))) ELT) (($ $) NIL (|has| (-478) (-187)) ELT) (($ $ (-687)) NIL (|has| (-478) (-187)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-3037 (((-83) $ $) 21 T ELT)) (-2665 (((-83) $ $) NIL (|has| (-478) (-749)) ELT)) (-2666 (((-83) $ $) 40 (|has| (-478) (-749)) ELT)) (-3925 (($ $ $) 36 T ELT) (($ (-478) (-478)) 38 T ELT)) (-3813 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3815 (($ $ $) 28 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ (-478) $) 32 T ELT) (($ $ (-478)) NIL T ELT))) -(((-910 |#1|) (-13 (-897 (-478)) (-547 (-343 (-478))) (-10 -8 (-15 -3109 ((-343 (-478)) $)) (-15 -2998 ((-578 (-478)) $)) (-15 -2997 ((-1055 (-478)) $)) (-15 -2996 ((-578 (-478)) $)) (-15 -2995 ((-578 (-478)) $)) (-15 -2994 ($ (-578 (-478)))) (-15 -2993 ($ (-578 (-478)) (-578 (-478)))))) (-478)) (T -910)) -((-3109 (*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2997 (*1 *2 *1) (-12 (-5 *2 (-1055 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2994 (*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) (-2993 (*1 *1 *2 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) -((-2999 (((-51) (-343 (-478)) (-478)) 9 T ELT))) -(((-911) (-10 -7 (-15 -2999 ((-51) (-343 (-478)) (-478))))) (T -911)) -((-2999 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-478))) (-5 *4 (-478)) (-5 *2 (-51)) (-5 *1 (-911))))) -((-3117 (((-478)) 21 T ELT)) (-3002 (((-478)) 26 T ELT)) (-3001 (((-1170) (-478)) 24 T ELT)) (-3000 (((-478) (-478)) 27 T ELT) (((-478)) 20 T ELT))) -(((-912) (-10 -7 (-15 -3000 ((-478))) (-15 -3117 ((-478))) (-15 -3000 ((-478) (-478))) (-15 -3001 ((-1170) (-478))) (-15 -3002 ((-478))))) (T -912)) -((-3002 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-912)))) (-3000 (*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) (-3117 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) (-3000 (*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912))))) -((-3709 (((-341 |#1|) |#1|) 43 T ELT)) (-3708 (((-341 |#1|) |#1|) 41 T ELT))) -(((-913 |#1|) (-10 -7 (-15 -3708 ((-341 |#1|) |#1|)) (-15 -3709 ((-341 |#1|) |#1|))) (-1140 (-343 (-478)))) (T -913)) -((-3709 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1140 (-343 (-478)))))) (-3708 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1140 (-343 (-478))))))) -((-3005 (((-3 (-343 (-478)) "failed") |#1|) 15 T ELT)) (-3004 (((-83) |#1|) 14 T ELT)) (-3003 (((-343 (-478)) |#1|) 10 T ELT))) -(((-914 |#1|) (-10 -7 (-15 -3003 ((-343 (-478)) |#1|)) (-15 -3004 ((-83) |#1|)) (-15 -3005 ((-3 (-343 (-478)) "failed") |#1|))) (-943 (-343 (-478)))) (T -914)) -((-3005 (*1 *2 *3) (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-914 *3)) (-4 *3 (-943 *2)))) (-3004 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-914 *3)) (-4 *3 (-943 (-343 (-478)))))) (-3003 (*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-914 *3)) (-4 *3 (-943 *2))))) -((-3764 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3776 ((|#2| $ #1#) 10 T ELT)) (-3009 (((-83) $ $) 18 T ELT))) -(((-915 |#1| |#2|) (-10 -7 (-15 -3764 (|#2| |#1| #1="value" |#2|)) (-15 -3009 ((-83) |#1| |#1|)) (-15 -3776 (|#2| |#1| #1#))) (-916 |#2|) (-1114)) (T -915)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 52 T ELT)) (-3006 ((|#1| $ |#1|) 43 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 45 (|has| $ (-6 -3972)) ELT)) (-3700 (($) 7 T CONST)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 54 T ELT)) (-3008 (((-83) $ $) 46 (|has| |#1| (-1003)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3011 (((-578 |#1|) $) 49 T ELT)) (-3504 (((-83) $) 53 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ "value") 51 T ELT)) (-3010 (((-478) $ $) 48 T ELT)) (-3609 (((-83) $) 50 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) 55 T ELT)) (-3009 (((-83) $ $) 47 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-916 |#1|) (-111) (-1114)) (T -916)) -((-3499 (*1 *2 *1) (-12 (-4 *3 (-1114)) (-5 *2 (-578 *1)) (-4 *1 (-916 *3)))) (-3012 (*1 *2 *1) (-12 (-4 *3 (-1114)) (-5 *2 (-578 *1)) (-4 *1 (-916 *3)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-5 *2 (-83)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-5 *2 (-83)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-5 *2 (-578 *3)))) (-3010 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-5 *2 (-478)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-83)))) (-3008 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-83)))) (-3007 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *1)) (|has| *1 (-6 -3972)) (-4 *1 (-916 *3)) (-4 *3 (-1114)))) (-3764 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3972)) (-4 *1 (-916 *2)) (-4 *2 (-1114)))) (-3006 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-916 *2)) (-4 *2 (-1114))))) -(-13 (-422 |t#1|) (-10 -8 (-15 -3499 ((-578 $) $)) (-15 -3012 ((-578 $) $)) (-15 -3504 ((-83) $)) (-15 -3379 (|t#1| $)) (-15 -3776 (|t#1| $ "value")) (-15 -3609 ((-83) $)) (-15 -3011 ((-578 |t#1|) $)) (-15 -3010 ((-478) $ $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3009 ((-83) $ $)) (-15 -3008 ((-83) $ $))) |%noBranch|) (IF (|has| $ (-6 -3972)) (PROGN (-15 -3007 ($ $ (-578 $))) (-15 -3764 (|t#1| $ "value" |t#1|)) (-15 -3006 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-3018 (($ $) 9 T ELT) (($ $ (-823)) 49 T ELT) (($ (-343 (-478))) 13 T ELT) (($ (-478)) 15 T ELT)) (-3165 (((-3 $ #1="failed") (-1070 $) (-823) (-765)) 24 T ELT) (((-3 $ #1#) (-1070 $) (-823)) 32 T ELT)) (-2992 (($ $ (-478)) 58 T ELT)) (-3107 (((-687)) 18 T CONST)) (-3166 (((-578 $) (-1070 $)) NIL T ELT) (((-578 $) (-1070 (-343 (-478)))) 63 T ELT) (((-578 $) (-1070 (-478))) 68 T ELT) (((-578 $) (-850 $)) 72 T ELT) (((-578 $) (-850 (-343 (-478)))) 76 T ELT) (((-578 $) (-850 (-478))) 80 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ $ (-343 (-478))) 53 T ELT))) -(((-917 |#1|) (-10 -7 (-15 -3018 (|#1| (-478))) (-15 -3018 (|#1| (-343 (-478)))) (-15 -3018 (|#1| |#1| (-823))) (-15 -3166 ((-578 |#1|) (-850 (-478)))) (-15 -3166 ((-578 |#1|) (-850 (-343 (-478))))) (-15 -3166 ((-578 |#1|) (-850 |#1|))) (-15 -3166 ((-578 |#1|) (-1070 (-478)))) (-15 -3166 ((-578 |#1|) (-1070 (-343 (-478))))) (-15 -3166 ((-578 |#1|) (-1070 |#1|))) (-15 -3165 ((-3 |#1| #1="failed") (-1070 |#1|) (-823))) (-15 -3165 ((-3 |#1| #1#) (-1070 |#1|) (-823) (-765))) (-15 ** (|#1| |#1| (-343 (-478)))) (-15 -2992 (|#1| |#1| (-478))) (-15 -3018 (|#1| |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 -3107 ((-687)) -3928) (-15 ** (|#1| |#1| (-687))) (-15 ** (|#1| |#1| (-823)))) (-918)) (T -917)) -((-3107 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-917 *3)) (-4 *3 (-918))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 108 T ELT)) (-2045 (($ $) 109 T ELT)) (-2043 (((-83) $) 111 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 128 T ELT)) (-3947 (((-341 $) $) 129 T ELT)) (-3018 (($ $) 92 T ELT) (($ $ (-823)) 78 T ELT) (($ (-343 (-478))) 77 T ELT) (($ (-478)) 76 T ELT)) (-1591 (((-83) $ $) 119 T ELT)) (-3599 (((-478) $) 145 T ELT)) (-3700 (($) 22 T CONST)) (-3165 (((-3 $ "failed") (-1070 $) (-823) (-765)) 86 T ELT) (((-3 $ "failed") (-1070 $) (-823)) 85 T ELT)) (-3138 (((-3 (-478) #1="failed") $) 105 (|has| (-343 (-478)) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 103 (|has| (-343 (-478)) (-943 (-343 (-478)))) ELT) (((-3 (-343 (-478)) #1#) $) 100 T ELT)) (-3137 (((-478) $) 104 (|has| (-343 (-478)) (-943 (-478))) ELT) (((-343 (-478)) $) 102 (|has| (-343 (-478)) (-943 (-343 (-478)))) ELT) (((-343 (-478)) $) 101 T ELT)) (-3014 (($ $ (-765)) 75 T ELT)) (-3013 (($ $ (-765)) 74 T ELT)) (-2544 (($ $ $) 123 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 122 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 117 T ELT)) (-3699 (((-83) $) 130 T ELT)) (-3168 (((-83) $) 143 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 91 T ELT)) (-3169 (((-83) $) 144 T ELT)) (-1588 (((-3 (-578 $) #2="failed") (-578 $) $) 126 T ELT)) (-2511 (($ $ $) 137 T ELT)) (-2838 (($ $ $) 138 T ELT)) (-3015 (((-3 (-1070 $) "failed") $) 87 T ELT)) (-3017 (((-3 (-765) "failed") $) 89 T ELT)) (-3016 (((-3 (-1070 $) "failed") $) 88 T ELT)) (-1874 (($ (-578 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 131 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 116 T ELT)) (-3125 (($ (-578 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-3708 (((-341 $) $) 127 T ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 124 T ELT)) (-3443 (((-3 $ "failed") $ $) 107 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 118 T ELT)) (-1590 (((-687) $) 120 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 121 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 135 T ELT) (($ $) 106 T ELT) (($ (-343 (-478))) 99 T ELT) (($ (-478)) 98 T ELT) (($ (-343 (-478))) 95 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 110 T ELT)) (-3746 (((-343 (-478)) $ $) 73 T ELT)) (-3166 (((-578 $) (-1070 $)) 84 T ELT) (((-578 $) (-1070 (-343 (-478)))) 83 T ELT) (((-578 $) (-1070 (-478))) 82 T ELT) (((-578 $) (-850 $)) 81 T ELT) (((-578 $) (-850 (-343 (-478)))) 80 T ELT) (((-578 $) (-850 (-478))) 79 T ELT)) (-3360 (($ $) 146 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2546 (((-83) $ $) 139 T ELT)) (-2547 (((-83) $ $) 141 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 140 T ELT)) (-2666 (((-83) $ $) 142 T ELT)) (-3925 (($ $ $) 136 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 132 T ELT) (($ $ (-343 (-478))) 90 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-343 (-478)) $) 134 T ELT) (($ $ (-343 (-478))) 133 T ELT) (($ (-478) $) 97 T ELT) (($ $ (-478)) 96 T ELT) (($ (-343 (-478)) $) 94 T ELT) (($ $ (-343 (-478))) 93 T ELT))) -(((-918) (-111)) (T -918)) -((-3018 (*1 *1 *1) (-4 *1 (-918))) (-3017 (*1 *2 *1) (|partial| -12 (-4 *1 (-918)) (-5 *2 (-765)))) (-3016 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-918)))) (-3015 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-918)))) (-3165 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-823)) (-5 *4 (-765)) (-4 *1 (-918)))) (-3165 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-823)) (-4 *1 (-918)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-918)) (-5 *2 (-578 *1)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-1070 (-343 (-478)))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-1070 (-478))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-918)) (-5 *2 (-578 *1)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-850 (-343 (-478)))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-850 (-478))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) (-3018 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-823)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-918)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-918)))) (-3014 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-765)))) (-3013 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-765)))) (-3746 (*1 *2 *1 *1) (-12 (-4 *1 (-918)) (-5 *2 (-343 (-478)))))) -(-13 (-118) (-748) (-144) (-308) (-348 (-343 (-478))) (-38 (-478)) (-38 (-343 (-478))) (-908) (-10 -8 (-15 -3017 ((-3 (-765) "failed") $)) (-15 -3016 ((-3 (-1070 $) "failed") $)) (-15 -3015 ((-3 (-1070 $) "failed") $)) (-15 -3165 ((-3 $ "failed") (-1070 $) (-823) (-765))) (-15 -3165 ((-3 $ "failed") (-1070 $) (-823))) (-15 -3166 ((-578 $) (-1070 $))) (-15 -3166 ((-578 $) (-1070 (-343 (-478))))) (-15 -3166 ((-578 $) (-1070 (-478)))) (-15 -3166 ((-578 $) (-850 $))) (-15 -3166 ((-578 $) (-850 (-343 (-478))))) (-15 -3166 ((-578 $) (-850 (-478)))) (-15 -3018 ($ $ (-823))) (-15 -3018 ($ $)) (-15 -3018 ($ (-343 (-478)))) (-15 -3018 ($ (-478))) (-15 -3014 ($ $ (-765))) (-15 -3013 ($ $ (-765))) (-15 -3746 ((-343 (-478)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 (-478)) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 (-478) (-478)) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-348 (-343 (-478))) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 (-478)) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 (-478)) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 (-478)) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-825) . T) ((-908) . T) ((-943 (-343 (-478))) . T) ((-943 (-478)) |has| (-343 (-478)) (-943 (-478))) ((-956 (-343 (-478))) . T) ((-956 (-478)) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 (-478)) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) . T)) -((-3019 (((-2 (|:| |ans| |#2|) (|:| -3118 |#2|) (|:| |sol?| (-83))) (-478) |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-919 |#1| |#2|) (-10 -7 (-15 -3019 ((-2 (|:| |ans| |#2|) (|:| -3118 |#2|) (|:| |sol?| (-83))) (-478) |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-385) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1100) (-27) (-357 |#1|))) (T -919)) -((-3019 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1075)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1100) (-27) (-357 *8))) (-4 *8 (-13 (-385) (-118) (-943 *3) (-575 *3))) (-5 *3 (-478)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3118 *4) (|:| |sol?| (-83)))) (-5 *1 (-919 *8 *4))))) -((-3020 (((-3 (-578 |#2|) #1="failed") (-478) |#2| |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-920 |#1| |#2|) (-10 -7 (-15 -3020 ((-3 (-578 |#2|) #1="failed") (-478) |#2| |#2| |#2| (-1075) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-385) (-118) (-943 (-478)) (-575 (-478))) (-13 (-1100) (-27) (-357 |#1|))) (T -920)) -((-3020 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1075)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1100) (-27) (-357 *8))) (-4 *8 (-13 (-385) (-118) (-943 *3) (-575 *3))) (-5 *3 (-478)) (-5 *2 (-578 *4)) (-5 *1 (-920 *8 *4))))) -((-3023 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-83)))) (|:| -3246 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-478)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-478) (-1 |#2| |#2|)) 39 T ELT)) (-3021 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-343 |#2|)) (|:| |c| (-343 |#2|)) (|:| -3075 |#2|)) "failed") (-343 |#2|) (-343 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3022 (((-2 (|:| |ans| (-343 |#2|)) (|:| |nosol| (-83))) (-343 |#2|) (-343 |#2|)) 76 T ELT))) -(((-921 |#1| |#2|) (-10 -7 (-15 -3021 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-343 |#2|)) (|:| |c| (-343 |#2|)) (|:| -3075 |#2|)) "failed") (-343 |#2|) (-343 |#2|) (-1 |#2| |#2|))) (-15 -3022 ((-2 (|:| |ans| (-343 |#2|)) (|:| |nosol| (-83))) (-343 |#2|) (-343 |#2|))) (-15 -3023 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-83)))) (|:| -3246 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-478)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-478) (-1 |#2| |#2|)))) (-13 (-308) (-118) (-943 (-478))) (-1140 |#1|)) (T -921)) -((-3023 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1140 *6)) (-4 *6 (-13 (-308) (-118) (-943 *4))) (-5 *4 (-478)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-83)))) (|:| -3246 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-921 *6 *3)))) (-3022 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| |ans| (-343 *5)) (|:| |nosol| (-83)))) (-5 *1 (-921 *4 *5)) (-5 *3 (-343 *5)))) (-3021 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-343 *6)) (|:| |c| (-343 *6)) (|:| -3075 *6))) (-5 *1 (-921 *5 *6)) (-5 *3 (-343 *6))))) -((-3024 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-343 |#2|)) (|:| |h| |#2|) (|:| |c1| (-343 |#2|)) (|:| |c2| (-343 |#2|)) (|:| -3075 |#2|)) #1="failed") (-343 |#2|) (-343 |#2|) (-343 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3025 (((-3 (-578 (-343 |#2|)) #1#) (-343 |#2|) (-343 |#2|) (-343 |#2|)) 34 T ELT))) -(((-922 |#1| |#2|) (-10 -7 (-15 -3024 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-343 |#2|)) (|:| |h| |#2|) (|:| |c1| (-343 |#2|)) (|:| |c2| (-343 |#2|)) (|:| -3075 |#2|)) #1="failed") (-343 |#2|) (-343 |#2|) (-343 |#2|) (-1 |#2| |#2|))) (-15 -3025 ((-3 (-578 (-343 |#2|)) #1#) (-343 |#2|) (-343 |#2|) (-343 |#2|)))) (-13 (-308) (-118) (-943 (-478))) (-1140 |#1|)) (T -922)) -((-3025 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1140 *4)) (-5 *2 (-578 (-343 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-343 *5)))) (-3024 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-13 (-308) (-118) (-943 (-478)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-343 *6)) (|:| |h| *6) (|:| |c1| (-343 *6)) (|:| |c2| (-343 *6)) (|:| -3075 *6))) (-5 *1 (-922 *5 *6)) (-5 *3 (-343 *6))))) -((-3026 (((-1 |#1|) (-578 (-2 (|:| -3379 |#1|) (|:| -1505 (-478))))) 34 T ELT)) (-3082 (((-1 |#1|) (-999 |#1|)) 42 T ELT)) (-3027 (((-1 |#1|) (-1164 |#1|) (-1164 (-478)) (-478)) 31 T ELT))) -(((-923 |#1|) (-10 -7 (-15 -3082 ((-1 |#1|) (-999 |#1|))) (-15 -3026 ((-1 |#1|) (-578 (-2 (|:| -3379 |#1|) (|:| -1505 (-478)))))) (-15 -3027 ((-1 |#1|) (-1164 |#1|) (-1164 (-478)) (-478)))) (-1003)) (T -923)) -((-3027 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1164 *6)) (-5 *4 (-1164 (-478))) (-5 *5 (-478)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-923 *6)))) (-3026 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3379 *4) (|:| -1505 (-478))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-923 *4)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-999 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-923 *4))))) -((-3748 (((-687) (-279 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-924 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3748 ((-687) (-279 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-308) (-1140 |#1|) (-1140 (-343 |#2|)) (-287 |#1| |#2| |#3|) (-13 (-313) (-308))) (T -924)) -((-3748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-279 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-308)) (-4 *7 (-1140 *6)) (-4 *4 (-1140 (-343 *7))) (-4 *8 (-287 *6 *7 *4)) (-4 *9 (-13 (-313) (-308))) (-5 *2 (-687)) (-5 *1 (-924 *6 *7 *4 *8 *9))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3571 (((-1035) $) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3162 (((-1035) $) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-925) (-13 (-986) (-10 -8 (-15 -3571 ((-1035) $)) (-15 -3162 ((-1035) $))))) (T -925)) -((-3571 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-925)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-925))))) -((-3948 (((-177) $) 6 T ELT) (((-323) $) 9 T ELT))) -(((-926) (-111)) (T -926)) -NIL -(-13 (-548 (-177)) (-548 (-323))) -(((-548 (-177)) . T) ((-548 (-323)) . T)) -((-3115 (((-3 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) "failed") |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) 32 T ELT) (((-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-343 (-478))) 29 T ELT)) (-3030 (((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-343 (-478))) 34 T ELT) (((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-343 (-478))) 30 T ELT) (((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) 33 T ELT) (((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1|) 28 T ELT)) (-3029 (((-578 (-343 (-478))) (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) 20 T ELT)) (-3028 (((-343 (-478)) (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) 17 T ELT))) -(((-927 |#1|) (-10 -7 (-15 -3030 ((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1|)) (-15 -3030 ((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-15 -3030 ((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-343 (-478)))) (-15 -3030 ((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-343 (-478)))) (-15 -3115 ((-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-343 (-478)))) (-15 -3115 ((-3 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) "failed") |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-15 -3028 ((-343 (-478)) (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-15 -3029 ((-578 (-343 (-478))) (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))))) (-1140 (-478))) (T -927)) -((-3029 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-5 *2 (-578 (-343 (-478)))) (-5 *1 (-927 *4)) (-4 *4 (-1140 (-478))))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) (-5 *2 (-343 (-478))) (-5 *1 (-927 *4)) (-4 *4 (-1140 (-478))))) (-3115 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))))) (-3115 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) (-5 *4 (-343 (-478))) (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))))) (-3030 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3119 *5) (|:| -3118 *5)))) (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))) (-5 *4 (-2 (|:| -3119 *5) (|:| -3118 *5))))) (-3030 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))) (-5 *4 (-343 (-478))))) (-3030 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))) (-5 *4 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))))) (-3030 (*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478)))))) -((-3115 (((-3 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) "failed") |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) 35 T ELT) (((-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-343 (-478))) 32 T ELT)) (-3030 (((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-343 (-478))) 30 T ELT) (((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-343 (-478))) 26 T ELT) (((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) 28 T ELT) (((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1|) 24 T ELT))) -(((-928 |#1|) (-10 -7 (-15 -3030 ((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1|)) (-15 -3030 ((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-15 -3030 ((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-343 (-478)))) (-15 -3030 ((-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-343 (-478)))) (-15 -3115 ((-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-343 (-478)))) (-15 -3115 ((-3 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) "failed") |#1| (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))) (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))))) (-1140 (-343 (-478)))) (T -928)) -((-3115 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) (-5 *1 (-928 *3)) (-4 *3 (-1140 (-343 (-478)))))) (-3115 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) (-5 *4 (-343 (-478))) (-5 *1 (-928 *3)) (-4 *3 (-1140 *4)))) (-3030 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3119 *5) (|:| -3118 *5)))) (-5 *1 (-928 *3)) (-4 *3 (-1140 *5)) (-5 *4 (-2 (|:| -3119 *5) (|:| -3118 *5))))) (-3030 (*1 *2 *3 *4) (-12 (-5 *4 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3119 *4) (|:| -3118 *4)))) (-5 *1 (-928 *3)) (-4 *3 (-1140 *4)))) (-3030 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-5 *1 (-928 *3)) (-4 *3 (-1140 (-343 (-478)))) (-5 *4 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))))) (-3030 (*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) (-5 *1 (-928 *3)) (-4 *3 (-1140 (-343 (-478))))))) -((-3549 (((-578 (-323)) (-850 (-478)) (-323)) 28 T ELT) (((-578 (-323)) (-850 (-343 (-478))) (-323)) 27 T ELT)) (-3945 (((-578 (-578 (-323))) (-578 (-850 (-478))) (-578 (-1075)) (-323)) 37 T ELT))) -(((-929) (-10 -7 (-15 -3549 ((-578 (-323)) (-850 (-343 (-478))) (-323))) (-15 -3549 ((-578 (-323)) (-850 (-478)) (-323))) (-15 -3945 ((-578 (-578 (-323))) (-578 (-850 (-478))) (-578 (-1075)) (-323))))) (T -929)) -((-3945 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-850 (-478)))) (-5 *4 (-578 (-1075))) (-5 *2 (-578 (-578 (-323)))) (-5 *1 (-929)) (-5 *5 (-323)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-478))) (-5 *2 (-578 (-323))) (-5 *1 (-929)) (-5 *4 (-323)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-850 (-343 (-478)))) (-5 *2 (-578 (-323))) (-5 *1 (-929)) (-5 *4 (-323))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 75 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-3018 (($ $) NIL T ELT) (($ $ (-823)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-478)) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) 70 T ELT)) (-3700 (($) NIL T CONST)) (-3165 (((-3 $ #1#) (-1070 $) (-823) (-765)) NIL T ELT) (((-3 $ #1#) (-1070 $) (-823)) 55 T ELT)) (-3138 (((-3 (-343 (-478)) #1#) $) NIL (|has| (-343 (-478)) (-943 (-343 (-478)))) ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-478) #1#) $) NIL (OR (|has| (-343 (-478)) (-943 (-478))) (|has| |#1| (-943 (-478)))) ELT)) (-3137 (((-343 (-478)) $) 17 (|has| (-343 (-478)) (-943 (-343 (-478)))) ELT) (((-343 (-478)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-478) $) NIL (OR (|has| (-343 (-478)) (-943 (-478))) (|has| |#1| (-943 (-478)))) ELT)) (-3014 (($ $ (-765)) 47 T ELT)) (-3013 (($ $ (-765)) 48 T ELT)) (-2544 (($ $ $) NIL T ELT)) (-3164 (((-343 (-478)) $ $) 21 T ELT)) (-3444 (((-3 $ #1#) $) 88 T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-3168 (((-83) $) 66 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL T ELT)) (-3169 (((-83) $) 69 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3015 (((-3 (-1070 $) #1#) $) 83 T ELT)) (-3017 (((-3 (-765) #1#) $) 82 T ELT)) (-3016 (((-3 (-1070 $) #1#) $) 80 T ELT)) (-3031 (((-3 (-966 $ (-1070 $)) #1#) $) 78 T ELT)) (-1874 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 89 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3922 (((-765) $) 87 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) 63 T ELT) (($ (-343 (-478))) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-3746 (((-343 (-478)) $ $) 27 T ELT)) (-3166 (((-578 $) (-1070 $)) 61 T ELT) (((-578 $) (-1070 (-343 (-478)))) NIL T ELT) (((-578 $) (-1070 (-478))) NIL T ELT) (((-578 $) (-850 $)) NIL T ELT) (((-578 $) (-850 (-343 (-478)))) NIL T ELT) (((-578 $) (-850 (-478))) NIL T ELT)) (-3032 (($ (-966 $ (-1070 $)) (-765)) 46 T ELT)) (-3360 (($ $) 22 T ELT)) (-2640 (($) 32 T CONST)) (-2647 (($) 39 T CONST)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 76 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 24 T ELT)) (-3925 (($ $ $) 37 T ELT)) (-3813 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3815 (($ $ $) 111 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ (-478) $) 71 T ELT) (($ $ (-478)) NIL T ELT) (($ (-343 (-478)) $) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) -(((-930 |#1|) (-13 (-918) (-348 |#1|) (-38 |#1|) (-10 -8 (-15 -3032 ($ (-966 $ (-1070 $)) (-765))) (-15 -3031 ((-3 (-966 $ (-1070 $)) "failed") $)) (-15 -3164 ((-343 (-478)) $ $)))) (-13 (-748) (-308) (-926))) (T -930)) -((-3032 (*1 *1 *2 *3) (-12 (-5 *2 (-966 (-930 *4) (-1070 (-930 *4)))) (-5 *3 (-765)) (-5 *1 (-930 *4)) (-4 *4 (-13 (-748) (-308) (-926))))) (-3031 (*1 *2 *1) (|partial| -12 (-5 *2 (-966 (-930 *3) (-1070 (-930 *3)))) (-5 *1 (-930 *3)) (-4 *3 (-13 (-748) (-308) (-926))))) (-3164 (*1 *2 *1 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-930 *3)) (-4 *3 (-13 (-748) (-308) (-926)))))) -((-3033 (((-2 (|:| -3246 |#2|) (|:| -2493 (-578 |#1|))) |#2| (-578 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-931 |#1| |#2|) (-10 -7 (-15 -3033 (|#2| |#2| |#1|)) (-15 -3033 ((-2 (|:| -3246 |#2|) (|:| -2493 (-578 |#1|))) |#2| (-578 |#1|)))) (-308) (-595 |#1|)) (T -931)) -((-3033 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 (-2 (|:| -3246 *3) (|:| -2493 (-578 *5)))) (-5 *1 (-931 *5 *3)) (-5 *4 (-578 *5)) (-4 *3 (-595 *5)))) (-3033 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-931 *3 *2)) (-4 *2 (-595 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3034 ((|#1| $ |#1|) 12 T ELT)) (-3036 (($ |#1|) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3035 ((|#1| $) 11 T ELT)) (-3922 (((-765) $) 17 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 9 T ELT))) -(((-932 |#1|) (-13 (-1003) (-10 -8 (-15 -3036 ($ |#1|)) (-15 -3035 (|#1| $)) (-15 -3034 (|#1| $ |#1|)) (-15 -3037 ((-83) $ $)))) (-1114)) (T -932)) -((-3037 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-932 *3)) (-4 *3 (-1114)))) (-3036 (*1 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1114)))) (-3035 (*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1114)))) (-3034 (*1 *2 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1114))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |#4|)))) (-578 |#4|)) NIL T ELT)) (-3658 (((-578 $) (-578 |#4|)) 114 T ELT) (((-578 $) (-578 |#4|) (-83)) 115 T ELT) (((-578 $) (-578 |#4|) (-83) (-83)) 113 T ELT) (((-578 $) (-578 |#4|) (-83) (-83) (-83) (-83)) 116 T ELT)) (-3063 (((-578 |#3|) $) NIL T ELT)) (-2889 (((-83) $) NIL T ELT)) (-2880 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3669 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3664 ((|#4| |#4| $) NIL T ELT)) (-3751 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| $) 108 T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3686 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3700 (($) NIL T CONST)) (-2885 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3665 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ #1#) (-578 |#4|)) NIL T ELT)) (-3137 (($ (-578 |#4|)) NIL T ELT)) (-3775 (((-3 $ #1#) $) 45 T ELT)) (-3661 ((|#4| |#4| $) 66 T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-3383 (($ |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-489)) ELT)) (-3670 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3659 ((|#4| |#4| $) NIL T ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3971)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#4|)) (|:| -1685 (-578 |#4|))) $) NIL T ELT)) (-3179 (((-83) |#4| $) NIL T ELT)) (-3177 (((-83) |#4| $) NIL T ELT)) (-3180 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3415 (((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-83) (-83)) 129 T ELT)) (-2870 (((-578 |#4|) $) 18 (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3161 ((|#3| $) 38 T ELT)) (-2588 (((-578 |#4|) $) 19 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2895 (((-578 |#3|) $) NIL T ELT)) (-2894 (((-83) |#3| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3173 (((-3 |#4| (-578 $)) |#4| |#4| $) NIL T ELT)) (-3172 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| |#4| $) 106 T ELT)) (-3774 (((-3 |#4| #1#) $) 42 T ELT)) (-3174 (((-578 $) |#4| $) 89 T ELT)) (-3176 (((-3 (-83) (-578 $)) |#4| $) NIL T ELT)) (-3175 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 $))) |#4| $) 99 T ELT) (((-83) |#4| $) 61 T ELT)) (-3218 (((-578 $) |#4| $) 111 T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) 112 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT)) (-3416 (((-578 $) (-578 |#4|) (-83) (-83) (-83)) 124 T ELT)) (-3417 (($ |#4| $) 78 T ELT) (($ (-578 |#4|) $) 79 T ELT) (((-578 $) |#4| $ (-83) (-83) (-83) (-83) (-83)) 75 T ELT)) (-3673 (((-578 |#4|) $) NIL T ELT)) (-3667 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3662 ((|#4| |#4| $) NIL T ELT)) (-3675 (((-83) $ $) NIL T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3668 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3663 ((|#4| |#4| $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 (((-3 |#4| #1#) $) 40 T ELT)) (-1337 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3655 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3745 (($ $ |#4|) NIL T ELT) (((-578 $) |#4| $) 91 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) 85 T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 17 T ELT)) (-3541 (($) 14 T ELT)) (-3924 (((-687) $) NIL T ELT)) (-1929 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 13 T ELT)) (-3948 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) 22 T ELT)) (-2891 (($ $ |#3|) 49 T ELT)) (-2893 (($ $ |#3|) 51 T ELT)) (-3660 (($ $) NIL T ELT)) (-2892 (($ $ |#3|) NIL T ELT)) (-3922 (((-765) $) 35 T ELT) (((-578 |#4|) $) 46 T ELT)) (-3654 (((-687) $) NIL (|has| |#3| (-313)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3666 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) NIL T ELT)) (-3171 (((-578 $) |#4| $) 88 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 |#3|) $) NIL T ELT)) (-3178 (((-83) |#4| $) NIL T ELT)) (-3909 (((-83) |#3| $) 62 T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-933 |#1| |#2| |#3| |#4|) (-13 (-975 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3417 ((-578 $) |#4| $ (-83) (-83) (-83) (-83) (-83))) (-15 -3658 ((-578 $) (-578 |#4|) (-83) (-83))) (-15 -3658 ((-578 $) (-578 |#4|) (-83) (-83) (-83) (-83))) (-15 -3416 ((-578 $) (-578 |#4|) (-83) (-83) (-83))) (-15 -3415 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-83) (-83))))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -933)) -((-3417 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *3))) (-5 *1 (-933 *5 *6 *7 *3)) (-4 *3 (-969 *5 *6 *7)))) (-3658 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) (-5 *1 (-933 *5 *6 *7 *8)))) (-3658 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) (-5 *1 (-933 *5 *6 *7 *8)))) (-3416 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) (-5 *1 (-933 *5 *6 *7 *8)))) (-3415 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-933 *5 *6 *7 *8))))) (-5 *1 (-933 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) -((-3038 (((-578 (-2 (|:| |radval| (-261 (-478))) (|:| |radmult| (-478)) (|:| |radvect| (-578 (-625 (-261 (-478))))))) (-625 (-343 (-850 (-478))))) 67 T ELT)) (-3039 (((-578 (-625 (-261 (-478)))) (-261 (-478)) (-625 (-343 (-850 (-478))))) 52 T ELT)) (-3040 (((-578 (-261 (-478))) (-625 (-343 (-850 (-478))))) 45 T ELT)) (-3044 (((-578 (-625 (-261 (-478)))) (-625 (-343 (-850 (-478))))) 85 T ELT)) (-3042 (((-625 (-261 (-478))) (-625 (-261 (-478)))) 38 T ELT)) (-3043 (((-578 (-625 (-261 (-478)))) (-578 (-625 (-261 (-478))))) 74 T ELT)) (-3041 (((-3 (-625 (-261 (-478))) "failed") (-625 (-343 (-850 (-478))))) 82 T ELT))) -(((-934) (-10 -7 (-15 -3038 ((-578 (-2 (|:| |radval| (-261 (-478))) (|:| |radmult| (-478)) (|:| |radvect| (-578 (-625 (-261 (-478))))))) (-625 (-343 (-850 (-478)))))) (-15 -3039 ((-578 (-625 (-261 (-478)))) (-261 (-478)) (-625 (-343 (-850 (-478)))))) (-15 -3040 ((-578 (-261 (-478))) (-625 (-343 (-850 (-478)))))) (-15 -3041 ((-3 (-625 (-261 (-478))) "failed") (-625 (-343 (-850 (-478)))))) (-15 -3042 ((-625 (-261 (-478))) (-625 (-261 (-478))))) (-15 -3043 ((-578 (-625 (-261 (-478)))) (-578 (-625 (-261 (-478)))))) (-15 -3044 ((-578 (-625 (-261 (-478)))) (-625 (-343 (-850 (-478)))))))) (T -934)) -((-3044 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-625 (-261 (-478))))) (-5 *1 (-934)))) (-3043 (*1 *2 *2) (-12 (-5 *2 (-578 (-625 (-261 (-478))))) (-5 *1 (-934)))) (-3042 (*1 *2 *2) (-12 (-5 *2 (-625 (-261 (-478)))) (-5 *1 (-934)))) (-3041 (*1 *2 *3) (|partial| -12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-625 (-261 (-478)))) (-5 *1 (-934)))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-261 (-478)))) (-5 *1 (-934)))) (-3039 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-625 (-261 (-478))))) (-5 *1 (-934)) (-5 *3 (-261 (-478))))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-2 (|:| |radval| (-261 (-478))) (|:| |radmult| (-478)) (|:| |radvect| (-578 (-625 (-261 (-478)))))))) (-5 *1 (-934))))) -((-3048 (((-578 (-625 |#1|)) (-578 (-625 |#1|))) 69 T ELT) (((-625 |#1|) (-625 |#1|)) 68 T ELT) (((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-578 (-625 |#1|))) 67 T ELT) (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 64 T ELT)) (-3047 (((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-823)) 62 T ELT) (((-625 |#1|) (-625 |#1|) (-823)) 61 T ELT)) (-3049 (((-578 (-625 (-478))) (-578 (-578 (-478)))) 80 T ELT) (((-578 (-625 (-478))) (-578 (-806 (-478))) (-478)) 79 T ELT) (((-625 (-478)) (-578 (-478))) 76 T ELT) (((-625 (-478)) (-806 (-478)) (-478)) 74 T ELT)) (-3046 (((-625 (-850 |#1|)) (-687)) 94 T ELT)) (-3045 (((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-823)) 48 (|has| |#1| (-6 (-3973 #1="*"))) ELT) (((-625 |#1|) (-625 |#1|) (-823)) 46 (|has| |#1| (-6 (-3973 #1#))) ELT))) -(((-935 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3973 #1="*"))) (-15 -3045 ((-625 |#1|) (-625 |#1|) (-823))) |%noBranch|) (IF (|has| |#1| (-6 (-3973 #1#))) (-15 -3045 ((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-823))) |%noBranch|) (-15 -3046 ((-625 (-850 |#1|)) (-687))) (-15 -3047 ((-625 |#1|) (-625 |#1|) (-823))) (-15 -3047 ((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-823))) (-15 -3048 ((-625 |#1|) (-625 |#1|) (-625 |#1|))) (-15 -3048 ((-578 (-625 |#1|)) (-578 (-625 |#1|)) (-578 (-625 |#1|)))) (-15 -3048 ((-625 |#1|) (-625 |#1|))) (-15 -3048 ((-578 (-625 |#1|)) (-578 (-625 |#1|)))) (-15 -3049 ((-625 (-478)) (-806 (-478)) (-478))) (-15 -3049 ((-625 (-478)) (-578 (-478)))) (-15 -3049 ((-578 (-625 (-478))) (-578 (-806 (-478))) (-478))) (-15 -3049 ((-578 (-625 (-478))) (-578 (-578 (-478)))))) (-954)) (T -935)) -((-3049 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-478)))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-935 *4)) (-4 *4 (-954)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-806 (-478)))) (-5 *4 (-478)) (-5 *2 (-578 (-625 *4))) (-5 *1 (-935 *5)) (-4 *5 (-954)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-935 *4)) (-4 *4 (-954)))) (-3049 (*1 *2 *3 *4) (-12 (-5 *3 (-806 (-478))) (-5 *4 (-478)) (-5 *2 (-625 *4)) (-5 *1 (-935 *5)) (-4 *5 (-954)))) (-3048 (*1 *2 *2) (-12 (-5 *2 (-578 (-625 *3))) (-4 *3 (-954)) (-5 *1 (-935 *3)))) (-3048 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-935 *3)))) (-3048 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-625 *3))) (-4 *3 (-954)) (-5 *1 (-935 *3)))) (-3048 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-935 *3)))) (-3047 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-625 *4))) (-5 *3 (-823)) (-4 *4 (-954)) (-5 *1 (-935 *4)))) (-3047 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-823)) (-4 *4 (-954)) (-5 *1 (-935 *4)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-625 (-850 *4))) (-5 *1 (-935 *4)) (-4 *4 (-954)))) (-3045 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-625 *4))) (-5 *3 (-823)) (|has| *4 (-6 (-3973 "*"))) (-4 *4 (-954)) (-5 *1 (-935 *4)))) (-3045 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-823)) (|has| *4 (-6 (-3973 "*"))) (-4 *4 (-954)) (-5 *1 (-935 *4))))) -((-3053 (((-625 |#1|) (-578 (-625 |#1|)) (-1164 |#1|)) 69 (|has| |#1| (-254)) ELT)) (-3395 (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-1164 (-1164 |#1|))) 107 (|has| |#1| (-308)) ELT) (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-1164 |#1|)) 104 (|has| |#1| (-308)) ELT)) (-3057 (((-1164 |#1|) (-578 (-1164 |#1|)) (-478)) 113 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT)) (-3056 (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-823)) 119 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT) (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-83)) 118 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT) (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|))) 117 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT) (((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-83) (-478) (-478)) 116 (-12 (|has| |#1| (-308)) (|has| |#1| (-313))) ELT)) (-3055 (((-83) (-578 (-625 |#1|))) 101 (|has| |#1| (-308)) ELT) (((-83) (-578 (-625 |#1|)) (-478)) 100 (|has| |#1| (-308)) ELT)) (-3052 (((-1164 (-1164 |#1|)) (-578 (-625 |#1|)) (-1164 |#1|)) 66 (|has| |#1| (-254)) ELT)) (-3051 (((-625 |#1|) (-578 (-625 |#1|)) (-625 |#1|)) 46 T ELT)) (-3050 (((-625 |#1|) (-1164 (-1164 |#1|))) 39 T ELT)) (-3054 (((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)) (-478)) 93 (|has| |#1| (-308)) ELT) (((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|))) 92 (|has| |#1| (-308)) ELT) (((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)) (-83) (-478)) 91 (|has| |#1| (-308)) ELT))) -(((-936 |#1|) (-10 -7 (-15 -3050 ((-625 |#1|) (-1164 (-1164 |#1|)))) (-15 -3051 ((-625 |#1|) (-578 (-625 |#1|)) (-625 |#1|))) (IF (|has| |#1| (-254)) (PROGN (-15 -3052 ((-1164 (-1164 |#1|)) (-578 (-625 |#1|)) (-1164 |#1|))) (-15 -3053 ((-625 |#1|) (-578 (-625 |#1|)) (-1164 |#1|)))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3054 ((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)) (-83) (-478))) (-15 -3054 ((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)))) (-15 -3054 ((-625 |#1|) (-578 (-625 |#1|)) (-578 (-625 |#1|)) (-478))) (-15 -3055 ((-83) (-578 (-625 |#1|)) (-478))) (-15 -3055 ((-83) (-578 (-625 |#1|)))) (-15 -3395 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-1164 |#1|))) (-15 -3395 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-1164 (-1164 |#1|))))) |%noBranch|) (IF (|has| |#1| (-313)) (IF (|has| |#1| (-308)) (PROGN (-15 -3056 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-83) (-478) (-478))) (-15 -3056 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)))) (-15 -3056 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-83))) (-15 -3056 ((-578 (-578 (-625 |#1|))) (-578 (-625 |#1|)) (-823))) (-15 -3057 ((-1164 |#1|) (-578 (-1164 |#1|)) (-478)))) |%noBranch|) |%noBranch|)) (-954)) (T -936)) -((-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1164 *5))) (-5 *4 (-478)) (-5 *2 (-1164 *5)) (-5 *1 (-936 *5)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)) (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)) (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *4 (-313)) (-4 *4 (-954)) (-5 *2 (-578 (-578 (-625 *4)))) (-5 *1 (-936 *4)) (-5 *3 (-578 (-625 *4))))) (-3056 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-83)) (-5 *5 (-478)) (-4 *6 (-308)) (-4 *6 (-313)) (-4 *6 (-954)) (-5 *2 (-578 (-578 (-625 *6)))) (-5 *1 (-936 *6)) (-5 *3 (-578 (-625 *6))))) (-3395 (*1 *2 *3 *4) (-12 (-5 *4 (-1164 (-1164 *5))) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) (-3395 (*1 *2 *3 *4) (-12 (-5 *4 (-1164 *5)) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-578 (-625 *4))) (-4 *4 (-308)) (-4 *4 (-954)) (-5 *2 (-83)) (-5 *1 (-936 *4)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-478)) (-4 *5 (-308)) (-4 *5 (-954)) (-5 *2 (-83)) (-5 *1 (-936 *5)))) (-3054 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-478)) (-5 *2 (-625 *5)) (-5 *1 (-936 *5)) (-4 *5 (-308)) (-4 *5 (-954)))) (-3054 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-625 *4))) (-5 *2 (-625 *4)) (-5 *1 (-936 *4)) (-4 *4 (-308)) (-4 *4 (-954)))) (-3054 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-625 *6))) (-5 *4 (-83)) (-5 *5 (-478)) (-5 *2 (-625 *6)) (-5 *1 (-936 *6)) (-4 *6 (-308)) (-4 *6 (-954)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-1164 *5)) (-4 *5 (-254)) (-4 *5 (-954)) (-5 *2 (-625 *5)) (-5 *1 (-936 *5)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-625 *5))) (-4 *5 (-254)) (-4 *5 (-954)) (-5 *2 (-1164 (-1164 *5))) (-5 *1 (-936 *5)) (-5 *4 (-1164 *5)))) (-3051 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-954)) (-5 *1 (-936 *4)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-1164 (-1164 *4))) (-4 *4 (-954)) (-5 *2 (-625 *4)) (-5 *1 (-936 *4))))) -((-3058 ((|#1| (-823) |#1|) 18 T ELT))) -(((-937 |#1|) (-10 -7 (-15 -3058 (|#1| (-823) |#1|))) (-13 (-1003) (-10 -8 (-15 -3815 ($ $ $))))) (T -937)) -((-3058 (*1 *2 *3 *2) (-12 (-5 *3 (-823)) (-5 *1 (-937 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -3815 ($ $ $)))))))) -((-3059 ((|#1| |#1| (-823)) 18 T ELT))) -(((-938 |#1|) (-10 -7 (-15 -3059 (|#1| |#1| (-823)))) (-13 (-1003) (-10 -8 (-15 * ($ $ $))))) (T -938)) -((-3059 (*1 *2 *2 *3) (-12 (-5 *3 (-823)) (-5 *1 (-938 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $)))))))) -((-3922 ((|#1| (-258)) 11 T ELT) (((-1170) |#1|) 9 T ELT))) -(((-939 |#1|) (-10 -7 (-15 -3922 ((-1170) |#1|)) (-15 -3922 (|#1| (-258)))) (-1114)) (T -939)) -((-3922 (*1 *2 *3) (-12 (-5 *3 (-258)) (-5 *1 (-939 *2)) (-4 *2 (-1114)))) (-3922 (*1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-939 *3)) (-4 *3 (-1114))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3818 (($ |#4|) 24 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3060 ((|#4| $) 26 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 45 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3107 (((-687)) 42 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 21 T CONST)) (-2647 (($) 22 T CONST)) (-3037 (((-83) $ $) 39 T ELT)) (-3813 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 28 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) -(((-940 |#1| |#2| |#3| |#4| |#5|) (-13 (-144) (-38 |#1|) (-10 -8 (-15 -3818 ($ |#4|)) (-15 -3922 ($ |#4|)) (-15 -3060 (|#4| $)))) (-308) (-710) (-749) (-854 |#1| |#2| |#3|) (-578 |#4|)) (T -940)) -((-3818 (*1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *2 (-854 *3 *4 *5)) (-14 *6 (-578 *2)))) (-3922 (*1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *2 (-854 *3 *4 *5)) (-14 *6 (-578 *2)))) (-3060 (*1 *2 *1) (-12 (-4 *2 (-854 *3 *4 *5)) (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-14 *6 (-578 *2))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3061 (((-1035) $) 11 T ELT)) (-3922 (((-765) $) 17 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-941) (-13 (-986) (-10 -8 (-15 -3061 ((-1035) $))))) (T -941)) -((-3061 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-941))))) -((-3137 ((|#2| $) 10 T ELT))) -(((-942 |#1| |#2|) (-10 -7 (-15 -3137 (|#2| |#1|))) (-943 |#2|) (-1114)) (T -942)) -NIL -((-3138 (((-3 |#1| "failed") $) 9 T ELT)) (-3137 ((|#1| $) 8 T ELT)) (-3922 (($ |#1|) 6 T ELT))) -(((-943 |#1|) (-111) (-1114)) (T -943)) -((-3138 (*1 *2 *1) (|partial| -12 (-4 *1 (-943 *2)) (-4 *2 (-1114)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-943 *2)) (-4 *2 (-1114))))) -(-13 (-550 |t#1|) (-10 -8 (-15 -3138 ((-3 |t#1| "failed") $)) (-15 -3137 (|t#1| $)))) -(((-550 |#1|) . T)) -((-3062 (((-578 (-578 (-245 (-343 (-850 |#2|))))) (-578 (-850 |#2|)) (-578 (-1075))) 38 T ELT))) -(((-944 |#1| |#2|) (-10 -7 (-15 -3062 ((-578 (-578 (-245 (-343 (-850 |#2|))))) (-578 (-850 |#2|)) (-578 (-1075))))) (-489) (-13 (-489) (-943 |#1|))) (T -944)) -((-3062 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1075))) (-4 *6 (-13 (-489) (-943 *5))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *6)))))) (-5 *1 (-944 *5 *6))))) -((-3063 (((-578 (-1075)) (-343 (-850 |#1|))) 17 T ELT)) (-3065 (((-343 (-1070 (-343 (-850 |#1|)))) (-343 (-850 |#1|)) (-1075)) 24 T ELT)) (-3066 (((-343 (-850 |#1|)) (-343 (-1070 (-343 (-850 |#1|)))) (-1075)) 26 T ELT)) (-3064 (((-3 (-1075) "failed") (-343 (-850 |#1|))) 20 T ELT)) (-3744 (((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-578 (-245 (-343 (-850 |#1|))))) 32 T ELT) (((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|)))) 33 T ELT) (((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-578 (-1075)) (-578 (-343 (-850 |#1|)))) 28 T ELT) (((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-1075) (-343 (-850 |#1|))) 29 T ELT)) (-3922 (((-343 (-850 |#1|)) |#1|) 11 T ELT))) -(((-945 |#1|) (-10 -7 (-15 -3063 ((-578 (-1075)) (-343 (-850 |#1|)))) (-15 -3064 ((-3 (-1075) "failed") (-343 (-850 |#1|)))) (-15 -3065 ((-343 (-1070 (-343 (-850 |#1|)))) (-343 (-850 |#1|)) (-1075))) (-15 -3066 ((-343 (-850 |#1|)) (-343 (-1070 (-343 (-850 |#1|)))) (-1075))) (-15 -3744 ((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-1075) (-343 (-850 |#1|)))) (-15 -3744 ((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-578 (-1075)) (-578 (-343 (-850 |#1|))))) (-15 -3744 ((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-245 (-343 (-850 |#1|))))) (-15 -3744 ((-343 (-850 |#1|)) (-343 (-850 |#1|)) (-578 (-245 (-343 (-850 |#1|)))))) (-15 -3922 ((-343 (-850 |#1|)) |#1|))) (-489)) (T -945)) -((-3922 (*1 *2 *3) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-945 *3)) (-4 *3 (-489)))) (-3744 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-245 (-343 (-850 *4))))) (-5 *2 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *1 (-945 *4)))) (-3744 (*1 *2 *2 *3) (-12 (-5 *3 (-245 (-343 (-850 *4)))) (-5 *2 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *1 (-945 *4)))) (-3744 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-1075))) (-5 *4 (-578 (-343 (-850 *5)))) (-5 *2 (-343 (-850 *5))) (-4 *5 (-489)) (-5 *1 (-945 *5)))) (-3744 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-343 (-850 *4))) (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *1 (-945 *4)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-1070 (-343 (-850 *5))))) (-5 *4 (-1075)) (-5 *2 (-343 (-850 *5))) (-5 *1 (-945 *5)) (-4 *5 (-489)))) (-3065 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-489)) (-5 *2 (-343 (-1070 (-343 (-850 *5))))) (-5 *1 (-945 *5)) (-5 *3 (-343 (-850 *5))))) (-3064 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-1075)) (-5 *1 (-945 *4)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-578 (-1075))) (-5 *1 (-945 *4))))) -((-3067 (((-323)) 17 T ELT)) (-3082 (((-1 (-323)) (-323) (-323)) 22 T ELT)) (-3075 (((-1 (-323)) (-687)) 48 T ELT)) (-3068 (((-323)) 37 T ELT)) (-3071 (((-1 (-323)) (-323) (-323)) 38 T ELT)) (-3069 (((-323)) 29 T ELT)) (-3072 (((-1 (-323)) (-323)) 30 T ELT)) (-3070 (((-323) (-687)) 43 T ELT)) (-3073 (((-1 (-323)) (-687)) 44 T ELT)) (-3074 (((-1 (-323)) (-687) (-687)) 47 T ELT)) (-3361 (((-1 (-323)) (-687) (-687)) 45 T ELT))) -(((-946) (-10 -7 (-15 -3067 ((-323))) (-15 -3068 ((-323))) (-15 -3069 ((-323))) (-15 -3070 ((-323) (-687))) (-15 -3082 ((-1 (-323)) (-323) (-323))) (-15 -3071 ((-1 (-323)) (-323) (-323))) (-15 -3072 ((-1 (-323)) (-323))) (-15 -3073 ((-1 (-323)) (-687))) (-15 -3361 ((-1 (-323)) (-687) (-687))) (-15 -3074 ((-1 (-323)) (-687) (-687))) (-15 -3075 ((-1 (-323)) (-687))))) (T -946)) -((-3075 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) (-3074 (*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) (-3361 (*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) (-3072 (*1 *2 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323)))) (-3071 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323)))) (-3082 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-323)) (-5 *1 (-946)))) (-3069 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946)))) (-3068 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946)))) (-3067 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946))))) -((-3708 (((-341 |#1|) |#1|) 33 T ELT))) -(((-947 |#1|) (-10 -7 (-15 -3708 ((-341 |#1|) |#1|))) (-1140 (-343 (-850 (-478))))) (T -947)) -((-3708 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-947 *3)) (-4 *3 (-1140 (-343 (-850 (-478)))))))) -((-3076 (((-343 (-341 (-850 |#1|))) (-343 (-850 |#1|))) 14 T ELT))) -(((-948 |#1|) (-10 -7 (-15 -3076 ((-343 (-341 (-850 |#1|))) (-343 (-850 |#1|))))) (-254)) (T -948)) -((-3076 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-254)) (-5 *2 (-343 (-341 (-850 *4)))) (-5 *1 (-948 *4))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3700 (($) 22 T CONST)) (-3080 ((|#1| $) 28 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3079 ((|#1| $) 27 T ELT)) (-3077 ((|#1|) 25 T CONST)) (-3922 (((-765) $) 13 T ELT)) (-3078 ((|#1| $) 26 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT))) -(((-949 |#1|) (-111) (-23)) (T -949)) -((-3080 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23)))) (-3079 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23)))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23)))) (-3077 (*1 *2) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3080 (|t#1| $)) (-15 -3079 (|t#1| $)) (-15 -3078 (|t#1| $)) (-15 -3077 (|t#1|) -3928))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3081 (($) 30 T CONST)) (-3700 (($) 22 T CONST)) (-3080 ((|#1| $) 28 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3079 ((|#1| $) 27 T ELT)) (-3077 ((|#1|) 25 T CONST)) (-3922 (((-765) $) 13 T ELT)) (-3078 ((|#1| $) 26 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT))) +((-2540 (((-628 (-1128)) $ (-1128)) NIL T ELT)) (-2541 (((-628 (-483)) $ (-483)) NIL T ELT)) (-2539 (((-688) $ (-100)) NIL T ELT)) (-2542 (((-628 (-99)) $ (-99)) 22 T ELT)) (-2544 (($ (-332)) 12 T ELT) (($ (-1063)) 14 T ELT)) (-2543 (((-83) $) 19 T ELT)) (-3928 (((-766) $) 26 T ELT)) (-1688 (($ $) 23 T ELT))) +(((-765) (-13 (-764) (-548 (-766)) (-10 -8 (-15 -2544 ($ (-332))) (-15 -2544 ($ (-1063))) (-15 -2543 ((-83) $))))) (T -765)) +((-2544 (*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-765)))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-765)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-765))))) +((-2553 (((-83) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2574 (($ $ $) 125 T ELT)) (-2589 (((-479) $) 31 T ELT) (((-479)) 36 T ELT)) (-2584 (($ (-479)) 53 T ELT)) (-2581 (($ $ $) 54 T ELT) (($ (-579 $)) 84 T ELT)) (-2565 (($ $ (-579 $)) 82 T ELT)) (-2586 (((-479) $) 34 T ELT)) (-2568 (($ $ $) 73 T ELT)) (-3514 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2587 (((-479) $) 33 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-3517 (($ $) 114 T ELT)) (-2572 (($ $ $) 129 T ELT)) (-2555 (($ (-579 $)) 61 T ELT)) (-3522 (($ $ (-579 $)) 79 T ELT)) (-2583 (($ (-479) (-479)) 55 T ELT)) (-2596 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3121 (($ $ (-479)) 43 T ELT) (($ $) 46 T ELT)) (-2549 (($ $ $) 97 T ELT)) (-2570 (($ $ $) 132 T ELT)) (-2564 (($ $) 115 T ELT)) (-2548 (($ $ $) 98 T ELT)) (-2560 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2822 (((-1175) $) 10 T ELT)) (-2563 (($ $) 118 T ELT) (($ $ (-688)) 122 T ELT)) (-2566 (($ $ $) 75 T ELT)) (-2567 (($ $ $) 74 T ELT)) (-2580 (($ $ (-579 $)) 110 T ELT)) (-2578 (($ $ $) 113 T ELT)) (-2557 (($ (-579 $)) 59 T ELT)) (-2558 (($ $) 70 T ELT) (($ (-579 $)) 71 T ELT)) (-2561 (($ $ $) 123 T ELT)) (-2562 (($ $) 116 T ELT)) (-2573 (($ $ $) 128 T ELT)) (-3515 (($ (-479)) 21 T ELT) (($ (-1080)) 23 T ELT) (($ (-1063)) 30 T ELT) (($ (-177)) 25 T ELT)) (-2546 (($ $ $) 101 T ELT)) (-2545 (($ $) 102 T ELT)) (-2591 (((-1175) (-1063)) 15 T ELT)) (-2592 (($ (-1063)) 14 T ELT)) (-3108 (($ (-579 (-579 $))) 58 T ELT)) (-3122 (($ $ (-479)) 42 T ELT) (($ $) 45 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2576 (($ $ $) 131 T ELT)) (-3452 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2577 (((-83) $) 108 T ELT)) (-2579 (($ $ (-579 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2585 (($ (-479)) 39 T ELT)) (-2588 (((-479) $) 32 T ELT) (((-479)) 35 T ELT)) (-2582 (($ $ $) 40 T ELT) (($ (-579 $)) 83 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3448 (($ $ $) 99 T ELT)) (-3547 (($) 13 T ELT)) (-3782 (($ $ (-579 $)) 109 T ELT)) (-2590 (((-1063) (-1063)) 8 T ELT)) (-3818 (($ $) 117 T ELT) (($ $ (-688)) 121 T ELT)) (-2550 (($ $ $) 96 T ELT)) (-3740 (($ $ (-688)) 139 T ELT)) (-2556 (($ (-579 $)) 60 T ELT)) (-3928 (((-766) $) 19 T ELT)) (-3755 (($ $ (-479)) 41 T ELT) (($ $) 44 T ELT)) (-2559 (($ $) 68 T ELT) (($ (-579 $)) 69 T ELT)) (-3224 (($ $) 66 T ELT) (($ (-579 $)) 67 T ELT)) (-2575 (($ $) 124 T ELT)) (-2554 (($ (-579 $)) 65 T ELT)) (-3086 (($ $ $) 105 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2571 (($ $ $) 130 T ELT)) (-2547 (($ $ $) 100 T ELT)) (-3719 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2551 (($ $ $) 89 T ELT)) (-2552 (($ $ $) 87 T ELT)) (-3041 (((-83) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2669 (($ $ $) 88 T ELT)) (-2670 (($ $ $) 86 T ELT)) (-3931 (($ $ $) 94 T ELT)) (-3819 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3821 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-766) (-13 (-1006) (-10 -8 (-15 -2822 ((-1175) $)) (-15 -2592 ($ (-1063))) (-15 -2591 ((-1175) (-1063))) (-15 -3515 ($ (-479))) (-15 -3515 ($ (-1080))) (-15 -3515 ($ (-1063))) (-15 -3515 ($ (-177))) (-15 -3547 ($)) (-15 -2590 ((-1063) (-1063))) (-15 -2589 ((-479) $)) (-15 -2588 ((-479) $)) (-15 -2589 ((-479))) (-15 -2588 ((-479))) (-15 -2587 ((-479) $)) (-15 -2586 ((-479) $)) (-15 -2585 ($ (-479))) (-15 -2584 ($ (-479))) (-15 -2583 ($ (-479) (-479))) (-15 -3122 ($ $ (-479))) (-15 -3121 ($ $ (-479))) (-15 -3755 ($ $ (-479))) (-15 -3122 ($ $)) (-15 -3121 ($ $)) (-15 -3755 ($ $)) (-15 -2582 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -2582 ($ (-579 $))) (-15 -2581 ($ (-579 $))) (-15 -2580 ($ $ (-579 $))) (-15 -2579 ($ $ (-579 $))) (-15 -2579 ($ $ $ $)) (-15 -2578 ($ $ $)) (-15 -2577 ((-83) $)) (-15 -3782 ($ $ (-579 $))) (-15 -3517 ($ $)) (-15 -2576 ($ $ $)) (-15 -2575 ($ $)) (-15 -3108 ($ (-579 (-579 $)))) (-15 -2574 ($ $ $)) (-15 -2596 ($ $)) (-15 -2596 ($ $ $)) (-15 -2573 ($ $ $)) (-15 -2572 ($ $ $)) (-15 -2571 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -3740 ($ $ (-688))) (-15 -3086 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -3522 ($ $ (-579 $))) (-15 -2565 ($ $ (-579 $))) (-15 -2564 ($ $)) (-15 -3818 ($ $)) (-15 -3818 ($ $ (-688))) (-15 -2563 ($ $)) (-15 -2563 ($ $ (-688))) (-15 -2562 ($ $)) (-15 -2561 ($ $ $)) (-15 -3514 ($ $)) (-15 -3514 ($ $ $)) (-15 -3514 ($ $ $ $)) (-15 -2560 ($ $)) (-15 -2560 ($ $ $)) (-15 -2560 ($ $ $ $)) (-15 -3452 ($ $)) (-15 -3452 ($ $ $)) (-15 -3452 ($ $ $ $)) (-15 -3224 ($ $)) (-15 -3224 ($ (-579 $))) (-15 -2559 ($ $)) (-15 -2559 ($ (-579 $))) (-15 -2558 ($ $)) (-15 -2558 ($ (-579 $))) (-15 -2557 ($ (-579 $))) (-15 -2556 ($ (-579 $))) (-15 -2555 ($ (-579 $))) (-15 -2554 ($ (-579 $))) (-15 -3041 ($ $ $)) (-15 -2553 ($ $ $)) (-15 -2670 ($ $ $)) (-15 -2552 ($ $ $)) (-15 -2669 ($ $ $)) (-15 -2551 ($ $ $)) (-15 -3821 ($ $ $)) (-15 -3819 ($ $ $)) (-15 -3819 ($ $)) (-15 * ($ $ $)) (-15 -3931 ($ $ $)) (-15 ** ($ $ $)) (-15 -2550 ($ $ $)) (-15 -2549 ($ $ $)) (-15 -2548 ($ $ $)) (-15 -3448 ($ $ $)) (-15 -2547 ($ $ $)) (-15 -2546 ($ $ $)) (-15 -2545 ($ $)) (-15 -3719 ($ $ $)) (-15 -3719 ($ $))))) (T -766)) +((-2822 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-766)))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-766)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-766)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-766)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-766)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-766)))) (-3547 (*1 *1) (-5 *1 (-766))) (-2590 (*1 *2 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-766)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-2588 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-2589 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-2588 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-2587 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-2584 (*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-2583 (*1 *1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-3121 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-3755 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) (-3122 (*1 *1 *1) (-5 *1 (-766))) (-3121 (*1 *1 *1) (-5 *1 (-766))) (-3755 (*1 *1 *1) (-5 *1 (-766))) (-2582 (*1 *1 *1 *1) (-5 *1 (-766))) (-2581 (*1 *1 *1 *1) (-5 *1 (-766))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2581 (*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2580 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2579 (*1 *1 *1 *1 *1) (-5 *1 (-766))) (-2578 (*1 *1 *1 *1) (-5 *1 (-766))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-766)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-3517 (*1 *1 *1) (-5 *1 (-766))) (-2576 (*1 *1 *1 *1) (-5 *1 (-766))) (-2575 (*1 *1 *1) (-5 *1 (-766))) (-3108 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 (-766)))) (-5 *1 (-766)))) (-2574 (*1 *1 *1 *1) (-5 *1 (-766))) (-2596 (*1 *1 *1) (-5 *1 (-766))) (-2596 (*1 *1 *1 *1) (-5 *1 (-766))) (-2573 (*1 *1 *1 *1) (-5 *1 (-766))) (-2572 (*1 *1 *1 *1) (-5 *1 (-766))) (-2571 (*1 *1 *1 *1) (-5 *1 (-766))) (-2570 (*1 *1 *1 *1) (-5 *1 (-766))) (-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-766)))) (-3086 (*1 *1 *1 *1) (-5 *1 (-766))) (-2569 (*1 *1 *1 *1) (-5 *1 (-766))) (-2568 (*1 *1 *1 *1) (-5 *1 (-766))) (-2567 (*1 *1 *1 *1) (-5 *1 (-766))) (-2566 (*1 *1 *1 *1) (-5 *1 (-766))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2565 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2564 (*1 *1 *1) (-5 *1 (-766))) (-3818 (*1 *1 *1) (-5 *1 (-766))) (-3818 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-766)))) (-2563 (*1 *1 *1) (-5 *1 (-766))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-766)))) (-2562 (*1 *1 *1) (-5 *1 (-766))) (-2561 (*1 *1 *1 *1) (-5 *1 (-766))) (-3514 (*1 *1 *1) (-5 *1 (-766))) (-3514 (*1 *1 *1 *1) (-5 *1 (-766))) (-3514 (*1 *1 *1 *1 *1) (-5 *1 (-766))) (-2560 (*1 *1 *1) (-5 *1 (-766))) (-2560 (*1 *1 *1 *1) (-5 *1 (-766))) (-2560 (*1 *1 *1 *1 *1) (-5 *1 (-766))) (-3452 (*1 *1 *1) (-5 *1 (-766))) (-3452 (*1 *1 *1 *1) (-5 *1 (-766))) (-3452 (*1 *1 *1 *1 *1) (-5 *1 (-766))) (-3224 (*1 *1 *1) (-5 *1 (-766))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2559 (*1 *1 *1) (-5 *1 (-766))) (-2559 (*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2558 (*1 *1 *1) (-5 *1 (-766))) (-2558 (*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2556 (*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2555 (*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-2554 (*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) (-3041 (*1 *1 *1 *1) (-5 *1 (-766))) (-2553 (*1 *1 *1 *1) (-5 *1 (-766))) (-2670 (*1 *1 *1 *1) (-5 *1 (-766))) (-2552 (*1 *1 *1 *1) (-5 *1 (-766))) (-2669 (*1 *1 *1 *1) (-5 *1 (-766))) (-2551 (*1 *1 *1 *1) (-5 *1 (-766))) (-3821 (*1 *1 *1 *1) (-5 *1 (-766))) (-3819 (*1 *1 *1 *1) (-5 *1 (-766))) (-3819 (*1 *1 *1) (-5 *1 (-766))) (* (*1 *1 *1 *1) (-5 *1 (-766))) (-3931 (*1 *1 *1 *1) (-5 *1 (-766))) (** (*1 *1 *1 *1) (-5 *1 (-766))) (-2550 (*1 *1 *1 *1) (-5 *1 (-766))) (-2549 (*1 *1 *1 *1) (-5 *1 (-766))) (-2548 (*1 *1 *1 *1) (-5 *1 (-766))) (-3448 (*1 *1 *1 *1) (-5 *1 (-766))) (-2547 (*1 *1 *1 *1) (-5 *1 (-766))) (-2546 (*1 *1 *1 *1) (-5 *1 (-766))) (-2545 (*1 *1 *1) (-5 *1 (-766))) (-3719 (*1 *1 *1 *1) (-5 *1 (-766))) (-3719 (*1 *1 *1) (-5 *1 (-766)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3813 (((-3 $ "failed") (-1080)) 36 T ELT)) (-3120 (((-688)) 32 T ELT)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) 29 T ELT)) (-3226 (((-1063) $) 43 T ELT)) (-2387 (($ (-824)) 28 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3954 (((-1080) $) 13 T ELT) (((-468) $) 19 T ELT) (((-794 (-324)) $) 26 T ELT) (((-794 (-479)) $) 22 T ELT)) (-3928 (((-766) $) 16 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 40 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 38 T ELT))) +(((-767 |#1|) (-13 (-746) (-549 (-1080)) (-549 (-468)) (-549 (-794 (-324))) (-549 (-794 (-479))) (-10 -8 (-15 -3813 ((-3 $ "failed") (-1080))))) (-579 (-1080))) (T -767)) +((-3813 (*1 *1 *2) (|partial| -12 (-5 *2 (-1080)) (-5 *1 (-767 *3)) (-14 *3 (-579 *2))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3524 (((-440) $) 12 T ELT)) (-2593 (((-579 (-375)) $) 14 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 22 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 17 T ELT))) +(((-768) (-13 (-1006) (-10 -8 (-15 -3524 ((-440) $)) (-15 -2593 ((-579 (-375)) $))))) (T -768)) +((-3524 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-768)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-579 (-375))) (-5 *1 (-768))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-851 |#1|)) NIL T ELT) (((-851 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT)) (-3110 (((-688)) NIL T CONST)) (-3905 (((-1175) (-688)) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) +(((-769 |#1| |#2| |#3| |#4|) (-13 (-955) (-424 (-851 |#1|)) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3931 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3905 ((-1175) (-688))))) (-955) (-579 (-1080)) (-579 (-688)) (-688)) (T -769)) +((-3931 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-769 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *2 (-955)) (-14 *3 (-579 (-1080))) (-14 *4 (-579 (-688))) (-14 *5 (-688)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-769 *4 *5 *6 *7)) (-4 *4 (-955)) (-14 *5 (-579 (-1080))) (-14 *6 (-579 *3)) (-14 *7 *3)))) +((-2594 (((-3 (-146 |#3|) #1="failed") (-688) (-688) |#2| |#2|) 38 T ELT)) (-2595 (((-3 (-344 |#3|) #1#) (-688) (-688) |#2| |#2|) 29 T ELT))) +(((-770 |#1| |#2| |#3|) (-10 -7 (-15 -2595 ((-3 (-344 |#3|) #1="failed") (-688) (-688) |#2| |#2|)) (-15 -2594 ((-3 (-146 |#3|) #1#) (-688) (-688) |#2| |#2|))) (-308) (-1162 |#1|) (-1145 |#1|)) (T -770)) +((-2594 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-688)) (-4 *5 (-308)) (-5 *2 (-146 *6)) (-5 *1 (-770 *5 *4 *6)) (-4 *4 (-1162 *5)) (-4 *6 (-1145 *5)))) (-2595 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-688)) (-4 *5 (-308)) (-5 *2 (-344 *6)) (-5 *1 (-770 *5 *4 *6)) (-4 *4 (-1162 *5)) (-4 *6 (-1145 *5))))) +((-2595 (((-3 (-344 (-1138 |#2| |#1|)) #1="failed") (-688) (-688) (-1159 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-344 (-1138 |#2| |#1|)) #1#) (-688) (-688) (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) 28 T ELT))) +(((-771 |#1| |#2| |#3|) (-10 -7 (-15 -2595 ((-3 (-344 (-1138 |#2| |#1|)) #1="failed") (-688) (-688) (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|))) (-15 -2595 ((-3 (-344 (-1138 |#2| |#1|)) #1#) (-688) (-688) (-1159 |#1| |#2| |#3|)))) (-308) (-1080) |#1|) (T -771)) +((-2595 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-688)) (-5 *4 (-1159 *5 *6 *7)) (-4 *5 (-308)) (-14 *6 (-1080)) (-14 *7 *5) (-5 *2 (-344 (-1138 *6 *5))) (-5 *1 (-771 *5 *6 *7)))) (-2595 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-688)) (-5 *4 (-1159 *5 *6 *7)) (-4 *5 (-308)) (-14 *6 (-1080)) (-14 *7 *5) (-5 *2 (-344 (-1138 *6 *5))) (-5 *1 (-771 *5 *6 *7))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3022 (($ $ (-479)) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2596 (($ (-1075 (-479)) (-479)) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2597 (($ $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3754 (((-688) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2599 (((-479)) NIL T ELT)) (-2598 (((-479) $) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3751 (($ $ (-479)) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-2600 (((-1059 (-479)) $) NIL T ELT)) (-2876 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3752 (((-479) $ (-479)) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-772 |#1|) (-773 |#1|) (-479)) (T -772)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3022 (($ $ (-479)) 75 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3706 (($) 22 T CONST)) (-2596 (($ (-1075 (-479)) (-479)) 74 T ELT)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2597 (($ $) 77 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-3754 (((-688) $) 82 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 65 T ELT)) (-2599 (((-479)) 79 T ELT)) (-2598 (((-479) $) 78 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3751 (($ $ (-479)) 81 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-2600 (((-1059 (-479)) $) 83 T ELT)) (-2876 (($ $) 80 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-3752 (((-479) $ (-479)) 76 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-773 |#1|) (-111) (-479)) (T -773)) +((-2600 (*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-5 *2 (-1059 (-479))))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-5 *2 (-688)))) (-3751 (*1 *1 *1 *2) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479)))) (-2876 (*1 *1 *1) (-4 *1 (-773 *2))) (-2599 (*1 *2) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479)))) (-2598 (*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479)))) (-2597 (*1 *1 *1) (-4 *1 (-773 *2))) (-3752 (*1 *2 *1 *2) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479)))) (-3022 (*1 *1 *1 *2) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479)))) (-2596 (*1 *1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *3 (-479)) (-4 *1 (-773 *4))))) +(-13 (-254) (-118) (-10 -8 (-15 -2600 ((-1059 (-479)) $)) (-15 -3754 ((-688) $)) (-15 -3751 ($ $ (-479))) (-15 -2876 ($ $)) (-15 -2599 ((-479))) (-15 -2598 ((-479) $)) (-15 -2597 ($ $)) (-15 -3752 ((-479) $ (-479))) (-15 -3022 ($ $ (-479))) (-15 -2596 ($ (-1075 (-479)) (-479))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-242) . T) ((-254) . T) ((-386) . T) ((-490) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-578 $) . T) ((-650 $) . T) ((-659) . T) ((-826) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 (((-772 |#1|) $) NIL (|has| (-772 |#1|) (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-772 |#1|) (-815)) ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| (-772 |#1|) (-815)) ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| (-772 |#1|) (-734)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-772 |#1|) #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL (|has| (-772 |#1|) (-944 (-1080))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| (-772 |#1|) (-944 (-479))) ELT) (((-3 (-479) #1#) $) NIL (|has| (-772 |#1|) (-944 (-479))) ELT)) (-3140 (((-772 |#1|) $) NIL T ELT) (((-1080) $) NIL (|has| (-772 |#1|) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL (|has| (-772 |#1|) (-944 (-479))) ELT) (((-479) $) NIL (|has| (-772 |#1|) (-944 (-479))) ELT)) (-3712 (($ $) NIL T ELT) (($ (-479) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| (-772 |#1|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| (-772 |#1|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-772 |#1|))) (|:| |vec| (-1169 (-772 |#1|)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-772 |#1|)) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-772 |#1|) (-478)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| (-772 |#1|) (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| (-772 |#1|) (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| (-772 |#1|) (-790 (-324))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-772 |#1|) $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| (-772 |#1|) (-1056)) ELT)) (-3171 (((-83) $) NIL (|has| (-772 |#1|) (-734)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| (-772 |#1|) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-772 |#1|) (-750)) ELT)) (-3940 (($ (-1 (-772 |#1|) (-772 |#1|)) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| (-772 |#1|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| (-772 |#1|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-772 |#1|))) (|:| |vec| (-1169 (-772 |#1|)))) (-1169 $) $) NIL T ELT) (((-626 (-772 |#1|)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-772 |#1|) (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL (|has| (-772 |#1|) (-254)) ELT)) (-3114 (((-772 |#1|) $) NIL (|has| (-772 |#1|) (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-772 |#1|) (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-772 |#1|) (-815)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-3750 (($ $ (-579 (-772 |#1|)) (-579 (-772 |#1|))) NIL (|has| (-772 |#1|) (-256 (-772 |#1|))) ELT) (($ $ (-772 |#1|) (-772 |#1|)) NIL (|has| (-772 |#1|) (-256 (-772 |#1|))) ELT) (($ $ (-245 (-772 |#1|))) NIL (|has| (-772 |#1|) (-256 (-772 |#1|))) ELT) (($ $ (-579 (-245 (-772 |#1|)))) NIL (|has| (-772 |#1|) (-256 (-772 |#1|))) ELT) (($ $ (-579 (-1080)) (-579 (-772 |#1|))) NIL (|has| (-772 |#1|) (-448 (-1080) (-772 |#1|))) ELT) (($ $ (-1080) (-772 |#1|)) NIL (|has| (-772 |#1|) (-448 (-1080) (-772 |#1|))) ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ $ (-772 |#1|)) NIL (|has| (-772 |#1|) (-238 (-772 |#1|) (-772 |#1|))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $ (-1 (-772 |#1|) (-772 |#1|))) NIL T ELT) (($ $ (-1 (-772 |#1|) (-772 |#1|)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-772 |#1|) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-772 |#1|) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-772 |#1|) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-772 |#1|) (-805 (-1080))) ELT) (($ $) NIL (|has| (-772 |#1|) (-187)) ELT) (($ $ (-688)) NIL (|has| (-772 |#1|) (-187)) ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-772 |#1|) $) NIL T ELT)) (-3954 (((-794 (-479)) $) NIL (|has| (-772 |#1|) (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| (-772 |#1|) (-549 (-794 (-324)))) ELT) (((-468) $) NIL (|has| (-772 |#1|) (-549 (-468))) ELT) (((-324) $) NIL (|has| (-772 |#1|) (-927)) ELT) (((-177) $) NIL (|has| (-772 |#1|) (-927)) ELT)) (-2601 (((-146 (-344 (-479))) $) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| (-772 |#1|) (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-772 |#1|)) NIL T ELT) (($ (-1080)) NIL (|has| (-772 |#1|) (-944 (-1080))) ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-772 |#1|) (-815))) (|has| (-772 |#1|) (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-3115 (((-772 |#1|) $) NIL (|has| (-772 |#1|) (-478)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3752 (((-344 (-479)) $ (-479)) NIL T ELT)) (-3365 (($ $) NIL (|has| (-772 |#1|) (-734)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1 (-772 |#1|) (-772 |#1|))) NIL T ELT) (($ $ (-1 (-772 |#1|) (-772 |#1|)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-772 |#1|) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-772 |#1|) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-772 |#1|) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-772 |#1|) (-805 (-1080))) ELT) (($ $) NIL (|has| (-772 |#1|) (-187)) ELT) (($ $ (-688)) NIL (|has| (-772 |#1|) (-187)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-772 |#1|) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-772 |#1|) (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| (-772 |#1|) (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| (-772 |#1|) (-750)) ELT)) (-3931 (($ $ $) NIL T ELT) (($ (-772 |#1|) (-772 |#1|)) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ (-772 |#1|) $) NIL T ELT) (($ $ (-772 |#1|)) NIL T ELT))) +(((-774 |#1|) (-13 (-898 (-772 |#1|)) (-10 -8 (-15 -3752 ((-344 (-479)) $ (-479))) (-15 -2601 ((-146 (-344 (-479))) $)) (-15 -3712 ($ $)) (-15 -3712 ($ (-479) $)))) (-479)) (T -774)) +((-3752 (*1 *2 *1 *3) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-774 *4)) (-14 *4 *3) (-5 *3 (-479)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-146 (-344 (-479)))) (-5 *1 (-774 *3)) (-14 *3 (-479)))) (-3712 (*1 *1 *1) (-12 (-5 *1 (-774 *2)) (-14 *2 (-479)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-774 *3)) (-14 *3 *2)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 ((|#2| $) NIL (|has| |#2| (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| |#2| (-734)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL (|has| |#2| (-944 (-1080))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT)) (-3140 ((|#2| $) NIL T ELT) (((-1080) $) NIL (|has| |#2| (-944 (-1080))) ELT) (((-344 (-479)) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-479) $) NIL (|has| |#2| (-944 (-479))) ELT)) (-3712 (($ $) 35 T ELT) (($ (-479) $) 38 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#2|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) 64 T ELT)) (-2979 (($) NIL (|has| |#2| (-478)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3170 (((-83) $) NIL (|has| |#2| (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| |#2| (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| |#2| (-790 (-324))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL T ELT)) (-2983 ((|#2| $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| |#2| (-1056)) ELT)) (-3171 (((-83) $) NIL (|has| |#2| (-734)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| |#2| (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#2| (-750)) ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 60 T ELT)) (-3428 (($) NIL (|has| |#2| (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL (|has| |#2| (-254)) ELT)) (-3114 ((|#2| $) NIL (|has| |#2| (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-3750 (($ $ (-579 |#2|) (-579 |#2|)) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ (-245 |#2|)) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ (-579 (-245 |#2|))) NIL (|has| |#2| (-256 |#2|)) ELT) (($ $ (-579 (-1080)) (-579 |#2|)) NIL (|has| |#2| (-448 (-1080) |#2|)) ELT) (($ $ (-1080) |#2|) NIL (|has| |#2| (-448 (-1080) |#2|)) ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ $ |#2|) NIL (|has| |#2| (-238 |#2| |#2|)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-688)) NIL (|has| |#2| (-187)) ELT)) (-2980 (($ $) NIL T ELT)) (-2982 ((|#2| $) NIL T ELT)) (-3954 (((-794 (-479)) $) NIL (|has| |#2| (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| |#2| (-549 (-794 (-324)))) ELT) (((-468) $) NIL (|has| |#2| (-549 (-468))) ELT) (((-324) $) NIL (|has| |#2| (-927)) ELT) (((-177) $) NIL (|has| |#2| (-927)) ELT)) (-2601 (((-146 (-344 (-479))) $) 78 T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-815))) ELT)) (-3928 (((-766) $) 105 T ELT) (($ (-479)) 20 T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1080)) NIL (|has| |#2| (-944 (-1080))) ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-815))) (|has| |#2| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-3115 ((|#2| $) NIL (|has| |#2| (-478)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3752 (((-344 (-479)) $ (-479)) 71 T ELT)) (-3365 (($ $) NIL (|has| |#2| (-734)) ELT)) (-2645 (($) 15 T CONST)) (-2651 (($) 17 T CONST)) (-2654 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-688)) NIL (|has| |#2| (-187)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-3041 (((-83) $ $) 46 T ELT)) (-2669 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#2| (-750)) ELT)) (-3931 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3819 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3821 (($ $ $) 48 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) 61 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-775 |#1| |#2|) (-13 (-898 |#2|) (-10 -8 (-15 -3752 ((-344 (-479)) $ (-479))) (-15 -2601 ((-146 (-344 (-479))) $)) (-15 -3712 ($ $)) (-15 -3712 ($ (-479) $)))) (-479) (-773 |#1|)) (T -775)) +((-3752 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-344 (-479))) (-5 *1 (-775 *4 *5)) (-5 *3 (-479)) (-4 *5 (-773 *4)))) (-2601 (*1 *2 *1) (-12 (-14 *3 (-479)) (-5 *2 (-146 (-344 (-479)))) (-5 *1 (-775 *3 *4)) (-4 *4 (-773 *3)))) (-3712 (*1 *1 *1) (-12 (-14 *2 (-479)) (-5 *1 (-775 *2 *3)) (-4 *3 (-773 *2)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-479)) (-14 *3 *2) (-5 *1 (-775 *3 *4)) (-4 *4 (-773 *3))))) +((-2553 (((-83) $ $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ELT)) (-3778 ((|#2| $) 12 T ELT)) (-2602 (($ |#1| |#2|) 9 T ELT)) (-3226 (((-1063) $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ELT)) (-3227 (((-1024) $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ELT)) (-3783 ((|#1| $) 11 T ELT)) (-3512 (($ |#1| |#2|) 10 T ELT)) (-3928 (((-766) $) 18 (OR (-12 (|has| |#1| (-548 (-766))) (|has| |#2| (-548 (-766)))) (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006)))) ELT)) (-1254 (((-83) $ $) NIL (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ELT)) (-3041 (((-83) $ $) 23 (-12 (|has| |#1| (-1006)) (|has| |#2| (-1006))) ELT))) +(((-776 |#1| |#2|) (-13 (-1119) (-10 -8 (IF (|has| |#1| (-548 (-766))) (IF (|has| |#2| (-548 (-766))) (-6 (-548 (-766))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1006)) (IF (|has| |#2| (-1006)) (-6 (-1006)) |%noBranch|) |%noBranch|) (-15 -2602 ($ |#1| |#2|)) (-15 -3512 ($ |#1| |#2|)) (-15 -3783 (|#1| $)) (-15 -3778 (|#2| $)))) (-1119) (-1119)) (T -776)) +((-2602 (*1 *1 *2 *3) (-12 (-5 *1 (-776 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-3512 (*1 *1 *2 *3) (-12 (-5 *1 (-776 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-3783 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-776 *2 *3)) (-4 *3 (-1119)))) (-3778 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-776 *3 *2)) (-4 *3 (-1119))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2942 (((-479) $) 16 T ELT)) (-2604 (($ (-128)) 13 T ELT)) (-2603 (($ (-128)) 14 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2941 (((-128) $) 15 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2606 (($ (-128)) 11 T ELT)) (-2607 (($ (-128)) 10 T ELT)) (-3928 (((-766) $) 24 T ELT) (($ (-128)) 17 T ELT)) (-2605 (($ (-128)) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-777) (-13 (-1006) (-551 (-128)) (-10 -8 (-15 -2607 ($ (-128))) (-15 -2606 ($ (-128))) (-15 -2605 ($ (-128))) (-15 -2604 ($ (-128))) (-15 -2603 ($ (-128))) (-15 -2941 ((-128) $)) (-15 -2942 ((-479) $))))) (T -777)) +((-2607 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777)))) (-2606 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777)))) (-2605 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777)))) (-2604 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777)))) (-2603 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-128)) (-5 *1 (-777)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-777))))) +((-3928 (((-261 (-479)) (-344 (-851 (-48)))) 23 T ELT) (((-261 (-479)) (-851 (-48))) 18 T ELT))) +(((-778) (-10 -7 (-15 -3928 ((-261 (-479)) (-851 (-48)))) (-15 -3928 ((-261 (-479)) (-344 (-851 (-48))))))) (T -778)) +((-3928 (*1 *2 *3) (-12 (-5 *3 (-344 (-851 (-48)))) (-5 *2 (-261 (-479))) (-5 *1 (-778)))) (-3928 (*1 *2 *3) (-12 (-5 *3 (-851 (-48))) (-5 *2 (-261 (-479))) (-5 *1 (-778))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3548 (((-83) $ (|[\|\|]| (-440))) 9 T ELT) (((-83) $ (|[\|\|]| (-1063))) 13 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3554 (((-440) $) 10 T ELT) (((-1063) $) 14 T ELT)) (-3041 (((-83) $ $) 15 T ELT))) +(((-779) (-13 (-988) (-1165) (-10 -8 (-15 -3548 ((-83) $ (|[\|\|]| (-440)))) (-15 -3554 ((-440) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-1063)))) (-15 -3554 ((-1063) $))))) (T -779)) +((-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-440))) (-5 *2 (-83)) (-5 *1 (-779)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-779)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-83)) (-5 *1 (-779)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-779))))) +((-3940 (((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|)) 15 T ELT))) +(((-780 |#1| |#2|) (-10 -7 (-15 -3940 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|)))) (-1119) (-1119)) (T -780)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-781 *6)) (-5 *1 (-780 *5 *6))))) +((-3353 (($ |#1| |#1|) 8 T ELT)) (-2610 ((|#1| $ (-688)) 15 T ELT))) +(((-781 |#1|) (-10 -8 (-15 -3353 ($ |#1| |#1|)) (-15 -2610 (|#1| $ (-688)))) (-1119)) (T -781)) +((-2610 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *1 (-781 *2)) (-4 *2 (-1119)))) (-3353 (*1 *1 *2 *2) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1119))))) +((-3940 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 15 T ELT))) +(((-782 |#1| |#2|) (-10 -7 (-15 -3940 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) (-1119) (-1119)) (T -782)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6))))) +((-3353 (($ |#1| |#1| |#1|) 8 T ELT)) (-2610 ((|#1| $ (-688)) 15 T ELT))) +(((-783 |#1|) (-10 -8 (-15 -3353 ($ |#1| |#1| |#1|)) (-15 -2610 (|#1| $ (-688)))) (-1119)) (T -783)) +((-2610 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *1 (-783 *2)) (-4 *2 (-1119)))) (-3353 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1119))))) +((-2608 (((-579 (-1085)) (-1063)) 9 T ELT))) +(((-784) (-10 -7 (-15 -2608 ((-579 (-1085)) (-1063))))) (T -784)) +((-2608 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-579 (-1085))) (-5 *1 (-784))))) +((-3940 (((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|)) 15 T ELT))) +(((-785 |#1| |#2|) (-10 -7 (-15 -3940 ((-786 |#2|) (-1 |#2| |#1|) (-786 |#1|)))) (-1119) (-1119)) (T -785)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-786 *6)) (-5 *1 (-785 *5 *6))))) +((-2609 (($ |#1| |#1| |#1|) 8 T ELT)) (-2610 ((|#1| $ (-688)) 15 T ELT))) +(((-786 |#1|) (-10 -8 (-15 -2609 ($ |#1| |#1| |#1|)) (-15 -2610 (|#1| $ (-688)))) (-1119)) (T -786)) +((-2610 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *1 (-786 *2)) (-4 *2 (-1119)))) (-2609 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1119))))) +((-2613 (((-1059 (-579 (-479))) (-579 (-479)) (-1059 (-579 (-479)))) 41 T ELT)) (-2612 (((-1059 (-579 (-479))) (-579 (-479)) (-579 (-479))) 31 T ELT)) (-2614 (((-1059 (-579 (-479))) (-579 (-479))) 53 T ELT) (((-1059 (-579 (-479))) (-579 (-479)) (-579 (-479))) 50 T ELT)) (-2615 (((-1059 (-579 (-479))) (-479)) 55 T ELT)) (-2611 (((-1059 (-579 (-824))) (-1059 (-579 (-824)))) 22 T ELT)) (-2994 (((-579 (-824)) (-579 (-824))) 18 T ELT))) +(((-787) (-10 -7 (-15 -2994 ((-579 (-824)) (-579 (-824)))) (-15 -2611 ((-1059 (-579 (-824))) (-1059 (-579 (-824))))) (-15 -2612 ((-1059 (-579 (-479))) (-579 (-479)) (-579 (-479)))) (-15 -2613 ((-1059 (-579 (-479))) (-579 (-479)) (-1059 (-579 (-479))))) (-15 -2614 ((-1059 (-579 (-479))) (-579 (-479)) (-579 (-479)))) (-15 -2614 ((-1059 (-579 (-479))) (-579 (-479)))) (-15 -2615 ((-1059 (-579 (-479))) (-479))))) (T -787)) +((-2615 (*1 *2 *3) (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *1 (-787)) (-5 *3 (-479)))) (-2614 (*1 *2 *3) (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *1 (-787)) (-5 *3 (-579 (-479))))) (-2614 (*1 *2 *3 *3) (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *1 (-787)) (-5 *3 (-579 (-479))))) (-2613 (*1 *2 *3 *2) (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *3 (-579 (-479))) (-5 *1 (-787)))) (-2612 (*1 *2 *3 *3) (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *1 (-787)) (-5 *3 (-579 (-479))))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-1059 (-579 (-824)))) (-5 *1 (-787)))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-787))))) +((-3954 (((-794 (-324)) $) 9 (|has| |#1| (-549 (-794 (-324)))) ELT) (((-794 (-479)) $) 8 (|has| |#1| (-549 (-794 (-479)))) ELT))) +(((-788 |#1|) (-111) (-1119)) (T -788)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-549 (-794 (-479)))) (-6 (-549 (-794 (-479)))) |%noBranch|) (IF (|has| |t#1| (-549 (-794 (-324)))) (-6 (-549 (-794 (-324)))) |%noBranch|))) +(((-549 (-794 (-324))) |has| |#1| (-549 (-794 (-324)))) ((-549 (-794 (-479))) |has| |#1| (-549 (-794 (-479))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3596 (($) 14 T ELT)) (-2617 (($ (-792 |#1| |#2|) (-792 |#1| |#3|)) 28 T ELT)) (-2616 (((-792 |#1| |#3|) $) 16 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2625 (((-83) $) 22 T ELT)) (-2624 (($) 19 T ELT)) (-3928 (((-766) $) 31 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2835 (((-792 |#1| |#2|) $) 15 T ELT)) (-3041 (((-83) $ $) 26 T ELT))) +(((-789 |#1| |#2| |#3|) (-13 (-1006) (-10 -8 (-15 -2625 ((-83) $)) (-15 -2624 ($)) (-15 -3596 ($)) (-15 -2617 ($ (-792 |#1| |#2|) (-792 |#1| |#3|))) (-15 -2835 ((-792 |#1| |#2|) $)) (-15 -2616 ((-792 |#1| |#3|) $)))) (-1006) (-1006) (-604 |#2|)) (T -789)) +((-2625 (*1 *2 *1) (-12 (-4 *4 (-1006)) (-5 *2 (-83)) (-5 *1 (-789 *3 *4 *5)) (-4 *3 (-1006)) (-4 *5 (-604 *4)))) (-2624 (*1 *1) (-12 (-4 *3 (-1006)) (-5 *1 (-789 *2 *3 *4)) (-4 *2 (-1006)) (-4 *4 (-604 *3)))) (-3596 (*1 *1) (-12 (-4 *3 (-1006)) (-5 *1 (-789 *2 *3 *4)) (-4 *2 (-1006)) (-4 *4 (-604 *3)))) (-2617 (*1 *1 *2 *3) (-12 (-5 *2 (-792 *4 *5)) (-5 *3 (-792 *4 *6)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-604 *5)) (-5 *1 (-789 *4 *5 *6)))) (-2835 (*1 *2 *1) (-12 (-4 *4 (-1006)) (-5 *2 (-792 *3 *4)) (-5 *1 (-789 *3 *4 *5)) (-4 *3 (-1006)) (-4 *5 (-604 *4)))) (-2616 (*1 *2 *1) (-12 (-4 *4 (-1006)) (-5 *2 (-792 *3 *5)) (-5 *1 (-789 *3 *4 *5)) (-4 *3 (-1006)) (-4 *5 (-604 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-2781 (((-792 |#1| $) $ (-794 |#1|) (-792 |#1| $)) 17 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-790 |#1|) (-111) (-1006)) (T -790)) +((-2781 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-792 *4 *1)) (-5 *3 (-794 *4)) (-4 *1 (-790 *4)) (-4 *4 (-1006))))) +(-13 (-1006) (-10 -8 (-15 -2781 ((-792 |t#1| $) $ (-794 |t#1|) (-792 |t#1| $))))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2618 (((-83) (-579 |#2|) |#3|) 23 T ELT) (((-83) |#2| |#3|) 18 T ELT)) (-2619 (((-792 |#1| |#2|) |#2| |#3|) 45 (-12 (-2545 (|has| |#2| (-944 (-1080)))) (-2545 (|has| |#2| (-955)))) ELT) (((-579 (-245 (-851 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-955)) (-2545 (|has| |#2| (-944 (-1080))))) ELT) (((-579 (-245 |#2|)) |#2| |#3|) 36 (|has| |#2| (-944 (-1080))) ELT) (((-789 |#1| |#2| (-579 |#2|)) (-579 |#2|) |#3|) 21 T ELT))) +(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -2618 ((-83) |#2| |#3|)) (-15 -2618 ((-83) (-579 |#2|) |#3|)) (-15 -2619 ((-789 |#1| |#2| (-579 |#2|)) (-579 |#2|) |#3|)) (IF (|has| |#2| (-944 (-1080))) (-15 -2619 ((-579 (-245 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-955)) (-15 -2619 ((-579 (-245 (-851 |#2|))) |#2| |#3|)) (-15 -2619 ((-792 |#1| |#2|) |#2| |#3|))))) (-1006) (-790 |#1|) (-549 (-794 |#1|))) (T -791)) +((-2619 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-792 *5 *3)) (-5 *1 (-791 *5 *3 *4)) (-2545 (-4 *3 (-944 (-1080)))) (-2545 (-4 *3 (-955))) (-4 *3 (-790 *5)) (-4 *4 (-549 (-794 *5))))) (-2619 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-579 (-245 (-851 *3)))) (-5 *1 (-791 *5 *3 *4)) (-4 *3 (-955)) (-2545 (-4 *3 (-944 (-1080)))) (-4 *3 (-790 *5)) (-4 *4 (-549 (-794 *5))))) (-2619 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-579 (-245 *3))) (-5 *1 (-791 *5 *3 *4)) (-4 *3 (-944 (-1080))) (-4 *3 (-790 *5)) (-4 *4 (-549 (-794 *5))))) (-2619 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-4 *6 (-790 *5)) (-5 *2 (-789 *5 *6 (-579 *6))) (-5 *1 (-791 *5 *6 *4)) (-5 *3 (-579 *6)) (-4 *4 (-549 (-794 *5))))) (-2618 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *6)) (-4 *6 (-790 *5)) (-4 *5 (-1006)) (-5 *2 (-83)) (-5 *1 (-791 *5 *6 *4)) (-4 *4 (-549 (-794 *5))))) (-2618 (*1 *2 *3 *4) (-12 (-4 *5 (-1006)) (-5 *2 (-83)) (-5 *1 (-791 *5 *3 *4)) (-4 *3 (-790 *5)) (-4 *4 (-549 (-794 *5)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3218 (($ $ $) 40 T ELT)) (-2646 (((-3 (-83) #1="failed") $ (-794 |#1|)) 37 T ELT)) (-3596 (($) 12 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2621 (($ (-794 |#1|) |#2| $) 20 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2623 (((-3 |#2| #1#) (-794 |#1|) $) 51 T ELT)) (-2625 (((-83) $) 15 T ELT)) (-2624 (($) 13 T ELT)) (-3241 (((-579 (-2 (|:| -3842 (-1080)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3512 (($ (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| |#2|)))) 23 T ELT)) (-3928 (((-766) $) 45 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2620 (($ (-794 |#1|) |#2| $ |#2|) 49 T ELT)) (-2622 (($ (-794 |#1|) |#2| $) 48 T ELT)) (-3041 (((-83) $ $) 42 T ELT))) +(((-792 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -2625 ((-83) $)) (-15 -2624 ($)) (-15 -3596 ($)) (-15 -3218 ($ $ $)) (-15 -2623 ((-3 |#2| #1="failed") (-794 |#1|) $)) (-15 -2622 ($ (-794 |#1|) |#2| $)) (-15 -2621 ($ (-794 |#1|) |#2| $)) (-15 -2620 ($ (-794 |#1|) |#2| $ |#2|)) (-15 -3241 ((-579 (-2 (|:| -3842 (-1080)) (|:| |entry| |#2|))) $)) (-15 -3512 ($ (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| |#2|))))) (-15 -2646 ((-3 (-83) #1#) $ (-794 |#1|))))) (-1006) (-1006)) (T -792)) +((-2625 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-792 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-2624 (*1 *1) (-12 (-5 *1 (-792 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3596 (*1 *1) (-12 (-5 *1 (-792 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3218 (*1 *1 *1 *1) (-12 (-5 *1 (-792 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2623 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-794 *4)) (-4 *4 (-1006)) (-4 *2 (-1006)) (-5 *1 (-792 *4 *2)))) (-2622 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-794 *4)) (-4 *4 (-1006)) (-5 *1 (-792 *4 *3)) (-4 *3 (-1006)))) (-2621 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-794 *4)) (-4 *4 (-1006)) (-5 *1 (-792 *4 *3)) (-4 *3 (-1006)))) (-2620 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-794 *4)) (-4 *4 (-1006)) (-5 *1 (-792 *4 *3)) (-4 *3 (-1006)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| *4)))) (-5 *1 (-792 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| *4)))) (-4 *4 (-1006)) (-5 *1 (-792 *3 *4)) (-4 *3 (-1006)))) (-2646 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-794 *4)) (-4 *4 (-1006)) (-5 *2 (-83)) (-5 *1 (-792 *4 *5)) (-4 *5 (-1006))))) +((-3940 (((-792 |#1| |#3|) (-1 |#3| |#2|) (-792 |#1| |#2|)) 22 T ELT))) +(((-793 |#1| |#2| |#3|) (-10 -7 (-15 -3940 ((-792 |#1| |#3|) (-1 |#3| |#2|) (-792 |#1| |#2|)))) (-1006) (-1006) (-1006)) (T -793)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-792 *5 *6)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-792 *5 *7)) (-5 *1 (-793 *5 *6 *7))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2633 (($ $ (-579 (-51))) 74 T ELT)) (-3066 (((-579 $) $) 139 T ELT)) (-2630 (((-2 (|:| |var| (-579 (-1080))) (|:| |pred| (-51))) $) 30 T ELT)) (-3244 (((-83) $) 35 T ELT)) (-2631 (($ $ (-579 (-1080)) (-51)) 31 T ELT)) (-2634 (($ $ (-579 (-51))) 73 T ELT)) (-3141 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1080) #1#) $) 167 T ELT)) (-3140 ((|#1| $) 68 T ELT) (((-1080) $) NIL T ELT)) (-2628 (($ $) 126 T ELT)) (-2640 (((-83) $) 55 T ELT)) (-2635 (((-579 (-51)) $) 50 T ELT)) (-2632 (($ (-1080) (-83) (-83) (-83)) 75 T ELT)) (-2626 (((-3 (-579 $) #1#) (-579 $)) 82 T ELT)) (-2637 (((-83) $) 58 T ELT)) (-2638 (((-83) $) 57 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) 41 T ELT)) (-2643 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2810 (((-3 (-2 (|:| |val| $) (|:| -2388 $)) #1#) $) 97 T ELT)) (-2807 (((-3 (-579 $) #1#) $) 40 T ELT)) (-2644 (((-3 (-579 $) #1#) $ (-84)) 124 T ELT) (((-3 (-2 (|:| -2498 (-84)) (|:| |arg| (-579 $))) #1#) $) 107 T ELT)) (-2642 (((-3 (-579 $) #1#) $) 42 T ELT)) (-2809 (((-3 (-2 (|:| |val| $) (|:| -2388 (-688))) #1#) $) 45 T ELT)) (-2641 (((-83) $) 34 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2629 (((-83) $) 28 T ELT)) (-2636 (((-83) $) 52 T ELT)) (-2627 (((-579 (-51)) $) 130 T ELT)) (-2639 (((-83) $) 56 T ELT)) (-3782 (($ (-84) (-579 $)) 104 T ELT)) (-3305 (((-688) $) 33 T ELT)) (-3382 (($ $) 72 T ELT)) (-3954 (($ (-579 $)) 69 T ELT)) (-3935 (((-83) $) 32 T ELT)) (-3928 (((-766) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1080)) 76 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2647 (($ $ (-51)) 129 T ELT)) (-2645 (($) 103 T CONST)) (-2651 (($) 83 T CONST)) (-3041 (((-83) $ $) 93 T ELT)) (-3931 (($ $ $) 117 T ELT)) (-3821 (($ $ $) 121 T ELT)) (** (($ $ (-688)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-794 |#1|) (-13 (-1006) (-944 |#1|) (-944 (-1080)) (-10 -8 (-15 -2645 ($) -3934) (-15 -2651 ($) -3934) (-15 -2807 ((-3 (-579 $) #1="failed") $)) (-15 -2808 ((-3 (-579 $) #1#) $)) (-15 -2644 ((-3 (-579 $) #1#) $ (-84))) (-15 -2644 ((-3 (-2 (|:| -2498 (-84)) (|:| |arg| (-579 $))) #1#) $)) (-15 -2809 ((-3 (-2 (|:| |val| $) (|:| -2388 (-688))) #1#) $)) (-15 -2643 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2642 ((-3 (-579 $) #1#) $)) (-15 -2810 ((-3 (-2 (|:| |val| $) (|:| -2388 $)) #1#) $)) (-15 -3782 ($ (-84) (-579 $))) (-15 -3821 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-688))) (-15 ** ($ $ $)) (-15 -3931 ($ $ $)) (-15 -3305 ((-688) $)) (-15 -3954 ($ (-579 $))) (-15 -3382 ($ $)) (-15 -2641 ((-83) $)) (-15 -2640 ((-83) $)) (-15 -3244 ((-83) $)) (-15 -3935 ((-83) $)) (-15 -2639 ((-83) $)) (-15 -2638 ((-83) $)) (-15 -2637 ((-83) $)) (-15 -2636 ((-83) $)) (-15 -2635 ((-579 (-51)) $)) (-15 -2634 ($ $ (-579 (-51)))) (-15 -2633 ($ $ (-579 (-51)))) (-15 -2632 ($ (-1080) (-83) (-83) (-83))) (-15 -2631 ($ $ (-579 (-1080)) (-51))) (-15 -2630 ((-2 (|:| |var| (-579 (-1080))) (|:| |pred| (-51))) $)) (-15 -2629 ((-83) $)) (-15 -2628 ($ $)) (-15 -2647 ($ $ (-51))) (-15 -2627 ((-579 (-51)) $)) (-15 -3066 ((-579 $) $)) (-15 -2626 ((-3 (-579 $) #1#) (-579 $))))) (-1006)) (T -794)) +((-2645 (*1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) (-2651 (*1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) (-2807 (*1 *2 *1) (|partial| -12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2808 (*1 *2 *1) (|partial| -12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2644 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-84)) (-5 *2 (-579 (-794 *4))) (-5 *1 (-794 *4)) (-4 *4 (-1006)))) (-2644 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2498 (-84)) (|:| |arg| (-579 (-794 *3))))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2809 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-794 *3)) (|:| -2388 (-688)))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2643 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-794 *3)) (|:| |den| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2642 (*1 *2 *1) (|partial| -12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2810 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-794 *3)) (|:| -2388 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-3782 (*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-579 (-794 *4))) (-5 *1 (-794 *4)) (-4 *4 (-1006)))) (-3821 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) (-3931 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-3382 (*1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-579 (-51))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2634 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-51))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-51))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2632 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-83)) (-5 *1 (-794 *4)) (-4 *4 (-1006)))) (-2631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-51)) (-5 *1 (-794 *4)) (-4 *4 (-1006)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-579 (-1080))) (|:| |pred| (-51)))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2628 (*1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2627 (*1 *2 *1) (-12 (-5 *2 (-579 (-51))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) (-2626 (*1 *2 *2) (|partial| -12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +((-3193 (((-794 |#1|) (-794 |#1|) (-579 (-1080)) (-1 (-83) (-579 |#2|))) 32 T ELT) (((-794 |#1|) (-794 |#1|) (-579 (-1 (-83) |#2|))) 46 T ELT) (((-794 |#1|) (-794 |#1|) (-1 (-83) |#2|)) 35 T ELT)) (-2646 (((-83) (-579 |#2|) (-794 |#1|)) 42 T ELT) (((-83) |#2| (-794 |#1|)) 36 T ELT)) (-3513 (((-1 (-83) |#2|) (-794 |#1|)) 16 T ELT)) (-2648 (((-579 |#2|) (-794 |#1|)) 24 T ELT)) (-2647 (((-794 |#1|) (-794 |#1|) |#2|) 20 T ELT))) +(((-795 |#1| |#2|) (-10 -7 (-15 -3193 ((-794 |#1|) (-794 |#1|) (-1 (-83) |#2|))) (-15 -3193 ((-794 |#1|) (-794 |#1|) (-579 (-1 (-83) |#2|)))) (-15 -3193 ((-794 |#1|) (-794 |#1|) (-579 (-1080)) (-1 (-83) (-579 |#2|)))) (-15 -3513 ((-1 (-83) |#2|) (-794 |#1|))) (-15 -2646 ((-83) |#2| (-794 |#1|))) (-15 -2646 ((-83) (-579 |#2|) (-794 |#1|))) (-15 -2647 ((-794 |#1|) (-794 |#1|) |#2|)) (-15 -2648 ((-579 |#2|) (-794 |#1|)))) (-1006) (-1119)) (T -795)) +((-2648 (*1 *2 *3) (-12 (-5 *3 (-794 *4)) (-4 *4 (-1006)) (-5 *2 (-579 *5)) (-5 *1 (-795 *4 *5)) (-4 *5 (-1119)))) (-2647 (*1 *2 *2 *3) (-12 (-5 *2 (-794 *4)) (-4 *4 (-1006)) (-5 *1 (-795 *4 *3)) (-4 *3 (-1119)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *6)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-4 *6 (-1119)) (-5 *2 (-83)) (-5 *1 (-795 *5 *6)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-5 *2 (-83)) (-5 *1 (-795 *5 *3)) (-4 *3 (-1119)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-794 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-795 *4 *5)) (-4 *5 (-1119)))) (-3193 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-794 *5)) (-5 *3 (-579 (-1080))) (-5 *4 (-1 (-83) (-579 *6))) (-4 *5 (-1006)) (-4 *6 (-1119)) (-5 *1 (-795 *5 *6)))) (-3193 (*1 *2 *2 *3) (-12 (-5 *2 (-794 *4)) (-5 *3 (-579 (-1 (-83) *5))) (-4 *4 (-1006)) (-4 *5 (-1119)) (-5 *1 (-795 *4 *5)))) (-3193 (*1 *2 *2 *3) (-12 (-5 *2 (-794 *4)) (-5 *3 (-1 (-83) *5)) (-4 *4 (-1006)) (-4 *5 (-1119)) (-5 *1 (-795 *4 *5))))) +((-3940 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 19 T ELT))) +(((-796 |#1| |#2|) (-10 -7 (-15 -3940 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1006) (-1006)) (T -796)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-794 *6)) (-5 *1 (-796 *5 *6))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3916 (((-579 |#1|) $) 20 T ELT)) (-2649 (((-83) $) 49 T ELT)) (-3141 (((-3 (-610 |#1|) "failed") $) 55 T ELT)) (-3140 (((-610 |#1|) $) 53 T ELT)) (-3781 (($ $) 24 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3815 (((-688) $) 60 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 (((-610 |#1|) $) 22 T ELT)) (-3928 (((-766) $) 47 T ELT) (($ (-610 |#1|)) 27 T ELT) (((-733 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2651 (($) 11 T CONST)) (-2650 (((-579 (-610 |#1|)) $) 28 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 14 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 66 T ELT))) +(((-797 |#1|) (-13 (-750) (-944 (-610 |#1|)) (-10 -8 (-15 -2651 ($) -3934) (-15 -3928 ((-733 |#1|) $)) (-15 -3928 ($ |#1|)) (-15 -3783 ((-610 |#1|) $)) (-15 -3815 ((-688) $)) (-15 -2650 ((-579 (-610 |#1|)) $)) (-15 -3781 ($ $)) (-15 -2649 ((-83) $)) (-15 -3916 ((-579 |#1|) $)))) (-750)) (T -797)) +((-2651 (*1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-750)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-733 *3)) (-5 *1 (-797 *3)) (-4 *3 (-750)))) (-3928 (*1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-750)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-610 *3)) (-5 *1 (-797 *3)) (-4 *3 (-750)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-797 *3)) (-4 *3 (-750)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-579 (-610 *3))) (-5 *1 (-797 *3)) (-4 *3 (-750)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-750)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-797 *3)) (-4 *3 (-750)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-797 *3)) (-4 *3 (-750))))) +((-3456 ((|#1| |#1| |#1|) 19 T ELT))) +(((-798 |#1| |#2|) (-10 -7 (-15 -3456 (|#1| |#1| |#1|))) (-1145 |#2|) (-955)) (T -798)) +((-3456 (*1 *2 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-798 *2 *3)) (-4 *2 (-1145 *3))))) +((-2654 ((|#2| $ |#3|) 10 T ELT))) +(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -2654 (|#2| |#1| |#3|))) (-800 |#2| |#3|) (-1119) (-1119)) (T -799)) +NIL +((-3740 ((|#1| $ |#2|) 7 T ELT)) (-2654 ((|#1| $ |#2|) 6 T ELT))) +(((-800 |#1| |#2|) (-111) (-1119) (-1119)) (T -800)) +((-3740 (*1 *2 *1 *3) (-12 (-4 *1 (-800 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-2654 (*1 *2 *1 *3) (-12 (-4 *1 (-800 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -3740 (|t#1| $ |t#2|)) (-15 -2654 (|t#1| $ |t#2|)))) +(((-1119) . T)) +((-2653 ((|#1| |#1| (-688)) 26 T ELT)) (-2652 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3417 (((-3 (-2 (|:| -3122 |#1|) (|:| -3121 |#1|)) #1#) |#1| (-688) (-688)) 29 T ELT) (((-579 |#1|) |#1|) 38 T ELT))) +(((-801 |#1| |#2|) (-10 -7 (-15 -3417 ((-579 |#1|) |#1|)) (-15 -3417 ((-3 (-2 (|:| -3122 |#1|) (|:| -3121 |#1|)) #1="failed") |#1| (-688) (-688))) (-15 -2652 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2653 (|#1| |#1| (-688)))) (-1145 |#2|) (-308)) (T -801)) +((-2653 (*1 *2 *2 *3) (-12 (-5 *3 (-688)) (-4 *4 (-308)) (-5 *1 (-801 *2 *4)) (-4 *2 (-1145 *4)))) (-2652 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-308)) (-5 *1 (-801 *2 *3)) (-4 *2 (-1145 *3)))) (-3417 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-688)) (-4 *5 (-308)) (-5 *2 (-2 (|:| -3122 *3) (|:| -3121 *3))) (-5 *1 (-801 *3 *5)) (-4 *3 (-1145 *5)))) (-3417 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-579 *3)) (-5 *1 (-801 *3 *4)) (-4 *3 (-1145 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3740 (($ $ (-579 |#2|) (-579 (-688))) 44 T ELT) (($ $ |#2| (-688)) 43 T ELT) (($ $ (-579 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2654 (($ $ (-579 |#2|) (-579 (-688))) 47 T ELT) (($ $ |#2| (-688)) 46 T ELT) (($ $ (-579 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-802 |#1| |#2|) (-111) (-955) (-1006)) (T -802)) +NIL +(-13 (-80 |t#1| |t#1|) (-805 |t#2|) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-650 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) |has| |#1| (-144)) ((-650 |#1|) |has| |#1| (-144)) ((-800 $ |#2|) . T) ((-805 |#2|) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3740 (($ $ (-579 |#1|) (-579 (-688))) 49 T ELT) (($ $ |#1| (-688)) 48 T ELT) (($ $ (-579 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-579 |#1|) (-579 (-688))) 52 T ELT) (($ $ |#1| (-688)) 51 T ELT) (($ $ (-579 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-803 |#1|) (-111) (-1006)) (T -803)) +NIL +(-13 (-955) (-805 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-659) . T) ((-800 $ |#1|) . T) ((-805 |#1|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3740 (($ $ |#2|) NIL T ELT) (($ $ (-579 |#2|)) 10 T ELT) (($ $ |#2| (-688)) 12 T ELT) (($ $ (-579 |#2|) (-579 (-688))) 15 T ELT)) (-2654 (($ $ |#2|) 16 T ELT) (($ $ (-579 |#2|)) 18 T ELT) (($ $ |#2| (-688)) 19 T ELT) (($ $ (-579 |#2|) (-579 (-688))) 21 T ELT))) +(((-804 |#1| |#2|) (-10 -7 (-15 -2654 (|#1| |#1| (-579 |#2|) (-579 (-688)))) (-15 -2654 (|#1| |#1| |#2| (-688))) (-15 -2654 (|#1| |#1| (-579 |#2|))) (-15 -3740 (|#1| |#1| (-579 |#2|) (-579 (-688)))) (-15 -3740 (|#1| |#1| |#2| (-688))) (-15 -3740 (|#1| |#1| (-579 |#2|))) (-15 -2654 (|#1| |#1| |#2|)) (-15 -3740 (|#1| |#1| |#2|))) (-805 |#2|) (-1006)) (T -804)) +NIL +((-3740 (($ $ |#1|) 7 T ELT) (($ $ (-579 |#1|)) 15 T ELT) (($ $ |#1| (-688)) 14 T ELT) (($ $ (-579 |#1|) (-579 (-688))) 13 T ELT)) (-2654 (($ $ |#1|) 6 T ELT) (($ $ (-579 |#1|)) 12 T ELT) (($ $ |#1| (-688)) 11 T ELT) (($ $ (-579 |#1|) (-579 (-688))) 10 T ELT))) +(((-805 |#1|) (-111) (-1006)) (T -805)) +((-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *1 (-805 *3)) (-4 *3 (-1006)))) (-3740 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-805 *2)) (-4 *2 (-1006)))) (-3740 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 *4)) (-5 *3 (-579 (-688))) (-4 *1 (-805 *4)) (-4 *4 (-1006)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *1 (-805 *3)) (-4 *3 (-1006)))) (-2654 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-805 *2)) (-4 *2 (-1006)))) (-2654 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 *4)) (-5 *3 (-579 (-688))) (-4 *1 (-805 *4)) (-4 *4 (-1006))))) +(-13 (-800 $ |t#1|) (-10 -8 (-15 -3740 ($ $ (-579 |t#1|))) (-15 -3740 ($ $ |t#1| (-688))) (-15 -3740 ($ $ (-579 |t#1|) (-579 (-688)))) (-15 -2654 ($ $ (-579 |t#1|))) (-15 -2654 ($ $ |t#1| (-688))) (-15 -2654 ($ $ (-579 |t#1|) (-579 (-688)))))) +(((-800 $ |#1|) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 26 T ELT)) (-3010 ((|#1| $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1281 (($ $ $) NIL (|has| $ (-6 -3978)) ELT)) (-1282 (($ $ $) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3978)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -3978)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3121 (($ $) 25 T ELT)) (-2655 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3122 (($ $) 23 T ELT)) (-3015 (((-579 |#1|) $) NIL T ELT)) (-3509 (((-83) $) 20 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3014 (((-479) $ $) NIL T ELT)) (-3615 (((-83) $) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-1106 |#1|) $) 9 T ELT) (((-766) $) 29 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 21 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-806 |#1|) (-13 (-90 |#1|) (-548 (-1106 |#1|)) (-10 -8 (-15 -2655 ($ |#1|)) (-15 -2655 ($ $ $)))) (-1006)) (T -806)) +((-2655 (*1 *1 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1006)))) (-2655 (*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1006))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2671 (((-1002 |#1|) $) 61 T ELT)) (-2894 (((-579 $) (-579 $)) 104 T ELT)) (-3605 (((-479) $) 84 T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ "failed") $) NIL T ELT)) (-3754 (((-688) $) 81 T ELT)) (-2675 (((-1002 |#1|) $ |#1|) 71 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2658 (((-83) $) 89 T ELT)) (-2660 (((-688) $) 85 T ELT)) (-2516 (($ $ $) NIL (OR (|has| |#1| (-314)) (|has| |#1| (-750))) ELT)) (-2842 (($ $ $) NIL (OR (|has| |#1| (-314)) (|has| |#1| (-750))) ELT)) (-2664 (((-2 (|:| |preimage| (-579 |#1|)) (|:| |image| (-579 |#1|))) $) 56 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 131 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2657 (((-1002 |#1|) $) 136 (|has| |#1| (-314)) ELT)) (-2659 (((-83) $) 82 T ELT)) (-3782 ((|#1| $ |#1|) 69 T ELT)) (-3930 (((-688) $) 63 T ELT)) (-2666 (($ (-579 (-579 |#1|))) 119 T ELT)) (-2661 (((-878) $) 75 T ELT)) (-2667 (($ (-579 |#1|)) 32 T ELT)) (-2994 (($ $ $) NIL T ELT)) (-2420 (($ $ $) NIL T ELT)) (-2663 (($ (-579 (-579 |#1|))) 58 T ELT)) (-2662 (($ (-579 (-579 |#1|))) 124 T ELT)) (-2656 (($ (-579 |#1|)) 133 T ELT)) (-3928 (((-766) $) 118 T ELT) (($ (-579 (-579 |#1|))) 92 T ELT) (($ (-579 |#1|)) 93 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2651 (($) 24 T CONST)) (-2551 (((-83) $ $) NIL (OR (|has| |#1| (-314)) (|has| |#1| (-750))) ELT)) (-2552 (((-83) $ $) NIL (OR (|has| |#1| (-314)) (|has| |#1| (-750))) ELT)) (-3041 (((-83) $ $) 67 T ELT)) (-2669 (((-83) $ $) NIL (OR (|has| |#1| (-314)) (|has| |#1| (-750))) ELT)) (-2670 (((-83) $ $) 91 T ELT)) (-3931 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-807 |#1|) (-13 (-809 |#1|) (-10 -8 (-15 -2664 ((-2 (|:| |preimage| (-579 |#1|)) (|:| |image| (-579 |#1|))) $)) (-15 -2663 ($ (-579 (-579 |#1|)))) (-15 -3928 ($ (-579 (-579 |#1|)))) (-15 -3928 ($ (-579 |#1|))) (-15 -2662 ($ (-579 (-579 |#1|)))) (-15 -3930 ((-688) $)) (-15 -2661 ((-878) $)) (-15 -3754 ((-688) $)) (-15 -2660 ((-688) $)) (-15 -3605 ((-479) $)) (-15 -2659 ((-83) $)) (-15 -2658 ((-83) $)) (-15 -2894 ((-579 $) (-579 $))) (IF (|has| |#1| (-314)) (-15 -2657 ((-1002 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-478)) (-15 -2656 ($ (-579 |#1|))) (IF (|has| |#1| (-314)) (-15 -2656 ($ (-579 |#1|))) |%noBranch|)))) (-1006)) (T -807)) +((-2664 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-579 *3)) (|:| |image| (-579 *3)))) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-5 *1 (-807 *3)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-5 *1 (-807 *3)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-807 *3)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-5 *1 (-807 *3)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) (-2660 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) (-2659 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) (-2894 (*1 *2 *2) (-12 (-5 *2 (-579 (-807 *3))) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-807 *3)) (-4 *3 (-314)) (-4 *3 (-1006)))) (-2656 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-807 *3))))) +((-2665 ((|#2| (-1046 |#1| |#2|)) 48 T ELT))) +(((-808 |#1| |#2|) (-10 -7 (-15 -2665 (|#2| (-1046 |#1| |#2|)))) (-824) (-13 (-955) (-10 -7 (-6 (-3979 "*"))))) (T -808)) +((-2665 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *2)) (-14 *4 (-824)) (-4 *2 (-13 (-955) (-10 -7 (-6 (-3979 "*"))))) (-5 *1 (-808 *4 *2))))) +((-2553 (((-83) $ $) 7 T ELT)) (-2671 (((-1002 |#1|) $) 42 T ELT)) (-3706 (($) 23 T CONST)) (-3449 (((-3 $ "failed") $) 20 T ELT)) (-2675 (((-1002 |#1|) $ |#1|) 41 T ELT)) (-2397 (((-83) $) 22 T ELT)) (-2516 (($ $ $) 35 (OR (|has| |#1| (-750)) (|has| |#1| (-314))) ELT)) (-2842 (($ $ $) 36 (OR (|has| |#1| (-750)) (|has| |#1| (-314))) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 30 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3782 ((|#1| $ |#1|) 45 T ELT)) (-2666 (($ (-579 (-579 |#1|))) 43 T ELT)) (-2667 (($ (-579 |#1|)) 44 T ELT)) (-2994 (($ $ $) 27 T ELT)) (-2420 (($ $ $) 26 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2651 (($) 24 T CONST)) (-2551 (((-83) $ $) 37 (OR (|has| |#1| (-750)) (|has| |#1| (-314))) ELT)) (-2552 (((-83) $ $) 39 (OR (|has| |#1| (-750)) (|has| |#1| (-314))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 38 (OR (|has| |#1| (-750)) (|has| |#1| (-314))) ELT)) (-2670 (((-83) $ $) 40 T ELT)) (-3931 (($ $ $) 29 T ELT)) (** (($ $ (-824)) 17 T ELT) (($ $ (-688)) 21 T ELT) (($ $ (-479)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-809 |#1|) (-111) (-1006)) (T -809)) +((-2667 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-4 *1 (-809 *3)))) (-2666 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-4 *1 (-809 *3)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-1006)) (-5 *2 (-1002 *3)))) (-2675 (*1 *2 *1 *3) (-12 (-4 *1 (-809 *3)) (-4 *3 (-1006)) (-5 *2 (-1002 *3)))) (-2670 (*1 *2 *1 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-1006)) (-5 *2 (-83))))) +(-13 (-407) (-238 |t#1| |t#1|) (-10 -8 (-15 -2667 ($ (-579 |t#1|))) (-15 -2666 ($ (-579 (-579 |t#1|)))) (-15 -2671 ((-1002 |t#1|) $)) (-15 -2675 ((-1002 |t#1|) $ |t#1|)) (-15 -2670 ((-83) $ $)) (IF (|has| |t#1| (-750)) (-6 (-750)) |%noBranch|) (IF (|has| |t#1| (-314)) (-6 (-750)) |%noBranch|))) +(((-72) . T) ((-548 (-766)) . T) ((-238 |#1| |#1|) . T) ((-407) . T) ((-659) . T) ((-750) OR (|has| |#1| (-750)) (|has| |#1| (-314))) ((-753) OR (|has| |#1| (-750)) (|has| |#1| (-314))) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-2677 (((-579 (-579 (-688))) $) 163 T ELT)) (-2673 (((-579 (-688)) (-807 |#1|) $) 191 T ELT)) (-2672 (((-579 (-688)) (-807 |#1|) $) 192 T ELT)) (-2671 (((-1002 |#1|) $) 155 T ELT)) (-2678 (((-579 (-807 |#1|)) $) 152 T ELT)) (-2979 (((-807 |#1|) $ (-479)) 157 T ELT) (((-807 |#1|) $) 158 T ELT)) (-2676 (($ (-579 (-807 |#1|))) 165 T ELT)) (-3754 (((-688) $) 159 T ELT)) (-2674 (((-1002 (-1002 |#1|)) $) 189 T ELT)) (-2675 (((-1002 |#1|) $ |#1|) 180 T ELT) (((-1002 (-1002 |#1|)) $ (-1002 |#1|)) 201 T ELT) (((-1002 (-579 |#1|)) $ (-579 |#1|)) 204 T ELT)) (-3229 (((-83) (-807 |#1|) $) 140 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2668 (((-1175) $) 145 T ELT) (((-1175) $ (-479) (-479)) 205 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2680 (((-579 (-807 |#1|)) $) 146 T ELT)) (-3782 (((-807 |#1|) $ (-688)) 153 T ELT)) (-3930 (((-688) $) 160 T ELT)) (-3928 (((-766) $) 177 T ELT) (((-579 (-807 |#1|)) $) 28 T ELT) (($ (-579 (-807 |#1|))) 164 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2679 (((-579 |#1|) $) 162 T ELT)) (-3041 (((-83) $ $) 198 T ELT)) (-2669 (((-83) $ $) 195 T ELT)) (-2670 (((-83) $ $) 194 T ELT))) +(((-810 |#1|) (-13 (-1006) (-10 -8 (-15 -3928 ((-579 (-807 |#1|)) $)) (-15 -2680 ((-579 (-807 |#1|)) $)) (-15 -3782 ((-807 |#1|) $ (-688))) (-15 -2979 ((-807 |#1|) $ (-479))) (-15 -2979 ((-807 |#1|) $)) (-15 -3754 ((-688) $)) (-15 -3930 ((-688) $)) (-15 -2679 ((-579 |#1|) $)) (-15 -2678 ((-579 (-807 |#1|)) $)) (-15 -2677 ((-579 (-579 (-688))) $)) (-15 -3928 ($ (-579 (-807 |#1|)))) (-15 -2676 ($ (-579 (-807 |#1|)))) (-15 -2675 ((-1002 |#1|) $ |#1|)) (-15 -2674 ((-1002 (-1002 |#1|)) $)) (-15 -2675 ((-1002 (-1002 |#1|)) $ (-1002 |#1|))) (-15 -2675 ((-1002 (-579 |#1|)) $ (-579 |#1|))) (-15 -3229 ((-83) (-807 |#1|) $)) (-15 -2673 ((-579 (-688)) (-807 |#1|) $)) (-15 -2672 ((-579 (-688)) (-807 |#1|) $)) (-15 -2671 ((-1002 |#1|) $)) (-15 -2670 ((-83) $ $)) (-15 -2669 ((-83) $ $)) (-15 -2668 ((-1175) $)) (-15 -2668 ((-1175) $ (-479) (-479))))) (-1006)) (T -810)) +((-3928 (*1 *2 *1) (-12 (-5 *2 (-579 (-807 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-579 (-807 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *2 (-807 *4)) (-5 *1 (-810 *4)) (-4 *4 (-1006)))) (-2979 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *2 (-807 *4)) (-5 *1 (-810 *4)) (-4 *4 (-1006)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-807 *3)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-579 (-807 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-579 (-579 (-688)))) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-579 (-807 *3))) (-4 *3 (-1006)) (-5 *1 (-810 *3)))) (-2676 (*1 *1 *2) (-12 (-5 *2 (-579 (-807 *3))) (-4 *3 (-1006)) (-5 *1 (-810 *3)))) (-2675 (*1 *2 *1 *3) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-1002 (-1002 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2675 (*1 *2 *1 *3) (-12 (-4 *4 (-1006)) (-5 *2 (-1002 (-1002 *4))) (-5 *1 (-810 *4)) (-5 *3 (-1002 *4)))) (-2675 (*1 *2 *1 *3) (-12 (-4 *4 (-1006)) (-5 *2 (-1002 (-579 *4))) (-5 *1 (-810 *4)) (-5 *3 (-579 *4)))) (-3229 (*1 *2 *3 *1) (-12 (-5 *3 (-807 *4)) (-4 *4 (-1006)) (-5 *2 (-83)) (-5 *1 (-810 *4)))) (-2673 (*1 *2 *3 *1) (-12 (-5 *3 (-807 *4)) (-4 *4 (-1006)) (-5 *2 (-579 (-688))) (-5 *1 (-810 *4)))) (-2672 (*1 *2 *3 *1) (-12 (-5 *3 (-807 *4)) (-4 *4 (-1006)) (-5 *2 (-579 (-688))) (-5 *1 (-810 *4)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2670 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2669 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) (-2668 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-810 *4)) (-4 *4 (-1006))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-3914 (((-83) $) NIL T ELT)) (-3911 (((-688)) NIL T ELT)) (-3312 (($ $ (-824)) NIL (|has| $ (-314)) ELT) (($ $) NIL T ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 $ #1#) $) NIL T ELT)) (-3140 (($ $) NIL T ELT)) (-1780 (($ (-1169 $)) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-2818 (($) NIL T ELT)) (-1668 (((-83) $) NIL T ELT)) (-1752 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3754 (((-737 (-824)) $) NIL T ELT) (((-824) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2000 (($) NIL (|has| $ (-314)) ELT)) (-1998 (((-83) $) NIL (|has| $ (-314)) ELT)) (-3116 (($ $ (-824)) NIL (|has| $ (-314)) ELT) (($ $) NIL T ELT)) (-3427 (((-628 $) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2001 (((-1075 $) $ (-824)) NIL (|has| $ (-314)) ELT) (((-1075 $) $) NIL T ELT)) (-1997 (((-824) $) NIL T ELT)) (-1615 (((-1075 $) $) NIL (|has| $ (-314)) ELT)) (-1614 (((-3 (-1075 $) #1#) $ $) NIL (|has| $ (-314)) ELT) (((-1075 $) $) NIL (|has| $ (-314)) ELT)) (-1616 (($ $ (-1075 $)) NIL (|has| $ (-314)) ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL T CONST)) (-2387 (($ (-824)) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($) NIL (|has| $ (-314)) ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-3912 (((-824)) NIL T ELT) (((-737 (-824))) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-1753 (((-3 (-688) #1#) $ $) NIL T ELT) (((-688) $) NIL T ELT)) (-3893 (((-105)) NIL T ELT)) (-3740 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3930 (((-824) $) NIL T ELT) (((-737 (-824)) $) NIL T ELT)) (-3169 (((-1075 $)) NIL T ELT)) (-1662 (($) NIL T ELT)) (-1617 (($) NIL (|has| $ (-314)) ELT)) (-3208 (((-626 $) (-1169 $)) NIL T ELT) (((-1169 $) $) NIL T ELT)) (-3954 (((-479) $) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT)) (-2687 (((-628 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $) (-824)) NIL T ELT) (((-1169 $)) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3915 (((-83) $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3910 (($ $ (-688)) NIL (|has| $ (-314)) ELT) (($ $) NIL (|has| $ (-314)) ELT)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT))) +(((-811 |#1|) (-13 (-295) (-276 $) (-549 (-479))) (-824)) (T -811)) +NIL +((-2682 (((-3 (-579 (-1075 |#4|)) #1="failed") (-579 (-1075 |#4|)) (-1075 |#4|)) 164 T ELT)) (-2685 ((|#1|) 101 T ELT)) (-2684 (((-342 (-1075 |#4|)) (-1075 |#4|)) 173 T ELT)) (-2686 (((-342 (-1075 |#4|)) (-579 |#3|) (-1075 |#4|)) 83 T ELT)) (-2683 (((-342 (-1075 |#4|)) (-1075 |#4|)) 183 T ELT)) (-2681 (((-3 (-579 (-1075 |#4|)) #1#) (-579 (-1075 |#4|)) (-1075 |#4|) |#3|) 117 T ELT))) +(((-812 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2682 ((-3 (-579 (-1075 |#4|)) #1="failed") (-579 (-1075 |#4|)) (-1075 |#4|))) (-15 -2683 ((-342 (-1075 |#4|)) (-1075 |#4|))) (-15 -2684 ((-342 (-1075 |#4|)) (-1075 |#4|))) (-15 -2685 (|#1|)) (-15 -2681 ((-3 (-579 (-1075 |#4|)) #1#) (-579 (-1075 |#4|)) (-1075 |#4|) |#3|)) (-15 -2686 ((-342 (-1075 |#4|)) (-579 |#3|) (-1075 |#4|)))) (-815) (-711) (-750) (-855 |#1| |#2| |#3|)) (T -812)) +((-2686 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *7)) (-4 *7 (-750)) (-4 *5 (-815)) (-4 *6 (-711)) (-4 *8 (-855 *5 *6 *7)) (-5 *2 (-342 (-1075 *8))) (-5 *1 (-812 *5 *6 *7 *8)) (-5 *4 (-1075 *8)))) (-2681 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-579 (-1075 *7))) (-5 *3 (-1075 *7)) (-4 *7 (-855 *5 *6 *4)) (-4 *5 (-815)) (-4 *6 (-711)) (-4 *4 (-750)) (-5 *1 (-812 *5 *6 *4 *7)))) (-2685 (*1 *2) (-12 (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-815)) (-5 *1 (-812 *2 *3 *4 *5)) (-4 *5 (-855 *2 *3 *4)))) (-2684 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-855 *4 *5 *6)) (-5 *2 (-342 (-1075 *7))) (-5 *1 (-812 *4 *5 *6 *7)) (-5 *3 (-1075 *7)))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-855 *4 *5 *6)) (-5 *2 (-342 (-1075 *7))) (-5 *1 (-812 *4 *5 *6 *7)) (-5 *3 (-1075 *7)))) (-2682 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 (-1075 *7))) (-5 *3 (-1075 *7)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-815)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-812 *4 *5 *6 *7))))) +((-2682 (((-3 (-579 (-1075 |#2|)) "failed") (-579 (-1075 |#2|)) (-1075 |#2|)) 39 T ELT)) (-2685 ((|#1|) 71 T ELT)) (-2684 (((-342 (-1075 |#2|)) (-1075 |#2|)) 125 T ELT)) (-2686 (((-342 (-1075 |#2|)) (-1075 |#2|)) 109 T ELT)) (-2683 (((-342 (-1075 |#2|)) (-1075 |#2|)) 136 T ELT))) +(((-813 |#1| |#2|) (-10 -7 (-15 -2682 ((-3 (-579 (-1075 |#2|)) "failed") (-579 (-1075 |#2|)) (-1075 |#2|))) (-15 -2683 ((-342 (-1075 |#2|)) (-1075 |#2|))) (-15 -2684 ((-342 (-1075 |#2|)) (-1075 |#2|))) (-15 -2685 (|#1|)) (-15 -2686 ((-342 (-1075 |#2|)) (-1075 |#2|)))) (-815) (-1145 |#1|)) (T -813)) +((-2686 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-1145 *4)) (-5 *2 (-342 (-1075 *5))) (-5 *1 (-813 *4 *5)) (-5 *3 (-1075 *5)))) (-2685 (*1 *2) (-12 (-4 *2 (-815)) (-5 *1 (-813 *2 *3)) (-4 *3 (-1145 *2)))) (-2684 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-1145 *4)) (-5 *2 (-342 (-1075 *5))) (-5 *1 (-813 *4 *5)) (-5 *3 (-1075 *5)))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-1145 *4)) (-5 *2 (-342 (-1075 *5))) (-5 *1 (-813 *4 *5)) (-5 *3 (-1075 *5)))) (-2682 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 (-1075 *5))) (-5 *3 (-1075 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-815)) (-5 *1 (-813 *4 *5))))) +((-2689 (((-3 (-579 (-1075 $)) "failed") (-579 (-1075 $)) (-1075 $)) 46 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 18 T ELT)) (-2687 (((-628 $) $) 40 T ELT))) +(((-814 |#1|) (-10 -7 (-15 -2687 ((-628 |#1|) |#1|)) (-15 -2689 ((-3 (-579 (-1075 |#1|)) "failed") (-579 (-1075 |#1|)) (-1075 |#1|))) (-15 -2693 ((-1075 |#1|) (-1075 |#1|) (-1075 |#1|)))) (-815)) (T -814)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 72 T ELT)) (-3757 (($ $) 63 T ELT)) (-3953 (((-342 $) $) 64 T ELT)) (-2689 (((-3 (-579 (-1075 $)) "failed") (-579 (-1075 $)) (-1075 $)) 69 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3705 (((-83) $) 65 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 70 T ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 71 T ELT)) (-3714 (((-342 $) $) 62 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2688 (((-3 (-1169 $) "failed") (-626 $)) 68 (|has| $ (-116)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT)) (-2687 (((-628 $) $) 67 (|has| $ (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-815) (-111)) (T -815)) +((-2693 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 *1)) (-4 *1 (-815)))) (-2692 (*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *2 (-342 (-1075 *1))) (-5 *3 (-1075 *1)))) (-2691 (*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *2 (-342 (-1075 *1))) (-5 *3 (-1075 *1)))) (-2690 (*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *2 (-342 (-1075 *1))) (-5 *3 (-1075 *1)))) (-2689 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 (-1075 *1))) (-5 *3 (-1075 *1)) (-4 *1 (-815)))) (-2688 (*1 *2 *3) (|partial| -12 (-5 *3 (-626 *1)) (-4 *1 (-116)) (-4 *1 (-815)) (-5 *2 (-1169 *1)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-628 *1)) (-4 *1 (-116)) (-4 *1 (-815))))) +(-13 (-1124) (-10 -8 (-15 -2692 ((-342 (-1075 $)) (-1075 $))) (-15 -2691 ((-342 (-1075 $)) (-1075 $))) (-15 -2690 ((-342 (-1075 $)) (-1075 $))) (-15 -2693 ((-1075 $) (-1075 $) (-1075 $))) (-15 -2689 ((-3 (-579 (-1075 $)) "failed") (-579 (-1075 $)) (-1075 $))) (IF (|has| $ (-116)) (PROGN (-15 -2688 ((-3 (-1169 $) "failed") (-626 $))) (-15 -2687 ((-628 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-242) . T) ((-386) . T) ((-490) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-578 $) . T) ((-650 $) . T) ((-659) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) . T)) +((-2695 (((-3 (-2 (|:| -3754 (-688)) (|:| -2370 |#5|)) #1="failed") (-279 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2694 (((-83) (-279 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3754 (((-3 (-688) #1#) (-279 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-816 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3754 ((-3 (-688) #1="failed") (-279 |#2| |#3| |#4| |#5|))) (-15 -2694 ((-83) (-279 |#2| |#3| |#4| |#5|))) (-15 -2695 ((-3 (-2 (|:| -3754 (-688)) (|:| -2370 |#5|)) #1#) (-279 |#2| |#3| |#4| |#5|)))) (-13 (-490) (-944 (-479))) (-358 |#1|) (-1145 |#2|) (-1145 (-344 |#3|)) (-287 |#2| |#3| |#4|)) (T -816)) +((-2695 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-358 *4)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-2 (|:| -3754 (-688)) (|:| -2370 *8))) (-5 *1 (-816 *4 *5 *6 *7 *8)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-358 *4)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-83)) (-5 *1 (-816 *4 *5 *6 *7 *8)))) (-3754 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-358 *4)) (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-4 *8 (-287 *5 *6 *7)) (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-688)) (-5 *1 (-816 *4 *5 *6 *7 *8))))) +((-2695 (((-3 (-2 (|:| -3754 (-688)) (|:| -2370 |#3|)) #1="failed") (-279 (-344 (-479)) |#1| |#2| |#3|)) 64 T ELT)) (-2694 (((-83) (-279 (-344 (-479)) |#1| |#2| |#3|)) 16 T ELT)) (-3754 (((-3 (-688) #1#) (-279 (-344 (-479)) |#1| |#2| |#3|)) 14 T ELT))) +(((-817 |#1| |#2| |#3|) (-10 -7 (-15 -3754 ((-3 (-688) #1="failed") (-279 (-344 (-479)) |#1| |#2| |#3|))) (-15 -2694 ((-83) (-279 (-344 (-479)) |#1| |#2| |#3|))) (-15 -2695 ((-3 (-2 (|:| -3754 (-688)) (|:| -2370 |#3|)) #1#) (-279 (-344 (-479)) |#1| |#2| |#3|)))) (-1145 (-344 (-479))) (-1145 (-344 |#1|)) (-287 (-344 (-479)) |#1| |#2|)) (T -817)) +((-2695 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 (-344 (-479)) *4 *5 *6)) (-4 *4 (-1145 (-344 (-479)))) (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 (-344 (-479)) *4 *5)) (-5 *2 (-2 (|:| -3754 (-688)) (|:| -2370 *6))) (-5 *1 (-817 *4 *5 *6)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-279 (-344 (-479)) *4 *5 *6)) (-4 *4 (-1145 (-344 (-479)))) (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 (-344 (-479)) *4 *5)) (-5 *2 (-83)) (-5 *1 (-817 *4 *5 *6)))) (-3754 (*1 *2 *3) (|partial| -12 (-5 *3 (-279 (-344 (-479)) *4 *5 *6)) (-4 *4 (-1145 (-344 (-479)))) (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 (-344 (-479)) *4 *5)) (-5 *2 (-688)) (-5 *1 (-817 *4 *5 *6))))) +((-2700 ((|#2| |#2|) 26 T ELT)) (-2698 (((-479) (-579 (-2 (|:| |den| (-479)) (|:| |gcdnum| (-479))))) 15 T ELT)) (-2696 (((-824) (-479)) 38 T ELT)) (-2699 (((-479) |#2|) 45 T ELT)) (-2697 (((-479) |#2|) 21 T ELT) (((-2 (|:| |den| (-479)) (|:| |gcdnum| (-479))) |#1|) 20 T ELT))) +(((-818 |#1| |#2|) (-10 -7 (-15 -2696 ((-824) (-479))) (-15 -2697 ((-2 (|:| |den| (-479)) (|:| |gcdnum| (-479))) |#1|)) (-15 -2697 ((-479) |#2|)) (-15 -2698 ((-479) (-579 (-2 (|:| |den| (-479)) (|:| |gcdnum| (-479)))))) (-15 -2699 ((-479) |#2|)) (-15 -2700 (|#2| |#2|))) (-1145 (-344 (-479))) (-1145 (-344 |#1|))) (T -818)) +((-2700 (*1 *2 *2) (-12 (-4 *3 (-1145 (-344 (-479)))) (-5 *1 (-818 *3 *2)) (-4 *2 (-1145 (-344 *3))))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-1145 (-344 *2))) (-5 *2 (-479)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1145 (-344 *4))))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| |den| (-479)) (|:| |gcdnum| (-479))))) (-4 *4 (-1145 (-344 *2))) (-5 *2 (-479)) (-5 *1 (-818 *4 *5)) (-4 *5 (-1145 (-344 *4))))) (-2697 (*1 *2 *3) (-12 (-4 *4 (-1145 (-344 *2))) (-5 *2 (-479)) (-5 *1 (-818 *4 *3)) (-4 *3 (-1145 (-344 *4))))) (-2697 (*1 *2 *3) (-12 (-4 *3 (-1145 (-344 (-479)))) (-5 *2 (-2 (|:| |den| (-479)) (|:| |gcdnum| (-479)))) (-5 *1 (-818 *3 *4)) (-4 *4 (-1145 (-344 *3))))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-479)) (-4 *4 (-1145 (-344 *3))) (-5 *2 (-824)) (-5 *1 (-818 *4 *5)) (-4 *5 (-1145 (-344 *4)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 ((|#1| $) 99 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2549 (($ $ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) 93 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-2708 (($ |#1| (-342 |#1|)) 91 T ELT)) (-2702 (((-1075 |#1|) |#1| |#1|) 52 T ELT)) (-2701 (($ $) 60 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2703 (((-479) $) 96 T ELT)) (-2704 (($ $ (-479)) 98 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-2705 ((|#1| $) 95 T ELT)) (-2706 (((-342 |#1|) $) 94 T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) 92 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-2707 (($ $) 49 T ELT)) (-3928 (((-766) $) 123 T ELT) (($ (-479)) 72 T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#1|) 40 T ELT) (((-344 |#1|) $) 77 T ELT) (($ (-344 (-342 |#1|))) 85 T ELT)) (-3110 (((-688)) 70 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2645 (($) 24 T CONST)) (-2651 (($) 12 T CONST)) (-3041 (((-83) $ $) 86 T ELT)) (-3931 (($ $ $) NIL T ELT)) (-3819 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 48 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-819 |#1|) (-13 (-308) (-38 |#1|) (-10 -8 (-15 -3928 ((-344 |#1|) $)) (-15 -3928 ($ (-344 (-342 |#1|)))) (-15 -2707 ($ $)) (-15 -2706 ((-342 |#1|) $)) (-15 -2705 (|#1| $)) (-15 -2704 ($ $ (-479))) (-15 -2703 ((-479) $)) (-15 -2702 ((-1075 |#1|) |#1| |#1|)) (-15 -2701 ($ $)) (-15 -2708 ($ |#1| (-342 |#1|))) (-15 -3113 (|#1| $)))) (-254)) (T -819)) +((-3928 (*1 *2 *1) (-12 (-5 *2 (-344 *3)) (-5 *1 (-819 *3)) (-4 *3 (-254)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-344 (-342 *3))) (-4 *3 (-254)) (-5 *1 (-819 *3)))) (-2707 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-254)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-342 *3)) (-5 *1 (-819 *3)) (-4 *3 (-254)))) (-2705 (*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-254)))) (-2704 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-819 *3)) (-4 *3 (-254)))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-819 *3)) (-4 *3 (-254)))) (-2702 (*1 *2 *3 *3) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-819 *3)) (-4 *3 (-254)))) (-2701 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-254)))) (-2708 (*1 *1 *2 *3) (-12 (-5 *3 (-342 *2)) (-4 *2 (-254)) (-5 *1 (-819 *2)))) (-3113 (*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-254))))) +((-2708 (((-51) (-851 |#1|) (-342 (-851 |#1|)) (-1080)) 17 T ELT) (((-51) (-344 (-851 |#1|)) (-1080)) 18 T ELT))) +(((-820 |#1|) (-10 -7 (-15 -2708 ((-51) (-344 (-851 |#1|)) (-1080))) (-15 -2708 ((-51) (-851 |#1|) (-342 (-851 |#1|)) (-1080)))) (-13 (-254) (-118))) (T -820)) +((-2708 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-342 (-851 *6))) (-5 *5 (-1080)) (-5 *3 (-851 *6)) (-4 *6 (-13 (-254) (-118))) (-5 *2 (-51)) (-5 *1 (-820 *6)))) (-2708 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-51)) (-5 *1 (-820 *5))))) +((-2709 ((|#4| (-579 |#4|)) 148 T ELT) (((-1075 |#4|) (-1075 |#4|) (-1075 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3128 (((-1075 |#4|) (-579 (-1075 |#4|))) 141 T ELT) (((-1075 |#4|) (-1075 |#4|) (-1075 |#4|)) 61 T ELT) ((|#4| (-579 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3128 (|#4| |#4| |#4|)) (-15 -3128 (|#4| (-579 |#4|))) (-15 -3128 ((-1075 |#4|) (-1075 |#4|) (-1075 |#4|))) (-15 -3128 ((-1075 |#4|) (-579 (-1075 |#4|)))) (-15 -2709 (|#4| |#4| |#4|)) (-15 -2709 ((-1075 |#4|) (-1075 |#4|) (-1075 |#4|))) (-15 -2709 (|#4| (-579 |#4|)))) (-711) (-750) (-254) (-855 |#3| |#1| |#2|)) (T -821)) +((-2709 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *6 *4 *5)) (-5 *1 (-821 *4 *5 *6 *2)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 *6)) (-4 *6 (-855 *5 *3 *4)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *5 (-254)) (-5 *1 (-821 *3 *4 *5 *6)))) (-2709 (*1 *2 *2 *2) (-12 (-4 *3 (-711)) (-4 *4 (-750)) (-4 *5 (-254)) (-5 *1 (-821 *3 *4 *5 *2)) (-4 *2 (-855 *5 *3 *4)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-579 (-1075 *7))) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) (-5 *2 (-1075 *7)) (-5 *1 (-821 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5)))) (-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 *6)) (-4 *6 (-855 *5 *3 *4)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *5 (-254)) (-5 *1 (-821 *3 *4 *5 *6)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *6 *4 *5)) (-5 *1 (-821 *4 *5 *6 *2)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)))) (-3128 (*1 *2 *2 *2) (-12 (-4 *3 (-711)) (-4 *4 (-750)) (-4 *5 (-254)) (-5 *1 (-821 *3 *4 *5 *2)) (-4 *2 (-855 *5 *3 *4))))) +((-2722 (((-810 (-479)) (-878)) 38 T ELT) (((-810 (-479)) (-579 (-479))) 34 T ELT)) (-2710 (((-810 (-479)) (-579 (-479))) 66 T ELT) (((-810 (-479)) (-824)) 67 T ELT)) (-2721 (((-810 (-479))) 39 T ELT)) (-2719 (((-810 (-479))) 53 T ELT) (((-810 (-479)) (-579 (-479))) 52 T ELT)) (-2718 (((-810 (-479))) 51 T ELT) (((-810 (-479)) (-579 (-479))) 50 T ELT)) (-2717 (((-810 (-479))) 49 T ELT) (((-810 (-479)) (-579 (-479))) 48 T ELT)) (-2716 (((-810 (-479))) 47 T ELT) (((-810 (-479)) (-579 (-479))) 46 T ELT)) (-2715 (((-810 (-479))) 45 T ELT) (((-810 (-479)) (-579 (-479))) 44 T ELT)) (-2720 (((-810 (-479))) 55 T ELT) (((-810 (-479)) (-579 (-479))) 54 T ELT)) (-2714 (((-810 (-479)) (-579 (-479))) 71 T ELT) (((-810 (-479)) (-824)) 73 T ELT)) (-2713 (((-810 (-479)) (-579 (-479))) 68 T ELT) (((-810 (-479)) (-824)) 69 T ELT)) (-2711 (((-810 (-479)) (-579 (-479))) 64 T ELT) (((-810 (-479)) (-824)) 65 T ELT)) (-2712 (((-810 (-479)) (-579 (-824))) 57 T ELT))) +(((-822) (-10 -7 (-15 -2710 ((-810 (-479)) (-824))) (-15 -2710 ((-810 (-479)) (-579 (-479)))) (-15 -2711 ((-810 (-479)) (-824))) (-15 -2711 ((-810 (-479)) (-579 (-479)))) (-15 -2712 ((-810 (-479)) (-579 (-824)))) (-15 -2713 ((-810 (-479)) (-824))) (-15 -2713 ((-810 (-479)) (-579 (-479)))) (-15 -2714 ((-810 (-479)) (-824))) (-15 -2714 ((-810 (-479)) (-579 (-479)))) (-15 -2715 ((-810 (-479)) (-579 (-479)))) (-15 -2715 ((-810 (-479)))) (-15 -2716 ((-810 (-479)) (-579 (-479)))) (-15 -2716 ((-810 (-479)))) (-15 -2717 ((-810 (-479)) (-579 (-479)))) (-15 -2717 ((-810 (-479)))) (-15 -2718 ((-810 (-479)) (-579 (-479)))) (-15 -2718 ((-810 (-479)))) (-15 -2719 ((-810 (-479)) (-579 (-479)))) (-15 -2719 ((-810 (-479)))) (-15 -2720 ((-810 (-479)) (-579 (-479)))) (-15 -2720 ((-810 (-479)))) (-15 -2721 ((-810 (-479)))) (-15 -2722 ((-810 (-479)) (-579 (-479)))) (-15 -2722 ((-810 (-479)) (-878))))) (T -822)) +((-2722 (*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2721 (*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2720 (*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2720 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2719 (*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2718 (*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2717 (*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2716 (*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2715 (*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-579 (-824))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +((-2724 (((-579 (-851 |#1|)) (-579 (-851 |#1|)) (-579 (-1080))) 14 T ELT)) (-2723 (((-579 (-851 |#1|)) (-579 (-851 |#1|)) (-579 (-1080))) 13 T ELT))) +(((-823 |#1|) (-10 -7 (-15 -2723 ((-579 (-851 |#1|)) (-579 (-851 |#1|)) (-579 (-1080)))) (-15 -2724 ((-579 (-851 |#1|)) (-579 (-851 |#1|)) (-579 (-1080))))) (-386)) (T -823)) +((-2724 (*1 *2 *2 *3) (-12 (-5 *2 (-579 (-851 *4))) (-5 *3 (-579 (-1080))) (-4 *4 (-386)) (-5 *1 (-823 *4)))) (-2723 (*1 *2 *2 *3) (-12 (-5 *2 (-579 (-851 *4))) (-5 *3 (-579 (-1080))) (-4 *4 (-386)) (-5 *1 (-823 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ "failed") $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3128 (($ $ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2651 (($) NIL T CONST)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-688)) NIL T ELT) (($ $ (-824)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-824) (-13 (-712) (-659) (-10 -8 (-15 -3128 ($ $ $)) (-6 (-3979 "*"))))) (T -824)) +((-3128 (*1 *1 *1 *1) (-5 *1 (-824)))) +((-688) (|%ilt| 0 |#1|)) +((-3928 (((-261 |#1|) (-411)) 16 T ELT))) +(((-825 |#1|) (-10 -7 (-15 -3928 ((-261 |#1|) (-411)))) (-490)) (T -825)) +((-3928 (*1 *2 *3) (-12 (-5 *3 (-411)) (-5 *2 (-261 *4)) (-5 *1 (-825 *4)) (-4 *4 (-490))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-826) (-111)) (T -826)) +((-2726 (*1 *2 *3) (-12 (-4 *1 (-826)) (-5 *2 (-2 (|:| -3936 (-579 *1)) (|:| -2396 *1))) (-5 *3 (-579 *1)))) (-2725 (*1 *2 *3 *1) (-12 (-4 *1 (-826)) (-5 *2 (-628 (-579 *1))) (-5 *3 (-579 *1))))) +(-13 (-386) (-10 -8 (-15 -2726 ((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $))) (-15 -2725 ((-628 (-579 $)) (-579 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-242) . T) ((-386) . T) ((-490) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-578 $) . T) ((-650 $) . T) ((-659) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3090 (((-1075 |#2|) (-579 |#2|) (-579 |#2|)) 17 T ELT) (((-1138 |#1| |#2|) (-1138 |#1| |#2|) (-579 |#2|) (-579 |#2|)) 13 T ELT))) +(((-827 |#1| |#2|) (-10 -7 (-15 -3090 ((-1138 |#1| |#2|) (-1138 |#1| |#2|) (-579 |#2|) (-579 |#2|))) (-15 -3090 ((-1075 |#2|) (-579 |#2|) (-579 |#2|)))) (-1080) (-308)) (T -827)) +((-3090 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *5)) (-4 *5 (-308)) (-5 *2 (-1075 *5)) (-5 *1 (-827 *4 *5)) (-14 *4 (-1080)))) (-3090 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1138 *4 *5)) (-5 *3 (-579 *5)) (-14 *4 (-1080)) (-4 *5 (-308)) (-5 *1 (-827 *4 *5))))) +((-2727 ((|#2| (-579 |#1|) (-579 |#1|)) 28 T ELT))) +(((-828 |#1| |#2|) (-10 -7 (-15 -2727 (|#2| (-579 |#1|) (-579 |#1|)))) (-308) (-1145 |#1|)) (T -828)) +((-2727 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *4)) (-4 *4 (-308)) (-4 *2 (-1145 *4)) (-5 *1 (-828 *4 *2))))) +((-2729 (((-479) (-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-1063)) 175 T ELT)) (-2748 ((|#4| |#4|) 194 T ELT)) (-2733 (((-579 (-344 (-851 |#1|))) (-579 (-1080))) 146 T ELT)) (-2747 (((-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))) (-626 |#4|) (-579 (-344 (-851 |#1|))) (-579 (-579 |#4|)) (-688) (-688) (-479)) 88 T ELT)) (-2737 (((-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))) (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))) (-579 |#4|)) 69 T ELT)) (-2746 (((-626 |#4|) (-626 |#4|) (-579 |#4|)) 65 T ELT)) (-2730 (((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-1063)) 187 T ELT)) (-2728 (((-479) (-626 |#4|) (-824) (-1063)) 167 T ELT) (((-479) (-626 |#4|) (-579 (-1080)) (-824) (-1063)) 166 T ELT) (((-479) (-626 |#4|) (-579 |#4|) (-824) (-1063)) 165 T ELT) (((-479) (-626 |#4|) (-1063)) 154 T ELT) (((-479) (-626 |#4|) (-579 (-1080)) (-1063)) 153 T ELT) (((-479) (-626 |#4|) (-579 |#4|) (-1063)) 152 T ELT) (((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-824)) 151 T ELT) (((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-579 (-1080)) (-824)) 150 T ELT) (((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-579 |#4|) (-824)) 149 T ELT) (((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|)) 148 T ELT) (((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-579 (-1080))) 147 T ELT) (((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-579 |#4|)) 143 T ELT)) (-2734 ((|#4| (-851 |#1|)) 80 T ELT)) (-2744 (((-83) (-579 |#4|) (-579 (-579 |#4|))) 191 T ELT)) (-2743 (((-579 (-579 (-479))) (-479) (-479)) 161 T ELT)) (-2742 (((-579 (-579 |#4|)) (-579 (-579 |#4|))) 106 T ELT)) (-2741 (((-688) (-579 (-2 (|:| -3093 (-688)) (|:| |eqns| (-579 (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (|:| |fgb| (-579 |#4|))))) 100 T ELT)) (-2740 (((-688) (-579 (-2 (|:| -3093 (-688)) (|:| |eqns| (-579 (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (|:| |fgb| (-579 |#4|))))) 99 T ELT)) (-2749 (((-83) (-579 (-851 |#1|))) 19 T ELT) (((-83) (-579 |#4|)) 15 T ELT)) (-2735 (((-2 (|:| |sysok| (-83)) (|:| |z0| (-579 |#4|)) (|:| |n0| (-579 |#4|))) (-579 |#4|) (-579 |#4|)) 84 T ELT)) (-2739 (((-579 |#4|) |#4|) 57 T ELT)) (-2732 (((-579 (-344 (-851 |#1|))) (-579 |#4|)) 142 T ELT) (((-626 (-344 (-851 |#1|))) (-626 |#4|)) 66 T ELT) (((-344 (-851 |#1|)) |#4|) 139 T ELT)) (-2731 (((-2 (|:| |rgl| (-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))))))) (|:| |rgsz| (-479))) (-626 |#4|) (-579 (-344 (-851 |#1|))) (-688) (-1063) (-479)) 112 T ELT)) (-2736 (((-579 (-2 (|:| -3093 (-688)) (|:| |eqns| (-579 (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (|:| |fgb| (-579 |#4|)))) (-626 |#4|) (-688)) 98 T ELT)) (-2745 (((-579 (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479))))) (-626 |#4|) (-688)) 121 T ELT)) (-2738 (((-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))) (-2 (|:| |mat| (-626 (-344 (-851 |#1|)))) (|:| |vec| (-579 (-344 (-851 |#1|)))) (|:| -3093 (-688)) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479))))) 56 T ELT))) +(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2728 ((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-579 |#4|))) (-15 -2728 ((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-579 (-1080)))) (-15 -2728 ((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|))) (-15 -2728 ((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-579 |#4|) (-824))) (-15 -2728 ((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-579 (-1080)) (-824))) (-15 -2728 ((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-626 |#4|) (-824))) (-15 -2728 ((-479) (-626 |#4|) (-579 |#4|) (-1063))) (-15 -2728 ((-479) (-626 |#4|) (-579 (-1080)) (-1063))) (-15 -2728 ((-479) (-626 |#4|) (-1063))) (-15 -2728 ((-479) (-626 |#4|) (-579 |#4|) (-824) (-1063))) (-15 -2728 ((-479) (-626 |#4|) (-579 (-1080)) (-824) (-1063))) (-15 -2728 ((-479) (-626 |#4|) (-824) (-1063))) (-15 -2729 ((-479) (-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-1063))) (-15 -2730 ((-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|))))))))) (-1063))) (-15 -2731 ((-2 (|:| |rgl| (-579 (-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))))))) (|:| |rgsz| (-479))) (-626 |#4|) (-579 (-344 (-851 |#1|))) (-688) (-1063) (-479))) (-15 -2732 ((-344 (-851 |#1|)) |#4|)) (-15 -2732 ((-626 (-344 (-851 |#1|))) (-626 |#4|))) (-15 -2732 ((-579 (-344 (-851 |#1|))) (-579 |#4|))) (-15 -2733 ((-579 (-344 (-851 |#1|))) (-579 (-1080)))) (-15 -2734 (|#4| (-851 |#1|))) (-15 -2735 ((-2 (|:| |sysok| (-83)) (|:| |z0| (-579 |#4|)) (|:| |n0| (-579 |#4|))) (-579 |#4|) (-579 |#4|))) (-15 -2736 ((-579 (-2 (|:| -3093 (-688)) (|:| |eqns| (-579 (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (|:| |fgb| (-579 |#4|)))) (-626 |#4|) (-688))) (-15 -2737 ((-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))) (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))) (-579 |#4|))) (-15 -2738 ((-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))) (-2 (|:| |mat| (-626 (-344 (-851 |#1|)))) (|:| |vec| (-579 (-344 (-851 |#1|)))) (|:| -3093 (-688)) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (-15 -2739 ((-579 |#4|) |#4|)) (-15 -2740 ((-688) (-579 (-2 (|:| -3093 (-688)) (|:| |eqns| (-579 (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (|:| |fgb| (-579 |#4|)))))) (-15 -2741 ((-688) (-579 (-2 (|:| -3093 (-688)) (|:| |eqns| (-579 (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (|:| |fgb| (-579 |#4|)))))) (-15 -2742 ((-579 (-579 |#4|)) (-579 (-579 |#4|)))) (-15 -2743 ((-579 (-579 (-479))) (-479) (-479))) (-15 -2744 ((-83) (-579 |#4|) (-579 (-579 |#4|)))) (-15 -2745 ((-579 (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479))))) (-626 |#4|) (-688))) (-15 -2746 ((-626 |#4|) (-626 |#4|) (-579 |#4|))) (-15 -2747 ((-2 (|:| |eqzro| (-579 |#4|)) (|:| |neqzro| (-579 |#4|)) (|:| |wcond| (-579 (-851 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 |#1|)))) (|:| -1999 (-579 (-1169 (-344 (-851 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))) (-626 |#4|) (-579 (-344 (-851 |#1|))) (-579 (-579 |#4|)) (-688) (-688) (-479))) (-15 -2748 (|#4| |#4|)) (-15 -2749 ((-83) (-579 |#4|))) (-15 -2749 ((-83) (-579 (-851 |#1|))))) (-13 (-254) (-118)) (-13 (-750) (-549 (-1080))) (-711) (-855 |#1| |#3| |#2|)) (T -829)) +((-2749 (*1 *2 *3) (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-83)) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-855 *4 *6 *5)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-83)) (-5 *1 (-829 *4 *5 *6 *7)))) (-2748 (*1 *2 *2) (-12 (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-750) (-549 (-1080)))) (-4 *5 (-711)) (-5 *1 (-829 *3 *4 *5 *2)) (-4 *2 (-855 *3 *5 *4)))) (-2747 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479))))) (-5 *4 (-626 *12)) (-5 *5 (-579 (-344 (-851 *9)))) (-5 *6 (-579 (-579 *12))) (-5 *7 (-688)) (-5 *8 (-479)) (-4 *9 (-13 (-254) (-118))) (-4 *12 (-855 *9 *11 *10)) (-4 *10 (-13 (-750) (-549 (-1080)))) (-4 *11 (-711)) (-5 *2 (-2 (|:| |eqzro| (-579 *12)) (|:| |neqzro| (-579 *12)) (|:| |wcond| (-579 (-851 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *9)))) (|:| -1999 (-579 (-1169 (-344 (-851 *9))))))))) (-5 *1 (-829 *9 *10 *11 *12)))) (-2746 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *7)) (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *1 (-829 *4 *5 *6 *7)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-688)) (-4 *8 (-855 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 (-579 (-2 (|:| |det| *8) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (-5 *1 (-829 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-579 *8))) (-5 *3 (-579 *8)) (-4 *8 (-855 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 (-83)) (-5 *1 (-829 *5 *6 *7 *8)))) (-2743 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-579 (-579 (-479)))) (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-479)) (-4 *7 (-855 *4 *6 *5)))) (-2742 (*1 *2 *2) (-12 (-5 *2 (-579 (-579 *6))) (-4 *6 (-855 *3 *5 *4)) (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-750) (-549 (-1080)))) (-4 *5 (-711)) (-5 *1 (-829 *3 *4 *5 *6)))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| -3093 (-688)) (|:| |eqns| (-579 (-2 (|:| |det| *7) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (|:| |fgb| (-579 *7))))) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-688)) (-5 *1 (-829 *4 *5 *6 *7)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| -3093 (-688)) (|:| |eqns| (-579 (-2 (|:| |det| *7) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (|:| |fgb| (-579 *7))))) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-688)) (-5 *1 (-829 *4 *5 *6 *7)))) (-2739 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-579 *3)) (-5 *1 (-829 *4 *5 *6 *3)) (-4 *3 (-855 *4 *6 *5)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-626 (-344 (-851 *4)))) (|:| |vec| (-579 (-344 (-851 *4)))) (|:| -3093 (-688)) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479))))) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-2 (|:| |partsol| (-1169 (-344 (-851 *4)))) (|:| -1999 (-579 (-1169 (-344 (-851 *4))))))) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-855 *4 *6 *5)))) (-2737 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1169 (-344 (-851 *4)))) (|:| -1999 (-579 (-1169 (-344 (-851 *4))))))) (-5 *3 (-579 *7)) (-4 *4 (-13 (-254) (-118))) (-4 *7 (-855 *4 *6 *5)) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *1 (-829 *4 *5 *6 *7)))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-4 *8 (-855 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 (-579 (-2 (|:| -3093 (-688)) (|:| |eqns| (-579 (-2 (|:| |det| *8) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479)))))) (|:| |fgb| (-579 *8))))) (-5 *1 (-829 *5 *6 *7 *8)) (-5 *4 (-688)))) (-2735 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-4 *7 (-855 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-83)) (|:| |z0| (-579 *7)) (|:| |n0| (-579 *7)))) (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-579 *7)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-851 *4)) (-4 *4 (-13 (-254) (-118))) (-4 *2 (-855 *4 *6 *5)) (-5 *1 (-829 *4 *5 *6 *2)) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-579 (-1080))) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-579 (-344 (-851 *4)))) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-855 *4 *6 *5)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-579 (-344 (-851 *4)))) (-5 *1 (-829 *4 *5 *6 *7)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-626 (-344 (-851 *4)))) (-5 *1 (-829 *4 *5 *6 *7)))) (-2732 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-344 (-851 *4))) (-5 *1 (-829 *4 *5 *6 *3)) (-4 *3 (-855 *4 *6 *5)))) (-2731 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-626 *11)) (-5 *4 (-579 (-344 (-851 *8)))) (-5 *5 (-688)) (-5 *6 (-1063)) (-4 *8 (-13 (-254) (-118))) (-4 *11 (-855 *8 *10 *9)) (-4 *9 (-13 (-750) (-549 (-1080)))) (-4 *10 (-711)) (-5 *2 (-2 (|:| |rgl| (-579 (-2 (|:| |eqzro| (-579 *11)) (|:| |neqzro| (-579 *11)) (|:| |wcond| (-579 (-851 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *8)))) (|:| -1999 (-579 (-1169 (-344 (-851 *8)))))))))) (|:| |rgsz| (-479)))) (-5 *1 (-829 *8 *9 *10 *11)) (-5 *7 (-479)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-579 (-2 (|:| |eqzro| (-579 *7)) (|:| |neqzro| (-579 *7)) (|:| |wcond| (-579 (-851 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *4)))) (|:| -1999 (-579 (-1169 (-344 (-851 *4)))))))))) (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-855 *4 *6 *5)))) (-2729 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-2 (|:| |eqzro| (-579 *8)) (|:| |neqzro| (-579 *8)) (|:| |wcond| (-579 (-851 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *5)))) (|:| -1999 (-579 (-1169 (-344 (-851 *5)))))))))) (-5 *4 (-1063)) (-4 *5 (-13 (-254) (-118))) (-4 *8 (-855 *5 *7 *6)) (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 (-479)) (-5 *1 (-829 *5 *6 *7 *8)))) (-2728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-824)) (-5 *5 (-1063)) (-4 *9 (-855 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-750) (-549 (-1080)))) (-4 *8 (-711)) (-5 *2 (-479)) (-5 *1 (-829 *6 *7 *8 *9)))) (-2728 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *10)) (-5 *4 (-579 (-1080))) (-5 *5 (-824)) (-5 *6 (-1063)) (-4 *10 (-855 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) (-4 *8 (-13 (-750) (-549 (-1080)))) (-4 *9 (-711)) (-5 *2 (-479)) (-5 *1 (-829 *7 *8 *9 *10)))) (-2728 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-626 *10)) (-5 *4 (-579 *10)) (-5 *5 (-824)) (-5 *6 (-1063)) (-4 *10 (-855 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) (-4 *8 (-13 (-750) (-549 (-1080)))) (-4 *9 (-711)) (-5 *2 (-479)) (-5 *1 (-829 *7 *8 *9 *10)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-1063)) (-4 *8 (-855 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 (-479)) (-5 *1 (-829 *5 *6 *7 *8)))) (-2728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-579 (-1080))) (-5 *5 (-1063)) (-4 *9 (-855 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-750) (-549 (-1080)))) (-4 *8 (-711)) (-5 *2 (-479)) (-5 *1 (-829 *6 *7 *8 *9)))) (-2728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-579 *9)) (-5 *5 (-1063)) (-4 *9 (-855 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-750) (-549 (-1080)))) (-4 *8 (-711)) (-5 *2 (-479)) (-5 *1 (-829 *6 *7 *8 *9)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-824)) (-4 *8 (-855 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 (-579 (-2 (|:| |eqzro| (-579 *8)) (|:| |neqzro| (-579 *8)) (|:| |wcond| (-579 (-851 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *5)))) (|:| -1999 (-579 (-1169 (-344 (-851 *5)))))))))) (-5 *1 (-829 *5 *6 *7 *8)))) (-2728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *4 (-579 (-1080))) (-5 *5 (-824)) (-4 *9 (-855 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-750) (-549 (-1080)))) (-4 *8 (-711)) (-5 *2 (-579 (-2 (|:| |eqzro| (-579 *9)) (|:| |neqzro| (-579 *9)) (|:| |wcond| (-579 (-851 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *6)))) (|:| -1999 (-579 (-1169 (-344 (-851 *6)))))))))) (-5 *1 (-829 *6 *7 *8 *9)))) (-2728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-626 *9)) (-5 *5 (-824)) (-4 *9 (-855 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-750) (-549 (-1080)))) (-4 *8 (-711)) (-5 *2 (-579 (-2 (|:| |eqzro| (-579 *9)) (|:| |neqzro| (-579 *9)) (|:| |wcond| (-579 (-851 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *6)))) (|:| -1999 (-579 (-1169 (-344 (-851 *6)))))))))) (-5 *1 (-829 *6 *7 *8 *9)) (-5 *4 (-579 *9)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-626 *7)) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-579 (-2 (|:| |eqzro| (-579 *7)) (|:| |neqzro| (-579 *7)) (|:| |wcond| (-579 (-851 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *4)))) (|:| -1999 (-579 (-1169 (-344 (-851 *4)))))))))) (-5 *1 (-829 *4 *5 *6 *7)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-5 *4 (-579 (-1080))) (-4 *8 (-855 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 (-579 (-2 (|:| |eqzro| (-579 *8)) (|:| |neqzro| (-579 *8)) (|:| |wcond| (-579 (-851 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *5)))) (|:| -1999 (-579 (-1169 (-344 (-851 *5)))))))))) (-5 *1 (-829 *5 *6 *7 *8)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-626 *8)) (-4 *8 (-855 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 (-579 (-2 (|:| |eqzro| (-579 *8)) (|:| |neqzro| (-579 *8)) (|:| |wcond| (-579 (-851 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1169 (-344 (-851 *5)))) (|:| -1999 (-579 (-1169 (-344 (-851 *5)))))))))) (-5 *1 (-829 *5 *6 *7 *8)) (-5 *4 (-579 *8))))) +((-3856 (($ $ (-994 (-177))) 125 T ELT) (($ $ (-994 (-177)) (-994 (-177))) 126 T ELT)) (-2881 (((-994 (-177)) $) 73 T ELT)) (-2882 (((-994 (-177)) $) 72 T ELT)) (-2773 (((-994 (-177)) $) 74 T ELT)) (-2754 (((-479) (-479)) 66 T ELT)) (-2758 (((-479) (-479)) 61 T ELT)) (-2756 (((-479) (-479)) 64 T ELT)) (-2752 (((-83) (-83)) 68 T ELT)) (-2755 (((-479)) 65 T ELT)) (-3118 (($ $ (-994 (-177))) 129 T ELT) (($ $) 130 T ELT)) (-2775 (($ (-1 (-848 (-177)) (-177)) (-994 (-177))) 148 T ELT) (($ (-1 (-848 (-177)) (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177))) 149 T ELT)) (-2761 (($ (-1 (-177) (-177)) (-994 (-177))) 156 T ELT) (($ (-1 (-177) (-177))) 160 T ELT)) (-2774 (($ (-1 (-177) (-177)) (-994 (-177))) 144 T ELT) (($ (-1 (-177) (-177)) (-994 (-177)) (-994 (-177))) 145 T ELT) (($ (-579 (-1 (-177) (-177))) (-994 (-177))) 153 T ELT) (($ (-579 (-1 (-177) (-177))) (-994 (-177)) (-994 (-177))) 154 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-994 (-177))) 146 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177))) 147 T ELT) (($ $ (-994 (-177))) 131 T ELT)) (-2760 (((-83) $) 69 T ELT)) (-2751 (((-479)) 70 T ELT)) (-2759 (((-479)) 59 T ELT)) (-2757 (((-479)) 62 T ELT)) (-2883 (((-579 (-579 (-848 (-177)))) $) 35 T ELT)) (-2750 (((-83) (-83)) 71 T ELT)) (-3928 (((-766) $) 174 T ELT)) (-2753 (((-83)) 67 T ELT))) +(((-830) (-13 (-860) (-10 -8 (-15 -2774 ($ (-1 (-177) (-177)) (-994 (-177)))) (-15 -2774 ($ (-1 (-177) (-177)) (-994 (-177)) (-994 (-177)))) (-15 -2774 ($ (-579 (-1 (-177) (-177))) (-994 (-177)))) (-15 -2774 ($ (-579 (-1 (-177) (-177))) (-994 (-177)) (-994 (-177)))) (-15 -2774 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-994 (-177)))) (-15 -2774 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177)))) (-15 -2775 ($ (-1 (-848 (-177)) (-177)) (-994 (-177)))) (-15 -2775 ($ (-1 (-848 (-177)) (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177)))) (-15 -2761 ($ (-1 (-177) (-177)) (-994 (-177)))) (-15 -2761 ($ (-1 (-177) (-177)))) (-15 -2774 ($ $ (-994 (-177)))) (-15 -2760 ((-83) $)) (-15 -3856 ($ $ (-994 (-177)))) (-15 -3856 ($ $ (-994 (-177)) (-994 (-177)))) (-15 -3118 ($ $ (-994 (-177)))) (-15 -3118 ($ $)) (-15 -2773 ((-994 (-177)) $)) (-15 -2759 ((-479))) (-15 -2758 ((-479) (-479))) (-15 -2757 ((-479))) (-15 -2756 ((-479) (-479))) (-15 -2755 ((-479))) (-15 -2754 ((-479) (-479))) (-15 -2753 ((-83))) (-15 -2752 ((-83) (-83))) (-15 -2751 ((-479))) (-15 -2750 ((-83) (-83)))))) (T -830)) +((-2774 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) (-2774 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) (-2774 (*1 *1 *2 *3) (-12 (-5 *2 (-579 (-1 (-177) (-177)))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) (-2774 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-579 (-1 (-177) (-177)))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) (-2774 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) (-2774 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) (-2775 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-848 (-177)) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) (-2775 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-848 (-177)) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) (-2761 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) (-2761 (*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-830)))) (-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-830)))) (-3856 (*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) (-3856 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) (-3118 (*1 *1 *1) (-5 *1 (-830))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) (-2759 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830)))) (-2757 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830)))) (-2756 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830)))) (-2755 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830)))) (-2754 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830)))) (-2753 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-830)))) (-2752 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-830)))) (-2751 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830)))) (-2750 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-830))))) +((-2761 (((-830) |#1| (-1080)) 17 T ELT) (((-830) |#1| (-1080) (-994 (-177))) 21 T ELT)) (-2774 (((-830) |#1| |#1| (-1080) (-994 (-177))) 19 T ELT) (((-830) |#1| (-1080) (-994 (-177))) 15 T ELT))) +(((-831 |#1|) (-10 -7 (-15 -2774 ((-830) |#1| (-1080) (-994 (-177)))) (-15 -2774 ((-830) |#1| |#1| (-1080) (-994 (-177)))) (-15 -2761 ((-830) |#1| (-1080) (-994 (-177)))) (-15 -2761 ((-830) |#1| (-1080)))) (-549 (-468))) (T -831)) +((-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-5 *2 (-830)) (-5 *1 (-831 *3)) (-4 *3 (-549 (-468))))) (-2761 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1080)) (-5 *5 (-994 (-177))) (-5 *2 (-830)) (-5 *1 (-831 *3)) (-4 *3 (-549 (-468))))) (-2774 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1080)) (-5 *5 (-994 (-177))) (-5 *2 (-830)) (-5 *1 (-831 *3)) (-4 *3 (-549 (-468))))) (-2774 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1080)) (-5 *5 (-994 (-177))) (-5 *2 (-830)) (-5 *1 (-831 *3)) (-4 *3 (-549 (-468)))))) +((-3856 (($ $ (-994 (-177)) (-994 (-177)) (-994 (-177))) 123 T ELT)) (-2880 (((-994 (-177)) $) 64 T ELT)) (-2881 (((-994 (-177)) $) 63 T ELT)) (-2882 (((-994 (-177)) $) 62 T ELT)) (-2772 (((-579 (-579 (-177))) $) 69 T ELT)) (-2773 (((-994 (-177)) $) 65 T ELT)) (-2766 (((-479) (-479)) 57 T ELT)) (-2770 (((-479) (-479)) 52 T ELT)) (-2768 (((-479) (-479)) 55 T ELT)) (-2764 (((-83) (-83)) 59 T ELT)) (-2767 (((-479)) 56 T ELT)) (-3118 (($ $ (-994 (-177))) 126 T ELT) (($ $) 127 T ELT)) (-2775 (($ (-1 (-848 (-177)) (-177)) (-994 (-177))) 133 T ELT) (($ (-1 (-848 (-177)) (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177))) 134 T ELT)) (-2774 (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-994 (-177))) 140 T ELT) (($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177))) 141 T ELT) (($ $ (-994 (-177))) 129 T ELT)) (-2763 (((-479)) 60 T ELT)) (-2771 (((-479)) 50 T ELT)) (-2769 (((-479)) 53 T ELT)) (-2883 (((-579 (-579 (-848 (-177)))) $) 157 T ELT)) (-2762 (((-83) (-83)) 61 T ELT)) (-3928 (((-766) $) 155 T ELT)) (-2765 (((-83)) 58 T ELT))) +(((-832) (-13 (-881) (-10 -8 (-15 -2775 ($ (-1 (-848 (-177)) (-177)) (-994 (-177)))) (-15 -2775 ($ (-1 (-848 (-177)) (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177)))) (-15 -2774 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-994 (-177)))) (-15 -2774 ($ (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-1 (-177) (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177)) (-994 (-177)))) (-15 -2774 ($ $ (-994 (-177)))) (-15 -3856 ($ $ (-994 (-177)) (-994 (-177)) (-994 (-177)))) (-15 -3118 ($ $ (-994 (-177)))) (-15 -3118 ($ $)) (-15 -2773 ((-994 (-177)) $)) (-15 -2772 ((-579 (-579 (-177))) $)) (-15 -2771 ((-479))) (-15 -2770 ((-479) (-479))) (-15 -2769 ((-479))) (-15 -2768 ((-479) (-479))) (-15 -2767 ((-479))) (-15 -2766 ((-479) (-479))) (-15 -2765 ((-83))) (-15 -2764 ((-83) (-83))) (-15 -2763 ((-479))) (-15 -2762 ((-83) (-83)))))) (T -832)) +((-2775 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-848 (-177)) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-832)))) (-2775 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-848 (-177)) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-832)))) (-2774 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-832)))) (-2774 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-832)))) (-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-832)))) (-3856 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-832)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-832)))) (-3118 (*1 *1 *1) (-5 *1 (-832))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-832)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-579 (-579 (-177)))) (-5 *1 (-832)))) (-2771 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832)))) (-2769 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832)))) (-2767 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832)))) (-2765 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-832)))) (-2764 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-832)))) (-2763 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832)))) (-2762 (*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-832))))) +((-2776 (((-579 (-994 (-177))) (-579 (-579 (-848 (-177))))) 34 T ELT))) +(((-833) (-10 -7 (-15 -2776 ((-579 (-994 (-177))) (-579 (-579 (-848 (-177)))))))) (T -833)) +((-2776 (*1 *2 *3) (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *2 (-579 (-994 (-177)))) (-5 *1 (-833))))) +((-2778 (((-261 (-479)) (-1080)) 16 T ELT)) (-2779 (((-261 (-479)) (-1080)) 14 T ELT)) (-3934 (((-261 (-479)) (-1080)) 12 T ELT)) (-2777 (((-261 (-479)) (-1080) (-440)) 19 T ELT))) +(((-834) (-10 -7 (-15 -2777 ((-261 (-479)) (-1080) (-440))) (-15 -3934 ((-261 (-479)) (-1080))) (-15 -2778 ((-261 (-479)) (-1080))) (-15 -2779 ((-261 (-479)) (-1080))))) (T -834)) +((-2779 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-261 (-479))) (-5 *1 (-834)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-261 (-479))) (-5 *1 (-834)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-261 (-479))) (-5 *1 (-834)))) (-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-1080)) (-5 *4 (-440)) (-5 *2 (-261 (-479))) (-5 *1 (-834))))) +((-2778 ((|#2| |#2|) 28 T ELT)) (-2779 ((|#2| |#2|) 29 T ELT)) (-3934 ((|#2| |#2|) 27 T ELT)) (-2777 ((|#2| |#2| (-440)) 26 T ELT))) +(((-835 |#1| |#2|) (-10 -7 (-15 -2777 (|#2| |#2| (-440))) (-15 -3934 (|#2| |#2|)) (-15 -2778 (|#2| |#2|)) (-15 -2779 (|#2| |#2|))) (-1006) (-358 |#1|)) (T -835)) +((-2779 (*1 *2 *2) (-12 (-4 *3 (-1006)) (-5 *1 (-835 *3 *2)) (-4 *2 (-358 *3)))) (-2778 (*1 *2 *2) (-12 (-4 *3 (-1006)) (-5 *1 (-835 *3 *2)) (-4 *2 (-358 *3)))) (-3934 (*1 *2 *2) (-12 (-4 *3 (-1006)) (-5 *1 (-835 *3 *2)) (-4 *2 (-358 *3)))) (-2777 (*1 *2 *2 *3) (-12 (-5 *3 (-440)) (-4 *4 (-1006)) (-5 *1 (-835 *4 *2)) (-4 *2 (-358 *4))))) +((-2781 (((-792 |#1| |#3|) |#2| (-794 |#1|) (-792 |#1| |#3|)) 25 T ELT)) (-2780 (((-1 (-83) |#2|) (-1 (-83) |#3|)) 13 T ELT))) +(((-836 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-1 (-83) |#2|) (-1 (-83) |#3|))) (-15 -2781 ((-792 |#1| |#3|) |#2| (-794 |#1|) (-792 |#1| |#3|)))) (-1006) (-790 |#1|) (-13 (-1006) (-944 |#2|))) (T -836)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-792 *5 *6)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-4 *6 (-13 (-1006) (-944 *3))) (-4 *3 (-790 *5)) (-5 *1 (-836 *5 *3 *6)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-1 (-83) *6)) (-4 *6 (-13 (-1006) (-944 *5))) (-4 *5 (-790 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-836 *4 *5 *6))))) +((-2781 (((-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|)) 30 T ELT))) +(((-837 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|)))) (-1006) (-13 (-490) (-790 |#1|)) (-13 (-358 |#2|) (-549 (-794 |#1|)) (-790 |#1|) (-944 (-546 $)))) (T -837)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-792 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-13 (-358 *6) (-549 *4) (-790 *5) (-944 (-546 $)))) (-5 *4 (-794 *5)) (-4 *6 (-13 (-490) (-790 *5))) (-5 *1 (-837 *5 *6 *3))))) +((-2781 (((-792 (-479) |#1|) |#1| (-794 (-479)) (-792 (-479) |#1|)) 13 T ELT))) +(((-838 |#1|) (-10 -7 (-15 -2781 ((-792 (-479) |#1|) |#1| (-794 (-479)) (-792 (-479) |#1|)))) (-478)) (T -838)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-792 (-479) *3)) (-5 *4 (-794 (-479))) (-4 *3 (-478)) (-5 *1 (-838 *3))))) +((-2781 (((-792 |#1| |#2|) (-546 |#2|) (-794 |#1|) (-792 |#1| |#2|)) 57 T ELT))) +(((-839 |#1| |#2|) (-10 -7 (-15 -2781 ((-792 |#1| |#2|) (-546 |#2|) (-794 |#1|) (-792 |#1| |#2|)))) (-1006) (-13 (-1006) (-944 (-546 $)) (-549 (-794 |#1|)) (-790 |#1|))) (T -839)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-792 *5 *6)) (-5 *3 (-546 *6)) (-4 *5 (-1006)) (-4 *6 (-13 (-1006) (-944 (-546 $)) (-549 *4) (-790 *5))) (-5 *4 (-794 *5)) (-5 *1 (-839 *5 *6))))) +((-2781 (((-789 |#1| |#2| |#3|) |#3| (-794 |#1|) (-789 |#1| |#2| |#3|)) 17 T ELT))) +(((-840 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-789 |#1| |#2| |#3|) |#3| (-794 |#1|) (-789 |#1| |#2| |#3|)))) (-1006) (-790 |#1|) (-604 |#2|)) (T -840)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-789 *5 *6 *3)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-4 *6 (-790 *5)) (-4 *3 (-604 *6)) (-5 *1 (-840 *5 *6 *3))))) +((-2781 (((-792 |#1| |#5|) |#5| (-794 |#1|) (-792 |#1| |#5|)) 17 (|has| |#3| (-790 |#1|)) ELT) (((-792 |#1| |#5|) |#5| (-794 |#1|) (-792 |#1| |#5|) (-1 (-792 |#1| |#5|) |#3| (-794 |#1|) (-792 |#1| |#5|))) 16 T ELT))) +(((-841 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2781 ((-792 |#1| |#5|) |#5| (-794 |#1|) (-792 |#1| |#5|) (-1 (-792 |#1| |#5|) |#3| (-794 |#1|) (-792 |#1| |#5|)))) (IF (|has| |#3| (-790 |#1|)) (-15 -2781 ((-792 |#1| |#5|) |#5| (-794 |#1|) (-792 |#1| |#5|))) |%noBranch|)) (-1006) (-711) (-750) (-13 (-955) (-790 |#1|)) (-13 (-855 |#4| |#2| |#3|) (-549 (-794 |#1|)))) (T -841)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-792 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-13 (-855 *8 *6 *7) (-549 *4))) (-5 *4 (-794 *5)) (-4 *7 (-790 *5)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-13 (-955) (-790 *5))) (-5 *1 (-841 *5 *6 *7 *8 *3)))) (-2781 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-792 *6 *3) *8 (-794 *6) (-792 *6 *3))) (-4 *8 (-750)) (-5 *2 (-792 *6 *3)) (-5 *4 (-794 *6)) (-4 *6 (-1006)) (-4 *3 (-13 (-855 *9 *7 *8) (-549 *4))) (-4 *7 (-711)) (-4 *9 (-13 (-955) (-790 *6))) (-5 *1 (-841 *6 *7 *8 *9 *3))))) +((-3193 (((-261 (-479)) (-1080) (-579 (-1 (-83) |#1|))) 18 T ELT) (((-261 (-479)) (-1080) (-1 (-83) |#1|)) 15 T ELT))) +(((-842 |#1|) (-10 -7 (-15 -3193 ((-261 (-479)) (-1080) (-1 (-83) |#1|))) (-15 -3193 ((-261 (-479)) (-1080) (-579 (-1 (-83) |#1|))))) (-1119)) (T -842)) +((-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-1080)) (-5 *4 (-579 (-1 (-83) *5))) (-4 *5 (-1119)) (-5 *2 (-261 (-479))) (-5 *1 (-842 *5)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-1080)) (-5 *4 (-1 (-83) *5)) (-4 *5 (-1119)) (-5 *2 (-261 (-479))) (-5 *1 (-842 *5))))) +((-3193 ((|#2| |#2| (-579 (-1 (-83) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-83) |#3|)) 13 T ELT))) +(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -3193 (|#2| |#2| (-1 (-83) |#3|))) (-15 -3193 (|#2| |#2| (-579 (-1 (-83) |#3|))))) (-1006) (-358 |#1|) (-1119)) (T -843)) +((-3193 (*1 *2 *2 *3) (-12 (-5 *3 (-579 (-1 (-83) *5))) (-4 *5 (-1119)) (-4 *4 (-1006)) (-5 *1 (-843 *4 *2 *5)) (-4 *2 (-358 *4)))) (-3193 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *5)) (-4 *5 (-1119)) (-4 *4 (-1006)) (-5 *1 (-843 *4 *2 *5)) (-4 *2 (-358 *4))))) +((-2781 (((-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|)) 25 T ELT))) +(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|)))) (-1006) (-13 (-490) (-790 |#1|) (-549 (-794 |#1|))) (-898 |#2|)) (T -844)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-792 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-898 *6)) (-4 *6 (-13 (-490) (-790 *5) (-549 *4))) (-5 *4 (-794 *5)) (-5 *1 (-844 *5 *6 *3))))) +((-2781 (((-792 |#1| (-1080)) (-1080) (-794 |#1|) (-792 |#1| (-1080))) 18 T ELT))) +(((-845 |#1|) (-10 -7 (-15 -2781 ((-792 |#1| (-1080)) (-1080) (-794 |#1|) (-792 |#1| (-1080))))) (-1006)) (T -845)) +((-2781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-792 *5 (-1080))) (-5 *3 (-1080)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-5 *1 (-845 *5))))) +((-2782 (((-792 |#1| |#3|) (-579 |#3|) (-579 (-794 |#1|)) (-792 |#1| |#3|) (-1 (-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|))) 34 T ELT)) (-2781 (((-792 |#1| |#3|) (-579 |#3|) (-579 (-794 |#1|)) (-1 |#3| (-579 |#3|)) (-792 |#1| |#3|) (-1 (-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|))) 33 T ELT))) +(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2781 ((-792 |#1| |#3|) (-579 |#3|) (-579 (-794 |#1|)) (-1 |#3| (-579 |#3|)) (-792 |#1| |#3|) (-1 (-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|)))) (-15 -2782 ((-792 |#1| |#3|) (-579 |#3|) (-579 (-794 |#1|)) (-792 |#1| |#3|) (-1 (-792 |#1| |#3|) |#3| (-794 |#1|) (-792 |#1| |#3|))))) (-1006) (-955) (-13 (-955) (-549 (-794 |#1|)) (-944 |#2|))) (T -846)) +((-2782 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 (-794 *6))) (-5 *5 (-1 (-792 *6 *8) *8 (-794 *6) (-792 *6 *8))) (-4 *6 (-1006)) (-4 *8 (-13 (-955) (-549 (-794 *6)) (-944 *7))) (-5 *2 (-792 *6 *8)) (-4 *7 (-955)) (-5 *1 (-846 *6 *7 *8)))) (-2781 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-579 (-794 *7))) (-5 *5 (-1 *9 (-579 *9))) (-5 *6 (-1 (-792 *7 *9) *9 (-794 *7) (-792 *7 *9))) (-4 *7 (-1006)) (-4 *9 (-13 (-955) (-549 (-794 *7)) (-944 *8))) (-5 *2 (-792 *7 *9)) (-5 *3 (-579 *9)) (-4 *8 (-955)) (-5 *1 (-846 *7 *8 *9))))) +((-2790 (((-1075 (-344 (-479))) (-479)) 80 T ELT)) (-2789 (((-1075 (-479)) (-479)) 83 T ELT)) (-3316 (((-1075 (-479)) (-479)) 77 T ELT)) (-2788 (((-479) (-1075 (-479))) 73 T ELT)) (-2787 (((-1075 (-344 (-479))) (-479)) 66 T ELT)) (-2786 (((-1075 (-479)) (-479)) 49 T ELT)) (-2785 (((-1075 (-479)) (-479)) 85 T ELT)) (-2784 (((-1075 (-479)) (-479)) 84 T ELT)) (-2783 (((-1075 (-344 (-479))) (-479)) 68 T ELT))) +(((-847) (-10 -7 (-15 -2783 ((-1075 (-344 (-479))) (-479))) (-15 -2784 ((-1075 (-479)) (-479))) (-15 -2785 ((-1075 (-479)) (-479))) (-15 -2786 ((-1075 (-479)) (-479))) (-15 -2787 ((-1075 (-344 (-479))) (-479))) (-15 -2788 ((-479) (-1075 (-479)))) (-15 -3316 ((-1075 (-479)) (-479))) (-15 -2789 ((-1075 (-479)) (-479))) (-15 -2790 ((-1075 (-344 (-479))) (-479))))) (T -847)) +((-2790 (*1 *2 *3) (-12 (-5 *2 (-1075 (-344 (-479)))) (-5 *1 (-847)) (-5 *3 (-479)))) (-2789 (*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479)))) (-3316 (*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479)))) (-2788 (*1 *2 *3) (-12 (-5 *3 (-1075 (-479))) (-5 *2 (-479)) (-5 *1 (-847)))) (-2787 (*1 *2 *3) (-12 (-5 *2 (-1075 (-344 (-479)))) (-5 *1 (-847)) (-5 *3 (-479)))) (-2786 (*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479)))) (-2785 (*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479)))) (-2784 (*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479)))) (-2783 (*1 *2 *3) (-12 (-5 *2 (-1075 (-344 (-479)))) (-5 *1 (-847)) (-5 *3 (-479))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3820 (($ (-688)) NIL (|has| |#1| (-23)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) NIL T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) NIL T ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT)) (-3688 (($ (-579 |#1|)) 9 T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3817 (((-626 |#1|) $ $) NIL (|has| |#1| (-955)) ELT)) (-3596 (($ (-688) |#1|) NIL T ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3814 ((|#1| $) NIL (-12 (|has| |#1| (-909)) (|has| |#1| (-955))) ELT)) (-3815 ((|#1| $) NIL (-12 (|has| |#1| (-909)) (|has| |#1| (-955))) ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-579 |#1|)) 25 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) |#1|) NIL T ELT) ((|#1| $ (-479)) 18 T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-3818 ((|#1| $ $) NIL (|has| |#1| (-955)) ELT)) (-3893 (((-824) $) 13 T ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-3816 (($ $ $) 23 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT) (($ (-579 |#1|)) 14 T ELT)) (-3512 (($ (-579 |#1|)) NIL T ELT)) (-3784 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3819 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3821 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-479) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-659)) ELT) (($ $ |#1|) NIL (|has| |#1| (-659)) ELT)) (-3939 (((-688) $) 11 (|has| $ (-6 -3977)) ELT))) +(((-848 |#1|) (-887 |#1|) (-955)) (T -848)) +NIL +((-2793 (((-415 |#1| |#2|) (-851 |#2|)) 22 T ELT)) (-2796 (((-203 |#1| |#2|) (-851 |#2|)) 35 T ELT)) (-2794 (((-851 |#2|) (-415 |#1| |#2|)) 27 T ELT)) (-2792 (((-203 |#1| |#2|) (-415 |#1| |#2|)) 57 T ELT)) (-2795 (((-851 |#2|) (-203 |#1| |#2|)) 32 T ELT)) (-2791 (((-415 |#1| |#2|) (-203 |#1| |#2|)) 48 T ELT))) +(((-849 |#1| |#2|) (-10 -7 (-15 -2791 ((-415 |#1| |#2|) (-203 |#1| |#2|))) (-15 -2792 ((-203 |#1| |#2|) (-415 |#1| |#2|))) (-15 -2793 ((-415 |#1| |#2|) (-851 |#2|))) (-15 -2794 ((-851 |#2|) (-415 |#1| |#2|))) (-15 -2795 ((-851 |#2|) (-203 |#1| |#2|))) (-15 -2796 ((-203 |#1| |#2|) (-851 |#2|)))) (-579 (-1080)) (-955)) (T -849)) +((-2796 (*1 *2 *3) (-12 (-5 *3 (-851 *5)) (-4 *5 (-955)) (-5 *2 (-203 *4 *5)) (-5 *1 (-849 *4 *5)) (-14 *4 (-579 (-1080))))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-955)) (-5 *2 (-851 *5)) (-5 *1 (-849 *4 *5)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-415 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-955)) (-5 *2 (-851 *5)) (-5 *1 (-849 *4 *5)))) (-2793 (*1 *2 *3) (-12 (-5 *3 (-851 *5)) (-4 *5 (-955)) (-5 *2 (-415 *4 *5)) (-5 *1 (-849 *4 *5)) (-14 *4 (-579 (-1080))))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-415 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-955)) (-5 *2 (-203 *4 *5)) (-5 *1 (-849 *4 *5)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-955)) (-5 *2 (-415 *4 *5)) (-5 *1 (-849 *4 *5))))) +((-2797 (((-579 |#2|) |#2| |#2|) 10 T ELT)) (-2800 (((-688) (-579 |#1|)) 47 (|has| |#1| (-749)) ELT)) (-2798 (((-579 |#2|) |#2|) 11 T ELT)) (-2801 (((-688) (-579 |#1|) (-479) (-479)) 45 (|has| |#1| (-749)) ELT)) (-2799 ((|#1| |#2|) 37 (|has| |#1| (-749)) ELT))) +(((-850 |#1| |#2|) (-10 -7 (-15 -2797 ((-579 |#2|) |#2| |#2|)) (-15 -2798 ((-579 |#2|) |#2|)) (IF (|has| |#1| (-749)) (PROGN (-15 -2799 (|#1| |#2|)) (-15 -2800 ((-688) (-579 |#1|))) (-15 -2801 ((-688) (-579 |#1|) (-479) (-479)))) |%noBranch|)) (-308) (-1145 |#1|)) (T -850)) +((-2801 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-579 *5)) (-5 *4 (-479)) (-4 *5 (-749)) (-4 *5 (-308)) (-5 *2 (-688)) (-5 *1 (-850 *5 *6)) (-4 *6 (-1145 *5)))) (-2800 (*1 *2 *3) (-12 (-5 *3 (-579 *4)) (-4 *4 (-749)) (-4 *4 (-308)) (-5 *2 (-688)) (-5 *1 (-850 *4 *5)) (-4 *5 (-1145 *4)))) (-2799 (*1 *2 *3) (-12 (-4 *2 (-308)) (-4 *2 (-749)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1145 *2)))) (-2798 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-579 *3)) (-5 *1 (-850 *4 *3)) (-4 *3 (-1145 *4)))) (-2797 (*1 *2 *3 *3) (-12 (-4 *4 (-308)) (-5 *2 (-579 *3)) (-5 *1 (-850 *4 *3)) (-4 *3 (-1145 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-1080)) $) 16 T ELT)) (-3068 (((-1075 $) $ (-1080)) 21 T ELT) (((-1075 |#1|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-1080))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-1080) #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-1080) $) NIL T ELT)) (-3738 (($ $ $ (-1080)) NIL (|has| |#1| (-144)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT) (($ $ (-1080)) NIL (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| (-464 (-1080)) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-1080) (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-1080) (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3069 (($ (-1075 |#1|) (-1080)) NIL T ELT) (($ (-1075 $) (-1080)) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-464 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-1080)) NIL T ELT)) (-2805 (((-464 (-1080)) $) NIL T ELT) (((-688) $ (-1080)) NIL T ELT) (((-579 (-688)) $ (-579 (-1080))) NIL T ELT)) (-1613 (($ (-1 (-464 (-1080)) (-464 (-1080))) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3067 (((-3 (-1080) #1#) $) 19 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-1080)) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3794 (($ $ (-1080)) 29 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-815)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-1080) |#1|) NIL T ELT) (($ $ (-579 (-1080)) (-579 |#1|)) NIL T ELT) (($ $ (-1080) $) NIL T ELT) (($ $ (-579 (-1080)) (-579 $)) NIL T ELT)) (-3739 (($ $ (-1080)) NIL (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) NIL T ELT)) (-3930 (((-464 (-1080)) $) NIL T ELT) (((-688) $ (-1080)) NIL T ELT) (((-579 (-688)) $ (-579 (-1080))) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-1080) (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-1080) (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-1080) (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT) (($ $ (-1080)) NIL (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) 25 T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1080)) 27 T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-464 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-851 |#1|) (-13 (-855 |#1| (-464 (-1080)) (-1080)) (-10 -8 (IF (|has| |#1| (-38 (-344 (-479)))) (-15 -3794 ($ $ (-1080))) |%noBranch|))) (-955)) (T -851)) +((-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-851 *3)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955))))) +((-3940 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 19 T ELT))) +(((-852 |#1| |#2|) (-10 -7 (-15 -3940 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) (-955) (-955)) (T -852)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-5 *2 (-851 *6)) (-5 *1 (-852 *5 *6))))) +((-3068 (((-1138 |#1| (-851 |#2|)) (-851 |#2|) (-1166 |#1|)) 18 T ELT))) +(((-853 |#1| |#2|) (-10 -7 (-15 -3068 ((-1138 |#1| (-851 |#2|)) (-851 |#2|) (-1166 |#1|)))) (-1080) (-955)) (T -853)) +((-3068 (*1 *2 *3 *4) (-12 (-5 *4 (-1166 *5)) (-14 *5 (-1080)) (-4 *6 (-955)) (-5 *2 (-1138 *5 (-851 *6))) (-5 *1 (-853 *5 *6)) (-5 *3 (-851 *6))))) +((-2804 (((-688) $) 88 T ELT) (((-688) $ (-579 |#4|)) 93 T ELT)) (-3757 (($ $) 214 T ELT)) (-3953 (((-342 $) $) 206 T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1="failed") (-579 (-1075 $)) (-1075 $)) 141 T ELT)) (-3141 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 (-479) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3140 ((|#2| $) NIL T ELT) (((-344 (-479)) $) NIL T ELT) (((-479) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3738 (($ $ $ |#4|) 95 T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL T ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) 131 T ELT) (((-626 |#2|) (-626 $)) 121 T ELT)) (-3485 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2803 (((-579 $) $) 77 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 240 T ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 233 T ELT)) (-2806 (((-579 $) $) 34 T ELT)) (-2878 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-688)) NIL T ELT) (($ $ (-579 |#4|) (-579 (-688))) 71 T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ |#4|) 203 T ELT)) (-2808 (((-3 (-579 $) #1#) $) 52 T ELT)) (-2807 (((-3 (-579 $) #1#) $) 39 T ELT)) (-2809 (((-3 (-2 (|:| |var| |#4|) (|:| -2388 (-688))) #1#) $) 57 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 134 T ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 147 T ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 145 T ELT)) (-3714 (((-342 $) $) 165 T ELT)) (-3750 (($ $ (-579 (-245 $))) 24 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-579 |#4|) (-579 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-579 |#4|) (-579 $)) NIL T ELT)) (-3739 (($ $ |#4|) 97 T ELT)) (-3954 (((-794 (-324)) $) 254 T ELT) (((-794 (-479)) $) 247 T ELT) (((-468) $) 262 T ELT)) (-2802 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) 185 T ELT)) (-3659 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-688)) 62 T ELT) (($ $ (-579 |#4|) (-579 (-688))) 69 T ELT)) (-2687 (((-628 $) $) 195 T ELT)) (-1254 (((-83) $ $) 227 T ELT))) +(((-854 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2693 ((-1075 |#1|) (-1075 |#1|) (-1075 |#1|))) (-15 -3953 ((-342 |#1|) |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -2687 ((-628 |#1|) |#1|)) (-15 -3954 ((-468) |#1|)) (-15 -3954 ((-794 (-479)) |#1|)) (-15 -3954 ((-794 (-324)) |#1|)) (-15 -2781 ((-792 (-479) |#1|) |#1| (-794 (-479)) (-792 (-479) |#1|))) (-15 -2781 ((-792 (-324) |#1|) |#1| (-794 (-324)) (-792 (-324) |#1|))) (-15 -3714 ((-342 |#1|) |#1|)) (-15 -2691 ((-342 (-1075 |#1|)) (-1075 |#1|))) (-15 -2690 ((-342 (-1075 |#1|)) (-1075 |#1|))) (-15 -2689 ((-3 (-579 (-1075 |#1|)) #1="failed") (-579 (-1075 |#1|)) (-1075 |#1|))) (-15 -2688 ((-3 (-1169 |#1|) #1#) (-626 |#1|))) (-15 -3485 (|#1| |#1| |#4|)) (-15 -2802 (|#1| |#1| |#4|)) (-15 -3739 (|#1| |#1| |#4|)) (-15 -3738 (|#1| |#1| |#1| |#4|)) (-15 -2803 ((-579 |#1|) |#1|)) (-15 -2804 ((-688) |#1| (-579 |#4|))) (-15 -2804 ((-688) |#1|)) (-15 -2809 ((-3 (-2 (|:| |var| |#4|) (|:| -2388 (-688))) #1#) |#1|)) (-15 -2808 ((-3 (-579 |#1|) #1#) |#1|)) (-15 -2807 ((-3 (-579 |#1|) #1#) |#1|)) (-15 -2878 (|#1| |#1| (-579 |#4|) (-579 (-688)))) (-15 -2878 (|#1| |#1| |#4| (-688))) (-15 -3745 ((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1| |#4|)) (-15 -2806 ((-579 |#1|) |#1|)) (-15 -3659 (|#1| |#1| (-579 |#4|) (-579 (-688)))) (-15 -3659 (|#1| |#1| |#4| (-688))) (-15 -2266 ((-626 |#2|) (-626 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-626 (-479)) (-626 |#1|))) (-15 -3141 ((-3 |#4| #1#) |#1|)) (-15 -3140 (|#4| |#1|)) (-15 -3750 (|#1| |#1| (-579 |#4|) (-579 |#1|))) (-15 -3750 (|#1| |#1| |#4| |#1|)) (-15 -3750 (|#1| |#1| (-579 |#4|) (-579 |#2|))) (-15 -3750 (|#1| |#1| |#4| |#2|)) (-15 -3750 (|#1| |#1| (-579 |#1|) (-579 |#1|))) (-15 -3750 (|#1| |#1| |#1| |#1|)) (-15 -3750 (|#1| |#1| (-245 |#1|))) (-15 -3750 (|#1| |#1| (-579 (-245 |#1|)))) (-15 -2878 (|#1| |#2| |#3|)) (-15 -3659 (|#2| |#1| |#3|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -2802 (|#2| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -1254 ((-83) |#1| |#1|))) (-855 |#2| |#3| |#4|) (-955) (-711) (-750)) (T -854)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 |#3|) $) 120 T ELT)) (-3068 (((-1075 $) $ |#3|) 135 T ELT) (((-1075 |#1|) $) 134 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 97 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 98 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 100 (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) 122 T ELT) (((-688) $ (-579 |#3|)) 121 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 110 (|has| |#1| (-815)) ELT)) (-3757 (($ $) 108 (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) 107 (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1="failed") (-579 (-1075 $)) (-1075 $)) 113 (|has| |#1| (-815)) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-344 (-479)) #2#) $) 175 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #2#) $) 173 (|has| |#1| (-944 (-479))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3140 ((|#1| $) 177 T ELT) (((-344 (-479)) $) 176 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) 174 (|has| |#1| (-944 (-479))) ELT) ((|#3| $) 151 T ELT)) (-3738 (($ $ $ |#3|) 118 (|has| |#1| (-144)) ELT)) (-3941 (($ $) 168 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 146 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 145 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 144 T ELT) (((-626 |#1|) (-626 $)) 143 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3485 (($ $) 190 (|has| |#1| (-386)) ELT) (($ $ |#3|) 115 (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) 119 T ELT)) (-3705 (((-83) $) 106 (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| |#2| $) 186 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 94 (-12 (|has| |#3| (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 93 (-12 (|has| |#3| (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-2397 (((-83) $) 40 T ELT)) (-2405 (((-688) $) 183 T ELT)) (-3069 (($ (-1075 |#1|) |#3|) 127 T ELT) (($ (-1075 $) |#3|) 126 T ELT)) (-2806 (((-579 $) $) 136 T ELT)) (-3919 (((-83) $) 166 T ELT)) (-2878 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-688)) 129 T ELT) (($ $ (-579 |#3|) (-579 (-688))) 128 T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ |#3|) 130 T ELT)) (-2805 ((|#2| $) 184 T ELT) (((-688) $ |#3|) 132 T ELT) (((-579 (-688)) $ (-579 |#3|)) 131 T ELT)) (-1613 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3067 (((-3 |#3| "failed") $) 133 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 148 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 147 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 142 T ELT) (((-626 |#1|) (-1169 $)) 141 T ELT)) (-2879 (($ $) 163 T ELT)) (-3158 ((|#1| $) 162 T ELT)) (-1879 (($ (-579 $)) 104 (|has| |#1| (-386)) ELT) (($ $ $) 103 (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2808 (((-3 (-579 $) "failed") $) 124 T ELT)) (-2807 (((-3 (-579 $) "failed") $) 125 T ELT)) (-2809 (((-3 (-2 (|:| |var| |#3|) (|:| -2388 (-688))) "failed") $) 123 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1785 (((-83) $) 180 T ELT)) (-1784 ((|#1| $) 181 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 105 (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) 102 (|has| |#1| (-386)) ELT) (($ $ $) 101 (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 112 (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 111 (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) 109 (|has| |#1| (-815)) ELT)) (-3448 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-490)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-579 $) (-579 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-579 |#3|) (-579 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-579 |#3|) (-579 $)) 152 T ELT)) (-3739 (($ $ |#3|) 117 (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 |#3|) (-579 (-688))) 49 T ELT) (($ $ |#3| (-688)) 48 T ELT) (($ $ (-579 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-3930 ((|#2| $) 164 T ELT) (((-688) $ |#3|) 140 T ELT) (((-579 (-688)) $ (-579 |#3|)) 139 T ELT)) (-3954 (((-794 (-324)) $) 92 (-12 (|has| |#3| (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) 91 (-12 (|has| |#3| (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) 90 (-12 (|has| |#3| (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT)) (-2802 ((|#1| $) 189 (|has| |#1| (-386)) ELT) (($ $ |#3|) 116 (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) 114 (-2547 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-490)) ELT) (($ (-344 (-479))) 88 (OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ELT)) (-3799 (((-579 |#1|) $) 182 T ELT)) (-3659 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-688)) 138 T ELT) (($ $ (-579 |#3|) (-579 (-688))) 137 T ELT)) (-2687 (((-628 $) $) 89 (OR (-2547 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) 37 T CONST)) (-1611 (($ $ $ (-688)) 187 (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 99 (|has| |#1| (-490)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-579 |#3|) (-579 (-688))) 52 T ELT) (($ $ |#3| (-688)) 51 T ELT) (($ $ (-579 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 172 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) 171 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-855 |#1| |#2| |#3|) (-111) (-955) (-711) (-750)) (T -855)) +((-3485 (*1 *1 *1) (-12 (-4 *1 (-855 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-386)))) (-3930 (*1 *2 *1 *3) (-12 (-4 *1 (-855 *4 *5 *3)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-5 *2 (-688)))) (-3930 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *6)) (-4 *1 (-855 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 (-688))))) (-3659 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-855 *4 *5 *2)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *2 (-750)))) (-3659 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 *6)) (-5 *3 (-579 (-688))) (-4 *1 (-855 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)))) (-2806 (*1 *2 *1) (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-855 *3 *4 *5)))) (-3068 (*1 *2 *1 *3) (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-5 *2 (-1075 *1)) (-4 *1 (-855 *4 *5 *3)))) (-3068 (*1 *2 *1) (-12 (-4 *1 (-855 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-1075 *3)))) (-3067 (*1 *2 *1) (|partial| -12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) (-2805 (*1 *2 *1 *3) (-12 (-4 *1 (-855 *4 *5 *3)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-5 *2 (-688)))) (-2805 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *6)) (-4 *1 (-855 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 (-688))))) (-3745 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-855 *4 *5 *3)))) (-2878 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-855 *4 *5 *2)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *2 (-750)))) (-2878 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 *6)) (-5 *3 (-579 (-688))) (-4 *1 (-855 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)))) (-3069 (*1 *1 *2 *3) (-12 (-5 *2 (-1075 *4)) (-4 *4 (-955)) (-4 *1 (-855 *4 *5 *3)) (-4 *5 (-711)) (-4 *3 (-750)))) (-3069 (*1 *1 *2 *3) (-12 (-5 *2 (-1075 *1)) (-4 *1 (-855 *4 *5 *3)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)))) (-2807 (*1 *2 *1) (|partial| -12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-855 *3 *4 *5)))) (-2808 (*1 *2 *1) (|partial| -12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-855 *3 *4 *5)))) (-2809 (*1 *2 *1) (|partial| -12 (-4 *1 (-855 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-2 (|:| |var| *5) (|:| -2388 (-688)))))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-855 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-688)))) (-2804 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *6)) (-4 *1 (-855 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-688)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-855 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *5)))) (-2803 (*1 *2 *1) (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-855 *3 *4 *5)))) (-3738 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) (-4 *3 (-144)))) (-3739 (*1 *1 *1 *2) (-12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) (-4 *3 (-144)))) (-2802 (*1 *1 *1 *2) (-12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) (-4 *3 (-386)))) (-3485 (*1 *1 *1 *2) (-12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) (-4 *3 (-386)))) (-3757 (*1 *1 *1) (-12 (-4 *1 (-855 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-386)))) (-3953 (*1 *2 *1) (-12 (-4 *3 (-386)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-342 *1)) (-4 *1 (-855 *3 *4 *5))))) +(-13 (-803 |t#3|) (-273 |t#1| |t#2|) (-256 $) (-448 |t#3| |t#1|) (-448 |t#3| $) (-944 |t#3|) (-323 |t#1|) (-10 -8 (-15 -3930 ((-688) $ |t#3|)) (-15 -3930 ((-579 (-688)) $ (-579 |t#3|))) (-15 -3659 ($ $ |t#3| (-688))) (-15 -3659 ($ $ (-579 |t#3|) (-579 (-688)))) (-15 -2806 ((-579 $) $)) (-15 -3068 ((-1075 $) $ |t#3|)) (-15 -3068 ((-1075 |t#1|) $)) (-15 -3067 ((-3 |t#3| "failed") $)) (-15 -2805 ((-688) $ |t#3|)) (-15 -2805 ((-579 (-688)) $ (-579 |t#3|))) (-15 -3745 ((-2 (|:| -1961 $) (|:| -2887 $)) $ $ |t#3|)) (-15 -2878 ($ $ |t#3| (-688))) (-15 -2878 ($ $ (-579 |t#3|) (-579 (-688)))) (-15 -3069 ($ (-1075 |t#1|) |t#3|)) (-15 -3069 ($ (-1075 $) |t#3|)) (-15 -2807 ((-3 (-579 $) "failed") $)) (-15 -2808 ((-3 (-579 $) "failed") $)) (-15 -2809 ((-3 (-2 (|:| |var| |t#3|) (|:| -2388 (-688))) "failed") $)) (-15 -2804 ((-688) $)) (-15 -2804 ((-688) $ (-579 |t#3|))) (-15 -3066 ((-579 |t#3|) $)) (-15 -2803 ((-579 $) $)) (IF (|has| |t#1| (-549 (-468))) (IF (|has| |t#3| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-549 (-794 (-479)))) (IF (|has| |t#3| (-549 (-794 (-479)))) (-6 (-549 (-794 (-479)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-549 (-794 (-324)))) (IF (|has| |t#3| (-549 (-794 (-324)))) (-6 (-549 (-794 (-324)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-790 (-479))) (IF (|has| |t#3| (-790 (-479))) (-6 (-790 (-479))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-790 (-324))) (IF (|has| |t#3| (-790 (-324))) (-6 (-790 (-324))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-15 -3738 ($ $ $ |t#3|)) (-15 -3739 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-386)) (PROGN (-6 (-386)) (-15 -2802 ($ $ |t#3|)) (-15 -3485 ($ $)) (-15 -3485 ($ $ |t#3|)) (-15 -3953 ((-342 $) $)) (-15 -3757 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3975)) (-6 -3975) |%noBranch|) (IF (|has| |t#1| (-815)) (-6 (-815)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-551 |#3|) . T) ((-551 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-549 (-468)) -12 (|has| |#1| (-549 (-468))) (|has| |#3| (-549 (-468)))) ((-549 (-794 (-324))) -12 (|has| |#1| (-549 (-794 (-324)))) (|has| |#3| (-549 (-794 (-324))))) ((-549 (-794 (-479))) -12 (|has| |#1| (-549 (-794 (-479)))) (|has| |#3| (-549 (-794 (-479))))) ((-242) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-256 $) . T) ((-273 |#1| |#2|) . T) ((-323 |#1|) . T) ((-349 |#1|) . T) ((-386) OR (|has| |#1| (-815)) (|has| |#1| (-386))) ((-448 |#3| |#1|) . T) ((-448 |#3| $) . T) ((-448 $ $) . T) ((-490) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 (-479)) |has| |#1| (-576 (-479))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-576 (-479)) |has| |#1| (-576 (-479))) ((-576 |#1|) . T) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-659) . T) ((-800 $ |#3|) . T) ((-803 |#3|) . T) ((-805 |#3|) . T) ((-790 (-324)) -12 (|has| |#1| (-790 (-324))) (|has| |#3| (-790 (-324)))) ((-790 (-479)) -12 (|has| |#1| (-790 (-479))) (|has| |#3| (-790 (-479)))) ((-815) |has| |#1| (-815)) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-944 |#3|) . T) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) |has| |#1| (-815))) +((-3066 (((-579 |#2|) |#5|) 40 T ELT)) (-3068 (((-1075 |#5|) |#5| |#2| (-1075 |#5|)) 23 T ELT) (((-344 (-1075 |#5|)) |#5| |#2|) 16 T ELT)) (-3069 ((|#5| (-344 (-1075 |#5|)) |#2|) 30 T ELT)) (-3067 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2808 (((-3 (-579 |#5|) #1#) |#5|) 64 T ELT)) (-2810 (((-3 (-2 (|:| |val| |#5|) (|:| -2388 (-479))) #1#) |#5|) 53 T ELT)) (-2807 (((-3 (-579 |#5|) #1#) |#5|) 66 T ELT)) (-2809 (((-3 (-2 (|:| |var| |#2|) (|:| -2388 (-479))) #1#) |#5|) 56 T ELT))) +(((-856 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3066 ((-579 |#2|) |#5|)) (-15 -3067 ((-3 |#2| #1="failed") |#5|)) (-15 -3068 ((-344 (-1075 |#5|)) |#5| |#2|)) (-15 -3069 (|#5| (-344 (-1075 |#5|)) |#2|)) (-15 -3068 ((-1075 |#5|) |#5| |#2| (-1075 |#5|))) (-15 -2807 ((-3 (-579 |#5|) #1#) |#5|)) (-15 -2808 ((-3 (-579 |#5|) #1#) |#5|)) (-15 -2809 ((-3 (-2 (|:| |var| |#2|) (|:| -2388 (-479))) #1#) |#5|)) (-15 -2810 ((-3 (-2 (|:| |val| |#5|) (|:| -2388 (-479))) #1#) |#5|))) (-711) (-750) (-955) (-855 |#3| |#1| |#2|) (-13 (-308) (-10 -8 (-15 -3928 ($ |#4|)) (-15 -2983 (|#4| $)) (-15 -2982 (|#4| $))))) (T -856)) +((-2810 (*1 *2 *3) (|partial| -12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2388 (-479)))) (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))))) (-2809 (*1 *2 *3) (|partial| -12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2388 (-479)))) (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))))) (-2808 (*1 *2 *3) (|partial| -12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-579 *3)) (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))))) (-2807 (*1 *2 *3) (|partial| -12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-579 *3)) (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))))) (-3068 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1075 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))) (-4 *7 (-855 *6 *5 *4)) (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-955)) (-5 *1 (-856 *5 *4 *6 *7 *3)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-1075 *2))) (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-955)) (-4 *2 (-13 (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))) (-5 *1 (-856 *5 *4 *6 *7 *2)) (-4 *7 (-855 *6 *5 *4)))) (-3068 (*1 *2 *3 *4) (-12 (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-955)) (-4 *7 (-855 *6 *5 *4)) (-5 *2 (-344 (-1075 *3))) (-5 *1 (-856 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))))) (-3067 (*1 *2 *3) (|partial| -12 (-4 *4 (-711)) (-4 *5 (-955)) (-4 *6 (-855 *5 *4 *2)) (-4 *2 (-750)) (-5 *1 (-856 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3928 ($ *6)) (-15 -2983 (*6 $)) (-15 -2982 (*6 $))))))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-579 *5)) (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $)))))))) +((-3940 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-857 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3940 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-711) (-750) (-955) (-855 |#3| |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -3821 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-688)))))) (T -857)) +((-3940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-750)) (-4 *8 (-955)) (-4 *6 (-711)) (-4 *2 (-13 (-1006) (-10 -8 (-15 -3821 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-688)))))) (-5 *1 (-857 *6 *7 *8 *5 *2)) (-4 *5 (-855 *8 *6 *7))))) +((-2811 (((-2 (|:| -2388 (-688)) (|:| -3936 |#5|) (|:| |radicand| |#5|)) |#3| (-688)) 48 T ELT)) (-2812 (((-2 (|:| -2388 (-688)) (|:| -3936 |#5|) (|:| |radicand| |#5|)) (-344 (-479)) (-688)) 43 T ELT)) (-2814 (((-2 (|:| -2388 (-688)) (|:| -3936 |#4|) (|:| |radicand| (-579 |#4|))) |#4| (-688)) 64 T ELT)) (-2813 (((-2 (|:| -2388 (-688)) (|:| -3936 |#5|) (|:| |radicand| |#5|)) |#5| (-688)) 73 (|has| |#3| (-386)) ELT))) +(((-858 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2811 ((-2 (|:| -2388 (-688)) (|:| -3936 |#5|) (|:| |radicand| |#5|)) |#3| (-688))) (-15 -2812 ((-2 (|:| -2388 (-688)) (|:| -3936 |#5|) (|:| |radicand| |#5|)) (-344 (-479)) (-688))) (IF (|has| |#3| (-386)) (-15 -2813 ((-2 (|:| -2388 (-688)) (|:| -3936 |#5|) (|:| |radicand| |#5|)) |#5| (-688))) |%noBranch|) (-15 -2814 ((-2 (|:| -2388 (-688)) (|:| -3936 |#4|) (|:| |radicand| (-579 |#4|))) |#4| (-688)))) (-711) (-750) (-490) (-855 |#3| |#1| |#2|) (-13 (-308) (-10 -8 (-15 -3928 ($ |#4|)) (-15 -2983 (|#4| $)) (-15 -2982 (|#4| $))))) (T -858)) +((-2814 (*1 *2 *3 *4) (-12 (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-490)) (-4 *3 (-855 *7 *5 *6)) (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *3) (|:| |radicand| (-579 *3)))) (-5 *1 (-858 *5 *6 *7 *3 *8)) (-5 *4 (-688)) (-4 *8 (-13 (-308) (-10 -8 (-15 -3928 ($ *3)) (-15 -2983 (*3 $)) (-15 -2982 (*3 $))))))) (-2813 (*1 *2 *3 *4) (-12 (-4 *7 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-490)) (-4 *8 (-855 *7 *5 *6)) (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *3) (|:| |radicand| *3))) (-5 *1 (-858 *5 *6 *7 *8 *3)) (-5 *4 (-688)) (-4 *3 (-13 (-308) (-10 -8 (-15 -3928 ($ *8)) (-15 -2983 (*8 $)) (-15 -2982 (*8 $))))))) (-2812 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-479))) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-490)) (-4 *8 (-855 *7 *5 *6)) (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *9) (|:| |radicand| *9))) (-5 *1 (-858 *5 *6 *7 *8 *9)) (-5 *4 (-688)) (-4 *9 (-13 (-308) (-10 -8 (-15 -3928 ($ *8)) (-15 -2983 (*8 $)) (-15 -2982 (*8 $))))))) (-2811 (*1 *2 *3 *4) (-12 (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-490)) (-4 *7 (-855 *3 *5 *6)) (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *8) (|:| |radicand| *8))) (-5 *1 (-858 *5 *6 *3 *7 *8)) (-5 *4 (-688)) (-4 *8 (-13 (-308) (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $)))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2815 (($ (-1024)) 8 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 15 T ELT) (((-1024) $) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 11 T ELT))) +(((-859) (-13 (-1006) (-548 (-1024)) (-10 -8 (-15 -2815 ($ (-1024)))))) (T -859)) +((-2815 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-859))))) +((-2881 (((-994 (-177)) $) 8 T ELT)) (-2882 (((-994 (-177)) $) 9 T ELT)) (-2883 (((-579 (-579 (-848 (-177)))) $) 10 T ELT)) (-3928 (((-766) $) 6 T ELT))) +(((-860) (-111)) (T -860)) +((-2883 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-579 (-579 (-848 (-177))))))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-994 (-177))))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-994 (-177)))))) +(-13 (-548 (-766)) (-10 -8 (-15 -2883 ((-579 (-579 (-848 (-177)))) $)) (-15 -2882 ((-994 (-177)) $)) (-15 -2881 ((-994 (-177)) $)))) +(((-548 (-766)) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 80 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 81 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT)) (-3941 (($ $) 32 T ELT)) (-3449 (((-3 $ #1#) $) 43 T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT)) (-1612 (($ $ |#1| |#2| $) 64 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) 18 T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| |#2|) NIL T ELT)) (-2805 ((|#2| $) 25 T ELT)) (-1613 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2879 (($ $) 29 T ELT)) (-3158 ((|#1| $) 27 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) 52 T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-3720 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-102)) (|has| |#1| (-490))) ELT)) (-3448 (((-3 $ #1#) $ $) 92 (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-490)) ELT)) (-3930 ((|#2| $) 23 T ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) 47 T ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ |#1|) 42 T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ |#2|) 38 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 15 T CONST)) (-1611 (($ $ $ (-688)) 76 (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) 86 (|has| |#1| (-490)) ELT)) (-2645 (($) 28 T CONST)) (-2651 (($) 12 T CONST)) (-3041 (((-83) $ $) 85 T ELT)) (-3931 (($ $ |#1|) 93 (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) 71 T ELT) (($ $ (-688)) 69 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-861 |#1| |#2|) (-13 (-273 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-490)) (IF (|has| |#2| (-102)) (-15 -3720 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3975)) (-6 -3975) |%noBranch|))) (-955) (-710)) (T -861)) +((-3720 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-861 *3 *2)) (-4 *2 (-102)) (-4 *3 (-490)) (-4 *3 (-955)) (-4 *2 (-710))))) +((-2816 (((-3 (-626 |#1|) "failed") |#2| (-824)) 18 T ELT))) +(((-862 |#1| |#2|) (-10 -7 (-15 -2816 ((-3 (-626 |#1|) "failed") |#2| (-824)))) (-490) (-596 |#1|)) (T -862)) +((-2816 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-824)) (-4 *5 (-490)) (-5 *2 (-626 *5)) (-5 *1 (-862 *5 *3)) (-4 *3 (-596 *5))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) 20 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) 19 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 17 T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) NIL T ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) |#1|) 16 T ELT)) (-2187 (((-479) $) 11 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) 21 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) 13 T ELT)) (-3782 ((|#1| $ (-479) |#1|) NIL T ELT) ((|#1| $ (-479)) 18 T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 22 T ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 15 T ELT)) (-3784 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3939 (((-688) $) 8 (|has| $ (-6 -3977)) ELT))) +(((-863 |#1|) (-19 |#1|) (-1119)) (T -863)) +NIL +((-3823 (((-863 |#2|) (-1 |#2| |#1| |#2|) (-863 |#1|) |#2|) 16 T ELT)) (-3824 ((|#2| (-1 |#2| |#1| |#2|) (-863 |#1|) |#2|) 18 T ELT)) (-3940 (((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)) 13 T ELT))) +(((-864 |#1| |#2|) (-10 -7 (-15 -3823 ((-863 |#2|) (-1 |#2| |#1| |#2|) (-863 |#1|) |#2|)) (-15 -3824 (|#2| (-1 |#2| |#1| |#2|) (-863 |#1|) |#2|)) (-15 -3940 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)))) (-1119) (-1119)) (T -864)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-863 *6)) (-5 *1 (-864 *5 *6)))) (-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-863 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-864 *5 *2)))) (-3823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-863 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-863 *5)) (-5 *1 (-864 *6 *5))))) +((-2817 (($ $ (-997 $)) 7 T ELT) (($ $ (-1080)) 6 T ELT))) +(((-865) (-111)) (T -865)) +((-2817 (*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-865)))) (-2817 (*1 *1 *1 *2) (-12 (-4 *1 (-865)) (-5 *2 (-1080))))) +(-13 (-10 -8 (-15 -2817 ($ $ (-1080))) (-15 -2817 ($ $ (-997 $))))) +((-2818 (((-2 (|:| -3936 (-579 (-479))) (|:| |poly| (-579 (-1075 |#1|))) (|:| |prim| (-1075 |#1|))) (-579 (-851 |#1|)) (-579 (-1080)) (-1080)) 26 T ELT) (((-2 (|:| -3936 (-579 (-479))) (|:| |poly| (-579 (-1075 |#1|))) (|:| |prim| (-1075 |#1|))) (-579 (-851 |#1|)) (-579 (-1080))) 27 T ELT) (((-2 (|:| |coef1| (-479)) (|:| |coef2| (-479)) (|:| |prim| (-1075 |#1|))) (-851 |#1|) (-1080) (-851 |#1|) (-1080)) 49 T ELT))) +(((-866 |#1|) (-10 -7 (-15 -2818 ((-2 (|:| |coef1| (-479)) (|:| |coef2| (-479)) (|:| |prim| (-1075 |#1|))) (-851 |#1|) (-1080) (-851 |#1|) (-1080))) (-15 -2818 ((-2 (|:| -3936 (-579 (-479))) (|:| |poly| (-579 (-1075 |#1|))) (|:| |prim| (-1075 |#1|))) (-579 (-851 |#1|)) (-579 (-1080)))) (-15 -2818 ((-2 (|:| -3936 (-579 (-479))) (|:| |poly| (-579 (-1075 |#1|))) (|:| |prim| (-1075 |#1|))) (-579 (-851 |#1|)) (-579 (-1080)) (-1080)))) (-13 (-308) (-118))) (T -866)) +((-2818 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 (-851 *6))) (-5 *4 (-579 (-1080))) (-5 *5 (-1080)) (-4 *6 (-13 (-308) (-118))) (-5 *2 (-2 (|:| -3936 (-579 (-479))) (|:| |poly| (-579 (-1075 *6))) (|:| |prim| (-1075 *6)))) (-5 *1 (-866 *6)))) (-2818 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-579 (-1080))) (-4 *5 (-13 (-308) (-118))) (-5 *2 (-2 (|:| -3936 (-579 (-479))) (|:| |poly| (-579 (-1075 *5))) (|:| |prim| (-1075 *5)))) (-5 *1 (-866 *5)))) (-2818 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1080)) (-4 *5 (-13 (-308) (-118))) (-5 *2 (-2 (|:| |coef1| (-479)) (|:| |coef2| (-479)) (|:| |prim| (-1075 *5)))) (-5 *1 (-866 *5))))) +((-2821 (((-579 |#1|) |#1| |#1|) 47 T ELT)) (-3705 (((-83) |#1|) 44 T ELT)) (-2820 ((|#1| |#1|) 80 T ELT)) (-2819 ((|#1| |#1|) 79 T ELT))) +(((-867 |#1|) (-10 -7 (-15 -3705 ((-83) |#1|)) (-15 -2819 (|#1| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -2821 ((-579 |#1|) |#1| |#1|))) (-478)) (T -867)) +((-2821 (*1 *2 *3 *3) (-12 (-5 *2 (-579 *3)) (-5 *1 (-867 *3)) (-4 *3 (-478)))) (-2820 (*1 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-478)))) (-2819 (*1 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-478)))) (-3705 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-867 *3)) (-4 *3 (-478))))) +((-2822 (((-1175) (-766)) 9 T ELT))) +(((-868) (-10 -7 (-15 -2822 ((-1175) (-766))))) (T -868)) +((-2822 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-868))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) ELT)) (-2468 (($ $ $) 65 (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) ELT)) (-1300 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) ELT)) (-3120 (((-688)) 36 (-12 (|has| |#1| (-314)) (|has| |#2| (-314))) ELT)) (-2823 ((|#2| $) 22 T ELT)) (-2824 ((|#1| $) 21 T ELT)) (-3706 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) CONST)) (-3449 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) ELT)) (-2979 (($) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-314))) ELT)) (-3170 (((-83) $) NIL (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) ELT)) (-2397 (((-83) $) NIL (OR (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) ELT)) (-2516 (($ $ $) NIL (OR (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) (-12 (|has| |#1| (-750)) (|has| |#2| (-750)))) ELT)) (-2842 (($ $ $) NIL (OR (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) (-12 (|has| |#1| (-750)) (|has| |#2| (-750)))) ELT)) (-2825 (($ |#1| |#2|) 20 T ELT)) (-1997 (((-824) $) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-314))) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 39 (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) ELT)) (-2387 (($ (-824)) NIL (-12 (|has| |#1| (-314)) (|has| |#2| (-314))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2994 (($ $ $) NIL (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) ELT)) (-2420 (($ $ $) NIL (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) ELT)) (-3928 (((-766) $) 14 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) CONST)) (-2651 (($) 25 (OR (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-2551 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) (-12 (|has| |#1| (-750)) (|has| |#2| (-750)))) ELT)) (-2552 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) (-12 (|has| |#1| (-750)) (|has| |#2| (-750)))) ELT)) (-3041 (((-83) $ $) 19 T ELT)) (-2669 (((-83) $ $) NIL (OR (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) (-12 (|has| |#1| (-750)) (|has| |#2| (-750)))) ELT)) (-2670 (((-83) $ $) 69 (OR (-12 (|has| |#1| (-711)) (|has| |#2| (-711))) (-12 (|has| |#1| (-750)) (|has| |#2| (-750)))) ELT)) (-3931 (($ $ $) NIL (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) ELT)) (-3819 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3821 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) ELT)) (** (($ $ (-479)) NIL (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) ELT) (($ $ (-688)) 32 (OR (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) ELT) (($ $ (-824)) NIL (OR (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) ELT)) (* (($ (-479) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-688) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) ELT) (($ (-824) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-102)) (|has| |#2| (-102))) (-12 (|has| |#1| (-711)) (|has| |#2| (-711)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-407)) (|has| |#2| (-407))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) ELT))) +(((-869 |#1| |#2|) (-13 (-1006) (-10 -8 (IF (|has| |#1| (-314)) (IF (|has| |#2| (-314)) (-6 (-314)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-102)) (IF (|has| |#2| (-102)) (-6 (-102)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-407)) (IF (|has| |#2| (-407)) (-6 (-407)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-711)) (IF (|has| |#2| (-711)) (-6 (-711)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-750)) (IF (|has| |#2| (-750)) (-6 (-750)) |%noBranch|) |%noBranch|) (-15 -2825 ($ |#1| |#2|)) (-15 -2824 (|#1| $)) (-15 -2823 (|#2| $)))) (-1006) (-1006)) (T -869)) +((-2825 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-2824 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1006)))) (-2823 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1006))))) +((-3384 (((-1008) $) 13 T ELT)) (-2826 (($ (-440) (-1008)) 15 T ELT)) (-3524 (((-440) $) 11 T ELT)) (-3928 (((-766) $) 25 T ELT))) +(((-870) (-13 (-548 (-766)) (-10 -8 (-15 -3524 ((-440) $)) (-15 -3384 ((-1008) $)) (-15 -2826 ($ (-440) (-1008)))))) (T -870)) +((-3524 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-870)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-870)))) (-2826 (*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1008)) (-5 *1 (-870))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) 29 T ELT)) (-2840 (($) 17 T CONST)) (-2546 (($ $ $) NIL T ELT)) (-2545 (($ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2831 (((-628 (-776 $ $)) $) 62 T ELT)) (-2833 (((-628 $) $) 52 T ELT)) (-2830 (((-628 (-776 $ $)) $) 63 T ELT)) (-2829 (((-628 (-776 $ $)) $) 64 T ELT)) (-2834 (((-628 |#1|) $) 43 T ELT)) (-2832 (((-628 (-776 $ $)) $) 61 T ELT)) (-2838 (($ $ $) 38 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2839 (($) 16 T CONST)) (-2837 (($ $ $) 39 T ELT)) (-2827 (($ $ $) 36 T ELT)) (-2828 (($ $ $) 34 T ELT)) (-3928 (((-766) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2547 (($ $ $) NIL T ELT)) (-2298 (($ $ $) 37 T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) 35 T ELT))) +(((-871 |#1|) (-13 (-874) (-551 |#1|) (-10 -8 (-15 -2834 ((-628 |#1|) $)) (-15 -2833 ((-628 $) $)) (-15 -2832 ((-628 (-776 $ $)) $)) (-15 -2831 ((-628 (-776 $ $)) $)) (-15 -2830 ((-628 (-776 $ $)) $)) (-15 -2829 ((-628 (-776 $ $)) $)) (-15 -2828 ($ $ $)) (-15 -2827 ($ $ $)))) (-1006)) (T -871)) +((-2834 (*1 *2 *1) (-12 (-5 *2 (-628 *3)) (-5 *1 (-871 *3)) (-4 *3 (-1006)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-628 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1006)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-628 (-776 (-871 *3) (-871 *3)))) (-5 *1 (-871 *3)) (-4 *3 (-1006)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-628 (-776 (-871 *3) (-871 *3)))) (-5 *1 (-871 *3)) (-4 *3 (-1006)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-628 (-776 (-871 *3) (-871 *3)))) (-5 *1 (-871 *3)) (-4 *3 (-1006)))) (-2829 (*1 *2 *1) (-12 (-5 *2 (-628 (-776 (-871 *3) (-871 *3)))) (-5 *1 (-871 *3)) (-4 *3 (-1006)))) (-2828 (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1006)))) (-2827 (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1006))))) +((-3631 (((-871 |#1|) (-871 |#1|)) 46 T ELT)) (-2836 (((-871 |#1|) (-871 |#1|)) 22 T ELT)) (-2835 (((-1002 |#1|) (-871 |#1|)) 41 T ELT))) +(((-872 |#1|) (-13 (-1119) (-10 -7 (-15 -2836 ((-871 |#1|) (-871 |#1|))) (-15 -2835 ((-1002 |#1|) (-871 |#1|))) (-15 -3631 ((-871 |#1|) (-871 |#1|))))) (-1006)) (T -872)) +((-2836 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-1006)) (-5 *1 (-872 *3)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-871 *4)) (-4 *4 (-1006)) (-5 *2 (-1002 *4)) (-5 *1 (-872 *4)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-1006)) (-5 *1 (-872 *3))))) +((-3940 (((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)) 29 T ELT))) +(((-873 |#1| |#2|) (-13 (-1119) (-10 -7 (-15 -3940 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|))))) (-1006) (-1006)) (T -873)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-871 *6)) (-5 *1 (-873 *5 *6))))) +((-2553 (((-83) $ $) 19 T ELT)) (-2300 (($ $) 8 T ELT)) (-2840 (($) 17 T CONST)) (-2546 (($ $ $) 9 T ELT)) (-2545 (($ $) 11 T ELT)) (-3226 (((-1063) $) 23 T ELT)) (-2838 (($ $ $) 15 T ELT)) (-3227 (((-1024) $) 22 T ELT)) (-2839 (($) 16 T CONST)) (-2837 (($ $ $) 14 T ELT)) (-3928 (((-766) $) 21 T ELT)) (-1254 (((-83) $ $) 20 T ELT)) (-2547 (($ $ $) 10 T ELT)) (-2298 (($ $ $) 6 T ELT)) (-3041 (((-83) $ $) 18 T ELT)) (-2299 (($ $ $) 7 T ELT))) +(((-874) (-111)) (T -874)) +((-2840 (*1 *1) (-4 *1 (-874))) (-2839 (*1 *1) (-4 *1 (-874))) (-2838 (*1 *1 *1 *1) (-4 *1 (-874))) (-2837 (*1 *1 *1 *1) (-4 *1 (-874)))) +(-13 (-82) (-1006) (-10 -8 (-15 -2840 ($) -3934) (-15 -2839 ($) -3934) (-15 -2838 ($ $ $)) (-15 -2837 ($ $ $)))) +(((-72) . T) ((-82) . T) ((-548 (-766)) . T) ((-600) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3706 (($) 7 T CONST)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2841 (($ $ $) 47 T ELT)) (-3500 (($ $ $) 48 T ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2842 ((|#1| $) 49 T ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-875 |#1|) (-111) (-750)) (T -875)) +((-2842 (*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-750)))) (-3500 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-750)))) (-2841 (*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-750))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3977) (-15 -2842 (|t#1| $)) (-15 -3500 ($ $ $)) (-15 -2841 ($ $ $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2854 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3128 |#2|)) |#2| |#2|) 105 T ELT)) (-3737 ((|#2| |#2| |#2|) 103 T ELT)) (-2855 (((-2 (|:| |coef2| |#2|) (|:| -3128 |#2|)) |#2| |#2|) 107 T ELT)) (-2856 (((-2 (|:| |coef1| |#2|) (|:| -3128 |#2|)) |#2| |#2|) 109 T ELT)) (-2863 (((-2 (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|) 132 (|has| |#1| (-386)) ELT)) (-2870 (((-2 (|:| |coef2| |#2|) (|:| -3738 |#1|)) |#2| |#2|) 56 T ELT)) (-2844 (((-2 (|:| |coef2| |#2|) (|:| -3738 |#1|)) |#2| |#2|) 80 T ELT)) (-2845 (((-2 (|:| |coef1| |#2|) (|:| -3738 |#1|)) |#2| |#2|) 82 T ELT)) (-2853 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2848 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-688)) 89 T ELT)) (-2858 (((-2 (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2|) 121 T ELT)) (-2851 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-688)) 92 T ELT)) (-2860 (((-579 (-688)) |#2| |#2|) 102 T ELT)) (-2868 ((|#1| |#2| |#2|) 50 T ELT)) (-2862 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|) 130 (|has| |#1| (-386)) ELT)) (-2861 ((|#1| |#2| |#2|) 128 (|has| |#1| (-386)) ELT)) (-2869 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3738 |#1|)) |#2| |#2|) 54 T ELT)) (-2843 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3738 |#1|)) |#2| |#2|) 79 T ELT)) (-3738 ((|#1| |#2| |#2|) 76 T ELT)) (-3734 (((-2 (|:| -3936 |#1|) (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2|) 41 T ELT)) (-2867 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2852 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3174 ((|#2| |#2| |#2|) 93 T ELT)) (-2847 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-688)) 87 T ELT)) (-2846 ((|#2| |#2| |#2| (-688)) 85 T ELT)) (-3128 ((|#2| |#2| |#2|) 136 (|has| |#1| (-386)) ELT)) (-3448 (((-1169 |#2|) (-1169 |#2|) |#1|) 22 T ELT)) (-2864 (((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2|) 46 T ELT)) (-2857 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2|) 119 T ELT)) (-3739 ((|#1| |#2|) 116 T ELT)) (-2850 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-688)) 91 T ELT)) (-2849 ((|#2| |#2| |#2| (-688)) 90 T ELT)) (-2859 (((-579 |#2|) |#2| |#2|) 99 T ELT)) (-2866 ((|#2| |#2| |#1| |#1| (-688)) 62 T ELT)) (-2865 ((|#1| |#1| |#1| (-688)) 61 T ELT)) (* (((-1169 |#2|) |#1| (-1169 |#2|)) 17 T ELT))) +(((-876 |#1| |#2|) (-10 -7 (-15 -3738 (|#1| |#2| |#2|)) (-15 -2843 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3738 |#1|)) |#2| |#2|)) (-15 -2844 ((-2 (|:| |coef2| |#2|) (|:| -3738 |#1|)) |#2| |#2|)) (-15 -2845 ((-2 (|:| |coef1| |#2|) (|:| -3738 |#1|)) |#2| |#2|)) (-15 -2846 (|#2| |#2| |#2| (-688))) (-15 -2847 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-688))) (-15 -2848 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-688))) (-15 -2849 (|#2| |#2| |#2| (-688))) (-15 -2850 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-688))) (-15 -2851 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-688))) (-15 -3174 (|#2| |#2| |#2|)) (-15 -2852 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2853 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3737 (|#2| |#2| |#2|)) (-15 -2854 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3128 |#2|)) |#2| |#2|)) (-15 -2855 ((-2 (|:| |coef2| |#2|) (|:| -3128 |#2|)) |#2| |#2|)) (-15 -2856 ((-2 (|:| |coef1| |#2|) (|:| -3128 |#2|)) |#2| |#2|)) (-15 -3739 (|#1| |#2|)) (-15 -2857 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2|)) (-15 -2858 ((-2 (|:| |coef2| |#2|) (|:| -3739 |#1|)) |#2|)) (-15 -2859 ((-579 |#2|) |#2| |#2|)) (-15 -2860 ((-579 (-688)) |#2| |#2|)) (IF (|has| |#1| (-386)) (PROGN (-15 -2861 (|#1| |#2| |#2|)) (-15 -2862 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -2863 ((-2 (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -3128 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1169 |#2|) |#1| (-1169 |#2|))) (-15 -3448 ((-1169 |#2|) (-1169 |#2|) |#1|)) (-15 -3734 ((-2 (|:| -3936 |#1|) (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2864 ((-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) |#2| |#2|)) (-15 -2865 (|#1| |#1| |#1| (-688))) (-15 -2866 (|#2| |#2| |#1| |#1| (-688))) (-15 -2867 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2868 (|#1| |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3738 |#1|)) |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef2| |#2|) (|:| -3738 |#1|)) |#2| |#2|))) (-490) (-1145 |#1|)) (T -876)) +((-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3738 *4))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3738 *4))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *2 (-490)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1145 *2)))) (-2867 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3)))) (-2866 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-688)) (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3)))) (-2865 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-688)) (-4 *2 (-490)) (-5 *1 (-876 *2 *4)) (-4 *4 (-1145 *2)))) (-2864 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-3734 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| -3936 *4) (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-3448 (*1 *2 *2 *3) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-490)) (-5 *1 (-876 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-490)) (-5 *1 (-876 *3 *4)))) (-3128 (*1 *2 *2 *2) (-12 (-4 *3 (-386)) (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3)))) (-2863 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2861 *4))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2861 *4))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *2 (-490)) (-4 *2 (-386)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1145 *2)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-579 (-688))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-579 *3)) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2858 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3739 *4))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2857 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3739 *4))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-3739 (*1 *2 *3) (-12 (-4 *2 (-490)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1145 *2)))) (-2856 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3128 *3))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2855 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3128 *3))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2854 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3128 *3))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-3737 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3)))) (-2853 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2852 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-3174 (*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3)))) (-2851 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-688)) (-4 *5 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-1145 *5)))) (-2850 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-688)) (-4 *5 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-1145 *5)))) (-2849 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-688)) (-4 *4 (-490)) (-5 *1 (-876 *4 *2)) (-4 *2 (-1145 *4)))) (-2848 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-688)) (-4 *5 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-1145 *5)))) (-2847 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-688)) (-4 *5 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-876 *5 *3)) (-4 *3 (-1145 *5)))) (-2846 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-688)) (-4 *4 (-490)) (-5 *1 (-876 *4 *2)) (-4 *2 (-1145 *4)))) (-2845 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3738 *4))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2844 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3738 *4))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-2843 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3738 *4))) (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) (-3738 (*1 *2 *3 *3) (-12 (-4 *2 (-490)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1145 *2))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3301 (((-1120) $) 14 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3190 (((-1039) $) 11 T ELT)) (-3928 (((-766) $) 21 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-877) (-13 (-988) (-10 -8 (-15 -3190 ((-1039) $)) (-15 -3301 ((-1120) $))))) (T -877)) +((-3190 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-877)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-877))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 40 T ELT)) (-1300 (((-3 $ "failed") $ $) 54 T ELT)) (-3706 (($) NIL T CONST)) (-2872 (((-579 (-776 (-824) (-824))) $) 64 T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2871 (((-824) $) 91 T ELT)) (-2874 (((-579 (-824)) $) 17 T ELT)) (-2873 (((-1059 $) (-688)) 39 T ELT)) (-2875 (($ (-579 (-824))) 16 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2994 (($ $) 67 T ELT)) (-3928 (((-766) $) 87 T ELT) (((-579 (-824)) $) 11 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 10 T CONST)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 44 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 42 T ELT)) (-3821 (($ $ $) 46 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) 49 T ELT)) (-3939 (((-688) $) 22 T ELT))) +(((-878) (-13 (-715) (-548 (-579 (-824))) (-10 -8 (-15 -2875 ($ (-579 (-824)))) (-15 -2874 ((-579 (-824)) $)) (-15 -3939 ((-688) $)) (-15 -2873 ((-1059 $) (-688))) (-15 -2872 ((-579 (-776 (-824) (-824))) $)) (-15 -2871 ((-824) $)) (-15 -2994 ($ $))))) (T -878)) +((-2875 (*1 *1 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-878)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-878)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-878)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1059 (-878))) (-5 *1 (-878)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-579 (-776 (-824) (-824)))) (-5 *1 (-878)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-878)))) (-2994 (*1 *1 *1) (-5 *1 (-878)))) +((-3931 (($ $ |#2|) 31 T ELT)) (-3819 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-344 (-479)) $) 27 T ELT) (($ $ (-344 (-479))) 29 T ELT))) +(((-879 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-344 (-479)))) (-15 * (|#1| (-344 (-479)) |#1|)) (-15 -3931 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 * (|#1| (-824) |#1|))) (-880 |#2| |#3| |#4|) (-955) (-710) (-750)) (T -879)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 |#3|) $) 92 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 68 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 69 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 71 (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3941 (($ $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2877 (((-83) $) 91 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3919 (((-83) $) 79 T ELT)) (-2878 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-579 |#3|) (-579 |#2|)) 93 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2879 (($ $) 82 T ELT)) (-3158 ((|#1| $) 83 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3448 (((-3 $ "failed") $ $) 67 (|has| |#1| (-490)) ELT)) (-3930 ((|#2| $) 81 T ELT)) (-2876 (($ $) 90 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 (-479))) 74 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) 66 (|has| |#1| (-490)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3659 ((|#1| $ |#2|) 76 T ELT)) (-2687 (((-628 $) $) 65 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 70 (|has| |#1| (-490)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-344 (-479)) $) 73 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 72 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-880 |#1| |#2| |#3|) (-111) (-955) (-710) (-750)) (T -880)) +((-3158 (*1 *2 *1) (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *3 (-710)) (-4 *4 (-750)) (-4 *2 (-955)))) (-2879 (*1 *1 *1) (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-710)) (-4 *4 (-750)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *2 *4)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *2 (-710)))) (-2878 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-880 *4 *3 *2)) (-4 *4 (-955)) (-4 *3 (-710)) (-4 *2 (-750)))) (-2878 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 *6)) (-5 *3 (-579 *5)) (-4 *1 (-880 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-710)) (-4 *6 (-750)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-710)) (-4 *5 (-750)) (-5 *2 (-579 *5)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-710)) (-4 *5 (-750)) (-5 *2 (-83)))) (-2876 (*1 *1 *1) (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-710)) (-4 *4 (-750))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2878 ($ $ |t#3| |t#2|)) (-15 -2878 ($ $ (-579 |t#3|) (-579 |t#2|))) (-15 -2879 ($ $)) (-15 -3158 (|t#1| $)) (-15 -3930 (|t#2| $)) (-15 -3066 ((-579 |t#3|) $)) (-15 -2877 ((-83) $)) (-15 -2876 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-490)) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-551 (-479)) . T) ((-551 |#1|) |has| |#1| (-144)) ((-551 $) |has| |#1| (-490)) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-242) |has| |#1| (-490)) ((-490) |has| |#1| (-490)) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) |has| |#1| (-490)) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) |has| |#1| (-490)) ((-659) . T) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2880 (((-994 (-177)) $) 8 T ELT)) (-2881 (((-994 (-177)) $) 9 T ELT)) (-2882 (((-994 (-177)) $) 10 T ELT)) (-2883 (((-579 (-579 (-848 (-177)))) $) 11 T ELT)) (-3928 (((-766) $) 6 T ELT))) +(((-881) (-111)) (T -881)) +((-2883 (*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-579 (-579 (-848 (-177))))))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-994 (-177))))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-994 (-177))))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-994 (-177)))))) +(-13 (-548 (-766)) (-10 -8 (-15 -2883 ((-579 (-579 (-848 (-177)))) $)) (-15 -2882 ((-994 (-177)) $)) (-15 -2881 ((-994 (-177)) $)) (-15 -2880 ((-994 (-177)) $)))) +(((-548 (-766)) . T)) +((-3066 (((-579 |#4|) $) 23 T ELT)) (-2893 (((-83) $) 55 T ELT)) (-2884 (((-83) $) 54 T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2889 (((-83) $) 56 T ELT)) (-2891 (((-83) $ $) 62 T ELT)) (-2890 (((-83) $ $) 65 T ELT)) (-2892 (((-83) $) 60 T ELT)) (-2885 (((-579 |#5|) (-579 |#5|) $) 98 T ELT)) (-2886 (((-579 |#5|) (-579 |#5|) $) 95 T ELT)) (-2887 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2899 (((-579 |#4|) $) 27 T ELT)) (-2898 (((-83) |#4| $) 34 T ELT)) (-2888 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2895 (($ $ |#4|) 39 T ELT)) (-2897 (($ $ |#4|) 38 T ELT)) (-2896 (($ $ |#4|) 40 T ELT)) (-3041 (((-83) $ $) 46 T ELT))) +(((-882 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2884 ((-83) |#1|)) (-15 -2885 ((-579 |#5|) (-579 |#5|) |#1|)) (-15 -2886 ((-579 |#5|) (-579 |#5|) |#1|)) (-15 -2887 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2888 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2889 ((-83) |#1|)) (-15 -2890 ((-83) |#1| |#1|)) (-15 -2891 ((-83) |#1| |#1|)) (-15 -2892 ((-83) |#1|)) (-15 -2893 ((-83) |#1|)) (-15 -2894 ((-2 (|:| |under| |#1|) (|:| -3114 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2895 (|#1| |#1| |#4|)) (-15 -2896 (|#1| |#1| |#4|)) (-15 -2897 (|#1| |#1| |#4|)) (-15 -2898 ((-83) |#4| |#1|)) (-15 -2899 ((-579 |#4|) |#1|)) (-15 -3066 ((-579 |#4|) |#1|)) (-15 -3041 ((-83) |#1| |#1|))) (-883 |#2| |#3| |#4| |#5|) (-955) (-711) (-750) (-970 |#2| |#3| |#4|)) (T -882)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3066 (((-579 |#3|) $) 37 T ELT)) (-2893 (((-83) $) 30 T ELT)) (-2884 (((-83) $) 21 (|has| |#1| (-490)) ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3692 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 46 T CONST)) (-2889 (((-83) $) 26 (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) 28 (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) 27 (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) 29 (|has| |#1| (-490)) ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) 22 (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) 23 (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ "failed") (-579 |#4|)) 40 T ELT)) (-3140 (($ (-579 |#4|)) 39 T ELT)) (-1341 (($ $) 69 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#4| $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-490)) ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#4|) $) 53 (|has| $ (-6 -3977)) ELT)) (-3164 ((|#3| $) 38 T ELT)) (-2593 (((-579 |#4|) $) 54 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2899 (((-579 |#3|) $) 36 T ELT)) (-2898 (((-83) |#3| $) 35 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-490)) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1342 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) 42 T ELT)) (-3385 (((-83) $) 45 T ELT)) (-3547 (($) 44 T ELT)) (-1934 (((-688) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 43 T ELT)) (-3954 (((-468) $) 70 (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) 61 T ELT)) (-2895 (($ $ |#3|) 32 T ELT)) (-2897 (($ $ |#3|) 34 T ELT)) (-2896 (($ $ |#3|) 33 T ELT)) (-3928 (((-766) $) 13 T ELT) (((-579 |#4|) $) 41 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3939 (((-688) $) 47 (|has| $ (-6 -3977)) ELT))) +(((-883 |#1| |#2| |#3| |#4|) (-111) (-955) (-711) (-750) (-970 |t#1| |t#2| |t#3|)) (T -883)) +((-3141 (*1 *1 *2) (|partial| -12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *1 (-883 *3 *4 *5 *6)))) (-3140 (*1 *1 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *1 (-883 *3 *4 *5 *6)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-970 *3 *4 *2)) (-4 *2 (-750)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-579 *5)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-579 *5)))) (-2898 (*1 *2 *3 *1) (-12 (-4 *1 (-883 *4 *5 *3 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-4 *6 (-970 *4 *5 *3)) (-5 *2 (-83)))) (-2897 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) (-4 *5 (-970 *3 *4 *2)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) (-4 *5 (-970 *3 *4 *2)))) (-2895 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) (-4 *5 (-970 *3 *4 *2)))) (-2894 (*1 *2 *1 *3) (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-4 *6 (-970 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3114 *1) (|:| |upper| *1))) (-4 *1 (-883 *4 *5 *3 *6)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83)))) (-2891 (*1 *2 *1 *1) (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83)))) (-2890 (*1 *2 *1 *1) (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83)))) (-2888 (*1 *2 *3 *1) (-12 (-4 *1 (-883 *4 *5 *6 *3)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-4 *4 (-490)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2887 (*1 *2 *3 *1) (-12 (-4 *1 (-883 *4 *5 *6 *3)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-4 *4 (-490)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2886 (*1 *2 *2 *1) (-12 (-5 *2 (-579 *6)) (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)))) (-2885 (*1 *2 *2 *1) (-12 (-5 *2 (-579 *6)) (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83))))) +(-13 (-1006) (-122 |t#4|) (-548 (-579 |t#4|)) (-10 -8 (-6 -3977) (-15 -3141 ((-3 $ "failed") (-579 |t#4|))) (-15 -3140 ($ (-579 |t#4|))) (-15 -3164 (|t#3| $)) (-15 -3066 ((-579 |t#3|) $)) (-15 -2899 ((-579 |t#3|) $)) (-15 -2898 ((-83) |t#3| $)) (-15 -2897 ($ $ |t#3|)) (-15 -2896 ($ $ |t#3|)) (-15 -2895 ($ $ |t#3|)) (-15 -2894 ((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |t#3|)) (-15 -2893 ((-83) $)) (IF (|has| |t#1| (-490)) (PROGN (-15 -2892 ((-83) $)) (-15 -2891 ((-83) $ $)) (-15 -2890 ((-83) $ $)) (-15 -2889 ((-83) $)) (-15 -2888 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2887 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2886 ((-579 |t#4|) (-579 |t#4|) $)) (-15 -2885 ((-579 |t#4|) (-579 |t#4|) $)) (-15 -2884 ((-83) $))) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-548 (-579 |#4|)) . T) ((-548 (-766)) . T) ((-122 |#4|) . T) ((-549 (-468)) |has| |#4| (-549 (-468))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-423 |#4|) . T) ((-448 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-1006) . T) ((-1119) . T)) +((-2901 (((-579 |#4|) |#4| |#4|) 135 T ELT)) (-2924 (((-579 |#4|) (-579 |#4|) (-83)) 123 (|has| |#1| (-386)) ELT) (((-579 |#4|) (-579 |#4|)) 124 (|has| |#1| (-386)) ELT)) (-2911 (((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 |#4|)) 44 T ELT)) (-2910 (((-83) |#4|) 43 T ELT)) (-2923 (((-579 |#4|) |#4|) 120 (|has| |#1| (-386)) ELT)) (-2906 (((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-1 (-83) |#4|) (-579 |#4|)) 24 T ELT)) (-2907 (((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 (-1 (-83) |#4|)) (-579 |#4|)) 30 T ELT)) (-2908 (((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 (-1 (-83) |#4|)) (-579 |#4|)) 31 T ELT)) (-2919 (((-3 (-2 (|:| |bas| (-410 |#1| |#2| |#3| |#4|)) (|:| -3306 (-579 |#4|))) "failed") (-579 |#4|)) 90 T ELT)) (-2921 (((-579 |#4|) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2922 (((-579 |#4|) (-579 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2900 (((-579 |#4|) (-579 |#4|)) 126 T ELT)) (-2916 (((-579 |#4|) (-579 |#4|) (-579 |#4|) (-83)) 59 T ELT) (((-579 |#4|) (-579 |#4|) (-579 |#4|)) 61 T ELT)) (-2917 ((|#4| |#4| (-579 |#4|)) 60 T ELT)) (-2925 (((-579 |#4|) (-579 |#4|) (-579 |#4|)) 131 (|has| |#1| (-386)) ELT)) (-2927 (((-579 |#4|) (-579 |#4|) (-579 |#4|)) 134 (|has| |#1| (-386)) ELT)) (-2926 (((-579 |#4|) (-579 |#4|) (-579 |#4|)) 133 (|has| |#1| (-386)) ELT)) (-2902 (((-579 |#4|) (-579 |#4|) (-579 |#4|) (-1 (-579 |#4|) (-579 |#4|))) 105 T ELT) (((-579 |#4|) (-579 |#4|) (-579 |#4|)) 107 T ELT) (((-579 |#4|) (-579 |#4|) |#4|) 139 T ELT) (((-579 |#4|) |#4| |#4|) 136 T ELT) (((-579 |#4|) (-579 |#4|)) 106 T ELT)) (-2930 (((-579 |#4|) (-579 |#4|) (-579 |#4|)) 117 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2909 (((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 |#4|)) 52 T ELT)) (-2905 (((-83) (-579 |#4|)) 79 T ELT)) (-2904 (((-83) (-579 |#4|) (-579 (-579 |#4|))) 67 T ELT)) (-2913 (((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 |#4|)) 37 T ELT)) (-2912 (((-83) |#4|) 36 T ELT)) (-2929 (((-579 |#4|) (-579 |#4|)) 116 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2928 (((-579 |#4|) (-579 |#4|)) 115 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2918 (((-579 |#4|) (-579 |#4|)) 83 T ELT)) (-2920 (((-579 |#4|) (-579 |#4|)) 97 T ELT)) (-2903 (((-83) (-579 |#4|) (-579 |#4|)) 65 T ELT)) (-2915 (((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 |#4|)) 50 T ELT)) (-2914 (((-83) |#4|) 45 T ELT))) +(((-884 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2902 ((-579 |#4|) (-579 |#4|))) (-15 -2902 ((-579 |#4|) |#4| |#4|)) (-15 -2900 ((-579 |#4|) (-579 |#4|))) (-15 -2901 ((-579 |#4|) |#4| |#4|)) (-15 -2902 ((-579 |#4|) (-579 |#4|) |#4|)) (-15 -2902 ((-579 |#4|) (-579 |#4|) (-579 |#4|))) (-15 -2902 ((-579 |#4|) (-579 |#4|) (-579 |#4|) (-1 (-579 |#4|) (-579 |#4|)))) (-15 -2903 ((-83) (-579 |#4|) (-579 |#4|))) (-15 -2904 ((-83) (-579 |#4|) (-579 (-579 |#4|)))) (-15 -2905 ((-83) (-579 |#4|))) (-15 -2906 ((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-1 (-83) |#4|) (-579 |#4|))) (-15 -2907 ((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 (-1 (-83) |#4|)) (-579 |#4|))) (-15 -2908 ((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 (-1 (-83) |#4|)) (-579 |#4|))) (-15 -2909 ((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 |#4|))) (-15 -2910 ((-83) |#4|)) (-15 -2911 ((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 |#4|))) (-15 -2912 ((-83) |#4|)) (-15 -2913 ((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 |#4|))) (-15 -2914 ((-83) |#4|)) (-15 -2915 ((-2 (|:| |goodPols| (-579 |#4|)) (|:| |badPols| (-579 |#4|))) (-579 |#4|))) (-15 -2916 ((-579 |#4|) (-579 |#4|) (-579 |#4|))) (-15 -2916 ((-579 |#4|) (-579 |#4|) (-579 |#4|) (-83))) (-15 -2917 (|#4| |#4| (-579 |#4|))) (-15 -2918 ((-579 |#4|) (-579 |#4|))) (-15 -2919 ((-3 (-2 (|:| |bas| (-410 |#1| |#2| |#3| |#4|)) (|:| -3306 (-579 |#4|))) "failed") (-579 |#4|))) (-15 -2920 ((-579 |#4|) (-579 |#4|))) (-15 -2921 ((-579 |#4|) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2922 ((-579 |#4|) (-579 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-386)) (PROGN (-15 -2923 ((-579 |#4|) |#4|)) (-15 -2924 ((-579 |#4|) (-579 |#4|))) (-15 -2924 ((-579 |#4|) (-579 |#4|) (-83))) (-15 -2925 ((-579 |#4|) (-579 |#4|) (-579 |#4|))) (-15 -2926 ((-579 |#4|) (-579 |#4|) (-579 |#4|))) (-15 -2927 ((-579 |#4|) (-579 |#4|) (-579 |#4|)))) |%noBranch|) (IF (|has| |#1| (-254)) (IF (|has| |#1| (-118)) (PROGN (-15 -2928 ((-579 |#4|) (-579 |#4|))) (-15 -2929 ((-579 |#4|) (-579 |#4|))) (-15 -2930 ((-579 |#4|) (-579 |#4|) (-579 |#4|)))) |%noBranch|) |%noBranch|)) (-490) (-711) (-750) (-970 |#1| |#2| |#3|)) (T -884)) +((-2930 (*1 *2 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2929 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2928 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2927 (*1 *2 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-386)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2926 (*1 *2 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-386)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2925 (*1 *2 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-386)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2924 (*1 *2 *2 *3) (-12 (-5 *2 (-579 *7)) (-5 *3 (-83)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-884 *4 *5 *6 *7)))) (-2924 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-386)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-386)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 *3)) (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6)))) (-2922 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-579 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-884 *5 *6 *7 *8)))) (-2921 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-579 *9)) (-5 *3 (-1 (-83) *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-970 *6 *7 *8)) (-4 *6 (-490)) (-4 *7 (-711)) (-4 *8 (-750)) (-5 *1 (-884 *6 *7 *8 *9)))) (-2920 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2919 (*1 *2 *3) (|partial| -12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-410 *4 *5 *6 *7)) (|:| -3306 (-579 *7)))) (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7)))) (-2918 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2917 (*1 *2 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-884 *4 *5 *6 *2)))) (-2916 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-579 *7)) (-5 *3 (-83)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-884 *4 *5 *6 *7)))) (-2916 (*1 *2 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2915 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-579 *7)) (|:| |badPols| (-579 *7)))) (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7)))) (-2914 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6)))) (-2913 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-579 *7)) (|:| |badPols| (-579 *7)))) (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7)))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6)))) (-2911 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-579 *7)) (|:| |badPols| (-579 *7)))) (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6)))) (-2909 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-579 *7)) (|:| |badPols| (-579 *7)))) (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7)))) (-2908 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-1 (-83) *8))) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-2 (|:| |goodPols| (-579 *8)) (|:| |badPols| (-579 *8)))) (-5 *1 (-884 *5 *6 *7 *8)) (-5 *4 (-579 *8)))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-1 (-83) *8))) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-2 (|:| |goodPols| (-579 *8)) (|:| |badPols| (-579 *8)))) (-5 *1 (-884 *5 *6 *7 *8)) (-5 *4 (-579 *8)))) (-2906 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-83) *8)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-2 (|:| |goodPols| (-579 *8)) (|:| |badPols| (-579 *8)))) (-5 *1 (-884 *5 *6 *7 *8)) (-5 *4 (-579 *8)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-884 *4 *5 *6 *7)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-579 *8))) (-5 *3 (-579 *8)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-83)) (-5 *1 (-884 *5 *6 *7 *8)))) (-2903 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-884 *4 *5 *6 *7)))) (-2902 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-579 *7) (-579 *7))) (-5 *2 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-884 *4 *5 *6 *7)))) (-2902 (*1 *2 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2902 (*1 *2 *2 *3) (-12 (-5 *2 (-579 *3)) (-4 *3 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-884 *4 *5 *6 *3)))) (-2901 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 *3)) (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) (-2902 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 *3)) (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6)))) (-2902 (*1 *2 *2) (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) +((-2931 (((-2 (|:| R (-626 |#1|)) (|:| A (-626 |#1|)) (|:| |Ainv| (-626 |#1|))) (-626 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2933 (((-579 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1169 |#1|)))) (-626 |#1|) (-1169 |#1|)) 45 T ELT)) (-2932 (((-626 |#1|) (-626 |#1|) (-626 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-885 |#1|) (-10 -7 (-15 -2931 ((-2 (|:| R (-626 |#1|)) (|:| A (-626 |#1|)) (|:| |Ainv| (-626 |#1|))) (-626 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2932 ((-626 |#1|) (-626 |#1|) (-626 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2933 ((-579 (-2 (|:| C (-626 |#1|)) (|:| |g| (-1169 |#1|)))) (-626 |#1|) (-1169 |#1|)))) (-308)) (T -885)) +((-2933 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 (-579 (-2 (|:| C (-626 *5)) (|:| |g| (-1169 *5))))) (-5 *1 (-885 *5)) (-5 *3 (-626 *5)) (-5 *4 (-1169 *5)))) (-2932 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-626 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-5 *1 (-885 *5)))) (-2931 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-308)) (-5 *2 (-2 (|:| R (-626 *6)) (|:| A (-626 *6)) (|:| |Ainv| (-626 *6)))) (-5 *1 (-885 *6)) (-5 *3 (-626 *6))))) +((-3953 (((-342 |#4|) |#4|) 61 T ELT))) +(((-886 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3953 ((-342 |#4|) |#4|))) (-750) (-711) (-386) (-855 |#3| |#2| |#1|)) (T -886)) +((-3953 (*1 *2 *3) (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-386)) (-5 *2 (-342 *3)) (-5 *1 (-886 *4 *5 *6 *3)) (-4 *3 (-855 *6 *5 *4))))) +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3820 (($ (-688)) 121 (|has| |#1| (-23)) ELT)) (-2185 (((-1175) $ (-479) (-479)) 44 (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3978)) ELT) (($ $) 97 (-12 (|has| |#1| (-750)) (|has| $ (-6 -3978))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) 56 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-2284 (($ $) 99 (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) 109 T ELT)) (-1341 (($ $) 84 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#1| $) 83 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) 57 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 55 T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) 106 T ELT) (((-479) |#1| $) 105 (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) 104 (|has| |#1| (-1006)) ELT)) (-3688 (($ (-579 |#1|)) 127 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3817 (((-626 |#1|) $ $) 114 (|has| |#1| (-955)) ELT)) (-3596 (($ (-688) |#1|) 74 T ELT)) (-2187 (((-479) $) 47 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) 91 (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 48 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) 92 (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3814 ((|#1| $) 111 (-12 (|has| |#1| (-955)) (|has| |#1| (-909))) ELT)) (-3815 ((|#1| $) 112 (-12 (|has| |#1| (-955)) (|has| |#1| (-909))) ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) 66 T ELT) (($ $ $ (-479)) 65 T ELT)) (-2190 (((-579 (-479)) $) 50 T ELT)) (-2191 (((-83) (-479) $) 51 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 46 (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2186 (($ $ |#1|) 45 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-579 |#1|)) 125 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ (-479) |#1|) 54 T ELT) ((|#1| $ (-479)) 53 T ELT) (($ $ (-1136 (-479))) 75 T ELT)) (-3818 ((|#1| $ $) 115 (|has| |#1| (-955)) ELT)) (-3893 (((-824) $) 126 T ELT)) (-2292 (($ $ (-479)) 68 T ELT) (($ $ (-1136 (-479))) 67 T ELT)) (-3816 (($ $ $) 113 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1719 (($ $ $ (-479)) 100 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 85 (|has| |#1| (-549 (-468))) ELT) (($ (-579 |#1|)) 128 T ELT)) (-3512 (($ (-579 |#1|)) 76 T ELT)) (-3784 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-579 $)) 70 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) 93 (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) 95 (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) 94 (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 96 (|has| |#1| (-750)) ELT)) (-3819 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3821 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-479) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-659)) ELT) (($ $ |#1|) 116 (|has| |#1| (-659)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-887 |#1|) (-111) (-955)) (T -887)) +((-3688 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-955)) (-4 *1 (-887 *3)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-4 *3 (-955)) (-5 *2 (-824)))) (-3816 (*1 *1 *1 *1) (-12 (-4 *1 (-887 *2)) (-4 *2 (-955)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *1 (-887 *3)) (-4 *3 (-955))))) +(-13 (-1168 |t#1|) (-553 (-579 |t#1|)) (-10 -8 (-15 -3688 ($ (-579 |t#1|))) (-15 -3893 ((-824) $)) (-15 -3816 ($ $ $)) (-15 -3751 ($ $ (-579 |t#1|))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-553 (-579 |#1|)) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 (-479) |#1|) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-318 |#1|) . T) ((-423 |#1|) . T) ((-534 (-479) |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-589 |#1|) . T) ((-19 |#1|) . T) ((-750) |has| |#1| (-750)) ((-753) |has| |#1| (-750)) ((-1006) OR (|has| |#1| (-1006)) (|has| |#1| (-750))) ((-1119) . T) ((-1168 |#1|) . T)) +((-3940 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 17 T ELT))) +(((-888 |#1| |#2|) (-10 -7 (-15 -3940 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)))) (-955) (-955)) (T -888)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-5 *2 (-848 *6)) (-5 *1 (-888 *5 *6))))) +((-2936 ((|#1| (-848 |#1|)) 14 T ELT)) (-2935 ((|#1| (-848 |#1|)) 13 T ELT)) (-2934 ((|#1| (-848 |#1|)) 12 T ELT)) (-2938 ((|#1| (-848 |#1|)) 16 T ELT)) (-2942 ((|#1| (-848 |#1|)) 24 T ELT)) (-2937 ((|#1| (-848 |#1|)) 15 T ELT)) (-2939 ((|#1| (-848 |#1|)) 17 T ELT)) (-2941 ((|#1| (-848 |#1|)) 23 T ELT)) (-2940 ((|#1| (-848 |#1|)) 22 T ELT))) +(((-889 |#1|) (-10 -7 (-15 -2934 (|#1| (-848 |#1|))) (-15 -2935 (|#1| (-848 |#1|))) (-15 -2936 (|#1| (-848 |#1|))) (-15 -2937 (|#1| (-848 |#1|))) (-15 -2938 (|#1| (-848 |#1|))) (-15 -2939 (|#1| (-848 |#1|))) (-15 -2940 (|#1| (-848 |#1|))) (-15 -2941 (|#1| (-848 |#1|))) (-15 -2942 (|#1| (-848 |#1|)))) (-955)) (T -889)) +((-2942 (*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) +((-2960 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2948 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2958 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2946 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2950 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2943 (((-3 |#1| "failed") |#1| (-688)) 1 T ELT)) (-2945 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2944 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2951 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2949 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2959 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2947 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2954 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2952 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2956 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2957 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2955 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2953 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-890 |#1|) (-111) (-1105)) (T -890)) +((-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2959 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2958 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2957 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2956 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2955 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2954 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2953 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2952 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2951 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2950 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2949 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2948 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2947 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2946 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2945 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2944 (*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105)))) (-2943 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-688)) (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(-13 (-10 -7 (-15 -2943 ((-3 |t#1| "failed") |t#1| (-688))) (-15 -2944 ((-3 |t#1| "failed") |t#1|)) (-15 -2945 ((-3 |t#1| "failed") |t#1|)) (-15 -2946 ((-3 |t#1| "failed") |t#1|)) (-15 -2947 ((-3 |t#1| "failed") |t#1|)) (-15 -2948 ((-3 |t#1| "failed") |t#1|)) (-15 -2949 ((-3 |t#1| "failed") |t#1|)) (-15 -2950 ((-3 |t#1| "failed") |t#1|)) (-15 -2951 ((-3 |t#1| "failed") |t#1|)) (-15 -2952 ((-3 |t#1| "failed") |t#1|)) (-15 -2953 ((-3 |t#1| "failed") |t#1|)) (-15 -2954 ((-3 |t#1| "failed") |t#1|)) (-15 -2955 ((-3 |t#1| "failed") |t#1|)) (-15 -2956 ((-3 |t#1| "failed") |t#1|)) (-15 -2957 ((-3 |t#1| "failed") |t#1|)) (-15 -2958 ((-3 |t#1| "failed") |t#1|)) (-15 -2959 ((-3 |t#1| "failed") |t#1|)) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)))) +((-2971 ((|#4| |#4| (-579 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2970 ((|#4| |#4| (-579 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3940 ((|#4| (-1 |#4| (-851 |#1|)) |#4|) 33 T ELT))) +(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2970 (|#4| |#4| |#3|)) (-15 -2970 (|#4| |#4| (-579 |#3|))) (-15 -2971 (|#4| |#4| |#3|)) (-15 -2971 (|#4| |#4| (-579 |#3|))) (-15 -3940 (|#4| (-1 |#4| (-851 |#1|)) |#4|))) (-955) (-711) (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ "failed") (-1080))))) (-855 (-851 |#1|) |#2| |#3|)) (T -891)) +((-3940 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-851 *4))) (-4 *4 (-955)) (-4 *2 (-855 (-851 *4) *5 *6)) (-4 *5 (-711)) (-4 *6 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ #1="failed") (-1080)))))) (-5 *1 (-891 *4 *5 *6 *2)))) (-2971 (*1 *2 *2 *3) (-12 (-5 *3 (-579 *6)) (-4 *6 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ #1#) (-1080)))))) (-4 *4 (-955)) (-4 *5 (-711)) (-5 *1 (-891 *4 *5 *6 *2)) (-4 *2 (-855 (-851 *4) *5 *6)))) (-2971 (*1 *2 *2 *3) (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ #1#) (-1080)))))) (-5 *1 (-891 *4 *5 *3 *2)) (-4 *2 (-855 (-851 *4) *5 *3)))) (-2970 (*1 *2 *2 *3) (-12 (-5 *3 (-579 *6)) (-4 *6 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ #1#) (-1080)))))) (-4 *4 (-955)) (-4 *5 (-711)) (-5 *1 (-891 *4 *5 *6 *2)) (-4 *2 (-855 (-851 *4) *5 *6)))) (-2970 (*1 *2 *2 *3) (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ #1#) (-1080)))))) (-5 *1 (-891 *4 *5 *3 *2)) (-4 *2 (-855 (-851 *4) *5 *3))))) +((-2972 ((|#2| |#3|) 35 T ELT)) (-3901 (((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|) 79 T ELT)) (-3900 (((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) 100 T ELT))) +(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3900 ((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))))) (-15 -3901 ((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|)) (-15 -2972 (|#2| |#3|))) (-295) (-1145 |#1|) (-1145 |#2|) (-657 |#2| |#3|)) (T -892)) +((-2972 (*1 *2 *3) (-12 (-4 *3 (-1145 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-892 *4 *2 *3 *5)) (-4 *4 (-295)) (-4 *5 (-657 *2 *3)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 *3)) (-5 *2 (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-892 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-3900 (*1 *2) (-12 (-4 *3 (-295)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -1999 (-626 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-626 *4)))) (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3383 (((-3 (-83) #1="failed") $) 71 T ELT)) (-3631 (($ $) 36 (-12 (|has| |#1| (-118)) (|has| |#1| (-254))) ELT)) (-2976 (($ $ (-3 (-83) #1#)) 72 T ELT)) (-2977 (($ (-579 |#4|) |#4|) 25 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2973 (($ $) 69 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3385 (((-83) $) 70 T ELT)) (-3547 (($) 30 T ELT)) (-2974 ((|#4| $) 74 T ELT)) (-2975 (((-579 |#4|) $) 73 T ELT)) (-3928 (((-766) $) 68 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-893 |#1| |#2| |#3| |#4|) (-13 (-1006) (-548 (-766)) (-10 -8 (-15 -3547 ($)) (-15 -2977 ($ (-579 |#4|) |#4|)) (-15 -3383 ((-3 (-83) #1="failed") $)) (-15 -2976 ($ $ (-3 (-83) #1#))) (-15 -3385 ((-83) $)) (-15 -2975 ((-579 |#4|) $)) (-15 -2974 (|#4| $)) (-15 -2973 ($ $)) (IF (|has| |#1| (-254)) (IF (|has| |#1| (-118)) (-15 -3631 ($ $)) |%noBranch|) |%noBranch|))) (-386) (-750) (-711) (-855 |#1| |#3| |#2|)) (T -893)) +((-3547 (*1 *1) (-12 (-4 *2 (-386)) (-4 *3 (-750)) (-4 *4 (-711)) (-5 *1 (-893 *2 *3 *4 *5)) (-4 *5 (-855 *2 *4 *3)))) (-2977 (*1 *1 *2 *3) (-12 (-5 *2 (-579 *3)) (-4 *3 (-855 *4 *6 *5)) (-4 *4 (-386)) (-4 *5 (-750)) (-4 *6 (-711)) (-5 *1 (-893 *4 *5 *6 *3)))) (-3383 (*1 *2 *1) (|partial| -12 (-4 *3 (-386)) (-4 *4 (-750)) (-4 *5 (-711)) (-5 *2 (-83)) (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-855 *3 *5 *4)))) (-2976 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-83) "failed")) (-4 *3 (-386)) (-4 *4 (-750)) (-4 *5 (-711)) (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-855 *3 *5 *4)))) (-3385 (*1 *2 *1) (-12 (-4 *3 (-386)) (-4 *4 (-750)) (-4 *5 (-711)) (-5 *2 (-83)) (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-855 *3 *5 *4)))) (-2975 (*1 *2 *1) (-12 (-4 *3 (-386)) (-4 *4 (-750)) (-4 *5 (-711)) (-5 *2 (-579 *6)) (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-855 *3 *5 *4)))) (-2974 (*1 *2 *1) (-12 (-4 *2 (-855 *3 *5 *4)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *3 (-386)) (-4 *4 (-750)) (-4 *5 (-711)))) (-2973 (*1 *1 *1) (-12 (-4 *2 (-386)) (-4 *3 (-750)) (-4 *4 (-711)) (-5 *1 (-893 *2 *3 *4 *5)) (-4 *5 (-855 *2 *4 *3)))) (-3631 (*1 *1 *1) (-12 (-4 *2 (-118)) (-4 *2 (-254)) (-4 *2 (-386)) (-4 *3 (-750)) (-4 *4 (-711)) (-5 *1 (-893 *2 *3 *4 *5)) (-4 *5 (-855 *2 *4 *3))))) +((-2978 (((-893 (-344 (-479)) (-767 |#1|) (-194 |#2| (-688)) (-203 |#1| (-344 (-479)))) (-893 (-344 (-479)) (-767 |#1|) (-194 |#2| (-688)) (-203 |#1| (-344 (-479))))) 82 T ELT))) +(((-894 |#1| |#2|) (-10 -7 (-15 -2978 ((-893 (-344 (-479)) (-767 |#1|) (-194 |#2| (-688)) (-203 |#1| (-344 (-479)))) (-893 (-344 (-479)) (-767 |#1|) (-194 |#2| (-688)) (-203 |#1| (-344 (-479))))))) (-579 (-1080)) (-688)) (T -894)) +((-2978 (*1 *2 *2) (-12 (-5 *2 (-893 (-344 (-479)) (-767 *3) (-194 *4 (-688)) (-203 *3 (-344 (-479))))) (-14 *3 (-579 (-1080))) (-14 *4 (-688)) (-5 *1 (-894 *3 *4))))) +((-3253 (((-83) |#5| |#5|) 44 T ELT)) (-3256 (((-83) |#5| |#5|) 59 T ELT)) (-3261 (((-83) |#5| (-579 |#5|)) 81 T ELT) (((-83) |#5| |#5|) 68 T ELT)) (-3257 (((-83) (-579 |#4|) (-579 |#4|)) 65 T ELT)) (-3263 (((-83) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) 70 T ELT)) (-3252 (((-1175)) 32 T ELT)) (-3251 (((-1175) (-1063) (-1063) (-1063)) 28 T ELT)) (-3262 (((-579 |#5|) (-579 |#5|)) 100 T ELT)) (-3264 (((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)))) 92 T ELT)) (-3265 (((-579 (-2 (|:| -3250 (-579 |#4|)) (|:| -1588 |#5|) (|:| |ineq| (-579 |#4|)))) (-579 |#4|) (-579 |#5|) (-83) (-83)) 122 T ELT)) (-3255 (((-83) |#5| |#5|) 53 T ELT)) (-3260 (((-3 (-83) #1="failed") |#5| |#5|) 78 T ELT)) (-3258 (((-83) (-579 |#4|) (-579 |#4|)) 64 T ELT)) (-3259 (((-83) (-579 |#4|) (-579 |#4|)) 66 T ELT)) (-3681 (((-83) (-579 |#4|) (-579 |#4|)) 67 T ELT)) (-3266 (((-3 (-2 (|:| -3250 (-579 |#4|)) (|:| -1588 |#5|) (|:| |ineq| (-579 |#4|))) #1#) (-579 |#4|) |#5| (-579 |#4|) (-83) (-83) (-83) (-83) (-83)) 117 T ELT)) (-3254 (((-579 |#5|) (-579 |#5|)) 49 T ELT))) +(((-895 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3251 ((-1175) (-1063) (-1063) (-1063))) (-15 -3252 ((-1175))) (-15 -3253 ((-83) |#5| |#5|)) (-15 -3254 ((-579 |#5|) (-579 |#5|))) (-15 -3255 ((-83) |#5| |#5|)) (-15 -3256 ((-83) |#5| |#5|)) (-15 -3257 ((-83) (-579 |#4|) (-579 |#4|))) (-15 -3258 ((-83) (-579 |#4|) (-579 |#4|))) (-15 -3259 ((-83) (-579 |#4|) (-579 |#4|))) (-15 -3681 ((-83) (-579 |#4|) (-579 |#4|))) (-15 -3260 ((-3 (-83) #1="failed") |#5| |#5|)) (-15 -3261 ((-83) |#5| |#5|)) (-15 -3261 ((-83) |#5| (-579 |#5|))) (-15 -3262 ((-579 |#5|) (-579 |#5|))) (-15 -3263 ((-83) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)))) (-15 -3264 ((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) (-15 -3265 ((-579 (-2 (|:| -3250 (-579 |#4|)) (|:| -1588 |#5|) (|:| |ineq| (-579 |#4|)))) (-579 |#4|) (-579 |#5|) (-83) (-83))) (-15 -3266 ((-3 (-2 (|:| -3250 (-579 |#4|)) (|:| -1588 |#5|) (|:| |ineq| (-579 |#4|))) #1#) (-579 |#4|) |#5| (-579 |#4|) (-83) (-83) (-83) (-83) (-83)))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|) (-976 |#1| |#2| |#3| |#4|)) (T -895)) +((-3266 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *9 (-970 *6 *7 *8)) (-5 *2 (-2 (|:| -3250 (-579 *9)) (|:| -1588 *4) (|:| |ineq| (-579 *9)))) (-5 *1 (-895 *6 *7 *8 *9 *4)) (-5 *3 (-579 *9)) (-4 *4 (-976 *6 *7 *8 *9)))) (-3265 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-579 *10)) (-5 *5 (-83)) (-4 *10 (-976 *6 *7 *8 *9)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *9 (-970 *6 *7 *8)) (-5 *2 (-579 (-2 (|:| -3250 (-579 *9)) (|:| -1588 *10) (|:| |ineq| (-579 *9))))) (-5 *1 (-895 *6 *7 *8 *9 *10)) (-5 *3 (-579 *9)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-579 (-2 (|:| |val| (-579 *6)) (|:| -1588 *7)))) (-4 *6 (-970 *3 *4 *5)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-895 *3 *4 *5 *6 *7)))) (-3263 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-579 *7)) (|:| -1588 *8))) (-4 *7 (-970 *4 *5 *6)) (-4 *8 (-976 *4 *5 *6 *7)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)))) (-3262 (*1 *2 *2) (-12 (-5 *2 (-579 *7)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *1 (-895 *3 *4 *5 *6 *7)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *4 (-579 *3)) (-4 *3 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-895 *5 *6 *7 *8 *3)))) (-3261 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3260 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3258 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3255 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-579 *7)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *1 (-895 *3 *4 *5 *6 *7)))) (-3253 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3252 (*1 *2) (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-1175)) (-5 *1 (-895 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6)))) (-3251 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-895 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7))))) +((-3813 (((-1080) $) 15 T ELT)) (-3384 (((-1063) $) 16 T ELT)) (-3210 (($ (-1080) (-1063)) 14 T ELT)) (-3928 (((-766) $) 13 T ELT))) +(((-896) (-13 (-548 (-766)) (-10 -8 (-15 -3210 ($ (-1080) (-1063))) (-15 -3813 ((-1080) $)) (-15 -3384 ((-1063) $))))) (T -896)) +((-3210 (*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-1063)) (-5 *1 (-896)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-896)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-896))))) +((-3141 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1080) #1#) $) 72 T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 (-479) #1#) $) 102 T ELT)) (-3140 ((|#2| $) NIL T ELT) (((-1080) $) 67 T ELT) (((-344 (-479)) $) NIL T ELT) (((-479) $) 99 T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL T ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) 121 T ELT) (((-626 |#2|) (-626 $)) 35 T ELT)) (-2979 (($) 105 T ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 82 T ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 91 T ELT)) (-2981 (($ $) 10 T ELT)) (-3427 (((-628 $) $) 27 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3428 (($) 16 T CONST)) (-3112 (($ $) 61 T ELT)) (-3740 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2980 (($ $) 12 T ELT)) (-3954 (((-794 (-479)) $) 77 T ELT) (((-794 (-324)) $) 86 T ELT) (((-468) $) 47 T ELT) (((-324) $) 51 T ELT) (((-177) $) 55 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1080)) 64 T ELT)) (-3110 (((-688)) 38 T CONST)) (-2670 (((-83) $ $) 57 T ELT))) +(((-897 |#1| |#2|) (-10 -7 (-15 -2670 ((-83) |#1| |#1|)) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -3428 (|#1|) -3934) (-15 -3427 ((-628 |#1|) |#1|)) (-15 -3141 ((-3 (-479) #1="failed") |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3954 ((-177) |#1|)) (-15 -3954 ((-324) |#1|)) (-15 -3954 ((-468) |#1|)) (-15 -3928 (|#1| (-1080))) (-15 -3141 ((-3 (-1080) #1#) |#1|)) (-15 -3140 ((-1080) |#1|)) (-15 -2979 (|#1|)) (-15 -3112 (|#1| |#1|)) (-15 -2980 (|#1| |#1|)) (-15 -2981 (|#1| |#1|)) (-15 -2781 ((-792 (-324) |#1|) |#1| (-794 (-324)) (-792 (-324) |#1|))) (-15 -2781 ((-792 (-479) |#1|) |#1| (-794 (-479)) (-792 (-479) |#1|))) (-15 -3954 ((-794 (-324)) |#1|)) (-15 -3954 ((-794 (-479)) |#1|)) (-15 -2266 ((-626 |#2|) (-626 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-626 (-479)) (-626 |#1|))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|) (-688))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3940 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3928 (|#1| |#2|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3928 (|#1| |#1|)) (-15 -3110 ((-688)) -3934) (-15 -3928 (|#1| (-479))) (-15 -3928 ((-766) |#1|))) (-898 |#2|) (-490)) (T -897)) +((-3110 (*1 *2) (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-897 *3 *4)) (-4 *3 (-898 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3113 ((|#1| $) 170 (|has| |#1| (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 161 (|has| |#1| (-815)) ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1="failed") (-579 (-1075 $)) (-1075 $)) 164 (|has| |#1| (-815)) ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3605 (((-479) $) 151 (|has| |#1| (-734)) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1080) #2#) $) 159 (|has| |#1| (-944 (-1080))) ELT) (((-3 (-344 (-479)) #2#) $) 142 (|has| |#1| (-944 (-479))) ELT) (((-3 (-479) #2#) $) 140 (|has| |#1| (-944 (-479))) ELT)) (-3140 ((|#1| $) 201 T ELT) (((-1080) $) 160 (|has| |#1| (-944 (-1080))) ELT) (((-344 (-479)) $) 143 (|has| |#1| (-944 (-479))) ELT) (((-479) $) 141 (|has| |#1| (-944 (-479))) ELT)) (-2549 (($ $ $) 68 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 185 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 184 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 183 T ELT) (((-626 |#1|) (-626 $)) 182 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2979 (($) 168 (|has| |#1| (-478)) ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-3705 (((-83) $) 86 T ELT)) (-3170 (((-83) $) 153 (|has| |#1| (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 177 (|has| |#1| (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 176 (|has| |#1| (-790 (-324))) ELT)) (-2397 (((-83) $) 40 T ELT)) (-2981 (($ $) 172 T ELT)) (-2983 ((|#1| $) 174 T ELT)) (-3427 (((-628 $) $) 139 (|has| |#1| (-1056)) ELT)) (-3171 (((-83) $) 152 (|has| |#1| (-734)) ELT)) (-1593 (((-3 (-579 $) #3="failed") (-579 $) $) 65 T ELT)) (-2516 (($ $ $) 144 (|has| |#1| (-750)) ELT)) (-2842 (($ $ $) 145 (|has| |#1| (-750)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 187 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 186 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 181 T ELT) (((-626 |#1|) (-1169 $)) 180 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 85 T ELT)) (-3428 (($) 138 (|has| |#1| (-1056)) CONST)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3112 (($ $) 169 (|has| |#1| (-254)) ELT)) (-3114 ((|#1| $) 166 (|has| |#1| (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 163 (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 162 (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) 198 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 196 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-245 |#1|))) 195 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) 194 (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) |#1|) 193 (|has| |#1| (-448 (-1080) |#1|)) ELT)) (-1595 (((-688) $) 71 T ELT)) (-3782 (($ $ |#1|) 199 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-3740 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 190 T ELT) (($ $) 137 (|has| |#1| (-187)) ELT) (($ $ (-688)) 135 (|has| |#1| (-187)) ELT) (($ $ (-1080)) 133 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 131 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 130 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 129 (|has| |#1| (-805 (-1080))) ELT)) (-2980 (($ $) 171 T ELT)) (-2982 ((|#1| $) 173 T ELT)) (-3954 (((-794 (-479)) $) 179 (|has| |#1| (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) 178 (|has| |#1| (-549 (-794 (-324)))) ELT) (((-468) $) 156 (|has| |#1| (-549 (-468))) ELT) (((-324) $) 155 (|has| |#1| (-927)) ELT) (((-177) $) 154 (|has| |#1| (-927)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) 165 (-2547 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1080)) 158 (|has| |#1| (-944 (-1080))) ELT)) (-2687 (((-628 $) $) 157 (OR (|has| |#1| (-116)) (-2547 (|has| $ (-116)) (|has| |#1| (-815)))) ELT)) (-3110 (((-688)) 37 T CONST)) (-3115 ((|#1| $) 167 (|has| |#1| (-478)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-3365 (($ $) 150 (|has| |#1| (-734)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 188 T ELT) (($ $) 136 (|has| |#1| (-187)) ELT) (($ $ (-688)) 134 (|has| |#1| (-187)) ELT) (($ $ (-1080)) 132 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 128 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 127 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 126 (|has| |#1| (-805 (-1080))) ELT)) (-2551 (((-83) $ $) 146 (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) 148 (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 147 (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 149 (|has| |#1| (-750)) ELT)) (-3931 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) +(((-898 |#1|) (-111) (-490)) (T -898)) +((-3931 (*1 *1 *2 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)))) (-2981 (*1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)))) (-2980 (*1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)) (-4 *2 (-254)))) (-3112 (*1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)) (-4 *2 (-254)))) (-2979 (*1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-478)) (-4 *2 (-490)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)) (-4 *2 (-478)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)) (-4 *2 (-478))))) +(-13 (-308) (-38 |t#1|) (-944 |t#1|) (-284 |t#1|) (-182 |t#1|) (-323 |t#1|) (-788 |t#1|) (-337 |t#1|) (-10 -8 (-15 -3931 ($ |t#1| |t#1|)) (-15 -2983 (|t#1| $)) (-15 -2982 (|t#1| $)) (-15 -2981 ($ $)) (-15 -2980 ($ $)) (IF (|has| |t#1| (-1056)) (-6 (-1056)) |%noBranch|) (IF (|has| |t#1| (-944 (-479))) (PROGN (-6 (-944 (-479))) (-6 (-944 (-344 (-479))))) |%noBranch|) (IF (|has| |t#1| (-750)) (-6 (-750)) |%noBranch|) (IF (|has| |t#1| (-734)) (-6 (-734)) |%noBranch|) (IF (|has| |t#1| (-927)) (-6 (-927)) |%noBranch|) (IF (|has| |t#1| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-944 (-1080))) (-6 (-944 (-1080))) |%noBranch|) (IF (|has| |t#1| (-254)) (PROGN (-15 -3113 (|t#1| $)) (-15 -3112 ($ $))) |%noBranch|) (IF (|has| |t#1| (-478)) (PROGN (-15 -2979 ($)) (-15 -3115 (|t#1| $)) (-15 -3114 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-815)) (-6 (-815)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 (-1080)) |has| |#1| (-944 (-1080))) ((-551 |#1|) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-549 (-177)) |has| |#1| (-927)) ((-549 (-324)) |has| |#1| (-927)) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-549 (-794 (-324))) |has| |#1| (-549 (-794 (-324)))) ((-549 (-794 (-479))) |has| |#1| (-549 (-794 (-479)))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-198) . T) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-242) . T) ((-254) . T) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-308) . T) ((-284 |#1|) . T) ((-323 |#1|) . T) ((-337 |#1|) . T) ((-386) . T) ((-448 (-1080) |#1|) |has| |#1| (-448 (-1080) |#1|)) ((-448 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 (-479)) |has| |#1| (-576 (-479))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 |#1|) . T) ((-578 $) . T) ((-576 (-479)) |has| |#1| (-576 (-479))) ((-576 |#1|) . T) ((-650 (-344 (-479))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-708) |has| |#1| (-734)) ((-710) |has| |#1| (-734)) ((-712) |has| |#1| (-734)) ((-715) |has| |#1| (-734)) ((-734) |has| |#1| (-734)) ((-749) |has| |#1| (-734)) ((-750) OR (|has| |#1| (-750)) (|has| |#1| (-734))) ((-753) OR (|has| |#1| (-750)) (|has| |#1| (-734))) ((-800 $ (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-803 (-1080)) |has| |#1| (-803 (-1080))) ((-805 (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-790 (-324)) |has| |#1| (-790 (-324))) ((-790 (-479)) |has| |#1| (-790 (-479))) ((-788 |#1|) . T) ((-815) |has| |#1| (-815)) ((-826) . T) ((-927) |has| |#1| (-927)) ((-944 (-344 (-479))) |has| |#1| (-944 (-479))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 (-1080)) |has| |#1| (-944 (-1080))) ((-944 |#1|) . T) ((-957 (-344 (-479))) . T) ((-957 |#1|) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 |#1|) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1056) |has| |#1| (-1056)) ((-1119) . T) ((-1124) . T)) +((-3940 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#4| (-1 |#2| |#1|) |#3|))) (-490) (-490) (-898 |#1|) (-898 |#2|)) (T -899)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-490)) (-4 *6 (-490)) (-4 *2 (-898 *6)) (-5 *1 (-899 *5 *6 *4 *2)) (-4 *4 (-898 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ "failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2984 (($ (-1046 |#1| |#2|)) 11 T ELT)) (-3108 (((-1046 |#1| |#2|) $) 12 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3782 ((|#2| $ (-194 |#1| |#2|)) 16 T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT))) +(((-900 |#1| |#2|) (-13 (-21) (-238 (-194 |#1| |#2|) |#2|) (-10 -8 (-15 -2984 ($ (-1046 |#1| |#2|))) (-15 -3108 ((-1046 |#1| |#2|) $)))) (-824) (-308)) (T -900)) +((-2984 (*1 *1 *2) (-12 (-5 *2 (-1046 *3 *4)) (-14 *3 (-824)) (-4 *4 (-308)) (-5 *1 (-900 *3 *4)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-1046 *3 *4)) (-5 *1 (-900 *3 *4)) (-14 *3 (-824)) (-4 *4 (-308))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3190 (((-1039) $) 10 T ELT)) (-3928 (((-766) $) 16 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-901) (-13 (-988) (-10 -8 (-15 -3190 ((-1039) $))))) (T -901)) +((-3190 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-901))))) +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3706 (($) 7 T CONST)) (-2987 (($ $) 50 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3815 (((-688) $) 49 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-2986 ((|#1| $) 48 T ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2989 ((|#1| |#1| $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-2988 ((|#1| $) 51 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-2985 ((|#1| $) 47 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-902 |#1|) (-111) (-1119)) (T -902)) +((-2989 (*1 *2 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119)))) (-2987 (*1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-902 *3)) (-4 *3 (-1119)) (-5 *2 (-688)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3977) (-15 -2989 (|t#1| |t#1| $)) (-15 -2988 (|t#1| $)) (-15 -2987 ($ $)) (-15 -3815 ((-688) $)) (-15 -2986 (|t#1| $)) (-15 -2985 (|t#1| $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3625 ((|#1| $) 12 T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-478)) ELT)) (-3008 (((-83) $) NIL (|has| |#1| (-478)) ELT)) (-3007 (((-344 (-479)) $) NIL (|has| |#1| (-478)) ELT)) (-2990 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3116 ((|#1| $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2991 ((|#1| $) 15 T ELT)) (-2992 ((|#1| $) 14 T ELT)) (-2993 ((|#1| $) 13 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-245 |#1|))) NIL (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) NIL (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) |#1|) NIL (|has| |#1| (-448 (-1080) |#1|)) ELT)) (-3782 (($ $ |#1|) NIL (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3740 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-2994 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-308)) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3365 ((|#1| $) NIL (|has| |#1| (-966)) ELT)) (-2645 (($) 8 T CONST)) (-2651 (($) 10 T CONST)) (-2654 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-308)) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-308)) ELT))) +(((-903 |#1|) (-905 |#1|) (-144)) (T -903)) +NIL +((-3172 (((-83) $) 43 T ELT)) (-3141 (((-3 (-479) #1="failed") $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3140 (((-479) $) NIL T ELT) (((-344 (-479)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) 78 T ELT)) (-3008 (((-83) $) 72 T ELT)) (-3007 (((-344 (-479)) $) 76 T ELT)) (-2397 (((-83) $) 42 T ELT)) (-3116 ((|#2| $) 22 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2469 (($ $) 58 T ELT)) (-3740 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-3954 (((-468) $) 67 T ELT)) (-2994 (($ $) 17 T ELT)) (-3928 (((-766) $) 53 T ELT) (($ (-479)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-344 (-479))) NIL T ELT)) (-3110 (((-688)) 10 T CONST)) (-3365 ((|#2| $) 71 T ELT)) (-3041 (((-83) $ $) 26 T ELT)) (-2670 (((-83) $ $) 69 T ELT)) (-3819 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3821 (($ $ $) 27 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT))) +(((-904 |#1| |#2|) (-10 -7 (-15 -3928 (|#1| (-344 (-479)))) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1|)) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -2670 ((-83) |#1| |#1|)) (-15 * (|#1| (-344 (-479)) |#1|)) (-15 * (|#1| |#1| (-344 (-479)))) (-15 -2469 (|#1| |#1|)) (-15 -3954 ((-468) |#1|)) (-15 -3009 ((-3 (-344 (-479)) #1="failed") |#1|)) (-15 -3007 ((-344 (-479)) |#1|)) (-15 -3008 ((-83) |#1|)) (-15 -3365 (|#2| |#1|)) (-15 -3116 (|#2| |#1|)) (-15 -2994 (|#1| |#1|)) (-15 -3940 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|) (-688))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3928 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3110 ((-688)) -3934) (-15 -3928 (|#1| (-479))) (-15 -2397 ((-83) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 * (|#1| (-688) |#1|)) (-15 -3172 ((-83) |#1|)) (-15 * (|#1| (-824) |#1|)) (-15 -3821 (|#1| |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -3041 ((-83) |#1| |#1|))) (-905 |#2|) (-144)) (T -904)) +((-3110 (*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-688)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 (-479) #1="failed") $) 140 (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) 138 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3140 (((-479) $) 139 (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) 137 (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) 136 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 120 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 119 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 118 T ELT) (((-626 |#1|) (-626 $)) 117 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3625 ((|#1| $) 108 T ELT)) (-3009 (((-3 (-344 (-479)) "failed") $) 104 (|has| |#1| (-478)) ELT)) (-3008 (((-83) $) 106 (|has| |#1| (-478)) ELT)) (-3007 (((-344 (-479)) $) 105 (|has| |#1| (-478)) ELT)) (-2990 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3116 ((|#1| $) 110 T ELT)) (-2516 (($ $ $) 92 (|has| |#1| (-750)) ELT)) (-2842 (($ $ $) 93 (|has| |#1| (-750)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 122 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 121 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 116 T ELT) (((-626 |#1|) (-1169 $)) 115 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 101 (|has| |#1| (-308)) ELT)) (-2991 ((|#1| $) 111 T ELT)) (-2992 ((|#1| $) 112 T ELT)) (-2993 ((|#1| $) 113 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) 129 (|has| |#1| (-256 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-245 |#1|)) 127 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-245 |#1|))) 126 (|has| |#1| (-256 |#1|)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) 125 (|has| |#1| (-448 (-1080) |#1|)) ELT) (($ $ (-1080) |#1|) 124 (|has| |#1| (-448 (-1080) |#1|)) ELT)) (-3782 (($ $ |#1|) 130 (|has| |#1| (-238 |#1| |#1|)) ELT)) (-3740 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 133 T ELT) (($ $) 91 (|has| |#1| (-187)) ELT) (($ $ (-688)) 89 (|has| |#1| (-187)) ELT) (($ $ (-1080)) 87 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 85 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 84 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 83 (|has| |#1| (-805 (-1080))) ELT)) (-3954 (((-468) $) 102 (|has| |#1| (-549 (-468))) ELT)) (-2994 (($ $) 114 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-344 (-479))) 79 (OR (|has| |#1| (-308)) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-2687 (((-628 $) $) 103 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-3365 ((|#1| $) 107 (|has| |#1| (-966)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 131 T ELT) (($ $) 90 (|has| |#1| (-187)) ELT) (($ $ (-688)) 88 (|has| |#1| (-187)) ELT) (($ $ (-1080)) 86 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 82 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 81 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 80 (|has| |#1| (-805 (-1080))) ELT)) (-2551 (((-83) $ $) 94 (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) 96 (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 95 (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 97 (|has| |#1| (-750)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 100 (|has| |#1| (-308)) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-344 (-479))) 99 (|has| |#1| (-308)) ELT) (($ (-344 (-479)) $) 98 (|has| |#1| (-308)) ELT))) +(((-905 |#1|) (-111) (-144)) (T -905)) +((-2994 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)))) (-2990 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)) (-4 *2 (-966)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-83)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-905 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-344 (-479))))) (-3009 (*1 *2 *1) (|partial| -12 (-4 *1 (-905 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-344 (-479)))))) +(-13 (-38 |t#1|) (-349 |t#1|) (-182 |t#1|) (-284 |t#1|) (-323 |t#1|) (-10 -8 (-15 -2994 ($ $)) (-15 -2993 (|t#1| $)) (-15 -2992 (|t#1| $)) (-15 -2991 (|t#1| $)) (-15 -3116 (|t#1| $)) (-15 -2990 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3625 (|t#1| $)) (IF (|has| |t#1| (-242)) (-6 (-242)) |%noBranch|) (IF (|has| |t#1| (-750)) (-6 (-750)) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-198)) |%noBranch|) (IF (|has| |t#1| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-116)) |%noBranch|) (IF (|has| |t#1| (-966)) (-15 -3365 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-478)) (PROGN (-15 -3008 ((-83) $)) (-15 -3007 ((-344 (-479)) $)) (-15 -3009 ((-3 (-344 (-479)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-308)) ((-38 |#1|) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-308)) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-308))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-184 $) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-182 |#1|) . T) ((-188) |has| |#1| (-188)) ((-187) OR (|has| |#1| (-187)) (|has| |#1| (-188))) ((-222 |#1|) . T) ((-198) |has| |#1| (-308)) ((-238 |#1| $) |has| |#1| (-238 |#1| |#1|)) ((-242) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-256 |#1|) |has| |#1| (-256 |#1|)) ((-284 |#1|) . T) ((-323 |#1|) . T) ((-349 |#1|) . T) ((-448 (-1080) |#1|) |has| |#1| (-448 (-1080) |#1|)) ((-448 |#1| |#1|) |has| |#1| (-256 |#1|)) ((-584 (-344 (-479))) |has| |#1| (-308)) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-308)) ((-586 (-479)) |has| |#1| (-576 (-479))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-308)) ((-578 |#1|) . T) ((-576 (-479)) |has| |#1| (-576 (-479))) ((-576 |#1|) . T) ((-650 (-344 (-479))) |has| |#1| (-308)) ((-650 |#1|) . T) ((-659) . T) ((-750) |has| |#1| (-750)) ((-753) |has| |#1| (-750)) ((-800 $ (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-803 (-1080)) |has| |#1| (-803 (-1080))) ((-805 (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-957 (-344 (-479))) |has| |#1| (-308)) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-962 (-344 (-479))) |has| |#1| (-308)) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-308)) (|has| |#1| (-242))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3940 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#3| (-1 |#4| |#2|) |#1|))) (-905 |#2|) (-144) (-905 |#4|) (-144)) (T -906)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-905 *6)) (-5 *1 (-906 *4 *5 *2 *6)) (-4 *4 (-905 *5))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3706 (($) NIL T CONST)) (-2987 (($ $) 24 T ELT)) (-2995 (($ (-579 |#1|)) 34 T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3815 (((-688) $) 27 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 29 T ELT)) (-3591 (($ |#1| $) 18 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-2986 ((|#1| $) 28 T ELT)) (-1264 ((|#1| $) 23 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2989 ((|#1| |#1| $) 17 T ELT)) (-3385 (((-83) $) 19 T ELT)) (-3547 (($) NIL T ELT)) (-2988 ((|#1| $) 22 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) NIL T ELT)) (-2985 ((|#1| $) 31 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-907 |#1|) (-13 (-902 |#1|) (-10 -8 (-15 -2995 ($ (-579 |#1|))))) (-1006)) (T -907)) +((-2995 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-907 *3))))) +((-3022 (($ $) 12 T ELT)) (-2996 (($ $ (-479)) 13 T ELT))) +(((-908 |#1|) (-10 -7 (-15 -3022 (|#1| |#1|)) (-15 -2996 (|#1| |#1| (-479)))) (-909)) (T -908)) +NIL +((-3022 (($ $) 6 T ELT)) (-2996 (($ $ (-479)) 7 T ELT)) (** (($ $ (-344 (-479))) 8 T ELT))) +(((-909) (-111)) (T -909)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-909)) (-5 *2 (-344 (-479))))) (-2996 (*1 *1 *1 *2) (-12 (-4 *1 (-909)) (-5 *2 (-479)))) (-3022 (*1 *1 *1) (-4 *1 (-909)))) +(-13 (-10 -8 (-15 -3022 ($ $)) (-15 -2996 ($ $ (-479))) (-15 ** ($ $ (-344 (-479)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1635 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2050 (($ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2048 (((-83) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1770 (((-626 (-344 |#2|)) (-1169 $)) NIL T ELT) (((-626 (-344 |#2|))) NIL T ELT)) (-3312 (((-344 |#2|) $) NIL T ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1596 (((-83) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3120 (((-688)) NIL (|has| (-344 |#2|) (-314)) ELT)) (-1649 (((-83)) NIL T ELT)) (-1648 (((-83) |#1|) 162 T ELT) (((-83) |#2|) 166 T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| (-344 |#2|) (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| (-344 |#2|) (-944 (-344 (-479)))) ELT) (((-3 (-344 |#2|) #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| (-344 |#2|) (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| (-344 |#2|) (-944 (-344 (-479)))) ELT) (((-344 |#2|) $) NIL T ELT)) (-1780 (($ (-1169 (-344 |#2|)) (-1169 $)) NIL T ELT) (($ (-1169 (-344 |#2|))) 79 T ELT) (($ (-1169 |#2|) |#2|) NIL T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-344 |#2|) (-295)) ELT)) (-2549 (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1769 (((-626 (-344 |#2|)) $ (-1169 $)) NIL T ELT) (((-626 (-344 |#2|)) $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-344 |#2|))) (|:| |vec| (-1169 (-344 |#2|)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-344 |#2|)) (-626 $)) NIL T ELT)) (-1640 (((-1169 $) (-1169 $)) NIL T ELT)) (-3824 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-344 |#3|)) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-1627 (((-579 (-579 |#1|))) NIL (|has| |#1| (-314)) ELT)) (-1652 (((-83) |#1| |#1|) NIL T ELT)) (-3093 (((-824)) NIL T ELT)) (-2979 (($) NIL (|has| (-344 |#2|) (-314)) ELT)) (-1647 (((-83)) NIL T ELT)) (-1646 (((-83) |#1|) 61 T ELT) (((-83) |#2|) 164 T ELT)) (-2548 (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3485 (($ $) NIL T ELT)) (-2818 (($) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1668 (((-83) $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1752 (($ $ (-688)) NIL (|has| (-344 |#2|) (-295)) ELT) (($ $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-3705 (((-83) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3754 (((-824) $) NIL (|has| (-344 |#2|) (-295)) ELT) (((-737 (-824)) $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-3359 (((-688)) NIL T ELT)) (-1641 (((-1169 $) (-1169 $)) NIL T ELT)) (-3116 (((-344 |#2|) $) NIL T ELT)) (-1628 (((-579 (-851 |#1|)) (-1080)) NIL (|has| |#1| (-308)) ELT)) (-3427 (((-628 $) $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2001 ((|#3| $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1997 (((-824) $) NIL (|has| (-344 |#2|) (-314)) ELT)) (-3064 ((|#3| $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| (-344 |#2|) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-344 |#2|))) (|:| |vec| (-1169 (-344 |#2|)))) (-1169 $) $) NIL T ELT) (((-626 (-344 |#2|)) (-1169 $)) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1636 (((-626 (-344 |#2|))) 57 T ELT)) (-1638 (((-626 (-344 |#2|))) 56 T ELT)) (-2469 (($ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1633 (($ (-1169 |#2|) |#2|) 80 T ELT)) (-1637 (((-626 (-344 |#2|))) 55 T ELT)) (-1639 (((-626 (-344 |#2|))) 54 T ELT)) (-1632 (((-2 (|:| |num| (-626 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1634 (((-2 (|:| |num| (-1169 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1645 (((-1169 $)) 51 T ELT)) (-3900 (((-1169 $)) 50 T ELT)) (-1644 (((-83) $) NIL T ELT)) (-1643 (((-83) $) NIL T ELT) (((-83) $ |#1|) NIL T ELT) (((-83) $ |#2|) NIL T ELT)) (-3428 (($) NIL (|has| (-344 |#2|) (-295)) CONST)) (-2387 (($ (-824)) NIL (|has| (-344 |#2|) (-314)) ELT)) (-1630 (((-3 |#2| #1#)) 70 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1654 (((-688)) NIL T ELT)) (-2396 (($) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| (-344 |#2|) (-295)) ELT)) (-3714 (((-342 $) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-344 |#2|) (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1595 (((-688) $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3782 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1631 (((-3 |#2| #1#)) 68 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3739 (((-344 |#2|) (-1169 $)) NIL T ELT) (((-344 |#2|)) 47 T ELT)) (-1753 (((-688) $) NIL (|has| (-344 |#2|) (-295)) ELT) (((-3 (-688) #1#) $ $) NIL (|has| (-344 |#2|) (-295)) ELT)) (-3740 (($ $ (-1 (-344 |#2|) (-344 |#2|))) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-1 (-344 |#2|) (-344 |#2|)) (-688)) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT)) (-2395 (((-626 (-344 |#2|)) (-1169 $) (-1 (-344 |#2|) (-344 |#2|))) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3169 ((|#3|) 58 T ELT)) (-1662 (($) NIL (|has| (-344 |#2|) (-295)) ELT)) (-3208 (((-1169 (-344 |#2|)) $ (-1169 $)) NIL T ELT) (((-626 (-344 |#2|)) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 (-344 |#2|)) $) 81 T ELT) (((-626 (-344 |#2|)) (-1169 $)) NIL T ELT)) (-3954 (((-1169 (-344 |#2|)) $) NIL T ELT) (($ (-1169 (-344 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| (-344 |#2|) (-295)) ELT)) (-1642 (((-1169 $) (-1169 $)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-344 |#2|)) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-2687 (($ $) NIL (|has| (-344 |#2|) (-295)) ELT) (((-628 $) $) NIL (|has| (-344 |#2|) (-116)) ELT)) (-2434 ((|#3| $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1651 (((-83)) 65 T ELT)) (-1650 (((-83) |#1|) 167 T ELT) (((-83) |#2|) 168 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-1629 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1653 (((-83)) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-1 (-344 |#2|) (-344 |#2|))) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-1 (-344 |#2|) (-344 |#2|)) (-688)) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-803 (-1080)))) (-12 (|has| (-344 |#2|) (-308)) (|has| (-344 |#2|) (-805 (-1080))))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT) (($ $) NIL (OR (-12 (|has| (-344 |#2|) (-188)) (|has| (-344 |#2|) (-308))) (-12 (|has| (-344 |#2|) (-187)) (|has| (-344 |#2|) (-308))) (|has| (-344 |#2|) (-295))) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ $) NIL (|has| (-344 |#2|) (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| (-344 |#2|) (-308)) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 |#2|)) NIL T ELT) (($ (-344 |#2|) $) NIL T ELT) (($ (-344 (-479)) $) NIL (|has| (-344 |#2|) (-308)) ELT) (($ $ (-344 (-479))) NIL (|has| (-344 |#2|) (-308)) ELT))) +(((-910 |#1| |#2| |#3| |#4| |#5|) (-287 |#1| |#2| |#3|) (-1124) (-1145 |#1|) (-1145 (-344 |#2|)) (-344 |#2|) (-688)) (T -910)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3002 (((-579 (-479)) $) 73 T ELT)) (-2998 (($ (-579 (-479))) 81 T ELT)) (-3113 (((-479) $) 48 (|has| (-479) (-254)) ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL (|has| (-479) (-734)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) 60 T ELT) (((-3 (-1080) #1#) $) NIL (|has| (-479) (-944 (-1080))) ELT) (((-3 (-344 (-479)) #1#) $) 57 (|has| (-479) (-944 (-479))) ELT) (((-3 (-479) #1#) $) 60 (|has| (-479) (-944 (-479))) ELT)) (-3140 (((-479) $) NIL T ELT) (((-1080) $) NIL (|has| (-479) (-944 (-1080))) ELT) (((-344 (-479)) $) NIL (|has| (-479) (-944 (-479))) ELT) (((-479) $) NIL (|has| (-479) (-944 (-479))) ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-479)) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2979 (($) NIL (|has| (-479) (-478)) ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3000 (((-579 (-479)) $) 79 T ELT)) (-3170 (((-83) $) NIL (|has| (-479) (-734)) ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (|has| (-479) (-790 (-479))) ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (|has| (-479) (-790 (-324))) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL T ELT)) (-2983 (((-479) $) 45 T ELT)) (-3427 (((-628 $) $) NIL (|has| (-479) (-1056)) ELT)) (-3171 (((-83) $) NIL (|has| (-479) (-734)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-479) (-750)) ELT)) (-3940 (($ (-1 (-479) (-479)) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| (-479) (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL T ELT) (((-626 (-479)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL T ELT)) (-3428 (($) NIL (|has| (-479) (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3112 (($ $) NIL (|has| (-479) (-254)) ELT) (((-344 (-479)) $) 50 T ELT)) (-3001 (((-1059 (-479)) $) 78 T ELT)) (-2997 (($ (-579 (-479)) (-579 (-479))) 82 T ELT)) (-3114 (((-479) $) 64 (|has| (-479) (-478)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| (-479) (-815)) ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-3750 (($ $ (-579 (-479)) (-579 (-479))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-479) (-479)) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-245 (-479))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-579 (-245 (-479)))) NIL (|has| (-479) (-256 (-479))) ELT) (($ $ (-579 (-1080)) (-579 (-479))) NIL (|has| (-479) (-448 (-1080) (-479))) ELT) (($ $ (-1080) (-479)) NIL (|has| (-479) (-448 (-1080) (-479))) ELT)) (-1595 (((-688) $) NIL T ELT)) (-3782 (($ $ (-479)) NIL (|has| (-479) (-238 (-479) (-479))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $ (-1 (-479) (-479))) NIL T ELT) (($ $ (-1 (-479) (-479)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $) 15 (|has| (-479) (-187)) ELT) (($ $ (-688)) NIL (|has| (-479) (-187)) ELT)) (-2980 (($ $) NIL T ELT)) (-2982 (((-479) $) 47 T ELT)) (-2999 (((-579 (-479)) $) 80 T ELT)) (-3954 (((-794 (-479)) $) NIL (|has| (-479) (-549 (-794 (-479)))) ELT) (((-794 (-324)) $) NIL (|has| (-479) (-549 (-794 (-324)))) ELT) (((-468) $) NIL (|has| (-479) (-549 (-468))) ELT) (((-324) $) NIL (|has| (-479) (-927)) ELT) (((-177) $) NIL (|has| (-479) (-927)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| (-479) (-815))) ELT)) (-3928 (((-766) $) 108 T ELT) (($ (-479)) 51 T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) 27 T ELT) (($ (-479)) 51 T ELT) (($ (-1080)) NIL (|has| (-479) (-944 (-1080))) ELT) (((-344 (-479)) $) 25 T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-479) (-815))) (|has| (-479) (-116))) ELT)) (-3110 (((-688)) 13 T CONST)) (-3115 (((-479) $) 62 (|has| (-479) (-478)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3365 (($ $) NIL (|has| (-479) (-734)) ELT)) (-2645 (($) 14 T CONST)) (-2651 (($) 17 T CONST)) (-2654 (($ $ (-1 (-479) (-479))) NIL T ELT) (($ $ (-1 (-479) (-479)) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| (-479) (-805 (-1080))) ELT) (($ $) NIL (|has| (-479) (-187)) ELT) (($ $ (-688)) NIL (|has| (-479) (-187)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-3041 (((-83) $ $) 21 T ELT)) (-2669 (((-83) $ $) NIL (|has| (-479) (-750)) ELT)) (-2670 (((-83) $ $) 40 (|has| (-479) (-750)) ELT)) (-3931 (($ $ $) 36 T ELT) (($ (-479) (-479)) 38 T ELT)) (-3819 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3821 (($ $ $) 28 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ (-479) $) 32 T ELT) (($ $ (-479)) NIL T ELT))) +(((-911 |#1|) (-13 (-898 (-479)) (-548 (-344 (-479))) (-10 -8 (-15 -3112 ((-344 (-479)) $)) (-15 -3002 ((-579 (-479)) $)) (-15 -3001 ((-1059 (-479)) $)) (-15 -3000 ((-579 (-479)) $)) (-15 -2999 ((-579 (-479)) $)) (-15 -2998 ($ (-579 (-479)))) (-15 -2997 ($ (-579 (-479)) (-579 (-479)))))) (-479)) (T -911)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-1059 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479)))) (-2997 (*1 *1 *2 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479))))) +((-3003 (((-51) (-344 (-479)) (-479)) 9 T ELT))) +(((-912) (-10 -7 (-15 -3003 ((-51) (-344 (-479)) (-479))))) (T -912)) +((-3003 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-479))) (-5 *4 (-479)) (-5 *2 (-51)) (-5 *1 (-912))))) +((-3120 (((-479)) 21 T ELT)) (-3006 (((-479)) 26 T ELT)) (-3005 (((-1175) (-479)) 24 T ELT)) (-3004 (((-479) (-479)) 27 T ELT) (((-479)) 20 T ELT))) +(((-913) (-10 -7 (-15 -3004 ((-479))) (-15 -3120 ((-479))) (-15 -3004 ((-479) (-479))) (-15 -3005 ((-1175) (-479))) (-15 -3006 ((-479))))) (T -913)) +((-3006 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-913)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-913)))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-913)))) (-3120 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-913)))) (-3004 (*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-913))))) +((-3715 (((-342 |#1|) |#1|) 43 T ELT)) (-3714 (((-342 |#1|) |#1|) 41 T ELT))) +(((-914 |#1|) (-10 -7 (-15 -3714 ((-342 |#1|) |#1|)) (-15 -3715 ((-342 |#1|) |#1|))) (-1145 (-344 (-479)))) (T -914)) +((-3715 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1145 (-344 (-479)))))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1145 (-344 (-479))))))) +((-3009 (((-3 (-344 (-479)) "failed") |#1|) 15 T ELT)) (-3008 (((-83) |#1|) 14 T ELT)) (-3007 (((-344 (-479)) |#1|) 10 T ELT))) +(((-915 |#1|) (-10 -7 (-15 -3007 ((-344 (-479)) |#1|)) (-15 -3008 ((-83) |#1|)) (-15 -3009 ((-3 (-344 (-479)) "failed") |#1|))) (-944 (-344 (-479)))) (T -915)) +((-3009 (*1 *2 *3) (|partial| -12 (-5 *2 (-344 (-479))) (-5 *1 (-915 *3)) (-4 *3 (-944 *2)))) (-3008 (*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-915 *3)) (-4 *3 (-944 (-344 (-479)))))) (-3007 (*1 *2 *3) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-915 *3)) (-4 *3 (-944 *2))))) +((-3770 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3782 ((|#2| $ #1#) 10 T ELT)) (-3013 (((-83) $ $) 18 T ELT))) +(((-916 |#1| |#2|) (-10 -7 (-15 -3770 (|#2| |#1| #1="value" |#2|)) (-15 -3013 ((-83) |#1| |#1|)) (-15 -3782 (|#2| |#1| #1#))) (-917 |#2|) (-1119)) (T -916)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 52 T ELT)) (-3010 ((|#1| $ |#1|) 43 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 45 (|has| $ (-6 -3978)) ELT)) (-3706 (($) 7 T CONST)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 54 T ELT)) (-3012 (((-83) $ $) 46 (|has| |#1| (-1006)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3015 (((-579 |#1|) $) 49 T ELT)) (-3509 (((-83) $) 53 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ "value") 51 T ELT)) (-3014 (((-479) $ $) 48 T ELT)) (-3615 (((-83) $) 50 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) 55 T ELT)) (-3013 (((-83) $ $) 47 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-917 |#1|) (-111) (-1119)) (T -917)) +((-3504 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-579 *1)) (-4 *1 (-917 *3)))) (-3016 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-579 *1)) (-4 *1 (-917 *3)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-5 *2 (-83)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-1119)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-917 *2)) (-4 *2 (-1119)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-5 *2 (-83)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-5 *2 (-579 *3)))) (-3014 (*1 *2 *1 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-5 *2 (-479)))) (-3013 (*1 *2 *1 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-83)))) (-3012 (*1 *2 *1 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-83)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-579 *1)) (|has| *1 (-6 -3978)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))) (-3770 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -3978)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) (-3010 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-917 *2)) (-4 *2 (-1119))))) +(-13 (-423 |t#1|) (-10 -8 (-15 -3504 ((-579 $) $)) (-15 -3016 ((-579 $) $)) (-15 -3509 ((-83) $)) (-15 -3384 (|t#1| $)) (-15 -3782 (|t#1| $ "value")) (-15 -3615 ((-83) $)) (-15 -3015 ((-579 |t#1|) $)) (-15 -3014 ((-479) $ $)) (IF (|has| |t#1| (-1006)) (PROGN (-15 -3013 ((-83) $ $)) (-15 -3012 ((-83) $ $))) |%noBranch|) (IF (|has| $ (-6 -3978)) (PROGN (-15 -3011 ($ $ (-579 $))) (-15 -3770 (|t#1| $ "value" |t#1|)) (-15 -3010 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-3022 (($ $) 9 T ELT) (($ $ (-824)) 49 T ELT) (($ (-344 (-479))) 13 T ELT) (($ (-479)) 15 T ELT)) (-3167 (((-3 $ #1="failed") (-1075 $) (-824) (-766)) 24 T ELT) (((-3 $ #1#) (-1075 $) (-824)) 32 T ELT)) (-2996 (($ $ (-479)) 58 T ELT)) (-3110 (((-688)) 18 T CONST)) (-3168 (((-579 $) (-1075 $)) NIL T ELT) (((-579 $) (-1075 (-344 (-479)))) 63 T ELT) (((-579 $) (-1075 (-479))) 68 T ELT) (((-579 $) (-851 $)) 72 T ELT) (((-579 $) (-851 (-344 (-479)))) 76 T ELT) (((-579 $) (-851 (-479))) 80 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT) (($ $ (-344 (-479))) 53 T ELT))) +(((-918 |#1|) (-10 -7 (-15 -3022 (|#1| (-479))) (-15 -3022 (|#1| (-344 (-479)))) (-15 -3022 (|#1| |#1| (-824))) (-15 -3168 ((-579 |#1|) (-851 (-479)))) (-15 -3168 ((-579 |#1|) (-851 (-344 (-479))))) (-15 -3168 ((-579 |#1|) (-851 |#1|))) (-15 -3168 ((-579 |#1|) (-1075 (-479)))) (-15 -3168 ((-579 |#1|) (-1075 (-344 (-479))))) (-15 -3168 ((-579 |#1|) (-1075 |#1|))) (-15 -3167 ((-3 |#1| #1="failed") (-1075 |#1|) (-824))) (-15 -3167 ((-3 |#1| #1#) (-1075 |#1|) (-824) (-766))) (-15 ** (|#1| |#1| (-344 (-479)))) (-15 -2996 (|#1| |#1| (-479))) (-15 -3022 (|#1| |#1|)) (-15 ** (|#1| |#1| (-479))) (-15 -3110 ((-688)) -3934) (-15 ** (|#1| |#1| (-688))) (-15 ** (|#1| |#1| (-824)))) (-919)) (T -918)) +((-3110 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-918 *3)) (-4 *3 (-919))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 108 T ELT)) (-2050 (($ $) 109 T ELT)) (-2048 (((-83) $) 111 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 128 T ELT)) (-3953 (((-342 $) $) 129 T ELT)) (-3022 (($ $) 92 T ELT) (($ $ (-824)) 78 T ELT) (($ (-344 (-479))) 77 T ELT) (($ (-479)) 76 T ELT)) (-1596 (((-83) $ $) 119 T ELT)) (-3605 (((-479) $) 145 T ELT)) (-3706 (($) 22 T CONST)) (-3167 (((-3 $ "failed") (-1075 $) (-824) (-766)) 86 T ELT) (((-3 $ "failed") (-1075 $) (-824)) 85 T ELT)) (-3141 (((-3 (-479) #1="failed") $) 105 (|has| (-344 (-479)) (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) 103 (|has| (-344 (-479)) (-944 (-344 (-479)))) ELT) (((-3 (-344 (-479)) #1#) $) 100 T ELT)) (-3140 (((-479) $) 104 (|has| (-344 (-479)) (-944 (-479))) ELT) (((-344 (-479)) $) 102 (|has| (-344 (-479)) (-944 (-344 (-479)))) ELT) (((-344 (-479)) $) 101 T ELT)) (-3018 (($ $ (-766)) 75 T ELT)) (-3017 (($ $ (-766)) 74 T ELT)) (-2549 (($ $ $) 123 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 122 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 117 T ELT)) (-3705 (((-83) $) 130 T ELT)) (-3170 (((-83) $) 143 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 91 T ELT)) (-3171 (((-83) $) 144 T ELT)) (-1593 (((-3 (-579 $) #2="failed") (-579 $) $) 126 T ELT)) (-2516 (($ $ $) 137 T ELT)) (-2842 (($ $ $) 138 T ELT)) (-3019 (((-3 (-1075 $) "failed") $) 87 T ELT)) (-3021 (((-3 (-766) "failed") $) 89 T ELT)) (-3020 (((-3 (-1075 $) "failed") $) 88 T ELT)) (-1879 (($ (-579 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 131 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 116 T ELT)) (-3128 (($ (-579 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-3714 (((-342 $) $) 127 T ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 124 T ELT)) (-3448 (((-3 $ "failed") $ $) 107 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 118 T ELT)) (-1595 (((-688) $) 120 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 121 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 (-479))) 135 T ELT) (($ $) 106 T ELT) (($ (-344 (-479))) 99 T ELT) (($ (-479)) 98 T ELT) (($ (-344 (-479))) 95 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 110 T ELT)) (-3752 (((-344 (-479)) $ $) 73 T ELT)) (-3168 (((-579 $) (-1075 $)) 84 T ELT) (((-579 $) (-1075 (-344 (-479)))) 83 T ELT) (((-579 $) (-1075 (-479))) 82 T ELT) (((-579 $) (-851 $)) 81 T ELT) (((-579 $) (-851 (-344 (-479)))) 80 T ELT) (((-579 $) (-851 (-479))) 79 T ELT)) (-3365 (($ $) 146 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2551 (((-83) $ $) 139 T ELT)) (-2552 (((-83) $ $) 141 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 140 T ELT)) (-2670 (((-83) $ $) 142 T ELT)) (-3931 (($ $ $) 136 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 132 T ELT) (($ $ (-344 (-479))) 90 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-344 (-479)) $) 134 T ELT) (($ $ (-344 (-479))) 133 T ELT) (($ (-479) $) 97 T ELT) (($ $ (-479)) 96 T ELT) (($ (-344 (-479)) $) 94 T ELT) (($ $ (-344 (-479))) 93 T ELT))) +(((-919) (-111)) (T -919)) +((-3022 (*1 *1 *1) (-4 *1 (-919))) (-3021 (*1 *2 *1) (|partial| -12 (-4 *1 (-919)) (-5 *2 (-766)))) (-3020 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075 *1)) (-4 *1 (-919)))) (-3019 (*1 *2 *1) (|partial| -12 (-5 *2 (-1075 *1)) (-4 *1 (-919)))) (-3167 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1075 *1)) (-5 *3 (-824)) (-5 *4 (-766)) (-4 *1 (-919)))) (-3167 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1075 *1)) (-5 *3 (-824)) (-4 *1 (-919)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-1075 *1)) (-4 *1 (-919)) (-5 *2 (-579 *1)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-1075 (-344 (-479)))) (-5 *2 (-579 *1)) (-4 *1 (-919)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-1075 (-479))) (-5 *2 (-579 *1)) (-4 *1 (-919)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-851 *1)) (-4 *1 (-919)) (-5 *2 (-579 *1)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-851 (-344 (-479)))) (-5 *2 (-579 *1)) (-4 *1 (-919)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-851 (-479))) (-5 *2 (-579 *1)) (-4 *1 (-919)))) (-3022 (*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-824)))) (-3022 (*1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-4 *1 (-919)))) (-3022 (*1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-919)))) (-3018 (*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-766)))) (-3017 (*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-766)))) (-3752 (*1 *2 *1 *1) (-12 (-4 *1 (-919)) (-5 *2 (-344 (-479)))))) +(-13 (-118) (-749) (-144) (-308) (-349 (-344 (-479))) (-38 (-479)) (-38 (-344 (-479))) (-909) (-10 -8 (-15 -3021 ((-3 (-766) "failed") $)) (-15 -3020 ((-3 (-1075 $) "failed") $)) (-15 -3019 ((-3 (-1075 $) "failed") $)) (-15 -3167 ((-3 $ "failed") (-1075 $) (-824) (-766))) (-15 -3167 ((-3 $ "failed") (-1075 $) (-824))) (-15 -3168 ((-579 $) (-1075 $))) (-15 -3168 ((-579 $) (-1075 (-344 (-479))))) (-15 -3168 ((-579 $) (-1075 (-479)))) (-15 -3168 ((-579 $) (-851 $))) (-15 -3168 ((-579 $) (-851 (-344 (-479))))) (-15 -3168 ((-579 $) (-851 (-479)))) (-15 -3022 ($ $ (-824))) (-15 -3022 ($ $)) (-15 -3022 ($ (-344 (-479)))) (-15 -3022 ($ (-479))) (-15 -3018 ($ $ (-766))) (-15 -3017 ($ $ (-766))) (-15 -3752 ((-344 (-479)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 (-479)) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 (-479) (-479)) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-349 (-344 (-479))) . T) ((-386) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 (-479)) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 (-479)) . T) ((-578 $) . T) ((-650 (-344 (-479))) . T) ((-650 (-479)) . T) ((-650 $) . T) ((-659) . T) ((-708) . T) ((-710) . T) ((-712) . T) ((-715) . T) ((-749) . T) ((-750) . T) ((-753) . T) ((-826) . T) ((-909) . T) ((-944 (-344 (-479))) . T) ((-944 (-479)) |has| (-344 (-479)) (-944 (-479))) ((-957 (-344 (-479))) . T) ((-957 (-479)) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 (-479)) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) . T)) +((-3023 (((-2 (|:| |ans| |#2|) (|:| -3121 |#2|) (|:| |sol?| (-83))) (-479) |#2| |#2| (-1080) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-579 |#2|)) (-1 (-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-920 |#1| |#2|) (-10 -7 (-15 -3023 ((-2 (|:| |ans| |#2|) (|:| -3121 |#2|) (|:| |sol?| (-83))) (-479) |#2| |#2| (-1080) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-579 |#2|)) (-1 (-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-386) (-118) (-944 (-479)) (-576 (-479))) (-13 (-1105) (-27) (-358 |#1|))) (T -920)) +((-3023 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1080)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-579 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2123 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1105) (-27) (-358 *8))) (-4 *8 (-13 (-386) (-118) (-944 *3) (-576 *3))) (-5 *3 (-479)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3121 *4) (|:| |sol?| (-83)))) (-5 *1 (-920 *8 *4))))) +((-3024 (((-3 (-579 |#2|) #1="failed") (-479) |#2| |#2| |#2| (-1080) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-579 |#2|)) (-1 (-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-921 |#1| |#2|) (-10 -7 (-15 -3024 ((-3 (-579 |#2|) #1="failed") (-479) |#2| |#2| |#2| (-1080) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-579 |#2|)) (-1 (-3 (-2 (|:| -2123 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-386) (-118) (-944 (-479)) (-576 (-479))) (-13 (-1105) (-27) (-358 |#1|))) (T -921)) +((-3024 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1080)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-579 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2123 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1105) (-27) (-358 *8))) (-4 *8 (-13 (-386) (-118) (-944 *3) (-576 *3))) (-5 *3 (-479)) (-5 *2 (-579 *4)) (-5 *1 (-921 *8 *4))))) +((-3027 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-83)))) (|:| -3250 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-479)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-479) (-1 |#2| |#2|)) 39 T ELT)) (-3025 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-344 |#2|)) (|:| |c| (-344 |#2|)) (|:| -3078 |#2|)) "failed") (-344 |#2|) (-344 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3026 (((-2 (|:| |ans| (-344 |#2|)) (|:| |nosol| (-83))) (-344 |#2|) (-344 |#2|)) 76 T ELT))) +(((-922 |#1| |#2|) (-10 -7 (-15 -3025 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-344 |#2|)) (|:| |c| (-344 |#2|)) (|:| -3078 |#2|)) "failed") (-344 |#2|) (-344 |#2|) (-1 |#2| |#2|))) (-15 -3026 ((-2 (|:| |ans| (-344 |#2|)) (|:| |nosol| (-83))) (-344 |#2|) (-344 |#2|))) (-15 -3027 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-83)))) (|:| -3250 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-479)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-479) (-1 |#2| |#2|)))) (-13 (-308) (-118) (-944 (-479))) (-1145 |#1|)) (T -922)) +((-3027 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1145 *6)) (-4 *6 (-13 (-308) (-118) (-944 *4))) (-5 *4 (-479)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-83)))) (|:| -3250 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-922 *6 *3)))) (-3026 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-118) (-944 (-479)))) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| |ans| (-344 *5)) (|:| |nosol| (-83)))) (-5 *1 (-922 *4 *5)) (-5 *3 (-344 *5)))) (-3025 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-308) (-118) (-944 (-479)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-344 *6)) (|:| |c| (-344 *6)) (|:| -3078 *6))) (-5 *1 (-922 *5 *6)) (-5 *3 (-344 *6))))) +((-3028 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-344 |#2|)) (|:| |h| |#2|) (|:| |c1| (-344 |#2|)) (|:| |c2| (-344 |#2|)) (|:| -3078 |#2|)) #1="failed") (-344 |#2|) (-344 |#2|) (-344 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3029 (((-3 (-579 (-344 |#2|)) #1#) (-344 |#2|) (-344 |#2|) (-344 |#2|)) 34 T ELT))) +(((-923 |#1| |#2|) (-10 -7 (-15 -3028 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-344 |#2|)) (|:| |h| |#2|) (|:| |c1| (-344 |#2|)) (|:| |c2| (-344 |#2|)) (|:| -3078 |#2|)) #1="failed") (-344 |#2|) (-344 |#2|) (-344 |#2|) (-1 |#2| |#2|))) (-15 -3029 ((-3 (-579 (-344 |#2|)) #1#) (-344 |#2|) (-344 |#2|) (-344 |#2|)))) (-13 (-308) (-118) (-944 (-479))) (-1145 |#1|)) (T -923)) +((-3029 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-308) (-118) (-944 (-479)))) (-4 *5 (-1145 *4)) (-5 *2 (-579 (-344 *5))) (-5 *1 (-923 *4 *5)) (-5 *3 (-344 *5)))) (-3028 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-13 (-308) (-118) (-944 (-479)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-344 *6)) (|:| |h| *6) (|:| |c1| (-344 *6)) (|:| |c2| (-344 *6)) (|:| -3078 *6))) (-5 *1 (-923 *5 *6)) (-5 *3 (-344 *6))))) +((-3030 (((-1 |#1|) (-579 (-2 (|:| -3384 |#1|) (|:| -1510 (-479))))) 34 T ELT)) (-3085 (((-1 |#1|) (-1002 |#1|)) 42 T ELT)) (-3031 (((-1 |#1|) (-1169 |#1|) (-1169 (-479)) (-479)) 31 T ELT))) +(((-924 |#1|) (-10 -7 (-15 -3085 ((-1 |#1|) (-1002 |#1|))) (-15 -3030 ((-1 |#1|) (-579 (-2 (|:| -3384 |#1|) (|:| -1510 (-479)))))) (-15 -3031 ((-1 |#1|) (-1169 |#1|) (-1169 (-479)) (-479)))) (-1006)) (T -924)) +((-3031 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1169 *6)) (-5 *4 (-1169 (-479))) (-5 *5 (-479)) (-4 *6 (-1006)) (-5 *2 (-1 *6)) (-5 *1 (-924 *6)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| -3384 *4) (|:| -1510 (-479))))) (-4 *4 (-1006)) (-5 *2 (-1 *4)) (-5 *1 (-924 *4)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-1002 *4)) (-4 *4 (-1006)) (-5 *2 (-1 *4)) (-5 *1 (-924 *4))))) +((-3754 (((-688) (-279 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-925 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3754 ((-688) (-279 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-308) (-1145 |#1|) (-1145 (-344 |#2|)) (-287 |#1| |#2| |#3|) (-13 (-314) (-308))) (T -925)) +((-3754 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-279 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-308)) (-4 *7 (-1145 *6)) (-4 *4 (-1145 (-344 *7))) (-4 *8 (-287 *6 *7 *4)) (-4 *9 (-13 (-314) (-308))) (-5 *2 (-688)) (-5 *1 (-925 *6 *7 *4 *8 *9))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3577 (((-1039) $) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-1039) $) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-926) (-13 (-988) (-10 -8 (-15 -3577 ((-1039) $)) (-15 -3217 ((-1039) $))))) (T -926)) +((-3577 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-926)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-926))))) +((-3954 (((-177) $) 6 T ELT) (((-324) $) 9 T ELT))) +(((-927) (-111)) (T -927)) +NIL +(-13 (-549 (-177)) (-549 (-324))) +(((-549 (-177)) . T) ((-549 (-324)) . T)) +((-3118 (((-3 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) "failed") |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) 32 T ELT) (((-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-344 (-479))) 29 T ELT)) (-3034 (((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-344 (-479))) 34 T ELT) (((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-344 (-479))) 30 T ELT) (((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) 33 T ELT) (((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1|) 28 T ELT)) (-3033 (((-579 (-344 (-479))) (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) 20 T ELT)) (-3032 (((-344 (-479)) (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) 17 T ELT))) +(((-928 |#1|) (-10 -7 (-15 -3034 ((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1|)) (-15 -3034 ((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-15 -3034 ((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-344 (-479)))) (-15 -3034 ((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-344 (-479)))) (-15 -3118 ((-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-344 (-479)))) (-15 -3118 ((-3 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) "failed") |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-15 -3032 ((-344 (-479)) (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-15 -3033 ((-579 (-344 (-479))) (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))))) (-1145 (-479))) (T -928)) +((-3033 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-5 *2 (-579 (-344 (-479)))) (-5 *1 (-928 *4)) (-4 *4 (-1145 (-479))))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) (-5 *2 (-344 (-479))) (-5 *1 (-928 *4)) (-4 *4 (-1145 (-479))))) (-3118 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))))) (-3118 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) (-5 *4 (-344 (-479))) (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-344 (-479))) (-5 *2 (-579 (-2 (|:| -3122 *5) (|:| -3121 *5)))) (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))) (-5 *4 (-2 (|:| -3122 *5) (|:| -3121 *5))))) (-3034 (*1 *2 *3 *4) (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))) (-5 *4 (-344 (-479))))) (-3034 (*1 *2 *3 *4) (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))) (-5 *4 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))))) (-3034 (*1 *2 *3) (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479)))))) +((-3118 (((-3 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) "failed") |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) 35 T ELT) (((-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-344 (-479))) 32 T ELT)) (-3034 (((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-344 (-479))) 30 T ELT) (((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-344 (-479))) 26 T ELT) (((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) 28 T ELT) (((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1|) 24 T ELT))) +(((-929 |#1|) (-10 -7 (-15 -3034 ((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1|)) (-15 -3034 ((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-15 -3034 ((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-344 (-479)))) (-15 -3034 ((-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-344 (-479)))) (-15 -3118 ((-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-344 (-479)))) (-15 -3118 ((-3 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) "failed") |#1| (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))) (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))))) (-1145 (-344 (-479)))) (T -929)) +((-3118 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) (-5 *1 (-929 *3)) (-4 *3 (-1145 (-344 (-479)))))) (-3118 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) (-5 *4 (-344 (-479))) (-5 *1 (-929 *3)) (-4 *3 (-1145 *4)))) (-3034 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-344 (-479))) (-5 *2 (-579 (-2 (|:| -3122 *5) (|:| -3121 *5)))) (-5 *1 (-929 *3)) (-4 *3 (-1145 *5)) (-5 *4 (-2 (|:| -3122 *5) (|:| -3121 *5))))) (-3034 (*1 *2 *3 *4) (-12 (-5 *4 (-344 (-479))) (-5 *2 (-579 (-2 (|:| -3122 *4) (|:| -3121 *4)))) (-5 *1 (-929 *3)) (-4 *3 (-1145 *4)))) (-3034 (*1 *2 *3 *4) (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-5 *1 (-929 *3)) (-4 *3 (-1145 (-344 (-479)))) (-5 *4 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))))) (-3034 (*1 *2 *3) (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) (-5 *1 (-929 *3)) (-4 *3 (-1145 (-344 (-479))))))) +((-3555 (((-579 (-324)) (-851 (-479)) (-324)) 28 T ELT) (((-579 (-324)) (-851 (-344 (-479))) (-324)) 27 T ELT)) (-3951 (((-579 (-579 (-324))) (-579 (-851 (-479))) (-579 (-1080)) (-324)) 37 T ELT))) +(((-930) (-10 -7 (-15 -3555 ((-579 (-324)) (-851 (-344 (-479))) (-324))) (-15 -3555 ((-579 (-324)) (-851 (-479)) (-324))) (-15 -3951 ((-579 (-579 (-324))) (-579 (-851 (-479))) (-579 (-1080)) (-324))))) (T -930)) +((-3951 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 (-851 (-479)))) (-5 *4 (-579 (-1080))) (-5 *2 (-579 (-579 (-324)))) (-5 *1 (-930)) (-5 *5 (-324)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-851 (-479))) (-5 *2 (-579 (-324))) (-5 *1 (-930)) (-5 *4 (-324)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-851 (-344 (-479)))) (-5 *2 (-579 (-324))) (-5 *1 (-930)) (-5 *4 (-324))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 75 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-3022 (($ $) NIL T ELT) (($ $ (-824)) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-479)) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) 70 T ELT)) (-3706 (($) NIL T CONST)) (-3167 (((-3 $ #1#) (-1075 $) (-824) (-766)) NIL T ELT) (((-3 $ #1#) (-1075 $) (-824)) 55 T ELT)) (-3141 (((-3 (-344 (-479)) #1#) $) NIL (|has| (-344 (-479)) (-944 (-344 (-479)))) ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-479) #1#) $) NIL (OR (|has| (-344 (-479)) (-944 (-479))) (|has| |#1| (-944 (-479)))) ELT)) (-3140 (((-344 (-479)) $) 17 (|has| (-344 (-479)) (-944 (-344 (-479)))) ELT) (((-344 (-479)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-479) $) NIL (OR (|has| (-344 (-479)) (-944 (-479))) (|has| |#1| (-944 (-479)))) ELT)) (-3018 (($ $ (-766)) 47 T ELT)) (-3017 (($ $ (-766)) 48 T ELT)) (-2549 (($ $ $) NIL T ELT)) (-3166 (((-344 (-479)) $ $) 21 T ELT)) (-3449 (((-3 $ #1#) $) 88 T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-3170 (((-83) $) 66 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL T ELT)) (-3171 (((-83) $) 69 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3019 (((-3 (-1075 $) #1#) $) 83 T ELT)) (-3021 (((-3 (-766) #1#) $) 82 T ELT)) (-3020 (((-3 (-1075 $) #1#) $) 80 T ELT)) (-3035 (((-3 (-967 $ (-1075 $)) #1#) $) 78 T ELT)) (-1879 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 89 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3928 (((-766) $) 87 T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ $) 63 T ELT) (($ (-344 (-479))) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-3752 (((-344 (-479)) $ $) 27 T ELT)) (-3168 (((-579 $) (-1075 $)) 61 T ELT) (((-579 $) (-1075 (-344 (-479)))) NIL T ELT) (((-579 $) (-1075 (-479))) NIL T ELT) (((-579 $) (-851 $)) NIL T ELT) (((-579 $) (-851 (-344 (-479)))) NIL T ELT) (((-579 $) (-851 (-479))) NIL T ELT)) (-3036 (($ (-967 $ (-1075 $)) (-766)) 46 T ELT)) (-3365 (($ $) 22 T ELT)) (-2645 (($) 32 T CONST)) (-2651 (($) 39 T CONST)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 76 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 24 T ELT)) (-3931 (($ $ $) 37 T ELT)) (-3819 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3821 (($ $ $) 111 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ (-479) $) 71 T ELT) (($ $ (-479)) NIL T ELT) (($ (-344 (-479)) $) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT))) +(((-931 |#1|) (-13 (-919) (-349 |#1|) (-38 |#1|) (-10 -8 (-15 -3036 ($ (-967 $ (-1075 $)) (-766))) (-15 -3035 ((-3 (-967 $ (-1075 $)) "failed") $)) (-15 -3166 ((-344 (-479)) $ $)))) (-13 (-749) (-308) (-927))) (T -931)) +((-3036 (*1 *1 *2 *3) (-12 (-5 *2 (-967 (-931 *4) (-1075 (-931 *4)))) (-5 *3 (-766)) (-5 *1 (-931 *4)) (-4 *4 (-13 (-749) (-308) (-927))))) (-3035 (*1 *2 *1) (|partial| -12 (-5 *2 (-967 (-931 *3) (-1075 (-931 *3)))) (-5 *1 (-931 *3)) (-4 *3 (-13 (-749) (-308) (-927))))) (-3166 (*1 *2 *1 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-931 *3)) (-4 *3 (-13 (-749) (-308) (-927)))))) +((-3037 (((-2 (|:| -3250 |#2|) (|:| -2498 (-579 |#1|))) |#2| (-579 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-932 |#1| |#2|) (-10 -7 (-15 -3037 (|#2| |#2| |#1|)) (-15 -3037 ((-2 (|:| -3250 |#2|) (|:| -2498 (-579 |#1|))) |#2| (-579 |#1|)))) (-308) (-596 |#1|)) (T -932)) +((-3037 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 (-2 (|:| -3250 *3) (|:| -2498 (-579 *5)))) (-5 *1 (-932 *5 *3)) (-5 *4 (-579 *5)) (-4 *3 (-596 *5)))) (-3037 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-932 *3 *2)) (-4 *2 (-596 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3038 ((|#1| $ |#1|) 12 T ELT)) (-3040 (($ |#1|) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3039 ((|#1| $) 11 T ELT)) (-3928 (((-766) $) 17 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 9 T ELT))) +(((-933 |#1|) (-13 (-1006) (-10 -8 (-15 -3040 ($ |#1|)) (-15 -3039 (|#1| $)) (-15 -3038 (|#1| $ |#1|)) (-15 -3041 ((-83) $ $)))) (-1119)) (T -933)) +((-3041 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-933 *3)) (-4 *3 (-1119)))) (-3040 (*1 *1 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-1119)))) (-3039 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-1119)))) (-3038 (*1 *2 *1 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-1119))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |#4|)))) (-579 |#4|)) NIL T ELT)) (-3664 (((-579 $) (-579 |#4|)) 114 T ELT) (((-579 $) (-579 |#4|) (-83)) 115 T ELT) (((-579 $) (-579 |#4|) (-83) (-83)) 113 T ELT) (((-579 $) (-579 |#4|) (-83) (-83) (-83) (-83)) 116 T ELT)) (-3066 (((-579 |#3|) $) NIL T ELT)) (-2893 (((-83) $) NIL T ELT)) (-2884 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-3757 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| $) 108 T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3692 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#4| #1="failed") $ |#3|) 63 T ELT)) (-3706 (($) NIL T CONST)) (-2889 (((-83) $) 29 (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3671 (((-579 |#4|) (-579 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) NIL (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) NIL (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ #1#) (-579 |#4|)) NIL T ELT)) (-3140 (($ (-579 |#4|)) NIL T ELT)) (-3781 (((-3 $ #1#) $) 45 T ELT)) (-3667 ((|#4| |#4| $) 66 T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-3388 (($ |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 81 (|has| |#1| (-490)) ELT)) (-3676 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3665 ((|#4| |#4| $) NIL T ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3977)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#4|)) (|:| -1690 (-579 |#4|))) $) NIL T ELT)) (-3181 (((-83) |#4| $) NIL T ELT)) (-3179 (((-83) |#4| $) NIL T ELT)) (-3182 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3420 (((-2 (|:| |val| (-579 |#4|)) (|:| |towers| (-579 $))) (-579 |#4|) (-83) (-83)) 129 T ELT)) (-2874 (((-579 |#4|) $) 18 (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3164 ((|#3| $) 38 T ELT)) (-2593 (((-579 |#4|) $) 19 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2899 (((-579 |#3|) $) NIL T ELT)) (-2898 (((-83) |#3| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3175 (((-3 |#4| (-579 $)) |#4| |#4| $) NIL T ELT)) (-3174 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| |#4| $) 106 T ELT)) (-3780 (((-3 |#4| #1#) $) 42 T ELT)) (-3176 (((-579 $) |#4| $) 89 T ELT)) (-3178 (((-3 (-83) (-579 $)) |#4| $) NIL T ELT)) (-3177 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 $))) |#4| $) 99 T ELT) (((-83) |#4| $) 61 T ELT)) (-3222 (((-579 $) |#4| $) 111 T ELT) (((-579 $) (-579 |#4|) $) NIL T ELT) (((-579 $) (-579 |#4|) (-579 $)) 112 T ELT) (((-579 $) |#4| (-579 $)) NIL T ELT)) (-3421 (((-579 $) (-579 |#4|) (-83) (-83) (-83)) 124 T ELT)) (-3422 (($ |#4| $) 78 T ELT) (($ (-579 |#4|) $) 79 T ELT) (((-579 $) |#4| $ (-83) (-83) (-83) (-83) (-83)) 75 T ELT)) (-3679 (((-579 |#4|) $) NIL T ELT)) (-3673 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3668 ((|#4| |#4| $) NIL T ELT)) (-3681 (((-83) $ $) NIL T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-490)) ELT)) (-3674 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 ((|#4| |#4| $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 (((-3 |#4| #1#) $) 40 T ELT)) (-1342 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3661 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3751 (($ $ |#4|) NIL T ELT) (((-579 $) |#4| $) 91 T ELT) (((-579 $) |#4| (-579 $)) NIL T ELT) (((-579 $) (-579 |#4|) $) NIL T ELT) (((-579 $) (-579 |#4|) (-579 $)) 85 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 17 T ELT)) (-3547 (($) 14 T ELT)) (-3930 (((-688) $) NIL T ELT)) (-1934 (((-688) |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (((-688) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 13 T ELT)) (-3954 (((-468) $) NIL (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) 22 T ELT)) (-2895 (($ $ |#3|) 49 T ELT)) (-2897 (($ $ |#3|) 51 T ELT)) (-3666 (($ $) NIL T ELT)) (-2896 (($ $ |#3|) NIL T ELT)) (-3928 (((-766) $) 35 T ELT) (((-579 |#4|) $) 46 T ELT)) (-3660 (((-688) $) NIL (|has| |#3| (-314)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3672 (((-83) $ (-1 (-83) |#4| (-579 |#4|))) NIL T ELT)) (-3173 (((-579 $) |#4| $) 88 T ELT) (((-579 $) |#4| (-579 $)) NIL T ELT) (((-579 $) (-579 |#4|) $) NIL T ELT) (((-579 $) (-579 |#4|) (-579 $)) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 |#3|) $) NIL T ELT)) (-3180 (((-83) |#4| $) NIL T ELT)) (-3915 (((-83) |#3| $) 62 T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-934 |#1| |#2| |#3| |#4|) (-13 (-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3422 ((-579 $) |#4| $ (-83) (-83) (-83) (-83) (-83))) (-15 -3664 ((-579 $) (-579 |#4|) (-83) (-83))) (-15 -3664 ((-579 $) (-579 |#4|) (-83) (-83) (-83) (-83))) (-15 -3421 ((-579 $) (-579 |#4|) (-83) (-83) (-83))) (-15 -3420 ((-2 (|:| |val| (-579 |#4|)) (|:| |towers| (-579 $))) (-579 |#4|) (-83) (-83))))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|)) (T -934)) +((-3422 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-934 *5 *6 *7 *3))) (-5 *1 (-934 *5 *6 *7 *3)) (-4 *3 (-970 *5 *6 *7)))) (-3664 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-934 *5 *6 *7 *8))) (-5 *1 (-934 *5 *6 *7 *8)))) (-3664 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-934 *5 *6 *7 *8))) (-5 *1 (-934 *5 *6 *7 *8)))) (-3421 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-934 *5 *6 *7 *8))) (-5 *1 (-934 *5 *6 *7 *8)))) (-3420 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-579 *8)) (|:| |towers| (-579 (-934 *5 *6 *7 *8))))) (-5 *1 (-934 *5 *6 *7 *8)) (-5 *3 (-579 *8))))) +((-3042 (((-579 (-2 (|:| |radval| (-261 (-479))) (|:| |radmult| (-479)) (|:| |radvect| (-579 (-626 (-261 (-479))))))) (-626 (-344 (-851 (-479))))) 67 T ELT)) (-3043 (((-579 (-626 (-261 (-479)))) (-261 (-479)) (-626 (-344 (-851 (-479))))) 52 T ELT)) (-3044 (((-579 (-261 (-479))) (-626 (-344 (-851 (-479))))) 45 T ELT)) (-3048 (((-579 (-626 (-261 (-479)))) (-626 (-344 (-851 (-479))))) 85 T ELT)) (-3046 (((-626 (-261 (-479))) (-626 (-261 (-479)))) 38 T ELT)) (-3047 (((-579 (-626 (-261 (-479)))) (-579 (-626 (-261 (-479))))) 74 T ELT)) (-3045 (((-3 (-626 (-261 (-479))) "failed") (-626 (-344 (-851 (-479))))) 82 T ELT))) +(((-935) (-10 -7 (-15 -3042 ((-579 (-2 (|:| |radval| (-261 (-479))) (|:| |radmult| (-479)) (|:| |radvect| (-579 (-626 (-261 (-479))))))) (-626 (-344 (-851 (-479)))))) (-15 -3043 ((-579 (-626 (-261 (-479)))) (-261 (-479)) (-626 (-344 (-851 (-479)))))) (-15 -3044 ((-579 (-261 (-479))) (-626 (-344 (-851 (-479)))))) (-15 -3045 ((-3 (-626 (-261 (-479))) "failed") (-626 (-344 (-851 (-479)))))) (-15 -3046 ((-626 (-261 (-479))) (-626 (-261 (-479))))) (-15 -3047 ((-579 (-626 (-261 (-479)))) (-579 (-626 (-261 (-479)))))) (-15 -3048 ((-579 (-626 (-261 (-479)))) (-626 (-344 (-851 (-479)))))))) (T -935)) +((-3048 (*1 *2 *3) (-12 (-5 *3 (-626 (-344 (-851 (-479))))) (-5 *2 (-579 (-626 (-261 (-479))))) (-5 *1 (-935)))) (-3047 (*1 *2 *2) (-12 (-5 *2 (-579 (-626 (-261 (-479))))) (-5 *1 (-935)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-626 (-261 (-479)))) (-5 *1 (-935)))) (-3045 (*1 *2 *3) (|partial| -12 (-5 *3 (-626 (-344 (-851 (-479))))) (-5 *2 (-626 (-261 (-479)))) (-5 *1 (-935)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-626 (-344 (-851 (-479))))) (-5 *2 (-579 (-261 (-479)))) (-5 *1 (-935)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *4 (-626 (-344 (-851 (-479))))) (-5 *2 (-579 (-626 (-261 (-479))))) (-5 *1 (-935)) (-5 *3 (-261 (-479))))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-626 (-344 (-851 (-479))))) (-5 *2 (-579 (-2 (|:| |radval| (-261 (-479))) (|:| |radmult| (-479)) (|:| |radvect| (-579 (-626 (-261 (-479)))))))) (-5 *1 (-935))))) +((-3052 (((-579 (-626 |#1|)) (-579 (-626 |#1|))) 69 T ELT) (((-626 |#1|) (-626 |#1|)) 68 T ELT) (((-579 (-626 |#1|)) (-579 (-626 |#1|)) (-579 (-626 |#1|))) 67 T ELT) (((-626 |#1|) (-626 |#1|) (-626 |#1|)) 64 T ELT)) (-3051 (((-579 (-626 |#1|)) (-579 (-626 |#1|)) (-824)) 62 T ELT) (((-626 |#1|) (-626 |#1|) (-824)) 61 T ELT)) (-3053 (((-579 (-626 (-479))) (-579 (-579 (-479)))) 80 T ELT) (((-579 (-626 (-479))) (-579 (-807 (-479))) (-479)) 79 T ELT) (((-626 (-479)) (-579 (-479))) 76 T ELT) (((-626 (-479)) (-807 (-479)) (-479)) 74 T ELT)) (-3050 (((-626 (-851 |#1|)) (-688)) 94 T ELT)) (-3049 (((-579 (-626 |#1|)) (-579 (-626 |#1|)) (-824)) 48 (|has| |#1| (-6 (-3979 #1="*"))) ELT) (((-626 |#1|) (-626 |#1|) (-824)) 46 (|has| |#1| (-6 (-3979 #1#))) ELT))) +(((-936 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3979 #1="*"))) (-15 -3049 ((-626 |#1|) (-626 |#1|) (-824))) |%noBranch|) (IF (|has| |#1| (-6 (-3979 #1#))) (-15 -3049 ((-579 (-626 |#1|)) (-579 (-626 |#1|)) (-824))) |%noBranch|) (-15 -3050 ((-626 (-851 |#1|)) (-688))) (-15 -3051 ((-626 |#1|) (-626 |#1|) (-824))) (-15 -3051 ((-579 (-626 |#1|)) (-579 (-626 |#1|)) (-824))) (-15 -3052 ((-626 |#1|) (-626 |#1|) (-626 |#1|))) (-15 -3052 ((-579 (-626 |#1|)) (-579 (-626 |#1|)) (-579 (-626 |#1|)))) (-15 -3052 ((-626 |#1|) (-626 |#1|))) (-15 -3052 ((-579 (-626 |#1|)) (-579 (-626 |#1|)))) (-15 -3053 ((-626 (-479)) (-807 (-479)) (-479))) (-15 -3053 ((-626 (-479)) (-579 (-479)))) (-15 -3053 ((-579 (-626 (-479))) (-579 (-807 (-479))) (-479))) (-15 -3053 ((-579 (-626 (-479))) (-579 (-579 (-479)))))) (-955)) (T -936)) +((-3053 (*1 *2 *3) (-12 (-5 *3 (-579 (-579 (-479)))) (-5 *2 (-579 (-626 (-479)))) (-5 *1 (-936 *4)) (-4 *4 (-955)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-807 (-479)))) (-5 *4 (-479)) (-5 *2 (-579 (-626 *4))) (-5 *1 (-936 *5)) (-4 *5 (-955)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-626 (-479))) (-5 *1 (-936 *4)) (-4 *4 (-955)))) (-3053 (*1 *2 *3 *4) (-12 (-5 *3 (-807 (-479))) (-5 *4 (-479)) (-5 *2 (-626 *4)) (-5 *1 (-936 *5)) (-4 *5 (-955)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-579 (-626 *3))) (-4 *3 (-955)) (-5 *1 (-936 *3)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-936 *3)))) (-3052 (*1 *2 *2 *2) (-12 (-5 *2 (-579 (-626 *3))) (-4 *3 (-955)) (-5 *1 (-936 *3)))) (-3052 (*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-936 *3)))) (-3051 (*1 *2 *2 *3) (-12 (-5 *2 (-579 (-626 *4))) (-5 *3 (-824)) (-4 *4 (-955)) (-5 *1 (-936 *4)))) (-3051 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-824)) (-4 *4 (-955)) (-5 *1 (-936 *4)))) (-3050 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-626 (-851 *4))) (-5 *1 (-936 *4)) (-4 *4 (-955)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-579 (-626 *4))) (-5 *3 (-824)) (|has| *4 (-6 (-3979 "*"))) (-4 *4 (-955)) (-5 *1 (-936 *4)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-626 *4)) (-5 *3 (-824)) (|has| *4 (-6 (-3979 "*"))) (-4 *4 (-955)) (-5 *1 (-936 *4))))) +((-3057 (((-626 |#1|) (-579 (-626 |#1|)) (-1169 |#1|)) 69 (|has| |#1| (-254)) ELT)) (-3400 (((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-1169 (-1169 |#1|))) 107 (|has| |#1| (-308)) ELT) (((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-1169 |#1|)) 104 (|has| |#1| (-308)) ELT)) (-3061 (((-1169 |#1|) (-579 (-1169 |#1|)) (-479)) 113 (-12 (|has| |#1| (-308)) (|has| |#1| (-314))) ELT)) (-3060 (((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-824)) 119 (-12 (|has| |#1| (-308)) (|has| |#1| (-314))) ELT) (((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-83)) 118 (-12 (|has| |#1| (-308)) (|has| |#1| (-314))) ELT) (((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|))) 117 (-12 (|has| |#1| (-308)) (|has| |#1| (-314))) ELT) (((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-83) (-479) (-479)) 116 (-12 (|has| |#1| (-308)) (|has| |#1| (-314))) ELT)) (-3059 (((-83) (-579 (-626 |#1|))) 101 (|has| |#1| (-308)) ELT) (((-83) (-579 (-626 |#1|)) (-479)) 100 (|has| |#1| (-308)) ELT)) (-3056 (((-1169 (-1169 |#1|)) (-579 (-626 |#1|)) (-1169 |#1|)) 66 (|has| |#1| (-254)) ELT)) (-3055 (((-626 |#1|) (-579 (-626 |#1|)) (-626 |#1|)) 46 T ELT)) (-3054 (((-626 |#1|) (-1169 (-1169 |#1|))) 39 T ELT)) (-3058 (((-626 |#1|) (-579 (-626 |#1|)) (-579 (-626 |#1|)) (-479)) 93 (|has| |#1| (-308)) ELT) (((-626 |#1|) (-579 (-626 |#1|)) (-579 (-626 |#1|))) 92 (|has| |#1| (-308)) ELT) (((-626 |#1|) (-579 (-626 |#1|)) (-579 (-626 |#1|)) (-83) (-479)) 91 (|has| |#1| (-308)) ELT))) +(((-937 |#1|) (-10 -7 (-15 -3054 ((-626 |#1|) (-1169 (-1169 |#1|)))) (-15 -3055 ((-626 |#1|) (-579 (-626 |#1|)) (-626 |#1|))) (IF (|has| |#1| (-254)) (PROGN (-15 -3056 ((-1169 (-1169 |#1|)) (-579 (-626 |#1|)) (-1169 |#1|))) (-15 -3057 ((-626 |#1|) (-579 (-626 |#1|)) (-1169 |#1|)))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3058 ((-626 |#1|) (-579 (-626 |#1|)) (-579 (-626 |#1|)) (-83) (-479))) (-15 -3058 ((-626 |#1|) (-579 (-626 |#1|)) (-579 (-626 |#1|)))) (-15 -3058 ((-626 |#1|) (-579 (-626 |#1|)) (-579 (-626 |#1|)) (-479))) (-15 -3059 ((-83) (-579 (-626 |#1|)) (-479))) (-15 -3059 ((-83) (-579 (-626 |#1|)))) (-15 -3400 ((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-1169 |#1|))) (-15 -3400 ((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-1169 (-1169 |#1|))))) |%noBranch|) (IF (|has| |#1| (-314)) (IF (|has| |#1| (-308)) (PROGN (-15 -3060 ((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-83) (-479) (-479))) (-15 -3060 ((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)))) (-15 -3060 ((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-83))) (-15 -3060 ((-579 (-579 (-626 |#1|))) (-579 (-626 |#1|)) (-824))) (-15 -3061 ((-1169 |#1|) (-579 (-1169 |#1|)) (-479)))) |%noBranch|) |%noBranch|)) (-955)) (T -937)) +((-3061 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-1169 *5))) (-5 *4 (-479)) (-5 *2 (-1169 *5)) (-5 *1 (-937 *5)) (-4 *5 (-308)) (-4 *5 (-314)) (-4 *5 (-955)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-824)) (-4 *5 (-308)) (-4 *5 (-314)) (-4 *5 (-955)) (-5 *2 (-579 (-579 (-626 *5)))) (-5 *1 (-937 *5)) (-5 *3 (-579 (-626 *5))))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-308)) (-4 *5 (-314)) (-4 *5 (-955)) (-5 *2 (-579 (-579 (-626 *5)))) (-5 *1 (-937 *5)) (-5 *3 (-579 (-626 *5))))) (-3060 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *4 (-314)) (-4 *4 (-955)) (-5 *2 (-579 (-579 (-626 *4)))) (-5 *1 (-937 *4)) (-5 *3 (-579 (-626 *4))))) (-3060 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-83)) (-5 *5 (-479)) (-4 *6 (-308)) (-4 *6 (-314)) (-4 *6 (-955)) (-5 *2 (-579 (-579 (-626 *6)))) (-5 *1 (-937 *6)) (-5 *3 (-579 (-626 *6))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1169 (-1169 *5))) (-4 *5 (-308)) (-4 *5 (-955)) (-5 *2 (-579 (-579 (-626 *5)))) (-5 *1 (-937 *5)) (-5 *3 (-579 (-626 *5))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1169 *5)) (-4 *5 (-308)) (-4 *5 (-955)) (-5 *2 (-579 (-579 (-626 *5)))) (-5 *1 (-937 *5)) (-5 *3 (-579 (-626 *5))))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-579 (-626 *4))) (-4 *4 (-308)) (-4 *4 (-955)) (-5 *2 (-83)) (-5 *1 (-937 *4)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-626 *5))) (-5 *4 (-479)) (-4 *5 (-308)) (-4 *5 (-955)) (-5 *2 (-83)) (-5 *1 (-937 *5)))) (-3058 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-579 (-626 *5))) (-5 *4 (-479)) (-5 *2 (-626 *5)) (-5 *1 (-937 *5)) (-4 *5 (-308)) (-4 *5 (-955)))) (-3058 (*1 *2 *3 *3) (-12 (-5 *3 (-579 (-626 *4))) (-5 *2 (-626 *4)) (-5 *1 (-937 *4)) (-4 *4 (-308)) (-4 *4 (-955)))) (-3058 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-579 (-626 *6))) (-5 *4 (-83)) (-5 *5 (-479)) (-5 *2 (-626 *6)) (-5 *1 (-937 *6)) (-4 *6 (-308)) (-4 *6 (-955)))) (-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-626 *5))) (-5 *4 (-1169 *5)) (-4 *5 (-254)) (-4 *5 (-955)) (-5 *2 (-626 *5)) (-5 *1 (-937 *5)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-626 *5))) (-4 *5 (-254)) (-4 *5 (-955)) (-5 *2 (-1169 (-1169 *5))) (-5 *1 (-937 *5)) (-5 *4 (-1169 *5)))) (-3055 (*1 *2 *3 *2) (-12 (-5 *3 (-579 (-626 *4))) (-5 *2 (-626 *4)) (-4 *4 (-955)) (-5 *1 (-937 *4)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-1169 (-1169 *4))) (-4 *4 (-955)) (-5 *2 (-626 *4)) (-5 *1 (-937 *4))))) +((-3062 ((|#1| (-824) |#1|) 18 T ELT))) +(((-938 |#1|) (-10 -7 (-15 -3062 (|#1| (-824) |#1|))) (-13 (-1006) (-10 -8 (-15 -3821 ($ $ $))))) (T -938)) +((-3062 (*1 *2 *3 *2) (-12 (-5 *3 (-824)) (-5 *1 (-938 *2)) (-4 *2 (-13 (-1006) (-10 -8 (-15 -3821 ($ $ $)))))))) +((-3063 ((|#1| |#1| (-824)) 18 T ELT))) +(((-939 |#1|) (-10 -7 (-15 -3063 (|#1| |#1| (-824)))) (-13 (-1006) (-10 -8 (-15 * ($ $ $))))) (T -939)) +((-3063 (*1 *2 *2 *3) (-12 (-5 *3 (-824)) (-5 *1 (-939 *2)) (-4 *2 (-13 (-1006) (-10 -8 (-15 * ($ $ $)))))))) +((-3928 ((|#1| (-258)) 11 T ELT) (((-1175) |#1|) 9 T ELT))) +(((-940 |#1|) (-10 -7 (-15 -3928 ((-1175) |#1|)) (-15 -3928 (|#1| (-258)))) (-1119)) (T -940)) +((-3928 (*1 *2 *3) (-12 (-5 *3 (-258)) (-5 *1 (-940 *2)) (-4 *2 (-1119)))) (-3928 (*1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-940 *3)) (-4 *3 (-1119))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3824 (($ |#4|) 24 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3064 ((|#4| $) 26 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 45 T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3110 (((-688)) 42 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 21 T CONST)) (-2651 (($) 22 T CONST)) (-3041 (((-83) $ $) 39 T ELT)) (-3819 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 28 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT))) +(((-941 |#1| |#2| |#3| |#4| |#5|) (-13 (-144) (-38 |#1|) (-10 -8 (-15 -3824 ($ |#4|)) (-15 -3928 ($ |#4|)) (-15 -3064 (|#4| $)))) (-308) (-711) (-750) (-855 |#1| |#2| |#3|) (-579 |#4|)) (T -941)) +((-3824 (*1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-941 *3 *4 *5 *2 *6)) (-4 *2 (-855 *3 *4 *5)) (-14 *6 (-579 *2)))) (-3928 (*1 *1 *2) (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-941 *3 *4 *5 *2 *6)) (-4 *2 (-855 *3 *4 *5)) (-14 *6 (-579 *2)))) (-3064 (*1 *2 *1) (-12 (-4 *2 (-855 *3 *4 *5)) (-5 *1 (-941 *3 *4 *5 *2 *6)) (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-14 *6 (-579 *2))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3190 (((-1039) $) 11 T ELT)) (-3928 (((-766) $) 17 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-942) (-13 (-988) (-10 -8 (-15 -3190 ((-1039) $))))) (T -942)) +((-3190 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-942))))) +((-3140 ((|#2| $) 10 T ELT))) +(((-943 |#1| |#2|) (-10 -7 (-15 -3140 (|#2| |#1|))) (-944 |#2|) (-1119)) (T -943)) +NIL +((-3141 (((-3 |#1| "failed") $) 9 T ELT)) (-3140 ((|#1| $) 8 T ELT)) (-3928 (($ |#1|) 6 T ELT))) +(((-944 |#1|) (-111) (-1119)) (T -944)) +((-3141 (*1 *2 *1) (|partial| -12 (-4 *1 (-944 *2)) (-4 *2 (-1119)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-1119))))) +(-13 (-551 |t#1|) (-10 -8 (-15 -3141 ((-3 |t#1| "failed") $)) (-15 -3140 (|t#1| $)))) +(((-551 |#1|) . T)) +((-3065 (((-579 (-579 (-245 (-344 (-851 |#2|))))) (-579 (-851 |#2|)) (-579 (-1080))) 38 T ELT))) +(((-945 |#1| |#2|) (-10 -7 (-15 -3065 ((-579 (-579 (-245 (-344 (-851 |#2|))))) (-579 (-851 |#2|)) (-579 (-1080))))) (-490) (-13 (-490) (-944 |#1|))) (T -945)) +((-3065 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-851 *6))) (-5 *4 (-579 (-1080))) (-4 *6 (-13 (-490) (-944 *5))) (-4 *5 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *6)))))) (-5 *1 (-945 *5 *6))))) +((-3066 (((-579 (-1080)) (-344 (-851 |#1|))) 17 T ELT)) (-3068 (((-344 (-1075 (-344 (-851 |#1|)))) (-344 (-851 |#1|)) (-1080)) 24 T ELT)) (-3069 (((-344 (-851 |#1|)) (-344 (-1075 (-344 (-851 |#1|)))) (-1080)) 26 T ELT)) (-3067 (((-3 (-1080) "failed") (-344 (-851 |#1|))) 20 T ELT)) (-3750 (((-344 (-851 |#1|)) (-344 (-851 |#1|)) (-579 (-245 (-344 (-851 |#1|))))) 32 T ELT) (((-344 (-851 |#1|)) (-344 (-851 |#1|)) (-245 (-344 (-851 |#1|)))) 33 T ELT) (((-344 (-851 |#1|)) (-344 (-851 |#1|)) (-579 (-1080)) (-579 (-344 (-851 |#1|)))) 28 T ELT) (((-344 (-851 |#1|)) (-344 (-851 |#1|)) (-1080) (-344 (-851 |#1|))) 29 T ELT)) (-3928 (((-344 (-851 |#1|)) |#1|) 11 T ELT))) +(((-946 |#1|) (-10 -7 (-15 -3066 ((-579 (-1080)) (-344 (-851 |#1|)))) (-15 -3067 ((-3 (-1080) "failed") (-344 (-851 |#1|)))) (-15 -3068 ((-344 (-1075 (-344 (-851 |#1|)))) (-344 (-851 |#1|)) (-1080))) (-15 -3069 ((-344 (-851 |#1|)) (-344 (-1075 (-344 (-851 |#1|)))) (-1080))) (-15 -3750 ((-344 (-851 |#1|)) (-344 (-851 |#1|)) (-1080) (-344 (-851 |#1|)))) (-15 -3750 ((-344 (-851 |#1|)) (-344 (-851 |#1|)) (-579 (-1080)) (-579 (-344 (-851 |#1|))))) (-15 -3750 ((-344 (-851 |#1|)) (-344 (-851 |#1|)) (-245 (-344 (-851 |#1|))))) (-15 -3750 ((-344 (-851 |#1|)) (-344 (-851 |#1|)) (-579 (-245 (-344 (-851 |#1|)))))) (-15 -3928 ((-344 (-851 |#1|)) |#1|))) (-490)) (T -946)) +((-3928 (*1 *2 *3) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-946 *3)) (-4 *3 (-490)))) (-3750 (*1 *2 *2 *3) (-12 (-5 *3 (-579 (-245 (-344 (-851 *4))))) (-5 *2 (-344 (-851 *4))) (-4 *4 (-490)) (-5 *1 (-946 *4)))) (-3750 (*1 *2 *2 *3) (-12 (-5 *3 (-245 (-344 (-851 *4)))) (-5 *2 (-344 (-851 *4))) (-4 *4 (-490)) (-5 *1 (-946 *4)))) (-3750 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-579 (-1080))) (-5 *4 (-579 (-344 (-851 *5)))) (-5 *2 (-344 (-851 *5))) (-4 *5 (-490)) (-5 *1 (-946 *5)))) (-3750 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-344 (-851 *4))) (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *1 (-946 *4)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-1075 (-344 (-851 *5))))) (-5 *4 (-1080)) (-5 *2 (-344 (-851 *5))) (-5 *1 (-946 *5)) (-4 *5 (-490)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-490)) (-5 *2 (-344 (-1075 (-344 (-851 *5))))) (-5 *1 (-946 *5)) (-5 *3 (-344 (-851 *5))))) (-3067 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-5 *2 (-1080)) (-5 *1 (-946 *4)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-5 *2 (-579 (-1080))) (-5 *1 (-946 *4))))) +((-3070 (((-324)) 17 T ELT)) (-3085 (((-1 (-324)) (-324) (-324)) 22 T ELT)) (-3078 (((-1 (-324)) (-688)) 48 T ELT)) (-3071 (((-324)) 37 T ELT)) (-3074 (((-1 (-324)) (-324) (-324)) 38 T ELT)) (-3072 (((-324)) 29 T ELT)) (-3075 (((-1 (-324)) (-324)) 30 T ELT)) (-3073 (((-324) (-688)) 43 T ELT)) (-3076 (((-1 (-324)) (-688)) 44 T ELT)) (-3077 (((-1 (-324)) (-688) (-688)) 47 T ELT)) (-3366 (((-1 (-324)) (-688) (-688)) 45 T ELT))) +(((-947) (-10 -7 (-15 -3070 ((-324))) (-15 -3071 ((-324))) (-15 -3072 ((-324))) (-15 -3073 ((-324) (-688))) (-15 -3085 ((-1 (-324)) (-324) (-324))) (-15 -3074 ((-1 (-324)) (-324) (-324))) (-15 -3075 ((-1 (-324)) (-324))) (-15 -3076 ((-1 (-324)) (-688))) (-15 -3366 ((-1 (-324)) (-688) (-688))) (-15 -3077 ((-1 (-324)) (-688) (-688))) (-15 -3078 ((-1 (-324)) (-688))))) (T -947)) +((-3078 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-324))) (-5 *1 (-947)))) (-3077 (*1 *2 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-324))) (-5 *1 (-947)))) (-3366 (*1 *2 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-324))) (-5 *1 (-947)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-324))) (-5 *1 (-947)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-1 (-324))) (-5 *1 (-947)) (-5 *3 (-324)))) (-3074 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-324))) (-5 *1 (-947)) (-5 *3 (-324)))) (-3085 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-324))) (-5 *1 (-947)) (-5 *3 (-324)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-324)) (-5 *1 (-947)))) (-3072 (*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-947)))) (-3071 (*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-947)))) (-3070 (*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-947))))) +((-3714 (((-342 |#1|) |#1|) 33 T ELT))) +(((-948 |#1|) (-10 -7 (-15 -3714 ((-342 |#1|) |#1|))) (-1145 (-344 (-851 (-479))))) (T -948)) +((-3714 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-948 *3)) (-4 *3 (-1145 (-344 (-851 (-479)))))))) +((-3079 (((-344 (-342 (-851 |#1|))) (-344 (-851 |#1|))) 14 T ELT))) +(((-949 |#1|) (-10 -7 (-15 -3079 ((-344 (-342 (-851 |#1|))) (-344 (-851 |#1|))))) (-254)) (T -949)) +((-3079 (*1 *2 *3) (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-254)) (-5 *2 (-344 (-342 (-851 *4)))) (-5 *1 (-949 *4))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3706 (($) 22 T CONST)) (-3083 ((|#1| $) 28 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3082 ((|#1| $) 27 T ELT)) (-3080 ((|#1|) 25 T CONST)) (-3928 (((-766) $) 13 T ELT)) (-3081 ((|#1| $) 26 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT))) (((-950 |#1|) (-111) (-23)) (T -950)) -((-3081 (*1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23))))) -(-13 (-949 |t#1|) (-10 -8 (-15 -3081 ($) -3928))) -(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-949 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 (-696 |#1| (-766 |#2|)))))) (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3658 (((-578 $) (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-83)) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-83) (-83)) NIL T ELT)) (-3063 (((-578 (-766 |#2|)) $) NIL T ELT)) (-2889 (((-83) $) NIL T ELT)) (-2880 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3669 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3664 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3751 (((-578 (-2 (|:| |val| (-696 |#1| (-766 |#2|))) (|:| -1583 $))) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ (-766 |#2|)) NIL T ELT)) (-3686 (($ (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 (-696 |#1| (-766 |#2|)) #1="failed") $ (-766 |#2|)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2885 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3665 (((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|))) $ (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-2881 (((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|))) $) NIL (|has| |#1| (-489)) ELT)) (-2882 (((-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|))) $) NIL (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ #1#) (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3137 (($ (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3775 (((-3 $ #1#) $) NIL T ELT)) (-3661 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-696 |#1| (-766 |#2|)) (-1003))) ELT)) (-3383 (($ (-696 |#1| (-766 |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-696 |#1| (-766 |#2|)) (-1003))) ELT) (($ (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-696 |#1| (-766 |#2|))) (|:| |den| |#1|)) (-696 |#1| (-766 |#2|)) $) NIL (|has| |#1| (-489)) ELT)) (-3670 (((-83) (-696 |#1| (-766 |#2|)) $ (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3659 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3818 (((-696 |#1| (-766 |#2|)) (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $ (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-696 |#1| (-766 |#2|)) (-1003))) ELT) (((-696 |#1| (-766 |#2|)) (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $ (-696 |#1| (-766 |#2|))) NIL (|has| $ (-6 -3971)) ELT) (((-696 |#1| (-766 |#2|)) (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $ (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3672 (((-2 (|:| -3837 (-578 (-696 |#1| (-766 |#2|)))) (|:| -1685 (-578 (-696 |#1| (-766 |#2|))))) $) NIL T ELT)) (-3179 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3177 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3180 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-2870 (((-578 (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3161 (((-766 |#2|) $) NIL T ELT)) (-2588 (((-578 (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-696 |#1| (-766 |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-696 |#1| (-766 |#2|)) (-1003))) ELT)) (-1932 (($ (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-2895 (((-578 (-766 |#2|)) $) NIL T ELT)) (-2894 (((-83) (-766 |#2|) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3173 (((-3 (-696 |#1| (-766 |#2|)) (-578 $)) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3172 (((-578 (-2 (|:| |val| (-696 |#1| (-766 |#2|))) (|:| -1583 $))) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3774 (((-3 (-696 |#1| (-766 |#2|)) #1#) $) NIL T ELT)) (-3174 (((-578 $) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3176 (((-3 (-83) (-578 $)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3175 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 $))) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3218 (((-578 $) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-578 $)) NIL T ELT) (((-578 $) (-696 |#1| (-766 |#2|)) (-578 $)) NIL T ELT)) (-3417 (($ (-696 |#1| (-766 |#2|)) $) NIL T ELT) (($ (-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-3673 (((-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-3667 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3662 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3675 (((-83) $ $) NIL T ELT)) (-2884 (((-2 (|:| |num| (-696 |#1| (-766 |#2|))) (|:| |den| |#1|)) (-696 |#1| (-766 |#2|)) $) NIL (|has| |#1| (-489)) ELT)) (-3668 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3663 (((-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 (((-3 (-696 |#1| (-766 |#2|)) #1#) $) NIL T ELT)) (-1337 (((-3 (-696 |#1| (-766 |#2|)) #1#) (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-3655 (((-3 $ #1#) $ (-696 |#1| (-766 |#2|))) NIL T ELT)) (-3745 (($ $ (-696 |#1| (-766 |#2|))) NIL T ELT) (((-578 $) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-578 $) (-696 |#1| (-766 |#2|)) (-578 $)) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-578 $)) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-696 |#1| (-766 |#2|))) (-578 (-696 |#1| (-766 |#2|)))) NIL (-12 (|has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|)))) (|has| (-696 |#1| (-766 |#2|)) (-1003))) ELT) (($ $ (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|))) NIL (-12 (|has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|)))) (|has| (-696 |#1| (-766 |#2|)) (-1003))) ELT) (($ $ (-245 (-696 |#1| (-766 |#2|)))) NIL (-12 (|has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|)))) (|has| (-696 |#1| (-766 |#2|)) (-1003))) ELT) (($ $ (-578 (-245 (-696 |#1| (-766 |#2|))))) NIL (-12 (|has| (-696 |#1| (-766 |#2|)) (-256 (-696 |#1| (-766 |#2|)))) (|has| (-696 |#1| (-766 |#2|)) (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3924 (((-687) $) NIL T ELT)) (-1929 (((-687) (-696 |#1| (-766 |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-696 |#1| (-766 |#2|)) (-1003))) ELT) (((-687) (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-696 |#1| (-766 |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-2891 (($ $ (-766 |#2|)) NIL T ELT)) (-2893 (($ $ (-766 |#2|)) NIL T ELT)) (-3660 (($ $) NIL T ELT)) (-2892 (($ $ (-766 |#2|)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (((-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT)) (-3654 (((-687) $) NIL (|has| (-766 |#2|) (-313)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 (-696 |#1| (-766 |#2|))))) #1#) (-578 (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 (-696 |#1| (-766 |#2|))))) #1#) (-578 (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|))) (-1 (-83) (-696 |#1| (-766 |#2|)) (-696 |#1| (-766 |#2|)))) NIL T ELT)) (-3666 (((-83) $ (-1 (-83) (-696 |#1| (-766 |#2|)) (-578 (-696 |#1| (-766 |#2|))))) NIL T ELT)) (-3171 (((-578 $) (-696 |#1| (-766 |#2|)) $) NIL T ELT) (((-578 $) (-696 |#1| (-766 |#2|)) (-578 $)) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) $) NIL T ELT) (((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-578 $)) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-696 |#1| (-766 |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 (-766 |#2|)) $) NIL T ELT)) (-3178 (((-83) (-696 |#1| (-766 |#2|)) $) NIL T ELT)) (-3909 (((-83) (-766 |#2|) $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-951 |#1| |#2|) (-13 (-975 |#1| (-463 (-766 |#2|)) (-766 |#2|) (-696 |#1| (-766 |#2|))) (-10 -8 (-15 -3658 ((-578 $) (-578 (-696 |#1| (-766 |#2|))) (-83) (-83))))) (-385) (-578 (-1075))) (T -951)) -((-3658 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) (-14 *6 (-578 (-1075))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-951 *5 *6))))) -((-3082 (((-1 (-478)) (-992 (-478))) 32 T ELT)) (-3086 (((-478) (-478) (-478) (-478) (-478)) 29 T ELT)) (-3084 (((-1 (-478)) |RationalNumber|) NIL T ELT)) (-3085 (((-1 (-478)) |RationalNumber|) NIL T ELT)) (-3083 (((-1 (-478)) (-478) |RationalNumber|) NIL T ELT))) -(((-952) (-10 -7 (-15 -3082 ((-1 (-478)) (-992 (-478)))) (-15 -3083 ((-1 (-478)) (-478) |RationalNumber|)) (-15 -3084 ((-1 (-478)) |RationalNumber|)) (-15 -3085 ((-1 (-478)) |RationalNumber|)) (-15 -3086 ((-478) (-478) (-478) (-478) (-478))))) (T -952)) -((-3086 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-952)))) (-3085 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952)))) (-3084 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952)) (-5 *3 (-478)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-992 (-478))) (-5 *2 (-1 (-478))) (-5 *1 (-952))))) -((-3922 (((-765) $) NIL T ELT) (($ (-478)) 10 T ELT))) -(((-953 |#1|) (-10 -7 (-15 -3922 (|#1| (-478))) (-15 -3922 ((-765) |#1|))) (-954)) (T -953)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-954) (-111)) (T -954)) -((-3107 (*1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-687))))) -(-13 (-962) (-658) (-585 $) (-550 (-478)) (-10 -7 (-15 -3107 ((-687)) -3928) (-6 -3968))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-550 (-478)) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-658) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3087 (((-343 (-850 |#2|)) (-578 |#2|) (-578 |#2|) (-687) (-687)) 55 T ELT))) -(((-955 |#1| |#2|) (-10 -7 (-15 -3087 ((-343 (-850 |#2|)) (-578 |#2|) (-578 |#2|) (-687) (-687)))) (-1075) (-308)) (T -955)) -((-3087 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-687)) (-4 *6 (-308)) (-5 *2 (-343 (-850 *6))) (-5 *1 (-955 *5 *6)) (-14 *5 (-1075))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-956 |#1|) (-111) (-1013)) (T -956)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1013))))) -(-13 (-1003) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-3102 (((-83) $) 38 T ELT)) (-3104 (((-83) $) 17 T ELT)) (-3096 (((-687) $) 13 T ELT)) (-3095 (((-687) $) 14 T ELT)) (-3103 (((-83) $) 30 T ELT)) (-3101 (((-83) $) 40 T ELT))) -(((-957 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3095 ((-687) |#1|)) (-15 -3096 ((-687) |#1|)) (-15 -3101 ((-83) |#1|)) (-15 -3102 ((-83) |#1|)) (-15 -3103 ((-83) |#1|)) (-15 -3104 ((-83) |#1|))) (-958 |#2| |#3| |#4| |#5| |#6|) (-687) (-687) (-954) (-193 |#3| |#4|) (-193 |#2| |#4|)) (T -957)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3102 (((-83) $) 61 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3104 (((-83) $) 63 T ELT)) (-3700 (($) 22 T CONST)) (-3091 (($ $) 44 (|has| |#3| (-254)) ELT)) (-3093 ((|#4| $ (-478)) 49 T ELT)) (-3090 (((-687) $) 43 (|has| |#3| (-489)) ELT)) (-3094 ((|#3| $ (-478) (-478)) 51 T ELT)) (-2870 (((-578 |#3|) $) 75 (|has| $ (-6 -3971)) ELT)) (-3089 (((-687) $) 42 (|has| |#3| (-489)) ELT)) (-3088 (((-578 |#5|) $) 41 (|has| |#3| (-489)) ELT)) (-3096 (((-687) $) 55 T ELT)) (-3095 (((-687) $) 54 T ELT)) (-3100 (((-478) $) 59 T ELT)) (-3098 (((-478) $) 57 T ELT)) (-2588 (((-578 |#3|) $) 76 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#3| $) 78 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3099 (((-478) $) 58 T ELT)) (-3097 (((-478) $) 56 T ELT)) (-3105 (($ (-578 (-578 |#3|))) 64 T ELT)) (-1932 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3570 (((-578 (-578 |#3|)) $) 53 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3443 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-489)) ELT)) (-1930 (((-83) (-1 (-83) |#3|) $) 73 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#3|) (-578 |#3|)) 82 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ (-245 |#3|)) 80 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ (-578 (-245 |#3|))) 79 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT)) (-1206 (((-83) $ $) 65 T ELT)) (-3380 (((-83) $) 68 T ELT)) (-3541 (($) 67 T ELT)) (-3776 ((|#3| $ (-478) (-478)) 52 T ELT) ((|#3| $ (-478) (-478) |#3|) 50 T ELT)) (-3103 (((-83) $) 62 T ELT)) (-1929 (((-687) |#3| $) 77 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#3|) $) 74 (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 66 T ELT)) (-3092 ((|#5| $ (-478)) 48 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-1931 (((-83) (-1 (-83) |#3|) $) 72 (|has| $ (-6 -3971)) ELT)) (-3101 (((-83) $) 60 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#3|) 45 (|has| |#3| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-3933 (((-687) $) 69 (|has| $ (-6 -3971)) ELT))) -(((-958 |#1| |#2| |#3| |#4| |#5|) (-111) (-687) (-687) (-954) (-193 |t#2| |t#3|) (-193 |t#1| |t#3|)) (T -958)) -((-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) (-3105 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *5))) (-4 *5 (-954)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-478)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-478)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-478)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-478)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-687)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-687)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-578 (-578 *5))))) (-3776 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)) (-4 *2 (-954)))) (-3094 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)) (-4 *2 (-954)))) (-3776 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *2 (-954)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)))) (-3093 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *6 *2 *7)) (-4 *6 (-954)) (-4 *7 (-193 *4 *6)) (-4 *2 (-193 *5 *6)))) (-3092 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *6 *7 *2)) (-4 *6 (-954)) (-4 *7 (-193 *5 *6)) (-4 *2 (-193 *4 *6)))) (-3934 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) (-3443 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-958 *3 *4 *2 *5 *6)) (-4 *2 (-954)) (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-489)))) (-3925 (*1 *1 *1 *2) (-12 (-4 *1 (-958 *3 *4 *2 *5 *6)) (-4 *2 (-954)) (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-308)))) (-3091 (*1 *1 *1) (-12 (-4 *1 (-958 *2 *3 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *2 *4)) (-4 *4 (-254)))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-687)))) (-3089 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-687)))) (-3088 (*1 *2 *1) (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-578 *7))))) -(-13 (-80 |t#3| |t#3|) (-422 |t#3|) (-10 -8 (-6 -3971) (IF (|has| |t#3| (-144)) (-6 (-649 |t#3|)) |%noBranch|) (-15 -3105 ($ (-578 (-578 |t#3|)))) (-15 -3104 ((-83) $)) (-15 -3103 ((-83) $)) (-15 -3102 ((-83) $)) (-15 -3101 ((-83) $)) (-15 -3100 ((-478) $)) (-15 -3099 ((-478) $)) (-15 -3098 ((-478) $)) (-15 -3097 ((-478) $)) (-15 -3096 ((-687) $)) (-15 -3095 ((-687) $)) (-15 -3570 ((-578 (-578 |t#3|)) $)) (-15 -3776 (|t#3| $ (-478) (-478))) (-15 -3094 (|t#3| $ (-478) (-478))) (-15 -3776 (|t#3| $ (-478) (-478) |t#3|)) (-15 -3093 (|t#4| $ (-478))) (-15 -3092 (|t#5| $ (-478))) (-15 -3934 ($ (-1 |t#3| |t#3|) $)) (-15 -3934 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-489)) (-15 -3443 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -3925 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-254)) (-15 -3091 ($ $)) |%noBranch|) (IF (|has| |t#3| (-489)) (PROGN (-15 -3090 ((-687) $)) (-15 -3089 ((-687) $)) (-15 -3088 ((-578 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-80 |#3| |#3|) . T) ((-102) . T) ((-547 (-765)) . T) ((-256 |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ((-422 |#3|) . T) ((-447 |#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ((-583 (-478)) . T) ((-583 |#3|) . T) ((-585 |#3|) . T) ((-577 |#3|) |has| |#3| (-144)) ((-649 |#3|) |has| |#3| (-144)) ((-956 |#3|) . T) ((-961 |#3|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3102 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3104 (((-83) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3091 (($ $) 47 (|has| |#3| (-254)) ELT)) (-3093 (((-194 |#2| |#3|) $ (-478)) 36 T ELT)) (-3106 (($ (-625 |#3|)) 45 T ELT)) (-3090 (((-687) $) 49 (|has| |#3| (-489)) ELT)) (-3094 ((|#3| $ (-478) (-478)) NIL T ELT)) (-2870 (((-578 |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3089 (((-687) $) 51 (|has| |#3| (-489)) ELT)) (-3088 (((-578 (-194 |#1| |#3|)) $) 55 (|has| |#3| (-489)) ELT)) (-3096 (((-687) $) NIL T ELT)) (-3095 (((-687) $) NIL T ELT)) (-3100 (((-478) $) NIL T ELT)) (-3098 (((-478) $) NIL T ELT)) (-2588 (((-578 |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#3| (-1003))) ELT)) (-3099 (((-478) $) NIL T ELT)) (-3097 (((-478) $) NIL T ELT)) (-3105 (($ (-578 (-578 |#3|))) 31 T ELT)) (-1932 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3570 (((-578 (-578 |#3|)) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3443 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-489)) ELT)) (-1930 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ (-245 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ (-578 (-245 |#3|))) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#3| $ (-478) (-478)) NIL T ELT) ((|#3| $ (-478) (-478) |#3|) NIL T ELT)) (-3887 (((-105)) 59 (|has| |#3| (-308)) ELT)) (-3103 (((-83) $) NIL T ELT)) (-1929 (((-687) |#3| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#3| (-1003))) ELT) (((-687) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) 66 (|has| |#3| (-548 (-467))) ELT)) (-3092 (((-194 |#1| |#3|) $ (-478)) 40 T ELT)) (-3922 (((-765) $) 19 T ELT) (((-625 |#3|) $) 42 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3101 (((-83) $) NIL T ELT)) (-2640 (($) 16 T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#3|) NIL (|has| |#3| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-959 |#1| |#2| |#3|) (-13 (-958 |#1| |#2| |#3| (-194 |#2| |#3|) (-194 |#1| |#3|)) (-547 (-625 |#3|)) (-10 -8 (IF (|has| |#3| (-308)) (-6 (-1172 |#3|)) |%noBranch|) (IF (|has| |#3| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|) (-15 -3106 ($ (-625 |#3|))))) (-687) (-687) (-954)) (T -959)) -((-3106 (*1 *1 *2) (-12 (-5 *2 (-625 *5)) (-4 *5 (-954)) (-5 *1 (-959 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687))))) -((-3818 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3934 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-960 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3934 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3818 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-687) (-687) (-954) (-193 |#2| |#3|) (-193 |#1| |#3|) (-958 |#1| |#2| |#3| |#4| |#5|) (-954) (-193 |#2| |#7|) (-193 |#1| |#7|) (-958 |#1| |#2| |#7| |#8| |#9|)) (T -960)) -((-3818 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-954)) (-4 *2 (-954)) (-14 *5 (-687)) (-14 *6 (-687)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) (-4 *10 (-193 *6 *2)) (-4 *11 (-193 *5 *2)) (-5 *1 (-960 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-958 *5 *6 *7 *8 *9)) (-4 *12 (-958 *5 *6 *2 *10 *11)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-954)) (-4 *10 (-954)) (-14 *5 (-687)) (-14 *6 (-687)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) (-4 *2 (-958 *5 *6 *10 *11 *12)) (-5 *1 (-960 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-958 *5 *6 *7 *8 *9)) (-4 *11 (-193 *6 *10)) (-4 *12 (-193 *5 *10))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) -(((-961 |#1|) (-111) (-962)) (T -961)) -NIL -(-13 (-21) (-956 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-956 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-962) (-111)) (T -962)) -NIL -(-13 (-21) (-1013)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3807 (((-1075) $) 11 T ELT)) (-3712 ((|#1| $) 12 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3207 (($ (-1075) |#1|) 10 T ELT)) (-3922 (((-765) $) 22 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3037 (((-83) $ $) 17 (|has| |#1| (-1003)) ELT))) -(((-963 |#1| |#2|) (-13 (-1114) (-10 -8 (-15 -3207 ($ (-1075) |#1|)) (-15 -3807 ((-1075) $)) (-15 -3712 (|#1| $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|))) (-997 |#2|) (-1114)) (T -963)) -((-3207 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-4 *4 (-1114)) (-5 *1 (-963 *3 *4)) (-4 *3 (-997 *4)))) (-3807 (*1 *2 *1) (-12 (-4 *4 (-1114)) (-5 *2 (-1075)) (-5 *1 (-963 *3 *4)) (-4 *3 (-997 *4)))) (-3712 (*1 *2 *1) (-12 (-4 *2 (-997 *3)) (-5 *1 (-963 *2 *3)) (-4 *3 (-1114))))) -((-3747 (($ $) 17 T ELT)) (-3108 (($ $) 25 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 54 T ELT)) (-3113 (($ $) 27 T ELT)) (-3109 (($ $) 12 T ELT)) (-3111 (($ $) 40 T ELT)) (-3948 (((-323) $) NIL T ELT) (((-177) $) NIL T ELT) (((-793 (-323)) $) 36 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) 31 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) 31 T ELT)) (-3107 (((-687)) 9 T CONST)) (-3112 (($ $) 44 T ELT))) -(((-964 |#1|) (-10 -7 (-15 -3108 (|#1| |#1|)) (-15 -3747 (|#1| |#1|)) (-15 -3109 (|#1| |#1|)) (-15 -3111 (|#1| |#1|)) (-15 -3112 (|#1| |#1|)) (-15 -3113 (|#1| |#1|)) (-15 -2777 ((-791 (-323) |#1|) |#1| (-793 (-323)) (-791 (-323) |#1|))) (-15 -3948 ((-793 (-323)) |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3922 (|#1| (-478))) (-15 -3948 ((-177) |#1|)) (-15 -3948 ((-323) |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3922 (|#1| |#1|)) (-15 -3107 ((-687)) -3928) (-15 -3922 (|#1| (-478))) (-15 -3922 ((-765) |#1|))) (-965)) (T -964)) -((-3107 (*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-964 *3)) (-4 *3 (-965))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3110 (((-478) $) 105 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-3747 (($ $) 103 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-3018 (($ $) 113 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3599 (((-478) $) 130 T ELT)) (-3700 (($) 22 T CONST)) (-3108 (($ $) 102 T ELT)) (-3138 (((-3 (-478) #1="failed") $) 118 T ELT) (((-3 (-343 (-478)) #1#) $) 115 T ELT)) (-3137 (((-478) $) 119 T ELT) (((-343 (-478)) $) 116 T ELT)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-3699 (((-83) $) 86 T ELT)) (-3168 (((-83) $) 128 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 109 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 112 T ELT)) (-3113 (($ $) 108 T ELT)) (-3169 (((-83) $) 129 T ELT)) (-1588 (((-3 (-578 $) #2="failed") (-578 $) $) 65 T ELT)) (-2511 (($ $ $) 122 T ELT)) (-2838 (($ $ $) 123 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 85 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3109 (($ $) 104 T ELT)) (-3111 (($ $) 106 T ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-3948 (((-323) $) 121 T ELT) (((-177) $) 120 T ELT) (((-793 (-323)) $) 110 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ (-478)) 117 T ELT) (($ (-343 (-478))) 114 T ELT)) (-3107 (((-687)) 37 T CONST)) (-3112 (($ $) 107 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-3360 (($ $) 131 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2546 (((-83) $ $) 124 T ELT)) (-2547 (((-83) $ $) 126 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 125 T ELT)) (-2666 (((-83) $ $) 127 T ELT)) (-3925 (($ $ $) 80 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT) (($ $ (-343 (-478))) 111 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT))) -(((-965) (-111)) (T -965)) -((-3113 (*1 *1 *1) (-4 *1 (-965))) (-3112 (*1 *1 *1) (-4 *1 (-965))) (-3111 (*1 *1 *1) (-4 *1 (-965))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-478)))) (-3109 (*1 *1 *1) (-4 *1 (-965))) (-3747 (*1 *1 *1) (-4 *1 (-965))) (-3108 (*1 *1 *1) (-4 *1 (-965)))) -(-13 (-308) (-748) (-926) (-943 (-478)) (-943 (-343 (-478))) (-908) (-548 (-793 (-323))) (-789 (-323)) (-118) (-10 -8 (-15 -3113 ($ $)) (-15 -3112 ($ $)) (-15 -3111 ($ $)) (-15 -3110 ((-478) $)) (-15 -3109 ($ $)) (-15 -3747 ($ $)) (-15 -3108 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-548 (-177)) . T) ((-548 (-323)) . T) ((-548 (-793 (-323))) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 $) . T) ((-658) . T) ((-707) . T) ((-709) . T) ((-711) . T) ((-714) . T) ((-748) . T) ((-749) . T) ((-752) . T) ((-789 (-323)) . T) ((-825) . T) ((-908) . T) ((-926) . T) ((-943 (-343 (-478))) . T) ((-943 (-478)) . T) ((-956 (-343 (-478))) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) |#2| $) 26 T ELT)) (-3117 ((|#1| $) 10 T ELT)) (-3599 (((-478) |#2| $) 119 T ELT)) (-3165 (((-3 $ #1="failed") |#2| (-823)) 76 T ELT)) (-3118 ((|#1| $) 31 T ELT)) (-3164 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3115 (($ $) 28 T ELT)) (-3444 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3168 (((-83) |#2| $) NIL T ELT)) (-3169 (((-83) |#2| $) NIL T ELT)) (-3114 (((-83) |#2| $) 27 T ELT)) (-3116 ((|#1| $) 120 T ELT)) (-3119 ((|#1| $) 30 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3167 ((|#2| $) 104 T ELT)) (-3922 (((-765) $) 95 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3746 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3166 (((-578 $) |#2|) 78 T ELT)) (-3037 (((-83) $ $) 99 T ELT))) -(((-966 |#1| |#2|) (-13 (-972 |#1| |#2|) (-10 -8 (-15 -3119 (|#1| $)) (-15 -3118 (|#1| $)) (-15 -3117 (|#1| $)) (-15 -3116 (|#1| $)) (-15 -3115 ($ $)) (-15 -3114 ((-83) |#2| $)) (-15 -3164 (|#1| |#2| $ |#1|)))) (-13 (-748) (-308)) (-1140 |#1|)) (T -966)) -((-3164 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2)))) (-3119 (*1 *2 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2)))) (-3118 (*1 *2 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2)))) (-3117 (*1 *2 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2)))) (-3116 (*1 *2 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2)))) (-3115 (*1 *1 *1) (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2)))) (-3114 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-748) (-308))) (-5 *2 (-83)) (-5 *1 (-966 *4 *3)) (-4 *3 (-1140 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-2029 (($ $ $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2024 (($ $ $ $) NIL T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3599 (((-478) $) NIL T ELT)) (-2421 (($ $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3120 (($ (-1075)) 10 T ELT) (($ (-478)) 7 T ELT)) (-3138 (((-3 (-478) #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL T ELT)) (-2544 (($ $ $) NIL T ELT)) (-2261 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-625 (-478)) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3004 (((-83) $) NIL T ELT)) (-3003 (((-343 (-478)) $) NIL T ELT)) (-2975 (($) NIL T ELT) (($ $) NIL T ELT)) (-2543 (($ $ $) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-2022 (($ $ $ $) NIL T ELT)) (-2030 (($ $ $) NIL T ELT)) (-3168 (((-83) $) NIL T ELT)) (-1352 (($ $ $) NIL T ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2654 (((-83) $) NIL T ELT)) (-3422 (((-627 $) $) NIL T ELT)) (-3169 (((-83) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2023 (($ $ $ $) NIL T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-2026 (($ $) NIL T ELT)) (-3809 (($ $) NIL T ELT)) (-2262 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL T ELT) (((-625 (-478)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2021 (($ $ $) NIL T ELT)) (-3423 (($) NIL T CONST)) (-2028 (($ $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-1350 (($ $) NIL T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2655 (((-83) $) NIL T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-3734 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2027 (($ $) NIL T ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-478) $) 16 T ELT) (((-467) $) NIL T ELT) (((-793 (-478)) $) NIL T ELT) (((-323) $) NIL T ELT) (((-177) $) NIL T ELT) (($ (-1075)) 9 T ELT)) (-3922 (((-765) $) 23 T ELT) (($ (-478)) 6 T ELT) (($ $) NIL T ELT) (($ (-478)) 6 T ELT)) (-3107 (((-687)) NIL T CONST)) (-2031 (((-83) $ $) NIL T ELT)) (-3083 (($ $ $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2675 (($) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2025 (($ $ $ $) NIL T ELT)) (-3360 (($ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-3813 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-478) $) NIL T ELT))) -(((-967) (-13 (-477) (-552 (-1075)) (-10 -8 (-6 -3958) (-6 -3963) (-6 -3959) (-15 -3120 ($ (-1075))) (-15 -3120 ($ (-478)))))) (T -967)) -((-3120 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-967)))) (-3120 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-967))))) -((-3773 (($ $) 46 T ELT)) (-3147 (((-83) $ $) 82 T ELT)) (-3138 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-850 (-343 (-478)))) 247 T ELT) (((-3 $ #1#) (-850 (-478))) 246 T ELT) (((-3 $ #1#) (-850 |#2|)) 249 T ELT)) (-3137 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-850 (-343 (-478)))) 235 T ELT) (($ (-850 (-478))) 231 T ELT) (($ (-850 |#2|)) 255 T ELT)) (-3935 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3670 (((-83) $ $) 131 T ELT) (((-83) $ (-578 $)) 135 T ELT)) (-3153 (((-83) $) 60 T ELT)) (-3728 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 125 T ELT)) (-3124 (($ $) 160 T ELT)) (-3135 (($ $) 156 T ELT)) (-3136 (($ $) 155 T ELT)) (-3146 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3145 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3671 (((-83) $ $) 143 T ELT) (((-83) $ (-578 $)) 144 T ELT)) (-3161 ((|#4| $) 32 T ELT)) (-3140 (($ $ $) 128 T ELT)) (-3154 (((-83) $) 59 T ELT)) (-3160 (((-687) $) 35 T ELT)) (-3121 (($ $) 174 T ELT)) (-3122 (($ $) 171 T ELT)) (-3149 (((-578 $) $) 72 T ELT)) (-3152 (($ $) 62 T ELT)) (-3123 (($ $) 167 T ELT)) (-3150 (((-578 $) $) 69 T ELT)) (-3151 (($ $) 64 T ELT)) (-3155 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3139 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3458 (-687))) $ $) 130 T ELT)) (-3141 (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $) 126 T ELT) (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $ |#4|) 127 T ELT)) (-3142 (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -2883 $)) $ $) 121 T ELT) (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -2883 $)) $ $ |#4|) 123 T ELT)) (-3144 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3143 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3157 (((-578 $) $) 54 T ELT)) (-3667 (((-83) $ $) 140 T ELT) (((-83) $ (-578 $)) 141 T ELT)) (-3662 (($ $ $) 116 T ELT)) (-3423 (($ $) 37 T ELT)) (-3675 (((-83) $ $) 80 T ELT)) (-3668 (((-83) $ $) 136 T ELT) (((-83) $ (-578 $)) 138 T ELT)) (-3663 (($ $ $) 112 T ELT)) (-3159 (($ $) 41 T ELT)) (-3125 ((|#2| |#2| $) 164 T ELT) (($ (-578 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3133 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3134 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3158 (($ $) 49 T ELT)) (-3156 (($ $) 55 T ELT)) (-3948 (((-793 (-323)) $) NIL T ELT) (((-793 (-478)) $) NIL T ELT) (((-467) $) NIL T ELT) (($ (-850 (-343 (-478)))) 237 T ELT) (($ (-850 (-478))) 233 T ELT) (($ (-850 |#2|)) 248 T ELT) (((-1059) $) 278 T ELT) (((-850 |#2|) $) 184 T ELT)) (-3922 (((-765) $) 29 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-850 |#2|) $) 185 T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT)) (-3148 (((-3 (-83) #1#) $ $) 79 T ELT))) -(((-968 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3922 (|#1| |#1|)) (-15 -3125 (|#1| |#1| |#1|)) (-15 -3125 (|#1| (-578 |#1|))) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3922 ((-850 |#2|) |#1|)) (-15 -3948 ((-850 |#2|) |#1|)) (-15 -3948 ((-1059) |#1|)) (-15 -3121 (|#1| |#1|)) (-15 -3122 (|#1| |#1|)) (-15 -3123 (|#1| |#1|)) (-15 -3124 (|#1| |#1|)) (-15 -3125 (|#2| |#2| |#1|)) (-15 -3133 (|#1| |#1| |#1|)) (-15 -3134 (|#1| |#1| |#1|)) (-15 -3133 (|#1| |#1| |#2|)) (-15 -3134 (|#1| |#1| |#2|)) (-15 -3135 (|#1| |#1|)) (-15 -3136 (|#1| |#1|)) (-15 -3948 (|#1| (-850 |#2|))) (-15 -3137 (|#1| (-850 |#2|))) (-15 -3138 ((-3 |#1| #1="failed") (-850 |#2|))) (-15 -3948 (|#1| (-850 (-478)))) (-15 -3137 (|#1| (-850 (-478)))) (-15 -3138 ((-3 |#1| #1#) (-850 (-478)))) (-15 -3948 (|#1| (-850 (-343 (-478))))) (-15 -3137 (|#1| (-850 (-343 (-478))))) (-15 -3138 ((-3 |#1| #1#) (-850 (-343 (-478))))) (-15 -3662 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1| |#1|)) (-15 -3139 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3458 (-687))) |#1| |#1|)) (-15 -3140 (|#1| |#1| |#1|)) (-15 -3728 ((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|)) (-15 -3141 ((-2 (|:| -3930 |#1|) (|:| |gap| (-687)) (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1| |#4|)) (-15 -3141 ((-2 (|:| -3930 |#1|) (|:| |gap| (-687)) (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|)) (-15 -3142 ((-2 (|:| -3930 |#1|) (|:| |gap| (-687)) (|:| -2883 |#1|)) |#1| |#1| |#4|)) (-15 -3142 ((-2 (|:| -3930 |#1|) (|:| |gap| (-687)) (|:| -2883 |#1|)) |#1| |#1|)) (-15 -3143 (|#1| |#1| |#1| |#4|)) (-15 -3144 (|#1| |#1| |#1| |#4|)) (-15 -3143 (|#1| |#1| |#1|)) (-15 -3144 (|#1| |#1| |#1|)) (-15 -3145 (|#1| |#1| |#1| |#4|)) (-15 -3146 (|#1| |#1| |#1| |#4|)) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3671 ((-83) |#1| (-578 |#1|))) (-15 -3671 ((-83) |#1| |#1|)) (-15 -3667 ((-83) |#1| (-578 |#1|))) (-15 -3667 ((-83) |#1| |#1|)) (-15 -3668 ((-83) |#1| (-578 |#1|))) (-15 -3668 ((-83) |#1| |#1|)) (-15 -3670 ((-83) |#1| (-578 |#1|))) (-15 -3670 ((-83) |#1| |#1|)) (-15 -3147 ((-83) |#1| |#1|)) (-15 -3675 ((-83) |#1| |#1|)) (-15 -3148 ((-3 (-83) #1#) |#1| |#1|)) (-15 -3149 ((-578 |#1|) |#1|)) (-15 -3150 ((-578 |#1|) |#1|)) (-15 -3151 (|#1| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -3153 ((-83) |#1|)) (-15 -3154 ((-83) |#1|)) (-15 -3935 (|#1| |#1| |#4|)) (-15 -3155 (|#1| |#1| |#4|)) (-15 -3156 (|#1| |#1|)) (-15 -3157 ((-578 |#1|) |#1|)) (-15 -3158 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3159 (|#1| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -3160 ((-687) |#1|)) (-15 -3161 (|#4| |#1|)) (-15 -3948 ((-467) |#1|)) (-15 -3948 ((-793 (-478)) |#1|)) (-15 -3948 ((-793 (-323)) |#1|)) (-15 -3922 (|#1| |#4|)) (-15 -3138 ((-3 |#4| #1#) |#1|)) (-15 -3137 (|#4| |#1|)) (-15 -3155 (|#2| |#1|)) (-15 -3935 (|#1| |#1|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3922 (|#1| |#2|)) (-15 -3922 (|#1| (-478))) (-15 -3922 ((-765) |#1|))) (-969 |#2| |#3| |#4|) (-954) (-710) (-749)) (T -968)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 |#3|) $) 120 T ELT)) (-3065 (((-1070 $) $ |#3|) 135 T ELT) (((-1070 |#1|) $) 134 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 97 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 98 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 100 (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) 122 T ELT) (((-687) $ (-578 |#3|)) 121 T ELT)) (-3773 (($ $) 290 T ELT)) (-3147 (((-83) $ $) 276 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3731 (($ $ $) 235 (|has| |#1| (-489)) ELT)) (-3129 (((-578 $) $ $) 230 (|has| |#1| (-489)) ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 110 (|has| |#1| (-814)) ELT)) (-3751 (($ $) 108 (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) 107 (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1="failed") (-578 (-1070 $)) (-1070 $)) 113 (|has| |#1| (-814)) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-343 (-478)) #2#) $) 175 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #2#) $) 173 (|has| |#1| (-943 (-478))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-850 (-343 (-478)))) 250 (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1075)))) ELT) (((-3 $ "failed") (-850 (-478))) 247 (OR (-12 (-2540 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1075)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1075))))) ELT) (((-3 $ "failed") (-850 |#1|)) 244 (OR (-12 (-2540 (|has| |#1| (-38 (-343 (-478))))) (-2540 (|has| |#1| (-38 (-478)))) (|has| |#3| (-548 (-1075)))) (-12 (-2540 (|has| |#1| (-477))) (-2540 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1075)))) (-12 (-2540 (|has| |#1| (-897 (-478)))) (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1075))))) ELT)) (-3137 ((|#1| $) 177 T ELT) (((-343 (-478)) $) 176 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 174 (|has| |#1| (-943 (-478))) ELT) ((|#3| $) 151 T ELT) (($ (-850 (-343 (-478)))) 249 (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1075)))) ELT) (($ (-850 (-478))) 246 (OR (-12 (-2540 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1075)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1075))))) ELT) (($ (-850 |#1|)) 243 (OR (-12 (-2540 (|has| |#1| (-38 (-343 (-478))))) (-2540 (|has| |#1| (-38 (-478)))) (|has| |#3| (-548 (-1075)))) (-12 (-2540 (|has| |#1| (-477))) (-2540 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1075)))) (-12 (-2540 (|has| |#1| (-897 (-478)))) (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1075))))) ELT)) (-3732 (($ $ $ |#3|) 118 (|has| |#1| (-144)) ELT) (($ $ $) 231 (|has| |#1| (-489)) ELT)) (-3935 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 146 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 145 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 144 T ELT) (((-625 |#1|) (-625 $)) 143 T ELT)) (-3670 (((-83) $ $) 275 T ELT) (((-83) $ (-578 $)) 274 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3153 (((-83) $) 283 T ELT)) (-3728 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 255 T ELT)) (-3124 (($ $) 224 (|has| |#1| (-385)) ELT)) (-3480 (($ $) 190 (|has| |#1| (-385)) ELT) (($ $ |#3|) 115 (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) 119 T ELT)) (-3699 (((-83) $) 106 (|has| |#1| (-814)) ELT)) (-3135 (($ $) 240 (|has| |#1| (-489)) ELT)) (-3136 (($ $) 241 (|has| |#1| (-489)) ELT)) (-3146 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3145 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1607 (($ $ |#1| |#2| $) 186 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 94 (-12 (|has| |#3| (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 93 (-12 (|has| |#3| (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-2392 (((-83) $) 40 T ELT)) (-2400 (((-687) $) 183 T ELT)) (-3671 (((-83) $ $) 269 T ELT) (((-83) $ (-578 $)) 268 T ELT)) (-3126 (($ $ $ $ $) 226 (|has| |#1| (-489)) ELT)) (-3161 ((|#3| $) 294 T ELT)) (-3066 (($ (-1070 |#1|) |#3|) 127 T ELT) (($ (-1070 $) |#3|) 126 T ELT)) (-2802 (((-578 $) $) 136 T ELT)) (-3913 (((-83) $) 166 T ELT)) (-2874 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-687)) 129 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 128 T ELT)) (-3140 (($ $ $) 254 T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ |#3|) 130 T ELT)) (-3154 (((-83) $) 284 T ELT)) (-2801 ((|#2| $) 184 T ELT) (((-687) $ |#3|) 132 T ELT) (((-578 (-687)) $ (-578 |#3|)) 131 T ELT)) (-3160 (((-687) $) 293 T ELT)) (-1608 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3064 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3121 (($ $) 221 (|has| |#1| (-385)) ELT)) (-3122 (($ $) 222 (|has| |#1| (-385)) ELT)) (-3149 (((-578 $) $) 279 T ELT)) (-3152 (($ $) 282 T ELT)) (-3123 (($ $) 223 (|has| |#1| (-385)) ELT)) (-3150 (((-578 $) $) 280 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 148 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 147 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 142 T ELT) (((-625 |#1|) (-1164 $)) 141 T ELT)) (-3151 (($ $) 281 T ELT)) (-2875 (($ $) 163 T ELT)) (-3155 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-1874 (($ (-578 $)) 104 (|has| |#1| (-385)) ELT) (($ $ $) 103 (|has| |#1| (-385)) ELT)) (-3139 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3458 (-687))) $ $) 253 T ELT)) (-3141 (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $) 257 T ELT) (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $ |#3|) 256 T ELT)) (-3142 (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -2883 $)) $ $) 259 T ELT) (((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -2883 $)) $ $ |#3|) 258 T ELT)) (-3144 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3143 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3172 (($ $ $) 229 (|has| |#1| (-489)) ELT)) (-3157 (((-578 $) $) 288 T ELT)) (-2804 (((-3 (-578 $) #3#) $) 124 T ELT)) (-2803 (((-3 (-578 $) #3#) $) 125 T ELT)) (-2805 (((-3 (-2 (|:| |var| |#3|) (|:| -2383 (-687))) #3#) $) 123 T ELT)) (-3667 (((-83) $ $) 271 T ELT) (((-83) $ (-578 $)) 270 T ELT)) (-3662 (($ $ $) 251 T ELT)) (-3423 (($ $) 292 T ELT)) (-3675 (((-83) $ $) 277 T ELT)) (-3668 (((-83) $ $) 273 T ELT) (((-83) $ (-578 $)) 272 T ELT)) (-3663 (($ $ $) 252 T ELT)) (-3159 (($ $) 291 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3130 (((-2 (|:| -3125 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-489)) ELT)) (-3131 (((-2 (|:| -3125 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-489)) ELT)) (-1780 (((-83) $) 180 T ELT)) (-1779 ((|#1| $) 181 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 105 (|has| |#1| (-385)) ELT)) (-3125 ((|#1| |#1| $) 225 (|has| |#1| (-385)) ELT) (($ (-578 $)) 102 (|has| |#1| (-385)) ELT) (($ $ $) 101 (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 112 (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 111 (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) 109 (|has| |#1| (-814)) ELT)) (-3132 (((-2 (|:| -3125 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-489)) ELT)) (-3443 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-489)) ELT)) (-3133 (($ $ |#1|) 238 (|has| |#1| (-489)) ELT) (($ $ $) 236 (|has| |#1| (-489)) ELT)) (-3134 (($ $ |#1|) 239 (|has| |#1| (-489)) ELT) (($ $ $) 237 (|has| |#1| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-578 $) (-578 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-578 |#3|) (-578 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-578 |#3|) (-578 $)) 152 T ELT)) (-3733 (($ $ |#3|) 117 (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 |#3|) (-578 (-687))) 49 T ELT) (($ $ |#3| (-687)) 48 T ELT) (($ $ (-578 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-3924 ((|#2| $) 164 T ELT) (((-687) $ |#3|) 140 T ELT) (((-578 (-687)) $ (-578 |#3|)) 139 T ELT)) (-3158 (($ $) 289 T ELT)) (-3156 (($ $) 287 T ELT)) (-3948 (((-793 (-323)) $) 92 (-12 (|has| |#3| (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) 91 (-12 (|has| |#3| (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) 90 (-12 (|has| |#3| (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT) (($ (-850 (-343 (-478)))) 248 (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1075)))) ELT) (($ (-850 (-478))) 245 (OR (-12 (-2540 (|has| |#1| (-38 (-343 (-478))))) (|has| |#1| (-38 (-478))) (|has| |#3| (-548 (-1075)))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#3| (-548 (-1075))))) ELT) (($ (-850 |#1|)) 242 (|has| |#3| (-548 (-1075))) ELT) (((-1059) $) 220 (-12 (|has| |#1| (-943 (-478))) (|has| |#3| (-548 (-1075)))) ELT) (((-850 |#1|) $) 219 (|has| |#3| (-548 (-1075))) ELT)) (-2798 ((|#1| $) 189 (|has| |#1| (-385)) ELT) (($ $ |#3|) 116 (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) 114 (-2542 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-850 |#1|) $) 218 (|has| |#3| (-548 (-1075))) ELT) (($ (-343 (-478))) 88 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT) (($ $) 95 (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) 182 T ELT)) (-3653 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-687)) 138 T ELT) (($ $ (-578 |#3|) (-578 (-687))) 137 T ELT)) (-2683 (((-627 $) $) 89 (OR (-2542 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) 37 T CONST)) (-1606 (($ $ $ (-687)) 187 (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 99 (|has| |#1| (-489)) ELT)) (-2640 (($) 23 T CONST)) (-3148 (((-3 (-83) "failed") $ $) 278 T ELT)) (-2647 (($) 39 T CONST)) (-3127 (($ $ $ $ (-687)) 227 (|has| |#1| (-489)) ELT)) (-3128 (($ $ $ (-687)) 228 (|has| |#1| (-489)) ELT)) (-2650 (($ $ (-578 |#3|) (-578 (-687))) 52 T ELT) (($ $ |#3| (-687)) 51 T ELT) (($ $ (-578 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-969 |#1| |#2| |#3|) (-111) (-954) (-710) (-749)) (T -969)) -((-3161 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-687)))) (-3423 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3159 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3158 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3157 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3155 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3935 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3154 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3152 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3151 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3150 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3149 (*1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3148 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3675 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3147 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3670 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3670 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)))) (-3668 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3668 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)))) (-3667 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3667 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)))) (-3671 (*1 *2 *1 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)))) (-3146 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3145 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3146 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3145 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3144 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3143 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3144 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3143 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) (-3142 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3930 *1) (|:| |gap| (-687)) (|:| -2883 *1))) (-4 *1 (-969 *3 *4 *5)))) (-3142 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-2 (|:| -3930 *1) (|:| |gap| (-687)) (|:| -2883 *1))) (-4 *1 (-969 *4 *5 *3)))) (-3141 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3930 *1) (|:| |gap| (-687)) (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-969 *3 *4 *5)))) (-3141 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-2 (|:| -3930 *1) (|:| |gap| (-687)) (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-969 *4 *5 *3)))) (-3728 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-969 *3 *4 *5)))) (-3140 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3139 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3458 (-687)))) (-4 *1 (-969 *3 *4 *5)))) (-3663 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3662 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) (-3138 (*1 *1 *2) (|partial| -12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)))) (-3138 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3137 (*1 *1 *2) (OR (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3948 (*1 *1 *2) (OR (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3138 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-850 *3)) (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-2540 (-4 *3 (-38 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 *3)) (-12 (-2540 (-4 *3 (-477))) (-2540 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 *3)) (-12 (-2540 (-4 *3 (-897 (-478)))) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3137 (*1 *1 *2) (OR (-12 (-5 *2 (-850 *3)) (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-2540 (-4 *3 (-38 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 *3)) (-12 (-2540 (-4 *3 (-477))) (-2540 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) (-12 (-5 *2 (-850 *3)) (-12 (-2540 (-4 *3 (-897 (-478)))) (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-850 *3)) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *5 (-548 (-1075))) (-4 *4 (-710)) (-4 *5 (-749)))) (-3136 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3135 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3134 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3133 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3134 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3133 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3731 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3132 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3125 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-969 *3 *4 *5)))) (-3131 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3125 *1) (|:| |coef1| *1))) (-4 *1 (-969 *3 *4 *5)))) (-3130 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-2 (|:| -3125 *1) (|:| |coef2| *1))) (-4 *1 (-969 *3 *4 *5)))) (-3732 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3129 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3172 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3128 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *3 (-489)))) (-3127 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *3 (-489)))) (-3126 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-489)))) (-3125 (*1 *2 *2 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3124 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3123 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3122 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385)))) (-3121 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-385))))) -(-13 (-854 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3161 (|t#3| $)) (-15 -3160 ((-687) $)) (-15 -3423 ($ $)) (-15 -3159 ($ $)) (-15 -3773 ($ $)) (-15 -3158 ($ $)) (-15 -3157 ((-578 $) $)) (-15 -3156 ($ $)) (-15 -3155 ($ $ |t#3|)) (-15 -3935 ($ $ |t#3|)) (-15 -3154 ((-83) $)) (-15 -3153 ((-83) $)) (-15 -3152 ($ $)) (-15 -3151 ($ $)) (-15 -3150 ((-578 $) $)) (-15 -3149 ((-578 $) $)) (-15 -3148 ((-3 (-83) "failed") $ $)) (-15 -3675 ((-83) $ $)) (-15 -3147 ((-83) $ $)) (-15 -3670 ((-83) $ $)) (-15 -3670 ((-83) $ (-578 $))) (-15 -3668 ((-83) $ $)) (-15 -3668 ((-83) $ (-578 $))) (-15 -3667 ((-83) $ $)) (-15 -3667 ((-83) $ (-578 $))) (-15 -3671 ((-83) $ $)) (-15 -3671 ((-83) $ (-578 $))) (-15 -3146 ($ $ $)) (-15 -3145 ($ $ $)) (-15 -3146 ($ $ $ |t#3|)) (-15 -3145 ($ $ $ |t#3|)) (-15 -3144 ($ $ $)) (-15 -3143 ($ $ $)) (-15 -3144 ($ $ $ |t#3|)) (-15 -3143 ($ $ $ |t#3|)) (-15 -3142 ((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -2883 $)) $ $)) (-15 -3142 ((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -2883 $)) $ $ |t#3|)) (-15 -3141 ((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $)) (-15 -3141 ((-2 (|:| -3930 $) (|:| |gap| (-687)) (|:| -1956 $) (|:| -2883 $)) $ $ |t#3|)) (-15 -3728 ((-2 (|:| -1956 $) (|:| -2883 $)) $ $)) (-15 -3140 ($ $ $)) (-15 -3139 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3458 (-687))) $ $)) (-15 -3663 ($ $ $)) (-15 -3662 ($ $ $)) (IF (|has| |t#3| (-548 (-1075))) (PROGN (-6 (-547 (-850 |t#1|))) (-6 (-548 (-850 |t#1|))) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3138 ((-3 $ "failed") (-850 (-343 (-478))))) (-15 -3137 ($ (-850 (-343 (-478))))) (-15 -3948 ($ (-850 (-343 (-478))))) (-15 -3138 ((-3 $ "failed") (-850 (-478)))) (-15 -3137 ($ (-850 (-478)))) (-15 -3948 ($ (-850 (-478)))) (IF (|has| |t#1| (-897 (-478))) |%noBranch| (PROGN (-15 -3138 ((-3 $ "failed") (-850 |t#1|))) (-15 -3137 ($ (-850 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-478))) (IF (|has| |t#1| (-38 (-343 (-478)))) |%noBranch| (PROGN (-15 -3138 ((-3 $ "failed") (-850 (-478)))) (-15 -3137 ($ (-850 (-478)))) (-15 -3948 ($ (-850 (-478)))) (IF (|has| |t#1| (-477)) |%noBranch| (PROGN (-15 -3138 ((-3 $ "failed") (-850 |t#1|))) (-15 -3137 ($ (-850 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-478))) |%noBranch| (IF (|has| |t#1| (-38 (-343 (-478)))) |%noBranch| (PROGN (-15 -3138 ((-3 $ "failed") (-850 |t#1|))) (-15 -3137 ($ (-850 |t#1|)))))) (-15 -3948 ($ (-850 |t#1|))) (IF (|has| |t#1| (-943 (-478))) (-6 (-548 (-1059))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-15 -3136 ($ $)) (-15 -3135 ($ $)) (-15 -3134 ($ $ |t#1|)) (-15 -3133 ($ $ |t#1|)) (-15 -3134 ($ $ $)) (-15 -3133 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3132 ((-2 (|:| -3125 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3131 ((-2 (|:| -3125 $) (|:| |coef1| $)) $ $)) (-15 -3130 ((-2 (|:| -3125 $) (|:| |coef2| $)) $ $)) (-15 -3732 ($ $ $)) (-15 -3129 ((-578 $) $ $)) (-15 -3172 ($ $ $)) (-15 -3128 ($ $ $ (-687))) (-15 -3127 ($ $ $ $ (-687))) (-15 -3126 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-385)) (PROGN (-15 -3125 (|t#1| |t#1| $)) (-15 -3124 ($ $)) (-15 -3123 ($ $)) (-15 -3122 ($ $)) (-15 -3121 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 |#3|) . T) ((-550 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-547 (-765)) . T) ((-547 (-850 |#1|)) |has| |#3| (-548 (-1075))) ((-144) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-548 (-467)) -12 (|has| |#1| (-548 (-467))) (|has| |#3| (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#3| (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#3| (-548 (-793 (-478))))) ((-548 (-850 |#1|)) |has| |#3| (-548 (-1075))) ((-548 (-1059)) -12 (|has| |#1| (-943 (-478))) (|has| |#3| (-548 (-1075)))) ((-242) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-256 $) . T) ((-273 |#1| |#2|) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-814)) (|has| |#1| (-385))) ((-447 |#3| |#1|) . T) ((-447 |#3| $) . T) ((-447 $ $) . T) ((-489) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385))) ((-658) . T) ((-799 $ |#3|) . T) ((-802 |#3|) . T) ((-804 |#3|) . T) ((-789 (-323)) -12 (|has| |#1| (-789 (-323))) (|has| |#3| (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-789 (-478))) (|has| |#3| (-789 (-478)))) ((-854 |#1| |#2| |#3|) . T) ((-814) |has| |#1| (-814)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 |#1|) . T) ((-943 |#3|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) |has| |#1| (-814))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3163 (((-578 (-1035)) $) 18 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 27 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3162 (((-1035) $) 20 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-970) (-13 (-986) (-10 -8 (-15 -3163 ((-578 (-1035)) $)) (-15 -3162 ((-1035) $))))) (T -970)) -((-3163 (*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-970)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-970))))) -((-3170 (((-83) |#3| $) 15 T ELT)) (-3165 (((-3 $ #1="failed") |#3| (-823)) 29 T ELT)) (-3444 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3168 (((-83) |#3| $) 19 T ELT)) (-3169 (((-83) |#3| $) 17 T ELT))) -(((-971 |#1| |#2| |#3|) (-10 -7 (-15 -3165 ((-3 |#1| #1="failed") |#3| (-823))) (-15 -3444 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3168 ((-83) |#3| |#1|)) (-15 -3169 ((-83) |#3| |#1|)) (-15 -3170 ((-83) |#3| |#1|))) (-972 |#2| |#3|) (-13 (-748) (-308)) (-1140 |#2|)) (T -971)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) |#2| $) 25 T ELT)) (-3599 (((-478) |#2| $) 26 T ELT)) (-3165 (((-3 $ "failed") |#2| (-823)) 19 T ELT)) (-3164 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3444 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3168 (((-83) |#2| $) 23 T ELT)) (-3169 (((-83) |#2| $) 24 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3167 ((|#2| $) 21 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3746 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3166 (((-578 $) |#2|) 20 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-972 |#1| |#2|) (-111) (-13 (-748) (-308)) (-1140 |t#1|)) (T -972)) -((-3599 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) (-5 *2 (-478)))) (-3170 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) (-5 *2 (-83)))) (-3169 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) (-5 *2 (-83)))) (-3168 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) (-5 *2 (-83)))) (-3444 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-972 *3 *2)) (-4 *3 (-13 (-748) (-308))) (-4 *2 (-1140 *3)))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *2)) (-4 *3 (-13 (-748) (-308))) (-4 *2 (-1140 *3)))) (-3166 (*1 *2 *3) (-12 (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) (-5 *2 (-578 *1)) (-4 *1 (-972 *4 *3)))) (-3165 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-823)) (-4 *4 (-13 (-748) (-308))) (-4 *1 (-972 *4 *2)) (-4 *2 (-1140 *4)))) (-3746 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-972 *2 *3)) (-4 *2 (-13 (-748) (-308))) (-4 *3 (-1140 *2)))) (-3164 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-972 *2 *3)) (-4 *2 (-13 (-748) (-308))) (-4 *3 (-1140 *2))))) -(-13 (-1003) (-10 -8 (-15 -3599 ((-478) |t#2| $)) (-15 -3170 ((-83) |t#2| $)) (-15 -3169 ((-83) |t#2| $)) (-15 -3168 ((-83) |t#2| $)) (-15 -3444 ((-3 |t#2| "failed") |t#2| $)) (-15 -3167 (|t#2| $)) (-15 -3166 ((-578 $) |t#2|)) (-15 -3165 ((-3 $ "failed") |t#2| (-823))) (-15 -3746 (|t#1| |t#2| $ |t#1|)) (-15 -3164 (|t#1| |t#2| $ |t#1|)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-3413 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) (-687)) 114 T ELT)) (-3410 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687)) 63 T ELT)) (-3414 (((-1170) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-687)) 99 T ELT)) (-3408 (((-687) (-578 |#4|) (-578 |#5|)) 30 T ELT)) (-3411 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687)) 65 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687) (-83)) 67 T ELT)) (-3412 (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83) (-83) (-83) (-83)) 86 T ELT) (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83)) 87 T ELT)) (-3948 (((-1059) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) 92 T ELT)) (-3409 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-83)) 62 T ELT)) (-3407 (((-687) (-578 |#4|) (-578 |#5|)) 21 T ELT))) -(((-973 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3407 ((-687) (-578 |#4|) (-578 |#5|))) (-15 -3408 ((-687) (-578 |#4|) (-578 |#5|))) (-15 -3409 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-83))) (-15 -3410 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687))) (-15 -3410 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|)) (-15 -3411 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687) (-83))) (-15 -3411 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687))) (-15 -3411 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|)) (-15 -3412 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83))) (-15 -3412 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83) (-83) (-83) (-83))) (-15 -3413 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) (-687))) (-15 -3948 ((-1059) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)))) (-15 -3414 ((-1170) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-687)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -973)) -((-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1583 *9)))) (-5 *4 (-687)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-1170)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1583 *8))) (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1059)) (-5 *1 (-973 *4 *5 *6 *7 *8)))) (-3413 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -1583 *11)))))) (-5 *6 (-687)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -1583 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-969 *7 *8 *9)) (-4 *11 (-975 *7 *8 *9 *10)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) (-5 *1 (-973 *7 *8 *9 *10 *11)))) (-3412 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) (-3412 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) (-3411 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-973 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3411 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-687)) (-5 *6 (-83)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) (-4 *3 (-969 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-973 *7 *8 *9 *3 *4)) (-4 *4 (-975 *7 *8 *9 *3)))) (-3410 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-973 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-687)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-687)) (-5 *1 (-973 *5 *6 *7 *8 *9))))) -((-3179 (((-83) |#5| $) 26 T ELT)) (-3177 (((-83) |#5| $) 29 T ELT)) (-3180 (((-83) |#5| $) 18 T ELT) (((-83) $) 52 T ELT)) (-3218 (((-578 $) |#5| $) NIL T ELT) (((-578 $) (-578 |#5|) $) 94 T ELT) (((-578 $) (-578 |#5|) (-578 $)) 92 T ELT) (((-578 $) |#5| (-578 $)) 95 T ELT)) (-3745 (($ $ |#5|) NIL T ELT) (((-578 $) |#5| $) NIL T ELT) (((-578 $) |#5| (-578 $)) 73 T ELT) (((-578 $) (-578 |#5|) $) 75 T ELT) (((-578 $) (-578 |#5|) (-578 $)) 77 T ELT)) (-3171 (((-578 $) |#5| $) NIL T ELT) (((-578 $) |#5| (-578 $)) 64 T ELT) (((-578 $) (-578 |#5|) $) 69 T ELT) (((-578 $) (-578 |#5|) (-578 $)) 71 T ELT)) (-3178 (((-83) |#5| $) 32 T ELT))) -(((-974 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3745 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3745 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3745 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3745 ((-578 |#1|) |#5| |#1|)) (-15 -3171 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3171 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3171 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3171 ((-578 |#1|) |#5| |#1|)) (-15 -3218 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3218 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3218 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3218 ((-578 |#1|) |#5| |#1|)) (-15 -3177 ((-83) |#5| |#1|)) (-15 -3180 ((-83) |#1|)) (-15 -3178 ((-83) |#5| |#1|)) (-15 -3179 ((-83) |#5| |#1|)) (-15 -3180 ((-83) |#5| |#1|)) (-15 -3745 (|#1| |#1| |#5|))) (-975 |#2| |#3| |#4| |#5|) (-385) (-710) (-749) (-969 |#2| |#3| |#4|)) (T -974)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3658 (((-578 $) (-578 |#4|)) 91 T ELT) (((-578 $) (-578 |#4|) (-83)) 118 T ELT)) (-3063 (((-578 |#3|) $) 37 T ELT)) (-2889 (((-83) $) 30 T ELT)) (-2880 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3669 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3664 ((|#4| |#4| $) 97 T ELT)) (-3751 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| $) 133 T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3686 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3971)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3700 (($) 46 T CONST)) (-2885 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3665 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3137 (($ (-578 |#4|)) 39 T ELT)) (-3775 (((-3 $ #1#) $) 87 T ELT)) (-3661 ((|#4| |#4| $) 94 T ELT)) (-1336 (($ $) 69 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#4| $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3670 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3659 ((|#4| |#4| $) 92 T ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3971)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#4|)) (|:| -1685 (-578 |#4|))) $) 110 T ELT)) (-3179 (((-83) |#4| $) 143 T ELT)) (-3177 (((-83) |#4| $) 140 T ELT)) (-3180 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2870 (((-578 |#4|) $) 53 (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3161 ((|#3| $) 38 T ELT)) (-2588 (((-578 |#4|) $) 54 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2895 (((-578 |#3|) $) 36 T ELT)) (-2894 (((-83) |#3| $) 35 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3173 (((-3 |#4| (-578 $)) |#4| |#4| $) 135 T ELT)) (-3172 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| |#4| $) 134 T ELT)) (-3774 (((-3 |#4| #1#) $) 88 T ELT)) (-3174 (((-578 $) |#4| $) 136 T ELT)) (-3176 (((-3 (-83) (-578 $)) |#4| $) 139 T ELT)) (-3175 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3218 (((-578 $) |#4| $) 132 T ELT) (((-578 $) (-578 |#4|) $) 131 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 130 T ELT) (((-578 $) |#4| (-578 $)) 129 T ELT)) (-3417 (($ |#4| $) 124 T ELT) (($ (-578 |#4|) $) 123 T ELT)) (-3673 (((-578 |#4|) $) 112 T ELT)) (-3667 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3662 ((|#4| |#4| $) 95 T ELT)) (-3675 (((-83) $ $) 115 T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3668 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3663 ((|#4| |#4| $) 96 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3777 (((-3 |#4| #1#) $) 89 T ELT)) (-1337 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3655 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3745 (($ $ |#4|) 82 T ELT) (((-578 $) |#4| $) 122 T ELT) (((-578 $) |#4| (-578 $)) 121 T ELT) (((-578 $) (-578 |#4|) $) 120 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 119 T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) 42 T ELT)) (-3380 (((-83) $) 45 T ELT)) (-3541 (($) 44 T ELT)) (-3924 (((-687) $) 111 T ELT)) (-1929 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 43 T ELT)) (-3948 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) 61 T ELT)) (-2891 (($ $ |#3|) 32 T ELT)) (-2893 (($ $ |#3|) 34 T ELT)) (-3660 (($ $) 93 T ELT)) (-2892 (($ $ |#3|) 33 T ELT)) (-3922 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3654 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3666 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-3171 (((-578 $) |#4| $) 128 T ELT) (((-578 $) |#4| (-578 $)) 127 T ELT) (((-578 $) (-578 |#4|) $) 126 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 125 T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 |#3|) $) 86 T ELT)) (-3178 (((-83) |#4| $) 142 T ELT)) (-3909 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (((-687) $) 47 (|has| $ (-6 -3971)) ELT))) -(((-975 |#1| |#2| |#3| |#4|) (-111) (-385) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -975)) -((-3180 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3179 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3178 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3177 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3176 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-3 (-83) (-578 *1))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3175 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *1)))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3175 (*1 *2 *3 *1) (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3174 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) (-3173 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-3 *3 (-578 *1))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3172 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *1)))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3751 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *1)))) (-4 *1 (-975 *4 *5 *6 *3)))) (-3218 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) (-3218 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) (-3218 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) (-3218 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) (-3171 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) (-3171 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) (-3171 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) (-3171 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) (-3417 (*1 *1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5 *2)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3417 (*1 *1 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)))) (-3745 (*1 *2 *3 *1) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) (-3745 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) (-3745 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) (-3745 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *5 *6 *7 *8))))) -(-13 (-1109 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3180 ((-83) |t#4| $)) (-15 -3179 ((-83) |t#4| $)) (-15 -3178 ((-83) |t#4| $)) (-15 -3180 ((-83) $)) (-15 -3177 ((-83) |t#4| $)) (-15 -3176 ((-3 (-83) (-578 $)) |t#4| $)) (-15 -3175 ((-578 (-2 (|:| |val| (-83)) (|:| -1583 $))) |t#4| $)) (-15 -3175 ((-83) |t#4| $)) (-15 -3174 ((-578 $) |t#4| $)) (-15 -3173 ((-3 |t#4| (-578 $)) |t#4| |t#4| $)) (-15 -3172 ((-578 (-2 (|:| |val| |t#4|) (|:| -1583 $))) |t#4| |t#4| $)) (-15 -3751 ((-578 (-2 (|:| |val| |t#4|) (|:| -1583 $))) |t#4| $)) (-15 -3218 ((-578 $) |t#4| $)) (-15 -3218 ((-578 $) (-578 |t#4|) $)) (-15 -3218 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -3218 ((-578 $) |t#4| (-578 $))) (-15 -3171 ((-578 $) |t#4| $)) (-15 -3171 ((-578 $) |t#4| (-578 $))) (-15 -3171 ((-578 $) (-578 |t#4|) $)) (-15 -3171 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -3417 ($ |t#4| $)) (-15 -3417 ($ (-578 |t#4|) $)) (-15 -3745 ((-578 $) |t#4| $)) (-15 -3745 ((-578 $) |t#4| (-578 $))) (-15 -3745 ((-578 $) (-578 |t#4|) $)) (-15 -3745 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -3658 ((-578 $) (-578 |t#4|) (-83))))) -(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-882 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1109 |#1| |#2| |#3| |#4|) . T) ((-1114) . T)) -((-3187 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#5|) 86 T ELT)) (-3184 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3186 (((-578 |#5|) |#4| |#5|) 74 T ELT)) (-3185 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|) 47 T ELT) (((-83) |#4| |#5|) 55 T ELT)) (-3266 (((-1170)) 36 T ELT)) (-3264 (((-1170)) 25 T ELT)) (-3265 (((-1170) (-1059) (-1059) (-1059)) 32 T ELT)) (-3263 (((-1170) (-1059) (-1059) (-1059)) 21 T ELT)) (-3181 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3182 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) |#3| (-83)) 117 T ELT) (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5| (-83) (-83)) 52 T ELT)) (-3183 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3263 ((-1170) (-1059) (-1059) (-1059))) (-15 -3264 ((-1170))) (-15 -3265 ((-1170) (-1059) (-1059) (-1059))) (-15 -3266 ((-1170))) (-15 -3181 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) |#4| |#4| |#5|)) (-15 -3182 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5| (-83) (-83))) (-15 -3182 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) |#3| (-83))) (-15 -3183 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5|)) (-15 -3184 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5|)) (-15 -3185 ((-83) |#4| |#5|)) (-15 -3185 ((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|)) (-15 -3186 ((-578 |#5|) |#4| |#5|)) (-15 -3187 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#5|))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -976)) -((-3187 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3186 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3185 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3185 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3184 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3183 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3182 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1583 *9)))) (-5 *5 (-83)) (-4 *8 (-969 *6 *7 *4)) (-4 *9 (-975 *6 *7 *4 *8)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *4 (-749)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -1583 *9)))) (-5 *1 (-976 *6 *7 *4 *8 *9)))) (-3182 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-976 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3181 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3266 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-976 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3265 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-976 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3264 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-976 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3263 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-976 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7))))) -((-3246 (((-83) $ $) 7 T ELT))) -(((-977) (-13 (-1114) (-10 -8 (-15 -3246 ((-83) $ $))))) (T -977)) -((-3246 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-977))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3190 (($ $ (-578 (-1075)) (-1 (-83) (-578 |#3|))) 34 T ELT)) (-3191 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-578 (-1075))) 21 T ELT)) (-3505 ((|#3| $) 13 T ELT)) (-3138 (((-3 (-245 |#3|) "failed") $) 60 T ELT)) (-3137 (((-245 |#3|) $) NIL T ELT)) (-3188 (((-578 (-1075)) $) 16 T ELT)) (-3189 (((-793 |#1|) $) 11 T ELT)) (-3506 ((|#3| $) 12 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3776 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-823)) 41 T ELT)) (-3922 (((-765) $) 89 T ELT) (($ (-245 |#3|)) 22 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 38 T ELT))) -(((-978 |#1| |#2| |#3|) (-13 (-1003) (-238 |#3| |#3|) (-943 (-245 |#3|)) (-10 -8 (-15 -3191 ($ |#3| |#3|)) (-15 -3191 ($ |#3| |#3| (-578 (-1075)))) (-15 -3190 ($ $ (-578 (-1075)) (-1 (-83) (-578 |#3|)))) (-15 -3189 ((-793 |#1|) $)) (-15 -3506 (|#3| $)) (-15 -3505 (|#3| $)) (-15 -3776 (|#3| $ |#3| (-823))) (-15 -3188 ((-578 (-1075)) $)))) (-1003) (-13 (-954) (-789 |#1|) (-548 (-793 |#1|))) (-13 (-357 |#2|) (-789 |#1|) (-548 (-793 |#1|)))) (T -978)) -((-3191 (*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-978 *3 *4 *2)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))))) (-3191 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-578 (-1075))) (-4 *4 (-1003)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-978 *4 *5 *2)) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) (-3190 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-1 (-83) (-578 *6))) (-4 *6 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-978 *4 *5 *6)))) (-3189 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-954) (-789 *3) (-548 *2))) (-5 *2 (-793 *3)) (-5 *1 (-978 *3 *4 *5)) (-4 *5 (-13 (-357 *4) (-789 *3) (-548 *2))))) (-3506 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-978 *3 *4 *2)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))))) (-3505 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-978 *3 *4 *2)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))))) (-3776 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-823)) (-4 *4 (-1003)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-978 *4 *5 *2)) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) (-3188 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) (-5 *2 (-578 (-1075))) (-5 *1 (-978 *3 *4 *5)) (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3518 (((-1075) $) 8 T ELT)) (-3222 (((-1059) $) 17 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 11 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 14 T ELT))) -(((-979 |#1|) (-13 (-1003) (-10 -8 (-15 -3518 ((-1075) $)))) (-1075)) (T -979)) -((-3518 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-979 *3)) (-14 *3 *2)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3193 (($ (-578 (-978 |#1| |#2| |#3|))) 15 T ELT)) (-3192 (((-578 (-978 |#1| |#2| |#3|)) $) 22 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3776 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-823)) 28 T ELT)) (-3922 (((-765) $) 18 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 21 T ELT))) -(((-980 |#1| |#2| |#3|) (-13 (-1003) (-238 |#3| |#3|) (-10 -8 (-15 -3193 ($ (-578 (-978 |#1| |#2| |#3|)))) (-15 -3192 ((-578 (-978 |#1| |#2| |#3|)) $)) (-15 -3776 (|#3| $ |#3| (-823))))) (-1003) (-13 (-954) (-789 |#1|) (-548 (-793 |#1|))) (-13 (-357 |#2|) (-789 |#1|) (-548 (-793 |#1|)))) (T -980)) -((-3193 (*1 *1 *2) (-12 (-5 *2 (-578 (-978 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-980 *3 *4 *5)))) (-3192 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) (-5 *2 (-578 (-978 *3 *4 *5))) (-5 *1 (-980 *3 *4 *5)) (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))))) (-3776 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-823)) (-4 *4 (-1003)) (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-980 *4 *5 *2)) (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4))))))) -((-3194 (((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83)) 88 T ELT) (((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|))) 92 T ELT) (((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83)) 90 T ELT))) -(((-981 |#1| |#2|) (-10 -7 (-15 -3194 ((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83))) (-15 -3194 ((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)))) (-15 -3194 ((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83)))) (-13 (-254) (-118)) (-578 (-1075))) (T -981)) -((-3194 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) (-5 *1 (-981 *5 *6)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075))))) (-3194 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-2 (|:| -1730 (-1070 *4)) (|:| -3205 (-578 (-850 *4)))))) (-5 *1 (-981 *4 *5)) (-5 *3 (-578 (-850 *4))) (-14 *5 (-578 (-1075))))) (-3194 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) (-5 *1 (-981 *5 *6)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 132 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-308)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-1765 (((-625 |#1|) (-1164 $)) NIL T ELT) (((-625 |#1|)) 117 T ELT)) (-3307 ((|#1| $) 121 T ELT)) (-1658 (((-1087 (-823) (-687)) (-478)) NIL (|has| |#1| (-295)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3117 (((-687)) 43 (|has| |#1| (-313)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-1775 (($ (-1164 |#1|) (-1164 $)) NIL T ELT) (($ (-1164 |#1|)) 46 T ELT)) (-1656 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-295)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-1764 (((-625 |#1|) $ (-1164 $)) NIL T ELT) (((-625 |#1|) $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 109 T ELT) (((-625 |#1|) (-625 $)) 104 T ELT)) (-3818 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-343 |#2|)) NIL (|has| |#1| (-308)) ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3090 (((-823)) 80 T ELT)) (-2975 (($) 47 (|has| |#1| (-313)) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-2814 (($) NIL (|has| |#1| (-295)) ELT)) (-1663 (((-83) $) NIL (|has| |#1| (-295)) ELT)) (-1747 (($ $ (-687)) NIL (|has| |#1| (-295)) ELT) (($ $) NIL (|has| |#1| (-295)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3748 (((-823) $) NIL (|has| |#1| (-295)) ELT) (((-736 (-823)) $) NIL (|has| |#1| (-295)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-3113 ((|#1| $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-295)) ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-1996 ((|#2| $) 87 (|has| |#1| (-308)) ELT)) (-1992 (((-823) $) 140 (|has| |#1| (-313)) ELT)) (-3060 ((|#2| $) 59 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3423 (($) NIL (|has| |#1| (-295)) CONST)) (-2382 (($ (-823)) 131 (|has| |#1| (-313)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2391 (($) 123 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-1659 (((-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478))))) NIL (|has| |#1| (-295)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3733 ((|#1| (-1164 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1748 (((-687) $) NIL (|has| |#1| (-295)) ELT) (((-3 (-687) #1#) $ $) NIL (|has| |#1| (-295)) ELT)) (-3734 (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL (|has| |#1| (-308)) ELT)) (-2390 (((-625 |#1|) (-1164 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT)) (-3167 ((|#2|) 77 T ELT)) (-1657 (($) NIL (|has| |#1| (-295)) ELT)) (-3205 (((-1164 |#1|) $ (-1164 $)) 92 T ELT) (((-625 |#1|) (-1164 $) (-1164 $)) NIL T ELT) (((-1164 |#1|) $) 72 T ELT) (((-625 |#1|) (-1164 $)) 88 T ELT)) (-3948 (((-1164 |#1|) $) NIL T ELT) (($ (-1164 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (|has| |#1| (-295)) ELT)) (-3922 (((-765) $) 58 T ELT) (($ (-478)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-308)) ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-308)) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-2683 (($ $) NIL (|has| |#1| (-295)) ELT) (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-2429 ((|#2| $) 85 T ELT)) (-3107 (((-687)) 79 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1994 (((-1164 $)) 84 T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-2640 (($) 32 T CONST)) (-2647 (($) 19 T CONST)) (-2650 (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-804 (-1075)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL (|has| |#1| (-308)) ELT)) (-3037 (((-83) $ $) 64 T ELT)) (-3925 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 66 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-308)) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-308)) ELT))) -(((-982 |#1| |#2| |#3|) (-656 |#1| |#2|) (-144) (-1140 |#1|) |#2|) (T -982)) -NIL -((-3708 (((-341 |#3|) |#3|) 18 T ELT))) -(((-983 |#1| |#2| |#3|) (-10 -7 (-15 -3708 ((-341 |#3|) |#3|))) (-1140 (-343 (-478))) (-13 (-308) (-118) (-656 (-343 (-478)) |#1|)) (-1140 |#2|)) (T -983)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-1140 (-343 (-478)))) (-4 *5 (-13 (-308) (-118) (-656 (-343 (-478)) *4))) (-5 *2 (-341 *3)) (-5 *1 (-983 *4 *5 *3)) (-4 *3 (-1140 *5))))) -((-3708 (((-341 |#3|) |#3|) 19 T ELT))) -(((-984 |#1| |#2| |#3|) (-10 -7 (-15 -3708 ((-341 |#3|) |#3|))) (-1140 (-343 (-850 (-478)))) (-13 (-308) (-118) (-656 (-343 (-850 (-478))) |#1|)) (-1140 |#2|)) (T -984)) -((-3708 (*1 *2 *3) (-12 (-4 *4 (-1140 (-343 (-850 (-478))))) (-4 *5 (-13 (-308) (-118) (-656 (-343 (-850 (-478))) *4))) (-5 *2 (-341 *3)) (-5 *1 (-984 *4 *5 *3)) (-4 *3 (-1140 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2511 (($ $ $) 16 T ELT)) (-2838 (($ $ $) 17 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3195 (($) 6 T ELT)) (-3948 (((-1075) $) 20 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 15 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 9 T ELT))) -(((-985) (-13 (-749) (-548 (-1075)) (-10 -8 (-15 -3195 ($))))) (T -985)) -((-3195 (*1 *1) (-5 *1 (-985)))) -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-1080)) 20 T ELT) (((-1080) $) 19 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-986) (-111)) (T -986)) +((-3083 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23)))) (-3080 (*1 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3083 (|t#1| $)) (-15 -3082 (|t#1| $)) (-15 -3081 (|t#1| $)) (-15 -3080 (|t#1|) -3934))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3084 (($) 30 T CONST)) (-3706 (($) 22 T CONST)) (-3083 ((|#1| $) 28 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3082 ((|#1| $) 27 T ELT)) (-3080 ((|#1|) 25 T CONST)) (-3928 (((-766) $) 13 T ELT)) (-3081 ((|#1| $) 26 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT))) +(((-951 |#1|) (-111) (-23)) (T -951)) +((-3084 (*1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23))))) +(-13 (-950 |t#1|) (-10 -8 (-15 -3084 ($) -3934))) +(((-23) . T) ((-25) . T) ((-72) . T) ((-548 (-766)) . T) ((-950 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 (-697 |#1| (-767 |#2|)))))) (-579 (-697 |#1| (-767 |#2|)))) NIL T ELT)) (-3664 (((-579 $) (-579 (-697 |#1| (-767 |#2|)))) NIL T ELT) (((-579 $) (-579 (-697 |#1| (-767 |#2|))) (-83)) NIL T ELT) (((-579 $) (-579 (-697 |#1| (-767 |#2|))) (-83) (-83)) NIL T ELT)) (-3066 (((-579 (-767 |#2|)) $) NIL T ELT)) (-2893 (((-83) $) NIL T ELT)) (-2884 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3675 (((-83) (-697 |#1| (-767 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 (((-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3757 (((-579 (-2 (|:| |val| (-697 |#1| (-767 |#2|))) (|:| -1588 $))) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ (-767 |#2|)) NIL T ELT)) (-3692 (($ (-1 (-83) (-697 |#1| (-767 |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 (-697 |#1| (-767 |#2|)) #1="failed") $ (-767 |#2|)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2889 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3671 (((-579 (-697 |#1| (-767 |#2|))) (-579 (-697 |#1| (-767 |#2|))) $ (-1 (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) (-1 (-83) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)))) NIL T ELT)) (-2885 (((-579 (-697 |#1| (-767 |#2|))) (-579 (-697 |#1| (-767 |#2|))) $) NIL (|has| |#1| (-490)) ELT)) (-2886 (((-579 (-697 |#1| (-767 |#2|))) (-579 (-697 |#1| (-767 |#2|))) $) NIL (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ #1#) (-579 (-697 |#1| (-767 |#2|)))) NIL T ELT)) (-3140 (($ (-579 (-697 |#1| (-767 |#2|)))) NIL T ELT)) (-3781 (((-3 $ #1#) $) NIL T ELT)) (-3667 (((-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-697 |#1| (-767 |#2|)) (-1006))) ELT)) (-3388 (($ (-697 |#1| (-767 |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-697 |#1| (-767 |#2|)) (-1006))) ELT) (($ (-1 (-83) (-697 |#1| (-767 |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-697 |#1| (-767 |#2|))) (|:| |den| |#1|)) (-697 |#1| (-767 |#2|)) $) NIL (|has| |#1| (-490)) ELT)) (-3676 (((-83) (-697 |#1| (-767 |#2|)) $ (-1 (-83) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)))) NIL T ELT)) (-3665 (((-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3824 (((-697 |#1| (-767 |#2|)) (-1 (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) $ (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-697 |#1| (-767 |#2|)) (-1006))) ELT) (((-697 |#1| (-767 |#2|)) (-1 (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) $ (-697 |#1| (-767 |#2|))) NIL (|has| $ (-6 -3977)) ELT) (((-697 |#1| (-767 |#2|)) (-1 (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) $ (-1 (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) (-1 (-83) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)))) NIL T ELT)) (-3678 (((-2 (|:| -3843 (-579 (-697 |#1| (-767 |#2|)))) (|:| -1690 (-579 (-697 |#1| (-767 |#2|))))) $) NIL T ELT)) (-3181 (((-83) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3179 (((-83) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3182 (((-83) (-697 |#1| (-767 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-2874 (((-579 (-697 |#1| (-767 |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) (-697 |#1| (-767 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3164 (((-767 |#2|) $) NIL T ELT)) (-2593 (((-579 (-697 |#1| (-767 |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-697 |#1| (-767 |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-697 |#1| (-767 |#2|)) (-1006))) ELT)) (-1937 (($ (-1 (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) $) NIL T ELT)) (-2899 (((-579 (-767 |#2|)) $) NIL T ELT)) (-2898 (((-83) (-767 |#2|) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3175 (((-3 (-697 |#1| (-767 |#2|)) (-579 $)) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3174 (((-579 (-2 (|:| |val| (-697 |#1| (-767 |#2|))) (|:| -1588 $))) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3780 (((-3 (-697 |#1| (-767 |#2|)) #1#) $) NIL T ELT)) (-3176 (((-579 $) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3178 (((-3 (-83) (-579 $)) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3177 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 $))) (-697 |#1| (-767 |#2|)) $) NIL T ELT) (((-83) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3222 (((-579 $) (-697 |#1| (-767 |#2|)) $) NIL T ELT) (((-579 $) (-579 (-697 |#1| (-767 |#2|))) $) NIL T ELT) (((-579 $) (-579 (-697 |#1| (-767 |#2|))) (-579 $)) NIL T ELT) (((-579 $) (-697 |#1| (-767 |#2|)) (-579 $)) NIL T ELT)) (-3422 (($ (-697 |#1| (-767 |#2|)) $) NIL T ELT) (($ (-579 (-697 |#1| (-767 |#2|))) $) NIL T ELT)) (-3679 (((-579 (-697 |#1| (-767 |#2|))) $) NIL T ELT)) (-3673 (((-83) (-697 |#1| (-767 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3668 (((-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3681 (((-83) $ $) NIL T ELT)) (-2888 (((-2 (|:| |num| (-697 |#1| (-767 |#2|))) (|:| |den| |#1|)) (-697 |#1| (-767 |#2|)) $) NIL (|has| |#1| (-490)) ELT)) (-3674 (((-83) (-697 |#1| (-767 |#2|)) $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 (((-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 (((-3 (-697 |#1| (-767 |#2|)) #1#) $) NIL T ELT)) (-1342 (((-3 (-697 |#1| (-767 |#2|)) #1#) (-1 (-83) (-697 |#1| (-767 |#2|))) $) NIL T ELT)) (-3661 (((-3 $ #1#) $ (-697 |#1| (-767 |#2|))) NIL T ELT)) (-3751 (($ $ (-697 |#1| (-767 |#2|))) NIL T ELT) (((-579 $) (-697 |#1| (-767 |#2|)) $) NIL T ELT) (((-579 $) (-697 |#1| (-767 |#2|)) (-579 $)) NIL T ELT) (((-579 $) (-579 (-697 |#1| (-767 |#2|))) $) NIL T ELT) (((-579 $) (-579 (-697 |#1| (-767 |#2|))) (-579 $)) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-697 |#1| (-767 |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-697 |#1| (-767 |#2|))) (-579 (-697 |#1| (-767 |#2|)))) NIL (-12 (|has| (-697 |#1| (-767 |#2|)) (-256 (-697 |#1| (-767 |#2|)))) (|has| (-697 |#1| (-767 |#2|)) (-1006))) ELT) (($ $ (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|))) NIL (-12 (|has| (-697 |#1| (-767 |#2|)) (-256 (-697 |#1| (-767 |#2|)))) (|has| (-697 |#1| (-767 |#2|)) (-1006))) ELT) (($ $ (-245 (-697 |#1| (-767 |#2|)))) NIL (-12 (|has| (-697 |#1| (-767 |#2|)) (-256 (-697 |#1| (-767 |#2|)))) (|has| (-697 |#1| (-767 |#2|)) (-1006))) ELT) (($ $ (-579 (-245 (-697 |#1| (-767 |#2|))))) NIL (-12 (|has| (-697 |#1| (-767 |#2|)) (-256 (-697 |#1| (-767 |#2|)))) (|has| (-697 |#1| (-767 |#2|)) (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3930 (((-688) $) NIL T ELT)) (-1934 (((-688) (-697 |#1| (-767 |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-697 |#1| (-767 |#2|)) (-1006))) ELT) (((-688) (-1 (-83) (-697 |#1| (-767 |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-697 |#1| (-767 |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-697 |#1| (-767 |#2|)))) NIL T ELT)) (-2895 (($ $ (-767 |#2|)) NIL T ELT)) (-2897 (($ $ (-767 |#2|)) NIL T ELT)) (-3666 (($ $) NIL T ELT)) (-2896 (($ $ (-767 |#2|)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (((-579 (-697 |#1| (-767 |#2|))) $) NIL T ELT)) (-3660 (((-688) $) NIL (|has| (-767 |#2|) (-314)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 (-697 |#1| (-767 |#2|))))) #1#) (-579 (-697 |#1| (-767 |#2|))) (-1 (-83) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 (-697 |#1| (-767 |#2|))))) #1#) (-579 (-697 |#1| (-767 |#2|))) (-1 (-83) (-697 |#1| (-767 |#2|))) (-1 (-83) (-697 |#1| (-767 |#2|)) (-697 |#1| (-767 |#2|)))) NIL T ELT)) (-3672 (((-83) $ (-1 (-83) (-697 |#1| (-767 |#2|)) (-579 (-697 |#1| (-767 |#2|))))) NIL T ELT)) (-3173 (((-579 $) (-697 |#1| (-767 |#2|)) $) NIL T ELT) (((-579 $) (-697 |#1| (-767 |#2|)) (-579 $)) NIL T ELT) (((-579 $) (-579 (-697 |#1| (-767 |#2|))) $) NIL T ELT) (((-579 $) (-579 (-697 |#1| (-767 |#2|))) (-579 $)) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-697 |#1| (-767 |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 (-767 |#2|)) $) NIL T ELT)) (-3180 (((-83) (-697 |#1| (-767 |#2|)) $) NIL T ELT)) (-3915 (((-83) (-767 |#2|) $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-952 |#1| |#2|) (-13 (-976 |#1| (-464 (-767 |#2|)) (-767 |#2|) (-697 |#1| (-767 |#2|))) (-10 -8 (-15 -3664 ((-579 $) (-579 (-697 |#1| (-767 |#2|))) (-83) (-83))))) (-386) (-579 (-1080))) (T -952)) +((-3664 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) (-14 *6 (-579 (-1080))) (-5 *2 (-579 (-952 *5 *6))) (-5 *1 (-952 *5 *6))))) +((-3085 (((-1 (-479)) (-994 (-479))) 32 T ELT)) (-3089 (((-479) (-479) (-479) (-479) (-479)) 29 T ELT)) (-3087 (((-1 (-479)) |RationalNumber|) NIL T ELT)) (-3088 (((-1 (-479)) |RationalNumber|) NIL T ELT)) (-3086 (((-1 (-479)) (-479) |RationalNumber|) NIL T ELT))) +(((-953) (-10 -7 (-15 -3085 ((-1 (-479)) (-994 (-479)))) (-15 -3086 ((-1 (-479)) (-479) |RationalNumber|)) (-15 -3087 ((-1 (-479)) |RationalNumber|)) (-15 -3088 ((-1 (-479)) |RationalNumber|)) (-15 -3089 ((-479) (-479) (-479) (-479) (-479))))) (T -953)) +((-3089 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-953)))) (-3088 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-479))) (-5 *1 (-953)))) (-3087 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-479))) (-5 *1 (-953)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-479))) (-5 *1 (-953)) (-5 *3 (-479)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-994 (-479))) (-5 *2 (-1 (-479))) (-5 *1 (-953))))) +((-3928 (((-766) $) NIL T ELT) (($ (-479)) 10 T ELT))) +(((-954 |#1|) (-10 -7 (-15 -3928 (|#1| (-479))) (-15 -3928 ((-766) |#1|))) (-955)) (T -954)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-955) (-111)) (T -955)) +((-3110 (*1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-688))))) +(-13 (-963) (-659) (-586 $) (-551 (-479)) (-10 -7 (-15 -3110 ((-688)) -3934) (-6 -3974))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-551 (-479)) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-659) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3090 (((-344 (-851 |#2|)) (-579 |#2|) (-579 |#2|) (-688) (-688)) 55 T ELT))) +(((-956 |#1| |#2|) (-10 -7 (-15 -3090 ((-344 (-851 |#2|)) (-579 |#2|) (-579 |#2|) (-688) (-688)))) (-1080) (-308)) (T -956)) +((-3090 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-579 *6)) (-5 *4 (-688)) (-4 *6 (-308)) (-5 *2 (-344 (-851 *6))) (-5 *1 (-956 *5 *6)) (-14 *5 (-1080))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-957 |#1|) (-111) (-1016)) (T -957)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-1016))))) +(-13 (-1006) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-3105 (((-83) $) 38 T ELT)) (-3107 (((-83) $) 17 T ELT)) (-3099 (((-688) $) 13 T ELT)) (-3098 (((-688) $) 14 T ELT)) (-3106 (((-83) $) 30 T ELT)) (-3104 (((-83) $) 40 T ELT))) +(((-958 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3098 ((-688) |#1|)) (-15 -3099 ((-688) |#1|)) (-15 -3104 ((-83) |#1|)) (-15 -3105 ((-83) |#1|)) (-15 -3106 ((-83) |#1|)) (-15 -3107 ((-83) |#1|))) (-959 |#2| |#3| |#4| |#5| |#6|) (-688) (-688) (-955) (-193 |#3| |#4|) (-193 |#2| |#4|)) (T -958)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3105 (((-83) $) 61 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3107 (((-83) $) 63 T ELT)) (-3706 (($) 22 T CONST)) (-3094 (($ $) 44 (|has| |#3| (-254)) ELT)) (-3096 ((|#4| $ (-479)) 49 T ELT)) (-3093 (((-688) $) 43 (|has| |#3| (-490)) ELT)) (-3097 ((|#3| $ (-479) (-479)) 51 T ELT)) (-2874 (((-579 |#3|) $) 75 (|has| $ (-6 -3977)) ELT)) (-3092 (((-688) $) 42 (|has| |#3| (-490)) ELT)) (-3091 (((-579 |#5|) $) 41 (|has| |#3| (-490)) ELT)) (-3099 (((-688) $) 55 T ELT)) (-3098 (((-688) $) 54 T ELT)) (-3103 (((-479) $) 59 T ELT)) (-3101 (((-479) $) 57 T ELT)) (-2593 (((-579 |#3|) $) 76 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#3| $) 78 (-12 (|has| |#3| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3102 (((-479) $) 58 T ELT)) (-3100 (((-479) $) 56 T ELT)) (-3108 (($ (-579 (-579 |#3|))) 64 T ELT)) (-1937 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-3576 (((-579 (-579 |#3|)) $) 53 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3448 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-490)) ELT)) (-1935 (((-83) (-1 (-83) |#3|) $) 73 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#3|) (-579 |#3|)) 82 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ (-245 |#3|)) 80 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ (-579 (-245 |#3|))) 79 (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT)) (-1211 (((-83) $ $) 65 T ELT)) (-3385 (((-83) $) 68 T ELT)) (-3547 (($) 67 T ELT)) (-3782 ((|#3| $ (-479) (-479)) 52 T ELT) ((|#3| $ (-479) (-479) |#3|) 50 T ELT)) (-3106 (((-83) $) 62 T ELT)) (-1934 (((-688) |#3| $) 77 (-12 (|has| |#3| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#3|) $) 74 (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 66 T ELT)) (-3095 ((|#5| $ (-479)) 48 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-1936 (((-83) (-1 (-83) |#3|) $) 72 (|has| $ (-6 -3977)) ELT)) (-3104 (((-83) $) 60 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#3|) 45 (|has| |#3| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-3939 (((-688) $) 69 (|has| $ (-6 -3977)) ELT))) +(((-959 |#1| |#2| |#3| |#4| |#5|) (-111) (-688) (-688) (-955) (-193 |t#2| |t#3|) (-193 |t#1| |t#3|)) (T -959)) +((-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) (-3108 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 *5))) (-4 *5 (-955)) (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-479)))) (-3102 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-479)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-479)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-479)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-688)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-688)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-579 (-579 *5))))) (-3782 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)) (-4 *2 (-955)))) (-3097 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)) (-4 *2 (-955)))) (-3782 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *2 *6 *7)) (-4 *2 (-955)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)))) (-3096 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *6 *2 *7)) (-4 *6 (-955)) (-4 *7 (-193 *4 *6)) (-4 *2 (-193 *5 *6)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *6 *7 *2)) (-4 *6 (-955)) (-4 *7 (-193 *5 *6)) (-4 *2 (-193 *4 *6)))) (-3940 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-959 *3 *4 *2 *5 *6)) (-4 *2 (-955)) (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-490)))) (-3931 (*1 *1 *1 *2) (-12 (-4 *1 (-959 *3 *4 *2 *5 *6)) (-4 *2 (-955)) (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-308)))) (-3094 (*1 *1 *1) (-12 (-4 *1 (-959 *2 *3 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *2 *4)) (-4 *4 (-254)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-4 *5 (-490)) (-5 *2 (-688)))) (-3092 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-4 *5 (-490)) (-5 *2 (-688)))) (-3091 (*1 *2 *1) (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-4 *5 (-490)) (-5 *2 (-579 *7))))) +(-13 (-80 |t#3| |t#3|) (-423 |t#3|) (-10 -8 (-6 -3977) (IF (|has| |t#3| (-144)) (-6 (-650 |t#3|)) |%noBranch|) (-15 -3108 ($ (-579 (-579 |t#3|)))) (-15 -3107 ((-83) $)) (-15 -3106 ((-83) $)) (-15 -3105 ((-83) $)) (-15 -3104 ((-83) $)) (-15 -3103 ((-479) $)) (-15 -3102 ((-479) $)) (-15 -3101 ((-479) $)) (-15 -3100 ((-479) $)) (-15 -3099 ((-688) $)) (-15 -3098 ((-688) $)) (-15 -3576 ((-579 (-579 |t#3|)) $)) (-15 -3782 (|t#3| $ (-479) (-479))) (-15 -3097 (|t#3| $ (-479) (-479))) (-15 -3782 (|t#3| $ (-479) (-479) |t#3|)) (-15 -3096 (|t#4| $ (-479))) (-15 -3095 (|t#5| $ (-479))) (-15 -3940 ($ (-1 |t#3| |t#3|) $)) (-15 -3940 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-490)) (-15 -3448 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -3931 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-254)) (-15 -3094 ($ $)) |%noBranch|) (IF (|has| |t#3| (-490)) (PROGN (-15 -3093 ((-688) $)) (-15 -3092 ((-688) $)) (-15 -3091 ((-579 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-80 |#3| |#3|) . T) ((-102) . T) ((-548 (-766)) . T) ((-256 |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ((-423 |#3|) . T) ((-448 |#3| |#3|) -12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ((-584 (-479)) . T) ((-584 |#3|) . T) ((-586 |#3|) . T) ((-578 |#3|) |has| |#3| (-144)) ((-650 |#3|) |has| |#3| (-144)) ((-957 |#3|) . T) ((-962 |#3|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3105 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-83) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3094 (($ $) 47 (|has| |#3| (-254)) ELT)) (-3096 (((-194 |#2| |#3|) $ (-479)) 36 T ELT)) (-3109 (($ (-626 |#3|)) 45 T ELT)) (-3093 (((-688) $) 49 (|has| |#3| (-490)) ELT)) (-3097 ((|#3| $ (-479) (-479)) NIL T ELT)) (-2874 (((-579 |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3092 (((-688) $) 51 (|has| |#3| (-490)) ELT)) (-3091 (((-579 (-194 |#1| |#3|)) $) 55 (|has| |#3| (-490)) ELT)) (-3099 (((-688) $) NIL T ELT)) (-3098 (((-688) $) NIL T ELT)) (-3103 (((-479) $) NIL T ELT)) (-3101 (((-479) $) NIL T ELT)) (-2593 (((-579 |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#3| (-1006))) ELT)) (-3102 (((-479) $) NIL T ELT)) (-3100 (((-479) $) NIL T ELT)) (-3108 (($ (-579 (-579 |#3|))) 31 T ELT)) (-1937 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3576 (((-579 (-579 |#3|)) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3448 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-490)) ELT)) (-1935 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#3|) (-579 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ (-245 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ (-579 (-245 |#3|))) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#3| $ (-479) (-479)) NIL T ELT) ((|#3| $ (-479) (-479) |#3|) NIL T ELT)) (-3893 (((-105)) 59 (|has| |#3| (-308)) ELT)) (-3106 (((-83) $) NIL T ELT)) (-1934 (((-688) |#3| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#3| (-1006))) ELT) (((-688) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) 66 (|has| |#3| (-549 (-468))) ELT)) (-3095 (((-194 |#1| |#3|) $ (-479)) 40 T ELT)) (-3928 (((-766) $) 19 T ELT) (((-626 |#3|) $) 42 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3104 (((-83) $) NIL T ELT)) (-2645 (($) 16 T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#3|) NIL (|has| |#3| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-960 |#1| |#2| |#3|) (-13 (-959 |#1| |#2| |#3| (-194 |#2| |#3|) (-194 |#1| |#3|)) (-548 (-626 |#3|)) (-10 -8 (IF (|has| |#3| (-308)) (-6 (-1177 |#3|)) |%noBranch|) (IF (|has| |#3| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|) (-15 -3109 ($ (-626 |#3|))))) (-688) (-688) (-955)) (T -960)) +((-3109 (*1 *1 *2) (-12 (-5 *2 (-626 *5)) (-4 *5 (-955)) (-5 *1 (-960 *3 *4 *5)) (-14 *3 (-688)) (-14 *4 (-688))))) +((-3824 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3940 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-961 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3940 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3824 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-688) (-688) (-955) (-193 |#2| |#3|) (-193 |#1| |#3|) (-959 |#1| |#2| |#3| |#4| |#5|) (-955) (-193 |#2| |#7|) (-193 |#1| |#7|) (-959 |#1| |#2| |#7| |#8| |#9|)) (T -961)) +((-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-955)) (-4 *2 (-955)) (-14 *5 (-688)) (-14 *6 (-688)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) (-4 *10 (-193 *6 *2)) (-4 *11 (-193 *5 *2)) (-5 *1 (-961 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-959 *5 *6 *7 *8 *9)) (-4 *12 (-959 *5 *6 *2 *10 *11)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-955)) (-4 *10 (-955)) (-14 *5 (-688)) (-14 *6 (-688)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) (-4 *2 (-959 *5 *6 *10 *11 *12)) (-5 *1 (-961 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-959 *5 *6 *7 *8 *9)) (-4 *11 (-193 *6 *10)) (-4 *12 (-193 *5 *10))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) +(((-962 |#1|) (-111) (-963)) (T -962)) +NIL +(-13 (-21) (-957 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-957 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-963) (-111)) (T -963)) +NIL +(-13 (-21) (-1016)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3813 (((-1080) $) 11 T ELT)) (-3718 ((|#1| $) 12 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3210 (($ (-1080) |#1|) 10 T ELT)) (-3928 (((-766) $) 22 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3041 (((-83) $ $) 17 (|has| |#1| (-1006)) ELT))) +(((-964 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -3210 ($ (-1080) |#1|)) (-15 -3813 ((-1080) $)) (-15 -3718 (|#1| $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) (-999 |#2|) (-1119)) (T -964)) +((-3210 (*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-4 *4 (-1119)) (-5 *1 (-964 *3 *4)) (-4 *3 (-999 *4)))) (-3813 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-1080)) (-5 *1 (-964 *3 *4)) (-4 *3 (-999 *4)))) (-3718 (*1 *2 *1) (-12 (-4 *2 (-999 *3)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1119))))) +((-3753 (($ $) 17 T ELT)) (-3111 (($ $) 25 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 54 T ELT)) (-3116 (($ $) 27 T ELT)) (-3112 (($ $) 12 T ELT)) (-3114 (($ $) 40 T ELT)) (-3954 (((-324) $) NIL T ELT) (((-177) $) NIL T ELT) (((-794 (-324)) $) 36 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) 31 T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) 31 T ELT)) (-3110 (((-688)) 9 T CONST)) (-3115 (($ $) 44 T ELT))) +(((-965 |#1|) (-10 -7 (-15 -3111 (|#1| |#1|)) (-15 -3753 (|#1| |#1|)) (-15 -3112 (|#1| |#1|)) (-15 -3114 (|#1| |#1|)) (-15 -3115 (|#1| |#1|)) (-15 -3116 (|#1| |#1|)) (-15 -2781 ((-792 (-324) |#1|) |#1| (-794 (-324)) (-792 (-324) |#1|))) (-15 -3954 ((-794 (-324)) |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3928 (|#1| (-479))) (-15 -3954 ((-177) |#1|)) (-15 -3954 ((-324) |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3928 (|#1| |#1|)) (-15 -3110 ((-688)) -3934) (-15 -3928 (|#1| (-479))) (-15 -3928 ((-766) |#1|))) (-966)) (T -965)) +((-3110 (*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-965 *3)) (-4 *3 (-966))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3113 (((-479) $) 105 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-3753 (($ $) 103 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-3022 (($ $) 113 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3605 (((-479) $) 130 T ELT)) (-3706 (($) 22 T CONST)) (-3111 (($ $) 102 T ELT)) (-3141 (((-3 (-479) #1="failed") $) 118 T ELT) (((-3 (-344 (-479)) #1#) $) 115 T ELT)) (-3140 (((-479) $) 119 T ELT) (((-344 (-479)) $) 116 T ELT)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-3705 (((-83) $) 86 T ELT)) (-3170 (((-83) $) 128 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 109 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 112 T ELT)) (-3116 (($ $) 108 T ELT)) (-3171 (((-83) $) 129 T ELT)) (-1593 (((-3 (-579 $) #2="failed") (-579 $) $) 65 T ELT)) (-2516 (($ $ $) 122 T ELT)) (-2842 (($ $ $) 123 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 85 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3112 (($ $) 104 T ELT)) (-3114 (($ $) 106 T ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-3954 (((-324) $) 121 T ELT) (((-177) $) 120 T ELT) (((-794 (-324)) $) 110 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT) (($ (-479)) 117 T ELT) (($ (-344 (-479))) 114 T ELT)) (-3110 (((-688)) 37 T CONST)) (-3115 (($ $) 107 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-3365 (($ $) 131 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2551 (((-83) $ $) 124 T ELT)) (-2552 (((-83) $ $) 126 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 125 T ELT)) (-2670 (((-83) $ $) 127 T ELT)) (-3931 (($ $ $) 80 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT) (($ $ (-344 (-479))) 111 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT))) +(((-966) (-111)) (T -966)) +((-3116 (*1 *1 *1) (-4 *1 (-966))) (-3115 (*1 *1 *1) (-4 *1 (-966))) (-3114 (*1 *1 *1) (-4 *1 (-966))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-479)))) (-3112 (*1 *1 *1) (-4 *1 (-966))) (-3753 (*1 *1 *1) (-4 *1 (-966))) (-3111 (*1 *1 *1) (-4 *1 (-966)))) +(-13 (-308) (-749) (-927) (-944 (-479)) (-944 (-344 (-479))) (-909) (-549 (-794 (-324))) (-790 (-324)) (-118) (-10 -8 (-15 -3116 ($ $)) (-15 -3115 ($ $)) (-15 -3114 ($ $)) (-15 -3113 ((-479) $)) (-15 -3112 ($ $)) (-15 -3753 ($ $)) (-15 -3111 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 $ $) . T) ((-102) . T) ((-118) . T) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-549 (-177)) . T) ((-549 (-324)) . T) ((-549 (-794 (-324))) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-386) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 $) . T) ((-650 (-344 (-479))) . T) ((-650 $) . T) ((-659) . T) ((-708) . T) ((-710) . T) ((-712) . T) ((-715) . T) ((-749) . T) ((-750) . T) ((-753) . T) ((-790 (-324)) . T) ((-826) . T) ((-909) . T) ((-927) . T) ((-944 (-344 (-479))) . T) ((-944 (-479)) . T) ((-957 (-344 (-479))) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) |#2| $) 26 T ELT)) (-3120 ((|#1| $) 10 T ELT)) (-3605 (((-479) |#2| $) 119 T ELT)) (-3167 (((-3 $ #1="failed") |#2| (-824)) 76 T ELT)) (-3121 ((|#1| $) 31 T ELT)) (-3166 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3118 (($ $) 28 T ELT)) (-3449 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3170 (((-83) |#2| $) NIL T ELT)) (-3171 (((-83) |#2| $) NIL T ELT)) (-3117 (((-83) |#2| $) 27 T ELT)) (-3119 ((|#1| $) 120 T ELT)) (-3122 ((|#1| $) 30 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3169 ((|#2| $) 104 T ELT)) (-3928 (((-766) $) 95 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3752 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3168 (((-579 $) |#2|) 78 T ELT)) (-3041 (((-83) $ $) 99 T ELT))) +(((-967 |#1| |#2|) (-13 (-973 |#1| |#2|) (-10 -8 (-15 -3122 (|#1| $)) (-15 -3121 (|#1| $)) (-15 -3120 (|#1| $)) (-15 -3119 (|#1| $)) (-15 -3118 ($ $)) (-15 -3117 ((-83) |#2| $)) (-15 -3166 (|#1| |#2| $ |#1|)))) (-13 (-749) (-308)) (-1145 |#1|)) (T -967)) +((-3166 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2)))) (-3122 (*1 *2 *1) (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2)))) (-3121 (*1 *2 *1) (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2)))) (-3120 (*1 *2 *1) (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2)))) (-3119 (*1 *2 *1) (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2)))) (-3118 (*1 *1 *1) (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2)))) (-3117 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-749) (-308))) (-5 *2 (-83)) (-5 *1 (-967 *4 *3)) (-4 *3 (-1145 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-2034 (($ $ $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2029 (($ $ $ $) NIL T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3605 (((-479) $) NIL T ELT)) (-2426 (($ $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3123 (($ (-1080)) 10 T ELT) (($ (-479)) 7 T ELT)) (-3141 (((-3 (-479) #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL T ELT)) (-2549 (($ $ $) NIL T ELT)) (-2266 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-626 (-479)) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) NIL T ELT)) (-3008 (((-83) $) NIL T ELT)) (-3007 (((-344 (-479)) $) NIL T ELT)) (-2979 (($) NIL T ELT) (($ $) NIL T ELT)) (-2548 (($ $ $) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-2027 (($ $ $ $) NIL T ELT)) (-2035 (($ $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1357 (($ $ $) NIL T ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2658 (((-83) $) NIL T ELT)) (-3427 (((-628 $) $) NIL T ELT)) (-3171 (((-83) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2028 (($ $ $ $) NIL T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-2031 (($ $) NIL T ELT)) (-3815 (($ $) NIL T ELT)) (-2267 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL T ELT) (((-626 (-479)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2026 (($ $ $) NIL T ELT)) (-3428 (($) NIL T CONST)) (-2033 (($ $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-1355 (($ $) NIL T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-2659 (((-83) $) NIL T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-3740 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2032 (($ $) NIL T ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-479) $) 16 T ELT) (((-468) $) NIL T ELT) (((-794 (-479)) $) NIL T ELT) (((-324) $) NIL T ELT) (((-177) $) NIL T ELT) (($ (-1080)) 9 T ELT)) (-3928 (((-766) $) 23 T ELT) (($ (-479)) 6 T ELT) (($ $) NIL T ELT) (($ (-479)) 6 T ELT)) (-3110 (((-688)) NIL T CONST)) (-2036 (((-83) $ $) NIL T ELT)) (-3086 (($ $ $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2679 (($) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2030 (($ $ $ $) NIL T ELT)) (-3365 (($ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-3819 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-479) $) NIL T ELT))) +(((-968) (-13 (-478) (-553 (-1080)) (-10 -8 (-6 -3964) (-6 -3969) (-6 -3965) (-15 -3123 ($ (-1080))) (-15 -3123 ($ (-479)))))) (T -968)) +((-3123 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-968)))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-968))))) +((-3779 (($ $) 46 T ELT)) (-3150 (((-83) $ $) 82 T ELT)) (-3141 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 (-479) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-851 (-344 (-479)))) 247 T ELT) (((-3 $ #1#) (-851 (-479))) 246 T ELT) (((-3 $ #1#) (-851 |#2|)) 249 T ELT)) (-3140 ((|#2| $) NIL T ELT) (((-344 (-479)) $) NIL T ELT) (((-479) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-851 (-344 (-479)))) 235 T ELT) (($ (-851 (-479))) 231 T ELT) (($ (-851 |#2|)) 255 T ELT)) (-3941 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3676 (((-83) $ $) 131 T ELT) (((-83) $ (-579 $)) 135 T ELT)) (-3156 (((-83) $) 60 T ELT)) (-3734 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 125 T ELT)) (-3127 (($ $) 160 T ELT)) (-3138 (($ $) 156 T ELT)) (-3139 (($ $) 155 T ELT)) (-3149 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3148 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3677 (((-83) $ $) 143 T ELT) (((-83) $ (-579 $)) 144 T ELT)) (-3164 ((|#4| $) 32 T ELT)) (-3143 (($ $ $) 128 T ELT)) (-3157 (((-83) $) 59 T ELT)) (-3163 (((-688) $) 35 T ELT)) (-3124 (($ $) 174 T ELT)) (-3125 (($ $) 171 T ELT)) (-3152 (((-579 $) $) 72 T ELT)) (-3155 (($ $) 62 T ELT)) (-3126 (($ $) 167 T ELT)) (-3153 (((-579 $) $) 69 T ELT)) (-3154 (($ $) 64 T ELT)) (-3158 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3142 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3463 (-688))) $ $) 130 T ELT)) (-3144 (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $) 126 T ELT) (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $ |#4|) 127 T ELT)) (-3145 (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -2887 $)) $ $) 121 T ELT) (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -2887 $)) $ $ |#4|) 123 T ELT)) (-3147 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3146 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3160 (((-579 $) $) 54 T ELT)) (-3673 (((-83) $ $) 140 T ELT) (((-83) $ (-579 $)) 141 T ELT)) (-3668 (($ $ $) 116 T ELT)) (-3428 (($ $) 37 T ELT)) (-3681 (((-83) $ $) 80 T ELT)) (-3674 (((-83) $ $) 136 T ELT) (((-83) $ (-579 $)) 138 T ELT)) (-3669 (($ $ $) 112 T ELT)) (-3162 (($ $) 41 T ELT)) (-3128 ((|#2| |#2| $) 164 T ELT) (($ (-579 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3136 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3137 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3161 (($ $) 49 T ELT)) (-3159 (($ $) 55 T ELT)) (-3954 (((-794 (-324)) $) NIL T ELT) (((-794 (-479)) $) NIL T ELT) (((-468) $) NIL T ELT) (($ (-851 (-344 (-479)))) 237 T ELT) (($ (-851 (-479))) 233 T ELT) (($ (-851 |#2|)) 248 T ELT) (((-1063) $) 278 T ELT) (((-851 |#2|) $) 184 T ELT)) (-3928 (((-766) $) 29 T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-851 |#2|) $) 185 T ELT) (($ (-344 (-479))) NIL T ELT) (($ $) NIL T ELT)) (-3151 (((-3 (-83) #1#) $ $) 79 T ELT))) +(((-969 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3928 (|#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -3128 (|#1| (-579 |#1|))) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3928 ((-851 |#2|) |#1|)) (-15 -3954 ((-851 |#2|) |#1|)) (-15 -3954 ((-1063) |#1|)) (-15 -3124 (|#1| |#1|)) (-15 -3125 (|#1| |#1|)) (-15 -3126 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3128 (|#2| |#2| |#1|)) (-15 -3136 (|#1| |#1| |#1|)) (-15 -3137 (|#1| |#1| |#1|)) (-15 -3136 (|#1| |#1| |#2|)) (-15 -3137 (|#1| |#1| |#2|)) (-15 -3138 (|#1| |#1|)) (-15 -3139 (|#1| |#1|)) (-15 -3954 (|#1| (-851 |#2|))) (-15 -3140 (|#1| (-851 |#2|))) (-15 -3141 ((-3 |#1| #1="failed") (-851 |#2|))) (-15 -3954 (|#1| (-851 (-479)))) (-15 -3140 (|#1| (-851 (-479)))) (-15 -3141 ((-3 |#1| #1#) (-851 (-479)))) (-15 -3954 (|#1| (-851 (-344 (-479))))) (-15 -3140 (|#1| (-851 (-344 (-479))))) (-15 -3141 ((-3 |#1| #1#) (-851 (-344 (-479))))) (-15 -3668 (|#1| |#1| |#1|)) (-15 -3669 (|#1| |#1| |#1|)) (-15 -3142 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3463 (-688))) |#1| |#1|)) (-15 -3143 (|#1| |#1| |#1|)) (-15 -3734 ((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|)) (-15 -3144 ((-2 (|:| -3936 |#1|) (|:| |gap| (-688)) (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1| |#4|)) (-15 -3144 ((-2 (|:| -3936 |#1|) (|:| |gap| (-688)) (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|)) (-15 -3145 ((-2 (|:| -3936 |#1|) (|:| |gap| (-688)) (|:| -2887 |#1|)) |#1| |#1| |#4|)) (-15 -3145 ((-2 (|:| -3936 |#1|) (|:| |gap| (-688)) (|:| -2887 |#1|)) |#1| |#1|)) (-15 -3146 (|#1| |#1| |#1| |#4|)) (-15 -3147 (|#1| |#1| |#1| |#4|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3147 (|#1| |#1| |#1|)) (-15 -3148 (|#1| |#1| |#1| |#4|)) (-15 -3149 (|#1| |#1| |#1| |#4|)) (-15 -3148 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1| |#1|)) (-15 -3677 ((-83) |#1| (-579 |#1|))) (-15 -3677 ((-83) |#1| |#1|)) (-15 -3673 ((-83) |#1| (-579 |#1|))) (-15 -3673 ((-83) |#1| |#1|)) (-15 -3674 ((-83) |#1| (-579 |#1|))) (-15 -3674 ((-83) |#1| |#1|)) (-15 -3676 ((-83) |#1| (-579 |#1|))) (-15 -3676 ((-83) |#1| |#1|)) (-15 -3150 ((-83) |#1| |#1|)) (-15 -3681 ((-83) |#1| |#1|)) (-15 -3151 ((-3 (-83) #1#) |#1| |#1|)) (-15 -3152 ((-579 |#1|) |#1|)) (-15 -3153 ((-579 |#1|) |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -3155 (|#1| |#1|)) (-15 -3156 ((-83) |#1|)) (-15 -3157 ((-83) |#1|)) (-15 -3941 (|#1| |#1| |#4|)) (-15 -3158 (|#1| |#1| |#4|)) (-15 -3159 (|#1| |#1|)) (-15 -3160 ((-579 |#1|) |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3163 ((-688) |#1|)) (-15 -3164 (|#4| |#1|)) (-15 -3954 ((-468) |#1|)) (-15 -3954 ((-794 (-479)) |#1|)) (-15 -3954 ((-794 (-324)) |#1|)) (-15 -3928 (|#1| |#4|)) (-15 -3141 ((-3 |#4| #1#) |#1|)) (-15 -3140 (|#4| |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3941 (|#1| |#1|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3928 (|#1| |#2|)) (-15 -3928 (|#1| (-479))) (-15 -3928 ((-766) |#1|))) (-970 |#2| |#3| |#4|) (-955) (-711) (-750)) (T -969)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 |#3|) $) 120 T ELT)) (-3068 (((-1075 $) $ |#3|) 135 T ELT) (((-1075 |#1|) $) 134 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 97 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 98 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 100 (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) 122 T ELT) (((-688) $ (-579 |#3|)) 121 T ELT)) (-3779 (($ $) 290 T ELT)) (-3150 (((-83) $ $) 276 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3737 (($ $ $) 235 (|has| |#1| (-490)) ELT)) (-3132 (((-579 $) $ $) 230 (|has| |#1| (-490)) ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 110 (|has| |#1| (-815)) ELT)) (-3757 (($ $) 108 (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) 107 (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1="failed") (-579 (-1075 $)) (-1075 $)) 113 (|has| |#1| (-815)) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-344 (-479)) #2#) $) 175 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #2#) $) 173 (|has| |#1| (-944 (-479))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-851 (-344 (-479)))) 250 (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#3| (-549 (-1080)))) ELT) (((-3 $ "failed") (-851 (-479))) 247 (OR (-12 (-2545 (|has| |#1| (-38 (-344 (-479))))) (|has| |#1| (-38 (-479))) (|has| |#3| (-549 (-1080)))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#3| (-549 (-1080))))) ELT) (((-3 $ "failed") (-851 |#1|)) 244 (OR (-12 (-2545 (|has| |#1| (-38 (-344 (-479))))) (-2545 (|has| |#1| (-38 (-479)))) (|has| |#3| (-549 (-1080)))) (-12 (-2545 (|has| |#1| (-478))) (-2545 (|has| |#1| (-38 (-344 (-479))))) (|has| |#1| (-38 (-479))) (|has| |#3| (-549 (-1080)))) (-12 (-2545 (|has| |#1| (-898 (-479)))) (|has| |#1| (-38 (-344 (-479)))) (|has| |#3| (-549 (-1080))))) ELT)) (-3140 ((|#1| $) 177 T ELT) (((-344 (-479)) $) 176 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) 174 (|has| |#1| (-944 (-479))) ELT) ((|#3| $) 151 T ELT) (($ (-851 (-344 (-479)))) 249 (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#3| (-549 (-1080)))) ELT) (($ (-851 (-479))) 246 (OR (-12 (-2545 (|has| |#1| (-38 (-344 (-479))))) (|has| |#1| (-38 (-479))) (|has| |#3| (-549 (-1080)))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#3| (-549 (-1080))))) ELT) (($ (-851 |#1|)) 243 (OR (-12 (-2545 (|has| |#1| (-38 (-344 (-479))))) (-2545 (|has| |#1| (-38 (-479)))) (|has| |#3| (-549 (-1080)))) (-12 (-2545 (|has| |#1| (-478))) (-2545 (|has| |#1| (-38 (-344 (-479))))) (|has| |#1| (-38 (-479))) (|has| |#3| (-549 (-1080)))) (-12 (-2545 (|has| |#1| (-898 (-479)))) (|has| |#1| (-38 (-344 (-479)))) (|has| |#3| (-549 (-1080))))) ELT)) (-3738 (($ $ $ |#3|) 118 (|has| |#1| (-144)) ELT) (($ $ $) 231 (|has| |#1| (-490)) ELT)) (-3941 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 146 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 145 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 144 T ELT) (((-626 |#1|) (-626 $)) 143 T ELT)) (-3676 (((-83) $ $) 275 T ELT) (((-83) $ (-579 $)) 274 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3156 (((-83) $) 283 T ELT)) (-3734 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 255 T ELT)) (-3127 (($ $) 224 (|has| |#1| (-386)) ELT)) (-3485 (($ $) 190 (|has| |#1| (-386)) ELT) (($ $ |#3|) 115 (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) 119 T ELT)) (-3705 (((-83) $) 106 (|has| |#1| (-815)) ELT)) (-3138 (($ $) 240 (|has| |#1| (-490)) ELT)) (-3139 (($ $) 241 (|has| |#1| (-490)) ELT)) (-3149 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3148 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1612 (($ $ |#1| |#2| $) 186 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 94 (-12 (|has| |#3| (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 93 (-12 (|has| |#3| (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-2397 (((-83) $) 40 T ELT)) (-2405 (((-688) $) 183 T ELT)) (-3677 (((-83) $ $) 269 T ELT) (((-83) $ (-579 $)) 268 T ELT)) (-3129 (($ $ $ $ $) 226 (|has| |#1| (-490)) ELT)) (-3164 ((|#3| $) 294 T ELT)) (-3069 (($ (-1075 |#1|) |#3|) 127 T ELT) (($ (-1075 $) |#3|) 126 T ELT)) (-2806 (((-579 $) $) 136 T ELT)) (-3919 (((-83) $) 166 T ELT)) (-2878 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-688)) 129 T ELT) (($ $ (-579 |#3|) (-579 (-688))) 128 T ELT)) (-3143 (($ $ $) 254 T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ |#3|) 130 T ELT)) (-3157 (((-83) $) 284 T ELT)) (-2805 ((|#2| $) 184 T ELT) (((-688) $ |#3|) 132 T ELT) (((-579 (-688)) $ (-579 |#3|)) 131 T ELT)) (-3163 (((-688) $) 293 T ELT)) (-1613 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3067 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3124 (($ $) 221 (|has| |#1| (-386)) ELT)) (-3125 (($ $) 222 (|has| |#1| (-386)) ELT)) (-3152 (((-579 $) $) 279 T ELT)) (-3155 (($ $) 282 T ELT)) (-3126 (($ $) 223 (|has| |#1| (-386)) ELT)) (-3153 (((-579 $) $) 280 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 148 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 147 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 142 T ELT) (((-626 |#1|) (-1169 $)) 141 T ELT)) (-3154 (($ $) 281 T ELT)) (-2879 (($ $) 163 T ELT)) (-3158 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-1879 (($ (-579 $)) 104 (|has| |#1| (-386)) ELT) (($ $ $) 103 (|has| |#1| (-386)) ELT)) (-3142 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3463 (-688))) $ $) 253 T ELT)) (-3144 (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $) 257 T ELT) (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $ |#3|) 256 T ELT)) (-3145 (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -2887 $)) $ $) 259 T ELT) (((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -2887 $)) $ $ |#3|) 258 T ELT)) (-3147 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3146 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3174 (($ $ $) 229 (|has| |#1| (-490)) ELT)) (-3160 (((-579 $) $) 288 T ELT)) (-2808 (((-3 (-579 $) #3#) $) 124 T ELT)) (-2807 (((-3 (-579 $) #3#) $) 125 T ELT)) (-2809 (((-3 (-2 (|:| |var| |#3|) (|:| -2388 (-688))) #3#) $) 123 T ELT)) (-3673 (((-83) $ $) 271 T ELT) (((-83) $ (-579 $)) 270 T ELT)) (-3668 (($ $ $) 251 T ELT)) (-3428 (($ $) 292 T ELT)) (-3681 (((-83) $ $) 277 T ELT)) (-3674 (((-83) $ $) 273 T ELT) (((-83) $ (-579 $)) 272 T ELT)) (-3669 (($ $ $) 252 T ELT)) (-3162 (($ $) 291 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3133 (((-2 (|:| -3128 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-490)) ELT)) (-3134 (((-2 (|:| -3128 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-490)) ELT)) (-1785 (((-83) $) 180 T ELT)) (-1784 ((|#1| $) 181 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 105 (|has| |#1| (-386)) ELT)) (-3128 ((|#1| |#1| $) 225 (|has| |#1| (-386)) ELT) (($ (-579 $)) 102 (|has| |#1| (-386)) ELT) (($ $ $) 101 (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 112 (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 111 (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) 109 (|has| |#1| (-815)) ELT)) (-3135 (((-2 (|:| -3128 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-490)) ELT)) (-3448 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-490)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-490)) ELT)) (-3136 (($ $ |#1|) 238 (|has| |#1| (-490)) ELT) (($ $ $) 236 (|has| |#1| (-490)) ELT)) (-3137 (($ $ |#1|) 239 (|has| |#1| (-490)) ELT) (($ $ $) 237 (|has| |#1| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-579 $) (-579 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-579 |#3|) (-579 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-579 |#3|) (-579 $)) 152 T ELT)) (-3739 (($ $ |#3|) 117 (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 |#3|) (-579 (-688))) 49 T ELT) (($ $ |#3| (-688)) 48 T ELT) (($ $ (-579 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-3930 ((|#2| $) 164 T ELT) (((-688) $ |#3|) 140 T ELT) (((-579 (-688)) $ (-579 |#3|)) 139 T ELT)) (-3161 (($ $) 289 T ELT)) (-3159 (($ $) 287 T ELT)) (-3954 (((-794 (-324)) $) 92 (-12 (|has| |#3| (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) 91 (-12 (|has| |#3| (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) 90 (-12 (|has| |#3| (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT) (($ (-851 (-344 (-479)))) 248 (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#3| (-549 (-1080)))) ELT) (($ (-851 (-479))) 245 (OR (-12 (-2545 (|has| |#1| (-38 (-344 (-479))))) (|has| |#1| (-38 (-479))) (|has| |#3| (-549 (-1080)))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#3| (-549 (-1080))))) ELT) (($ (-851 |#1|)) 242 (|has| |#3| (-549 (-1080))) ELT) (((-1063) $) 220 (-12 (|has| |#1| (-944 (-479))) (|has| |#3| (-549 (-1080)))) ELT) (((-851 |#1|) $) 219 (|has| |#3| (-549 (-1080))) ELT)) (-2802 ((|#1| $) 189 (|has| |#1| (-386)) ELT) (($ $ |#3|) 116 (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) 114 (-2547 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-851 |#1|) $) 218 (|has| |#3| (-549 (-1080))) ELT) (($ (-344 (-479))) 88 (OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ELT) (($ $) 95 (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) 182 T ELT)) (-3659 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-688)) 138 T ELT) (($ $ (-579 |#3|) (-579 (-688))) 137 T ELT)) (-2687 (((-628 $) $) 89 (OR (-2547 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) 37 T CONST)) (-1611 (($ $ $ (-688)) 187 (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 99 (|has| |#1| (-490)) ELT)) (-2645 (($) 23 T CONST)) (-3151 (((-3 (-83) "failed") $ $) 278 T ELT)) (-2651 (($) 39 T CONST)) (-3130 (($ $ $ $ (-688)) 227 (|has| |#1| (-490)) ELT)) (-3131 (($ $ $ (-688)) 228 (|has| |#1| (-490)) ELT)) (-2654 (($ $ (-579 |#3|) (-579 (-688))) 52 T ELT) (($ $ |#3| (-688)) 51 T ELT) (($ $ (-579 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 172 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) 171 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-970 |#1| |#2| |#3|) (-111) (-955) (-711) (-750)) (T -970)) +((-3164 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-688)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3779 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3160 (*1 *2 *1) (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-970 *3 *4 *5)))) (-3159 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3158 (*1 *1 *1 *2) (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) (-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3153 (*1 *2 *1) (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-970 *3 *4 *5)))) (-3152 (*1 *2 *1) (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-970 *3 *4 *5)))) (-3151 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) (-3681 (*1 *2 *1 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) (-3676 (*1 *2 *1 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) (-3676 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *1)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)))) (-3674 (*1 *2 *1 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) (-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *1)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)))) (-3673 (*1 *2 *1 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) (-3673 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *1)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)))) (-3677 (*1 *2 *1 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-579 *1)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)))) (-3149 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3148 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3149 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) (-3148 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) (-3147 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3146 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3147 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) (-3146 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) (-3145 (*1 *2 *1 *1) (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-2 (|:| -3936 *1) (|:| |gap| (-688)) (|:| -2887 *1))) (-4 *1 (-970 *3 *4 *5)))) (-3145 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-5 *2 (-2 (|:| -3936 *1) (|:| |gap| (-688)) (|:| -2887 *1))) (-4 *1 (-970 *4 *5 *3)))) (-3144 (*1 *2 *1 *1) (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-2 (|:| -3936 *1) (|:| |gap| (-688)) (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-970 *3 *4 *5)))) (-3144 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-5 *2 (-2 (|:| -3936 *1) (|:| |gap| (-688)) (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-970 *4 *5 *3)))) (-3734 (*1 *2 *1 *1) (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-970 *3 *4 *5)))) (-3143 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3142 (*1 *2 *1 *1) (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3463 (-688)))) (-4 *1 (-970 *3 *4 *5)))) (-3669 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3668 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) (-3141 (*1 *1 *2) (|partial| -12 (-5 *2 (-851 (-344 (-479)))) (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080))) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)))) (-3140 (*1 *1 *2) (-12 (-5 *2 (-851 (-344 (-479)))) (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080))) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-851 (-344 (-479)))) (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080))) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)))) (-3141 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-4 *3 (-38 (-479))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750))) (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750))))) (-3140 (*1 *1 *2) (OR (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-4 *3 (-38 (-479))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750))) (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750))))) (-3954 (*1 *1 *2) (OR (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-4 *3 (-38 (-479))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750))) (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750))))) (-3141 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-851 *3)) (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-2545 (-4 *3 (-38 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))) (-12 (-5 *2 (-851 *3)) (-12 (-2545 (-4 *3 (-478))) (-2545 (-4 *3 (-38 (-344 (-479))))) (-4 *3 (-38 (-479))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))) (-12 (-5 *2 (-851 *3)) (-12 (-2545 (-4 *3 (-898 (-479)))) (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))))) (-3140 (*1 *1 *2) (OR (-12 (-5 *2 (-851 *3)) (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-2545 (-4 *3 (-38 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))) (-12 (-5 *2 (-851 *3)) (-12 (-2545 (-4 *3 (-478))) (-2545 (-4 *3 (-38 (-344 (-479))))) (-4 *3 (-38 (-479))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))) (-12 (-5 *2 (-851 *3)) (-12 (-2545 (-4 *3 (-898 (-479)))) (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-851 *3)) (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *5 (-549 (-1080))) (-4 *4 (-711)) (-4 *5 (-750)))) (-3139 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3137 (*1 *1 *1 *2) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3136 (*1 *1 *1 *2) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3137 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3136 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3737 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3135 (*1 *2 *1 *1) (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-2 (|:| -3128 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-970 *3 *4 *5)))) (-3134 (*1 *2 *1 *1) (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-2 (|:| -3128 *1) (|:| |coef1| *1))) (-4 *1 (-970 *3 *4 *5)))) (-3133 (*1 *2 *1 *1) (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-2 (|:| -3128 *1) (|:| |coef2| *1))) (-4 *1 (-970 *3 *4 *5)))) (-3738 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3132 (*1 *2 *1 *1) (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-970 *3 *4 *5)))) (-3174 (*1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3131 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *3 (-490)))) (-3130 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *3 (-490)))) (-3129 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-490)))) (-3128 (*1 *2 *2 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-386)))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-386)))) (-3126 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-386)))) (-3125 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-386)))) (-3124 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-386))))) +(-13 (-855 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3164 (|t#3| $)) (-15 -3163 ((-688) $)) (-15 -3428 ($ $)) (-15 -3162 ($ $)) (-15 -3779 ($ $)) (-15 -3161 ($ $)) (-15 -3160 ((-579 $) $)) (-15 -3159 ($ $)) (-15 -3158 ($ $ |t#3|)) (-15 -3941 ($ $ |t#3|)) (-15 -3157 ((-83) $)) (-15 -3156 ((-83) $)) (-15 -3155 ($ $)) (-15 -3154 ($ $)) (-15 -3153 ((-579 $) $)) (-15 -3152 ((-579 $) $)) (-15 -3151 ((-3 (-83) "failed") $ $)) (-15 -3681 ((-83) $ $)) (-15 -3150 ((-83) $ $)) (-15 -3676 ((-83) $ $)) (-15 -3676 ((-83) $ (-579 $))) (-15 -3674 ((-83) $ $)) (-15 -3674 ((-83) $ (-579 $))) (-15 -3673 ((-83) $ $)) (-15 -3673 ((-83) $ (-579 $))) (-15 -3677 ((-83) $ $)) (-15 -3677 ((-83) $ (-579 $))) (-15 -3149 ($ $ $)) (-15 -3148 ($ $ $)) (-15 -3149 ($ $ $ |t#3|)) (-15 -3148 ($ $ $ |t#3|)) (-15 -3147 ($ $ $)) (-15 -3146 ($ $ $)) (-15 -3147 ($ $ $ |t#3|)) (-15 -3146 ($ $ $ |t#3|)) (-15 -3145 ((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -2887 $)) $ $)) (-15 -3145 ((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -2887 $)) $ $ |t#3|)) (-15 -3144 ((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $)) (-15 -3144 ((-2 (|:| -3936 $) (|:| |gap| (-688)) (|:| -1961 $) (|:| -2887 $)) $ $ |t#3|)) (-15 -3734 ((-2 (|:| -1961 $) (|:| -2887 $)) $ $)) (-15 -3143 ($ $ $)) (-15 -3142 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3463 (-688))) $ $)) (-15 -3669 ($ $ $)) (-15 -3668 ($ $ $)) (IF (|has| |t#3| (-549 (-1080))) (PROGN (-6 (-548 (-851 |t#1|))) (-6 (-549 (-851 |t#1|))) (IF (|has| |t#1| (-38 (-344 (-479)))) (PROGN (-15 -3141 ((-3 $ "failed") (-851 (-344 (-479))))) (-15 -3140 ($ (-851 (-344 (-479))))) (-15 -3954 ($ (-851 (-344 (-479))))) (-15 -3141 ((-3 $ "failed") (-851 (-479)))) (-15 -3140 ($ (-851 (-479)))) (-15 -3954 ($ (-851 (-479)))) (IF (|has| |t#1| (-898 (-479))) |%noBranch| (PROGN (-15 -3141 ((-3 $ "failed") (-851 |t#1|))) (-15 -3140 ($ (-851 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-479))) (IF (|has| |t#1| (-38 (-344 (-479)))) |%noBranch| (PROGN (-15 -3141 ((-3 $ "failed") (-851 (-479)))) (-15 -3140 ($ (-851 (-479)))) (-15 -3954 ($ (-851 (-479)))) (IF (|has| |t#1| (-478)) |%noBranch| (PROGN (-15 -3141 ((-3 $ "failed") (-851 |t#1|))) (-15 -3140 ($ (-851 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-479))) |%noBranch| (IF (|has| |t#1| (-38 (-344 (-479)))) |%noBranch| (PROGN (-15 -3141 ((-3 $ "failed") (-851 |t#1|))) (-15 -3140 ($ (-851 |t#1|)))))) (-15 -3954 ($ (-851 |t#1|))) (IF (|has| |t#1| (-944 (-479))) (-6 (-549 (-1063))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-490)) (PROGN (-15 -3139 ($ $)) (-15 -3138 ($ $)) (-15 -3137 ($ $ |t#1|)) (-15 -3136 ($ $ |t#1|)) (-15 -3137 ($ $ $)) (-15 -3136 ($ $ $)) (-15 -3737 ($ $ $)) (-15 -3135 ((-2 (|:| -3128 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3134 ((-2 (|:| -3128 $) (|:| |coef1| $)) $ $)) (-15 -3133 ((-2 (|:| -3128 $) (|:| |coef2| $)) $ $)) (-15 -3738 ($ $ $)) (-15 -3132 ((-579 $) $ $)) (-15 -3174 ($ $ $)) (-15 -3131 ($ $ $ (-688))) (-15 -3130 ($ $ $ $ (-688))) (-15 -3129 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-386)) (PROGN (-15 -3128 (|t#1| |t#1| $)) (-15 -3127 ($ $)) (-15 -3126 ($ $)) (-15 -3125 ($ $)) (-15 -3124 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-551 |#3|) . T) ((-551 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-548 (-766)) . T) ((-548 (-851 |#1|)) |has| |#3| (-549 (-1080))) ((-144) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-549 (-468)) -12 (|has| |#1| (-549 (-468))) (|has| |#3| (-549 (-468)))) ((-549 (-794 (-324))) -12 (|has| |#1| (-549 (-794 (-324)))) (|has| |#3| (-549 (-794 (-324))))) ((-549 (-794 (-479))) -12 (|has| |#1| (-549 (-794 (-479)))) (|has| |#3| (-549 (-794 (-479))))) ((-549 (-851 |#1|)) |has| |#3| (-549 (-1080))) ((-549 (-1063)) -12 (|has| |#1| (-944 (-479))) (|has| |#3| (-549 (-1080)))) ((-242) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-256 $) . T) ((-273 |#1| |#2|) . T) ((-323 |#1|) . T) ((-349 |#1|) . T) ((-386) OR (|has| |#1| (-815)) (|has| |#1| (-386))) ((-448 |#3| |#1|) . T) ((-448 |#3| $) . T) ((-448 $ $) . T) ((-490) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 (-479)) |has| |#1| (-576 (-479))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-576 (-479)) |has| |#1| (-576 (-479))) ((-576 |#1|) . T) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386))) ((-659) . T) ((-800 $ |#3|) . T) ((-803 |#3|) . T) ((-805 |#3|) . T) ((-790 (-324)) -12 (|has| |#1| (-790 (-324))) (|has| |#3| (-790 (-324)))) ((-790 (-479)) -12 (|has| |#1| (-790 (-479))) (|has| |#3| (-790 (-479)))) ((-855 |#1| |#2| |#3|) . T) ((-815) |has| |#1| (-815)) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 |#1|) . T) ((-944 |#3|) . T) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) |has| |#1| (-815))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3165 (((-579 (-1039)) $) 18 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 27 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-1039) $) 20 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-971) (-13 (-988) (-10 -8 (-15 -3165 ((-579 (-1039)) $)) (-15 -3217 ((-1039) $))))) (T -971)) +((-3165 (*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-971)))) (-3217 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-971))))) +((-3172 (((-83) |#3| $) 15 T ELT)) (-3167 (((-3 $ #1="failed") |#3| (-824)) 29 T ELT)) (-3449 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3170 (((-83) |#3| $) 19 T ELT)) (-3171 (((-83) |#3| $) 17 T ELT))) +(((-972 |#1| |#2| |#3|) (-10 -7 (-15 -3167 ((-3 |#1| #1="failed") |#3| (-824))) (-15 -3449 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3170 ((-83) |#3| |#1|)) (-15 -3171 ((-83) |#3| |#1|)) (-15 -3172 ((-83) |#3| |#1|))) (-973 |#2| |#3|) (-13 (-749) (-308)) (-1145 |#2|)) (T -972)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) |#2| $) 25 T ELT)) (-3605 (((-479) |#2| $) 26 T ELT)) (-3167 (((-3 $ "failed") |#2| (-824)) 19 T ELT)) (-3166 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3449 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3170 (((-83) |#2| $) 23 T ELT)) (-3171 (((-83) |#2| $) 24 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3169 ((|#2| $) 21 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3752 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3168 (((-579 $) |#2|) 20 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-973 |#1| |#2|) (-111) (-13 (-749) (-308)) (-1145 |t#1|)) (T -973)) +((-3605 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *3)) (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) (-5 *2 (-479)))) (-3172 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *3)) (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) (-5 *2 (-83)))) (-3171 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *3)) (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) (-5 *2 (-83)))) (-3170 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *3)) (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) (-5 *2 (-83)))) (-3449 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-973 *3 *2)) (-4 *3 (-13 (-749) (-308))) (-4 *2 (-1145 *3)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *2)) (-4 *3 (-13 (-749) (-308))) (-4 *2 (-1145 *3)))) (-3168 (*1 *2 *3) (-12 (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) (-5 *2 (-579 *1)) (-4 *1 (-973 *4 *3)))) (-3167 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-824)) (-4 *4 (-13 (-749) (-308))) (-4 *1 (-973 *4 *2)) (-4 *2 (-1145 *4)))) (-3752 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-973 *2 *3)) (-4 *2 (-13 (-749) (-308))) (-4 *3 (-1145 *2)))) (-3166 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-973 *2 *3)) (-4 *2 (-13 (-749) (-308))) (-4 *3 (-1145 *2))))) +(-13 (-1006) (-10 -8 (-15 -3605 ((-479) |t#2| $)) (-15 -3172 ((-83) |t#2| $)) (-15 -3171 ((-83) |t#2| $)) (-15 -3170 ((-83) |t#2| $)) (-15 -3449 ((-3 |t#2| "failed") |t#2| $)) (-15 -3169 (|t#2| $)) (-15 -3168 ((-579 $) |t#2|)) (-15 -3167 ((-3 $ "failed") |t#2| (-824))) (-15 -3752 (|t#1| |t#2| $ |t#1|)) (-15 -3166 (|t#1| |t#2| $ |t#1|)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-3418 (((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-579 |#4|) (-579 |#5|) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) (-688)) 114 T ELT)) (-3415 (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688)) 63 T ELT)) (-3419 (((-1175) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-688)) 99 T ELT)) (-3413 (((-688) (-579 |#4|) (-579 |#5|)) 30 T ELT)) (-3416 (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688)) 65 T ELT) (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688) (-83)) 67 T ELT)) (-3417 (((-579 |#5|) (-579 |#4|) (-579 |#5|) (-83) (-83) (-83) (-83) (-83)) 86 T ELT) (((-579 |#5|) (-579 |#4|) (-579 |#5|) (-83) (-83)) 87 T ELT)) (-3954 (((-1063) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) 92 T ELT)) (-3414 (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-83)) 62 T ELT)) (-3412 (((-688) (-579 |#4|) (-579 |#5|)) 21 T ELT))) +(((-974 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3412 ((-688) (-579 |#4|) (-579 |#5|))) (-15 -3413 ((-688) (-579 |#4|) (-579 |#5|))) (-15 -3414 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-83))) (-15 -3415 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688))) (-15 -3415 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|)) (-15 -3416 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688) (-83))) (-15 -3416 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688))) (-15 -3416 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|)) (-15 -3417 ((-579 |#5|) (-579 |#4|) (-579 |#5|) (-83) (-83))) (-15 -3417 ((-579 |#5|) (-579 |#4|) (-579 |#5|) (-83) (-83) (-83) (-83) (-83))) (-15 -3418 ((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-579 |#4|) (-579 |#5|) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) (-688))) (-15 -3954 ((-1063) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)))) (-15 -3419 ((-1175) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-688)))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|) (-976 |#1| |#2| |#3| |#4|)) (T -974)) +((-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-2 (|:| |val| (-579 *8)) (|:| -1588 *9)))) (-5 *4 (-688)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-1175)) (-5 *1 (-974 *5 *6 *7 *8 *9)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-579 *7)) (|:| -1588 *8))) (-4 *7 (-970 *4 *5 *6)) (-4 *8 (-976 *4 *5 *6 *7)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-1063)) (-5 *1 (-974 *4 *5 *6 *7 *8)))) (-3418 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-579 *11)) (|:| |todo| (-579 (-2 (|:| |val| *3) (|:| -1588 *11)))))) (-5 *6 (-688)) (-5 *2 (-579 (-2 (|:| |val| (-579 *10)) (|:| -1588 *11)))) (-5 *3 (-579 *10)) (-5 *4 (-579 *11)) (-4 *10 (-970 *7 *8 *9)) (-4 *11 (-976 *7 *8 *9 *10)) (-4 *7 (-386)) (-4 *8 (-711)) (-4 *9 (-750)) (-5 *1 (-974 *7 *8 *9 *10 *11)))) (-3417 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-579 *9)) (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-974 *5 *6 *7 *8 *9)))) (-3417 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-579 *9)) (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-974 *5 *6 *7 *8 *9)))) (-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-974 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-688)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *3 (-970 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-974 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) (-3416 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-688)) (-5 *6 (-83)) (-4 *7 (-386)) (-4 *8 (-711)) (-4 *9 (-750)) (-4 *3 (-970 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-974 *7 *8 *9 *3 *4)) (-4 *4 (-976 *7 *8 *9 *3)))) (-3415 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-974 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3415 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-688)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *3 (-970 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-974 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) (-3414 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *3 (-970 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-974 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *9)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-688)) (-5 *1 (-974 *5 *6 *7 *8 *9)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *9)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-688)) (-5 *1 (-974 *5 *6 *7 *8 *9))))) +((-3181 (((-83) |#5| $) 26 T ELT)) (-3179 (((-83) |#5| $) 29 T ELT)) (-3182 (((-83) |#5| $) 18 T ELT) (((-83) $) 52 T ELT)) (-3222 (((-579 $) |#5| $) NIL T ELT) (((-579 $) (-579 |#5|) $) 94 T ELT) (((-579 $) (-579 |#5|) (-579 $)) 92 T ELT) (((-579 $) |#5| (-579 $)) 95 T ELT)) (-3751 (($ $ |#5|) NIL T ELT) (((-579 $) |#5| $) NIL T ELT) (((-579 $) |#5| (-579 $)) 73 T ELT) (((-579 $) (-579 |#5|) $) 75 T ELT) (((-579 $) (-579 |#5|) (-579 $)) 77 T ELT)) (-3173 (((-579 $) |#5| $) NIL T ELT) (((-579 $) |#5| (-579 $)) 64 T ELT) (((-579 $) (-579 |#5|) $) 69 T ELT) (((-579 $) (-579 |#5|) (-579 $)) 71 T ELT)) (-3180 (((-83) |#5| $) 32 T ELT))) +(((-975 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3751 ((-579 |#1|) (-579 |#5|) (-579 |#1|))) (-15 -3751 ((-579 |#1|) (-579 |#5|) |#1|)) (-15 -3751 ((-579 |#1|) |#5| (-579 |#1|))) (-15 -3751 ((-579 |#1|) |#5| |#1|)) (-15 -3173 ((-579 |#1|) (-579 |#5|) (-579 |#1|))) (-15 -3173 ((-579 |#1|) (-579 |#5|) |#1|)) (-15 -3173 ((-579 |#1|) |#5| (-579 |#1|))) (-15 -3173 ((-579 |#1|) |#5| |#1|)) (-15 -3222 ((-579 |#1|) |#5| (-579 |#1|))) (-15 -3222 ((-579 |#1|) (-579 |#5|) (-579 |#1|))) (-15 -3222 ((-579 |#1|) (-579 |#5|) |#1|)) (-15 -3222 ((-579 |#1|) |#5| |#1|)) (-15 -3179 ((-83) |#5| |#1|)) (-15 -3182 ((-83) |#1|)) (-15 -3180 ((-83) |#5| |#1|)) (-15 -3181 ((-83) |#5| |#1|)) (-15 -3182 ((-83) |#5| |#1|)) (-15 -3751 (|#1| |#1| |#5|))) (-976 |#2| |#3| |#4| |#5|) (-386) (-711) (-750) (-970 |#2| |#3| |#4|)) (T -975)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |#4|)))) (-579 |#4|)) 90 T ELT)) (-3664 (((-579 $) (-579 |#4|)) 91 T ELT) (((-579 $) (-579 |#4|) (-83)) 118 T ELT)) (-3066 (((-579 |#3|) $) 37 T ELT)) (-2893 (((-83) $) 30 T ELT)) (-2884 (((-83) $) 21 (|has| |#1| (-490)) ELT)) (-3675 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3670 ((|#4| |#4| $) 97 T ELT)) (-3757 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| $) 133 T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3692 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3977)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3706 (($) 46 T CONST)) (-2889 (((-83) $) 26 (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) 28 (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) 27 (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) 29 (|has| |#1| (-490)) ELT)) (-3671 (((-579 |#4|) (-579 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) 22 (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) 23 (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ "failed") (-579 |#4|)) 40 T ELT)) (-3140 (($ (-579 |#4|)) 39 T ELT)) (-3781 (((-3 $ #1#) $) 87 T ELT)) (-3667 ((|#4| |#4| $) 94 T ELT)) (-1341 (($ $) 69 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#4| $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-490)) ELT)) (-3676 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3665 ((|#4| |#4| $) 92 T ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3977)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#4|)) (|:| -1690 (-579 |#4|))) $) 110 T ELT)) (-3181 (((-83) |#4| $) 143 T ELT)) (-3179 (((-83) |#4| $) 140 T ELT)) (-3182 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2874 (((-579 |#4|) $) 53 (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3164 ((|#3| $) 38 T ELT)) (-2593 (((-579 |#4|) $) 54 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2899 (((-579 |#3|) $) 36 T ELT)) (-2898 (((-83) |#3| $) 35 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3175 (((-3 |#4| (-579 $)) |#4| |#4| $) 135 T ELT)) (-3174 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| |#4| $) 134 T ELT)) (-3780 (((-3 |#4| #1#) $) 88 T ELT)) (-3176 (((-579 $) |#4| $) 136 T ELT)) (-3178 (((-3 (-83) (-579 $)) |#4| $) 139 T ELT)) (-3177 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3222 (((-579 $) |#4| $) 132 T ELT) (((-579 $) (-579 |#4|) $) 131 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 130 T ELT) (((-579 $) |#4| (-579 $)) 129 T ELT)) (-3422 (($ |#4| $) 124 T ELT) (($ (-579 |#4|) $) 123 T ELT)) (-3679 (((-579 |#4|) $) 112 T ELT)) (-3673 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3668 ((|#4| |#4| $) 95 T ELT)) (-3681 (((-83) $ $) 115 T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-490)) ELT)) (-3674 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3669 ((|#4| |#4| $) 96 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3783 (((-3 |#4| #1#) $) 89 T ELT)) (-1342 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3661 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3751 (($ $ |#4|) 82 T ELT) (((-579 $) |#4| $) 122 T ELT) (((-579 $) |#4| (-579 $)) 121 T ELT) (((-579 $) (-579 |#4|) $) 120 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 119 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) 42 T ELT)) (-3385 (((-83) $) 45 T ELT)) (-3547 (($) 44 T ELT)) (-3930 (((-688) $) 111 T ELT)) (-1934 (((-688) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 43 T ELT)) (-3954 (((-468) $) 70 (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) 61 T ELT)) (-2895 (($ $ |#3|) 32 T ELT)) (-2897 (($ $ |#3|) 34 T ELT)) (-3666 (($ $) 93 T ELT)) (-2896 (($ $ |#3|) 33 T ELT)) (-3928 (((-766) $) 13 T ELT) (((-579 |#4|) $) 41 T ELT)) (-3660 (((-688) $) 81 (|has| |#3| (-314)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3672 (((-83) $ (-1 (-83) |#4| (-579 |#4|))) 103 T ELT)) (-3173 (((-579 $) |#4| $) 128 T ELT) (((-579 $) |#4| (-579 $)) 127 T ELT) (((-579 $) (-579 |#4|) $) 126 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 125 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 |#3|) $) 86 T ELT)) (-3180 (((-83) |#4| $) 142 T ELT)) (-3915 (((-83) |#3| $) 85 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3939 (((-688) $) 47 (|has| $ (-6 -3977)) ELT))) +(((-976 |#1| |#2| |#3| |#4|) (-111) (-386) (-711) (-750) (-970 |t#1| |t#2| |t#3|)) (T -976)) +((-3182 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3181 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3180 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) (-3179 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3178 (*1 *2 *3 *1) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-3 (-83) (-579 *1))) (-4 *1 (-976 *4 *5 *6 *3)))) (-3177 (*1 *2 *3 *1) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *1)))) (-4 *1 (-976 *4 *5 *6 *3)))) (-3177 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3176 (*1 *2 *3 *1) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)))) (-3175 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-3 *3 (-579 *1))) (-4 *1 (-976 *4 *5 *6 *3)))) (-3174 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *1)))) (-4 *1 (-976 *4 *5 *6 *3)))) (-3757 (*1 *2 *3 *1) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *1)))) (-4 *1 (-976 *4 *5 *6 *3)))) (-3222 (*1 *2 *3 *1) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)))) (-3222 (*1 *2 *3 *1) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *7)))) (-3222 (*1 *2 *3 *2) (-12 (-5 *2 (-579 *1)) (-5 *3 (-579 *7)) (-4 *1 (-976 *4 *5 *6 *7)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)))) (-3222 (*1 *2 *3 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)))) (-3173 (*1 *2 *3 *1) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)))) (-3173 (*1 *2 *3 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)))) (-3173 (*1 *2 *3 *1) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *7)))) (-3173 (*1 *2 *3 *2) (-12 (-5 *2 (-579 *1)) (-5 *3 (-579 *7)) (-4 *1 (-976 *4 *5 *6 *7)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)))) (-3422 (*1 *1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *2)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3422 (*1 *1 *2 *1) (-12 (-5 *2 (-579 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)))) (-3751 (*1 *2 *3 *1) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)))) (-3751 (*1 *2 *3 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)))) (-3751 (*1 *2 *3 *1) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *7)))) (-3751 (*1 *2 *3 *2) (-12 (-5 *2 (-579 *1)) (-5 *3 (-579 *7)) (-4 *1 (-976 *4 *5 *6 *7)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)))) (-3664 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-976 *5 *6 *7 *8))))) +(-13 (-1114 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3182 ((-83) |t#4| $)) (-15 -3181 ((-83) |t#4| $)) (-15 -3180 ((-83) |t#4| $)) (-15 -3182 ((-83) $)) (-15 -3179 ((-83) |t#4| $)) (-15 -3178 ((-3 (-83) (-579 $)) |t#4| $)) (-15 -3177 ((-579 (-2 (|:| |val| (-83)) (|:| -1588 $))) |t#4| $)) (-15 -3177 ((-83) |t#4| $)) (-15 -3176 ((-579 $) |t#4| $)) (-15 -3175 ((-3 |t#4| (-579 $)) |t#4| |t#4| $)) (-15 -3174 ((-579 (-2 (|:| |val| |t#4|) (|:| -1588 $))) |t#4| |t#4| $)) (-15 -3757 ((-579 (-2 (|:| |val| |t#4|) (|:| -1588 $))) |t#4| $)) (-15 -3222 ((-579 $) |t#4| $)) (-15 -3222 ((-579 $) (-579 |t#4|) $)) (-15 -3222 ((-579 $) (-579 |t#4|) (-579 $))) (-15 -3222 ((-579 $) |t#4| (-579 $))) (-15 -3173 ((-579 $) |t#4| $)) (-15 -3173 ((-579 $) |t#4| (-579 $))) (-15 -3173 ((-579 $) (-579 |t#4|) $)) (-15 -3173 ((-579 $) (-579 |t#4|) (-579 $))) (-15 -3422 ($ |t#4| $)) (-15 -3422 ($ (-579 |t#4|) $)) (-15 -3751 ((-579 $) |t#4| $)) (-15 -3751 ((-579 $) |t#4| (-579 $))) (-15 -3751 ((-579 $) (-579 |t#4|) $)) (-15 -3751 ((-579 $) (-579 |t#4|) (-579 $))) (-15 -3664 ((-579 $) (-579 |t#4|) (-83))))) +(((-34) . T) ((-72) . T) ((-548 (-579 |#4|)) . T) ((-548 (-766)) . T) ((-122 |#4|) . T) ((-549 (-468)) |has| |#4| (-549 (-468))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-423 |#4|) . T) ((-448 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-883 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1119) . T)) +((-3189 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#5|) 86 T ELT)) (-3186 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3188 (((-579 |#5|) |#4| |#5|) 74 T ELT)) (-3187 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|) 47 T ELT) (((-83) |#4| |#5|) 55 T ELT)) (-3270 (((-1175)) 36 T ELT)) (-3268 (((-1175)) 25 T ELT)) (-3269 (((-1175) (-1063) (-1063) (-1063)) 32 T ELT)) (-3267 (((-1175) (-1063) (-1063) (-1063)) 21 T ELT)) (-3183 (((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3184 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) |#3| (-83)) 117 T ELT) (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5| (-83) (-83)) 52 T ELT)) (-3185 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-977 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3267 ((-1175) (-1063) (-1063) (-1063))) (-15 -3268 ((-1175))) (-15 -3269 ((-1175) (-1063) (-1063) (-1063))) (-15 -3270 ((-1175))) (-15 -3183 ((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) |#4| |#4| |#5|)) (-15 -3184 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5| (-83) (-83))) (-15 -3184 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) |#3| (-83))) (-15 -3185 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5|)) (-15 -3186 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5|)) (-15 -3187 ((-83) |#4| |#5|)) (-15 -3187 ((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|)) (-15 -3188 ((-579 |#5|) |#4| |#5|)) (-15 -3189 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#5|))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|) (-976 |#1| |#2| |#3| |#4|)) (T -977)) +((-3189 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3188 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 *4)) (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3187 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3187 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3186 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3185 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 (-2 (|:| |val| (-579 *8)) (|:| -1588 *9)))) (-5 *5 (-83)) (-4 *8 (-970 *6 *7 *4)) (-4 *9 (-976 *6 *7 *4 *8)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *4 (-750)) (-5 *2 (-579 (-2 (|:| |val| *8) (|:| -1588 *9)))) (-5 *1 (-977 *6 *7 *4 *8 *9)))) (-3184 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *3 (-970 *6 *7 *8)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-977 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) (-3183 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))) (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3270 (*1 *2) (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-1175)) (-5 *1 (-977 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6)))) (-3269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-977 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3268 (*1 *2) (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-1175)) (-5 *1 (-977 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6)))) (-3267 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-977 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3301 (((-1120) $) 14 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3190 (((-1039) $) 11 T ELT)) (-3928 (((-766) $) 21 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-978) (-13 (-988) (-10 -8 (-15 -3190 ((-1039) $)) (-15 -3301 ((-1120) $))))) (T -978)) +((-3190 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-978)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-978))))) +((-3250 (((-83) $ $) 7 T ELT))) +(((-979) (-13 (-1119) (-10 -8 (-15 -3250 ((-83) $ $))))) (T -979)) +((-3250 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-979))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3193 (($ $ (-579 (-1080)) (-1 (-83) (-579 |#3|))) 34 T ELT)) (-3194 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-579 (-1080))) 21 T ELT)) (-3510 ((|#3| $) 13 T ELT)) (-3141 (((-3 (-245 |#3|) "failed") $) 60 T ELT)) (-3140 (((-245 |#3|) $) NIL T ELT)) (-3191 (((-579 (-1080)) $) 16 T ELT)) (-3192 (((-794 |#1|) $) 11 T ELT)) (-3511 ((|#3| $) 12 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3782 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-824)) 41 T ELT)) (-3928 (((-766) $) 89 T ELT) (($ (-245 |#3|)) 22 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 38 T ELT))) +(((-980 |#1| |#2| |#3|) (-13 (-1006) (-238 |#3| |#3|) (-944 (-245 |#3|)) (-10 -8 (-15 -3194 ($ |#3| |#3|)) (-15 -3194 ($ |#3| |#3| (-579 (-1080)))) (-15 -3193 ($ $ (-579 (-1080)) (-1 (-83) (-579 |#3|)))) (-15 -3192 ((-794 |#1|) $)) (-15 -3511 (|#3| $)) (-15 -3510 (|#3| $)) (-15 -3782 (|#3| $ |#3| (-824))) (-15 -3191 ((-579 (-1080)) $)))) (-1006) (-13 (-955) (-790 |#1|) (-549 (-794 |#1|))) (-13 (-358 |#2|) (-790 |#1|) (-549 (-794 |#1|)))) (T -980)) +((-3194 (*1 *1 *2 *2) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))) (-5 *1 (-980 *3 *4 *2)) (-4 *2 (-13 (-358 *4) (-790 *3) (-549 (-794 *3)))))) (-3194 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-579 (-1080))) (-4 *4 (-1006)) (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-980 *4 *5 *2)) (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))))) (-3193 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-1 (-83) (-579 *6))) (-4 *6 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))) (-4 *4 (-1006)) (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-980 *4 *5 *6)))) (-3192 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-955) (-790 *3) (-549 *2))) (-5 *2 (-794 *3)) (-5 *1 (-980 *3 *4 *5)) (-4 *5 (-13 (-358 *4) (-790 *3) (-549 *2))))) (-3511 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *2 (-13 (-358 *4) (-790 *3) (-549 (-794 *3)))) (-5 *1 (-980 *3 *4 *2)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))))) (-3510 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *2 (-13 (-358 *4) (-790 *3) (-549 (-794 *3)))) (-5 *1 (-980 *3 *4 *2)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))))) (-3782 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-824)) (-4 *4 (-1006)) (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-980 *4 *5 *2)) (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))))) (-3191 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))) (-5 *2 (-579 (-1080))) (-5 *1 (-980 *3 *4 *5)) (-4 *5 (-13 (-358 *4) (-790 *3) (-549 (-794 *3))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3524 (((-1080) $) 8 T ELT)) (-3226 (((-1063) $) 17 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 11 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 14 T ELT))) +(((-981 |#1|) (-13 (-1006) (-10 -8 (-15 -3524 ((-1080) $)))) (-1080)) (T -981)) +((-3524 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-981 *3)) (-14 *3 *2)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3196 (($ (-579 (-980 |#1| |#2| |#3|))) 15 T ELT)) (-3195 (((-579 (-980 |#1| |#2| |#3|)) $) 22 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3782 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-824)) 28 T ELT)) (-3928 (((-766) $) 18 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 21 T ELT))) +(((-982 |#1| |#2| |#3|) (-13 (-1006) (-238 |#3| |#3|) (-10 -8 (-15 -3196 ($ (-579 (-980 |#1| |#2| |#3|)))) (-15 -3195 ((-579 (-980 |#1| |#2| |#3|)) $)) (-15 -3782 (|#3| $ |#3| (-824))))) (-1006) (-13 (-955) (-790 |#1|) (-549 (-794 |#1|))) (-13 (-358 |#2|) (-790 |#1|) (-549 (-794 |#1|)))) (T -982)) +((-3196 (*1 *1 *2) (-12 (-5 *2 (-579 (-980 *3 *4 *5))) (-4 *3 (-1006)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))) (-4 *5 (-13 (-358 *4) (-790 *3) (-549 (-794 *3)))) (-5 *1 (-982 *3 *4 *5)))) (-3195 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))) (-5 *2 (-579 (-980 *3 *4 *5))) (-5 *1 (-982 *3 *4 *5)) (-4 *5 (-13 (-358 *4) (-790 *3) (-549 (-794 *3)))))) (-3782 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-824)) (-4 *4 (-1006)) (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-982 *4 *5 *2)) (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4))))))) +((-3197 (((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83) (-83)) 88 T ELT) (((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|))) 92 T ELT) (((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83)) 90 T ELT))) +(((-983 |#1| |#2|) (-10 -7 (-15 -3197 ((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83))) (-15 -3197 ((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)))) (-15 -3197 ((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83) (-83)))) (-13 (-254) (-118)) (-579 (-1080))) (T -983)) +((-3197 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) (-5 *1 (-983 *5 *6)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080))))) (-3197 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) (-5 *2 (-579 (-2 (|:| -1735 (-1075 *4)) (|:| -3208 (-579 (-851 *4)))))) (-5 *1 (-983 *4 *5)) (-5 *3 (-579 (-851 *4))) (-14 *5 (-579 (-1080))))) (-3197 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) (-5 *1 (-983 *5 *6)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 132 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-308)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-1770 (((-626 |#1|) (-1169 $)) NIL T ELT) (((-626 |#1|)) 117 T ELT)) (-3312 ((|#1| $) 121 T ELT)) (-1663 (((-1092 (-824) (-688)) (-479)) NIL (|has| |#1| (-295)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3120 (((-688)) 43 (|has| |#1| (-314)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT)) (-1780 (($ (-1169 |#1|) (-1169 $)) NIL T ELT) (($ (-1169 |#1|)) 46 T ELT)) (-1661 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-295)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-1769 (((-626 |#1|) $ (-1169 $)) NIL T ELT) (((-626 |#1|) $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 109 T ELT) (((-626 |#1|) (-626 $)) 104 T ELT)) (-3824 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-344 |#2|)) NIL (|has| |#1| (-308)) ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3093 (((-824)) 80 T ELT)) (-2979 (($) 47 (|has| |#1| (-314)) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-2818 (($) NIL (|has| |#1| (-295)) ELT)) (-1668 (((-83) $) NIL (|has| |#1| (-295)) ELT)) (-1752 (($ $ (-688)) NIL (|has| |#1| (-295)) ELT) (($ $) NIL (|has| |#1| (-295)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3754 (((-824) $) NIL (|has| |#1| (-295)) ELT) (((-737 (-824)) $) NIL (|has| |#1| (-295)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-3116 ((|#1| $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-295)) ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-2001 ((|#2| $) 87 (|has| |#1| (-308)) ELT)) (-1997 (((-824) $) 140 (|has| |#1| (-314)) ELT)) (-3064 ((|#2| $) 59 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3428 (($) NIL (|has| |#1| (-295)) CONST)) (-2387 (($ (-824)) 131 (|has| |#1| (-314)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2396 (($) 123 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-1664 (((-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479))))) NIL (|has| |#1| (-295)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3739 ((|#1| (-1169 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1753 (((-688) $) NIL (|has| |#1| (-295)) ELT) (((-3 (-688) #1#) $ $) NIL (|has| |#1| (-295)) ELT)) (-3740 (($ $ (-688)) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL (|has| |#1| (-308)) ELT)) (-2395 (((-626 |#1|) (-1169 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT)) (-3169 ((|#2|) 77 T ELT)) (-1662 (($) NIL (|has| |#1| (-295)) ELT)) (-3208 (((-1169 |#1|) $ (-1169 $)) 92 T ELT) (((-626 |#1|) (-1169 $) (-1169 $)) NIL T ELT) (((-1169 |#1|) $) 72 T ELT) (((-626 |#1|) (-1169 $)) 88 T ELT)) (-3954 (((-1169 |#1|) $) NIL T ELT) (($ (-1169 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (|has| |#1| (-295)) ELT)) (-3928 (((-766) $) 58 T ELT) (($ (-479)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-308)) ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-308)) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-2687 (($ $) NIL (|has| |#1| (-295)) ELT) (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-2434 ((|#2| $) 85 T ELT)) (-3110 (((-688)) 79 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1999 (((-1169 $)) 84 T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-2645 (($) 32 T CONST)) (-2651 (($) 19 T CONST)) (-2654 (($ $ (-688)) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-187)) (|has| |#1| (-308))) (|has| |#1| (-295))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-805 (-1080)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL (|has| |#1| (-308)) ELT)) (-3041 (((-83) $ $) 64 T ELT)) (-3931 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 66 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-308)) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-308)) ELT))) +(((-984 |#1| |#2| |#3|) (-657 |#1| |#2|) (-144) (-1145 |#1|) |#2|) (T -984)) +NIL +((-3714 (((-342 |#3|) |#3|) 18 T ELT))) +(((-985 |#1| |#2| |#3|) (-10 -7 (-15 -3714 ((-342 |#3|) |#3|))) (-1145 (-344 (-479))) (-13 (-308) (-118) (-657 (-344 (-479)) |#1|)) (-1145 |#2|)) (T -985)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-1145 (-344 (-479)))) (-4 *5 (-13 (-308) (-118) (-657 (-344 (-479)) *4))) (-5 *2 (-342 *3)) (-5 *1 (-985 *4 *5 *3)) (-4 *3 (-1145 *5))))) +((-3714 (((-342 |#3|) |#3|) 19 T ELT))) +(((-986 |#1| |#2| |#3|) (-10 -7 (-15 -3714 ((-342 |#3|) |#3|))) (-1145 (-344 (-851 (-479)))) (-13 (-308) (-118) (-657 (-344 (-851 (-479))) |#1|)) (-1145 |#2|)) (T -986)) +((-3714 (*1 *2 *3) (-12 (-4 *4 (-1145 (-344 (-851 (-479))))) (-4 *5 (-13 (-308) (-118) (-657 (-344 (-851 (-479))) *4))) (-5 *2 (-342 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1145 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2516 (($ $ $) 16 T ELT)) (-2842 (($ $ $) 17 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3198 (($) 6 T ELT)) (-3954 (((-1080) $) 20 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 15 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 9 T ELT))) +(((-987) (-13 (-750) (-549 (-1080)) (-10 -8 (-15 -3198 ($))))) (T -987)) +((-3198 (*1 *1) (-5 *1 (-987)))) +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-1085)) 20 T ELT) (((-1085) $) 19 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-988) (-111)) (T -988)) NIL (-13 (-64)) -(((-64) . T) ((-72) . T) ((-550 (-1080)) . T) ((-547 (-765)) . T) ((-547 (-1080)) . T) ((-423 (-1080)) . T) ((-1003) . T) ((-1114) . T)) -((-3198 ((|#1| |#1| (-1 (-478) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-83) |#1|)) 33 T ELT)) (-3196 (((-1170)) 21 T ELT)) (-3197 (((-578 |#1|)) 13 T ELT))) -(((-987 |#1|) (-10 -7 (-15 -3196 ((-1170))) (-15 -3197 ((-578 |#1|))) (-15 -3198 (|#1| |#1| (-1 (-83) |#1|))) (-15 -3198 (|#1| |#1| (-1 (-478) |#1| |#1|)))) (-103)) (T -987)) -((-3198 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-478) *2 *2)) (-4 *2 (-103)) (-5 *1 (-987 *2)))) (-3198 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *2)) (-4 *2 (-103)) (-5 *1 (-987 *2)))) (-3197 (*1 *2) (-12 (-5 *2 (-578 *3)) (-5 *1 (-987 *3)) (-4 *3 (-103)))) (-3196 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-987 *3)) (-4 *3 (-103))))) -((-3201 (($ (-78) $) 20 T ELT)) (-3202 (((-627 (-78)) (-439) $) 19 T ELT)) (-3541 (($) 7 T ELT)) (-3200 (($) 21 T ELT)) (-3199 (($) 22 T ELT)) (-3203 (((-578 (-147)) $) 10 T ELT)) (-3922 (((-765) $) 25 T ELT))) -(((-988) (-13 (-547 (-765)) (-10 -8 (-15 -3541 ($)) (-15 -3203 ((-578 (-147)) $)) (-15 -3202 ((-627 (-78)) (-439) $)) (-15 -3201 ($ (-78) $)) (-15 -3200 ($)) (-15 -3199 ($))))) (T -988)) -((-3541 (*1 *1) (-5 *1 (-988))) (-3203 (*1 *2 *1) (-12 (-5 *2 (-578 (-147))) (-5 *1 (-988)))) (-3202 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-78))) (-5 *1 (-988)))) (-3201 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-988)))) (-3200 (*1 *1) (-5 *1 (-988))) (-3199 (*1 *1) (-5 *1 (-988)))) -((-3204 (((-1164 (-625 |#1|)) (-578 (-625 |#1|))) 45 T ELT) (((-1164 (-625 (-850 |#1|))) (-578 (-1075)) (-625 (-850 |#1|))) 75 T ELT) (((-1164 (-625 (-343 (-850 |#1|)))) (-578 (-1075)) (-625 (-343 (-850 |#1|)))) 92 T ELT)) (-3205 (((-1164 |#1|) (-625 |#1|) (-578 (-625 |#1|))) 39 T ELT))) -(((-989 |#1|) (-10 -7 (-15 -3204 ((-1164 (-625 (-343 (-850 |#1|)))) (-578 (-1075)) (-625 (-343 (-850 |#1|))))) (-15 -3204 ((-1164 (-625 (-850 |#1|))) (-578 (-1075)) (-625 (-850 |#1|)))) (-15 -3204 ((-1164 (-625 |#1|)) (-578 (-625 |#1|)))) (-15 -3205 ((-1164 |#1|) (-625 |#1|) (-578 (-625 |#1|))))) (-308)) (T -989)) -((-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-625 *5))) (-5 *3 (-625 *5)) (-4 *5 (-308)) (-5 *2 (-1164 *5)) (-5 *1 (-989 *5)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-578 (-625 *4))) (-4 *4 (-308)) (-5 *2 (-1164 (-625 *4))) (-5 *1 (-989 *4)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1075))) (-4 *5 (-308)) (-5 *2 (-1164 (-625 (-850 *5)))) (-5 *1 (-989 *5)) (-5 *4 (-625 (-850 *5))))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1075))) (-4 *5 (-308)) (-5 *2 (-1164 (-625 (-343 (-850 *5))))) (-5 *1 (-989 *5)) (-5 *4 (-625 (-343 (-850 *5))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1471 (((-578 (-687)) $) NIL T ELT) (((-578 (-687)) $ (-1075)) NIL T ELT)) (-1505 (((-687) $) NIL T ELT) (((-687) $ (-1075)) NIL T ELT)) (-3063 (((-578 (-991 (-1075))) $) NIL T ELT)) (-3065 (((-1070 $) $ (-991 (-1075))) NIL T ELT) (((-1070 |#1|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-991 (-1075)))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-1467 (($ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-991 (-1075)) #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL T ELT) (((-3 (-1025 |#1| (-1075)) #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-991 (-1075)) $) NIL T ELT) (((-1075) $) NIL T ELT) (((-1025 |#1| (-1075)) $) NIL T ELT)) (-3732 (($ $ $ (-991 (-1075))) NIL (|has| |#1| (-144)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ (-991 (-1075))) NIL (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| (-463 (-991 (-1075))) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-991 (-1075)) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-991 (-1075)) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3748 (((-687) $ (-1075)) NIL T ELT) (((-687) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3066 (($ (-1070 |#1|) (-991 (-1075))) NIL T ELT) (($ (-1070 $) (-991 (-1075))) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-463 (-991 (-1075)))) NIL T ELT) (($ $ (-991 (-1075)) (-687)) NIL T ELT) (($ $ (-578 (-991 (-1075))) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-991 (-1075))) NIL T ELT)) (-2801 (((-463 (-991 (-1075))) $) NIL T ELT) (((-687) $ (-991 (-1075))) NIL T ELT) (((-578 (-687)) $ (-578 (-991 (-1075)))) NIL T ELT)) (-1608 (($ (-1 (-463 (-991 (-1075))) (-463 (-991 (-1075)))) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1506 (((-1 $ (-687)) (-1075)) NIL T ELT) (((-1 $ (-687)) $) NIL (|has| |#1| (-188)) ELT)) (-3064 (((-3 (-991 (-1075)) #1#) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1469 (((-991 (-1075)) $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1470 (((-83) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-991 (-1075))) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-1468 (($ $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-991 (-1075)) |#1|) NIL T ELT) (($ $ (-578 (-991 (-1075))) (-578 |#1|)) NIL T ELT) (($ $ (-991 (-1075)) $) NIL T ELT) (($ $ (-578 (-991 (-1075))) (-578 $)) NIL T ELT) (($ $ (-1075) $) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 (-1075)) (-578 $)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1075) |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-578 (-1075)) (-578 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3733 (($ $ (-991 (-1075))) NIL (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 (-991 (-1075))) (-578 (-687))) NIL T ELT) (($ $ (-991 (-1075)) (-687)) NIL T ELT) (($ $ (-578 (-991 (-1075)))) NIL T ELT) (($ $ (-991 (-1075))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-1472 (((-578 (-1075)) $) NIL T ELT)) (-3924 (((-463 (-991 (-1075))) $) NIL T ELT) (((-687) $ (-991 (-1075))) NIL T ELT) (((-578 (-687)) $ (-578 (-991 (-1075)))) NIL T ELT) (((-687) $ (-1075)) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-991 (-1075)) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-991 (-1075)) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-991 (-1075)) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT) (($ $ (-991 (-1075))) NIL (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-991 (-1075))) NIL T ELT) (($ (-1075)) NIL T ELT) (($ (-1025 |#1| (-1075))) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-463 (-991 (-1075)))) NIL T ELT) (($ $ (-991 (-1075)) (-687)) NIL T ELT) (($ $ (-578 (-991 (-1075))) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-578 (-991 (-1075))) (-578 (-687))) NIL T ELT) (($ $ (-991 (-1075)) (-687)) NIL T ELT) (($ $ (-578 (-991 (-1075)))) NIL T ELT) (($ $ (-991 (-1075))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-687)) NIL (|has| |#1| (-187)) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-990 |#1|) (-13 (-210 |#1| (-1075) (-991 (-1075)) (-463 (-991 (-1075)))) (-943 (-1025 |#1| (-1075)))) (-954)) (T -990)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-1505 (((-687) $) NIL T ELT)) (-3807 ((|#1| $) 10 T ELT)) (-3138 (((-3 |#1| "failed") $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT)) (-3748 (((-687) $) 11 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-1506 (($ |#1| (-687)) 9 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3734 (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2650 (($ $ (-687)) NIL T ELT) (($ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 16 T ELT))) -(((-991 |#1|) (-225 |#1|) (-749)) (T -991)) -NIL -((-2548 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3712 (($ |#1| |#1|) 16 T ELT)) (-3934 (((-578 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-748)) ELT)) (-3210 ((|#1| $) 12 T ELT)) (-3212 ((|#1| $) 11 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3208 (((-478) $) 15 T ELT)) (-3209 ((|#1| $) 14 T ELT)) (-3211 ((|#1| $) 13 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3939 (((-578 |#1|) $) 42 (|has| |#1| (-748)) ELT) (((-578 |#1|) (-578 $)) 41 (|has| |#1| (-748)) ELT)) (-3948 (($ |#1|) 29 T ELT)) (-3922 (((-765) $) 28 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3713 (($ |#1| |#1|) 10 T ELT)) (-3213 (($ $ (-478)) 17 T ELT)) (-3037 (((-83) $ $) 22 (|has| |#1| (-1003)) ELT))) -(((-992 |#1|) (-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |#1| (-748)) (-6 (-998 |#1| (-578 |#1|))) |%noBranch|))) (-1114)) (T -992)) -NIL -((-3934 (((-578 |#2|) (-1 |#2| |#1|) (-992 |#1|)) 27 (|has| |#1| (-748)) ELT) (((-992 |#2|) (-1 |#2| |#1|) (-992 |#1|)) 14 T ELT))) -(((-993 |#1| |#2|) (-10 -7 (-15 -3934 ((-992 |#2|) (-1 |#2| |#1|) (-992 |#1|))) (IF (|has| |#1| (-748)) (-15 -3934 ((-578 |#2|) (-1 |#2| |#1|) (-992 |#1|))) |%noBranch|)) (-1114) (-1114)) (T -993)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-992 *5)) (-4 *5 (-748)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-578 *6)) (-5 *1 (-993 *5 *6)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-992 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-992 *6)) (-5 *1 (-993 *5 *6))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 16 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-3206 (((-578 (-1035)) $) 10 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-994) (-13 (-986) (-10 -8 (-15 -3206 ((-578 (-1035)) $))))) (T -994)) -((-3206 (*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-994))))) -((-2548 (((-83) $ $) NIL (|has| (-992 |#1|) (-1003)) ELT)) (-3807 (((-1075) $) NIL T ELT)) (-3712 (((-992 |#1|) $) NIL T ELT)) (-3222 (((-1059) $) NIL (|has| (-992 |#1|) (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| (-992 |#1|) (-1003)) ELT)) (-3207 (($ (-1075) (-992 |#1|)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| (-992 |#1|) (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| (-992 |#1|) (-1003)) ELT)) (-3037 (((-83) $ $) NIL (|has| (-992 |#1|) (-1003)) ELT))) -(((-995 |#1|) (-13 (-1114) (-10 -8 (-15 -3207 ($ (-1075) (-992 |#1|))) (-15 -3807 ((-1075) $)) (-15 -3712 ((-992 |#1|) $)) (IF (|has| (-992 |#1|) (-1003)) (-6 (-1003)) |%noBranch|))) (-1114)) (T -995)) -((-3207 (*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-992 *4)) (-4 *4 (-1114)) (-5 *1 (-995 *4)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-995 *3)) (-4 *3 (-1114)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-992 *3)) (-5 *1 (-995 *3)) (-4 *3 (-1114))))) -((-3934 (((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|)) 19 T ELT))) -(((-996 |#1| |#2|) (-10 -7 (-15 -3934 ((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|)))) (-1114) (-1114)) (T -996)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-995 *6)) (-5 *1 (-996 *5 *6))))) -((-3712 (($ |#1| |#1|) 8 T ELT)) (-3210 ((|#1| $) 11 T ELT)) (-3212 ((|#1| $) 13 T ELT)) (-3208 (((-478) $) 9 T ELT)) (-3209 ((|#1| $) 10 T ELT)) (-3211 ((|#1| $) 12 T ELT)) (-3948 (($ |#1|) 6 T ELT)) (-3713 (($ |#1| |#1|) 15 T ELT)) (-3213 (($ $ (-478)) 14 T ELT))) -(((-997 |#1|) (-111) (-1114)) (T -997)) -((-3713 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114)))) (-3213 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-997 *3)) (-4 *3 (-1114)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114)))) (-3209 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1114)) (-5 *2 (-478)))) (-3712 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114))))) -(-13 (-552 |t#1|) (-10 -8 (-15 -3713 ($ |t#1| |t#1|)) (-15 -3213 ($ $ (-478))) (-15 -3212 (|t#1| $)) (-15 -3211 (|t#1| $)) (-15 -3210 (|t#1| $)) (-15 -3209 (|t#1| $)) (-15 -3208 ((-478) $)) (-15 -3712 ($ |t#1| |t#1|)))) -(((-552 |#1|) . T)) -((-3712 (($ |#1| |#1|) 8 T ELT)) (-3934 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3210 ((|#1| $) 11 T ELT)) (-3212 ((|#1| $) 13 T ELT)) (-3208 (((-478) $) 9 T ELT)) (-3209 ((|#1| $) 10 T ELT)) (-3211 ((|#1| $) 12 T ELT)) (-3939 ((|#2| (-578 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3948 (($ |#1|) 6 T ELT)) (-3713 (($ |#1| |#1|) 15 T ELT)) (-3213 (($ $ (-478)) 14 T ELT))) -(((-998 |#1| |#2|) (-111) (-748) (-1050 |t#1|)) (T -998)) -((-3939 (*1 *2 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-998 *4 *2)) (-4 *4 (-748)) (-4 *2 (-1050 *4)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *2)) (-4 *3 (-748)) (-4 *2 (-1050 *3)))) (-3934 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-998 *4 *2)) (-4 *4 (-748)) (-4 *2 (-1050 *4))))) -(-13 (-997 |t#1|) (-10 -8 (-15 -3939 (|t#2| (-578 $))) (-15 -3939 (|t#2| $)) (-15 -3934 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-552 |#1|) . T) ((-997 |#1|) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-1785 (($) NIL (|has| |#1| (-313)) ELT)) (-3214 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3216 (($ $ $) 81 T ELT)) (-3215 (((-83) $ $) 83 T ELT)) (-3117 (((-687)) NIL (|has| |#1| (-313)) ELT)) (-3219 (($ (-578 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1553 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3382 (($ |#1| $) 75 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3971)) ELT)) (-2975 (($) NIL (|has| |#1| (-313)) ELT)) (-2870 (((-578 |#1|) $) 20 (|has| $ (-6 -3971)) ELT)) (-3221 (((-83) $ $) NIL T ELT)) (-2511 ((|#1| $) 56 (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 74 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2838 ((|#1| $) 54 (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-1992 (((-823) $) NIL (|has| |#1| (-313)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3218 (($ $ $) 79 T ELT)) (-1258 ((|#1| $) 26 T ELT)) (-3585 (($ |#1| $) 70 T ELT)) (-2382 (($ (-823)) NIL (|has| |#1| (-313)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 32 T ELT)) (-1259 ((|#1| $) 28 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 22 T ELT)) (-3541 (($) 12 T ELT)) (-3217 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1449 (($) NIL T ELT) (($ (-578 |#1|)) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) 17 T ELT)) (-3948 (((-467) $) 51 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 63 T ELT)) (-1786 (($ $) NIL (|has| |#1| (-313)) ELT)) (-3922 (((-765) $) NIL T ELT)) (-1787 (((-687) $) NIL T ELT)) (-3220 (($ (-578 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-1260 (($ (-578 |#1|)) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 53 T ELT)) (-3933 (((-687) $) 11 (|has| $ (-6 -3971)) ELT))) -(((-999 |#1|) (-362 |#1|) (-1003)) (T -999)) -NIL -((-3214 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3216 (($ $ $) 10 T ELT)) (-3217 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1000 |#1| |#2|) (-10 -7 (-15 -3214 (|#1| |#2| |#1|)) (-15 -3214 (|#1| |#1| |#2|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#2|)) (-15 -3217 (|#1| |#1| |#1|))) (-1001 |#2|) (-1003)) (T -1000)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3214 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3216 (($ $ $) 24 T ELT)) (-3215 (((-83) $ $) 23 T ELT)) (-3219 (($) 29 T ELT) (($ (-578 |#1|)) 28 T ELT)) (-3686 (($ (-1 (-83) |#1|) $) 57 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 37 T CONST)) (-1336 (($ $) 60 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#1| $) 59 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 56 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3971)) ELT)) (-2870 (((-578 |#1|) $) 44 (|has| $ (-6 -3971)) ELT)) (-3221 (((-83) $ $) 32 T ELT)) (-2588 (((-578 |#1|) $) 45 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 47 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3218 (($ $ $) 27 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 53 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 42 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#1|) (-578 |#1|)) 51 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 49 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 (-245 |#1|))) 48 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 33 T ELT)) (-3380 (((-83) $) 36 T ELT)) (-3541 (($) 35 T ELT)) (-3217 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1929 (((-687) |#1| $) 46 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#1|) $) 43 (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 34 T ELT)) (-3948 (((-467) $) 61 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 52 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-3220 (($) 31 T ELT) (($ (-578 |#1|)) 30 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 41 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (((-687) $) 38 (|has| $ (-6 -3971)) ELT))) -(((-1001 |#1|) (-111) (-1003)) (T -1001)) -((-3221 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-83)))) (-3220 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-3219 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3219 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-3218 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3217 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3217 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3215 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-83)))) (-3214 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3214 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3214 (*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) -(-13 (-1003) (-122 |t#1|) (-10 -8 (-6 -3961) (-15 -3221 ((-83) $ $)) (-15 -3220 ($)) (-15 -3220 ($ (-578 |t#1|))) (-15 -3219 ($)) (-15 -3219 ($ (-578 |t#1|))) (-15 -3218 ($ $ $)) (-15 -3217 ($ $ $)) (-15 -3217 ($ $ |t#1|)) (-15 -3216 ($ $ $)) (-15 -3215 ((-83) $ $)) (-15 -3214 ($ $ $)) (-15 -3214 ($ $ |t#1|)) (-15 -3214 ($ |t#1| $)))) -(((-34) . T) ((-72) . T) ((-547 (-765)) . T) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) . T) ((-1114) . T)) -((-3222 (((-1059) $) 10 T ELT)) (-3223 (((-1020) $) 8 T ELT))) -(((-1002 |#1|) (-10 -7 (-15 -3222 ((-1059) |#1|)) (-15 -3223 ((-1020) |#1|))) (-1003)) (T -1002)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-1003) (-111)) (T -1003)) -((-3223 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1020)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1059))))) -(-13 (-72) (-547 (-765)) (-10 -8 (-15 -3223 ((-1020) $)) (-15 -3222 ((-1059) $)))) -(((-72) . T) ((-547 (-765)) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) 36 T ELT)) (-3227 (($ (-578 (-823))) 70 T ELT)) (-3229 (((-3 $ #1="failed") $ (-823) (-823)) 81 T ELT)) (-2975 (($) 40 T ELT)) (-3225 (((-83) (-823) $) 42 T ELT)) (-1992 (((-823) $) 64 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) 39 T ELT)) (-3230 (((-3 $ #1#) $ (-823)) 77 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3226 (((-1164 $)) 47 T ELT)) (-3228 (((-578 (-823)) $) 27 T ELT)) (-3224 (((-687) $ (-823) (-823)) 78 T ELT)) (-3922 (((-765) $) 32 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 24 T ELT))) -(((-1004 |#1| |#2|) (-13 (-313) (-10 -8 (-15 -3230 ((-3 $ #1="failed") $ (-823))) (-15 -3229 ((-3 $ #1#) $ (-823) (-823))) (-15 -3228 ((-578 (-823)) $)) (-15 -3227 ($ (-578 (-823)))) (-15 -3226 ((-1164 $))) (-15 -3225 ((-83) (-823) $)) (-15 -3224 ((-687) $ (-823) (-823))))) (-823) (-823)) (T -1004)) -((-3230 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-823)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3229 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-823)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3228 (*1 *2 *1) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-3227 (*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-3226 (*1 *2) (-12 (-5 *2 (-1164 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) (-3225 (*1 *2 *3 *1) (-12 (-5 *3 (-823)) (-5 *2 (-83)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3224 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-687)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3240 (((-83) $) NIL T ELT)) (-3236 (((-1075) $) NIL T ELT)) (-3241 (((-83) $) NIL T ELT)) (-3511 (((-1059) $) NIL T ELT)) (-3243 (((-83) $) NIL T ELT)) (-3245 (((-83) $) NIL T ELT)) (-3242 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3239 (((-83) $) NIL T ELT)) (-3235 (((-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3238 (((-83) $) NIL T ELT)) (-3234 (((-177) $) NIL T ELT)) (-3233 (((-765) $) NIL T ELT)) (-3246 (((-83) $ $) NIL T ELT)) (-3776 (($ $ (-478)) NIL T ELT) (($ $ (-578 (-478))) NIL T ELT)) (-3237 (((-578 $) $) NIL T ELT)) (-3948 (($ (-1059)) NIL T ELT) (($ (-1075)) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-177)) NIL T ELT) (($ (-765)) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-3231 (($ $) NIL T ELT)) (-3232 (($ $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3244 (((-83) $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (((-478) $) NIL T ELT))) -(((-1005) (-1006 (-1059) (-1075) (-478) (-177) (-765))) (T -1005)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3240 (((-83) $) 36 T ELT)) (-3236 ((|#2| $) 31 T ELT)) (-3241 (((-83) $) 37 T ELT)) (-3511 ((|#1| $) 32 T ELT)) (-3243 (((-83) $) 39 T ELT)) (-3245 (((-83) $) 41 T ELT)) (-3242 (((-83) $) 38 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3239 (((-83) $) 35 T ELT)) (-3235 ((|#3| $) 30 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3238 (((-83) $) 34 T ELT)) (-3234 ((|#4| $) 29 T ELT)) (-3233 ((|#5| $) 28 T ELT)) (-3246 (((-83) $ $) 42 T ELT)) (-3776 (($ $ (-478)) 44 T ELT) (($ $ (-578 (-478))) 43 T ELT)) (-3237 (((-578 $) $) 33 T ELT)) (-3948 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-578 $)) 45 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-3231 (($ $) 26 T ELT)) (-3232 (($ $) 27 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3244 (((-83) $) 40 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (((-478) $) 25 T ELT))) -(((-1006 |#1| |#2| |#3| |#4| |#5|) (-111) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1006)) -((-3246 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83)))) (-3237 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-578 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3232 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3231 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-478))))) -(-13 (-1003) (-552 |t#1|) (-552 |t#2|) (-552 |t#3|) (-552 |t#4|) (-552 |t#4|) (-552 |t#5|) (-552 (-578 $)) (-238 (-478) $) (-238 (-578 (-478)) $) (-10 -8 (-15 -3246 ((-83) $ $)) (-15 -3245 ((-83) $)) (-15 -3244 ((-83) $)) (-15 -3243 ((-83) $)) (-15 -3242 ((-83) $)) (-15 -3241 ((-83) $)) (-15 -3240 ((-83) $)) (-15 -3239 ((-83) $)) (-15 -3238 ((-83) $)) (-15 -3237 ((-578 $) $)) (-15 -3511 (|t#1| $)) (-15 -3236 (|t#2| $)) (-15 -3235 (|t#3| $)) (-15 -3234 (|t#4| $)) (-15 -3233 (|t#5| $)) (-15 -3232 ($ $)) (-15 -3231 ($ $)) (-15 -3933 ((-478) $)))) -(((-72) . T) ((-547 (-765)) . T) ((-552 (-578 $)) . T) ((-552 |#1|) . T) ((-552 |#2|) . T) ((-552 |#3|) . T) ((-552 |#4|) . T) ((-552 |#5|) . T) ((-238 (-478) $) . T) ((-238 (-578 (-478)) $) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3240 (((-83) $) 45 T ELT)) (-3236 ((|#2| $) 48 T ELT)) (-3241 (((-83) $) 20 T ELT)) (-3511 ((|#1| $) 21 T ELT)) (-3243 (((-83) $) 42 T ELT)) (-3245 (((-83) $) 14 T ELT)) (-3242 (((-83) $) 44 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3239 (((-83) $) 46 T ELT)) (-3235 ((|#3| $) 50 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3238 (((-83) $) 47 T ELT)) (-3234 ((|#4| $) 49 T ELT)) (-3233 ((|#5| $) 51 T ELT)) (-3246 (((-83) $ $) 41 T ELT)) (-3776 (($ $ (-478)) 62 T ELT) (($ $ (-578 (-478))) 64 T ELT)) (-3237 (((-578 $) $) 27 T ELT)) (-3948 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-578 $)) 52 T ELT)) (-3922 (((-765) $) 28 T ELT)) (-3231 (($ $) 26 T ELT)) (-3232 (($ $) 58 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3244 (((-83) $) 23 T ELT)) (-3037 (((-83) $ $) 40 T ELT)) (-3933 (((-478) $) 60 T ELT))) -(((-1007 |#1| |#2| |#3| |#4| |#5|) (-1006 |#1| |#2| |#3| |#4| |#5|) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1007)) -NIL -((-3249 (((-83) |#5| |#5|) 44 T ELT)) (-3252 (((-83) |#5| |#5|) 59 T ELT)) (-3257 (((-83) |#5| (-578 |#5|)) 82 T ELT) (((-83) |#5| |#5|) 68 T ELT)) (-3253 (((-83) (-578 |#4|) (-578 |#4|)) 65 T ELT)) (-3259 (((-83) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) 70 T ELT)) (-3248 (((-1170)) 32 T ELT)) (-3247 (((-1170) (-1059) (-1059) (-1059)) 28 T ELT)) (-3258 (((-578 |#5|) (-578 |#5|)) 101 T ELT)) (-3260 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)))) 93 T ELT)) (-3261 (((-578 (-2 (|:| -3246 (-578 |#4|)) (|:| -1583 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-83) (-83)) 123 T ELT)) (-3251 (((-83) |#5| |#5|) 53 T ELT)) (-3256 (((-3 (-83) #1="failed") |#5| |#5|) 78 T ELT)) (-3254 (((-83) (-578 |#4|) (-578 |#4|)) 64 T ELT)) (-3255 (((-83) (-578 |#4|) (-578 |#4|)) 66 T ELT)) (-3675 (((-83) (-578 |#4|) (-578 |#4|)) 67 T ELT)) (-3262 (((-3 (-2 (|:| -3246 (-578 |#4|)) (|:| -1583 |#5|) (|:| |ineq| (-578 |#4|))) #1#) (-578 |#4|) |#5| (-578 |#4|) (-83) (-83) (-83) (-83) (-83)) 118 T ELT)) (-3250 (((-578 |#5|) (-578 |#5|)) 49 T ELT))) -(((-1008 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3247 ((-1170) (-1059) (-1059) (-1059))) (-15 -3248 ((-1170))) (-15 -3249 ((-83) |#5| |#5|)) (-15 -3250 ((-578 |#5|) (-578 |#5|))) (-15 -3251 ((-83) |#5| |#5|)) (-15 -3252 ((-83) |#5| |#5|)) (-15 -3253 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3254 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3255 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3675 ((-83) (-578 |#4|) (-578 |#4|))) (-15 -3256 ((-3 (-83) #1="failed") |#5| |#5|)) (-15 -3257 ((-83) |#5| |#5|)) (-15 -3257 ((-83) |#5| (-578 |#5|))) (-15 -3258 ((-578 |#5|) (-578 |#5|))) (-15 -3259 ((-83) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)))) (-15 -3260 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) (-15 -3261 ((-578 (-2 (|:| -3246 (-578 |#4|)) (|:| -1583 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-83) (-83))) (-15 -3262 ((-3 (-2 (|:| -3246 (-578 |#4|)) (|:| -1583 |#5|) (|:| |ineq| (-578 |#4|))) #1#) (-578 |#4|) |#5| (-578 |#4|) (-83) (-83) (-83) (-83) (-83)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -1008)) -((-3262 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| -3246 (-578 *9)) (|:| -1583 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-1008 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-975 *6 *7 *8 *9)))) (-3261 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-83)) (-4 *10 (-975 *6 *7 *8 *9)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -3246 (-578 *9)) (|:| -1583 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-1008 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) (-3260 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -1583 *7)))) (-4 *6 (-969 *3 *4 *5)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1583 *8))) (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8)))) (-3258 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-1008 *5 *6 *7 *8 *3)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3675 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3255 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3254 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3253 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3252 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3251 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3250 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) (-3249 (*1 *2 *3 *3) (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) (-3248 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3247 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7))))) -((-3277 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#5|) 106 T ELT)) (-3267 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3270 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3272 (((-578 |#5|) |#4| |#5|) 122 T ELT)) (-3274 (((-578 |#5|) |#4| |#5|) 129 T ELT)) (-3276 (((-578 |#5|) |#4| |#5|) 130 T ELT)) (-3271 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|) 107 T ELT)) (-3273 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|) 128 T ELT)) (-3275 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|) 47 T ELT) (((-83) |#4| |#5|) 55 T ELT)) (-3268 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) |#3| (-83)) 91 T ELT) (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5| (-83) (-83)) 52 T ELT)) (-3269 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3266 (((-1170)) 36 T ELT)) (-3264 (((-1170)) 25 T ELT)) (-3265 (((-1170) (-1059) (-1059) (-1059)) 32 T ELT)) (-3263 (((-1170) (-1059) (-1059) (-1059)) 21 T ELT))) -(((-1009 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3263 ((-1170) (-1059) (-1059) (-1059))) (-15 -3264 ((-1170))) (-15 -3265 ((-1170) (-1059) (-1059) (-1059))) (-15 -3266 ((-1170))) (-15 -3267 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) |#4| |#4| |#5|)) (-15 -3268 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5| (-83) (-83))) (-15 -3268 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) |#3| (-83))) (-15 -3269 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5|)) (-15 -3270 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#4| |#5|)) (-15 -3275 ((-83) |#4| |#5|)) (-15 -3271 ((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|)) (-15 -3272 ((-578 |#5|) |#4| |#5|)) (-15 -3273 ((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|)) (-15 -3274 ((-578 |#5|) |#4| |#5|)) (-15 -3275 ((-578 (-2 (|:| |val| (-83)) (|:| -1583 |#5|))) |#4| |#5|)) (-15 -3276 ((-578 |#5|) |#4| |#5|)) (-15 -3277 ((-578 (-2 (|:| |val| |#4|) (|:| -1583 |#5|))) |#4| |#5|))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-975 |#1| |#2| |#3| |#4|)) (T -1009)) -((-3277 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3276 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3275 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3274 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3273 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3272 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3271 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3275 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3270 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3269 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3268 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1583 *9)))) (-5 *5 (-83)) (-4 *8 (-969 *6 *7 *4)) (-4 *9 (-975 *6 *7 *4 *8)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *4 (-749)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -1583 *9)))) (-5 *1 (-1009 *6 *7 *4 *8 *9)))) (-3268 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) (-3267 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) (-3266 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3265 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7)))) (-3264 (*1 *2) (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-1170)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) (-3263 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-975 *4 *5 *6 *7))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3658 (((-578 $) (-578 |#4|)) 91 T ELT) (((-578 $) (-578 |#4|) (-83)) 118 T ELT)) (-3063 (((-578 |#3|) $) 37 T ELT)) (-2889 (((-83) $) 30 T ELT)) (-2880 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3669 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3664 ((|#4| |#4| $) 97 T ELT)) (-3751 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| $) 133 T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3686 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3971)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3700 (($) 46 T CONST)) (-2885 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3665 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3137 (($ (-578 |#4|)) 39 T ELT)) (-3775 (((-3 $ #1#) $) 87 T ELT)) (-3661 ((|#4| |#4| $) 94 T ELT)) (-1336 (($ $) 69 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#4| $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3670 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3659 ((|#4| |#4| $) 92 T ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3971)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#4|)) (|:| -1685 (-578 |#4|))) $) 110 T ELT)) (-3179 (((-83) |#4| $) 143 T ELT)) (-3177 (((-83) |#4| $) 140 T ELT)) (-3180 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2870 (((-578 |#4|) $) 53 (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3161 ((|#3| $) 38 T ELT)) (-2588 (((-578 |#4|) $) 54 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2895 (((-578 |#3|) $) 36 T ELT)) (-2894 (((-83) |#3| $) 35 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3173 (((-3 |#4| (-578 $)) |#4| |#4| $) 135 T ELT)) (-3172 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| |#4| $) 134 T ELT)) (-3774 (((-3 |#4| #1#) $) 88 T ELT)) (-3174 (((-578 $) |#4| $) 136 T ELT)) (-3176 (((-3 (-83) (-578 $)) |#4| $) 139 T ELT)) (-3175 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3218 (((-578 $) |#4| $) 132 T ELT) (((-578 $) (-578 |#4|) $) 131 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 130 T ELT) (((-578 $) |#4| (-578 $)) 129 T ELT)) (-3417 (($ |#4| $) 124 T ELT) (($ (-578 |#4|) $) 123 T ELT)) (-3673 (((-578 |#4|) $) 112 T ELT)) (-3667 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3662 ((|#4| |#4| $) 95 T ELT)) (-3675 (((-83) $ $) 115 T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3668 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3663 ((|#4| |#4| $) 96 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3777 (((-3 |#4| #1#) $) 89 T ELT)) (-1337 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3655 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3745 (($ $ |#4|) 82 T ELT) (((-578 $) |#4| $) 122 T ELT) (((-578 $) |#4| (-578 $)) 121 T ELT) (((-578 $) (-578 |#4|) $) 120 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 119 T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) 42 T ELT)) (-3380 (((-83) $) 45 T ELT)) (-3541 (($) 44 T ELT)) (-3924 (((-687) $) 111 T ELT)) (-1929 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 43 T ELT)) (-3948 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) 61 T ELT)) (-2891 (($ $ |#3|) 32 T ELT)) (-2893 (($ $ |#3|) 34 T ELT)) (-3660 (($ $) 93 T ELT)) (-2892 (($ $ |#3|) 33 T ELT)) (-3922 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3654 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3666 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-3171 (((-578 $) |#4| $) 128 T ELT) (((-578 $) |#4| (-578 $)) 127 T ELT) (((-578 $) (-578 |#4|) $) 126 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 125 T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 |#3|) $) 86 T ELT)) (-3178 (((-83) |#4| $) 142 T ELT)) (-3909 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (((-687) $) 47 (|has| $ (-6 -3971)) ELT))) -(((-1010 |#1| |#2| |#3| |#4|) (-111) (-385) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -1010)) -NIL -(-13 (-975 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-882 |#1| |#2| |#3| |#4|) . T) ((-975 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1109 |#1| |#2| |#3| |#4|) . T) ((-1114) . T)) -((-3288 (((-578 (-478)) (-478) (-478) (-478)) 40 T ELT)) (-3287 (((-578 (-478)) (-478) (-478) (-478)) 30 T ELT)) (-3286 (((-578 (-478)) (-478) (-478) (-478)) 35 T ELT)) (-3285 (((-478) (-478) (-478)) 22 T ELT)) (-3284 (((-1164 (-478)) (-578 (-478)) (-1164 (-478)) (-478)) 78 T ELT) (((-1164 (-478)) (-1164 (-478)) (-1164 (-478)) (-478)) 73 T ELT)) (-3283 (((-578 (-478)) (-578 (-823)) (-578 (-478)) (-83)) 56 T ELT)) (-3282 (((-625 (-478)) (-578 (-478)) (-578 (-478)) (-625 (-478))) 77 T ELT)) (-3281 (((-625 (-478)) (-578 (-823)) (-578 (-478))) 61 T ELT)) (-3280 (((-578 (-625 (-478))) (-578 (-823))) 66 T ELT)) (-3279 (((-578 (-478)) (-578 (-478)) (-578 (-478)) (-625 (-478))) 81 T ELT)) (-3278 (((-625 (-478)) (-578 (-478)) (-578 (-478)) (-578 (-478))) 91 T ELT))) -(((-1011) (-10 -7 (-15 -3278 ((-625 (-478)) (-578 (-478)) (-578 (-478)) (-578 (-478)))) (-15 -3279 ((-578 (-478)) (-578 (-478)) (-578 (-478)) (-625 (-478)))) (-15 -3280 ((-578 (-625 (-478))) (-578 (-823)))) (-15 -3281 ((-625 (-478)) (-578 (-823)) (-578 (-478)))) (-15 -3282 ((-625 (-478)) (-578 (-478)) (-578 (-478)) (-625 (-478)))) (-15 -3283 ((-578 (-478)) (-578 (-823)) (-578 (-478)) (-83))) (-15 -3284 ((-1164 (-478)) (-1164 (-478)) (-1164 (-478)) (-478))) (-15 -3284 ((-1164 (-478)) (-578 (-478)) (-1164 (-478)) (-478))) (-15 -3285 ((-478) (-478) (-478))) (-15 -3286 ((-578 (-478)) (-478) (-478) (-478))) (-15 -3287 ((-578 (-478)) (-478) (-478) (-478))) (-15 -3288 ((-578 (-478)) (-478) (-478) (-478))))) (T -1011)) -((-3288 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1011)) (-5 *3 (-478)))) (-3287 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1011)) (-5 *3 (-478)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1011)) (-5 *3 (-478)))) (-3285 (*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1011)))) (-3284 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1164 (-478))) (-5 *3 (-578 (-478))) (-5 *4 (-478)) (-5 *1 (-1011)))) (-3284 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1164 (-478))) (-5 *3 (-478)) (-5 *1 (-1011)))) (-3283 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-578 (-478))) (-5 *3 (-578 (-823))) (-5 *4 (-83)) (-5 *1 (-1011)))) (-3282 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-625 (-478))) (-5 *3 (-578 (-478))) (-5 *1 (-1011)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-823))) (-5 *4 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-1011)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-1011)))) (-3279 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *3 (-625 (-478))) (-5 *1 (-1011)))) (-3278 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-1011))))) -((** (($ $ (-823)) 10 T ELT))) -(((-1012 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-823)))) (-1013)) (T -1012)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (** (($ $ (-823)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1013) (-111)) (T -1013)) -((* (*1 *1 *1 *1) (-4 *1 (-1013))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-823))))) -(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-823))))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-3170 (((-83) $) NIL (|has| |#3| (-23)) ELT)) (-3683 (($ (-823)) NIL (|has| |#3| (-954)) ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-2463 (($ $ $) NIL (|has| |#3| (-710)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-102)) ELT)) (-3117 (((-687)) NIL (|has| |#3| (-313)) ELT)) (-3764 ((|#3| $ (-478) |#3|) NIL (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1003)) ELT)) (-3137 (((-478) $) NIL (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003))) ELT) ((|#3| $) NIL (|has| |#3| (-1003)) ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1164 |#3|))) (-625 $) (-1164 $)) NIL (|has| |#3| (-954)) ELT) (((-625 |#3|) (-625 $)) NIL (|has| |#3| (-954)) ELT)) (-3444 (((-3 $ #1#) $) NIL (|has| |#3| (-954)) ELT)) (-2975 (($) NIL (|has| |#3| (-313)) ELT)) (-1559 ((|#3| $ (-478) |#3|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#3| $ (-478)) 12 T ELT)) (-3168 (((-83) $) NIL (|has| |#3| (-710)) ELT)) (-2870 (((-578 |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) NIL (|has| |#3| (-954)) ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#3| (-749)) ELT)) (-2588 (((-578 |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#3| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#3| (-749)) ELT)) (-1932 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-1992 (((-823) $) NIL (|has| |#3| (-313)) ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| |#3| (-575 (-478))) (|has| |#3| (-954))) ELT) (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1164 |#3|))) (-1164 $) $) NIL (|has| |#3| (-954)) ELT) (((-625 |#3|) (-1164 $)) NIL (|has| |#3| (-954)) ELT)) (-3222 (((-1059) $) NIL (|has| |#3| (-1003)) ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-2382 (($ (-823)) NIL (|has| |#3| (-313)) ELT)) (-3223 (((-1020) $) NIL (|has| |#3| (-1003)) ELT)) (-3777 ((|#3| $) NIL (|has| (-478) (-749)) ELT)) (-2181 (($ $ |#3|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#3|))) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ (-245 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT) (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#3| (-1003))) ELT)) (-2187 (((-578 |#3|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#3| $ (-478) |#3|) NIL T ELT) ((|#3| $ (-478)) NIL T ELT)) (-3812 ((|#3| $ $) NIL (|has| |#3| (-954)) ELT)) (-1451 (($ (-1164 |#3|)) NIL T ELT)) (-3887 (((-105)) NIL (|has| |#3| (-308)) ELT)) (-3734 (($ $ (-687)) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-954))) ELT) (($ $) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-954)) ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL (|has| |#3| (-954)) ELT)) (-1929 (((-687) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#3| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#3| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3922 (((-1164 |#3|) $) NIL T ELT) (($ (-478)) NIL (OR (-12 (|has| |#3| (-943 (-478))) (|has| |#3| (-1003))) (|has| |#3| (-954))) ELT) (($ (-343 (-478))) NIL (-12 (|has| |#3| (-943 (-343 (-478)))) (|has| |#3| (-1003))) ELT) (($ |#3|) NIL (|has| |#3| (-1003)) ELT) (((-765) $) NIL (|has| |#3| (-547 (-765))) ELT)) (-3107 (((-687)) NIL (|has| |#3| (-954)) CONST)) (-1249 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2640 (($) NIL (|has| |#3| (-23)) CONST)) (-2647 (($) NIL (|has| |#3| (-954)) CONST)) (-2650 (($ $ (-687)) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-954))) ELT) (($ $) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-954))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))) ELT) (($ $ (-1075)) NIL (-12 (|has| |#3| (-804 (-1075))) (|has| |#3| (-954))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-954)) ELT) (($ $ (-1 |#3| |#3|) (-687)) NIL (|has| |#3| (-954)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#3| (-749)) ELT)) (-2666 (((-83) $ $) 24 (|has| |#3| (-749)) ELT)) (-3925 (($ $ |#3|) NIL (|has| |#3| (-308)) ELT)) (-3813 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3815 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-687)) NIL (|has| |#3| (-954)) ELT) (($ $ (-823)) NIL (|has| |#3| (-954)) ELT)) (* (($ $ $) NIL (|has| |#3| (-954)) ELT) (($ $ |#3|) NIL (|has| |#3| (-658)) ELT) (($ |#3| $) NIL (|has| |#3| (-658)) ELT) (($ (-478) $) NIL (|has| |#3| (-21)) ELT) (($ (-687) $) NIL (|has| |#3| (-23)) ELT) (($ (-823) $) NIL (|has| |#3| (-25)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-1014 |#1| |#2| |#3|) (-193 |#1| |#3|) (-687) (-687) (-710)) (T -1014)) -NIL -((-3289 (((-578 (-1133 |#2| |#1|)) (-1133 |#2| |#1|) (-1133 |#2| |#1|)) 50 T ELT)) (-3295 (((-478) (-1133 |#2| |#1|)) 95 (|has| |#1| (-385)) ELT)) (-3293 (((-478) (-1133 |#2| |#1|)) 79 T ELT)) (-3290 (((-578 (-1133 |#2| |#1|)) (-1133 |#2| |#1|) (-1133 |#2| |#1|)) 58 T ELT)) (-3294 (((-478) (-1133 |#2| |#1|) (-1133 |#2| |#1|)) 81 (|has| |#1| (-385)) ELT)) (-3291 (((-578 |#1|) (-1133 |#2| |#1|) (-1133 |#2| |#1|)) 61 T ELT)) (-3292 (((-478) (-1133 |#2| |#1|) (-1133 |#2| |#1|)) 78 T ELT))) -(((-1015 |#1| |#2|) (-10 -7 (-15 -3289 ((-578 (-1133 |#2| |#1|)) (-1133 |#2| |#1|) (-1133 |#2| |#1|))) (-15 -3290 ((-578 (-1133 |#2| |#1|)) (-1133 |#2| |#1|) (-1133 |#2| |#1|))) (-15 -3291 ((-578 |#1|) (-1133 |#2| |#1|) (-1133 |#2| |#1|))) (-15 -3292 ((-478) (-1133 |#2| |#1|) (-1133 |#2| |#1|))) (-15 -3293 ((-478) (-1133 |#2| |#1|))) (IF (|has| |#1| (-385)) (PROGN (-15 -3294 ((-478) (-1133 |#2| |#1|) (-1133 |#2| |#1|))) (-15 -3295 ((-478) (-1133 |#2| |#1|)))) |%noBranch|)) (-733) (-1075)) (T -1015)) -((-3295 (*1 *2 *3) (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-385)) (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-478)) (-5 *1 (-1015 *4 *5)))) (-3294 (*1 *2 *3 *3) (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-385)) (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-478)) (-5 *1 (-1015 *4 *5)))) (-3293 (*1 *2 *3) (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-478)) (-5 *1 (-1015 *4 *5)))) (-3292 (*1 *2 *3 *3) (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-478)) (-5 *1 (-1015 *4 *5)))) (-3291 (*1 *2 *3 *3) (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-578 *4)) (-5 *1 (-1015 *4 *5)))) (-3290 (*1 *2 *3 *3) (-12 (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-578 (-1133 *5 *4))) (-5 *1 (-1015 *4 *5)) (-5 *3 (-1133 *5 *4)))) (-3289 (*1 *2 *3 *3) (-12 (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-578 (-1133 *5 *4))) (-5 *1 (-1015 *4 *5)) (-5 *3 (-1133 *5 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3297 (((-1080) $) 12 T ELT)) (-3296 (((-578 (-1080)) $) 14 T ELT)) (-3298 (($ (-578 (-1080)) (-1080)) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 29 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 17 T ELT))) -(((-1016) (-13 (-1003) (-10 -8 (-15 -3298 ($ (-578 (-1080)) (-1080))) (-15 -3297 ((-1080) $)) (-15 -3296 ((-578 (-1080)) $))))) (T -1016)) -((-3298 (*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1080))) (-5 *3 (-1080)) (-5 *1 (-1016)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1016)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-578 (-1080))) (-5 *1 (-1016))))) -((-3599 (((-3 (-478) #1="failed") |#2| (-1075) |#2| (-1059)) 19 T ELT) (((-3 (-478) #1#) |#2| (-1075) (-743 |#2|)) 17 T ELT) (((-3 (-478) #1#) |#2|) 60 T ELT))) -(((-1017 |#1| |#2|) (-10 -7 (-15 -3599 ((-3 (-478) #1="failed") |#2|)) (-15 -3599 ((-3 (-478) #1#) |#2| (-1075) (-743 |#2|))) (-15 -3599 ((-3 (-478) #1#) |#2| (-1075) |#2| (-1059)))) (-13 (-489) (-943 (-478)) (-575 (-478)) (-385)) (-13 (-27) (-1100) (-357 |#1|))) (T -1017)) -((-3599 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-1059)) (-4 *6 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) (-5 *1 (-1017 *6 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))))) (-3599 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-743 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) (-4 *6 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) (-5 *1 (-1017 *6 *3)))) (-3599 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) (-5 *1 (-1017 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4)))))) -((-3599 (((-3 (-478) #1="failed") (-343 (-850 |#1|)) (-1075) (-343 (-850 |#1|)) (-1059)) 38 T ELT) (((-3 (-478) #1#) (-343 (-850 |#1|)) (-1075) (-743 (-343 (-850 |#1|)))) 33 T ELT) (((-3 (-478) #1#) (-343 (-850 |#1|))) 14 T ELT))) -(((-1018 |#1|) (-10 -7 (-15 -3599 ((-3 (-478) #1="failed") (-343 (-850 |#1|)))) (-15 -3599 ((-3 (-478) #1#) (-343 (-850 |#1|)) (-1075) (-743 (-343 (-850 |#1|))))) (-15 -3599 ((-3 (-478) #1#) (-343 (-850 |#1|)) (-1075) (-343 (-850 |#1|)) (-1059)))) (-385)) (T -1018)) -((-3599 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-343 (-850 *6))) (-5 *4 (-1075)) (-5 *5 (-1059)) (-4 *6 (-385)) (-5 *2 (-478)) (-5 *1 (-1018 *6)))) (-3599 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-743 (-343 (-850 *6)))) (-5 *3 (-343 (-850 *6))) (-4 *6 (-385)) (-5 *2 (-478)) (-5 *1 (-1018 *6)))) (-3599 (*1 *2 *3) (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-385)) (-5 *2 (-478)) (-5 *1 (-1018 *4))))) -((-3625 (((-261 (-478)) (-48)) 12 T ELT))) -(((-1019) (-10 -7 (-15 -3625 ((-261 (-478)) (-48))))) (T -1019)) -((-3625 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-261 (-478))) (-5 *1 (-1019))))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) 22 T ELT)) (-3170 (((-83) $) 49 T ELT)) (-3299 (($ $ $) 28 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 75 T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-2029 (($ $ $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2024 (($ $ $ $) 59 T ELT)) (-3751 (($ $) NIL T ELT)) (-3947 (((-341 $) $) NIL T ELT)) (-1591 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) 61 T ELT)) (-3599 (((-478) $) NIL T ELT)) (-2421 (($ $ $) 56 T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL T ELT)) (-2544 (($ $ $) 42 T ELT)) (-2261 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 70 T ELT) (((-625 (-478)) (-625 $)) 8 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3005 (((-3 (-343 (-478)) #1#) $) NIL T ELT)) (-3004 (((-83) $) NIL T ELT)) (-3003 (((-343 (-478)) $) NIL T ELT)) (-2975 (($) 73 T ELT) (($ $) 72 T ELT)) (-2543 (($ $ $) 41 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL T ELT)) (-3699 (((-83) $) NIL T ELT)) (-2022 (($ $ $ $) NIL T ELT)) (-2030 (($ $ $) 71 T ELT)) (-3168 (((-83) $) 76 T ELT)) (-1352 (($ $ $) NIL T ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL T ELT)) (-2541 (($ $ $) 27 T ELT)) (-2392 (((-83) $) 50 T ELT)) (-2654 (((-83) $) 47 T ELT)) (-2540 (($ $) 23 T ELT)) (-3422 (((-627 $) $) NIL T ELT)) (-3169 (((-83) $) 60 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL T ELT)) (-2023 (($ $ $ $) 57 T ELT)) (-2511 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2838 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2026 (($ $) NIL T ELT)) (-1992 (((-823) $) 66 T ELT)) (-3809 (($ $) 55 T ELT)) (-2262 (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL T ELT) (((-625 (-478)) (-1164 $)) NIL T ELT)) (-1874 (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2021 (($ $ $) NIL T ELT)) (-3423 (($) NIL T CONST)) (-2382 (($ (-823)) 65 T ELT)) (-2028 (($ $) 33 T ELT)) (-3223 (((-1020) $) 54 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL T ELT)) (-3125 (($ $ $) 45 T ELT) (($ (-578 $)) NIL T ELT)) (-1350 (($ $) NIL T ELT)) (-3708 (((-341 $) $) NIL T ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL T ELT)) (-2655 (((-83) $) 48 T ELT)) (-1590 (((-687) $) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 44 T ELT)) (-3734 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2027 (($ $) 34 T ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-478) $) 12 T ELT) (((-467) $) NIL T ELT) (((-793 (-478)) $) NIL T ELT) (((-323) $) NIL T ELT) (((-177) $) NIL T ELT)) (-3922 (((-765) $) 11 T ELT) (($ (-478)) 13 T ELT) (($ $) NIL T ELT) (($ (-478)) 13 T ELT)) (-3107 (((-687)) NIL T CONST)) (-2031 (((-83) $ $) NIL T ELT)) (-3083 (($ $ $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2675 (($) 17 T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2542 (($ $ $) 26 T ELT)) (-2025 (($ $ $ $) 58 T ELT)) (-3360 (($ $) 46 T ELT)) (-2293 (($ $ $) 25 T ELT)) (-2640 (($) 15 T CONST)) (-2647 (($) 16 T CONST)) (-2650 (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2546 (((-83) $ $) 32 T ELT)) (-2547 (((-83) $ $) 30 T ELT)) (-3037 (((-83) $ $) 21 T ELT)) (-2665 (((-83) $ $) 31 T ELT)) (-2666 (((-83) $ $) 29 T ELT)) (-2294 (($ $ $) 24 T ELT)) (-3813 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3815 (($ $ $) 36 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 40 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-478) $) 14 T ELT))) -(((-1020) (-13 (-477) (-745) (-82) (-10 -8 (-6 -3958) (-6 -3963) (-6 -3959) (-15 -3299 ($ $ $))))) (T -1020)) -((-3299 (*1 *1 *1 *1) (-5 *1 (-1020)))) -((-478) (|%ismall?| |#1|)) -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3301 ((|#1| $) 48 T ELT)) (-3700 (($) 7 T CONST)) (-3303 ((|#1| |#1| $) 50 T ELT)) (-3302 ((|#1| $) 49 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 43 T ELT)) (-3585 (($ |#1| $) 44 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-1259 ((|#1| $) 45 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3300 (((-687) $) 47 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) 46 T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-1021 |#1|) (-111) (-1114)) (T -1021)) -((-3303 (*1 *2 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1114)))) (-3302 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1114)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1114)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1114)) (-5 *2 (-687))))) -(-13 (-76 |t#1|) (-10 -8 (-6 -3971) (-15 -3303 (|t#1| |t#1| $)) (-15 -3302 (|t#1| $)) (-15 -3301 (|t#1| $)) (-15 -3300 ((-687) $)))) -(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-3307 ((|#3| $) 87 T ELT)) (-3138 (((-3 (-478) #1="failed") $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3137 (((-478) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL T ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL T ELT) (((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1164 |#3|))) (-625 $) (-1164 $)) 84 T ELT) (((-625 |#3|) (-625 $)) 76 T ELT)) (-3734 (($ $ (-1 |#3| |#3|) (-687)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT)) (-3306 ((|#3| $) 89 T ELT)) (-3308 ((|#4| $) 43 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 24 T ELT) (($ $ (-478)) 95 T ELT))) -(((-1022 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1|)) (-15 ** (|#1| |#1| (-478))) (-15 -3306 (|#3| |#1|)) (-15 -3307 (|#3| |#1|)) (-15 -3308 (|#4| |#1|)) (-15 -2261 ((-625 |#3|) (-625 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 |#3|)) (|:| |vec| (-1164 |#3|))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 |#1|) (-1164 |#1|))) (-15 -2261 ((-625 (-478)) (-625 |#1|))) (-15 -3922 (|#1| |#3|)) (-15 -3138 ((-3 |#3| #1="failed") |#1|)) (-15 -3137 (|#3| |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3734 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3734 (|#1| |#1| (-1 |#3| |#3|) (-687))) (-15 -3922 (|#1| (-478))) (-15 ** (|#1| |#1| (-687))) (-15 ** (|#1| |#1| (-823))) (-15 -3922 ((-765) |#1|))) (-1023 |#2| |#3| |#4| |#5|) (-687) (-954) (-193 |#2| |#3|) (-193 |#2| |#3|)) (T -1022)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3307 ((|#2| $) 87 T ELT)) (-3102 (((-83) $) 128 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3104 (((-83) $) 126 T ELT)) (-3310 (($ |#2|) 90 T ELT)) (-3700 (($) 22 T CONST)) (-3091 (($ $) 145 (|has| |#2| (-254)) ELT)) (-3093 ((|#3| $ (-478)) 140 T ELT)) (-3138 (((-3 (-478) #1="failed") $) 106 (|has| |#2| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) 103 (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3137 (((-478) $) 105 (|has| |#2| (-943 (-478))) ELT) (((-343 (-478)) $) 102 (|has| |#2| (-943 (-343 (-478)))) ELT) ((|#2| $) 101 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 96 (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 95 (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) 94 T ELT) (((-625 |#2|) (-625 $)) 93 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3090 (((-687) $) 146 (|has| |#2| (-489)) ELT)) (-3094 ((|#2| $ (-478) (-478)) 138 T ELT)) (-2870 (((-578 |#2|) $) 114 (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) 40 T ELT)) (-3089 (((-687) $) 147 (|has| |#2| (-489)) ELT)) (-3088 (((-578 |#4|) $) 148 (|has| |#2| (-489)) ELT)) (-3096 (((-687) $) 134 T ELT)) (-3095 (((-687) $) 135 T ELT)) (-3304 ((|#2| $) 82 (|has| |#2| (-6 (-3973 #2="*"))) ELT)) (-3100 (((-478) $) 130 T ELT)) (-3098 (((-478) $) 132 T ELT)) (-2588 (((-578 |#2|) $) 113 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#2| $) 111 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3099 (((-478) $) 131 T ELT)) (-3097 (((-478) $) 133 T ELT)) (-3105 (($ (-578 (-578 |#2|))) 125 T ELT)) (-1932 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-3570 (((-578 (-578 |#2|)) $) 136 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 98 (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 97 (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) 92 T ELT) (((-625 |#2|) (-1164 $)) 91 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3566 (((-3 $ "failed") $) 81 (|has| |#2| (-308)) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3443 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-489)) ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) 116 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#2|))) 110 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) 109 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 107 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) 124 T ELT)) (-3380 (((-83) $) 121 T ELT)) (-3541 (($) 122 T ELT)) (-3776 ((|#2| $ (-478) (-478) |#2|) 139 T ELT) ((|#2| $ (-478) (-478)) 137 T ELT)) (-3734 (($ $ (-1 |#2| |#2|) (-687)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-187)) ELT) (($ $ (-687)) 50 (|has| |#2| (-187)) ELT) (($ $ (-1075)) 60 (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 58 (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 57 (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 56 (|has| |#2| (-804 (-1075))) ELT)) (-3306 ((|#2| $) 86 T ELT)) (-3309 (($ (-578 |#2|)) 89 T ELT)) (-3103 (((-83) $) 127 T ELT)) (-3308 ((|#3| $) 88 T ELT)) (-3305 ((|#2| $) 83 (|has| |#2| (-6 (-3973 #2#))) ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) 115 (|has| $ (-6 -3971)) ELT) (((-687) |#2| $) 112 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 123 T ELT)) (-3092 ((|#4| $ (-478)) 141 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 104 (|has| |#2| (-943 (-343 (-478)))) ELT) (($ |#2|) 99 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) 117 (|has| $ (-6 -3971)) ELT)) (-3101 (((-83) $) 129 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1 |#2| |#2|) (-687)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-187)) ELT) (($ $ (-687)) 49 (|has| |#2| (-187)) ELT) (($ $ (-1075)) 59 (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 55 (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 54 (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 53 (|has| |#2| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#2|) 144 (|has| |#2| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 80 (|has| |#2| (-308)) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-3933 (((-687) $) 120 (|has| $ (-6 -3971)) ELT))) -(((-1023 |#1| |#2| |#3| |#4|) (-111) (-687) (-954) (-193 |t#1| |t#2|) (-193 |t#1| |t#2|)) (T -1023)) -((-3310 (*1 *1 *2) (-12 (-4 *2 (-954)) (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)))) (-3309 (*1 *1 *2) (-12 (-5 *2 (-578 *4)) (-4 *4 (-954)) (-4 *1 (-1023 *3 *4 *5 *6)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *2 *5)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) (-4 *2 (-193 *3 *4)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (-4 *2 (-954)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (-4 *2 (-954)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) (-4 *2 (-193 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *2 *5)) (-4 *4 (-954)) (-4 *2 (-193 *3 *4)) (-4 *5 (-193 *3 *4)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (|has| *2 (-6 (-3973 #1="*"))) (-4 *2 (-954)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (|has| *2 (-6 (-3973 #1#))) (-4 *2 (-954)))) (-3566 (*1 *1 *1) (|partial| -12 (-4 *1 (-1023 *2 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-193 *2 *3)) (-4 *5 (-193 *2 *3)) (-4 *3 (-308)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-1023 *3 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4)) (-4 *4 (-308))))) -(-13 (-182 |t#2|) (-80 |t#2| |t#2|) (-958 |t#1| |t#1| |t#2| |t#3| |t#4|) (-348 |t#2|) (-322 |t#2|) (-10 -8 (IF (|has| |t#2| (-144)) (-6 (-649 |t#2|)) |%noBranch|) (-15 -3310 ($ |t#2|)) (-15 -3309 ($ (-578 |t#2|))) (-15 -3308 (|t#3| $)) (-15 -3307 (|t#2| $)) (-15 -3306 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3973 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3305 (|t#2| $)) (-15 -3304 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-308)) (PROGN (-15 -3566 ((-3 $ "failed") $)) (-15 ** ($ $ (-478)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3973 #1="*"))) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-550 (-343 (-478))) |has| |#2| (-943 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#2|) . T) ((-547 (-765)) . T) ((-184 $) OR (|has| |#2| (-187)) (|has| |#2| (-188))) ((-182 |#2|) . T) ((-188) |has| |#2| (-188)) ((-187) OR (|has| |#2| (-187)) (|has| |#2| (-188))) ((-222 |#2|) . T) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-322 |#2|) . T) ((-348 |#2|) . T) ((-422 |#2|) . T) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-583 (-478)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-585 (-478)) |has| |#2| (-575 (-478))) ((-585 |#2|) . T) ((-585 $) . T) ((-577 |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-6 (-3973 #1#)))) ((-575 (-478)) |has| |#2| (-575 (-478))) ((-575 |#2|) . T) ((-649 |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-6 (-3973 #1#)))) ((-658) . T) ((-799 $ (-1075)) OR (|has| |#2| (-804 (-1075))) (|has| |#2| (-802 (-1075)))) ((-802 (-1075)) |has| |#2| (-802 (-1075))) ((-804 (-1075)) OR (|has| |#2| (-804 (-1075))) (|has| |#2| (-802 (-1075)))) ((-958 |#1| |#1| |#2| |#3| |#4|) . T) ((-943 (-343 (-478))) |has| |#2| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#2| (-943 (-478))) ((-943 |#2|) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3313 ((|#4| |#4|) 81 T ELT)) (-3311 ((|#4| |#4|) 76 T ELT)) (-3315 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1994 (-578 |#3|))) |#4| |#3|) 91 T ELT)) (-3314 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3312 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1024 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3311 (|#4| |#4|)) (-15 -3312 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3313 (|#4| |#4|)) (-15 -3314 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3315 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1994 (-578 |#3|))) |#4| |#3|))) (-254) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|)) (T -1024)) -((-3315 (*1 *2 *3 *4) (-12 (-4 *5 (-254)) (-4 *6 (-317 *5)) (-4 *4 (-317 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1994 (-578 *4)))) (-5 *1 (-1024 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) (-3314 (*1 *2 *3) (-12 (-4 *4 (-254)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1024 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3313 (*1 *2 *2) (-12 (-4 *3 (-254)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-1024 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-3312 (*1 *2 *3) (-12 (-4 *4 (-254)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1024 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) (-3311 (*1 *2 *2) (-12 (-4 *3 (-254)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-1024 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 18 T ELT)) (-3063 (((-578 |#2|) $) 174 T ELT)) (-3065 (((-1070 $) $ |#2|) 60 T ELT) (((-1070 |#1|) $) 49 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 116 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 118 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 120 (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 |#2|)) 214 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3137 ((|#1| $) 165 T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) ((|#2| $) NIL T ELT)) (-3732 (($ $ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3935 (($ $) 218 T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) 90 T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT) (($ $ |#2|) NIL (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| (-463 |#2|) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| |#1| (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| |#1| (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-2392 (((-83) $) 20 T ELT)) (-2400 (((-687) $) 30 T ELT)) (-3066 (($ (-1070 |#1|) |#2|) 54 T ELT) (($ (-1070 $) |#2|) 71 T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) 38 T ELT)) (-2874 (($ |#1| (-463 |#2|)) 78 T ELT) (($ $ |#2| (-687)) 58 T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ |#2|) NIL T ELT)) (-2801 (((-463 |#2|) $) 205 T ELT) (((-687) $ |#2|) 206 T ELT) (((-578 (-687)) $ (-578 |#2|)) 207 T ELT)) (-1608 (($ (-1 (-463 |#2|) (-463 |#2|)) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3064 (((-3 |#2| #1#) $) 177 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2875 (($ $) 217 T ELT)) (-3155 ((|#1| $) 43 T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| |#2|) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) 39 T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 148 (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) 153 (|has| |#1| (-385)) ELT) (($ $ $) 138 (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-814)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-489)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-578 |#2|) (-578 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-578 |#2|) (-578 $)) 194 T ELT)) (-3733 (($ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3924 (((-463 |#2|) $) 201 T ELT) (((-687) $ |#2|) 196 T ELT) (((-578 (-687)) $ (-578 |#2|)) 199 T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| |#1| (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| |#1| (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| |#1| (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2798 ((|#1| $) 134 (|has| |#1| (-385)) ELT) (($ $ |#2|) 137 (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3922 (((-765) $) 159 T ELT) (($ (-478)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3793 (((-578 |#1|) $) 162 T ELT)) (-3653 ((|#1| $ (-463 |#2|)) 80 T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) 87 T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) 123 (|has| |#1| (-489)) ELT)) (-2640 (($) 12 T CONST)) (-2647 (($) 14 T CONST)) (-2650 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3037 (((-83) $ $) 106 T ELT)) (-3925 (($ $ |#1|) 132 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3815 (($ $ $) 55 T ELT)) (** (($ $ (-823)) 110 T ELT) (($ $ (-687)) 109 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1025 |#1| |#2|) (-854 |#1| (-463 |#2|) |#2|) (-954) (-749)) (T -1025)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 |#2|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3469 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 125 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3467 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 121 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 129 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3790 (((-850 |#1|) $ (-687)) NIL T ELT) (((-850 |#1|) $ (-687) (-687)) NIL T ELT)) (-2873 (((-83) $) NIL T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-687) $ |#2|) NIL T ELT) (((-687) $ |#2| (-687)) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ $ (-578 |#2|) (-578 (-463 |#2|))) NIL T ELT) (($ $ |#2| (-463 |#2|)) NIL T ELT) (($ |#1| (-463 |#2|)) NIL T ELT) (($ $ |#2| (-687)) 63 T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3918 (($ $) 119 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3788 (($ $ |#2|) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3652 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3745 (($ $ (-687)) 17 T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3919 (($ $) 117 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (($ $ |#2| $) 104 T ELT) (($ $ (-578 |#2|) (-578 $)) 99 T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT)) (-3734 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3924 (((-463 |#2|) $) NIL T ELT)) (-3316 (((-1 (-1055 |#3|) |#3|) (-578 |#2|) (-578 (-1055 |#3|))) 87 T ELT)) (-3472 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 131 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 127 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 123 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) 19 T ELT)) (-3922 (((-765) $) 194 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-144)) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3653 ((|#1| $ (-463 |#2|)) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) ((|#3| $ (-687)) 43 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 137 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 133 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3478 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 139 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 135 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 52 T CONST)) (-2647 (($) 62 T CONST)) (-2650 (($ $ (-578 |#2|) (-578 (-687))) NIL T ELT) (($ $ |#2| (-687)) NIL T ELT) (($ $ (-578 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) 196 (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 66 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 109 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-343 (-478))) 114 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 112 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1026 |#1| |#2| |#3|) (-13 (-672 |#1| |#2|) (-10 -8 (-15 -3653 (|#3| $ (-687))) (-15 -3922 ($ |#2|)) (-15 -3922 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3316 ((-1 (-1055 |#3|) |#3|) (-578 |#2|) (-578 (-1055 |#3|)))) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -3788 ($ $ |#2| |#1|)) (-15 -3652 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-954) (-749) (-854 |#1| (-463 |#2|) |#2|)) (T -1026)) -((-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *2 (-854 *4 (-463 *5) *5)) (-5 *1 (-1026 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-749)))) (-3922 (*1 *1 *2) (-12 (-4 *3 (-954)) (-4 *2 (-749)) (-5 *1 (-1026 *3 *2 *4)) (-4 *4 (-854 *3 (-463 *2) *2)))) (-3922 (*1 *1 *2) (-12 (-4 *3 (-954)) (-4 *4 (-749)) (-5 *1 (-1026 *3 *4 *2)) (-4 *2 (-854 *3 (-463 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-954)) (-4 *4 (-749)) (-5 *1 (-1026 *3 *4 *2)) (-4 *2 (-854 *3 (-463 *4) *4)))) (-3316 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1055 *7))) (-4 *6 (-749)) (-4 *7 (-854 *5 (-463 *6) *6)) (-4 *5 (-954)) (-5 *2 (-1 (-1055 *7) *7)) (-5 *1 (-1026 *5 *6 *7)))) (-3788 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-4 *2 (-749)) (-5 *1 (-1026 *3 *2 *4)) (-4 *4 (-854 *3 (-463 *2) *2)))) (-3652 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1026 *4 *3 *5))) (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954)) (-4 *3 (-749)) (-5 *1 (-1026 *4 *3 *5)) (-4 *5 (-854 *4 (-463 *3) *3))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3658 (((-578 $) (-578 |#4|)) 91 T ELT) (((-578 $) (-578 |#4|) (-83)) 118 T ELT)) (-3063 (((-578 |#3|) $) 37 T ELT)) (-2889 (((-83) $) 30 T ELT)) (-2880 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3669 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3664 ((|#4| |#4| $) 97 T ELT)) (-3751 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| $) 133 T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3686 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3971)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3700 (($) 46 T CONST)) (-2885 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3665 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3137 (($ (-578 |#4|)) 39 T ELT)) (-3775 (((-3 $ #1#) $) 87 T ELT)) (-3661 ((|#4| |#4| $) 94 T ELT)) (-1336 (($ $) 69 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#4| $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3670 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3659 ((|#4| |#4| $) 92 T ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3971)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#4|)) (|:| -1685 (-578 |#4|))) $) 110 T ELT)) (-3179 (((-83) |#4| $) 143 T ELT)) (-3177 (((-83) |#4| $) 140 T ELT)) (-3180 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2870 (((-578 |#4|) $) 53 (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3161 ((|#3| $) 38 T ELT)) (-2588 (((-578 |#4|) $) 54 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2895 (((-578 |#3|) $) 36 T ELT)) (-2894 (((-83) |#3| $) 35 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3173 (((-3 |#4| (-578 $)) |#4| |#4| $) 135 T ELT)) (-3172 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| |#4| $) 134 T ELT)) (-3774 (((-3 |#4| #1#) $) 88 T ELT)) (-3174 (((-578 $) |#4| $) 136 T ELT)) (-3176 (((-3 (-83) (-578 $)) |#4| $) 139 T ELT)) (-3175 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3218 (((-578 $) |#4| $) 132 T ELT) (((-578 $) (-578 |#4|) $) 131 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 130 T ELT) (((-578 $) |#4| (-578 $)) 129 T ELT)) (-3417 (($ |#4| $) 124 T ELT) (($ (-578 |#4|) $) 123 T ELT)) (-3673 (((-578 |#4|) $) 112 T ELT)) (-3667 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3662 ((|#4| |#4| $) 95 T ELT)) (-3675 (((-83) $ $) 115 T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3668 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3663 ((|#4| |#4| $) 96 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3777 (((-3 |#4| #1#) $) 89 T ELT)) (-1337 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3655 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3745 (($ $ |#4|) 82 T ELT) (((-578 $) |#4| $) 122 T ELT) (((-578 $) |#4| (-578 $)) 121 T ELT) (((-578 $) (-578 |#4|) $) 120 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 119 T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) 42 T ELT)) (-3380 (((-83) $) 45 T ELT)) (-3541 (($) 44 T ELT)) (-3924 (((-687) $) 111 T ELT)) (-1929 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 43 T ELT)) (-3948 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) 61 T ELT)) (-2891 (($ $ |#3|) 32 T ELT)) (-2893 (($ $ |#3|) 34 T ELT)) (-3660 (($ $) 93 T ELT)) (-2892 (($ $ |#3|) 33 T ELT)) (-3922 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3654 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3666 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-3171 (((-578 $) |#4| $) 128 T ELT) (((-578 $) |#4| (-578 $)) 127 T ELT) (((-578 $) (-578 |#4|) $) 126 T ELT) (((-578 $) (-578 |#4|) (-578 $)) 125 T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 |#3|) $) 86 T ELT)) (-3178 (((-83) |#4| $) 142 T ELT)) (-3909 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (((-687) $) 47 (|has| $ (-6 -3971)) ELT))) -(((-1027 |#1| |#2| |#3| |#4|) (-111) (-385) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -1027)) -NIL -(-13 (-1010 |t#1| |t#2| |t#3| |t#4|) (-700 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-700 |#1| |#2| |#3| |#4|) . T) ((-882 |#1| |#2| |#3| |#4|) . T) ((-975 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1010 |#1| |#2| |#3| |#4|) . T) ((-1109 |#1| |#2| |#3| |#4|) . T) ((-1114) . T)) -((-3549 (((-578 |#2|) |#1|) 15 T ELT)) (-3322 (((-578 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-578 |#2|) |#1|) 61 T ELT)) (-3320 (((-578 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-578 |#2|) |#1|) 59 T ELT)) (-3317 ((|#2| |#1|) 54 T ELT)) (-3318 (((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3319 (((-578 |#2|) |#2| |#2|) 42 T ELT) (((-578 |#2|) |#1|) 58 T ELT)) (-3321 (((-578 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-578 |#2|) |#1|) 60 T ELT)) (-3326 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3324 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3323 ((|#2| |#2| |#2|) 50 T ELT)) (-3325 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1028 |#1| |#2|) (-10 -7 (-15 -3549 ((-578 |#2|) |#1|)) (-15 -3317 (|#2| |#1|)) (-15 -3318 ((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3319 ((-578 |#2|) |#1|)) (-15 -3320 ((-578 |#2|) |#1|)) (-15 -3321 ((-578 |#2|) |#1|)) (-15 -3322 ((-578 |#2|) |#1|)) (-15 -3319 ((-578 |#2|) |#2| |#2|)) (-15 -3320 ((-578 |#2|) |#2| |#2| |#2|)) (-15 -3321 ((-578 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3322 ((-578 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3323 (|#2| |#2| |#2|)) (-15 -3324 (|#2| |#2| |#2| |#2|)) (-15 -3325 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3326 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1140 |#2|) (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (T -1028)) -((-3326 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2)))) (-3325 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2)))) (-3324 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2)))) (-3323 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2)))) (-3322 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *3)) (-5 *1 (-1028 *4 *3)) (-4 *4 (-1140 *3)))) (-3321 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *3)) (-5 *1 (-1028 *4 *3)) (-4 *4 (-1140 *3)))) (-3320 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *3)) (-5 *1 (-1028 *4 *3)) (-4 *4 (-1140 *3)))) (-3319 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *3)) (-5 *1 (-1028 *4 *3)) (-4 *4 (-1140 *3)))) (-3322 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4)))) (-3321 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4)))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4)))) (-3318 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-2 (|:| |solns| (-578 *5)) (|:| |maps| (-578 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1028 *3 *5)) (-4 *3 (-1140 *5)))) (-3317 (*1 *2 *3) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2)))) (-3549 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4))))) -((-3327 (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-343 (-850 |#1|))))) 119 T ELT) (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-343 (-850 |#1|)))) (-578 (-1075))) 118 T ELT) (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-343 (-850 |#1|)))) 116 T ELT) (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-343 (-850 |#1|))) (-578 (-1075))) 113 T ELT) (((-578 (-245 (-261 |#1|))) (-245 (-343 (-850 |#1|)))) 97 T ELT) (((-578 (-245 (-261 |#1|))) (-245 (-343 (-850 |#1|))) (-1075)) 98 T ELT) (((-578 (-245 (-261 |#1|))) (-343 (-850 |#1|))) 92 T ELT) (((-578 (-245 (-261 |#1|))) (-343 (-850 |#1|)) (-1075)) 82 T ELT)) (-3328 (((-578 (-578 (-261 |#1|))) (-578 (-343 (-850 |#1|))) (-578 (-1075))) 111 T ELT) (((-578 (-261 |#1|)) (-343 (-850 |#1|)) (-1075)) 54 T ELT)) (-3329 (((-1066 (-578 (-261 |#1|)) (-578 (-245 (-261 |#1|)))) (-343 (-850 |#1|)) (-1075)) 123 T ELT) (((-1066 (-578 (-261 |#1|)) (-578 (-245 (-261 |#1|)))) (-245 (-343 (-850 |#1|))) (-1075)) 122 T ELT))) -(((-1029 |#1|) (-10 -7 (-15 -3327 ((-578 (-245 (-261 |#1|))) (-343 (-850 |#1|)) (-1075))) (-15 -3327 ((-578 (-245 (-261 |#1|))) (-343 (-850 |#1|)))) (-15 -3327 ((-578 (-245 (-261 |#1|))) (-245 (-343 (-850 |#1|))) (-1075))) (-15 -3327 ((-578 (-245 (-261 |#1|))) (-245 (-343 (-850 |#1|))))) (-15 -3327 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-343 (-850 |#1|))) (-578 (-1075)))) (-15 -3327 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-343 (-850 |#1|))))) (-15 -3327 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-343 (-850 |#1|)))) (-578 (-1075)))) (-15 -3327 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-343 (-850 |#1|)))))) (-15 -3328 ((-578 (-261 |#1|)) (-343 (-850 |#1|)) (-1075))) (-15 -3328 ((-578 (-578 (-261 |#1|))) (-578 (-343 (-850 |#1|))) (-578 (-1075)))) (-15 -3329 ((-1066 (-578 (-261 |#1|)) (-578 (-245 (-261 |#1|)))) (-245 (-343 (-850 |#1|))) (-1075))) (-15 -3329 ((-1066 (-578 (-261 |#1|)) (-578 (-245 (-261 |#1|)))) (-343 (-850 |#1|)) (-1075)))) (-13 (-254) (-118))) (T -1029)) -((-3329 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-1066 (-578 (-261 *5)) (-578 (-245 (-261 *5))))) (-5 *1 (-1029 *5)))) (-3329 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-343 (-850 *5)))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-1066 (-578 (-261 *5)) (-578 (-245 (-261 *5))))) (-5 *1 (-1029 *5)))) (-3328 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1075))) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-261 *5)))) (-5 *1 (-1029 *5)))) (-3328 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-261 *5))) (-5 *1 (-1029 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-578 (-245 (-343 (-850 *4))))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *4))))) (-5 *1 (-1029 *4)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-245 (-343 (-850 *5))))) (-5 *4 (-578 (-1075))) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) (-5 *1 (-1029 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-578 (-343 (-850 *4)))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *4))))) (-5 *1 (-1029 *4)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1075))) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) (-5 *1 (-1029 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-245 (-343 (-850 *4)))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1029 *4)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-343 (-850 *5)))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1029 *5)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1029 *4)))) (-3327 (*1 *2 *3 *4) (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1029 *5))))) -((-3331 (((-343 (-1070 (-261 |#1|))) (-1164 (-261 |#1|)) (-343 (-1070 (-261 |#1|))) (-478)) 36 T ELT)) (-3330 (((-343 (-1070 (-261 |#1|))) (-343 (-1070 (-261 |#1|))) (-343 (-1070 (-261 |#1|))) (-343 (-1070 (-261 |#1|)))) 48 T ELT))) -(((-1030 |#1|) (-10 -7 (-15 -3330 ((-343 (-1070 (-261 |#1|))) (-343 (-1070 (-261 |#1|))) (-343 (-1070 (-261 |#1|))) (-343 (-1070 (-261 |#1|))))) (-15 -3331 ((-343 (-1070 (-261 |#1|))) (-1164 (-261 |#1|)) (-343 (-1070 (-261 |#1|))) (-478)))) (-489)) (T -1030)) -((-3331 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-343 (-1070 (-261 *5)))) (-5 *3 (-1164 (-261 *5))) (-5 *4 (-478)) (-4 *5 (-489)) (-5 *1 (-1030 *5)))) (-3330 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-343 (-1070 (-261 *3)))) (-4 *3 (-489)) (-5 *1 (-1030 *3))))) -((-3549 (((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-261 |#1|))) (-578 (-1075))) 244 T ELT) (((-578 (-245 (-261 |#1|))) (-261 |#1|) (-1075)) 23 T ELT) (((-578 (-245 (-261 |#1|))) (-245 (-261 |#1|)) (-1075)) 29 T ELT) (((-578 (-245 (-261 |#1|))) (-245 (-261 |#1|))) 28 T ELT) (((-578 (-245 (-261 |#1|))) (-261 |#1|)) 24 T ELT))) -(((-1031 |#1|) (-10 -7 (-15 -3549 ((-578 (-245 (-261 |#1|))) (-261 |#1|))) (-15 -3549 ((-578 (-245 (-261 |#1|))) (-245 (-261 |#1|)))) (-15 -3549 ((-578 (-245 (-261 |#1|))) (-245 (-261 |#1|)) (-1075))) (-15 -3549 ((-578 (-245 (-261 |#1|))) (-261 |#1|) (-1075))) (-15 -3549 ((-578 (-578 (-245 (-261 |#1|)))) (-578 (-245 (-261 |#1|))) (-578 (-1075))))) (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (T -1031)) -((-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1075))) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) (-5 *1 (-1031 *5)) (-5 *3 (-578 (-245 (-261 *5)))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-261 *5)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-245 (-261 *5))))) (-3549 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1031 *4)) (-5 *3 (-245 (-261 *4))))) (-3549 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1031 *4)) (-5 *3 (-261 *4))))) -((-3333 ((|#2| |#2|) 28 (|has| |#1| (-749)) ELT) ((|#2| |#2| (-1 (-83) |#1| |#1|)) 25 T ELT)) (-3332 ((|#2| |#2|) 27 (|has| |#1| (-749)) ELT) ((|#2| |#2| (-1 (-83) |#1| |#1|)) 22 T ELT))) -(((-1032 |#1| |#2|) (-10 -7 (-15 -3332 (|#2| |#2| (-1 (-83) |#1| |#1|))) (-15 -3333 (|#2| |#2| (-1 (-83) |#1| |#1|))) (IF (|has| |#1| (-749)) (PROGN (-15 -3332 (|#2| |#2|)) (-15 -3333 (|#2| |#2|))) |%noBranch|)) (-1114) (-13 (-533 (-478) |#1|) (-10 -7 (-6 -3971) (-6 -3972)))) (T -1032)) -((-3333 (*1 *2 *2) (-12 (-4 *3 (-749)) (-4 *3 (-1114)) (-5 *1 (-1032 *3 *2)) (-4 *2 (-13 (-533 (-478) *3) (-10 -7 (-6 -3971) (-6 -3972)))))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-749)) (-4 *3 (-1114)) (-5 *1 (-1032 *3 *2)) (-4 *2 (-13 (-533 (-478) *3) (-10 -7 (-6 -3971) (-6 -3972)))))) (-3333 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-1032 *4 *2)) (-4 *2 (-13 (-533 (-478) *4) (-10 -7 (-6 -3971) (-6 -3972)))))) (-3332 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-1032 *4 *2)) (-4 *2 (-13 (-533 (-478) *4) (-10 -7 (-6 -3971) (-6 -3972))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3864 (((-1065 3 |#1|) $) 141 T ELT)) (-3343 (((-83) $) 101 T ELT)) (-3344 (($ $ (-578 (-847 |#1|))) 44 T ELT) (($ $ (-578 (-578 |#1|))) 104 T ELT) (($ (-578 (-847 |#1|))) 103 T ELT) (((-578 (-847 |#1|)) $) 102 T ELT)) (-3349 (((-83) $) 72 T ELT)) (-3682 (($ $ (-847 |#1|)) 76 T ELT) (($ $ (-578 |#1|)) 81 T ELT) (($ $ (-687)) 83 T ELT) (($ (-847 |#1|)) 77 T ELT) (((-847 |#1|) $) 75 T ELT)) (-3335 (((-2 (|:| -3826 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) (|:| |constructs| (-687))) $) 139 T ELT)) (-3353 (((-687) $) 53 T ELT)) (-3354 (((-687) $) 52 T ELT)) (-3863 (($ $ (-687) (-847 |#1|)) 67 T ELT)) (-3341 (((-83) $) 111 T ELT)) (-3342 (($ $ (-578 (-578 (-847 |#1|))) (-578 (-143)) (-143)) 118 T ELT) (($ $ (-578 (-578 (-578 |#1|))) (-578 (-143)) (-143)) 120 T ELT) (($ $ (-578 (-578 (-847 |#1|))) (-83) (-83)) 115 T ELT) (($ $ (-578 (-578 (-578 |#1|))) (-83) (-83)) 127 T ELT) (($ (-578 (-578 (-847 |#1|)))) 116 T ELT) (($ (-578 (-578 (-847 |#1|))) (-83) (-83)) 117 T ELT) (((-578 (-578 (-847 |#1|))) $) 114 T ELT)) (-3495 (($ (-578 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3336 (((-578 (-143)) $) 133 T ELT)) (-3340 (((-578 (-847 |#1|)) $) 130 T ELT)) (-3337 (((-578 (-578 (-143))) $) 132 T ELT)) (-3338 (((-578 (-578 (-578 (-847 |#1|)))) $) NIL T ELT)) (-3339 (((-578 (-578 (-578 (-687)))) $) 131 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3350 (((-687) $ (-578 (-847 |#1|))) 65 T ELT)) (-3347 (((-83) $) 84 T ELT)) (-3348 (($ $ (-578 (-847 |#1|))) 86 T ELT) (($ $ (-578 (-578 |#1|))) 92 T ELT) (($ (-578 (-847 |#1|))) 87 T ELT) (((-578 (-847 |#1|)) $) 85 T ELT)) (-3355 (($) 48 T ELT) (($ (-1065 3 |#1|)) 49 T ELT)) (-3377 (($ $) 63 T ELT)) (-3351 (((-578 $) $) 62 T ELT)) (-3730 (($ (-578 $)) 59 T ELT)) (-3352 (((-578 $) $) 61 T ELT)) (-3922 (((-765) $) 146 T ELT)) (-3345 (((-83) $) 94 T ELT)) (-3346 (($ $ (-578 (-847 |#1|))) 96 T ELT) (($ $ (-578 (-578 |#1|))) 99 T ELT) (($ (-578 (-847 |#1|))) 97 T ELT) (((-578 (-847 |#1|)) $) 95 T ELT)) (-3334 (($ $) 140 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1033 |#1|) (-1034 |#1|) (-954)) (T -1033)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3864 (((-1065 3 |#1|) $) 17 T ELT)) (-3343 (((-83) $) 33 T ELT)) (-3344 (($ $ (-578 (-847 |#1|))) 37 T ELT) (($ $ (-578 (-578 |#1|))) 36 T ELT) (($ (-578 (-847 |#1|))) 35 T ELT) (((-578 (-847 |#1|)) $) 34 T ELT)) (-3349 (((-83) $) 48 T ELT)) (-3682 (($ $ (-847 |#1|)) 53 T ELT) (($ $ (-578 |#1|)) 52 T ELT) (($ $ (-687)) 51 T ELT) (($ (-847 |#1|)) 50 T ELT) (((-847 |#1|) $) 49 T ELT)) (-3335 (((-2 (|:| -3826 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) (|:| |constructs| (-687))) $) 19 T ELT)) (-3353 (((-687) $) 62 T ELT)) (-3354 (((-687) $) 63 T ELT)) (-3863 (($ $ (-687) (-847 |#1|)) 54 T ELT)) (-3341 (((-83) $) 25 T ELT)) (-3342 (($ $ (-578 (-578 (-847 |#1|))) (-578 (-143)) (-143)) 32 T ELT) (($ $ (-578 (-578 (-578 |#1|))) (-578 (-143)) (-143)) 31 T ELT) (($ $ (-578 (-578 (-847 |#1|))) (-83) (-83)) 30 T ELT) (($ $ (-578 (-578 (-578 |#1|))) (-83) (-83)) 29 T ELT) (($ (-578 (-578 (-847 |#1|)))) 28 T ELT) (($ (-578 (-578 (-847 |#1|))) (-83) (-83)) 27 T ELT) (((-578 (-578 (-847 |#1|))) $) 26 T ELT)) (-3495 (($ (-578 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3336 (((-578 (-143)) $) 20 T ELT)) (-3340 (((-578 (-847 |#1|)) $) 24 T ELT)) (-3337 (((-578 (-578 (-143))) $) 21 T ELT)) (-3338 (((-578 (-578 (-578 (-847 |#1|)))) $) 22 T ELT)) (-3339 (((-578 (-578 (-578 (-687)))) $) 23 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3350 (((-687) $ (-578 (-847 |#1|))) 55 T ELT)) (-3347 (((-83) $) 43 T ELT)) (-3348 (($ $ (-578 (-847 |#1|))) 47 T ELT) (($ $ (-578 (-578 |#1|))) 46 T ELT) (($ (-578 (-847 |#1|))) 45 T ELT) (((-578 (-847 |#1|)) $) 44 T ELT)) (-3355 (($) 65 T ELT) (($ (-1065 3 |#1|)) 64 T ELT)) (-3377 (($ $) 56 T ELT)) (-3351 (((-578 $) $) 57 T ELT)) (-3730 (($ (-578 $)) 59 T ELT)) (-3352 (((-578 $) $) 58 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-3345 (((-83) $) 38 T ELT)) (-3346 (($ $ (-578 (-847 |#1|))) 42 T ELT) (($ $ (-578 (-578 |#1|))) 41 T ELT) (($ (-578 (-847 |#1|))) 40 T ELT) (((-578 (-847 |#1|)) $) 39 T ELT)) (-3334 (($ $) 18 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-1034 |#1|) (-111) (-954)) (T -1034)) -((-3922 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-765)))) (-3355 (*1 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-954)))) (-3355 (*1 *1 *2) (-12 (-5 *2 (-1065 3 *3)) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3495 (*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-954)))) (-3730 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3352 (*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-578 *1)) (-4 *1 (-1034 *3)))) (-3351 (*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-578 *1)) (-4 *1 (-1034 *3)))) (-3377 (*1 *1 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-954)))) (-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-847 *4))) (-4 *1 (-1034 *4)) (-4 *4 (-954)) (-5 *2 (-687)))) (-3863 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-847 *4)) (-4 *1 (-1034 *4)) (-4 *4 (-954)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3682 (*1 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-847 *3)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3346 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3346 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3346 (*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3344 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3344 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) (-3344 (*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3342 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-847 *5)))) (-5 *3 (-578 (-143))) (-5 *4 (-143)) (-4 *1 (-1034 *5)) (-4 *5 (-954)))) (-3342 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-578 (-143))) (-5 *4 (-143)) (-4 *1 (-1034 *5)) (-4 *5 (-954)))) (-3342 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-847 *4)))) (-5 *3 (-83)) (-4 *1 (-1034 *4)) (-4 *4 (-954)))) (-3342 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-83)) (-4 *1 (-1034 *4)) (-4 *4 (-954)))) (-3342 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 *3)))) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) (-3342 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-847 *4)))) (-5 *3 (-83)) (-4 *4 (-954)) (-4 *1 (-1034 *4)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-847 *3)))))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-578 (-687))))))) (-3338 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-578 (-847 *3))))))) (-3337 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-143)))))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-143))))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -3826 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) (|:| |constructs| (-687)))))) (-3334 (*1 *1 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-954)))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-1065 3 *3))))) -(-13 (-1003) (-10 -8 (-15 -3355 ($)) (-15 -3355 ($ (-1065 3 |t#1|))) (-15 -3354 ((-687) $)) (-15 -3353 ((-687) $)) (-15 -3495 ($ (-578 $))) (-15 -3495 ($ $ $)) (-15 -3730 ($ (-578 $))) (-15 -3352 ((-578 $) $)) (-15 -3351 ((-578 $) $)) (-15 -3377 ($ $)) (-15 -3350 ((-687) $ (-578 (-847 |t#1|)))) (-15 -3863 ($ $ (-687) (-847 |t#1|))) (-15 -3682 ($ $ (-847 |t#1|))) (-15 -3682 ($ $ (-578 |t#1|))) (-15 -3682 ($ $ (-687))) (-15 -3682 ($ (-847 |t#1|))) (-15 -3682 ((-847 |t#1|) $)) (-15 -3349 ((-83) $)) (-15 -3348 ($ $ (-578 (-847 |t#1|)))) (-15 -3348 ($ $ (-578 (-578 |t#1|)))) (-15 -3348 ($ (-578 (-847 |t#1|)))) (-15 -3348 ((-578 (-847 |t#1|)) $)) (-15 -3347 ((-83) $)) (-15 -3346 ($ $ (-578 (-847 |t#1|)))) (-15 -3346 ($ $ (-578 (-578 |t#1|)))) (-15 -3346 ($ (-578 (-847 |t#1|)))) (-15 -3346 ((-578 (-847 |t#1|)) $)) (-15 -3345 ((-83) $)) (-15 -3344 ($ $ (-578 (-847 |t#1|)))) (-15 -3344 ($ $ (-578 (-578 |t#1|)))) (-15 -3344 ($ (-578 (-847 |t#1|)))) (-15 -3344 ((-578 (-847 |t#1|)) $)) (-15 -3343 ((-83) $)) (-15 -3342 ($ $ (-578 (-578 (-847 |t#1|))) (-578 (-143)) (-143))) (-15 -3342 ($ $ (-578 (-578 (-578 |t#1|))) (-578 (-143)) (-143))) (-15 -3342 ($ $ (-578 (-578 (-847 |t#1|))) (-83) (-83))) (-15 -3342 ($ $ (-578 (-578 (-578 |t#1|))) (-83) (-83))) (-15 -3342 ($ (-578 (-578 (-847 |t#1|))))) (-15 -3342 ($ (-578 (-578 (-847 |t#1|))) (-83) (-83))) (-15 -3342 ((-578 (-578 (-847 |t#1|))) $)) (-15 -3341 ((-83) $)) (-15 -3340 ((-578 (-847 |t#1|)) $)) (-15 -3339 ((-578 (-578 (-578 (-687)))) $)) (-15 -3338 ((-578 (-578 (-578 (-847 |t#1|)))) $)) (-15 -3337 ((-578 (-578 (-143))) $)) (-15 -3336 ((-578 (-143)) $)) (-15 -3335 ((-2 (|:| -3826 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) (|:| |constructs| (-687))) $)) (-15 -3334 ($ $)) (-15 -3864 ((-1065 3 |t#1|) $)) (-15 -3922 ((-765) $)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 185 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) 7 T ELT)) (-3542 (((-83) $ (|[\|\|]| (-456))) 19 T ELT) (((-83) $ (|[\|\|]| (-170))) 23 T ELT) (((-83) $ (|[\|\|]| (-612))) 27 T ELT) (((-83) $ (|[\|\|]| (-1175))) 31 T ELT) (((-83) $ (|[\|\|]| (-109))) 35 T ELT) (((-83) $ (|[\|\|]| (-534))) 39 T ELT) (((-83) $ (|[\|\|]| (-104))) 43 T ELT) (((-83) $ (|[\|\|]| (|SignatureAst|))) 47 T ELT) (((-83) $ (|[\|\|]| (-67))) 51 T ELT) (((-83) $ (|[\|\|]| (-617))) 55 T ELT) (((-83) $ (|[\|\|]| (-450))) 59 T ELT) (((-83) $ (|[\|\|]| (-970))) 63 T ELT) (((-83) $ (|[\|\|]| (-1176))) 67 T ELT) (((-83) $ (|[\|\|]| (-457))) 71 T ELT) (((-83) $ (|[\|\|]| (-1053))) 75 T ELT) (((-83) $ (|[\|\|]| (-125))) 79 T ELT) (((-83) $ (|[\|\|]| (-608))) 83 T ELT) (((-83) $ (|[\|\|]| (-259))) 87 T ELT) (((-83) $ (|[\|\|]| (-941))) 91 T ELT) (((-83) $ (|[\|\|]| (-152))) 95 T ELT) (((-83) $ (|[\|\|]| (-876))) 99 T ELT) (((-83) $ (|[\|\|]| (|RestrictAst|))) 103 T ELT) (((-83) $ (|[\|\|]| (-994))) 107 T ELT) (((-83) $ (|[\|\|]| (|SequenceAst|))) 111 T ELT) (((-83) $ (|[\|\|]| (-560))) 116 T ELT) (((-83) $ (|[\|\|]| (|SuchThatAst|))) 120 T ELT) (((-83) $ (|[\|\|]| (-127))) 124 T ELT) (((-83) $ (|[\|\|]| (-108))) 128 T ELT) (((-83) $ (|[\|\|]| (-411))) 132 T ELT) (((-83) $ (|[\|\|]| (-522))) 136 T ELT) (((-83) $ (|[\|\|]| (-439))) 140 T ELT) (((-83) $ (|[\|\|]| (-1059))) 144 T ELT) (((-83) $ (|[\|\|]| (-478))) 148 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3548 (((-456) $) 20 T ELT) (((-170) $) 24 T ELT) (((-612) $) 28 T ELT) (((-1175) $) 32 T ELT) (((-109) $) 36 T ELT) (((-534) $) 40 T ELT) (((-104) $) 44 T ELT) (((|SignatureAst|) $) 48 T ELT) (((-67) $) 52 T ELT) (((-617) $) 56 T ELT) (((-450) $) 60 T ELT) (((-970) $) 64 T ELT) (((-1176) $) 68 T ELT) (((-457) $) 72 T ELT) (((-1053) $) 76 T ELT) (((-125) $) 80 T ELT) (((-608) $) 84 T ELT) (((-259) $) 88 T ELT) (((-941) $) 92 T ELT) (((-152) $) 96 T ELT) (((-876) $) 100 T ELT) (((|RestrictAst|) $) 104 T ELT) (((-994) $) 108 T ELT) (((|SequenceAst|) $) 112 T ELT) (((-560) $) 117 T ELT) (((|SuchThatAst|) $) 121 T ELT) (((-127) $) 125 T ELT) (((-108) $) 129 T ELT) (((-411) $) 133 T ELT) (((-522) $) 137 T ELT) (((-439) $) 141 T ELT) (((-1059) $) 145 T ELT) (((-478) $) 149 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1035) (-1037)) (T -1035)) -NIL -((-3356 (((-578 (-1080)) (-1059)) 9 T ELT))) -(((-1036) (-10 -7 (-15 -3356 ((-578 (-1080)) (-1059))))) (T -1036)) -((-3356 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-578 (-1080))) (-5 *1 (-1036))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-1080)) 20 T ELT) (((-1080) $) 19 T ELT)) (-3542 (((-83) $ (|[\|\|]| (-456))) 88 T ELT) (((-83) $ (|[\|\|]| (-170))) 86 T ELT) (((-83) $ (|[\|\|]| (-612))) 84 T ELT) (((-83) $ (|[\|\|]| (-1175))) 82 T ELT) (((-83) $ (|[\|\|]| (-109))) 80 T ELT) (((-83) $ (|[\|\|]| (-534))) 78 T ELT) (((-83) $ (|[\|\|]| (-104))) 76 T ELT) (((-83) $ (|[\|\|]| (|SignatureAst|))) 74 T ELT) (((-83) $ (|[\|\|]| (-67))) 72 T ELT) (((-83) $ (|[\|\|]| (-617))) 70 T ELT) (((-83) $ (|[\|\|]| (-450))) 68 T ELT) (((-83) $ (|[\|\|]| (-970))) 66 T ELT) (((-83) $ (|[\|\|]| (-1176))) 64 T ELT) (((-83) $ (|[\|\|]| (-457))) 62 T ELT) (((-83) $ (|[\|\|]| (-1053))) 60 T ELT) (((-83) $ (|[\|\|]| (-125))) 58 T ELT) (((-83) $ (|[\|\|]| (-608))) 56 T ELT) (((-83) $ (|[\|\|]| (-259))) 54 T ELT) (((-83) $ (|[\|\|]| (-941))) 52 T ELT) (((-83) $ (|[\|\|]| (-152))) 50 T ELT) (((-83) $ (|[\|\|]| (-876))) 48 T ELT) (((-83) $ (|[\|\|]| (|RestrictAst|))) 46 T ELT) (((-83) $ (|[\|\|]| (-994))) 44 T ELT) (((-83) $ (|[\|\|]| (|SequenceAst|))) 42 T ELT) (((-83) $ (|[\|\|]| (-560))) 40 T ELT) (((-83) $ (|[\|\|]| (|SuchThatAst|))) 38 T ELT) (((-83) $ (|[\|\|]| (-127))) 36 T ELT) (((-83) $ (|[\|\|]| (-108))) 34 T ELT) (((-83) $ (|[\|\|]| (-411))) 32 T ELT) (((-83) $ (|[\|\|]| (-522))) 30 T ELT) (((-83) $ (|[\|\|]| (-439))) 28 T ELT) (((-83) $ (|[\|\|]| (-1059))) 26 T ELT) (((-83) $ (|[\|\|]| (-478))) 24 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3548 (((-456) $) 87 T ELT) (((-170) $) 85 T ELT) (((-612) $) 83 T ELT) (((-1175) $) 81 T ELT) (((-109) $) 79 T ELT) (((-534) $) 77 T ELT) (((-104) $) 75 T ELT) (((|SignatureAst|) $) 73 T ELT) (((-67) $) 71 T ELT) (((-617) $) 69 T ELT) (((-450) $) 67 T ELT) (((-970) $) 65 T ELT) (((-1176) $) 63 T ELT) (((-457) $) 61 T ELT) (((-1053) $) 59 T ELT) (((-125) $) 57 T ELT) (((-608) $) 55 T ELT) (((-259) $) 53 T ELT) (((-941) $) 51 T ELT) (((-152) $) 49 T ELT) (((-876) $) 47 T ELT) (((|RestrictAst|) $) 45 T ELT) (((-994) $) 43 T ELT) (((|SequenceAst|) $) 41 T ELT) (((-560) $) 39 T ELT) (((|SuchThatAst|) $) 37 T ELT) (((-127) $) 35 T ELT) (((-108) $) 33 T ELT) (((-411) $) 31 T ELT) (((-522) $) 29 T ELT) (((-439) $) 27 T ELT) (((-1059) $) 25 T ELT) (((-478) $) 23 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-1037) (-111)) (T -1037)) -((-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-456))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-456)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-170))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-170)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-612)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-1175)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-109))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-109)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-534)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-104))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-104)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (|SignatureAst|))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (|SignatureAst|)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-67)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-617)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-450)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-970)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-1176)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-457)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-1053))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-1053)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-125))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-125)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-608)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-259))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-259)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-941)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-152)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-876))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-876)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (|RestrictAst|))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (|RestrictAst|)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-994))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-994)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (|SequenceAst|))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (|SequenceAst|)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-560)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (|SuchThatAst|))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (|SuchThatAst|)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-127)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-108)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-411))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-411)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-522)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-439)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-1059)))) (-3542 (*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-83)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-478))))) -(-13 (-986) (-1160) (-10 -8 (-15 -3542 ((-83) $ (|[\|\|]| (-456)))) (-15 -3548 ((-456) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-170)))) (-15 -3548 ((-170) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-612)))) (-15 -3548 ((-612) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-1175)))) (-15 -3548 ((-1175) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-109)))) (-15 -3548 ((-109) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-534)))) (-15 -3548 ((-534) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-104)))) (-15 -3548 ((-104) $)) (-15 -3542 ((-83) $ (|[\|\|]| (|SignatureAst|)))) (-15 -3548 ((|SignatureAst|) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-67)))) (-15 -3548 ((-67) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-617)))) (-15 -3548 ((-617) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-450)))) (-15 -3548 ((-450) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-970)))) (-15 -3548 ((-970) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-1176)))) (-15 -3548 ((-1176) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-457)))) (-15 -3548 ((-457) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-1053)))) (-15 -3548 ((-1053) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-125)))) (-15 -3548 ((-125) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-608)))) (-15 -3548 ((-608) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-259)))) (-15 -3548 ((-259) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-941)))) (-15 -3548 ((-941) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-152)))) (-15 -3548 ((-152) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-876)))) (-15 -3548 ((-876) $)) (-15 -3542 ((-83) $ (|[\|\|]| (|RestrictAst|)))) (-15 -3548 ((|RestrictAst|) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-994)))) (-15 -3548 ((-994) $)) (-15 -3542 ((-83) $ (|[\|\|]| (|SequenceAst|)))) (-15 -3548 ((|SequenceAst|) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-560)))) (-15 -3548 ((-560) $)) (-15 -3542 ((-83) $ (|[\|\|]| (|SuchThatAst|)))) (-15 -3548 ((|SuchThatAst|) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-127)))) (-15 -3548 ((-127) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-108)))) (-15 -3548 ((-108) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-411)))) (-15 -3548 ((-411) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-522)))) (-15 -3548 ((-522) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-439)))) (-15 -3548 ((-439) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-1059)))) (-15 -3548 ((-1059) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-478)))) (-15 -3548 ((-478) $)))) -(((-64) . T) ((-72) . T) ((-550 (-1080)) . T) ((-547 (-765)) . T) ((-547 (-1080)) . T) ((-423 (-1080)) . T) ((-1003) . T) ((-986) . T) ((-1114) . T) ((-1160) . T)) -((-3359 (((-1170) (-578 (-765))) 22 T ELT) (((-1170) (-765)) 21 T ELT)) (-3358 (((-1170) (-578 (-765))) 20 T ELT) (((-1170) (-765)) 19 T ELT)) (-3357 (((-1170) (-578 (-765))) 18 T ELT) (((-1170) (-765)) 10 T ELT) (((-1170) (-1059) (-765)) 16 T ELT))) -(((-1038) (-10 -7 (-15 -3357 ((-1170) (-1059) (-765))) (-15 -3357 ((-1170) (-765))) (-15 -3358 ((-1170) (-765))) (-15 -3359 ((-1170) (-765))) (-15 -3357 ((-1170) (-578 (-765)))) (-15 -3358 ((-1170) (-578 (-765)))) (-15 -3359 ((-1170) (-578 (-765)))))) (T -1038)) -((-3359 (*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1170)) (-5 *1 (-1038)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1170)) (-5 *1 (-1038)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1170)) (-5 *1 (-1038)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-1038)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-1038)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-1038)))) (-3357 (*1 *2 *3 *4) (-12 (-5 *3 (-1059)) (-5 *4 (-765)) (-5 *2 (-1170)) (-5 *1 (-1038))))) -((-3363 (($ $ $) 10 T ELT)) (-3362 (($ $) 9 T ELT)) (-3366 (($ $ $) 13 T ELT)) (-3368 (($ $ $) 15 T ELT)) (-3365 (($ $ $) 12 T ELT)) (-3367 (($ $ $) 14 T ELT)) (-3370 (($ $) 17 T ELT)) (-3369 (($ $) 16 T ELT)) (-3360 (($ $) 6 T ELT)) (-3364 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3361 (($ $ $) 8 T ELT))) -(((-1039) (-111)) (T -1039)) -((-3370 (*1 *1 *1) (-4 *1 (-1039))) (-3369 (*1 *1 *1) (-4 *1 (-1039))) (-3368 (*1 *1 *1 *1) (-4 *1 (-1039))) (-3367 (*1 *1 *1 *1) (-4 *1 (-1039))) (-3366 (*1 *1 *1 *1) (-4 *1 (-1039))) (-3365 (*1 *1 *1 *1) (-4 *1 (-1039))) (-3364 (*1 *1 *1 *1) (-4 *1 (-1039))) (-3363 (*1 *1 *1 *1) (-4 *1 (-1039))) (-3362 (*1 *1 *1) (-4 *1 (-1039))) (-3361 (*1 *1 *1 *1) (-4 *1 (-1039))) (-3364 (*1 *1 *1) (-4 *1 (-1039))) (-3360 (*1 *1 *1) (-4 *1 (-1039)))) -(-13 (-10 -8 (-15 -3360 ($ $)) (-15 -3364 ($ $)) (-15 -3361 ($ $ $)) (-15 -3362 ($ $)) (-15 -3363 ($ $ $)) (-15 -3364 ($ $ $)) (-15 -3365 ($ $ $)) (-15 -3366 ($ $ $)) (-15 -3367 ($ $ $)) (-15 -3368 ($ $ $)) (-15 -3369 ($ $)) (-15 -3370 ($ $)))) -((-2548 (((-83) $ $) 44 T ELT)) (-3379 ((|#1| $) 17 T ELT)) (-3371 (((-83) $ $ (-1 (-83) |#2| |#2|)) 39 T ELT)) (-3378 (((-83) $) 19 T ELT)) (-3376 (($ $ |#1|) 30 T ELT)) (-3374 (($ $ (-83)) 32 T ELT)) (-3373 (($ $) 33 T ELT)) (-3375 (($ $ |#2|) 31 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3372 (((-83) $ $ (-1 (-83) |#1| |#1|) (-1 (-83) |#2| |#2|)) 38 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3380 (((-83) $) 16 T ELT)) (-3541 (($) 13 T ELT)) (-3377 (($ $) 29 T ELT)) (-3507 (($ |#1| |#2| (-83)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1583 |#2|))) 23 T ELT) (((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -1583 |#2|)))) 26 T ELT) (((-578 $) |#1| (-578 |#2|)) 28 T ELT)) (-3898 ((|#2| $) 18 T ELT)) (-3922 (((-765) $) 53 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 42 T ELT))) -(((-1040 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -3541 ($)) (-15 -3380 ((-83) $)) (-15 -3379 (|#1| $)) (-15 -3898 (|#2| $)) (-15 -3378 ((-83) $)) (-15 -3507 ($ |#1| |#2| (-83))) (-15 -3507 ($ |#1| |#2|)) (-15 -3507 ($ (-2 (|:| |val| |#1|) (|:| -1583 |#2|)))) (-15 -3507 ((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -1583 |#2|))))) (-15 -3507 ((-578 $) |#1| (-578 |#2|))) (-15 -3377 ($ $)) (-15 -3376 ($ $ |#1|)) (-15 -3375 ($ $ |#2|)) (-15 -3374 ($ $ (-83))) (-15 -3373 ($ $)) (-15 -3372 ((-83) $ $ (-1 (-83) |#1| |#1|) (-1 (-83) |#2| |#2|))) (-15 -3371 ((-83) $ $ (-1 (-83) |#2| |#2|))))) (-13 (-1003) (-34)) (-13 (-1003) (-34))) (T -1040)) -((-3541 (*1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))))) (-3379 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-34))) (-5 *1 (-1040 *2 *3)) (-4 *3 (-13 (-1003) (-34))))) (-3898 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-34))) (-5 *1 (-1040 *3 *2)) (-4 *3 (-13 (-1003) (-34))))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))))) (-3507 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) (-3507 (*1 *1 *2 *3) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1583 *4))) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1040 *3 *4)))) (-3507 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |val| *4) (|:| -1583 *5)))) (-4 *4 (-13 (-1003) (-34))) (-4 *5 (-13 (-1003) (-34))) (-5 *2 (-578 (-1040 *4 *5))) (-5 *1 (-1040 *4 *5)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-13 (-1003) (-34))) (-5 *2 (-578 (-1040 *3 *5))) (-5 *1 (-1040 *3 *5)) (-4 *3 (-13 (-1003) (-34))))) (-3377 (*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) (-3376 (*1 *1 *1 *2) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) (-3375 (*1 *1 *1 *2) (-12 (-5 *1 (-1040 *3 *2)) (-4 *3 (-13 (-1003) (-34))) (-4 *2 (-13 (-1003) (-34))))) (-3374 (*1 *1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))))) (-3373 (*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) (-3372 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-1 (-83) *6 *6)) (-4 *5 (-13 (-1003) (-34))) (-4 *6 (-13 (-1003) (-34))) (-5 *2 (-83)) (-5 *1 (-1040 *5 *6)))) (-3371 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-83) *5 *5)) (-4 *5 (-13 (-1003) (-34))) (-5 *2 (-83)) (-5 *1 (-1040 *4 *5)) (-4 *4 (-13 (-1003) (-34)))))) -((-2548 (((-83) $ $) NIL (|has| (-1040 |#1| |#2|) (-72)) ELT)) (-3379 (((-1040 |#1| |#2|) $) 27 T ELT)) (-3388 (($ $) 91 T ELT)) (-3384 (((-83) (-1040 |#1| |#2|) $ (-1 (-83) |#2| |#2|)) 100 T ELT)) (-3381 (($ $ $ (-578 (-1040 |#1| |#2|))) 108 T ELT) (($ $ $ (-578 (-1040 |#1| |#2|)) (-1 (-83) |#2| |#2|)) 109 T ELT)) (-3006 (((-1040 |#1| |#2|) $ (-1040 |#1| |#2|)) 46 (|has| $ (-6 -3972)) ELT)) (-3764 (((-1040 |#1| |#2|) $ #1="value" (-1040 |#1| |#2|)) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 44 (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-3386 (((-578 (-2 (|:| |val| |#1|) (|:| -1583 |#2|))) $) 95 T ELT)) (-3382 (($ (-1040 |#1| |#2|) $) 42 T ELT)) (-3383 (($ (-1040 |#1| |#2|) $) 34 T ELT)) (-2870 (((-578 (-1040 |#1| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 54 T ELT)) (-3385 (((-83) (-1040 |#1| |#2|) $) 97 T ELT)) (-3008 (((-83) $ $) NIL (|has| (-1040 |#1| |#2|) (-1003)) ELT)) (-2588 (((-578 (-1040 |#1| |#2|)) $) 58 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-1040 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-1040 |#1| |#2|) (-1003))) ELT)) (-1932 (($ (-1 (-1040 |#1| |#2|) (-1040 |#1| |#2|)) $) 50 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-1040 |#1| |#2|) (-1040 |#1| |#2|)) $) 49 T ELT)) (-3011 (((-578 (-1040 |#1| |#2|)) $) 56 T ELT)) (-3504 (((-83) $) 45 T ELT)) (-3222 (((-1059) $) NIL (|has| (-1040 |#1| |#2|) (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| (-1040 |#1| |#2|) (-1003)) ELT)) (-3389 (((-3 $ "failed") $) 89 T ELT)) (-1930 (((-83) (-1 (-83) (-1040 |#1| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-1040 |#1| |#2|)))) NIL (-12 (|has| (-1040 |#1| |#2|) (-256 (-1040 |#1| |#2|))) (|has| (-1040 |#1| |#2|) (-1003))) ELT) (($ $ (-245 (-1040 |#1| |#2|))) NIL (-12 (|has| (-1040 |#1| |#2|) (-256 (-1040 |#1| |#2|))) (|has| (-1040 |#1| |#2|) (-1003))) ELT) (($ $ (-1040 |#1| |#2|) (-1040 |#1| |#2|)) NIL (-12 (|has| (-1040 |#1| |#2|) (-256 (-1040 |#1| |#2|))) (|has| (-1040 |#1| |#2|) (-1003))) ELT) (($ $ (-578 (-1040 |#1| |#2|)) (-578 (-1040 |#1| |#2|))) NIL (-12 (|has| (-1040 |#1| |#2|) (-256 (-1040 |#1| |#2|))) (|has| (-1040 |#1| |#2|) (-1003))) ELT)) (-1206 (((-83) $ $) 53 T ELT)) (-3380 (((-83) $) 24 T ELT)) (-3541 (($) 26 T ELT)) (-3776 (((-1040 |#1| |#2|) $ #1#) NIL T ELT)) (-3010 (((-478) $ $) NIL T ELT)) (-3609 (((-83) $) 47 T ELT)) (-1929 (((-687) (-1 (-83) (-1040 |#1| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-1040 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-1040 |#1| |#2|) (-1003))) ELT)) (-3377 (($ $) 52 T ELT)) (-3507 (($ (-1040 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-578 $)) 13 T ELT) (($ |#1| |#2| (-578 (-1040 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-578 |#2|)) 18 T ELT)) (-3387 (((-578 |#2|) $) 96 T ELT)) (-3922 (((-765) $) 87 (|has| (-1040 |#1| |#2|) (-547 (-765))) ELT)) (-3499 (((-578 $) $) 31 T ELT)) (-3009 (((-83) $ $) NIL (|has| (-1040 |#1| |#2|) (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| (-1040 |#1| |#2|) (-72)) ELT)) (-1931 (((-83) (-1 (-83) (-1040 |#1| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 70 (|has| (-1040 |#1| |#2|) (-72)) ELT)) (-3933 (((-687) $) 64 (|has| $ (-6 -3971)) ELT))) -(((-1041 |#1| |#2|) (-13 (-916 (-1040 |#1| |#2|)) (-10 -8 (-6 -3972) (-6 -3971) (-15 -3389 ((-3 $ "failed") $)) (-15 -3388 ($ $)) (-15 -3507 ($ (-1040 |#1| |#2|))) (-15 -3507 ($ |#1| |#2| (-578 $))) (-15 -3507 ($ |#1| |#2| (-578 (-1040 |#1| |#2|)))) (-15 -3507 ($ |#1| |#2| |#1| (-578 |#2|))) (-15 -3387 ((-578 |#2|) $)) (-15 -3386 ((-578 (-2 (|:| |val| |#1|) (|:| -1583 |#2|))) $)) (-15 -3385 ((-83) (-1040 |#1| |#2|) $)) (-15 -3384 ((-83) (-1040 |#1| |#2|) $ (-1 (-83) |#2| |#2|))) (-15 -3383 ($ (-1040 |#1| |#2|) $)) (-15 -3382 ($ (-1040 |#1| |#2|) $)) (-15 -3381 ($ $ $ (-578 (-1040 |#1| |#2|)))) (-15 -3381 ($ $ $ (-578 (-1040 |#1| |#2|)) (-1 (-83) |#2| |#2|))))) (-13 (-1003) (-34)) (-13 (-1003) (-34))) (T -1041)) -((-3389 (*1 *1 *1) (|partial| -12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) (-3388 (*1 *1 *1) (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1041 *3 *4)))) (-3507 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1041 *2 *3))) (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) (-3507 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1040 *2 *3))) (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))) (-5 *1 (-1041 *2 *3)))) (-3507 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-1003) (-34))) (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1003) (-34))))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-578 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))))) (-3385 (*1 *2 *3 *1) (-12 (-5 *3 (-1040 *4 *5)) (-4 *4 (-13 (-1003) (-34))) (-4 *5 (-13 (-1003) (-34))) (-5 *2 (-83)) (-5 *1 (-1041 *4 *5)))) (-3384 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1040 *5 *6)) (-5 *4 (-1 (-83) *6 *6)) (-4 *5 (-13 (-1003) (-34))) (-4 *6 (-13 (-1003) (-34))) (-5 *2 (-83)) (-5 *1 (-1041 *5 *6)))) (-3383 (*1 *1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1041 *3 *4)))) (-3382 (*1 *1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1041 *3 *4)))) (-3381 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-578 (-1040 *3 *4))) (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1041 *3 *4)))) (-3381 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1040 *4 *5))) (-5 *3 (-1 (-83) *5 *5)) (-4 *4 (-13 (-1003) (-34))) (-4 *5 (-13 (-1003) (-34))) (-5 *1 (-1041 *4 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3391 (($ $) NIL T ELT)) (-3307 ((|#2| $) NIL T ELT)) (-3102 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3390 (($ (-625 |#2|)) 55 T ELT)) (-3104 (((-83) $) NIL T ELT)) (-3310 (($ |#2|) 14 T ELT)) (-3700 (($) NIL T CONST)) (-3091 (($ $) 68 (|has| |#2| (-254)) ELT)) (-3093 (((-194 |#1| |#2|) $ (-478)) 42 T ELT)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) ((|#2| $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) 82 T ELT)) (-3090 (((-687) $) 70 (|has| |#2| (-489)) ELT)) (-3094 ((|#2| $ (-478) (-478)) NIL T ELT)) (-2870 (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-3089 (((-687) $) 72 (|has| |#2| (-489)) ELT)) (-3088 (((-578 (-194 |#1| |#2|)) $) 76 (|has| |#2| (-489)) ELT)) (-3096 (((-687) $) NIL T ELT)) (-3590 (($ |#2|) 25 T ELT)) (-3095 (((-687) $) NIL T ELT)) (-3304 ((|#2| $) 66 (|has| |#2| (-6 (-3973 #2="*"))) ELT)) (-3100 (((-478) $) NIL T ELT)) (-3098 (((-478) $) NIL T ELT)) (-2588 (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-3099 (((-478) $) NIL T ELT)) (-3097 (((-478) $) NIL T ELT)) (-3105 (($ (-578 (-578 |#2|))) 37 T ELT)) (-1932 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3570 (((-578 (-578 |#2|)) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3566 (((-3 $ #1#) $) 79 (|has| |#2| (-308)) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3443 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT)) (-1930 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ (-478) (-478) |#2|) NIL T ELT) ((|#2| $ (-478) (-478)) NIL T ELT)) (-3734 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT)) (-3306 ((|#2| $) NIL T ELT)) (-3309 (($ (-578 |#2|)) 50 T ELT)) (-3103 (((-83) $) NIL T ELT)) (-3308 (((-194 |#1| |#2|) $) NIL T ELT)) (-3305 ((|#2| $) 64 (|has| |#2| (-6 (-3973 #2#))) ELT)) (-1929 (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) 89 (|has| |#2| (-548 (-467))) ELT)) (-3092 (((-194 |#1| |#2|) $ (-478)) 44 T ELT)) (-3922 (((-765) $) 47 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (($ |#2|) NIL T ELT) (((-625 |#2|) $) 52 T ELT)) (-3107 (((-687)) 23 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3101 (((-83) $) NIL T ELT)) (-2640 (($) 16 T CONST)) (-2647 (($) 21 T CONST)) (-2650 (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-687)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 62 T ELT) (($ $ (-478)) 81 (|has| |#2| (-308)) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-194 |#1| |#2|) $ (-194 |#1| |#2|)) 58 T ELT) (((-194 |#1| |#2|) (-194 |#1| |#2|) $) 60 T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-1042 |#1| |#2|) (-13 (-1023 |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) (-547 (-625 |#2|)) (-10 -8 (-15 -3590 ($ |#2|)) (-15 -3391 ($ $)) (-15 -3390 ($ (-625 |#2|))) (IF (|has| |#2| (-6 (-3973 #1="*"))) (-6 -3960) |%noBranch|) (IF (|has| |#2| (-6 (-3973 #1#))) (IF (|has| |#2| (-6 -3968)) (-6 -3968) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-548 (-467))) (-6 (-548 (-467))) |%noBranch|))) (-687) (-954)) (T -1042)) -((-3590 (*1 *1 *2) (-12 (-5 *1 (-1042 *3 *2)) (-14 *3 (-687)) (-4 *2 (-954)))) (-3391 (*1 *1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-14 *2 (-687)) (-4 *3 (-954)))) (-3390 (*1 *1 *2) (-12 (-5 *2 (-625 *4)) (-4 *4 (-954)) (-5 *1 (-1042 *3 *4)) (-14 *3 (-687))))) -((-3404 (($ $) 19 T ELT)) (-3394 (($ $ (-115)) 10 T ELT) (($ $ (-112)) 14 T ELT)) (-3402 (((-83) $ $) 24 T ELT)) (-3406 (($ $) 17 T ELT)) (-3776 (((-115) $ (-478) (-115)) NIL T ELT) (((-115) $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT) (($ $ $) 31 T ELT)) (-3922 (($ (-115)) 29 T ELT) (((-765) $) NIL T ELT))) -(((-1043 |#1|) (-10 -7 (-15 -3922 ((-765) |#1|)) (-15 -3776 (|#1| |#1| |#1|)) (-15 -3394 (|#1| |#1| (-112))) (-15 -3394 (|#1| |#1| (-115))) (-15 -3922 (|#1| (-115))) (-15 -3402 ((-83) |#1| |#1|)) (-15 -3404 (|#1| |#1|)) (-15 -3406 (|#1| |#1|)) (-15 -3776 (|#1| |#1| (-1131 (-478)))) (-15 -3776 ((-115) |#1| (-478))) (-15 -3776 ((-115) |#1| (-478) (-115)))) (-1044)) (T -1043)) -NIL -((-2548 (((-83) $ $) 19 (|has| (-115) (-72)) ELT)) (-3403 (($ $) 129 T ELT)) (-3404 (($ $) 130 T ELT)) (-3394 (($ $ (-115)) 117 T ELT) (($ $ (-112)) 116 T ELT)) (-2180 (((-1170) $ (-478) (-478)) 44 (|has| $ (-6 -3972)) ELT)) (-3401 (((-83) $ $) 127 T ELT)) (-3400 (((-83) $ $ (-478)) 126 T ELT)) (-3395 (((-578 $) $ (-115)) 119 T ELT) (((-578 $) $ (-112)) 118 T ELT)) (-1715 (((-83) (-1 (-83) (-115) (-115)) $) 107 T ELT) (((-83) $) 101 (|has| (-115) (-749)) ELT)) (-1713 (($ (-1 (-83) (-115) (-115)) $) 98 (|has| $ (-6 -3972)) ELT) (($ $) 97 (-12 (|has| (-115) (-749)) (|has| $ (-6 -3972))) ELT)) (-2890 (($ (-1 (-83) (-115) (-115)) $) 108 T ELT) (($ $) 102 (|has| (-115) (-749)) ELT)) (-3764 (((-115) $ (-478) (-115)) 56 (|has| $ (-6 -3972)) ELT) (((-115) $ (-1131 (-478)) (-115)) 64 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) (-115)) $) 81 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-3392 (($ $ (-115)) 113 T ELT) (($ $ (-112)) 112 T ELT)) (-2279 (($ $) 99 (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) 109 T ELT)) (-3397 (($ $ (-1131 (-478)) $) 123 T ELT)) (-1336 (($ $) 84 (-12 (|has| (-115) (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ (-115) $) 83 (-12 (|has| (-115) (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) (-115)) $) 80 (|has| $ (-6 -3971)) ELT)) (-3818 (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) 82 (-12 (|has| (-115) (-1003)) (|has| $ (-6 -3971))) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) 79 (|has| $ (-6 -3971)) ELT) (((-115) (-1 (-115) (-115) (-115)) $) 78 (|has| $ (-6 -3971)) ELT)) (-1559 (((-115) $ (-478) (-115)) 57 (|has| $ (-6 -3972)) ELT)) (-3094 (((-115) $ (-478)) 55 T ELT)) (-3402 (((-83) $ $) 128 T ELT)) (-3396 (((-478) (-1 (-83) (-115)) $) 106 T ELT) (((-478) (-115) $) 105 (|has| (-115) (-1003)) ELT) (((-478) (-115) $ (-478)) 104 (|has| (-115) (-1003)) ELT) (((-478) $ $ (-478)) 122 T ELT) (((-478) (-112) $ (-478)) 121 T ELT)) (-2870 (((-578 (-115)) $) 30 (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) (-115)) 74 T ELT)) (-2182 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) 91 (|has| (-115) (-749)) ELT)) (-3495 (($ (-1 (-83) (-115) (-115)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-115) (-749)) ELT)) (-2588 (((-578 (-115)) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-115) $) 27 (-12 (|has| (-115) (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) 92 (|has| (-115) (-749)) ELT)) (-3398 (((-83) $ $ (-115)) 124 T ELT)) (-3399 (((-687) $ $ (-115)) 125 T ELT)) (-1932 (($ (-1 (-115) (-115)) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-115) (-115)) $) 35 T ELT) (($ (-1 (-115) (-115) (-115)) $ $) 69 T ELT)) (-3405 (($ $) 131 T ELT)) (-3406 (($ $) 132 T ELT)) (-3393 (($ $ (-115)) 115 T ELT) (($ $ (-112)) 114 T ELT)) (-3222 (((-1059) $) 22 (|has| (-115) (-1003)) ELT)) (-2286 (($ (-115) $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2185 (((-578 (-478)) $) 50 T ELT)) (-2186 (((-83) (-478) $) 51 T ELT)) (-3223 (((-1020) $) 21 (|has| (-115) (-1003)) ELT)) (-3777 (((-115) $) 46 (|has| (-478) (-749)) ELT)) (-1337 (((-3 (-115) "failed") (-1 (-83) (-115)) $) 77 T ELT)) (-2181 (($ $ (-115)) 45 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) (-115)) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-115)))) 26 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT) (($ $ (-245 (-115))) 25 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT) (($ $ (-115) (-115)) 24 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT) (($ $ (-578 (-115)) (-578 (-115))) 23 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) (-115) $) 49 (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT)) (-2187 (((-578 (-115)) $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 (((-115) $ (-478) (-115)) 54 T ELT) (((-115) $ (-478)) 53 T ELT) (($ $ (-1131 (-478))) 75 T ELT) (($ $ $) 111 T ELT)) (-2287 (($ $ (-478)) 68 T ELT) (($ $ (-1131 (-478))) 67 T ELT)) (-1929 (((-687) (-1 (-83) (-115)) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) (-115) $) 28 (-12 (|has| (-115) (-1003)) (|has| $ (-6 -3971))) ELT)) (-1714 (($ $ $ (-478)) 100 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 85 (|has| (-115) (-548 (-467))) ELT)) (-3507 (($ (-578 (-115))) 76 T ELT)) (-3778 (($ $ (-115)) 73 T ELT) (($ (-115) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3922 (($ (-115)) 120 T ELT) (((-765) $) 17 (|has| (-115) (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| (-115) (-72)) ELT)) (-1931 (((-83) (-1 (-83) (-115)) $) 33 (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) 93 (|has| (-115) (-749)) ELT)) (-2547 (((-83) $ $) 95 (|has| (-115) (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| (-115) (-72)) ELT)) (-2665 (((-83) $ $) 94 (|has| (-115) (-749)) ELT)) (-2666 (((-83) $ $) 96 (|has| (-115) (-749)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-1044) (-111)) (T -1044)) -((-3406 (*1 *1 *1) (-4 *1 (-1044))) (-3405 (*1 *1 *1) (-4 *1 (-1044))) (-3404 (*1 *1 *1) (-4 *1 (-1044))) (-3403 (*1 *1 *1) (-4 *1 (-1044))) (-3402 (*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-83)))) (-3401 (*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-83)))) (-3400 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-478)) (-5 *2 (-83)))) (-3399 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-115)) (-5 *2 (-687)))) (-3398 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-115)) (-5 *2 (-83)))) (-3397 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-1131 (-478))))) (-3396 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-478)))) (-3396 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-478)) (-5 *3 (-112)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-115)) (-4 *1 (-1044)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-578 *1)) (-4 *1 (-1044)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-578 *1)) (-4 *1 (-1044)))) (-3394 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-115)))) (-3394 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-112)))) (-3393 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-115)))) (-3393 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-112)))) (-3392 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-115)))) (-3392 (*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-112)))) (-3776 (*1 *1 *1 *1) (-4 *1 (-1044)))) -(-13 (-19 (-115)) (-10 -8 (-15 -3406 ($ $)) (-15 -3405 ($ $)) (-15 -3404 ($ $)) (-15 -3403 ($ $)) (-15 -3402 ((-83) $ $)) (-15 -3401 ((-83) $ $)) (-15 -3400 ((-83) $ $ (-478))) (-15 -3399 ((-687) $ $ (-115))) (-15 -3398 ((-83) $ $ (-115))) (-15 -3397 ($ $ (-1131 (-478)) $)) (-15 -3396 ((-478) $ $ (-478))) (-15 -3396 ((-478) (-112) $ (-478))) (-15 -3922 ($ (-115))) (-15 -3395 ((-578 $) $ (-115))) (-15 -3395 ((-578 $) $ (-112))) (-15 -3394 ($ $ (-115))) (-15 -3394 ($ $ (-112))) (-15 -3393 ($ $ (-115))) (-15 -3393 ($ $ (-112))) (-15 -3392 ($ $ (-115))) (-15 -3392 ($ $ (-112))) (-15 -3776 ($ $ $)))) -(((-34) . T) ((-72) OR (|has| (-115) (-1003)) (|has| (-115) (-749)) (|has| (-115) (-72))) ((-547 (-765)) OR (|has| (-115) (-1003)) (|has| (-115) (-749)) (|has| (-115) (-547 (-765)))) ((-122 (-115)) . T) ((-548 (-467)) |has| (-115) (-548 (-467))) ((-238 (-478) (-115)) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) (-115)) . T) ((-256 (-115)) -12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ((-317 (-115)) . T) ((-422 (-115)) . T) ((-533 (-478) (-115)) . T) ((-447 (-115) (-115)) -12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ((-588 (-115)) . T) ((-19 (-115)) . T) ((-749) |has| (-115) (-749)) ((-752) |has| (-115) (-749)) ((-1003) OR (|has| (-115) (-1003)) (|has| (-115) (-749))) ((-1114) . T)) -((-3413 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) (-687)) 112 T ELT)) (-3410 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687)) 61 T ELT)) (-3414 (((-1170) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-687)) 97 T ELT)) (-3408 (((-687) (-578 |#4|) (-578 |#5|)) 30 T ELT)) (-3411 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687)) 63 T ELT) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687) (-83)) 65 T ELT)) (-3412 (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83) (-83) (-83) (-83)) 84 T ELT) (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83)) 85 T ELT)) (-3948 (((-1059) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) 90 T ELT)) (-3409 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|) 60 T ELT)) (-3407 (((-687) (-578 |#4|) (-578 |#5|)) 21 T ELT))) -(((-1045 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3407 ((-687) (-578 |#4|) (-578 |#5|))) (-15 -3408 ((-687) (-578 |#4|) (-578 |#5|))) (-15 -3409 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|)) (-15 -3410 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687))) (-15 -3410 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|)) (-15 -3411 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687) (-83))) (-15 -3411 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5| (-687))) (-15 -3411 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) |#4| |#5|)) (-15 -3412 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83))) (-15 -3412 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-83) (-83) (-83) (-83) (-83))) (-15 -3413 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))))) (-687))) (-15 -3948 ((-1059) (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|)))) (-15 -3414 ((-1170) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -1583 |#5|))) (-687)))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|) (-1010 |#1| |#2| |#3| |#4|)) (T -1045)) -((-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1583 *9)))) (-5 *4 (-687)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-1170)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1583 *8))) (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-1010 *4 *5 *6 *7)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1059)) (-5 *1 (-1045 *4 *5 *6 *7 *8)))) (-3413 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -1583 *11)))))) (-5 *6 (-687)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -1583 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-969 *7 *8 *9)) (-4 *11 (-1010 *7 *8 *9 *10)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) (-5 *1 (-1045 *7 *8 *9 *10 *11)))) (-3412 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))) (-3412 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))) (-3411 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1010 *5 *6 *7 *3)))) (-3411 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-1045 *6 *7 *8 *3 *4)) (-4 *4 (-1010 *6 *7 *8 *3)))) (-3411 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-687)) (-5 *6 (-83)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) (-4 *3 (-969 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-1045 *7 *8 *9 *3 *4)) (-4 *4 (-1010 *7 *8 *9 *3)))) (-3410 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1010 *5 *6 *7 *3)))) (-3410 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-1045 *6 *7 *8 *3 *4)) (-4 *4 (-1010 *6 *7 *8 *3)))) (-3409 (*1 *2 *3 *4) (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1010 *5 *6 *7 *3)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-687)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))) (-3407 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-687)) (-5 *1 (-1045 *5 *6 *7 *8 *9))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |#4|)))) (-578 |#4|)) NIL T ELT)) (-3658 (((-578 $) (-578 |#4|)) 118 T ELT) (((-578 $) (-578 |#4|) (-83)) 119 T ELT) (((-578 $) (-578 |#4|) (-83) (-83)) 117 T ELT) (((-578 $) (-578 |#4|) (-83) (-83) (-83) (-83)) 120 T ELT)) (-3063 (((-578 |#3|) $) NIL T ELT)) (-2889 (((-83) $) NIL T ELT)) (-2880 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3669 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3664 ((|#4| |#4| $) NIL T ELT)) (-3751 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| $) 91 T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3686 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3700 (($) NIL T CONST)) (-2885 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3665 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ #1#) (-578 |#4|)) NIL T ELT)) (-3137 (($ (-578 |#4|)) NIL T ELT)) (-3775 (((-3 $ #1#) $) 45 T ELT)) (-3661 ((|#4| |#4| $) 73 T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-3383 (($ |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-489)) ELT)) (-3670 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3659 ((|#4| |#4| $) NIL T ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3971)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#4|)) (|:| -1685 (-578 |#4|))) $) NIL T ELT)) (-3179 (((-83) |#4| $) NIL T ELT)) (-3177 (((-83) |#4| $) NIL T ELT)) (-3180 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3415 (((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-83) (-83)) 133 T ELT)) (-2870 (((-578 |#4|) $) 18 (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3161 ((|#3| $) 38 T ELT)) (-2588 (((-578 |#4|) $) 19 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2895 (((-578 |#3|) $) NIL T ELT)) (-2894 (((-83) |#3| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3173 (((-3 |#4| (-578 $)) |#4| |#4| $) NIL T ELT)) (-3172 (((-578 (-2 (|:| |val| |#4|) (|:| -1583 $))) |#4| |#4| $) 111 T ELT)) (-3774 (((-3 |#4| #1#) $) 42 T ELT)) (-3174 (((-578 $) |#4| $) 96 T ELT)) (-3176 (((-3 (-83) (-578 $)) |#4| $) NIL T ELT)) (-3175 (((-578 (-2 (|:| |val| (-83)) (|:| -1583 $))) |#4| $) 106 T ELT) (((-83) |#4| $) 62 T ELT)) (-3218 (((-578 $) |#4| $) 115 T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) 116 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT)) (-3416 (((-578 $) (-578 |#4|) (-83) (-83) (-83)) 128 T ELT)) (-3417 (($ |#4| $) 82 T ELT) (($ (-578 |#4|) $) 83 T ELT) (((-578 $) |#4| $ (-83) (-83) (-83) (-83) (-83)) 81 T ELT)) (-3673 (((-578 |#4|) $) NIL T ELT)) (-3667 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3662 ((|#4| |#4| $) NIL T ELT)) (-3675 (((-83) $ $) NIL T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3668 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3663 ((|#4| |#4| $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 (((-3 |#4| #1#) $) 40 T ELT)) (-1337 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3655 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3745 (($ $ |#4|) NIL T ELT) (((-578 $) |#4| $) 98 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) 93 T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 17 T ELT)) (-3541 (($) 14 T ELT)) (-3924 (((-687) $) NIL T ELT)) (-1929 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 13 T ELT)) (-3948 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) 22 T ELT)) (-2891 (($ $ |#3|) 49 T ELT)) (-2893 (($ $ |#3|) 51 T ELT)) (-3660 (($ $) NIL T ELT)) (-2892 (($ $ |#3|) NIL T ELT)) (-3922 (((-765) $) 35 T ELT) (((-578 |#4|) $) 46 T ELT)) (-3654 (((-687) $) NIL (|has| |#3| (-313)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3666 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) NIL T ELT)) (-3171 (((-578 $) |#4| $) 63 T ELT) (((-578 $) |#4| (-578 $)) NIL T ELT) (((-578 $) (-578 |#4|) $) NIL T ELT) (((-578 $) (-578 |#4|) (-578 $)) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 |#3|) $) NIL T ELT)) (-3178 (((-83) |#4| $) NIL T ELT)) (-3909 (((-83) |#3| $) 69 T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-1046 |#1| |#2| |#3| |#4|) (-13 (-1010 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3417 ((-578 $) |#4| $ (-83) (-83) (-83) (-83) (-83))) (-15 -3658 ((-578 $) (-578 |#4|) (-83) (-83))) (-15 -3658 ((-578 $) (-578 |#4|) (-83) (-83) (-83) (-83))) (-15 -3416 ((-578 $) (-578 |#4|) (-83) (-83) (-83))) (-15 -3415 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-83) (-83))))) (-385) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -1046)) -((-3417 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) (-4 *3 (-969 *5 *6 *7)))) (-3658 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-3658 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-3416 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-3415 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-1046 *5 *6 *7 *8))))) (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 31 T ELT)) (-2392 (((-83) $) 29 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 28 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-687)) 30 T ELT) (($ $ (-823)) 27 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ $ $) 26 T ELT))) -(((-1047) (-111)) (T -1047)) -NIL -(-13 (-23) (-658)) -(((-23) . T) ((-25) . T) ((-72) . T) ((-547 (-765)) . T) ((-658) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3301 ((|#1| $) 38 T ELT)) (-3418 (($ (-578 |#1|)) 46 T ELT)) (-3700 (($) NIL T CONST)) (-3303 ((|#1| |#1| $) 41 T ELT)) (-3302 ((|#1| $) 36 T ELT)) (-2870 (((-578 |#1|) $) 19 (|has| $ (-6 -3971)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-1258 ((|#1| $) 39 T ELT)) (-3585 (($ |#1| $) 42 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1259 ((|#1| $) 37 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 33 T ELT)) (-3541 (($) 44 T ELT)) (-3300 (((-687) $) 31 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) 28 T ELT)) (-3922 (((-765) $) 15 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1260 (($ (-578 |#1|)) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 32 (|has| $ (-6 -3971)) ELT))) -(((-1048 |#1|) (-13 (-1021 |#1|) (-10 -8 (-15 -3418 ($ (-578 |#1|))))) (-1114)) (T -1048)) -((-3418 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-1048 *3))))) -((-3764 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1131 (-478)) |#2|) 53 T ELT) ((|#2| $ (-478) |#2|) 50 T ELT)) (-3420 (((-83) $) 12 T ELT)) (-1932 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3777 ((|#2| $) NIL T ELT) (($ $ (-687)) 17 T ELT)) (-2181 (($ $ |#2|) 49 T ELT)) (-3421 (((-83) $) 11 T ELT)) (-3776 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1131 (-478))) 36 T ELT) ((|#2| $ (-478)) 25 T ELT) ((|#2| $ (-478) |#2|) NIL T ELT)) (-3767 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3778 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-578 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1049 |#1| |#2|) (-10 -7 (-15 -3420 ((-83) |#1|)) (-15 -3421 ((-83) |#1|)) (-15 -3764 (|#2| |#1| (-478) |#2|)) (-15 -3776 (|#2| |#1| (-478) |#2|)) (-15 -3776 (|#2| |#1| (-478))) (-15 -2181 (|#1| |#1| |#2|)) (-15 -3776 (|#1| |#1| (-1131 (-478)))) (-15 -3778 (|#1| |#1| |#2|)) (-15 -3778 (|#1| (-578 |#1|))) (-15 -3764 (|#2| |#1| (-1131 (-478)) |#2|)) (-15 -3764 (|#2| |#1| #1="last" |#2|)) (-15 -3764 (|#1| |#1| #2="rest" |#1|)) (-15 -3764 (|#2| |#1| #3="first" |#2|)) (-15 -3767 (|#1| |#1| |#2|)) (-15 -3767 (|#1| |#1| |#1|)) (-15 -3776 (|#2| |#1| #1#)) (-15 -3776 (|#1| |#1| #2#)) (-15 -3777 (|#1| |#1| (-687))) (-15 -3776 (|#2| |#1| #3#)) (-15 -3777 (|#2| |#1|)) (-15 -3778 (|#1| |#2| |#1|)) (-15 -3778 (|#1| |#1| |#1|)) (-15 -3764 (|#2| |#1| #4="value" |#2|)) (-15 -3776 (|#2| |#1| #4#)) (-15 -1932 (|#1| (-1 |#2| |#2|) |#1|))) (-1050 |#2|) (-1114)) (T -1049)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 52 T ELT)) (-3771 ((|#1| $) 71 T ELT)) (-3773 (($ $) 73 T ELT)) (-2180 (((-1170) $ (-478) (-478)) 107 (|has| $ (-6 -3972)) ELT)) (-3761 (($ $ (-478)) 58 (|has| $ (-6 -3972)) ELT)) (-3419 (((-83) $ (-687)) 90 T ELT)) (-3006 ((|#1| $ |#1|) 43 (|has| $ (-6 -3972)) ELT)) (-3763 (($ $ $) 62 (|has| $ (-6 -3972)) ELT)) (-3762 ((|#1| $ |#1|) 60 (|has| $ (-6 -3972)) ELT)) (-3765 ((|#1| $ |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3972)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3972)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3972)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 127 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-478) |#1|) 96 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 45 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 112 (|has| $ (-6 -3971)) ELT)) (-3772 ((|#1| $) 72 T ELT)) (-3700 (($) 7 T CONST)) (-3775 (($ $) 79 T ELT) (($ $ (-687)) 77 T ELT)) (-1336 (($ $) 109 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ (-1 (-83) |#1|) $) 113 (|has| $ (-6 -3971)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1559 ((|#1| $ (-478) |#1|) 95 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 97 T ELT)) (-3420 (((-83) $) 93 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 54 T ELT)) (-3008 (((-83) $ $) 46 (|has| |#1| (-1003)) ELT)) (-3590 (($ (-687) |#1|) 119 T ELT)) (-3695 (((-83) $ (-687)) 91 T ELT)) (-2182 (((-478) $) 105 (|has| (-478) (-749)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 104 (|has| (-478) (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3692 (((-83) $ (-687)) 92 T ELT)) (-3011 (((-578 |#1|) $) 49 T ELT)) (-3504 (((-83) $) 53 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3774 ((|#1| $) 76 T ELT) (($ $ (-687)) 74 T ELT)) (-2286 (($ $ $ (-478)) 126 T ELT) (($ |#1| $ (-478)) 125 T ELT)) (-2185 (((-578 (-478)) $) 102 T ELT)) (-2186 (((-83) (-478) $) 101 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 82 T ELT) (($ $ (-687)) 80 T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2181 (($ $ |#1|) 106 (|has| $ (-6 -3972)) ELT)) (-3421 (((-83) $) 94 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) 100 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1131 (-478))) 118 T ELT) ((|#1| $ (-478)) 99 T ELT) ((|#1| $ (-478) |#1|) 98 T ELT)) (-3010 (((-478) $ $) 48 T ELT)) (-2287 (($ $ (-1131 (-478))) 124 T ELT) (($ $ (-478)) 123 T ELT)) (-3609 (((-83) $) 50 T ELT)) (-3768 (($ $) 68 T ELT)) (-3766 (($ $) 65 (|has| $ (-6 -3972)) ELT)) (-3769 (((-687) $) 69 T ELT)) (-3770 (($ $) 70 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 108 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 117 T ELT)) (-3767 (($ $ $) 67 (|has| $ (-6 -3972)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3972)) ELT)) (-3778 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-578 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) 55 T ELT)) (-3009 (((-83) $ $) 47 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-1050 |#1|) (-111) (-1114)) (T -1050)) -((-3421 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1114)) (-5 *2 (-83)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1114)) (-5 *2 (-83)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1050 *4)) (-4 *4 (-1114)) (-5 *2 (-83)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1050 *4)) (-4 *4 (-1114)) (-5 *2 (-83)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1050 *4)) (-4 *4 (-1114)) (-5 *2 (-83))))) -(-13 (-1153 |t#1|) (-588 |t#1|) (-10 -8 (-15 -3421 ((-83) $)) (-15 -3420 ((-83) $)) (-15 -3692 ((-83) $ (-687))) (-15 -3695 ((-83) $ (-687))) (-15 -3419 ((-83) $ (-687))))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-916 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1114) . T) ((-1153 |#1|) . T)) -((-2548 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3575 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2180 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) NIL T ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2182 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2183 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-2214 (((-578 |#1|) $) NIL T ELT)) (-2215 (((-83) |#1| $) NIL T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2185 (((-578 |#1|) $) NIL T ELT)) (-2186 (((-83) |#1| $) NIL T ELT)) (-3223 (((-1020) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-3777 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1449 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3922 (((-765) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1249 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-1051 |#1| |#2| |#3|) (-1092 |#1| |#2|) (-1003) (-1003) |#2|) (T -1051)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3422 (((-627 $) $) 17 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3423 (($) 18 T CONST)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3037 (((-83) $ $) 8 T ELT))) -(((-1052) (-111)) (T -1052)) -((-3423 (*1 *1) (-4 *1 (-1052))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1052))))) -(-13 (-1003) (-10 -8 (-15 -3423 ($) -3928) (-15 -3422 ((-627 $) $)))) -(((-72) . T) ((-547 (-765)) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3425 (((-627 (-1035)) $) 28 T ELT)) (-3424 (((-1035) $) 16 T ELT)) (-3426 (((-1035) $) 18 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3427 (((-439) $) 14 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 38 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1053) (-13 (-986) (-10 -8 (-15 -3427 ((-439) $)) (-15 -3426 ((-1035) $)) (-15 -3425 ((-627 (-1035)) $)) (-15 -3424 ((-1035) $))))) (T -1053)) -((-3427 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1053)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1053)))) (-3425 (*1 *2 *1) (-12 (-5 *2 (-627 (-1035))) (-5 *1 (-1053)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1053))))) -((-3430 (((-1055 |#1|) (-1055 |#1|)) 17 T ELT)) (-3428 (((-1055 |#1|) (-1055 |#1|)) 13 T ELT)) (-3431 (((-1055 |#1|) (-1055 |#1|) (-478) (-478)) 20 T ELT)) (-3429 (((-1055 |#1|) (-1055 |#1|)) 15 T ELT))) -(((-1054 |#1|) (-10 -7 (-15 -3428 ((-1055 |#1|) (-1055 |#1|))) (-15 -3429 ((-1055 |#1|) (-1055 |#1|))) (-15 -3430 ((-1055 |#1|) (-1055 |#1|))) (-15 -3431 ((-1055 |#1|) (-1055 |#1|) (-478) (-478)))) (-13 (-489) (-118))) (T -1054)) -((-3431 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-478)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-1054 *4)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1054 *3)))) (-3429 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1054 *3)))) (-3428 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1054 *3))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) NIL T ELT)) (-3771 ((|#1| $) NIL T ELT)) (-3773 (($ $) 60 T ELT)) (-2180 (((-1170) $ (-478) (-478)) 93 (|has| $ (-6 -3972)) ELT)) (-3761 (($ $ (-478)) 122 (|has| $ (-6 -3972)) ELT)) (-3419 (((-83) $ (-687)) NIL T ELT)) (-3436 (((-765) $) 46 (|has| |#1| (-1003)) ELT)) (-3435 (((-83)) 49 (|has| |#1| (-1003)) ELT)) (-3006 ((|#1| $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3763 (($ $ $) 109 (|has| $ (-6 -3972)) ELT) (($ $ (-478) $) 135 T ELT)) (-3762 ((|#1| $ |#1|) 119 (|has| $ (-6 -3972)) ELT)) (-3765 ((|#1| $ |#1|) 114 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3972)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3972)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 106 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-478) |#1|) 72 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) NIL (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 75 T ELT)) (-3772 ((|#1| $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2305 (($ $) 11 T ELT)) (-3775 (($ $) 35 T ELT) (($ $ (-687)) 105 T ELT)) (-3441 (((-83) (-578 |#1|) $) 128 (|has| |#1| (-1003)) ELT)) (-3442 (($ (-578 |#1|)) 124 T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) 74 T ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1559 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) NIL T ELT)) (-3420 (((-83) $) NIL T ELT)) (-2870 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3437 (((-1170) (-478) $) 133 (|has| |#1| (-1003)) ELT)) (-2304 (((-687) $) 131 T ELT)) (-3012 (((-578 $) $) NIL T ELT)) (-3008 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3590 (($ (-687) |#1|) NIL T ELT)) (-3695 (((-83) $ (-687)) NIL T ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3692 (((-83) $ (-687)) NIL T ELT)) (-3011 (((-578 |#1|) $) NIL T ELT)) (-3504 (((-83) $) NIL T ELT)) (-2307 (($ $) 107 T ELT)) (-2308 (((-83) $) 10 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3774 ((|#1| $) NIL T ELT) (($ $ (-687)) NIL T ELT)) (-2286 (($ $ $ (-478)) NIL T ELT) (($ |#1| $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) 90 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3434 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2306 ((|#1| $) 7 T ELT)) (-3777 ((|#1| $) 34 T ELT) (($ $ (-687)) 58 T ELT)) (-3440 (((-2 (|:| |cycle?| (-83)) (|:| -2575 (-687)) (|:| |period| (-687))) (-687) $) 29 T ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-3433 (($ (-1 (-83) |#1|) $) 139 T ELT)) (-3432 (($ (-1 (-83) |#1|) $) 140 T ELT)) (-2181 (($ $ |#1|) 85 (|has| $ (-6 -3972)) ELT)) (-3745 (($ $ (-478)) 40 T ELT)) (-3421 (((-83) $) 88 T ELT)) (-2309 (((-83) $) 9 T ELT)) (-2310 (((-83) $) 130 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 25 T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) 14 T ELT)) (-3541 (($) 53 T ELT)) (-3776 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT) ((|#1| $ (-478)) 70 T ELT) ((|#1| $ (-478) |#1|) NIL T ELT)) (-3010 (((-478) $ $) 57 T ELT)) (-2287 (($ $ (-1131 (-478))) NIL T ELT) (($ $ (-478)) NIL T ELT)) (-3439 (($ (-1 $)) 56 T ELT)) (-3609 (((-83) $) 86 T ELT)) (-3768 (($ $) 87 T ELT)) (-3766 (($ $) 110 (|has| $ (-6 -3972)) ELT)) (-3769 (((-687) $) NIL T ELT)) (-3770 (($ $) NIL T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) 52 T ELT)) (-3948 (((-467) $) NIL (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 68 T ELT)) (-3438 (($ |#1| $) 108 T ELT)) (-3767 (($ $ $) 112 (|has| $ (-6 -3972)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3972)) ELT)) (-3778 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-578 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2872 (($ $) 59 T ELT)) (-3922 (($ (-578 |#1|)) 123 T ELT) (((-765) $) 50 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) NIL T ELT)) (-3009 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 126 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-1055 |#1|) (-13 (-611 |#1|) (-550 (-578 |#1|)) (-10 -8 (-6 -3972) (-15 -3442 ($ (-578 |#1|))) (IF (|has| |#1| (-1003)) (-15 -3441 ((-83) (-578 |#1|) $)) |%noBranch|) (-15 -3440 ((-2 (|:| |cycle?| (-83)) (|:| -2575 (-687)) (|:| |period| (-687))) (-687) $)) (-15 -3439 ($ (-1 $))) (-15 -3438 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -3437 ((-1170) (-478) $)) (-15 -3436 ((-765) $)) (-15 -3435 ((-83)))) |%noBranch|) (-15 -3763 ($ $ (-478) $)) (-15 -3434 ($ (-1 |#1|))) (-15 -3434 ($ (-1 |#1| |#1|) |#1|)) (-15 -3433 ($ (-1 (-83) |#1|) $)) (-15 -3432 ($ (-1 (-83) |#1|) $)))) (-1114)) (T -1055)) -((-3442 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3)))) (-3441 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1003)) (-4 *4 (-1114)) (-5 *2 (-83)) (-5 *1 (-1055 *4)))) (-3440 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-83)) (|:| -2575 (-687)) (|:| |period| (-687)))) (-5 *1 (-1055 *4)) (-4 *4 (-1114)) (-5 *3 (-687)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-1 (-1055 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-1114)))) (-3438 (*1 *1 *2 *1) (-12 (-5 *1 (-1055 *2)) (-4 *2 (-1114)))) (-3437 (*1 *2 *3 *1) (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-1055 *4)) (-4 *4 (-1003)) (-4 *4 (-1114)))) (-3436 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1114)))) (-3435 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1114)))) (-3763 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1055 *3)) (-4 *3 (-1114)))) (-3434 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3)))) (-3434 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3)))) (-3433 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3)))) (-3432 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3))))) -((-3778 (((-1055 |#1|) (-1055 (-1055 |#1|))) 15 T ELT))) -(((-1056 |#1|) (-10 -7 (-15 -3778 ((-1055 |#1|) (-1055 (-1055 |#1|))))) (-1114)) (T -1056)) -((-3778 (*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1056 *4)) (-4 *4 (-1114))))) -((-3817 (((-1055 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|)) 25 T ELT)) (-3818 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|)) 26 T ELT)) (-3934 (((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|)) 16 T ELT))) -(((-1057 |#1| |#2|) (-10 -7 (-15 -3934 ((-1055 |#2|) (-1 |#2| |#1|) (-1055 |#1|))) (-15 -3817 ((-1055 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|))) (-15 -3818 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1055 |#1|)))) (-1114) (-1114)) (T -1057)) -((-3818 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1055 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) (-5 *1 (-1057 *5 *2)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1055 *6)) (-4 *6 (-1114)) (-4 *3 (-1114)) (-5 *2 (-1055 *3)) (-5 *1 (-1057 *6 *3)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-1055 *6)) (-5 *1 (-1057 *5 *6))))) -((-3934 (((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-1055 |#2|)) 21 T ELT))) -(((-1058 |#1| |#2| |#3|) (-10 -7 (-15 -3934 ((-1055 |#3|) (-1 |#3| |#1| |#2|) (-1055 |#1|) (-1055 |#2|)))) (-1114) (-1114) (-1114)) (T -1058)) -((-3934 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-1055 *7)) (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-1055 *8)) (-5 *1 (-1058 *6 *7 *8))))) -((-2548 (((-83) $ $) NIL (|has| (-115) (-72)) ELT)) (-3403 (($ $) 42 T ELT)) (-3404 (($ $) NIL T ELT)) (-3394 (($ $ (-115)) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3401 (((-83) $ $) 67 T ELT)) (-3400 (((-83) $ $ (-478)) 62 T ELT)) (-3511 (($ (-478)) 7 T ELT) (($ (-177)) 9 T ELT) (($ (-439)) 11 T ELT)) (-3395 (((-578 $) $ (-115)) 76 T ELT) (((-578 $) $ (-112)) 77 T ELT)) (-1715 (((-83) (-1 (-83) (-115) (-115)) $) NIL T ELT) (((-83) $) NIL (|has| (-115) (-749)) ELT)) (-1713 (($ (-1 (-83) (-115) (-115)) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| (-115) (-749))) ELT)) (-2890 (($ (-1 (-83) (-115) (-115)) $) NIL T ELT) (($ $) NIL (|has| (-115) (-749)) ELT)) (-3764 (((-115) $ (-478) (-115)) 59 (|has| $ (-6 -3972)) ELT) (((-115) $ (-1131 (-478)) (-115)) NIL (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-3392 (($ $ (-115)) 80 T ELT) (($ $ (-112)) 81 T ELT)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-3397 (($ $ (-1131 (-478)) $) 57 T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT)) (-3383 (($ (-115) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT) (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) NIL (|has| $ (-6 -3971)) ELT) (((-115) (-1 (-115) (-115) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 (((-115) $ (-478) (-115)) NIL (|has| $ (-6 -3972)) ELT)) (-3094 (((-115) $ (-478)) NIL T ELT)) (-3402 (((-83) $ $) 91 T ELT)) (-3396 (((-478) (-1 (-83) (-115)) $) NIL T ELT) (((-478) (-115) $) NIL (|has| (-115) (-1003)) ELT) (((-478) (-115) $ (-478)) 64 (|has| (-115) (-1003)) ELT) (((-478) $ $ (-478)) 63 T ELT) (((-478) (-112) $ (-478)) 66 T ELT)) (-2870 (((-578 (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3590 (($ (-687) (-115)) 14 T ELT)) (-2182 (((-478) $) 36 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| (-115) (-749)) ELT)) (-3495 (($ (-1 (-83) (-115) (-115)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-115) (-749)) ELT)) (-2588 (((-578 (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-115) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT)) (-2183 (((-478) $) 50 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| (-115) (-749)) ELT)) (-3398 (((-83) $ $ (-115)) 92 T ELT)) (-3399 (((-687) $ $ (-115)) 88 T ELT)) (-1932 (($ (-1 (-115) (-115)) $) 41 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-115) (-115)) $) NIL T ELT) (($ (-1 (-115) (-115) (-115)) $ $) NIL T ELT)) (-3405 (($ $) 45 T ELT)) (-3406 (($ $) NIL T ELT)) (-3393 (($ $ (-115)) 78 T ELT) (($ $ (-112)) 79 T ELT)) (-3222 (((-1059) $) 46 (|has| (-115) (-1003)) ELT)) (-2286 (($ (-115) $ (-478)) NIL T ELT) (($ $ $ (-478)) 31 T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) 87 (|has| (-115) (-1003)) ELT)) (-3777 (((-115) $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 (-115) "failed") (-1 (-83) (-115)) $) NIL T ELT)) (-2181 (($ $ (-115)) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-115)))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT) (($ $ (-245 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT) (($ $ (-115) (-115)) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT) (($ $ (-578 (-115)) (-578 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) (-115) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT)) (-2187 (((-578 (-115)) $) NIL T ELT)) (-3380 (((-83) $) 19 T ELT)) (-3541 (($) 16 T ELT)) (-3776 (((-115) $ (-478) (-115)) NIL T ELT) (((-115) $ (-478)) 69 T ELT) (($ $ (-1131 (-478))) 29 T ELT) (($ $ $) NIL T ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-115) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-115) (-1003))) ELT)) (-1714 (($ $ $ (-478)) 83 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 24 T ELT)) (-3948 (((-467) $) NIL (|has| (-115) (-548 (-467))) ELT)) (-3507 (($ (-578 (-115))) NIL T ELT)) (-3778 (($ $ (-115)) NIL T ELT) (($ (-115) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-578 $)) 84 T ELT)) (-3922 (($ (-115)) NIL T ELT) (((-765) $) 35 (|has| (-115) (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| (-115) (-72)) ELT)) (-1931 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| (-115) (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| (-115) (-749)) ELT)) (-3037 (((-83) $ $) 21 (|has| (-115) (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| (-115) (-749)) ELT)) (-2666 (((-83) $ $) 22 (|has| (-115) (-749)) ELT)) (-3933 (((-687) $) 20 (|has| $ (-6 -3971)) ELT))) -(((-1059) (-13 (-1044) (-10 -8 (-15 -3511 ($ (-478))) (-15 -3511 ($ (-177))) (-15 -3511 ($ (-439)))))) (T -1059)) -((-3511 (*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1059)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1059)))) (-3511 (*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-1059))))) -((-2548 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3575 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL T ELT)) (-2180 (((-1170) $ (-1059) (-1059)) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ (-1059) |#1|) NIL T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#1| #1="failed") (-1059) $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT)) (-3382 (($ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#1| #1#) (-1059) $) NIL T ELT)) (-3383 (($ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-1059) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-1059)) NIL T ELT)) (-2870 (((-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2182 (((-1059) $) NIL (|has| (-1059) (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-1059) $) NIL (|has| (-1059) (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (OR (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003)) (|has| |#1| (-1003))) ELT)) (-2214 (((-578 (-1059)) $) NIL T ELT)) (-2215 (((-83) (-1059) $) NIL T ELT)) (-1258 (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2185 (((-578 (-1059)) $) NIL T ELT)) (-2186 (((-83) (-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL (OR (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003)) (|has| |#1| (-1003))) ELT)) (-3777 ((|#1| $) NIL (|has| (-1059) (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) #1#) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2181 (($ $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-1059)) NIL T ELT) ((|#1| $ (-1059) |#1|) NIL T ELT)) (-1449 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-1003))) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL T ELT)) (-3922 (((-765) $) NIL (OR (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-547 (-765))) (|has| |#1| (-547 (-765)))) ELT)) (-1249 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)))) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 (-1059)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-1060 |#1|) (-13 (-1092 (-1059) |#1|) (-10 -7 (-6 -3971))) (-1003)) (T -1060)) -NIL -((-3781 (((-1055 |#1|) (-1055 |#1|)) 83 T ELT)) (-3444 (((-3 (-1055 |#1|) #1="failed") (-1055 |#1|)) 39 T ELT)) (-3455 (((-1055 |#1|) (-343 (-478)) (-1055 |#1|)) 131 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3458 (((-1055 |#1|) |#1| (-1055 |#1|)) 135 (|has| |#1| (-308)) ELT)) (-3784 (((-1055 |#1|) (-1055 |#1|)) 97 T ELT)) (-3446 (((-1055 (-478)) (-478)) 63 T ELT)) (-3454 (((-1055 |#1|) (-1055 (-1055 |#1|))) 116 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3780 (((-1055 |#1|) (-478) (-478) (-1055 |#1|)) 103 T ELT)) (-3914 (((-1055 |#1|) |#1| (-478)) 51 T ELT)) (-3448 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 66 T ELT)) (-3456 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 133 (|has| |#1| (-308)) ELT)) (-3453 (((-1055 |#1|) |#1| (-1 (-1055 |#1|))) 115 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3457 (((-1055 |#1|) (-1 |#1| (-478)) |#1| (-1 (-1055 |#1|))) 134 (|has| |#1| (-308)) ELT)) (-3785 (((-1055 |#1|) (-1055 |#1|)) 96 T ELT)) (-3786 (((-1055 |#1|) (-1055 |#1|)) 82 T ELT)) (-3779 (((-1055 |#1|) (-478) (-478) (-1055 |#1|)) 104 T ELT)) (-3788 (((-1055 |#1|) |#1| (-1055 |#1|)) 113 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3445 (((-1055 (-478)) (-478)) 62 T ELT)) (-3447 (((-1055 |#1|) |#1|) 65 T ELT)) (-3782 (((-1055 |#1|) (-1055 |#1|) (-478) (-478)) 100 T ELT)) (-3450 (((-1055 |#1|) (-1 |#1| (-478)) (-1055 |#1|)) 72 T ELT)) (-3443 (((-3 (-1055 |#1|) #1#) (-1055 |#1|) (-1055 |#1|)) 37 T ELT)) (-3783 (((-1055 |#1|) (-1055 |#1|)) 98 T ELT)) (-3744 (((-1055 |#1|) (-1055 |#1|) |#1|) 77 T ELT)) (-3449 (((-1055 |#1|) (-1055 |#1|)) 68 T ELT)) (-3451 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 78 T ELT)) (-3922 (((-1055 |#1|) |#1|) 73 T ELT)) (-3452 (((-1055 |#1|) (-1055 (-1055 |#1|))) 88 T ELT)) (-3925 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 38 T ELT)) (-3813 (((-1055 |#1|) (-1055 |#1|)) 21 T ELT) (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 23 T ELT)) (-3815 (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 17 T ELT)) (* (((-1055 |#1|) (-1055 |#1|) |#1|) 29 T ELT) (((-1055 |#1|) |#1| (-1055 |#1|)) 26 T ELT) (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 27 T ELT))) -(((-1061 |#1|) (-10 -7 (-15 -3815 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3813 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3813 ((-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 * ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 * ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -3443 ((-3 (-1055 |#1|) #1="failed") (-1055 |#1|) (-1055 |#1|))) (-15 -3925 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3444 ((-3 (-1055 |#1|) #1#) (-1055 |#1|))) (-15 -3914 ((-1055 |#1|) |#1| (-478))) (-15 -3445 ((-1055 (-478)) (-478))) (-15 -3446 ((-1055 (-478)) (-478))) (-15 -3447 ((-1055 |#1|) |#1|)) (-15 -3448 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3449 ((-1055 |#1|) (-1055 |#1|))) (-15 -3450 ((-1055 |#1|) (-1 |#1| (-478)) (-1055 |#1|))) (-15 -3922 ((-1055 |#1|) |#1|)) (-15 -3744 ((-1055 |#1|) (-1055 |#1|) |#1|)) (-15 -3451 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3786 ((-1055 |#1|) (-1055 |#1|))) (-15 -3781 ((-1055 |#1|) (-1055 |#1|))) (-15 -3452 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -3785 ((-1055 |#1|) (-1055 |#1|))) (-15 -3784 ((-1055 |#1|) (-1055 |#1|))) (-15 -3783 ((-1055 |#1|) (-1055 |#1|))) (-15 -3782 ((-1055 |#1|) (-1055 |#1|) (-478) (-478))) (-15 -3780 ((-1055 |#1|) (-478) (-478) (-1055 |#1|))) (-15 -3779 ((-1055 |#1|) (-478) (-478) (-1055 |#1|))) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -3788 ((-1055 |#1|) |#1| (-1055 |#1|))) (-15 -3453 ((-1055 |#1|) |#1| (-1 (-1055 |#1|)))) (-15 -3454 ((-1055 |#1|) (-1055 (-1055 |#1|)))) (-15 -3455 ((-1055 |#1|) (-343 (-478)) (-1055 |#1|)))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3456 ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3457 ((-1055 |#1|) (-1 |#1| (-478)) |#1| (-1 (-1055 |#1|)))) (-15 -3458 ((-1055 |#1|) |#1| (-1055 |#1|)))) |%noBranch|)) (-954)) (T -1061)) -((-3458 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-308)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3457 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-478))) (-5 *5 (-1 (-1055 *4))) (-4 *4 (-308)) (-4 *4 (-954)) (-5 *2 (-1055 *4)) (-5 *1 (-1061 *4)))) (-3456 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-308)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3455 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-4 *4 (-38 *3)) (-4 *4 (-954)) (-5 *3 (-343 (-478))) (-5 *1 (-1061 *4)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1061 *4)) (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1055 *3))) (-5 *2 (-1055 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)))) (-3788 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3779 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1061 *4)))) (-3780 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1061 *4)))) (-3782 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1061 *4)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3785 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1061 *4)) (-4 *4 (-954)))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3786 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3451 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3744 (*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3922 (*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-954)))) (-3450 (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *4)) (-5 *3 (-1 *4 (-478))) (-4 *4 (-954)) (-5 *1 (-1061 *4)))) (-3449 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3448 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3447 (*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-954)))) (-3446 (*1 *2 *3) (-12 (-5 *2 (-1055 (-478))) (-5 *1 (-1061 *4)) (-4 *4 (-954)) (-5 *3 (-478)))) (-3445 (*1 *2 *3) (-12 (-5 *2 (-1055 (-478))) (-5 *1 (-1061 *4)) (-4 *4 (-954)) (-5 *3 (-478)))) (-3914 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-5 *2 (-1055 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-954)))) (-3444 (*1 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3925 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3443 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3813 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) (-3815 (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3))))) -((-3469 (((-1055 |#1|) (-1055 |#1|)) 102 T ELT)) (-3615 (((-1055 |#1|) (-1055 |#1|)) 59 T ELT)) (-3460 (((-2 (|:| -3467 (-1055 |#1|)) (|:| -3468 (-1055 |#1|))) (-1055 |#1|)) 98 T ELT)) (-3467 (((-1055 |#1|) (-1055 |#1|)) 99 T ELT)) (-3459 (((-2 (|:| -3614 (-1055 |#1|)) (|:| -3610 (-1055 |#1|))) (-1055 |#1|)) 54 T ELT)) (-3614 (((-1055 |#1|) (-1055 |#1|)) 55 T ELT)) (-3471 (((-1055 |#1|) (-1055 |#1|)) 104 T ELT)) (-3613 (((-1055 |#1|) (-1055 |#1|)) 66 T ELT)) (-3918 (((-1055 |#1|) (-1055 |#1|)) 40 T ELT)) (-3919 (((-1055 |#1|) (-1055 |#1|)) 37 T ELT)) (-3472 (((-1055 |#1|) (-1055 |#1|)) 105 T ELT)) (-3612 (((-1055 |#1|) (-1055 |#1|)) 67 T ELT)) (-3470 (((-1055 |#1|) (-1055 |#1|)) 103 T ELT)) (-3611 (((-1055 |#1|) (-1055 |#1|)) 62 T ELT)) (-3468 (((-1055 |#1|) (-1055 |#1|)) 100 T ELT)) (-3610 (((-1055 |#1|) (-1055 |#1|)) 56 T ELT)) (-3475 (((-1055 |#1|) (-1055 |#1|)) 113 T ELT)) (-3463 (((-1055 |#1|) (-1055 |#1|)) 88 T ELT)) (-3473 (((-1055 |#1|) (-1055 |#1|)) 107 T ELT)) (-3461 (((-1055 |#1|) (-1055 |#1|)) 84 T ELT)) (-3477 (((-1055 |#1|) (-1055 |#1|)) 117 T ELT)) (-3465 (((-1055 |#1|) (-1055 |#1|)) 92 T ELT)) (-3478 (((-1055 |#1|) (-1055 |#1|)) 119 T ELT)) (-3466 (((-1055 |#1|) (-1055 |#1|)) 94 T ELT)) (-3476 (((-1055 |#1|) (-1055 |#1|)) 115 T ELT)) (-3464 (((-1055 |#1|) (-1055 |#1|)) 90 T ELT)) (-3474 (((-1055 |#1|) (-1055 |#1|)) 109 T ELT)) (-3462 (((-1055 |#1|) (-1055 |#1|)) 86 T ELT)) (** (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 41 T ELT))) -(((-1062 |#1|) (-10 -7 (-15 -3919 ((-1055 |#1|) (-1055 |#1|))) (-15 -3918 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3459 ((-2 (|:| -3614 (-1055 |#1|)) (|:| -3610 (-1055 |#1|))) (-1055 |#1|))) (-15 -3614 ((-1055 |#1|) (-1055 |#1|))) (-15 -3610 ((-1055 |#1|) (-1055 |#1|))) (-15 -3615 ((-1055 |#1|) (-1055 |#1|))) (-15 -3611 ((-1055 |#1|) (-1055 |#1|))) (-15 -3613 ((-1055 |#1|) (-1055 |#1|))) (-15 -3612 ((-1055 |#1|) (-1055 |#1|))) (-15 -3461 ((-1055 |#1|) (-1055 |#1|))) (-15 -3462 ((-1055 |#1|) (-1055 |#1|))) (-15 -3463 ((-1055 |#1|) (-1055 |#1|))) (-15 -3464 ((-1055 |#1|) (-1055 |#1|))) (-15 -3465 ((-1055 |#1|) (-1055 |#1|))) (-15 -3466 ((-1055 |#1|) (-1055 |#1|))) (-15 -3460 ((-2 (|:| -3467 (-1055 |#1|)) (|:| -3468 (-1055 |#1|))) (-1055 |#1|))) (-15 -3467 ((-1055 |#1|) (-1055 |#1|))) (-15 -3468 ((-1055 |#1|) (-1055 |#1|))) (-15 -3469 ((-1055 |#1|) (-1055 |#1|))) (-15 -3470 ((-1055 |#1|) (-1055 |#1|))) (-15 -3471 ((-1055 |#1|) (-1055 |#1|))) (-15 -3472 ((-1055 |#1|) (-1055 |#1|))) (-15 -3473 ((-1055 |#1|) (-1055 |#1|))) (-15 -3474 ((-1055 |#1|) (-1055 |#1|))) (-15 -3475 ((-1055 |#1|) (-1055 |#1|))) (-15 -3476 ((-1055 |#1|) (-1055 |#1|))) (-15 -3477 ((-1055 |#1|) (-1055 |#1|))) (-15 -3478 ((-1055 |#1|) (-1055 |#1|)))) (-38 (-343 (-478)))) (T -1062)) -((-3478 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-2 (|:| -3467 (-1055 *4)) (|:| -3468 (-1055 *4)))) (-5 *1 (-1062 *4)) (-5 *3 (-1055 *4)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3465 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3462 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3611 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3615 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3610 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3459 (*1 *2 *3) (-12 (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-2 (|:| -3614 (-1055 *4)) (|:| -3610 (-1055 *4)))) (-5 *1 (-1062 *4)) (-5 *3 (-1055 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3))))) -((-3469 (((-1055 |#1|) (-1055 |#1|)) 60 T ELT)) (-3615 (((-1055 |#1|) (-1055 |#1|)) 42 T ELT)) (-3467 (((-1055 |#1|) (-1055 |#1|)) 56 T ELT)) (-3614 (((-1055 |#1|) (-1055 |#1|)) 38 T ELT)) (-3471 (((-1055 |#1|) (-1055 |#1|)) 63 T ELT)) (-3613 (((-1055 |#1|) (-1055 |#1|)) 45 T ELT)) (-3918 (((-1055 |#1|) (-1055 |#1|)) 34 T ELT)) (-3919 (((-1055 |#1|) (-1055 |#1|)) 29 T ELT)) (-3472 (((-1055 |#1|) (-1055 |#1|)) 64 T ELT)) (-3612 (((-1055 |#1|) (-1055 |#1|)) 46 T ELT)) (-3470 (((-1055 |#1|) (-1055 |#1|)) 61 T ELT)) (-3611 (((-1055 |#1|) (-1055 |#1|)) 43 T ELT)) (-3468 (((-1055 |#1|) (-1055 |#1|)) 58 T ELT)) (-3610 (((-1055 |#1|) (-1055 |#1|)) 40 T ELT)) (-3475 (((-1055 |#1|) (-1055 |#1|)) 68 T ELT)) (-3463 (((-1055 |#1|) (-1055 |#1|)) 50 T ELT)) (-3473 (((-1055 |#1|) (-1055 |#1|)) 66 T ELT)) (-3461 (((-1055 |#1|) (-1055 |#1|)) 48 T ELT)) (-3477 (((-1055 |#1|) (-1055 |#1|)) 71 T ELT)) (-3465 (((-1055 |#1|) (-1055 |#1|)) 53 T ELT)) (-3478 (((-1055 |#1|) (-1055 |#1|)) 72 T ELT)) (-3466 (((-1055 |#1|) (-1055 |#1|)) 54 T ELT)) (-3476 (((-1055 |#1|) (-1055 |#1|)) 70 T ELT)) (-3464 (((-1055 |#1|) (-1055 |#1|)) 52 T ELT)) (-3474 (((-1055 |#1|) (-1055 |#1|)) 69 T ELT)) (-3462 (((-1055 |#1|) (-1055 |#1|)) 51 T ELT)) (** (((-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) 36 T ELT))) -(((-1063 |#1|) (-10 -7 (-15 -3919 ((-1055 |#1|) (-1055 |#1|))) (-15 -3918 ((-1055 |#1|) (-1055 |#1|))) (-15 ** ((-1055 |#1|) (-1055 |#1|) (-1055 |#1|))) (-15 -3614 ((-1055 |#1|) (-1055 |#1|))) (-15 -3610 ((-1055 |#1|) (-1055 |#1|))) (-15 -3615 ((-1055 |#1|) (-1055 |#1|))) (-15 -3611 ((-1055 |#1|) (-1055 |#1|))) (-15 -3613 ((-1055 |#1|) (-1055 |#1|))) (-15 -3612 ((-1055 |#1|) (-1055 |#1|))) (-15 -3461 ((-1055 |#1|) (-1055 |#1|))) (-15 -3462 ((-1055 |#1|) (-1055 |#1|))) (-15 -3463 ((-1055 |#1|) (-1055 |#1|))) (-15 -3464 ((-1055 |#1|) (-1055 |#1|))) (-15 -3465 ((-1055 |#1|) (-1055 |#1|))) (-15 -3466 ((-1055 |#1|) (-1055 |#1|))) (-15 -3467 ((-1055 |#1|) (-1055 |#1|))) (-15 -3468 ((-1055 |#1|) (-1055 |#1|))) (-15 -3469 ((-1055 |#1|) (-1055 |#1|))) (-15 -3470 ((-1055 |#1|) (-1055 |#1|))) (-15 -3471 ((-1055 |#1|) (-1055 |#1|))) (-15 -3472 ((-1055 |#1|) (-1055 |#1|))) (-15 -3473 ((-1055 |#1|) (-1055 |#1|))) (-15 -3474 ((-1055 |#1|) (-1055 |#1|))) (-15 -3475 ((-1055 |#1|) (-1055 |#1|))) (-15 -3476 ((-1055 |#1|) (-1055 |#1|))) (-15 -3477 ((-1055 |#1|) (-1055 |#1|))) (-15 -3478 ((-1055 |#1|) (-1055 |#1|)))) (-38 (-343 (-478)))) (T -1063)) -((-3478 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3465 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3464 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3462 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3611 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3615 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3610 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) -((-3479 (((-862 |#2|) |#2| |#2|) 51 T ELT)) (-3480 ((|#2| |#2| |#1|) 19 (|has| |#1| (-254)) ELT))) -(((-1064 |#1| |#2|) (-10 -7 (-15 -3479 ((-862 |#2|) |#2| |#2|)) (IF (|has| |#1| (-254)) (-15 -3480 (|#2| |#2| |#1|)) |%noBranch|)) (-489) (-1140 |#1|)) (T -1064)) -((-3480 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-4 *3 (-489)) (-5 *1 (-1064 *3 *2)) (-4 *2 (-1140 *3)))) (-3479 (*1 *2 *3 *3) (-12 (-4 *4 (-489)) (-5 *2 (-862 *3)) (-5 *1 (-1064 *4 *3)) (-4 *3 (-1140 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3488 (($ $ (-578 (-687))) 79 T ELT)) (-3864 (($) 33 T ELT)) (-3497 (($ $) 51 T ELT)) (-3727 (((-578 $) $) 60 T ELT)) (-3503 (((-83) $) 19 T ELT)) (-3481 (((-578 (-847 |#2|)) $) 86 T ELT)) (-3482 (($ $) 80 T ELT)) (-3498 (((-687) $) 47 T ELT)) (-3590 (($) 32 T ELT)) (-3491 (($ $ (-578 (-687)) (-847 |#2|)) 72 T ELT) (($ $ (-578 (-687)) (-687)) 73 T ELT) (($ $ (-687) (-847 |#2|)) 75 T ELT)) (-3495 (($ $ $) 57 T ELT) (($ (-578 $)) 59 T ELT)) (-3483 (((-687) $) 87 T ELT)) (-3504 (((-83) $) 15 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3502 (((-83) $) 22 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3484 (((-143) $) 85 T ELT)) (-3487 (((-847 |#2|) $) 81 T ELT)) (-3486 (((-687) $) 82 T ELT)) (-3485 (((-83) $) 84 T ELT)) (-3489 (($ $ (-578 (-687)) (-143)) 78 T ELT)) (-3496 (($ $) 52 T ELT)) (-3922 (((-765) $) 99 T ELT)) (-3490 (($ $ (-578 (-687)) (-83)) 77 T ELT)) (-3499 (((-578 $) $) 11 T ELT)) (-3500 (($ $ (-687)) 46 T ELT)) (-3501 (($ $) 43 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3492 (($ $ $ (-847 |#2|) (-687)) 68 T ELT)) (-3493 (($ $ (-847 |#2|)) 67 T ELT)) (-3494 (($ $ (-578 (-687)) (-847 |#2|)) 66 T ELT) (($ $ (-578 (-687)) (-687)) 70 T ELT) (((-687) $ (-847 |#2|)) 71 T ELT)) (-3037 (((-83) $ $) 92 T ELT))) -(((-1065 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -3504 ((-83) $)) (-15 -3503 ((-83) $)) (-15 -3502 ((-83) $)) (-15 -3590 ($)) (-15 -3864 ($)) (-15 -3501 ($ $)) (-15 -3500 ($ $ (-687))) (-15 -3499 ((-578 $) $)) (-15 -3498 ((-687) $)) (-15 -3497 ($ $)) (-15 -3496 ($ $)) (-15 -3495 ($ $ $)) (-15 -3495 ($ (-578 $))) (-15 -3727 ((-578 $) $)) (-15 -3494 ($ $ (-578 (-687)) (-847 |#2|))) (-15 -3493 ($ $ (-847 |#2|))) (-15 -3492 ($ $ $ (-847 |#2|) (-687))) (-15 -3491 ($ $ (-578 (-687)) (-847 |#2|))) (-15 -3494 ($ $ (-578 (-687)) (-687))) (-15 -3491 ($ $ (-578 (-687)) (-687))) (-15 -3494 ((-687) $ (-847 |#2|))) (-15 -3491 ($ $ (-687) (-847 |#2|))) (-15 -3490 ($ $ (-578 (-687)) (-83))) (-15 -3489 ($ $ (-578 (-687)) (-143))) (-15 -3488 ($ $ (-578 (-687)))) (-15 -3487 ((-847 |#2|) $)) (-15 -3486 ((-687) $)) (-15 -3485 ((-83) $)) (-15 -3484 ((-143) $)) (-15 -3483 ((-687) $)) (-15 -3482 ($ $)) (-15 -3481 ((-578 (-847 |#2|)) $)))) (-823) (-954)) (T -1065)) -((-3504 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3590 (*1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3864 (*1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3501 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3500 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3499 (*1 *2 *1) (-12 (-5 *2 (-578 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3497 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3496 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3495 (*1 *1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-578 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3727 (*1 *2 *1) (-12 (-5 *2 (-578 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3494 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-823)))) (-3493 (*1 *1 *1 *2) (-12 (-5 *2 (-847 *4)) (-4 *4 (-954)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)))) (-3492 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-847 *5)) (-5 *3 (-687)) (-4 *5 (-954)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-823)))) (-3491 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-823)))) (-3494 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-687)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-823)) (-4 *5 (-954)))) (-3491 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-687)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-823)) (-4 *5 (-954)))) (-3494 (*1 *2 *1 *3) (-12 (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *2 (-687)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-823)))) (-3491 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-823)))) (-3490 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-83)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-823)) (-4 *5 (-954)))) (-3489 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-687))) (-5 *3 (-143)) (-5 *1 (-1065 *4 *5)) (-14 *4 (-823)) (-4 *5 (-954)))) (-3488 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3487 (*1 *2 *1) (-12 (-5 *2 (-847 *4)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954)))) (-3482 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-578 (-847 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3505 ((|#2| $) 11 T ELT)) (-3506 ((|#1| $) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3507 (($ |#1| |#2|) 9 T ELT)) (-3922 (((-765) $) 16 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1066 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -3507 ($ |#1| |#2|)) (-15 -3506 (|#1| $)) (-15 -3505 (|#2| $)))) (-1003) (-1003)) (T -1066)) -((-3507 (*1 *1 *2 *3) (-12 (-5 *1 (-1066 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3506 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1066 *2 *3)) (-4 *3 (-1003)))) (-3505 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1066 *3 *2)) (-4 *3 (-1003))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 (((-1074 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) 11 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2045 (($ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2043 (((-83) $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-3747 (($ $ (-478)) NIL T ELT) (($ $ (-478) (-478)) 75 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) NIL T ELT)) (-3707 (((-1074 |#1| |#2| |#3|) $) 42 T ELT)) (-3704 (((-3 (-1074 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3705 (((-1074 |#1| |#2| |#3|) $) 33 T ELT)) (-3469 (($ $) 116 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 92 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1#) $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-3751 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3467 (($ $) 112 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 88 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3599 (((-478) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-3794 (($ (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) NIL T ELT)) (-3471 (($ $) 120 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 96 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-1074 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1075) #1#) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-943 (-1075))) (|has| |#1| (-308))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT)) (-3137 (((-1074 |#1| |#2| |#3|) $) 140 T ELT) (((-1075) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-943 (-1075))) (|has| |#1| (-308))) ELT) (((-343 (-478)) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT) (((-478) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT)) (-3706 (($ $) 37 T ELT) (($ (-478) $) 38 T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-1074 |#1| |#2| |#3|)) (-625 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-1074 |#1| |#2| |#3|))) (|:| |vec| (-1164 (-1074 |#1| |#2| |#3|)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT)) (-3444 (((-3 $ #1#) $) 54 T ELT)) (-3703 (((-343 (-850 |#1|)) $ (-478)) 74 (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) 76 (|has| |#1| (-489)) ELT)) (-2975 (($) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3168 (((-83) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-2873 (((-83) $) 28 T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-789 (-323))) (|has| |#1| (-308))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-789 (-478))) (|has| |#1| (-308))) ELT)) (-3748 (((-478) $) NIL T ELT) (((-478) $ (-478)) 26 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2979 (((-1074 |#1| |#2| |#3|) $) 44 (|has| |#1| (-308)) ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3422 (((-627 $) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-308))) ELT)) (-3169 (((-83) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-3753 (($ $ (-823)) NIL T ELT)) (-3791 (($ (-1 |#1| (-478)) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-478)) 19 T ELT) (($ $ (-985) (-478)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-478))) NIL T ELT)) (-2511 (($ $ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2838 (($ $ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-308)) ELT)) (-3918 (($ $) 81 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2262 (((-625 (-1074 |#1| |#2| |#3|)) (-1164 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-1074 |#1| |#2| |#3|))) (|:| |vec| (-1164 (-1074 |#1| |#2| |#3|)))) (-1164 $) $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-1164 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3755 (($ (-478) (-1074 |#1| |#2| |#3|)) 36 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3788 (($ $) 79 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT) (($ $ (-1161 |#2|)) 80 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3423 (($) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-308))) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3109 (($ $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3111 (((-1074 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-478)) 158 T ELT)) (-3443 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (($ $) 82 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT) (($ $ (-1075) (-1074 |#1| |#2| |#3|)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-447 (-1075) (-1074 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1075)) (-578 (-1074 |#1| |#2| |#3|))) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-447 (-1075) (-1074 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-245 (-1074 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-256 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-245 (-1074 |#1| |#2| |#3|))) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-256 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-256 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1074 |#1| |#2| |#3|)) (-578 (-1074 |#1| |#2| |#3|))) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-256 (-1074 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-478)) NIL T ELT) (($ $ $) 61 (|has| (-478) (-1013)) ELT) (($ $ (-1074 |#1| |#2| |#3|)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-238 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1161 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2976 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2978 (((-1074 |#1| |#2| |#3|) $) 46 (|has| |#1| (-308)) ELT)) (-3924 (((-478) $) 43 T ELT)) (-3472 (($ $) 122 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 98 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 118 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 94 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 114 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 90 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3948 (((-467) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-548 (-467))) (|has| |#1| (-308))) ELT) (((-323) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-926)) (|has| |#1| (-308))) ELT) (((-177) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-926)) (|has| |#1| (-308))) ELT) (((-793 (-323)) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-548 (-793 (-323)))) (|has| |#1| (-308))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-548 (-793 (-478)))) (|has| |#1| (-308))) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-2872 (($ $) NIL T ELT)) (-3922 (((-765) $) 162 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1074 |#1| |#2| |#3|)) 30 T ELT) (($ (-1161 |#2|)) 25 T ELT) (($ (-1075)) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-943 (-1075))) (|has| |#1| (-308))) ELT) (($ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT) (($ (-343 (-478))) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) (|has| |#1| (-38 (-343 (-478))))) ELT)) (-3653 ((|#1| $ (-478)) 77 T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-116)) (|has| |#1| (-308))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-3749 ((|#1| $) 12 T ELT)) (-3112 (((-1074 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) 128 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 104 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-3473 (($ $) 124 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 100 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 132 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 108 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-478)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) 134 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 110 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 130 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 106 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 126 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 102 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3360 (($ $) NIL (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-2640 (($) 21 T CONST)) (-2647 (($) 16 T CONST)) (-2650 (($ $ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1161 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2546 (((-83) $ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2547 (((-83) $ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2666 (((-83) $ $) NIL (OR (-12 (|has| (-1074 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1074 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 49 (|has| |#1| (-308)) ELT) (($ (-1074 |#1| |#2| |#3|) (-1074 |#1| |#2| |#3|)) 50 (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 23 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 60 T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 137 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1074 |#1| |#2| |#3|)) 48 (|has| |#1| (-308)) ELT) (($ (-1074 |#1| |#2| |#3|) $) 47 (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1067 |#1| |#2| |#3|) (-13 (-1128 |#1| (-1074 |#1| |#2| |#3|)) (-799 $ (-1161 |#2|)) (-10 -8 (-15 -3922 ($ (-1161 |#2|))) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3788 ($ $ (-1161 |#2|))) |%noBranch|))) (-954) (-1075) |#1|) (T -1067)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) -((-3508 ((|#2| |#2| (-995 |#2|)) 26 T ELT) ((|#2| |#2| (-1075)) 28 T ELT))) -(((-1068 |#1| |#2|) (-10 -7 (-15 -3508 (|#2| |#2| (-1075))) (-15 -3508 (|#2| |#2| (-995 |#2|)))) (-13 (-489) (-943 (-478)) (-575 (-478))) (-13 (-357 |#1|) (-131) (-27) (-1100))) (T -1068)) -((-3508 (*1 *2 *2 *3) (-12 (-5 *3 (-995 *2)) (-4 *2 (-13 (-357 *4) (-131) (-27) (-1100))) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1068 *4 *2)))) (-3508 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1068 *4 *2)) (-4 *2 (-13 (-357 *4) (-131) (-27) (-1100)))))) -((-3508 (((-3 (-343 (-850 |#1|)) (-261 |#1|)) (-343 (-850 |#1|)) (-995 (-343 (-850 |#1|)))) 31 T ELT) (((-343 (-850 |#1|)) (-850 |#1|) (-995 (-850 |#1|))) 44 T ELT) (((-3 (-343 (-850 |#1|)) (-261 |#1|)) (-343 (-850 |#1|)) (-1075)) 33 T ELT) (((-343 (-850 |#1|)) (-850 |#1|) (-1075)) 36 T ELT))) -(((-1069 |#1|) (-10 -7 (-15 -3508 ((-343 (-850 |#1|)) (-850 |#1|) (-1075))) (-15 -3508 ((-3 (-343 (-850 |#1|)) (-261 |#1|)) (-343 (-850 |#1|)) (-1075))) (-15 -3508 ((-343 (-850 |#1|)) (-850 |#1|) (-995 (-850 |#1|)))) (-15 -3508 ((-3 (-343 (-850 |#1|)) (-261 |#1|)) (-343 (-850 |#1|)) (-995 (-343 (-850 |#1|)))))) (-13 (-489) (-943 (-478)))) (T -1069)) -((-3508 (*1 *2 *3 *4) (-12 (-5 *4 (-995 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-3 *3 (-261 *5))) (-5 *1 (-1069 *5)))) (-3508 (*1 *2 *3 *4) (-12 (-5 *4 (-995 (-850 *5))) (-5 *3 (-850 *5)) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 *3)) (-5 *1 (-1069 *5)))) (-3508 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-3 (-343 (-850 *5)) (-261 *5))) (-5 *1 (-1069 *5)) (-5 *3 (-343 (-850 *5))))) (-3508 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 (-850 *5))) (-5 *1 (-1069 *5)) (-5 *3 (-850 *5))))) -((-2548 (((-83) $ $) 172 T ELT)) (-3170 (((-83) $) 44 T ELT)) (-3743 (((-1164 |#1|) $ (-687)) NIL T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3741 (($ (-1070 |#1|)) NIL T ELT)) (-3065 (((-1070 $) $ (-985)) 83 T ELT) (((-1070 |#1|) $) 72 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) 166 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-985))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3731 (($ $ $) 160 (|has| |#1| (-489)) ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 97 (|has| |#1| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) 117 (|has| |#1| (-814)) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3737 (($ $ (-687)) 62 T ELT)) (-3736 (($ $ (-687)) 64 T ELT)) (-3727 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-385)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-985) #1#) $) NIL T ELT)) (-3137 ((|#1| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-985) $) NIL T ELT)) (-3732 (($ $ $ (-985)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) 162 (|has| |#1| (-144)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) 81 T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#1|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3735 (($ $ $) 133 T ELT)) (-3729 (($ $ $) NIL (|has| |#1| (-489)) ELT)) (-3728 (((-2 (|:| -3930 |#1|) (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-489)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3480 (($ $) 167 (|has| |#1| (-385)) ELT) (($ $ (-985)) NIL (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| (-687) $) 70 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-985) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-985) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3509 (((-765) $ (-765)) 150 T ELT)) (-3748 (((-687) $ $) NIL (|has| |#1| (-489)) ELT)) (-2392 (((-83) $) 49 T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| |#1| (-1052)) ELT)) (-3066 (($ (-1070 |#1|) (-985)) 74 T ELT) (($ (-1070 $) (-985)) 91 T ELT)) (-3753 (($ $ (-687)) 52 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-687)) 89 T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-985)) NIL T ELT) (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 155 T ELT)) (-2801 (((-687) $) NIL T ELT) (((-687) $ (-985)) NIL T ELT) (((-578 (-687)) $ (-578 (-985))) NIL T ELT)) (-1608 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3742 (((-1070 |#1|) $) NIL T ELT)) (-3064 (((-3 (-985) #1#) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) NIL T ELT) (((-625 |#1|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) 77 T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) NIL (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3738 (((-2 (|:| -1956 $) (|:| -2883 $)) $ (-687)) 61 T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-985)) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3788 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3423 (($) NIL (|has| |#1| (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) 51 T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 105 (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-385)) ELT) (($ $ $) 169 (|has| |#1| (-385)) ELT)) (-3714 (($ $ (-687) |#1| $) 125 T ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 103 (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 102 (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) 110 (|has| |#1| (-814)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3443 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-985) |#1|) NIL T ELT) (($ $ (-578 (-985)) (-578 |#1|)) NIL T ELT) (($ $ (-985) $) NIL T ELT) (($ $ (-578 (-985)) (-578 $)) NIL T ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-343 $) (-343 $) (-343 $)) NIL (|has| |#1| (-489)) ELT) ((|#1| (-343 $) |#1|) NIL (|has| |#1| (-308)) ELT) (((-343 $) $ (-343 $)) NIL (|has| |#1| (-489)) ELT)) (-3740 (((-3 $ #1#) $ (-687)) 55 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 173 (|has| |#1| (-308)) ELT)) (-3733 (($ $ (-985)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) 158 (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985))) NIL T ELT) (($ $ (-985)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-3924 (((-687) $) 79 T ELT) (((-687) $ (-985)) NIL T ELT) (((-578 (-687)) $ (-578 (-985))) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-985) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-985) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-985) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2798 ((|#1| $) 164 (|has| |#1| (-385)) ELT) (($ $ (-985)) NIL (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3730 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT) (((-3 (-343 $) #1#) (-343 $) $) NIL (|has| |#1| (-489)) ELT)) (-3922 (((-765) $) 151 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-985)) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-687)) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) 42 (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) 18 T CONST)) (-2647 (($) 20 T CONST)) (-2650 (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985))) NIL T ELT) (($ $ (-985)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#1| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) 122 T ELT)) (-3925 (($ $ |#1|) 174 (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 92 T ELT)) (** (($ $ (-823)) 14 T ELT) (($ $ (-687)) 12 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1070 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -3509 ((-765) $ (-765))) (-15 -3714 ($ $ (-687) |#1| $)))) (-954)) (T -1070)) -((-3509 (*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1070 *3)) (-4 *3 (-954)))) (-3714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1070 *3)) (-4 *3 (-954))))) -((-3934 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 13 T ELT))) -(((-1071 |#1| |#2|) (-10 -7 (-15 -3934 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)))) (-954) (-954)) (T -1071)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-5 *2 (-1070 *6)) (-5 *1 (-1071 *5 *6))))) -((-3947 (((-341 (-1070 (-343 |#4|))) (-1070 (-343 |#4|))) 51 T ELT)) (-3708 (((-341 (-1070 (-343 |#4|))) (-1070 (-343 |#4|))) 52 T ELT))) -(((-1072 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3708 ((-341 (-1070 (-343 |#4|))) (-1070 (-343 |#4|)))) (-15 -3947 ((-341 (-1070 (-343 |#4|))) (-1070 (-343 |#4|))))) (-710) (-749) (-385) (-854 |#3| |#1| |#2|)) (T -1072)) -((-3947 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-385)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-341 (-1070 (-343 *7)))) (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1070 (-343 *7))))) (-3708 (*1 *2 *3) (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-385)) (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-341 (-1070 (-343 *7)))) (-5 *1 (-1072 *4 *5 *6 *7)) (-5 *3 (-1070 (-343 *7)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) 11 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-343 (-478))) NIL T ELT) (($ $ (-343 (-478)) (-343 (-478))) NIL T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) NIL T ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-687) (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) NIL T ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-1067 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1074 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3137 (((-1067 |#1| |#2| |#3|) $) NIL T ELT) (((-1074 |#1| |#2| |#3|) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3757 (((-343 (-478)) $) 59 T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3758 (($ (-343 (-478)) (-1067 |#1| |#2| |#3|)) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2873 (((-83) $) NIL T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-343 (-478)) $) NIL T ELT) (((-343 (-478)) $ (-343 (-478))) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-343 (-478))) 20 T ELT) (($ $ (-985) (-343 (-478))) NIL T ELT) (($ $ (-578 (-985)) (-578 (-343 (-478)))) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3756 (((-1067 |#1| |#2| |#3|) $) 41 T ELT)) (-3754 (((-3 (-1067 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3755 (((-1067 |#1| |#2| |#3|) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3788 (($ $) 39 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT) (($ $ (-1161 |#2|)) 40 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-343 (-478))) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-343 (-478))) NIL T ELT) (($ $ $) NIL (|has| (-343 (-478)) (-1013)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1161 |#2|)) 38 T ELT)) (-3924 (((-343 (-478)) $) NIL T ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) NIL T ELT)) (-3922 (((-765) $) 62 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1067 |#1| |#2| |#3|)) 30 T ELT) (($ (-1074 |#1| |#2| |#3|)) 31 T ELT) (($ (-1161 |#2|)) 26 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-343 (-478))) NIL T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-3749 ((|#1| $) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-343 (-478))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 22 T CONST)) (-2647 (($) 16 T CONST)) (-2650 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1161 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 24 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1073 |#1| |#2| |#3|) (-13 (-1149 |#1| (-1067 |#1| |#2| |#3|)) (-799 $ (-1161 |#2|)) (-943 (-1074 |#1| |#2| |#3|)) (-550 (-1161 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3788 ($ $ (-1161 |#2|))) |%noBranch|))) (-954) (-1075) |#1|) (T -1073)) -((-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1073 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 129 T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) 119 T ELT)) (-3787 (((-1133 |#2| |#1|) $ (-687)) 69 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-687)) 85 T ELT) (($ $ (-687) (-687)) 82 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-687)) (|:| |c| |#1|))) $) 105 T ELT)) (-3469 (($ $) 173 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3467 (($ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-1055 (-2 (|:| |k| (-687)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1055 |#1|)) 113 T ELT)) (-3471 (($ $) 177 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) 25 T ELT)) (-3792 (($ $) 28 T ELT)) (-3790 (((-850 |#1|) $ (-687)) 81 T ELT) (((-850 |#1|) $ (-687) (-687)) 83 T ELT)) (-2873 (((-83) $) 124 T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-687) $) 126 T ELT) (((-687) $ (-687)) 128 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) NIL T ELT)) (-3791 (($ (-1 |#1| (-478)) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-687)) 13 T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3918 (($ $) 135 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3788 (($ $) 133 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT) (($ $ (-1161 |#2|)) 134 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3745 (($ $ (-687)) 15 T ELT)) (-3443 (((-3 $ #1#) $ $) 26 (|has| |#1| (-489)) ELT)) (-3919 (($ $) 137 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-687)))) ELT)) (-3776 ((|#1| $ (-687)) 122 T ELT) (($ $ $) 132 (|has| (-687) (-1013)) ELT)) (-3734 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-1161 |#2|)) 31 T ELT)) (-3924 (((-687) $) NIL T ELT)) (-3472 (($ $) 179 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 175 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) NIL T ELT)) (-3922 (((-765) $) 206 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) 130 (|has| |#1| (-144)) ELT) (($ (-1133 |#2| |#1|)) 55 T ELT) (($ (-1161 |#2|)) 36 T ELT)) (-3793 (((-1055 |#1|) $) 101 T ELT)) (-3653 ((|#1| $ (-687)) 121 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-3749 ((|#1| $) 58 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) 185 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) 181 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 189 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-687)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) 191 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 187 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 183 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 17 T CONST)) (-2647 (($) 20 T CONST)) (-2650 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-1161 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3815 (($ $ $) 35 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-308)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1074 |#1| |#2| |#3|) (-13 (-1157 |#1|) (-799 $ (-1161 |#2|)) (-10 -8 (-15 -3922 ($ (-1133 |#2| |#1|))) (-15 -3787 ((-1133 |#2| |#1|) $ (-687))) (-15 -3922 ($ (-1161 |#2|))) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3788 ($ $ (-1161 |#2|))) |%noBranch|))) (-954) (-1075) |#1|) (T -1074)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1133 *4 *3)) (-4 *3 (-954)) (-14 *4 (-1075)) (-14 *5 *3) (-5 *1 (-1074 *3 *4 *5)))) (-3787 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1133 *5 *4)) (-5 *1 (-1074 *4 *5 *6)) (-4 *4 (-954)) (-14 *5 (-1075)) (-14 *6 *4))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1074 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3513 (($ $ (-578 (-765))) 48 T ELT)) (-3514 (($ $ (-578 (-765))) 46 T ELT)) (-3511 (((-1059) $) 88 T ELT)) (-3516 (((-2 (|:| -2564 (-578 (-765))) (|:| -2463 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2562 (-578 (-765))) (|:| |args| (-578 (-765)))) $) 95 T ELT)) (-3517 (((-83) $) 86 T ELT)) (-3515 (($ $ (-578 (-578 (-765)))) 45 T ELT) (($ $ (-2 (|:| -2564 (-578 (-765))) (|:| -2463 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2562 (-578 (-765))) (|:| |args| (-578 (-765))))) 85 T ELT)) (-3700 (($) 151 T CONST)) (-3138 (((-3 (-439) "failed") $) 155 T ELT)) (-3137 (((-439) $) NIL T ELT)) (-3519 (((-1170)) 123 T ELT)) (-2777 (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 55 T ELT) (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 62 T ELT)) (-3590 (($) 109 T ELT) (($ $) 118 T ELT)) (-3518 (($ $) 87 T ELT)) (-2511 (($ $ $) NIL T ELT)) (-2838 (($ $ $) NIL T ELT)) (-3510 (((-578 $) $) 124 T ELT)) (-3222 (((-1059) $) 101 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3776 (($ $ (-578 (-765))) 47 T ELT)) (-3948 (((-467) $) 33 T ELT) (((-1075) $) 34 T ELT) (((-793 (-478)) $) 66 T ELT) (((-793 (-323)) $) 64 T ELT)) (-3922 (((-765) $) 41 T ELT) (($ (-1059)) 35 T ELT) (($ (-439)) 153 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3512 (($ $ (-578 (-765))) 49 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 37 T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) 38 T ELT))) -(((-1075) (-13 (-749) (-548 (-467)) (-548 (-1075)) (-550 (-1059)) (-943 (-439)) (-548 (-793 (-478))) (-548 (-793 (-323))) (-789 (-478)) (-789 (-323)) (-10 -8 (-15 -3590 ($)) (-15 -3590 ($ $)) (-15 -3519 ((-1170))) (-15 -3518 ($ $)) (-15 -3517 ((-83) $)) (-15 -3516 ((-2 (|:| -2564 (-578 (-765))) (|:| -2463 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2562 (-578 (-765))) (|:| |args| (-578 (-765)))) $)) (-15 -3515 ($ $ (-578 (-578 (-765))))) (-15 -3515 ($ $ (-2 (|:| -2564 (-578 (-765))) (|:| -2463 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2562 (-578 (-765))) (|:| |args| (-578 (-765)))))) (-15 -3514 ($ $ (-578 (-765)))) (-15 -3513 ($ $ (-578 (-765)))) (-15 -3512 ($ $ (-578 (-765)))) (-15 -3776 ($ $ (-578 (-765)))) (-15 -3511 ((-1059) $)) (-15 -3510 ((-578 $) $)) (-15 -3700 ($) -3928)))) (T -1075)) -((-3590 (*1 *1) (-5 *1 (-1075))) (-3590 (*1 *1 *1) (-5 *1 (-1075))) (-3519 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1075)))) (-3518 (*1 *1 *1) (-5 *1 (-1075))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1075)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2564 (-578 (-765))) (|:| -2463 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2562 (-578 (-765))) (|:| |args| (-578 (-765))))) (-5 *1 (-1075)))) (-3515 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 (-765)))) (-5 *1 (-1075)))) (-3515 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2564 (-578 (-765))) (|:| -2463 (-578 (-765))) (|:| |presup| (-578 (-765))) (|:| -2562 (-578 (-765))) (|:| |args| (-578 (-765))))) (-5 *1 (-1075)))) (-3514 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1075)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1075)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1075)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1075)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1075)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-1075)))) (-3700 (*1 *1) (-5 *1 (-1075)))) -((-3520 (((-1164 |#1|) |#1| (-823)) 18 T ELT) (((-1164 |#1|) (-578 |#1|)) 25 T ELT))) -(((-1076 |#1|) (-10 -7 (-15 -3520 ((-1164 |#1|) (-578 |#1|))) (-15 -3520 ((-1164 |#1|) |#1| (-823)))) (-954)) (T -1076)) -((-3520 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-5 *2 (-1164 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-954)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-954)) (-5 *2 (-1164 *4)) (-5 *1 (-1076 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3137 (((-478) $) NIL (|has| |#1| (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| |#1| (-943 (-343 (-478)))) ELT) ((|#1| $) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-385)) ELT)) (-1607 (($ $ |#1| (-877) $) NIL T ELT)) (-2392 (((-83) $) 18 T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-877)) NIL T ELT)) (-2801 (((-877) $) NIL T ELT)) (-1608 (($ (-1 (-877) (-877)) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#1| $) NIL T ELT)) (-3714 (($ $ (-877) |#1| $) NIL (-12 (|has| (-877) (-102)) (|has| |#1| (-489))) ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-489)) ELT)) (-3924 (((-877) $) NIL T ELT)) (-2798 ((|#1| $) NIL (|has| |#1| (-385)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-943 (-343 (-478))))) ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-877)) NIL T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2640 (($) 13 T CONST)) (-2647 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 22 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1077 |#1|) (-13 (-273 |#1| (-877)) (-10 -8 (IF (|has| |#1| (-489)) (IF (|has| (-877) (-102)) (-15 -3714 ($ $ (-877) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3969)) (-6 -3969) |%noBranch|))) (-954)) (T -1077)) -((-3714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-877)) (-4 *2 (-102)) (-5 *1 (-1077 *3)) (-4 *3 (-489)) (-4 *3 (-954))))) -((-3521 (((-1079) (-1075) $) 26 T ELT)) (-3531 (($) 30 T ELT)) (-3523 (((-3 (|:| |fst| (-370)) (|:| -3886 #1="void")) (-1075) $) 23 T ELT)) (-3525 (((-1170) (-1075) (-3 (|:| |fst| (-370)) (|:| -3886 #1#)) $) 42 T ELT) (((-1170) (-1075) (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) 43 T ELT) (((-1170) (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) 44 T ELT)) (-3533 (((-1170) (-1075)) 59 T ELT)) (-3524 (((-1170) (-1075) $) 56 T ELT) (((-1170) (-1075)) 57 T ELT) (((-1170)) 58 T ELT)) (-3529 (((-1170) (-1075)) 38 T ELT)) (-3527 (((-1075)) 37 T ELT)) (-3541 (($) 35 T ELT)) (-3540 (((-372) (-1075) (-372) (-1075) $) 46 T ELT) (((-372) (-578 (-1075)) (-372) (-1075) $) 50 T ELT) (((-372) (-1075) (-372)) 47 T ELT) (((-372) (-1075) (-372) (-1075)) 51 T ELT)) (-3528 (((-1075)) 36 T ELT)) (-3922 (((-765) $) 29 T ELT)) (-3530 (((-1170)) 31 T ELT) (((-1170) (-1075)) 34 T ELT)) (-3522 (((-578 (-1075)) (-1075) $) 25 T ELT)) (-3526 (((-1170) (-1075) (-578 (-1075)) $) 39 T ELT) (((-1170) (-1075) (-578 (-1075))) 40 T ELT) (((-1170) (-578 (-1075))) 41 T ELT))) -(((-1078) (-13 (-547 (-765)) (-10 -8 (-15 -3531 ($)) (-15 -3530 ((-1170))) (-15 -3530 ((-1170) (-1075))) (-15 -3540 ((-372) (-1075) (-372) (-1075) $)) (-15 -3540 ((-372) (-578 (-1075)) (-372) (-1075) $)) (-15 -3540 ((-372) (-1075) (-372))) (-15 -3540 ((-372) (-1075) (-372) (-1075))) (-15 -3529 ((-1170) (-1075))) (-15 -3528 ((-1075))) (-15 -3527 ((-1075))) (-15 -3526 ((-1170) (-1075) (-578 (-1075)) $)) (-15 -3526 ((-1170) (-1075) (-578 (-1075)))) (-15 -3526 ((-1170) (-578 (-1075)))) (-15 -3525 ((-1170) (-1075) (-3 (|:| |fst| (-370)) (|:| -3886 #1="void")) $)) (-15 -3525 ((-1170) (-1075) (-3 (|:| |fst| (-370)) (|:| -3886 #1#)))) (-15 -3525 ((-1170) (-3 (|:| |fst| (-370)) (|:| -3886 #1#)))) (-15 -3524 ((-1170) (-1075) $)) (-15 -3524 ((-1170) (-1075))) (-15 -3524 ((-1170))) (-15 -3533 ((-1170) (-1075))) (-15 -3541 ($)) (-15 -3523 ((-3 (|:| |fst| (-370)) (|:| -3886 #1#)) (-1075) $)) (-15 -3522 ((-578 (-1075)) (-1075) $)) (-15 -3521 ((-1079) (-1075) $))))) (T -1078)) -((-3531 (*1 *1) (-5 *1 (-1078))) (-3530 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3540 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-372)) (-5 *3 (-1075)) (-5 *1 (-1078)))) (-3540 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-372)) (-5 *3 (-578 (-1075))) (-5 *4 (-1075)) (-5 *1 (-1078)))) (-3540 (*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1075)) (-5 *1 (-1078)))) (-3540 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-372)) (-5 *3 (-1075)) (-5 *1 (-1078)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3528 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1078)))) (-3527 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1078)))) (-3526 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-578 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-578 (-1075))) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3525 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1075)) (-5 *4 (-3 (|:| |fst| (-370)) (|:| -3886 #1="void"))) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3525 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-5 *4 (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3525 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3524 (*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3524 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3524 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) (-3541 (*1 *1) (-5 *1 (-1078))) (-3523 (*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) (-5 *1 (-1078)))) (-3522 (*1 *2 *3 *1) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-1078)) (-5 *3 (-1075)))) (-3521 (*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-1079)) (-5 *1 (-1078))))) -((-3535 (((-578 (-578 (-3 (|:| -3518 (-1075)) (|:| -3206 (-578 (-3 (|:| S (-1075)) (|:| P (-850 (-478))))))))) $) 66 T ELT)) (-3537 (((-578 (-3 (|:| -3518 (-1075)) (|:| -3206 (-578 (-3 (|:| S (-1075)) (|:| P (-850 (-478)))))))) (-370) $) 47 T ELT)) (-3532 (($ (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| (-372))))) 17 T ELT)) (-3533 (((-1170) $) 73 T ELT)) (-3538 (((-578 (-1075)) $) 22 T ELT)) (-3534 (((-1005) $) 60 T ELT)) (-3539 (((-372) (-1075) $) 27 T ELT)) (-3536 (((-578 (-1075)) $) 30 T ELT)) (-3541 (($) 19 T ELT)) (-3540 (((-372) (-578 (-1075)) (-372) $) 25 T ELT) (((-372) (-1075) (-372) $) 24 T ELT)) (-3922 (((-765) $) 12 T ELT) (((-1087 (-1075) (-372)) $) 13 T ELT))) -(((-1079) (-13 (-547 (-765)) (-10 -8 (-15 -3922 ((-1087 (-1075) (-372)) $)) (-15 -3541 ($)) (-15 -3540 ((-372) (-578 (-1075)) (-372) $)) (-15 -3540 ((-372) (-1075) (-372) $)) (-15 -3539 ((-372) (-1075) $)) (-15 -3538 ((-578 (-1075)) $)) (-15 -3537 ((-578 (-3 (|:| -3518 (-1075)) (|:| -3206 (-578 (-3 (|:| S (-1075)) (|:| P (-850 (-478)))))))) (-370) $)) (-15 -3536 ((-578 (-1075)) $)) (-15 -3535 ((-578 (-578 (-3 (|:| -3518 (-1075)) (|:| -3206 (-578 (-3 (|:| S (-1075)) (|:| P (-850 (-478))))))))) $)) (-15 -3534 ((-1005) $)) (-15 -3533 ((-1170) $)) (-15 -3532 ($ (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| (-372))))))))) (T -1079)) -((-3922 (*1 *2 *1) (-12 (-5 *2 (-1087 (-1075) (-372))) (-5 *1 (-1079)))) (-3541 (*1 *1) (-5 *1 (-1079))) (-3540 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-372)) (-5 *3 (-578 (-1075))) (-5 *1 (-1079)))) (-3540 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-372)) (-5 *3 (-1075)) (-5 *1 (-1079)))) (-3539 (*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-372)) (-5 *1 (-1079)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-1079)))) (-3537 (*1 *2 *3 *1) (-12 (-5 *3 (-370)) (-5 *2 (-578 (-3 (|:| -3518 (-1075)) (|:| -3206 (-578 (-3 (|:| S (-1075)) (|:| P (-850 (-478))))))))) (-5 *1 (-1079)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-1079)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-3 (|:| -3518 (-1075)) (|:| -3206 (-578 (-3 (|:| S (-1075)) (|:| P (-850 (-478)))))))))) (-5 *1 (-1079)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-1079)))) (-3533 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1079)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| (-372))))) (-5 *1 (-1079))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3138 (((-3 (-478) #1="failed") $) 29 T ELT) (((-3 (-177) #1#) $) 35 T ELT) (((-3 (-439) #1#) $) 43 T ELT) (((-3 (-1059) #1#) $) 47 T ELT)) (-3137 (((-478) $) 30 T ELT) (((-177) $) 36 T ELT) (((-439) $) 40 T ELT) (((-1059) $) 48 T ELT)) (-3546 (((-83) $) 53 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3545 (((-3 (-478) (-177) (-439) (-1059) $) $) 56 T ELT)) (-3544 (((-578 $) $) 58 T ELT)) (-3948 (((-1005) $) 24 T ELT) (($ (-1005)) 25 T ELT)) (-3543 (((-83) $) 57 T ELT)) (-3922 (((-765) $) 23 T ELT) (($ (-478)) 26 T ELT) (($ (-177)) 32 T ELT) (($ (-439)) 38 T ELT) (($ (-1059)) 44 T ELT) (((-467) $) 60 T ELT) (((-478) $) 31 T ELT) (((-177) $) 37 T ELT) (((-439) $) 41 T ELT) (((-1059) $) 49 T ELT)) (-3542 (((-83) $ (|[\|\|]| (-478))) 10 T ELT) (((-83) $ (|[\|\|]| (-177))) 13 T ELT) (((-83) $ (|[\|\|]| (-439))) 19 T ELT) (((-83) $ (|[\|\|]| (-1059))) 16 T ELT)) (-3547 (($ (-439) (-578 $)) 51 T ELT) (($ $ (-578 $)) 52 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3548 (((-478) $) 27 T ELT) (((-177) $) 33 T ELT) (((-439) $) 39 T ELT) (((-1059) $) 45 T ELT)) (-3037 (((-83) $ $) 7 T ELT))) -(((-1080) (-13 (-1160) (-1003) (-943 (-478)) (-943 (-177)) (-943 (-439)) (-943 (-1059)) (-547 (-467)) (-10 -8 (-15 -3948 ((-1005) $)) (-15 -3948 ($ (-1005))) (-15 -3922 ((-478) $)) (-15 -3548 ((-478) $)) (-15 -3922 ((-177) $)) (-15 -3548 ((-177) $)) (-15 -3922 ((-439) $)) (-15 -3548 ((-439) $)) (-15 -3922 ((-1059) $)) (-15 -3548 ((-1059) $)) (-15 -3547 ($ (-439) (-578 $))) (-15 -3547 ($ $ (-578 $))) (-15 -3546 ((-83) $)) (-15 -3545 ((-3 (-478) (-177) (-439) (-1059) $) $)) (-15 -3544 ((-578 $) $)) (-15 -3543 ((-83) $)) (-15 -3542 ((-83) $ (|[\|\|]| (-478)))) (-15 -3542 ((-83) $ (|[\|\|]| (-177)))) (-15 -3542 ((-83) $ (|[\|\|]| (-439)))) (-15 -3542 ((-83) $ (|[\|\|]| (-1059))))))) (T -1080)) -((-3948 (*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-1080)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1005)) (-5 *1 (-1080)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1080)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1080)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1080)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1080)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1080)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1080)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1080)))) (-3548 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1080)))) (-3547 (*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-1080))) (-5 *1 (-1080)))) (-3547 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1080))) (-5 *1 (-1080)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1080)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-3 (-478) (-177) (-439) (-1059) (-1080))) (-5 *1 (-1080)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-578 (-1080))) (-5 *1 (-1080)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1080)))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-83)) (-5 *1 (-1080)))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-83)) (-5 *1 (-1080)))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)) (-5 *1 (-1080)))) (-3542 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-83)) (-5 *1 (-1080))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3117 (((-687)) 21 T ELT)) (-3700 (($) 10 T CONST)) (-2975 (($) 25 T ELT)) (-2511 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2838 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-1992 (((-823) $) 23 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) 22 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT))) -(((-1081 |#1|) (-13 (-745) (-10 -8 (-15 -3700 ($) -3928))) (-823)) (T -1081)) -((-3700 (*1 *1) (-12 (-5 *1 (-1081 *2)) (-14 *2 (-823))))) -((-478) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) 24 T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) 18 T CONST)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2838 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-3701 (($ $ $) 20 T ELT)) (-3702 (($ $ $) 19 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2293 (($ $ $) 22 T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) 21 T ELT))) -(((-1082 |#1|) (-13 (-745) (-599) (-10 -8 (-15 -3702 ($ $ $)) (-15 -3701 ($ $ $)) (-15 -3700 ($) -3928))) (-823)) (T -1082)) -((-3702 (*1 *1 *1 *1) (-12 (-5 *1 (-1082 *2)) (-14 *2 (-823)))) (-3701 (*1 *1 *1 *1) (-12 (-5 *1 (-1082 *2)) (-14 *2 (-823)))) (-3700 (*1 *1) (-12 (-5 *1 (-1082 *2)) (-14 *2 (-823))))) -((-687) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 9 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 7 T ELT))) -(((-1083) (-1003)) (T -1083)) -NIL -((-3550 (((-578 (-578 (-850 |#1|))) (-578 (-343 (-850 |#1|))) (-578 (-1075))) 69 T ELT)) (-3549 (((-578 (-245 (-343 (-850 |#1|)))) (-245 (-343 (-850 |#1|)))) 81 T ELT) (((-578 (-245 (-343 (-850 |#1|)))) (-343 (-850 |#1|))) 77 T ELT) (((-578 (-245 (-343 (-850 |#1|)))) (-245 (-343 (-850 |#1|))) (-1075)) 82 T ELT) (((-578 (-245 (-343 (-850 |#1|)))) (-343 (-850 |#1|)) (-1075)) 76 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-245 (-343 (-850 |#1|))))) 108 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-343 (-850 |#1|)))) 107 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-245 (-343 (-850 |#1|)))) (-578 (-1075))) 109 T ELT) (((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-343 (-850 |#1|))) (-578 (-1075))) 106 T ELT))) -(((-1084 |#1|) (-10 -7 (-15 -3549 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-343 (-850 |#1|))) (-578 (-1075)))) (-15 -3549 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-245 (-343 (-850 |#1|)))) (-578 (-1075)))) (-15 -3549 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-343 (-850 |#1|))))) (-15 -3549 ((-578 (-578 (-245 (-343 (-850 |#1|))))) (-578 (-245 (-343 (-850 |#1|)))))) (-15 -3549 ((-578 (-245 (-343 (-850 |#1|)))) (-343 (-850 |#1|)) (-1075))) (-15 -3549 ((-578 (-245 (-343 (-850 |#1|)))) (-245 (-343 (-850 |#1|))) (-1075))) (-15 -3549 ((-578 (-245 (-343 (-850 |#1|)))) (-343 (-850 |#1|)))) (-15 -3549 ((-578 (-245 (-343 (-850 |#1|)))) (-245 (-343 (-850 |#1|))))) (-15 -3550 ((-578 (-578 (-850 |#1|))) (-578 (-343 (-850 |#1|))) (-578 (-1075))))) (-489)) (T -1084)) -((-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1075))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-850 *5)))) (-5 *1 (-1084 *5)))) (-3549 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *4))))) (-5 *1 (-1084 *4)) (-5 *3 (-245 (-343 (-850 *4)))))) (-3549 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *4))))) (-5 *1 (-1084 *4)) (-5 *3 (-343 (-850 *4))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *5))))) (-5 *1 (-1084 *5)) (-5 *3 (-245 (-343 (-850 *5)))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-1075)) (-4 *5 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *5))))) (-5 *1 (-1084 *5)) (-5 *3 (-343 (-850 *5))))) (-3549 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-1084 *4)) (-5 *3 (-578 (-245 (-343 (-850 *4))))))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-578 (-343 (-850 *4)))) (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-1084 *4)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1075))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-1084 *5)) (-5 *3 (-578 (-245 (-343 (-850 *5))))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1075))) (-4 *5 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-1084 *5))))) -((-3555 (((-1059)) 7 T ELT)) (-3552 (((-1059)) 11 T CONST)) (-3551 (((-1170) (-1059)) 13 T ELT)) (-3554 (((-1059)) 8 T CONST)) (-3553 (((-101)) 10 T CONST))) -(((-1085) (-13 (-1114) (-10 -7 (-15 -3555 ((-1059))) (-15 -3554 ((-1059)) -3928) (-15 -3553 ((-101)) -3928) (-15 -3552 ((-1059)) -3928) (-15 -3551 ((-1170) (-1059)))))) (T -1085)) -((-3555 (*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1085)))) (-3554 (*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1085)))) (-3553 (*1 *2) (-12 (-5 *2 (-101)) (-5 *1 (-1085)))) (-3552 (*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1085)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1085))))) -((-3559 (((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|)))) 56 T ELT)) (-3562 (((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|))) 38 T ELT)) (-3563 (((-1088 (-578 |#1|)) (-578 |#1|)) 49 T ELT)) (-3565 (((-578 (-578 |#1|)) (-578 |#1|)) 45 T ELT)) (-3568 (((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|)))) 53 T ELT)) (-3567 (((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|)))) 52 T ELT)) (-3564 (((-578 (-578 |#1|)) (-578 (-578 |#1|))) 43 T ELT)) (-3566 (((-578 |#1|) (-578 |#1|)) 46 T ELT)) (-3558 (((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|)))) 32 T ELT)) (-3557 (((-578 (-578 (-578 |#1|))) (-1 (-83) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|)))) 29 T ELT)) (-3556 (((-2 (|:| |fs| (-83)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-83) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|))) 24 T ELT)) (-3560 (((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|)))) 58 T ELT)) (-3561 (((-578 (-578 |#1|)) (-1088 (-578 |#1|))) 60 T ELT))) -(((-1086 |#1|) (-10 -7 (-15 -3556 ((-2 (|:| |fs| (-83)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-83) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|)))) (-15 -3557 ((-578 (-578 (-578 |#1|))) (-1 (-83) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -3558 ((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -3559 ((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -3560 ((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -3561 ((-578 (-578 |#1|)) (-1088 (-578 |#1|)))) (-15 -3562 ((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)))) (-15 -3563 ((-1088 (-578 |#1|)) (-578 |#1|))) (-15 -3564 ((-578 (-578 |#1|)) (-578 (-578 |#1|)))) (-15 -3565 ((-578 (-578 |#1|)) (-578 |#1|))) (-15 -3566 ((-578 |#1|) (-578 |#1|))) (-15 -3567 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))))) (-15 -3568 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|)))))) (-749)) (T -1086)) -((-3568 (*1 *2 *3) (-12 (-4 *4 (-749)) (-5 *2 (-2 (|:| |f1| (-578 *4)) (|:| |f2| (-578 (-578 (-578 *4)))) (|:| |f3| (-578 (-578 *4))) (|:| |f4| (-578 (-578 (-578 *4)))))) (-5 *1 (-1086 *4)) (-5 *3 (-578 (-578 (-578 *4)))))) (-3567 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-749)) (-5 *3 (-578 *6)) (-5 *5 (-578 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-578 *5)) (|:| |f3| *5) (|:| |f4| (-578 *5)))) (-5 *1 (-1086 *6)) (-5 *4 (-578 *5)))) (-3566 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-1086 *3)))) (-3565 (*1 *2 *3) (-12 (-4 *4 (-749)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1086 *4)) (-5 *3 (-578 *4)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-749)) (-5 *1 (-1086 *3)))) (-3563 (*1 *2 *3) (-12 (-4 *4 (-749)) (-5 *2 (-1088 (-578 *4))) (-5 *1 (-1086 *4)) (-5 *3 (-578 *4)))) (-3562 (*1 *2 *3) (-12 (-4 *4 (-749)) (-5 *2 (-578 (-578 (-578 *4)))) (-5 *1 (-1086 *4)) (-5 *3 (-578 (-578 *4))))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-1088 (-578 *4))) (-4 *4 (-749)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1086 *4)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1086 *4)) (-4 *4 (-749)))) (-3559 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-4 *4 (-749)) (-5 *1 (-1086 *4)))) (-3558 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-578 *4)) (-4 *4 (-749)) (-5 *1 (-1086 *4)))) (-3557 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-578 *5)) (-4 *5 (-749)) (-5 *1 (-1086 *5)))) (-3556 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-83) *6 *6)) (-4 *6 (-749)) (-5 *4 (-578 *6)) (-5 *2 (-2 (|:| |fs| (-83)) (|:| |sd| *4) (|:| |td| (-578 *4)))) (-5 *1 (-1086 *6)) (-5 *5 (-578 *4))))) -((-2548 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3575 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2180 (((-1170) $ |#1| |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) NIL T ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2182 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2183 ((|#1| $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3972)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-2214 (((-578 |#1|) $) NIL T ELT)) (-2215 (((-83) |#1| $) NIL T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2185 (((-578 |#1|) $) NIL T ELT)) (-2186 (((-83) |#1| $) NIL T ELT)) (-3223 (((-1020) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ELT)) (-3777 ((|#2| $) NIL (|has| |#1| (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2181 (($ $ |#2|) NIL (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1449 (($) NIL T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3971)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (((-687) |#2| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT) (((-687) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3922 (((-765) $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-547 (-765)))) ELT)) (-1249 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-1087 |#1| |#2|) (-13 (-1092 |#1| |#2|) (-10 -7 (-6 -3971))) (-1003) (-1003)) (T -1087)) -NIL -((-3569 (($ (-578 (-578 |#1|))) 10 T ELT)) (-3570 (((-578 (-578 |#1|)) $) 11 T ELT)) (-3922 (((-765) $) 33 T ELT))) -(((-1088 |#1|) (-10 -8 (-15 -3569 ($ (-578 (-578 |#1|)))) (-15 -3570 ((-578 (-578 |#1|)) $)) (-15 -3922 ((-765) $))) (-1003)) (T -1088)) -((-3922 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1088 *3)) (-4 *3 (-1003)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 *3))) (-5 *1 (-1088 *3)) (-4 *3 (-1003)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-5 *1 (-1088 *3))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3571 (($ |#1| (-55)) 11 T ELT)) (-3518 ((|#1| $) 13 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2613 (((-83) $ |#1|) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2501 (((-55) $) 15 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1089 |#1|) (-13 (-740 |#1|) (-10 -8 (-15 -3571 ($ |#1| (-55))))) (-1003)) (T -1089)) -((-3571 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1089 *2)) (-4 *2 (-1003))))) -((-3572 ((|#1| (-578 |#1|)) 46 T ELT)) (-3574 ((|#1| |#1| (-478)) 24 T ELT)) (-3573 (((-1070 |#1|) |#1| (-823)) 20 T ELT))) -(((-1090 |#1|) (-10 -7 (-15 -3572 (|#1| (-578 |#1|))) (-15 -3573 ((-1070 |#1|) |#1| (-823))) (-15 -3574 (|#1| |#1| (-478)))) (-308)) (T -1090)) -((-3574 (*1 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-1090 *2)) (-4 *2 (-308)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-823)) (-5 *2 (-1070 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-308)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-1090 *2)) (-4 *2 (-308))))) -((-3575 (($) 10 T ELT) (($ (-578 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3382 (($ (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2870 (((-578 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-578 |#3|) $) 41 T ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1258 (((-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3585 (($ (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2185 (((-578 |#2|) $) 19 T ELT)) (-2186 (((-83) |#2| $) 65 T ELT)) (-1337 (((-3 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1259 (((-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-83) (-1 (-83) |#3|) $) 73 T ELT)) (-2187 (((-578 |#3|) $) 43 T ELT)) (-3776 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-687) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-687) |#3| $) NIL T ELT) (((-687) (-1 (-83) |#3|) $) 79 T ELT)) (-3922 (((-765) $) 27 T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-83) (-1 (-83) |#3|) $) 71 T ELT)) (-3037 (((-83) $ $) 51 T ELT))) -(((-1091 |#1| |#2| |#3|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3922 ((-765) |#1|)) (-15 -3934 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3575 (|#1| (-578 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))))) (-15 -3575 (|#1|)) (-15 -3934 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1932 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1931 ((-83) (-1 (-83) |#3|) |#1|)) (-15 -1930 ((-83) (-1 (-83) |#3|) |#1|)) (-15 -1929 ((-687) (-1 (-83) |#3|) |#1|)) (-15 -2870 ((-578 |#3|) |#1|)) (-15 -1929 ((-687) |#3| |#1|)) (-15 -3776 (|#3| |#1| |#2| |#3|)) (-15 -3776 (|#3| |#1| |#2|)) (-15 -2187 ((-578 |#3|) |#1|)) (-15 -2186 ((-83) |#2| |#1|)) (-15 -2185 ((-578 |#2|) |#1|)) (-15 -3382 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3382 (|#1| (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3382 (|#1| (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1337 ((-3 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1258 ((-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3585 (|#1| (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1259 ((-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1929 ((-687) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2870 ((-578 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1929 ((-687) (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1930 ((-83) (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1931 ((-83) (-1 (-83) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1932 (|#1| (-1 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3934 (|#1| (-1 (-2 (|:| -3836 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3836 |#2|) (|:| |entry| |#3|))) |#1|))) (-1092 |#2| |#3|) (-1003) (-1003)) (T -1091)) -NIL -((-2548 (((-83) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3575 (($) 77 T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2180 (((-1170) $ |#1| |#1|) 104 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1553 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3971)) ELT)) (-3686 (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3971)) ELT)) (-2213 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3700 (($) 7 T CONST)) (-1336 (($ $) 62 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT)) (-3382 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3971)) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3971)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3383 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3971)) ELT)) (-3818 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3971)) ELT) (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3971)) ELT)) (-1559 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#2| $ |#1|) 93 T ELT)) (-2870 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) 84 (|has| $ (-6 -3971)) ELT)) (-2182 ((|#1| $) 101 (|has| |#1| (-749)) ELT)) (-2588 (((-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3971)) ELT) (((-578 |#2|) $) 85 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (((-83) |#2| $) 87 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 ((|#1| $) 100 (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3972)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3222 (((-1059) $) 22 (OR (|has| |#2| (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-2214 (((-578 |#1|) $) 67 T ELT)) (-2215 (((-83) |#1| $) 68 T ELT)) (-1258 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3585 (($ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2185 (((-578 |#1|) $) 98 T ELT)) (-2186 (((-83) |#1| $) 97 T ELT)) (-3223 (((-1020) $) 21 (OR (|has| |#2| (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT)) (-3777 ((|#2| $) 102 (|has| |#1| (-749)) ELT)) (-1337 (((-3 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2181 (($ $ |#2|) 103 (|has| $ (-6 -3972)) ELT)) (-1259 (((-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1930 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) 82 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-245 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 91 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-245 |#2|)) 89 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT) (($ $ (-578 (-245 |#2|))) 88 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#2| $) 99 (-12 (|has| $ (-6 -3971)) (|has| |#2| (-1003))) ELT)) (-2187 (((-578 |#2|) $) 96 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1449 (($) 53 T ELT) (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1929 (((-687) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) |#2| $) 86 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#2|) $) 83 (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 63 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ELT)) (-3507 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3922 (((-765) $) 17 (OR (|has| |#2| (-547 (-765))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765)))) ELT)) (-1249 (((-83) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1260 (($ (-578 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1931 (((-83) (-1 (-83) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3971)) ELT) (((-83) (-1 (-83) |#2|) $) 81 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-1092 |#1| |#2|) (-111) (-1003) (-1003)) (T -1092)) -((-3764 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1092 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3575 (*1 *1) (-12 (-4 *1 (-1092 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3836 *3) (|:| |entry| *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1092 *3 *4)))) (-3934 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1092 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) -(-13 (-544 |t#1| |t#2|) (-533 |t#1| |t#2|) (-10 -8 (-15 -3764 (|t#2| $ |t#1| |t#2|)) (-15 -3575 ($)) (-15 -3575 ($ (-578 (-2 (|:| -3836 |t#1|) (|:| |entry| |t#2|))))) (-15 -3934 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-76 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1003)) (|has| |#2| (-72))) ((-547 (-765)) OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-547 (-765))) (|has| |#2| (-1003)) (|has| |#2| (-547 (-765)))) ((-122 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-548 (-467)) |has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-548 (-467))) ((-181 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-190 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-238 |#1| |#2|) . T) ((-240 |#1| |#2|) . T) ((-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-422 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) . T) ((-422 |#2|) . T) ((-533 |#1| |#2|) . T) ((-447 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3836 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003))) ((-447 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1003))) ((-544 |#1| |#2|) . T) ((-1003) OR (|has| (-2 (|:| -3836 |#1|) (|:| |entry| |#2|)) (-1003)) (|has| |#2| (-1003))) ((-1114) . T)) -((-3581 (((-83)) 29 T ELT)) (-3578 (((-1170) (-1059)) 31 T ELT)) (-3582 (((-83)) 41 T ELT)) (-3579 (((-1170)) 39 T ELT)) (-3577 (((-1170) (-1059) (-1059)) 30 T ELT)) (-3583 (((-83)) 42 T ELT)) (-3585 (((-1170) |#1| |#2|) 53 T ELT)) (-3576 (((-1170)) 26 T ELT)) (-3584 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3580 (((-1170)) 40 T ELT))) -(((-1093 |#1| |#2|) (-10 -7 (-15 -3576 ((-1170))) (-15 -3577 ((-1170) (-1059) (-1059))) (-15 -3578 ((-1170) (-1059))) (-15 -3579 ((-1170))) (-15 -3580 ((-1170))) (-15 -3581 ((-83))) (-15 -3582 ((-83))) (-15 -3583 ((-83))) (-15 -3584 ((-3 |#2| "failed") |#1|)) (-15 -3585 ((-1170) |#1| |#2|))) (-1003) (-1003)) (T -1093)) -((-3585 (*1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3584 (*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1093 *3 *2)) (-4 *3 (-1003)))) (-3583 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3582 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3581 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3580 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3579 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1093 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-3577 (*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1093 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-3576 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3591 (((-578 (-1059)) $) 37 T ELT)) (-3587 (((-578 (-1059)) $ (-578 (-1059))) 40 T ELT)) (-3586 (((-578 (-1059)) $ (-578 (-1059))) 39 T ELT)) (-3588 (((-578 (-1059)) $ (-578 (-1059))) 41 T ELT)) (-3589 (((-578 (-1059)) $) 36 T ELT)) (-3590 (($) 26 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3592 (((-578 (-1059)) $) 38 T ELT)) (-3593 (((-1170) $ (-478)) 33 T ELT) (((-1170) $) 34 T ELT)) (-3948 (($ (-765) (-478)) 31 T ELT) (($ (-765) (-478) (-765)) NIL T ELT)) (-3922 (((-765) $) 47 T ELT) (($ (-765)) 30 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1094) (-13 (-1003) (-550 (-765)) (-10 -8 (-15 -3948 ($ (-765) (-478))) (-15 -3948 ($ (-765) (-478) (-765))) (-15 -3593 ((-1170) $ (-478))) (-15 -3593 ((-1170) $)) (-15 -3592 ((-578 (-1059)) $)) (-15 -3591 ((-578 (-1059)) $)) (-15 -3590 ($)) (-15 -3589 ((-578 (-1059)) $)) (-15 -3588 ((-578 (-1059)) $ (-578 (-1059)))) (-15 -3587 ((-578 (-1059)) $ (-578 (-1059)))) (-15 -3586 ((-578 (-1059)) $ (-578 (-1059))))))) (T -1094)) -((-3948 (*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-478)) (-5 *1 (-1094)))) (-3948 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-765)) (-5 *3 (-478)) (-5 *1 (-1094)))) (-3593 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-1094)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1094)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094)))) (-3590 (*1 *1) (-5 *1 (-1094))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094)))) (-3588 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094)))) (-3587 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094)))) (-3586 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094))))) -((-3922 (((-1094) |#1|) 11 T ELT))) -(((-1095 |#1|) (-10 -7 (-15 -3922 ((-1094) |#1|))) (-1003)) (T -1095)) -((-3922 (*1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *1 (-1095 *3)) (-4 *3 (-1003))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3598 (((-1059) $ (-1059)) 21 T ELT) (((-1059) $) 20 T ELT)) (-1680 (((-1059) $ (-1059)) 19 T ELT)) (-1684 (($ $ (-1059)) NIL T ELT)) (-3596 (((-3 (-1059) #1="failed") $) 11 T ELT)) (-3597 (((-1059) $) 8 T ELT)) (-3595 (((-3 (-1059) #1#) $) 12 T ELT)) (-1681 (((-1059) $) 9 T ELT)) (-1685 (($ (-331)) NIL T ELT) (($ (-331) (-1059)) NIL T ELT)) (-3518 (((-331) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-1682 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3594 (((-83) $) 25 T ELT)) (-3922 (((-765) $) NIL T ELT)) (-1683 (($ $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1096) (-13 (-310 (-331) (-1059)) (-10 -8 (-15 -3598 ((-1059) $ (-1059))) (-15 -3598 ((-1059) $)) (-15 -3597 ((-1059) $)) (-15 -3596 ((-3 (-1059) #1="failed") $)) (-15 -3595 ((-3 (-1059) #1#) $)) (-15 -3594 ((-83) $))))) (T -1096)) -((-3598 (*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1096)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1096)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1096)))) (-3596 (*1 *2 *1) (|partial| -12 (-5 *2 (-1059)) (-5 *1 (-1096)))) (-3595 (*1 *2 *1) (|partial| -12 (-5 *2 (-1059)) (-5 *1 (-1096)))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1096))))) -((-3599 (((-3 (-478) #1="failed") |#1|) 19 T ELT)) (-3600 (((-3 (-478) #1#) |#1|) 14 T ELT)) (-3601 (((-478) (-1059)) 33 T ELT))) -(((-1097 |#1|) (-10 -7 (-15 -3599 ((-3 (-478) #1="failed") |#1|)) (-15 -3600 ((-3 (-478) #1#) |#1|)) (-15 -3601 ((-478) (-1059)))) (-954)) (T -1097)) -((-3601 (*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-478)) (-5 *1 (-1097 *4)) (-4 *4 (-954)))) (-3600 (*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-1097 *3)) (-4 *3 (-954)))) (-3599 (*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-1097 *3)) (-4 *3 (-954))))) -((-3602 (((-1033 (-177))) 9 T ELT))) -(((-1098) (-10 -7 (-15 -3602 ((-1033 (-177)))))) (T -1098)) -((-3602 (*1 *2) (-12 (-5 *2 (-1033 (-177))) (-5 *1 (-1098))))) -((-3603 (($) 12 T ELT)) (-3475 (($ $) 36 T ELT)) (-3473 (($ $) 34 T ELT)) (-3461 (($ $) 26 T ELT)) (-3477 (($ $) 18 T ELT)) (-3478 (($ $) 16 T ELT)) (-3476 (($ $) 20 T ELT)) (-3464 (($ $) 31 T ELT)) (-3474 (($ $) 35 T ELT)) (-3462 (($ $) 30 T ELT))) -(((-1099 |#1|) (-10 -7 (-15 -3603 (|#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3464 (|#1| |#1|)) (-15 -3462 (|#1| |#1|))) (-1100)) (T -1099)) -NIL -((-3469 (($ $) 26 T ELT)) (-3615 (($ $) 11 T ELT)) (-3467 (($ $) 27 T ELT)) (-3614 (($ $) 10 T ELT)) (-3471 (($ $) 28 T ELT)) (-3613 (($ $) 9 T ELT)) (-3603 (($) 16 T ELT)) (-3918 (($ $) 19 T ELT)) (-3919 (($ $) 18 T ELT)) (-3472 (($ $) 29 T ELT)) (-3612 (($ $) 8 T ELT)) (-3470 (($ $) 30 T ELT)) (-3611 (($ $) 7 T ELT)) (-3468 (($ $) 31 T ELT)) (-3610 (($ $) 6 T ELT)) (-3475 (($ $) 20 T ELT)) (-3463 (($ $) 32 T ELT)) (-3473 (($ $) 21 T ELT)) (-3461 (($ $) 33 T ELT)) (-3477 (($ $) 22 T ELT)) (-3465 (($ $) 34 T ELT)) (-3478 (($ $) 23 T ELT)) (-3466 (($ $) 35 T ELT)) (-3476 (($ $) 24 T ELT)) (-3464 (($ $) 36 T ELT)) (-3474 (($ $) 25 T ELT)) (-3462 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1100) (-111)) (T -1100)) -((-3603 (*1 *1) (-4 *1 (-1100)))) -(-13 (-1103) (-66) (-426) (-35) (-236) (-10 -8 (-15 -3603 ($)))) -(((-35) . T) ((-66) . T) ((-236) . T) ((-426) . T) ((-1103) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 19 T ELT)) (-3608 (($ |#1| (-578 $)) 28 T ELT) (($ (-578 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3006 ((|#1| $ |#1|) 14 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 13 (|has| $ (-6 -3972)) ELT)) (-3700 (($) NIL T CONST)) (-2870 (((-578 |#1|) $) 70 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 59 T ELT)) (-3008 (((-83) $ $) 50 (|has| |#1| (-1003)) ELT)) (-2588 (((-578 |#1|) $) 71 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 69 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3011 (((-578 |#1|) $) 55 T ELT)) (-3504 (((-83) $) 53 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 67 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 102 T ELT)) (-3380 (((-83) $) 9 T ELT)) (-3541 (($) 10 T ELT)) (-3776 ((|#1| $ #1#) NIL T ELT)) (-3010 (((-478) $ $) 48 T ELT)) (-3604 (((-578 $) $) 84 T ELT)) (-3605 (((-83) $ $) 105 T ELT)) (-3606 (((-578 $) $) 100 T ELT)) (-3607 (($ $) 101 T ELT)) (-3609 (((-83) $) 77 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 25 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 17 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3377 (($ $) 83 T ELT)) (-3922 (((-765) $) 86 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) 12 T ELT)) (-3009 (((-83) $ $) 39 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 66 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 37 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 81 (|has| $ (-6 -3971)) ELT))) -(((-1101 |#1|) (-13 (-916 |#1|) (-10 -8 (-6 -3971) (-6 -3972) (-15 -3608 ($ |#1| (-578 $))) (-15 -3608 ($ (-578 |#1|))) (-15 -3608 ($ |#1|)) (-15 -3609 ((-83) $)) (-15 -3607 ($ $)) (-15 -3606 ((-578 $) $)) (-15 -3605 ((-83) $ $)) (-15 -3604 ((-578 $) $)))) (-1003)) (T -1101)) -((-3609 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1101 *3)) (-4 *3 (-1003)))) (-3608 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1101 *2))) (-5 *1 (-1101 *2)) (-4 *2 (-1003)))) (-3608 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-1101 *3)))) (-3608 (*1 *1 *2) (-12 (-5 *1 (-1101 *2)) (-4 *2 (-1003)))) (-3607 (*1 *1 *1) (-12 (-5 *1 (-1101 *2)) (-4 *2 (-1003)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-578 (-1101 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1003)))) (-3605 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1101 *3)) (-4 *3 (-1003)))) (-3604 (*1 *2 *1) (-12 (-5 *2 (-578 (-1101 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1003))))) -((-3615 (($ $) 15 T ELT)) (-3613 (($ $) 12 T ELT)) (-3612 (($ $) 10 T ELT)) (-3611 (($ $) 17 T ELT))) -(((-1102 |#1|) (-10 -7 (-15 -3611 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -3615 (|#1| |#1|))) (-1103)) (T -1102)) -NIL -((-3615 (($ $) 11 T ELT)) (-3614 (($ $) 10 T ELT)) (-3613 (($ $) 9 T ELT)) (-3612 (($ $) 8 T ELT)) (-3611 (($ $) 7 T ELT)) (-3610 (($ $) 6 T ELT))) -(((-1103) (-111)) (T -1103)) -((-3615 (*1 *1 *1) (-4 *1 (-1103))) (-3614 (*1 *1 *1) (-4 *1 (-1103))) (-3613 (*1 *1 *1) (-4 *1 (-1103))) (-3612 (*1 *1 *1) (-4 *1 (-1103))) (-3611 (*1 *1 *1) (-4 *1 (-1103))) (-3610 (*1 *1 *1) (-4 *1 (-1103)))) -(-13 (-10 -8 (-15 -3610 ($ $)) (-15 -3611 ($ $)) (-15 -3612 ($ $)) (-15 -3613 ($ $)) (-15 -3614 ($ $)) (-15 -3615 ($ $)))) -((-3618 ((|#2| |#2|) 95 T ELT)) (-3621 (((-83) |#2|) 29 T ELT)) (-3619 ((|#2| |#2|) 33 T ELT)) (-3620 ((|#2| |#2|) 35 T ELT)) (-3616 ((|#2| |#2| (-1075)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3622 (((-140 |#2|) |#2|) 31 T ELT)) (-3617 ((|#2| |#2| (-1075)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1104 |#1| |#2|) (-10 -7 (-15 -3616 (|#2| |#2|)) (-15 -3616 (|#2| |#2| (-1075))) (-15 -3617 (|#2| |#2|)) (-15 -3617 (|#2| |#2| (-1075))) (-15 -3618 (|#2| |#2|)) (-15 -3619 (|#2| |#2|)) (-15 -3620 (|#2| |#2|)) (-15 -3621 ((-83) |#2|)) (-15 -3622 ((-140 |#2|) |#2|))) (-13 (-385) (-943 (-478)) (-575 (-478))) (-13 (-27) (-1100) (-357 |#1|))) (T -1104)) -((-3622 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-140 *3)) (-5 *1 (-1104 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) (-3621 (*1 *2 *3) (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-83)) (-5 *1 (-1104 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *3))))) (-3619 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *3))))) (-3618 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *3))))) (-3617 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4))))) (-3617 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *3))))) (-3616 (*1 *2 *2 *3) (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4))))) (-3616 (*1 *2 *2) (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *3)))))) -((-3623 ((|#4| |#4| |#1|) 31 T ELT)) (-3624 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1105 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3623 (|#4| |#4| |#1|)) (-15 -3624 (|#4| |#4| |#1|))) (-489) (-317 |#1|) (-317 |#1|) (-622 |#1| |#2| |#3|)) (T -1105)) -((-3624 (*1 *2 *2 *3) (-12 (-4 *3 (-489)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-1105 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) (-3623 (*1 *2 *2 *3) (-12 (-4 *3 (-489)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) (-5 *1 (-1105 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) -((-3642 ((|#2| |#2|) 148 T ELT)) (-3644 ((|#2| |#2|) 145 T ELT)) (-3641 ((|#2| |#2|) 136 T ELT)) (-3643 ((|#2| |#2|) 133 T ELT)) (-3640 ((|#2| |#2|) 141 T ELT)) (-3639 ((|#2| |#2|) 129 T ELT)) (-3628 ((|#2| |#2|) 44 T ELT)) (-3627 ((|#2| |#2|) 105 T ELT)) (-3625 ((|#2| |#2|) 88 T ELT)) (-3638 ((|#2| |#2|) 143 T ELT)) (-3637 ((|#2| |#2|) 131 T ELT)) (-3650 ((|#2| |#2|) 153 T ELT)) (-3648 ((|#2| |#2|) 151 T ELT)) (-3649 ((|#2| |#2|) 152 T ELT)) (-3647 ((|#2| |#2|) 150 T ELT)) (-3626 ((|#2| |#2|) 163 T ELT)) (-3651 ((|#2| |#2|) 30 (-12 (|has| |#2| (-548 (-793 |#1|))) (|has| |#2| (-789 |#1|)) (|has| |#1| (-548 (-793 |#1|))) (|has| |#1| (-789 |#1|))) ELT)) (-3629 ((|#2| |#2|) 89 T ELT)) (-3630 ((|#2| |#2|) 154 T ELT)) (-3939 ((|#2| |#2|) 155 T ELT)) (-3636 ((|#2| |#2|) 142 T ELT)) (-3635 ((|#2| |#2|) 130 T ELT)) (-3634 ((|#2| |#2|) 149 T ELT)) (-3646 ((|#2| |#2|) 147 T ELT)) (-3633 ((|#2| |#2|) 137 T ELT)) (-3645 ((|#2| |#2|) 135 T ELT)) (-3632 ((|#2| |#2|) 139 T ELT)) (-3631 ((|#2| |#2|) 127 T ELT))) -(((-1106 |#1| |#2|) (-10 -7 (-15 -3939 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3628 (|#2| |#2|)) (-15 -3629 (|#2| |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (IF (|has| |#1| (-789 |#1|)) (IF (|has| |#1| (-548 (-793 |#1|))) (IF (|has| |#2| (-548 (-793 |#1|))) (IF (|has| |#2| (-789 |#1|)) (-15 -3651 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-385) (-13 (-357 |#1|) (-1100))) (T -1106)) -((-3651 (*1 *2 *2) (-12 (-4 *3 (-548 (-793 *3))) (-4 *3 (-789 *3)) (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-548 (-793 *3))) (-4 *2 (-789 *3)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3629 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3628 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-1075)) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3790 (((-850 |#1|) $ (-687)) 18 T ELT) (((-850 |#1|) $ (-687) (-687)) NIL T ELT)) (-2873 (((-83) $) NIL T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-687) $ (-1075)) NIL T ELT) (((-687) $ (-1075) (-687)) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ $ (-578 (-1075)) (-578 (-463 (-1075)))) NIL T ELT) (($ $ (-1075) (-463 (-1075))) NIL T ELT) (($ |#1| (-463 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3788 (($ $ (-1075)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075) |#1|) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3652 (($ (-1 $) (-1075) |#1|) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3745 (($ $ (-687)) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (($ $ (-1075) $) NIL T ELT) (($ $ (-578 (-1075)) (-578 $)) NIL T ELT) (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT)) (-3734 (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) NIL T ELT)) (-3924 (((-463 (-1075)) $) NIL T ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-1075)) NIL T ELT) (($ (-850 |#1|)) NIL T ELT)) (-3653 ((|#1| $ (-463 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (((-850 |#1|) $ (-687)) NIL T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-2650 (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1107 |#1|) (-13 (-672 |#1| (-1075)) (-10 -8 (-15 -3653 ((-850 |#1|) $ (-687))) (-15 -3922 ($ (-1075))) (-15 -3922 ($ (-850 |#1|))) (IF (|has| |#1| (-38 (-343 (-478)))) (PROGN (-15 -3788 ($ $ (-1075) |#1|)) (-15 -3652 ($ (-1 $) (-1075) |#1|))) |%noBranch|))) (-954)) (T -1107)) -((-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-850 *4)) (-5 *1 (-1107 *4)) (-4 *4 (-954)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1107 *3)) (-4 *3 (-954)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-850 *3)) (-4 *3 (-954)) (-5 *1 (-1107 *3)))) (-3788 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *1 (-1107 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)))) (-3652 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1107 *4))) (-5 *3 (-1075)) (-5 *1 (-1107 *4)) (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954))))) -((-3669 (((-83) |#5| $) 68 T ELT) (((-83) $) 109 T ELT)) (-3664 ((|#5| |#5| $) 83 T ELT)) (-3686 (($ (-1 (-83) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3665 (((-578 |#5|) (-578 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|)) 81 T ELT)) (-3138 (((-3 $ #1#) (-578 |#5|)) 134 T ELT)) (-3775 (((-3 $ #1#) $) 119 T ELT)) (-3661 ((|#5| |#5| $) 101 T ELT)) (-3670 (((-83) |#5| $ (-1 (-83) |#5| |#5|)) 36 T ELT)) (-3659 ((|#5| |#5| $) 105 T ELT)) (-3818 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|)) 77 T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#5|)) (|:| -1685 (-578 |#5|))) $) 63 T ELT)) (-3671 (((-83) |#5| $) 66 T ELT) (((-83) $) 110 T ELT)) (-3161 ((|#4| $) 115 T ELT)) (-3774 (((-3 |#5| #1#) $) 117 T ELT)) (-3673 (((-578 |#5|) $) 55 T ELT)) (-3667 (((-83) |#5| $) 75 T ELT) (((-83) $) 114 T ELT)) (-3662 ((|#5| |#5| $) 89 T ELT)) (-3675 (((-83) $ $) 29 T ELT)) (-3668 (((-83) |#5| $) 71 T ELT) (((-83) $) 112 T ELT)) (-3663 ((|#5| |#5| $) 86 T ELT)) (-3777 (((-3 |#5| #1#) $) 116 T ELT)) (-3745 (($ $ |#5|) 135 T ELT)) (-3924 (((-687) $) 60 T ELT)) (-3507 (($ (-578 |#5|)) 132 T ELT)) (-2891 (($ $ |#4|) 130 T ELT)) (-2893 (($ $ |#4|) 128 T ELT)) (-3660 (($ $) 127 T ELT)) (-3922 (((-765) $) NIL T ELT) (((-578 |#5|) $) 120 T ELT)) (-3654 (((-687) $) 139 T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#5|))) #1#) (-578 |#5|) (-1 (-83) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#5|))) #1#) (-578 |#5|) (-1 (-83) |#5|) (-1 (-83) |#5| |#5|)) 51 T ELT)) (-3666 (((-83) $ (-1 (-83) |#5| (-578 |#5|))) 107 T ELT)) (-3656 (((-578 |#4|) $) 122 T ELT)) (-3909 (((-83) |#4| $) 125 T ELT)) (-3037 (((-83) $ $) 20 T ELT))) -(((-1108 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3654 ((-687) |#1|)) (-15 -3745 (|#1| |#1| |#5|)) (-15 -3686 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3909 ((-83) |#4| |#1|)) (-15 -3656 ((-578 |#4|) |#1|)) (-15 -3775 ((-3 |#1| #1#) |#1|)) (-15 -3774 ((-3 |#5| #1#) |#1|)) (-15 -3777 ((-3 |#5| #1#) |#1|)) (-15 -3659 (|#5| |#5| |#1|)) (-15 -3660 (|#1| |#1|)) (-15 -3661 (|#5| |#5| |#1|)) (-15 -3662 (|#5| |#5| |#1|)) (-15 -3663 (|#5| |#5| |#1|)) (-15 -3664 (|#5| |#5| |#1|)) (-15 -3665 ((-578 |#5|) (-578 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|))) (-15 -3818 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|))) (-15 -3667 ((-83) |#1|)) (-15 -3668 ((-83) |#1|)) (-15 -3669 ((-83) |#1|)) (-15 -3666 ((-83) |#1| (-1 (-83) |#5| (-578 |#5|)))) (-15 -3667 ((-83) |#5| |#1|)) (-15 -3668 ((-83) |#5| |#1|)) (-15 -3669 ((-83) |#5| |#1|)) (-15 -3670 ((-83) |#5| |#1| (-1 (-83) |#5| |#5|))) (-15 -3671 ((-83) |#1|)) (-15 -3671 ((-83) |#5| |#1|)) (-15 -3672 ((-2 (|:| -3837 (-578 |#5|)) (|:| -1685 (-578 |#5|))) |#1|)) (-15 -3924 ((-687) |#1|)) (-15 -3673 ((-578 |#5|) |#1|)) (-15 -3674 ((-3 (-2 (|:| |bas| |#1|) (|:| -3301 (-578 |#5|))) #1#) (-578 |#5|) (-1 (-83) |#5|) (-1 (-83) |#5| |#5|))) (-15 -3674 ((-3 (-2 (|:| |bas| |#1|) (|:| -3301 (-578 |#5|))) #1#) (-578 |#5|) (-1 (-83) |#5| |#5|))) (-15 -3675 ((-83) |#1| |#1|)) (-15 -2891 (|#1| |#1| |#4|)) (-15 -2893 (|#1| |#1| |#4|)) (-15 -3161 (|#4| |#1|)) (-15 -3138 ((-3 |#1| #1#) (-578 |#5|))) (-15 -3922 ((-578 |#5|) |#1|)) (-15 -3507 (|#1| (-578 |#5|))) (-15 -3818 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3818 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3686 (|#1| (-1 (-83) |#5|) |#1|)) (-15 -3818 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3922 ((-765) |#1|)) (-15 -3037 ((-83) |#1| |#1|))) (-1109 |#2| |#3| |#4| |#5|) (-489) (-710) (-749) (-969 |#2| |#3| |#4|)) (T -1108)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |#4|)))) (-578 |#4|)) 90 T ELT)) (-3658 (((-578 $) (-578 |#4|)) 91 T ELT)) (-3063 (((-578 |#3|) $) 37 T ELT)) (-2889 (((-83) $) 30 T ELT)) (-2880 (((-83) $) 21 (|has| |#1| (-489)) ELT)) (-3669 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3664 ((|#4| |#4| $) 97 T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3686 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3971)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3700 (($) 46 T CONST)) (-2885 (((-83) $) 26 (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) 28 (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) 27 (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) 29 (|has| |#1| (-489)) ELT)) (-3665 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) 22 (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) 23 (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ "failed") (-578 |#4|)) 40 T ELT)) (-3137 (($ (-578 |#4|)) 39 T ELT)) (-3775 (((-3 $ "failed") $) 87 T ELT)) (-3661 ((|#4| |#4| $) 94 T ELT)) (-1336 (($ $) 69 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#4| $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-489)) ELT)) (-3670 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3659 ((|#4| |#4| $) 92 T ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3971)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#4|)) (|:| -1685 (-578 |#4|))) $) 110 T ELT)) (-2870 (((-578 |#4|) $) 53 (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3161 ((|#3| $) 38 T ELT)) (-2588 (((-578 |#4|) $) 54 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2895 (((-578 |#3|) $) 36 T ELT)) (-2894 (((-83) |#3| $) 35 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3774 (((-3 |#4| "failed") $) 88 T ELT)) (-3673 (((-578 |#4|) $) 112 T ELT)) (-3667 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3662 ((|#4| |#4| $) 95 T ELT)) (-3675 (((-83) $ $) 115 T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-489)) ELT)) (-3668 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3663 ((|#4| |#4| $) 96 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3777 (((-3 |#4| "failed") $) 89 T ELT)) (-1337 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3655 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3745 (($ $ |#4|) 82 T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) 42 T ELT)) (-3380 (((-83) $) 45 T ELT)) (-3541 (($) 44 T ELT)) (-3924 (((-687) $) 111 T ELT)) (-1929 (((-687) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -3971))) ELT) (((-687) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) 43 T ELT)) (-3948 (((-467) $) 70 (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) 61 T ELT)) (-2891 (($ $ |#3|) 32 T ELT)) (-2893 (($ $ |#3|) 34 T ELT)) (-3660 (($ $) 93 T ELT)) (-2892 (($ $ |#3|) 33 T ELT)) (-3922 (((-765) $) 13 T ELT) (((-578 |#4|) $) 41 T ELT)) (-3654 (((-687) $) 81 (|has| |#3| (-313)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3666 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) 103 T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 |#3|) $) 86 T ELT)) (-3909 (((-83) |#3| $) 85 T ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3933 (((-687) $) 47 (|has| $ (-6 -3971)) ELT))) -(((-1109 |#1| |#2| |#3| |#4|) (-111) (-489) (-710) (-749) (-969 |t#1| |t#2| |t#3|)) (T -1109)) -((-3675 (*1 *2 *1 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3674 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-83) *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3301 (-578 *8)))) (-5 *3 (-578 *8)) (-4 *1 (-1109 *5 *6 *7 *8)))) (-3674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-83) *9)) (-5 *5 (-1 (-83) *9 *9)) (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3301 (-578 *9)))) (-5 *3 (-578 *9)) (-4 *1 (-1109 *6 *7 *8 *9)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *6)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-687)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-2 (|:| -3837 (-578 *6)) (|:| -1685 (-578 *6)))))) (-3671 (*1 *2 *3 *1) (-12 (-4 *1 (-1109 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3670 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *1 (-1109 *5 *6 *7 *3)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-83)))) (-3669 (*1 *2 *3 *1) (-12 (-4 *1 (-1109 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3668 (*1 *2 *3 *1) (-12 (-4 *1 (-1109 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3667 (*1 *2 *3 *1) (-12 (-4 *1 (-1109 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3666 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-83) *7 (-578 *7))) (-4 *1 (-1109 *4 *5 *6 *7)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) (-3818 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-83) *2 *2)) (-4 *1 (-1109 *5 *6 *7 *2)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *2 (-969 *5 *6 *7)))) (-3665 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-83) *8 *8)) (-4 *1 (-1109 *5 *6 *7 *8)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)))) (-3664 (*1 *2 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3663 (*1 *2 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3662 (*1 *2 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3661 (*1 *2 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-1109 *2 *3 *4 *5)) (-4 *2 (-489)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-969 *2 *3 *4)))) (-3659 (*1 *2 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3658 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-1109 *4 *5 *6 *7)))) (-3657 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| -3837 *1) (|:| -1685 (-578 *7))))) (-5 *3 (-578 *7)) (-4 *1 (-1109 *4 *5 *6 *7)))) (-3777 (*1 *2 *1) (|partial| -12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3774 (*1 *2 *1) (|partial| -12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3775 (*1 *1 *1) (|partial| -12 (-4 *1 (-1109 *2 *3 *4 *5)) (-4 *2 (-489)) (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-969 *2 *3 *4)))) (-3656 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5)))) (-3909 (*1 *2 *3 *1) (-12 (-4 *1 (-1109 *4 *5 *3 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-83)))) (-3686 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1109 *4 *5 *3 *2)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *2 (-969 *4 *5 *3)))) (-3655 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3745 (*1 *1 *1 *2) (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *5 (-313)) (-5 *2 (-687))))) -(-13 (-882 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3971) (-6 -3972) (-15 -3675 ((-83) $ $)) (-15 -3674 ((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |t#4|))) "failed") (-578 |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3674 ((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |t#4|))) "failed") (-578 |t#4|) (-1 (-83) |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3673 ((-578 |t#4|) $)) (-15 -3924 ((-687) $)) (-15 -3672 ((-2 (|:| -3837 (-578 |t#4|)) (|:| -1685 (-578 |t#4|))) $)) (-15 -3671 ((-83) |t#4| $)) (-15 -3671 ((-83) $)) (-15 -3670 ((-83) |t#4| $ (-1 (-83) |t#4| |t#4|))) (-15 -3669 ((-83) |t#4| $)) (-15 -3668 ((-83) |t#4| $)) (-15 -3667 ((-83) |t#4| $)) (-15 -3666 ((-83) $ (-1 (-83) |t#4| (-578 |t#4|)))) (-15 -3669 ((-83) $)) (-15 -3668 ((-83) $)) (-15 -3667 ((-83) $)) (-15 -3818 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3665 ((-578 |t#4|) (-578 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3664 (|t#4| |t#4| $)) (-15 -3663 (|t#4| |t#4| $)) (-15 -3662 (|t#4| |t#4| $)) (-15 -3661 (|t#4| |t#4| $)) (-15 -3660 ($ $)) (-15 -3659 (|t#4| |t#4| $)) (-15 -3658 ((-578 $) (-578 |t#4|))) (-15 -3657 ((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |t#4|)))) (-578 |t#4|))) (-15 -3777 ((-3 |t#4| "failed") $)) (-15 -3774 ((-3 |t#4| "failed") $)) (-15 -3775 ((-3 $ "failed") $)) (-15 -3656 ((-578 |t#3|) $)) (-15 -3909 ((-83) |t#3| $)) (-15 -3686 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3655 ((-3 $ "failed") $ |t#4|)) (-15 -3745 ($ $ |t#4|)) (IF (|has| |t#3| (-313)) (-15 -3654 ((-687) $)) |%noBranch|))) -(((-34) . T) ((-72) . T) ((-547 (-578 |#4|)) . T) ((-547 (-765)) . T) ((-122 |#4|) . T) ((-548 (-467)) |has| |#4| (-548 (-467))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-422 |#4|) . T) ((-447 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ((-882 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1114) . T)) -((-3681 (($ |#1| (-578 (-578 (-847 (-177)))) (-83)) 19 T ELT)) (-3680 (((-83) $ (-83)) 18 T ELT)) (-3679 (((-83) $) 17 T ELT)) (-3677 (((-578 (-578 (-847 (-177)))) $) 13 T ELT)) (-3676 ((|#1| $) 8 T ELT)) (-3678 (((-83) $) 15 T ELT))) -(((-1110 |#1|) (-10 -8 (-15 -3676 (|#1| $)) (-15 -3677 ((-578 (-578 (-847 (-177)))) $)) (-15 -3678 ((-83) $)) (-15 -3679 ((-83) $)) (-15 -3680 ((-83) $ (-83))) (-15 -3681 ($ |#1| (-578 (-578 (-847 (-177)))) (-83)))) (-880)) (T -1110)) -((-3681 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-83)) (-5 *1 (-1110 *2)) (-4 *2 (-880)))) (-3680 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1110 *3)) (-4 *3 (-880)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1110 *3)) (-4 *3 (-880)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1110 *3)) (-4 *3 (-880)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-1110 *3)) (-4 *3 (-880)))) (-3676 (*1 *2 *1) (-12 (-5 *1 (-1110 *2)) (-4 *2 (-880))))) -((-3683 (((-847 (-177)) (-847 (-177))) 31 T ELT)) (-3682 (((-847 (-177)) (-177) (-177) (-177) (-177)) 10 T ELT)) (-3685 (((-578 (-847 (-177))) (-847 (-177)) (-847 (-177)) (-847 (-177)) (-177) (-578 (-578 (-177)))) 57 T ELT)) (-3812 (((-177) (-847 (-177)) (-847 (-177))) 27 T ELT)) (-3810 (((-847 (-177)) (-847 (-177)) (-847 (-177))) 28 T ELT)) (-3684 (((-578 (-578 (-177))) (-478)) 45 T ELT)) (-3813 (((-847 (-177)) (-847 (-177)) (-847 (-177))) 26 T ELT)) (-3815 (((-847 (-177)) (-847 (-177)) (-847 (-177))) 24 T ELT)) (* (((-847 (-177)) (-177) (-847 (-177))) 22 T ELT))) -(((-1111) (-10 -7 (-15 -3682 ((-847 (-177)) (-177) (-177) (-177) (-177))) (-15 * ((-847 (-177)) (-177) (-847 (-177)))) (-15 -3815 ((-847 (-177)) (-847 (-177)) (-847 (-177)))) (-15 -3813 ((-847 (-177)) (-847 (-177)) (-847 (-177)))) (-15 -3812 ((-177) (-847 (-177)) (-847 (-177)))) (-15 -3810 ((-847 (-177)) (-847 (-177)) (-847 (-177)))) (-15 -3683 ((-847 (-177)) (-847 (-177)))) (-15 -3684 ((-578 (-578 (-177))) (-478))) (-15 -3685 ((-578 (-847 (-177))) (-847 (-177)) (-847 (-177)) (-847 (-177)) (-177) (-578 (-578 (-177))))))) (T -1111)) -((-3685 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-578 (-578 (-177)))) (-5 *4 (-177)) (-5 *2 (-578 (-847 *4))) (-5 *1 (-1111)) (-5 *3 (-847 *4)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-578 (-578 (-177)))) (-5 *1 (-1111)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111)))) (-3810 (*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111)))) (-3812 (*1 *2 *3 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-177)) (-5 *1 (-1111)))) (-3813 (*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111)))) (-3815 (*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-847 (-177))) (-5 *3 (-177)) (-5 *1 (-1111)))) (-3682 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111)) (-5 *3 (-177))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3686 ((|#1| $ (-687)) 18 T ELT)) (-3809 (((-687) $) 13 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3922 (((-862 |#1|) $) 12 T ELT) (($ (-862 |#1|)) 11 T ELT) (((-765) $) 29 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3037 (((-83) $ $) 22 (|has| |#1| (-1003)) ELT))) -(((-1112 |#1|) (-13 (-423 (-862 |#1|)) (-10 -8 (-15 -3686 (|#1| $ (-687))) (-15 -3809 ((-687) $)) (IF (|has| |#1| (-547 (-765))) (-6 (-547 (-765))) |%noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|))) (-1114)) (T -1112)) -((-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-1112 *2)) (-4 *2 (-1114)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1112 *3)) (-4 *3 (-1114))))) -((-3689 (((-341 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)) (-478)) 92 T ELT)) (-3687 (((-341 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|))) 84 T ELT)) (-3688 (((-341 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|))) 68 T ELT))) -(((-1113 |#1|) (-10 -7 (-15 -3687 ((-341 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -3688 ((-341 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)))) (-15 -3689 ((-341 (-1070 (-1070 |#1|))) (-1070 (-1070 |#1|)) (-478)))) (-295)) (T -1113)) -((-3689 (*1 *2 *3 *4) (-12 (-5 *4 (-478)) (-4 *5 (-295)) (-5 *2 (-341 (-1070 (-1070 *5)))) (-5 *1 (-1113 *5)) (-5 *3 (-1070 (-1070 *5))))) (-3688 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-341 (-1070 (-1070 *4)))) (-5 *1 (-1113 *4)) (-5 *3 (-1070 (-1070 *4))))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-341 (-1070 (-1070 *4)))) (-5 *1 (-1113 *4)) (-5 *3 (-1070 (-1070 *4)))))) -NIL -(((-1114) (-111)) (T -1114)) -NIL -(-13 (-10 -7 (-6 -2269))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 9 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1115) (-986)) (T -1115)) -NIL -((-3693 (((-83)) 18 T ELT)) (-3690 (((-1170) (-578 |#1|) (-578 |#1|)) 22 T ELT) (((-1170) (-578 |#1|)) 23 T ELT)) (-3695 (((-83) |#1| |#1|) 37 (|has| |#1| (-749)) ELT)) (-3692 (((-83) |#1| |#1| (-1 (-83) |#1| |#1|)) 29 T ELT) (((-3 (-83) "failed") |#1| |#1|) 27 T ELT)) (-3694 ((|#1| (-578 |#1|)) 38 (|has| |#1| (-749)) ELT) ((|#1| (-578 |#1|) (-1 (-83) |#1| |#1|)) 32 T ELT)) (-3691 (((-2 (|:| -3210 (-578 |#1|)) (|:| -3209 (-578 |#1|)))) 20 T ELT))) -(((-1116 |#1|) (-10 -7 (-15 -3690 ((-1170) (-578 |#1|))) (-15 -3690 ((-1170) (-578 |#1|) (-578 |#1|))) (-15 -3691 ((-2 (|:| -3210 (-578 |#1|)) (|:| -3209 (-578 |#1|))))) (-15 -3692 ((-3 (-83) "failed") |#1| |#1|)) (-15 -3692 ((-83) |#1| |#1| (-1 (-83) |#1| |#1|))) (-15 -3694 (|#1| (-578 |#1|) (-1 (-83) |#1| |#1|))) (-15 -3693 ((-83))) (IF (|has| |#1| (-749)) (PROGN (-15 -3694 (|#1| (-578 |#1|))) (-15 -3695 ((-83) |#1| |#1|))) |%noBranch|)) (-1003)) (T -1116)) -((-3695 (*1 *2 *3 *3) (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-749)) (-4 *3 (-1003)))) (-3694 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1003)) (-4 *2 (-749)) (-5 *1 (-1116 *2)))) (-3693 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-1003)))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-83) *2 *2)) (-5 *1 (-1116 *2)) (-4 *2 (-1003)))) (-3692 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-83)) (-5 *1 (-1116 *3)))) (-3692 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-1003)))) (-3691 (*1 *2) (-12 (-5 *2 (-2 (|:| -3210 (-578 *3)) (|:| -3209 (-578 *3)))) (-5 *1 (-1116 *3)) (-4 *3 (-1003)))) (-3690 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1003)) (-5 *2 (-1170)) (-5 *1 (-1116 *4)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1003)) (-5 *2 (-1170)) (-5 *1 (-1116 *4))))) -((-3696 (((-1170) (-578 (-1075)) (-578 (-1075))) 14 T ELT) (((-1170) (-578 (-1075))) 12 T ELT)) (-3698 (((-1170)) 16 T ELT)) (-3697 (((-2 (|:| -3209 (-578 (-1075))) (|:| -3210 (-578 (-1075))))) 20 T ELT))) -(((-1117) (-10 -7 (-15 -3696 ((-1170) (-578 (-1075)))) (-15 -3696 ((-1170) (-578 (-1075)) (-578 (-1075)))) (-15 -3697 ((-2 (|:| -3209 (-578 (-1075))) (|:| -3210 (-578 (-1075)))))) (-15 -3698 ((-1170))))) (T -1117)) -((-3698 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1117)))) (-3697 (*1 *2) (-12 (-5 *2 (-2 (|:| -3209 (-578 (-1075))) (|:| -3210 (-578 (-1075))))) (-5 *1 (-1117)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-1075))) (-5 *2 (-1170)) (-5 *1 (-1117)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-578 (-1075))) (-5 *2 (-1170)) (-5 *1 (-1117))))) -((-3751 (($ $) 17 T ELT)) (-3699 (((-83) $) 27 T ELT))) -(((-1118 |#1|) (-10 -7 (-15 -3751 (|#1| |#1|)) (-15 -3699 ((-83) |#1|))) (-1119)) (T -1118)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 63 T ELT)) (-3947 (((-341 $) $) 64 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3699 (((-83) $) 65 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3708 (((-341 $) $) 62 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-64) . T) ((-72) . T) ((-551 (-1085)) . T) ((-548 (-766)) . T) ((-548 (-1085)) . T) ((-424 (-1085)) . T) ((-1006) . T) ((-1119) . T)) +((-3201 ((|#1| |#1| (-1 (-479) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-83) |#1|)) 33 T ELT)) (-3199 (((-1175)) 21 T ELT)) (-3200 (((-579 |#1|)) 13 T ELT))) +(((-989 |#1|) (-10 -7 (-15 -3199 ((-1175))) (-15 -3200 ((-579 |#1|))) (-15 -3201 (|#1| |#1| (-1 (-83) |#1|))) (-15 -3201 (|#1| |#1| (-1 (-479) |#1| |#1|)))) (-103)) (T -989)) +((-3201 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-479) *2 *2)) (-4 *2 (-103)) (-5 *1 (-989 *2)))) (-3201 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *2)) (-4 *2 (-103)) (-5 *1 (-989 *2)))) (-3200 (*1 *2) (-12 (-5 *2 (-579 *3)) (-5 *1 (-989 *3)) (-4 *3 (-103)))) (-3199 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-989 *3)) (-4 *3 (-103))))) +((-3204 (($ (-78) $) 20 T ELT)) (-3205 (((-628 (-78)) (-440) $) 19 T ELT)) (-3547 (($) 7 T ELT)) (-3203 (($) 21 T ELT)) (-3202 (($) 22 T ELT)) (-3206 (((-579 (-147)) $) 10 T ELT)) (-3928 (((-766) $) 25 T ELT))) +(((-990) (-13 (-548 (-766)) (-10 -8 (-15 -3547 ($)) (-15 -3206 ((-579 (-147)) $)) (-15 -3205 ((-628 (-78)) (-440) $)) (-15 -3204 ($ (-78) $)) (-15 -3203 ($)) (-15 -3202 ($))))) (T -990)) +((-3547 (*1 *1) (-5 *1 (-990))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-579 (-147))) (-5 *1 (-990)))) (-3205 (*1 *2 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-78))) (-5 *1 (-990)))) (-3204 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-990)))) (-3203 (*1 *1) (-5 *1 (-990))) (-3202 (*1 *1) (-5 *1 (-990)))) +((-3207 (((-1169 (-626 |#1|)) (-579 (-626 |#1|))) 45 T ELT) (((-1169 (-626 (-851 |#1|))) (-579 (-1080)) (-626 (-851 |#1|))) 75 T ELT) (((-1169 (-626 (-344 (-851 |#1|)))) (-579 (-1080)) (-626 (-344 (-851 |#1|)))) 92 T ELT)) (-3208 (((-1169 |#1|) (-626 |#1|) (-579 (-626 |#1|))) 39 T ELT))) +(((-991 |#1|) (-10 -7 (-15 -3207 ((-1169 (-626 (-344 (-851 |#1|)))) (-579 (-1080)) (-626 (-344 (-851 |#1|))))) (-15 -3207 ((-1169 (-626 (-851 |#1|))) (-579 (-1080)) (-626 (-851 |#1|)))) (-15 -3207 ((-1169 (-626 |#1|)) (-579 (-626 |#1|)))) (-15 -3208 ((-1169 |#1|) (-626 |#1|) (-579 (-626 |#1|))))) (-308)) (T -991)) +((-3208 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-626 *5))) (-5 *3 (-626 *5)) (-4 *5 (-308)) (-5 *2 (-1169 *5)) (-5 *1 (-991 *5)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-579 (-626 *4))) (-4 *4 (-308)) (-5 *2 (-1169 (-626 *4))) (-5 *1 (-991 *4)))) (-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-1080))) (-4 *5 (-308)) (-5 *2 (-1169 (-626 (-851 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-626 (-851 *5))))) (-3207 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-1080))) (-4 *5 (-308)) (-5 *2 (-1169 (-626 (-344 (-851 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-626 (-344 (-851 *5))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1476 (((-579 (-688)) $) NIL T ELT) (((-579 (-688)) $ (-1080)) NIL T ELT)) (-1510 (((-688) $) NIL T ELT) (((-688) $ (-1080)) NIL T ELT)) (-3066 (((-579 (-993 (-1080))) $) NIL T ELT)) (-3068 (((-1075 $) $ (-993 (-1080))) NIL T ELT) (((-1075 |#1|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-993 (-1080)))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-1472 (($ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-993 (-1080)) #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL T ELT) (((-3 (-1029 |#1| (-1080)) #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-993 (-1080)) $) NIL T ELT) (((-1080) $) NIL T ELT) (((-1029 |#1| (-1080)) $) NIL T ELT)) (-3738 (($ $ $ (-993 (-1080))) NIL (|has| |#1| (-144)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT) (($ $ (-993 (-1080))) NIL (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| (-464 (-993 (-1080))) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-993 (-1080)) (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-993 (-1080)) (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-3754 (((-688) $ (-1080)) NIL T ELT) (((-688) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3069 (($ (-1075 |#1|) (-993 (-1080))) NIL T ELT) (($ (-1075 $) (-993 (-1080))) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-464 (-993 (-1080)))) NIL T ELT) (($ $ (-993 (-1080)) (-688)) NIL T ELT) (($ $ (-579 (-993 (-1080))) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-993 (-1080))) NIL T ELT)) (-2805 (((-464 (-993 (-1080))) $) NIL T ELT) (((-688) $ (-993 (-1080))) NIL T ELT) (((-579 (-688)) $ (-579 (-993 (-1080)))) NIL T ELT)) (-1613 (($ (-1 (-464 (-993 (-1080))) (-464 (-993 (-1080)))) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1511 (((-1 $ (-688)) (-1080)) NIL T ELT) (((-1 $ (-688)) $) NIL (|has| |#1| (-188)) ELT)) (-3067 (((-3 (-993 (-1080)) #1#) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1474 (((-993 (-1080)) $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1475 (((-83) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-993 (-1080))) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-1473 (($ $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-815)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-993 (-1080)) |#1|) NIL T ELT) (($ $ (-579 (-993 (-1080))) (-579 |#1|)) NIL T ELT) (($ $ (-993 (-1080)) $) NIL T ELT) (($ $ (-579 (-993 (-1080))) (-579 $)) NIL T ELT) (($ $ (-1080) $) NIL (|has| |#1| (-188)) ELT) (($ $ (-579 (-1080)) (-579 $)) NIL (|has| |#1| (-188)) ELT) (($ $ (-1080) |#1|) NIL (|has| |#1| (-188)) ELT) (($ $ (-579 (-1080)) (-579 |#1|)) NIL (|has| |#1| (-188)) ELT)) (-3739 (($ $ (-993 (-1080))) NIL (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 (-993 (-1080))) (-579 (-688))) NIL T ELT) (($ $ (-993 (-1080)) (-688)) NIL T ELT) (($ $ (-579 (-993 (-1080)))) NIL T ELT) (($ $ (-993 (-1080))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT)) (-1477 (((-579 (-1080)) $) NIL T ELT)) (-3930 (((-464 (-993 (-1080))) $) NIL T ELT) (((-688) $ (-993 (-1080))) NIL T ELT) (((-579 (-688)) $ (-579 (-993 (-1080)))) NIL T ELT) (((-688) $ (-1080)) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-993 (-1080)) (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-993 (-1080)) (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-993 (-1080)) (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT) (($ $ (-993 (-1080))) NIL (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-993 (-1080))) NIL T ELT) (($ (-1080)) NIL T ELT) (($ (-1029 |#1| (-1080))) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-464 (-993 (-1080)))) NIL T ELT) (($ $ (-993 (-1080)) (-688)) NIL T ELT) (($ $ (-579 (-993 (-1080))) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-579 (-993 (-1080))) (-579 (-688))) NIL T ELT) (($ $ (-993 (-1080)) (-688)) NIL T ELT) (($ $ (-579 (-993 (-1080)))) NIL T ELT) (($ $ (-993 (-1080))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $) NIL (|has| |#1| (-187)) ELT) (($ $ (-688)) NIL (|has| |#1| (-187)) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-992 |#1|) (-13 (-210 |#1| (-1080) (-993 (-1080)) (-464 (-993 (-1080)))) (-944 (-1029 |#1| (-1080)))) (-955)) (T -992)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-1510 (((-688) $) NIL T ELT)) (-3813 ((|#1| $) 10 T ELT)) (-3141 (((-3 |#1| "failed") $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT)) (-3754 (((-688) $) 11 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-1511 (($ |#1| (-688)) 9 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3740 (($ $ (-688)) NIL T ELT) (($ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2654 (($ $ (-688)) NIL T ELT) (($ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 16 T ELT))) +(((-993 |#1|) (-225 |#1|) (-750)) (T -993)) +NIL +((-2553 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3718 (($ |#1| |#1|) 16 T ELT)) (-3940 (((-579 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-749)) ELT)) (-3213 ((|#1| $) 12 T ELT)) (-3215 ((|#1| $) 11 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3211 (((-479) $) 15 T ELT)) (-3212 ((|#1| $) 14 T ELT)) (-3214 ((|#1| $) 13 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3945 (((-579 |#1|) $) 42 (|has| |#1| (-749)) ELT) (((-579 |#1|) (-579 $)) 41 (|has| |#1| (-749)) ELT)) (-3954 (($ |#1|) 29 T ELT)) (-3928 (((-766) $) 28 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3719 (($ |#1| |#1|) 10 T ELT)) (-3216 (($ $ (-479)) 17 T ELT)) (-3041 (((-83) $ $) 22 (|has| |#1| (-1006)) ELT))) +(((-994 |#1|) (-13 (-999 |#1|) (-10 -7 (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-749)) (-6 (-1000 |#1| (-579 |#1|))) |%noBranch|))) (-1119)) (T -994)) +NIL +((-3940 (((-579 |#2|) (-1 |#2| |#1|) (-994 |#1|)) 27 (|has| |#1| (-749)) ELT) (((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|)) 14 T ELT))) +(((-995 |#1| |#2|) (-10 -7 (-15 -3940 ((-994 |#2|) (-1 |#2| |#1|) (-994 |#1|))) (IF (|has| |#1| (-749)) (-15 -3940 ((-579 |#2|) (-1 |#2| |#1|) (-994 |#1|))) |%noBranch|)) (-1119) (-1119)) (T -995)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-749)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-579 *6)) (-5 *1 (-995 *5 *6)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-994 *6)) (-5 *1 (-995 *5 *6))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 16 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3209 (((-579 (-1039)) $) 10 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-996) (-13 (-988) (-10 -8 (-15 -3209 ((-579 (-1039)) $))))) (T -996)) +((-3209 (*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-996))))) +((-2553 (((-83) $ $) NIL (|has| (-994 |#1|) (-1006)) ELT)) (-3813 (((-1080) $) NIL T ELT)) (-3718 (((-994 |#1|) $) NIL T ELT)) (-3226 (((-1063) $) NIL (|has| (-994 |#1|) (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| (-994 |#1|) (-1006)) ELT)) (-3210 (($ (-1080) (-994 |#1|)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| (-994 |#1|) (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| (-994 |#1|) (-1006)) ELT)) (-3041 (((-83) $ $) NIL (|has| (-994 |#1|) (-1006)) ELT))) +(((-997 |#1|) (-13 (-1119) (-10 -8 (-15 -3210 ($ (-1080) (-994 |#1|))) (-15 -3813 ((-1080) $)) (-15 -3718 ((-994 |#1|) $)) (IF (|has| (-994 |#1|) (-1006)) (-6 (-1006)) |%noBranch|))) (-1119)) (T -997)) +((-3210 (*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-994 *4)) (-4 *4 (-1119)) (-5 *1 (-997 *4)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-997 *3)) (-4 *3 (-1119)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-994 *3)) (-5 *1 (-997 *3)) (-4 *3 (-1119))))) +((-3940 (((-997 |#2|) (-1 |#2| |#1|) (-997 |#1|)) 19 T ELT))) +(((-998 |#1| |#2|) (-10 -7 (-15 -3940 ((-997 |#2|) (-1 |#2| |#1|) (-997 |#1|)))) (-1119) (-1119)) (T -998)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-997 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-997 *6)) (-5 *1 (-998 *5 *6))))) +((-3718 (($ |#1| |#1|) 8 T ELT)) (-3213 ((|#1| $) 11 T ELT)) (-3215 ((|#1| $) 13 T ELT)) (-3211 (((-479) $) 9 T ELT)) (-3212 ((|#1| $) 10 T ELT)) (-3214 ((|#1| $) 12 T ELT)) (-3954 (($ |#1|) 6 T ELT)) (-3719 (($ |#1| |#1|) 15 T ELT)) (-3216 (($ $ (-479)) 14 T ELT))) +(((-999 |#1|) (-111) (-1119)) (T -999)) +((-3719 (*1 *1 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119)))) (-3216 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-999 *3)) (-4 *3 (-1119)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119)))) (-3212 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119)))) (-3211 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1119)) (-5 *2 (-479)))) (-3718 (*1 *1 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119))))) +(-13 (-553 |t#1|) (-10 -8 (-15 -3719 ($ |t#1| |t#1|)) (-15 -3216 ($ $ (-479))) (-15 -3215 (|t#1| $)) (-15 -3214 (|t#1| $)) (-15 -3213 (|t#1| $)) (-15 -3212 (|t#1| $)) (-15 -3211 ((-479) $)) (-15 -3718 ($ |t#1| |t#1|)))) +(((-553 |#1|) . T)) +((-3718 (($ |#1| |#1|) 8 T ELT)) (-3940 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3213 ((|#1| $) 11 T ELT)) (-3215 ((|#1| $) 13 T ELT)) (-3211 (((-479) $) 9 T ELT)) (-3212 ((|#1| $) 10 T ELT)) (-3214 ((|#1| $) 12 T ELT)) (-3945 ((|#2| (-579 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3954 (($ |#1|) 6 T ELT)) (-3719 (($ |#1| |#1|) 15 T ELT)) (-3216 (($ $ (-479)) 14 T ELT))) +(((-1000 |#1| |#2|) (-111) (-749) (-1054 |t#1|)) (T -1000)) +((-3945 (*1 *2 *3) (-12 (-5 *3 (-579 *1)) (-4 *1 (-1000 *4 *2)) (-4 *4 (-749)) (-4 *2 (-1054 *4)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-749)) (-4 *2 (-1054 *3)))) (-3940 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1000 *4 *2)) (-4 *4 (-749)) (-4 *2 (-1054 *4))))) +(-13 (-999 |t#1|) (-10 -8 (-15 -3945 (|t#2| (-579 $))) (-15 -3945 (|t#2| $)) (-15 -3940 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-553 |#1|) . T) ((-999 |#1|) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3780 (((-1039) $) 14 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 20 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-3217 (((-579 (-1039)) $) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1001) (-13 (-988) (-10 -8 (-15 -3217 ((-579 (-1039)) $)) (-15 -3780 ((-1039) $))))) (T -1001)) +((-3217 (*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-1001)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1001))))) +((-2553 (((-83) $ $) NIL T ELT)) (-1790 (($) NIL (|has| |#1| (-314)) ELT)) (-3218 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3220 (($ $ $) 81 T ELT)) (-3219 (((-83) $ $) 83 T ELT)) (-3120 (((-688)) NIL (|has| |#1| (-314)) ELT)) (-3223 (($ (-579 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1558 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3387 (($ |#1| $) 75 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 (|has| $ (-6 -3977)) ELT)) (-2979 (($) NIL (|has| |#1| (-314)) ELT)) (-2874 (((-579 |#1|) $) 20 (|has| $ (-6 -3977)) ELT)) (-3225 (((-83) $ $) NIL T ELT)) (-2516 ((|#1| $) 56 (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 74 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2842 ((|#1| $) 54 (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-1997 (((-824) $) NIL (|has| |#1| (-314)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3222 (($ $ $) 79 T ELT)) (-1263 ((|#1| $) 26 T ELT)) (-3591 (($ |#1| $) 70 T ELT)) (-2387 (($ (-824)) NIL (|has| |#1| (-314)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 32 T ELT)) (-1264 ((|#1| $) 28 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 22 T ELT)) (-3547 (($) 12 T ELT)) (-3221 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1454 (($) NIL T ELT) (($ (-579 |#1|)) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) 17 T ELT)) (-3954 (((-468) $) 51 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 63 T ELT)) (-1791 (($ $) NIL (|has| |#1| (-314)) ELT)) (-3928 (((-766) $) NIL T ELT)) (-1792 (((-688) $) NIL T ELT)) (-3224 (($ (-579 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-1265 (($ (-579 |#1|)) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 53 T ELT)) (-3939 (((-688) $) 11 (|has| $ (-6 -3977)) ELT))) +(((-1002 |#1|) (-363 |#1|) (-1006)) (T -1002)) +NIL +((-3218 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3220 (($ $ $) 10 T ELT)) (-3221 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1003 |#1| |#2|) (-10 -7 (-15 -3218 (|#1| |#2| |#1|)) (-15 -3218 (|#1| |#1| |#2|)) (-15 -3218 (|#1| |#1| |#1|)) (-15 -3220 (|#1| |#1| |#1|)) (-15 -3221 (|#1| |#1| |#2|)) (-15 -3221 (|#1| |#1| |#1|))) (-1004 |#2|) (-1006)) (T -1003)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3218 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3220 (($ $ $) 24 T ELT)) (-3219 (((-83) $ $) 23 T ELT)) (-3223 (($) 29 T ELT) (($ (-579 |#1|)) 28 T ELT)) (-3692 (($ (-1 (-83) |#1|) $) 57 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 37 T CONST)) (-1341 (($ $) 60 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#1| $) 59 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 56 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -3977)) ELT)) (-2874 (((-579 |#1|) $) 44 (|has| $ (-6 -3977)) ELT)) (-3225 (((-83) $ $) 32 T ELT)) (-2593 (((-579 |#1|) $) 45 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 47 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3222 (($ $ $) 27 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 53 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 42 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#1|) (-579 |#1|)) 51 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 49 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 (-245 |#1|))) 48 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 33 T ELT)) (-3385 (((-83) $) 36 T ELT)) (-3547 (($) 35 T ELT)) (-3221 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-1934 (((-688) |#1| $) 46 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#1|) $) 43 (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 34 T ELT)) (-3954 (((-468) $) 61 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 52 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-3224 (($) 31 T ELT) (($ (-579 |#1|)) 30 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 41 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3939 (((-688) $) 38 (|has| $ (-6 -3977)) ELT))) +(((-1004 |#1|) (-111) (-1006)) (T -1004)) +((-3225 (*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-83)))) (-3224 (*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3224 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) (-3223 (*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) (-3222 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3221 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3221 (*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3220 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3219 (*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-83)))) (-3218 (*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3218 (*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) (-3218 (*1 *1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) +(-13 (-1006) (-122 |t#1|) (-10 -8 (-6 -3967) (-15 -3225 ((-83) $ $)) (-15 -3224 ($)) (-15 -3224 ($ (-579 |t#1|))) (-15 -3223 ($)) (-15 -3223 ($ (-579 |t#1|))) (-15 -3222 ($ $ $)) (-15 -3221 ($ $ $)) (-15 -3221 ($ $ |t#1|)) (-15 -3220 ($ $ $)) (-15 -3219 ((-83) $ $)) (-15 -3218 ($ $ $)) (-15 -3218 ($ $ |t#1|)) (-15 -3218 ($ |t#1| $)))) +(((-34) . T) ((-72) . T) ((-548 (-766)) . T) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) . T) ((-1119) . T)) +((-3226 (((-1063) $) 10 T ELT)) (-3227 (((-1024) $) 8 T ELT))) +(((-1005 |#1|) (-10 -7 (-15 -3226 ((-1063) |#1|)) (-15 -3227 ((-1024) |#1|))) (-1006)) (T -1005)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-1006) (-111)) (T -1006)) +((-3227 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1024)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1063))))) +(-13 (-72) (-548 (-766)) (-10 -8 (-15 -3227 ((-1024) $)) (-15 -3226 ((-1063) $)))) +(((-72) . T) ((-548 (-766)) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) 36 T ELT)) (-3231 (($ (-579 (-824))) 70 T ELT)) (-3233 (((-3 $ #1="failed") $ (-824) (-824)) 81 T ELT)) (-2979 (($) 40 T ELT)) (-3229 (((-83) (-824) $) 42 T ELT)) (-1997 (((-824) $) 64 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) 39 T ELT)) (-3234 (((-3 $ #1#) $ (-824)) 77 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3230 (((-1169 $)) 47 T ELT)) (-3232 (((-579 (-824)) $) 27 T ELT)) (-3228 (((-688) $ (-824) (-824)) 78 T ELT)) (-3928 (((-766) $) 32 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 24 T ELT))) +(((-1007 |#1| |#2|) (-13 (-314) (-10 -8 (-15 -3234 ((-3 $ #1="failed") $ (-824))) (-15 -3233 ((-3 $ #1#) $ (-824) (-824))) (-15 -3232 ((-579 (-824)) $)) (-15 -3231 ($ (-579 (-824)))) (-15 -3230 ((-1169 $))) (-15 -3229 ((-83) (-824) $)) (-15 -3228 ((-688) $ (-824) (-824))))) (-824) (-824)) (T -1007)) +((-3234 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-824)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3233 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-824)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-824)) (-14 *4 (-824)))) (-3231 (*1 *1 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-824)) (-14 *4 (-824)))) (-3230 (*1 *2) (-12 (-5 *2 (-1169 (-1007 *3 *4))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-824)) (-14 *4 (-824)))) (-3229 (*1 *2 *3 *1) (-12 (-5 *3 (-824)) (-5 *2 (-83)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-824)) (-5 *2 (-688)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3244 (((-83) $) NIL T ELT)) (-3240 (((-1080) $) NIL T ELT)) (-3245 (((-83) $) NIL T ELT)) (-3517 (((-1063) $) NIL T ELT)) (-3247 (((-83) $) NIL T ELT)) (-3249 (((-83) $) NIL T ELT)) (-3246 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3243 (((-83) $) NIL T ELT)) (-3239 (((-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3242 (((-83) $) NIL T ELT)) (-3238 (((-177) $) NIL T ELT)) (-3237 (((-766) $) NIL T ELT)) (-3250 (((-83) $ $) NIL T ELT)) (-3782 (($ $ (-479)) NIL T ELT) (($ $ (-579 (-479))) NIL T ELT)) (-3241 (((-579 $) $) NIL T ELT)) (-3954 (($ (-1063)) NIL T ELT) (($ (-1080)) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-177)) NIL T ELT) (($ (-766)) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-3235 (($ $) NIL T ELT)) (-3236 (($ $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3248 (((-83) $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3939 (((-479) $) NIL T ELT))) +(((-1008) (-1009 (-1063) (-1080) (-479) (-177) (-766))) (T -1008)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3244 (((-83) $) 36 T ELT)) (-3240 ((|#2| $) 31 T ELT)) (-3245 (((-83) $) 37 T ELT)) (-3517 ((|#1| $) 32 T ELT)) (-3247 (((-83) $) 39 T ELT)) (-3249 (((-83) $) 41 T ELT)) (-3246 (((-83) $) 38 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3243 (((-83) $) 35 T ELT)) (-3239 ((|#3| $) 30 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3242 (((-83) $) 34 T ELT)) (-3238 ((|#4| $) 29 T ELT)) (-3237 ((|#5| $) 28 T ELT)) (-3250 (((-83) $ $) 42 T ELT)) (-3782 (($ $ (-479)) 44 T ELT) (($ $ (-579 (-479))) 43 T ELT)) (-3241 (((-579 $) $) 33 T ELT)) (-3954 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-579 $)) 45 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-3235 (($ $) 26 T ELT)) (-3236 (($ $) 27 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3248 (((-83) $) 40 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3939 (((-479) $) 25 T ELT))) +(((-1009 |#1| |#2| |#3| |#4| |#5|) (-111) (-1006) (-1006) (-1006) (-1006) (-1006)) (T -1009)) +((-3250 (*1 *2 *1 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83)))) (-3249 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83)))) (-3247 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83)))) (-3246 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83)))) (-3241 (*1 *2 *1) (-12 (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-579 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) (-3236 (*1 *1 *1) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3235 (*1 *1 *1) (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-479))))) +(-13 (-1006) (-553 |t#1|) (-553 |t#2|) (-553 |t#3|) (-553 |t#4|) (-553 |t#4|) (-553 |t#5|) (-553 (-579 $)) (-238 (-479) $) (-238 (-579 (-479)) $) (-10 -8 (-15 -3250 ((-83) $ $)) (-15 -3249 ((-83) $)) (-15 -3248 ((-83) $)) (-15 -3247 ((-83) $)) (-15 -3246 ((-83) $)) (-15 -3245 ((-83) $)) (-15 -3244 ((-83) $)) (-15 -3243 ((-83) $)) (-15 -3242 ((-83) $)) (-15 -3241 ((-579 $) $)) (-15 -3517 (|t#1| $)) (-15 -3240 (|t#2| $)) (-15 -3239 (|t#3| $)) (-15 -3238 (|t#4| $)) (-15 -3237 (|t#5| $)) (-15 -3236 ($ $)) (-15 -3235 ($ $)) (-15 -3939 ((-479) $)))) +(((-72) . T) ((-548 (-766)) . T) ((-553 (-579 $)) . T) ((-553 |#1|) . T) ((-553 |#2|) . T) ((-553 |#3|) . T) ((-553 |#4|) . T) ((-553 |#5|) . T) ((-238 (-479) $) . T) ((-238 (-579 (-479)) $) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3244 (((-83) $) 45 T ELT)) (-3240 ((|#2| $) 48 T ELT)) (-3245 (((-83) $) 20 T ELT)) (-3517 ((|#1| $) 21 T ELT)) (-3247 (((-83) $) 42 T ELT)) (-3249 (((-83) $) 14 T ELT)) (-3246 (((-83) $) 44 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3243 (((-83) $) 46 T ELT)) (-3239 ((|#3| $) 50 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3242 (((-83) $) 47 T ELT)) (-3238 ((|#4| $) 49 T ELT)) (-3237 ((|#5| $) 51 T ELT)) (-3250 (((-83) $ $) 41 T ELT)) (-3782 (($ $ (-479)) 62 T ELT) (($ $ (-579 (-479))) 64 T ELT)) (-3241 (((-579 $) $) 27 T ELT)) (-3954 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-579 $)) 52 T ELT)) (-3928 (((-766) $) 28 T ELT)) (-3235 (($ $) 26 T ELT)) (-3236 (($ $) 58 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3248 (((-83) $) 23 T ELT)) (-3041 (((-83) $ $) 40 T ELT)) (-3939 (((-479) $) 60 T ELT))) +(((-1010 |#1| |#2| |#3| |#4| |#5|) (-1009 |#1| |#2| |#3| |#4| |#5|) (-1006) (-1006) (-1006) (-1006) (-1006)) (T -1010)) +NIL +((-3253 (((-83) |#5| |#5|) 44 T ELT)) (-3256 (((-83) |#5| |#5|) 59 T ELT)) (-3261 (((-83) |#5| (-579 |#5|)) 82 T ELT) (((-83) |#5| |#5|) 68 T ELT)) (-3257 (((-83) (-579 |#4|) (-579 |#4|)) 65 T ELT)) (-3263 (((-83) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) 70 T ELT)) (-3252 (((-1175)) 32 T ELT)) (-3251 (((-1175) (-1063) (-1063) (-1063)) 28 T ELT)) (-3262 (((-579 |#5|) (-579 |#5|)) 101 T ELT)) (-3264 (((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)))) 93 T ELT)) (-3265 (((-579 (-2 (|:| -3250 (-579 |#4|)) (|:| -1588 |#5|) (|:| |ineq| (-579 |#4|)))) (-579 |#4|) (-579 |#5|) (-83) (-83)) 123 T ELT)) (-3255 (((-83) |#5| |#5|) 53 T ELT)) (-3260 (((-3 (-83) #1="failed") |#5| |#5|) 78 T ELT)) (-3258 (((-83) (-579 |#4|) (-579 |#4|)) 64 T ELT)) (-3259 (((-83) (-579 |#4|) (-579 |#4|)) 66 T ELT)) (-3681 (((-83) (-579 |#4|) (-579 |#4|)) 67 T ELT)) (-3266 (((-3 (-2 (|:| -3250 (-579 |#4|)) (|:| -1588 |#5|) (|:| |ineq| (-579 |#4|))) #1#) (-579 |#4|) |#5| (-579 |#4|) (-83) (-83) (-83) (-83) (-83)) 118 T ELT)) (-3254 (((-579 |#5|) (-579 |#5|)) 49 T ELT))) +(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3251 ((-1175) (-1063) (-1063) (-1063))) (-15 -3252 ((-1175))) (-15 -3253 ((-83) |#5| |#5|)) (-15 -3254 ((-579 |#5|) (-579 |#5|))) (-15 -3255 ((-83) |#5| |#5|)) (-15 -3256 ((-83) |#5| |#5|)) (-15 -3257 ((-83) (-579 |#4|) (-579 |#4|))) (-15 -3258 ((-83) (-579 |#4|) (-579 |#4|))) (-15 -3259 ((-83) (-579 |#4|) (-579 |#4|))) (-15 -3681 ((-83) (-579 |#4|) (-579 |#4|))) (-15 -3260 ((-3 (-83) #1="failed") |#5| |#5|)) (-15 -3261 ((-83) |#5| |#5|)) (-15 -3261 ((-83) |#5| (-579 |#5|))) (-15 -3262 ((-579 |#5|) (-579 |#5|))) (-15 -3263 ((-83) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)))) (-15 -3264 ((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) (-15 -3265 ((-579 (-2 (|:| -3250 (-579 |#4|)) (|:| -1588 |#5|) (|:| |ineq| (-579 |#4|)))) (-579 |#4|) (-579 |#5|) (-83) (-83))) (-15 -3266 ((-3 (-2 (|:| -3250 (-579 |#4|)) (|:| -1588 |#5|) (|:| |ineq| (-579 |#4|))) #1#) (-579 |#4|) |#5| (-579 |#4|) (-83) (-83) (-83) (-83) (-83)))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|) (-976 |#1| |#2| |#3| |#4|)) (T -1011)) +((-3266 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *9 (-970 *6 *7 *8)) (-5 *2 (-2 (|:| -3250 (-579 *9)) (|:| -1588 *4) (|:| |ineq| (-579 *9)))) (-5 *1 (-1011 *6 *7 *8 *9 *4)) (-5 *3 (-579 *9)) (-4 *4 (-976 *6 *7 *8 *9)))) (-3265 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-579 *10)) (-5 *5 (-83)) (-4 *10 (-976 *6 *7 *8 *9)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *9 (-970 *6 *7 *8)) (-5 *2 (-579 (-2 (|:| -3250 (-579 *9)) (|:| -1588 *10) (|:| |ineq| (-579 *9))))) (-5 *1 (-1011 *6 *7 *8 *9 *10)) (-5 *3 (-579 *9)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-579 (-2 (|:| |val| (-579 *6)) (|:| -1588 *7)))) (-4 *6 (-970 *3 *4 *5)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-1011 *3 *4 *5 *6 *7)))) (-3263 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-579 *7)) (|:| -1588 *8))) (-4 *7 (-970 *4 *5 *6)) (-4 *8 (-976 *4 *5 *6 *7)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8)))) (-3262 (*1 *2 *2) (-12 (-5 *2 (-579 *7)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *1 (-1011 *3 *4 *5 *6 *7)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *4 (-579 *3)) (-4 *3 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-1011 *5 *6 *7 *8 *3)))) (-3261 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3260 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3681 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3259 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3258 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3256 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3255 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-579 *7)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *1 (-1011 *3 *4 *5 *6 *7)))) (-3253 (*1 *2 *3 *3) (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) (-3252 (*1 *2) (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-1175)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6)))) (-3251 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7))))) +((-3281 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#5|) 106 T ELT)) (-3271 (((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3274 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3276 (((-579 |#5|) |#4| |#5|) 122 T ELT)) (-3278 (((-579 |#5|) |#4| |#5|) 129 T ELT)) (-3280 (((-579 |#5|) |#4| |#5|) 130 T ELT)) (-3275 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|) 107 T ELT)) (-3277 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|) 128 T ELT)) (-3279 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|) 47 T ELT) (((-83) |#4| |#5|) 55 T ELT)) (-3272 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) |#3| (-83)) 91 T ELT) (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5| (-83) (-83)) 52 T ELT)) (-3273 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3270 (((-1175)) 36 T ELT)) (-3268 (((-1175)) 25 T ELT)) (-3269 (((-1175) (-1063) (-1063) (-1063)) 32 T ELT)) (-3267 (((-1175) (-1063) (-1063) (-1063)) 21 T ELT))) +(((-1012 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3267 ((-1175) (-1063) (-1063) (-1063))) (-15 -3268 ((-1175))) (-15 -3269 ((-1175) (-1063) (-1063) (-1063))) (-15 -3270 ((-1175))) (-15 -3271 ((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) |#4| |#4| |#5|)) (-15 -3272 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5| (-83) (-83))) (-15 -3272 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) |#3| (-83))) (-15 -3273 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5|)) (-15 -3274 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#4| |#5|)) (-15 -3279 ((-83) |#4| |#5|)) (-15 -3275 ((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|)) (-15 -3276 ((-579 |#5|) |#4| |#5|)) (-15 -3277 ((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|)) (-15 -3278 ((-579 |#5|) |#4| |#5|)) (-15 -3279 ((-579 (-2 (|:| |val| (-83)) (|:| -1588 |#5|))) |#4| |#5|)) (-15 -3280 ((-579 |#5|) |#4| |#5|)) (-15 -3281 ((-579 (-2 (|:| |val| |#4|) (|:| -1588 |#5|))) |#4| |#5|))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|) (-976 |#1| |#2| |#3| |#4|)) (T -1012)) +((-3281 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3280 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3279 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3278 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3277 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3276 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3275 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3279 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3274 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3273 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 (-2 (|:| |val| (-579 *8)) (|:| -1588 *9)))) (-5 *5 (-83)) (-4 *8 (-970 *6 *7 *4)) (-4 *9 (-976 *6 *7 *4 *8)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *4 (-750)) (-5 *2 (-579 (-2 (|:| |val| *8) (|:| -1588 *9)))) (-5 *1 (-1012 *6 *7 *4 *8 *9)))) (-3272 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *3 (-970 *6 *7 *8)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-1012 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) (-3271 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) (-3270 (*1 *2) (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-1175)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6)))) (-3269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7)))) (-3268 (*1 *2) (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-1175)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6)))) (-3267 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) (-4 *8 (-976 *4 *5 *6 *7))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |#4|)))) (-579 |#4|)) 90 T ELT)) (-3664 (((-579 $) (-579 |#4|)) 91 T ELT) (((-579 $) (-579 |#4|) (-83)) 118 T ELT)) (-3066 (((-579 |#3|) $) 37 T ELT)) (-2893 (((-83) $) 30 T ELT)) (-2884 (((-83) $) 21 (|has| |#1| (-490)) ELT)) (-3675 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3670 ((|#4| |#4| $) 97 T ELT)) (-3757 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| $) 133 T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3692 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3977)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3706 (($) 46 T CONST)) (-2889 (((-83) $) 26 (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) 28 (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) 27 (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) 29 (|has| |#1| (-490)) ELT)) (-3671 (((-579 |#4|) (-579 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) 22 (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) 23 (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ "failed") (-579 |#4|)) 40 T ELT)) (-3140 (($ (-579 |#4|)) 39 T ELT)) (-3781 (((-3 $ #1#) $) 87 T ELT)) (-3667 ((|#4| |#4| $) 94 T ELT)) (-1341 (($ $) 69 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#4| $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-490)) ELT)) (-3676 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3665 ((|#4| |#4| $) 92 T ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3977)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#4|)) (|:| -1690 (-579 |#4|))) $) 110 T ELT)) (-3181 (((-83) |#4| $) 143 T ELT)) (-3179 (((-83) |#4| $) 140 T ELT)) (-3182 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2874 (((-579 |#4|) $) 53 (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3164 ((|#3| $) 38 T ELT)) (-2593 (((-579 |#4|) $) 54 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2899 (((-579 |#3|) $) 36 T ELT)) (-2898 (((-83) |#3| $) 35 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3175 (((-3 |#4| (-579 $)) |#4| |#4| $) 135 T ELT)) (-3174 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| |#4| $) 134 T ELT)) (-3780 (((-3 |#4| #1#) $) 88 T ELT)) (-3176 (((-579 $) |#4| $) 136 T ELT)) (-3178 (((-3 (-83) (-579 $)) |#4| $) 139 T ELT)) (-3177 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3222 (((-579 $) |#4| $) 132 T ELT) (((-579 $) (-579 |#4|) $) 131 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 130 T ELT) (((-579 $) |#4| (-579 $)) 129 T ELT)) (-3422 (($ |#4| $) 124 T ELT) (($ (-579 |#4|) $) 123 T ELT)) (-3679 (((-579 |#4|) $) 112 T ELT)) (-3673 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3668 ((|#4| |#4| $) 95 T ELT)) (-3681 (((-83) $ $) 115 T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-490)) ELT)) (-3674 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3669 ((|#4| |#4| $) 96 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3783 (((-3 |#4| #1#) $) 89 T ELT)) (-1342 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3661 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3751 (($ $ |#4|) 82 T ELT) (((-579 $) |#4| $) 122 T ELT) (((-579 $) |#4| (-579 $)) 121 T ELT) (((-579 $) (-579 |#4|) $) 120 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 119 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) 42 T ELT)) (-3385 (((-83) $) 45 T ELT)) (-3547 (($) 44 T ELT)) (-3930 (((-688) $) 111 T ELT)) (-1934 (((-688) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 43 T ELT)) (-3954 (((-468) $) 70 (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) 61 T ELT)) (-2895 (($ $ |#3|) 32 T ELT)) (-2897 (($ $ |#3|) 34 T ELT)) (-3666 (($ $) 93 T ELT)) (-2896 (($ $ |#3|) 33 T ELT)) (-3928 (((-766) $) 13 T ELT) (((-579 |#4|) $) 41 T ELT)) (-3660 (((-688) $) 81 (|has| |#3| (-314)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3672 (((-83) $ (-1 (-83) |#4| (-579 |#4|))) 103 T ELT)) (-3173 (((-579 $) |#4| $) 128 T ELT) (((-579 $) |#4| (-579 $)) 127 T ELT) (((-579 $) (-579 |#4|) $) 126 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 125 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 |#3|) $) 86 T ELT)) (-3180 (((-83) |#4| $) 142 T ELT)) (-3915 (((-83) |#3| $) 85 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3939 (((-688) $) 47 (|has| $ (-6 -3977)) ELT))) +(((-1013 |#1| |#2| |#3| |#4|) (-111) (-386) (-711) (-750) (-970 |t#1| |t#2| |t#3|)) (T -1013)) +NIL +(-13 (-976 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-548 (-579 |#4|)) . T) ((-548 (-766)) . T) ((-122 |#4|) . T) ((-549 (-468)) |has| |#4| (-549 (-468))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-423 |#4|) . T) ((-448 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-883 |#1| |#2| |#3| |#4|) . T) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1119) . T)) +((-3292 (((-579 (-479)) (-479) (-479) (-479)) 40 T ELT)) (-3291 (((-579 (-479)) (-479) (-479) (-479)) 30 T ELT)) (-3290 (((-579 (-479)) (-479) (-479) (-479)) 35 T ELT)) (-3289 (((-479) (-479) (-479)) 22 T ELT)) (-3288 (((-1169 (-479)) (-579 (-479)) (-1169 (-479)) (-479)) 78 T ELT) (((-1169 (-479)) (-1169 (-479)) (-1169 (-479)) (-479)) 73 T ELT)) (-3287 (((-579 (-479)) (-579 (-824)) (-579 (-479)) (-83)) 56 T ELT)) (-3286 (((-626 (-479)) (-579 (-479)) (-579 (-479)) (-626 (-479))) 77 T ELT)) (-3285 (((-626 (-479)) (-579 (-824)) (-579 (-479))) 61 T ELT)) (-3284 (((-579 (-626 (-479))) (-579 (-824))) 66 T ELT)) (-3283 (((-579 (-479)) (-579 (-479)) (-579 (-479)) (-626 (-479))) 81 T ELT)) (-3282 (((-626 (-479)) (-579 (-479)) (-579 (-479)) (-579 (-479))) 91 T ELT))) +(((-1014) (-10 -7 (-15 -3282 ((-626 (-479)) (-579 (-479)) (-579 (-479)) (-579 (-479)))) (-15 -3283 ((-579 (-479)) (-579 (-479)) (-579 (-479)) (-626 (-479)))) (-15 -3284 ((-579 (-626 (-479))) (-579 (-824)))) (-15 -3285 ((-626 (-479)) (-579 (-824)) (-579 (-479)))) (-15 -3286 ((-626 (-479)) (-579 (-479)) (-579 (-479)) (-626 (-479)))) (-15 -3287 ((-579 (-479)) (-579 (-824)) (-579 (-479)) (-83))) (-15 -3288 ((-1169 (-479)) (-1169 (-479)) (-1169 (-479)) (-479))) (-15 -3288 ((-1169 (-479)) (-579 (-479)) (-1169 (-479)) (-479))) (-15 -3289 ((-479) (-479) (-479))) (-15 -3290 ((-579 (-479)) (-479) (-479) (-479))) (-15 -3291 ((-579 (-479)) (-479) (-479) (-479))) (-15 -3292 ((-579 (-479)) (-479) (-479) (-479))))) (T -1014)) +((-3292 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-1014)) (-5 *3 (-479)))) (-3291 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-1014)) (-5 *3 (-479)))) (-3290 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-1014)) (-5 *3 (-479)))) (-3289 (*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-1014)))) (-3288 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1169 (-479))) (-5 *3 (-579 (-479))) (-5 *4 (-479)) (-5 *1 (-1014)))) (-3288 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1169 (-479))) (-5 *3 (-479)) (-5 *1 (-1014)))) (-3287 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-579 (-479))) (-5 *3 (-579 (-824))) (-5 *4 (-83)) (-5 *1 (-1014)))) (-3286 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-626 (-479))) (-5 *3 (-579 (-479))) (-5 *1 (-1014)))) (-3285 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-824))) (-5 *4 (-579 (-479))) (-5 *2 (-626 (-479))) (-5 *1 (-1014)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-579 (-824))) (-5 *2 (-579 (-626 (-479)))) (-5 *1 (-1014)))) (-3283 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-579 (-479))) (-5 *3 (-626 (-479))) (-5 *1 (-1014)))) (-3282 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-626 (-479))) (-5 *1 (-1014))))) +((** (($ $ (-824)) 10 T ELT))) +(((-1015 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-824)))) (-1016)) (T -1015)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (** (($ $ (-824)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1016) (-111)) (T -1016)) +((* (*1 *1 *1 *1) (-4 *1 (-1016))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-824))))) +(-13 (-1006) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-824))))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-3172 (((-83) $) NIL (|has| |#3| (-23)) ELT)) (-3689 (($ (-824)) NIL (|has| |#3| (-955)) ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-2468 (($ $ $) NIL (|has| |#3| (-711)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-102)) ELT)) (-3120 (((-688)) NIL (|has| |#3| (-314)) ELT)) (-3770 ((|#3| $ (-479) |#3|) NIL (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (-12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (-12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1006)) ELT)) (-3140 (((-479) $) NIL (-12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) ELT) (((-344 (-479)) $) NIL (-12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006))) ELT) ((|#3| $) NIL (|has| |#3| (-1006)) ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (-12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955))) ELT) (((-2 (|:| |mat| (-626 |#3|)) (|:| |vec| (-1169 |#3|))) (-626 $) (-1169 $)) NIL (|has| |#3| (-955)) ELT) (((-626 |#3|) (-626 $)) NIL (|has| |#3| (-955)) ELT)) (-3449 (((-3 $ #1#) $) NIL (|has| |#3| (-955)) ELT)) (-2979 (($) NIL (|has| |#3| (-314)) ELT)) (-1564 ((|#3| $ (-479) |#3|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#3| $ (-479)) 12 T ELT)) (-3170 (((-83) $) NIL (|has| |#3| (-711)) ELT)) (-2874 (((-579 |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) NIL (|has| |#3| (-955)) ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#3| (-750)) ELT)) (-2593 (((-579 |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#3| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#3| (-750)) ELT)) (-1937 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-1997 (((-824) $) NIL (|has| |#3| (-314)) ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (-12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| |#3| (-576 (-479))) (|has| |#3| (-955))) ELT) (((-2 (|:| |mat| (-626 |#3|)) (|:| |vec| (-1169 |#3|))) (-1169 $) $) NIL (|has| |#3| (-955)) ELT) (((-626 |#3|) (-1169 $)) NIL (|has| |#3| (-955)) ELT)) (-3226 (((-1063) $) NIL (|has| |#3| (-1006)) ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-2387 (($ (-824)) NIL (|has| |#3| (-314)) ELT)) (-3227 (((-1024) $) NIL (|has| |#3| (-1006)) ELT)) (-3783 ((|#3| $) NIL (|has| (-479) (-750)) ELT)) (-2186 (($ $ |#3|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#3|))) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ (-245 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT) (($ $ (-579 |#3|) (-579 |#3|)) NIL (-12 (|has| |#3| (-256 |#3|)) (|has| |#3| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#3| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#3| (-1006))) ELT)) (-2192 (((-579 |#3|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#3| $ (-479) |#3|) NIL T ELT) ((|#3| $ (-479)) NIL T ELT)) (-3818 ((|#3| $ $) NIL (|has| |#3| (-955)) ELT)) (-1456 (($ (-1169 |#3|)) NIL T ELT)) (-3893 (((-105)) NIL (|has| |#3| (-308)) ELT)) (-3740 (($ $ (-688)) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-955))) ELT) (($ $) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-955)) ELT) (($ $ (-1 |#3| |#3|) (-688)) NIL (|has| |#3| (-955)) ELT)) (-1934 (((-688) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#3| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#3| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3928 (((-1169 |#3|) $) NIL T ELT) (($ (-479)) NIL (OR (-12 (|has| |#3| (-944 (-479))) (|has| |#3| (-1006))) (|has| |#3| (-955))) ELT) (($ (-344 (-479))) NIL (-12 (|has| |#3| (-944 (-344 (-479)))) (|has| |#3| (-1006))) ELT) (($ |#3|) NIL (|has| |#3| (-1006)) ELT) (((-766) $) NIL (|has| |#3| (-548 (-766))) ELT)) (-3110 (((-688)) NIL (|has| |#3| (-955)) CONST)) (-1254 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#3|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2645 (($) NIL (|has| |#3| (-23)) CONST)) (-2651 (($) NIL (|has| |#3| (-955)) CONST)) (-2654 (($ $ (-688)) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-955))) ELT) (($ $) NIL (-12 (|has| |#3| (-187)) (|has| |#3| (-955))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))) ELT) (($ $ (-1080)) NIL (-12 (|has| |#3| (-805 (-1080))) (|has| |#3| (-955))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-955)) ELT) (($ $ (-1 |#3| |#3|) (-688)) NIL (|has| |#3| (-955)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#3| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#3| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#3| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#3| (-750)) ELT)) (-2670 (((-83) $ $) 24 (|has| |#3| (-750)) ELT)) (-3931 (($ $ |#3|) NIL (|has| |#3| (-308)) ELT)) (-3819 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3821 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-688)) NIL (|has| |#3| (-955)) ELT) (($ $ (-824)) NIL (|has| |#3| (-955)) ELT)) (* (($ $ $) NIL (|has| |#3| (-955)) ELT) (($ $ |#3|) NIL (|has| |#3| (-659)) ELT) (($ |#3| $) NIL (|has| |#3| (-659)) ELT) (($ (-479) $) NIL (|has| |#3| (-21)) ELT) (($ (-688) $) NIL (|has| |#3| (-23)) ELT) (($ (-824) $) NIL (|has| |#3| (-25)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-1017 |#1| |#2| |#3|) (-193 |#1| |#3|) (-688) (-688) (-711)) (T -1017)) +NIL +((-3293 (((-579 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 50 T ELT)) (-3299 (((-479) (-1138 |#2| |#1|)) 95 (|has| |#1| (-386)) ELT)) (-3297 (((-479) (-1138 |#2| |#1|)) 79 T ELT)) (-3294 (((-579 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 58 T ELT)) (-3298 (((-479) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 81 (|has| |#1| (-386)) ELT)) (-3295 (((-579 |#1|) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 61 T ELT)) (-3296 (((-479) (-1138 |#2| |#1|) (-1138 |#2| |#1|)) 78 T ELT))) +(((-1018 |#1| |#2|) (-10 -7 (-15 -3293 ((-579 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3294 ((-579 (-1138 |#2| |#1|)) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3295 ((-579 |#1|) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3296 ((-479) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3297 ((-479) (-1138 |#2| |#1|))) (IF (|has| |#1| (-386)) (PROGN (-15 -3298 ((-479) (-1138 |#2| |#1|) (-1138 |#2| |#1|))) (-15 -3299 ((-479) (-1138 |#2| |#1|)))) |%noBranch|)) (-734) (-1080)) (T -1018)) +((-3299 (*1 *2 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-386)) (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-479)) (-5 *1 (-1018 *4 *5)))) (-3298 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-386)) (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-479)) (-5 *1 (-1018 *4 *5)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-479)) (-5 *1 (-1018 *4 *5)))) (-3296 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-479)) (-5 *1 (-1018 *4 *5)))) (-3295 (*1 *2 *3 *3) (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-579 *4)) (-5 *1 (-1018 *4 *5)))) (-3294 (*1 *2 *3 *3) (-12 (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-579 (-1138 *5 *4))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-1138 *5 *4)))) (-3293 (*1 *2 *3 *3) (-12 (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-579 (-1138 *5 *4))) (-5 *1 (-1018 *4 *5)) (-5 *3 (-1138 *5 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3301 (((-1085) $) 12 T ELT)) (-3300 (((-579 (-1085)) $) 14 T ELT)) (-3302 (($ (-579 (-1085)) (-1085)) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 29 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 17 T ELT))) +(((-1019) (-13 (-1006) (-10 -8 (-15 -3302 ($ (-579 (-1085)) (-1085))) (-15 -3301 ((-1085) $)) (-15 -3300 ((-579 (-1085)) $))))) (T -1019)) +((-3302 (*1 *1 *2 *3) (-12 (-5 *2 (-579 (-1085))) (-5 *3 (-1085)) (-5 *1 (-1019)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1019)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-579 (-1085))) (-5 *1 (-1019))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3303 (($ (-440) (-1019)) 14 T ELT)) (-3302 (((-1019) $) 20 T ELT)) (-3524 (((-440) $) 17 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 27 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1020) (-13 (-988) (-10 -8 (-15 -3303 ($ (-440) (-1019))) (-15 -3524 ((-440) $)) (-15 -3302 ((-1019) $))))) (T -1020)) +((-3303 (*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1019)) (-5 *1 (-1020)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-1020)))) (-3302 (*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-1020))))) +((-3605 (((-3 (-479) #1="failed") |#2| (-1080) |#2| (-1063)) 19 T ELT) (((-3 (-479) #1#) |#2| (-1080) (-744 |#2|)) 17 T ELT) (((-3 (-479) #1#) |#2|) 60 T ELT))) +(((-1021 |#1| |#2|) (-10 -7 (-15 -3605 ((-3 (-479) #1="failed") |#2|)) (-15 -3605 ((-3 (-479) #1#) |#2| (-1080) (-744 |#2|))) (-15 -3605 ((-3 (-479) #1#) |#2| (-1080) |#2| (-1063)))) (-13 (-490) (-944 (-479)) (-576 (-479)) (-386)) (-13 (-27) (-1105) (-358 |#1|))) (T -1021)) +((-3605 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-1063)) (-4 *6 (-13 (-490) (-944 *2) (-576 *2) (-386))) (-5 *2 (-479)) (-5 *1 (-1021 *6 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))))) (-3605 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-744 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) (-4 *6 (-13 (-490) (-944 *2) (-576 *2) (-386))) (-5 *2 (-479)) (-5 *1 (-1021 *6 *3)))) (-3605 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-490) (-944 *2) (-576 *2) (-386))) (-5 *2 (-479)) (-5 *1 (-1021 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4)))))) +((-3605 (((-3 (-479) #1="failed") (-344 (-851 |#1|)) (-1080) (-344 (-851 |#1|)) (-1063)) 38 T ELT) (((-3 (-479) #1#) (-344 (-851 |#1|)) (-1080) (-744 (-344 (-851 |#1|)))) 33 T ELT) (((-3 (-479) #1#) (-344 (-851 |#1|))) 14 T ELT))) +(((-1022 |#1|) (-10 -7 (-15 -3605 ((-3 (-479) #1="failed") (-344 (-851 |#1|)))) (-15 -3605 ((-3 (-479) #1#) (-344 (-851 |#1|)) (-1080) (-744 (-344 (-851 |#1|))))) (-15 -3605 ((-3 (-479) #1#) (-344 (-851 |#1|)) (-1080) (-344 (-851 |#1|)) (-1063)))) (-386)) (T -1022)) +((-3605 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-344 (-851 *6))) (-5 *4 (-1080)) (-5 *5 (-1063)) (-4 *6 (-386)) (-5 *2 (-479)) (-5 *1 (-1022 *6)))) (-3605 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-744 (-344 (-851 *6)))) (-5 *3 (-344 (-851 *6))) (-4 *6 (-386)) (-5 *2 (-479)) (-5 *1 (-1022 *6)))) (-3605 (*1 *2 *3) (|partial| -12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-386)) (-5 *2 (-479)) (-5 *1 (-1022 *4))))) +((-3631 (((-261 (-479)) (-48)) 12 T ELT))) +(((-1023) (-10 -7 (-15 -3631 ((-261 (-479)) (-48))))) (T -1023)) +((-3631 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-261 (-479))) (-5 *1 (-1023))))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) 22 T ELT)) (-3172 (((-83) $) 49 T ELT)) (-3304 (($ $ $) 28 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 75 T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-2034 (($ $ $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2029 (($ $ $ $) 59 T ELT)) (-3757 (($ $) NIL T ELT)) (-3953 (((-342 $) $) NIL T ELT)) (-1596 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) 61 T ELT)) (-3605 (((-479) $) NIL T ELT)) (-2426 (($ $ $) 56 T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL T ELT)) (-2549 (($ $ $) 42 T ELT)) (-2266 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 70 T ELT) (((-626 (-479)) (-626 $)) 8 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3009 (((-3 (-344 (-479)) #1#) $) NIL T ELT)) (-3008 (((-83) $) NIL T ELT)) (-3007 (((-344 (-479)) $) NIL T ELT)) (-2979 (($) 73 T ELT) (($ $) 72 T ELT)) (-2548 (($ $ $) 41 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL T ELT)) (-3705 (((-83) $) NIL T ELT)) (-2027 (($ $ $ $) NIL T ELT)) (-2035 (($ $ $) 71 T ELT)) (-3170 (((-83) $) 76 T ELT)) (-1357 (($ $ $) NIL T ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL T ELT)) (-2546 (($ $ $) 27 T ELT)) (-2397 (((-83) $) 50 T ELT)) (-2658 (((-83) $) 47 T ELT)) (-2545 (($ $) 23 T ELT)) (-3427 (((-628 $) $) NIL T ELT)) (-3171 (((-83) $) 60 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL T ELT)) (-2028 (($ $ $ $) 57 T ELT)) (-2516 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2842 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2031 (($ $) NIL T ELT)) (-1997 (((-824) $) 66 T ELT)) (-3815 (($ $) 55 T ELT)) (-2267 (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL T ELT) (((-626 (-479)) (-1169 $)) NIL T ELT)) (-1879 (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2026 (($ $ $) NIL T ELT)) (-3428 (($) NIL T CONST)) (-2387 (($ (-824)) 65 T ELT)) (-2033 (($ $) 33 T ELT)) (-3227 (((-1024) $) 54 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL T ELT)) (-3128 (($ $ $) 45 T ELT) (($ (-579 $)) NIL T ELT)) (-1355 (($ $) NIL T ELT)) (-3714 (((-342 $) $) NIL T ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL T ELT)) (-2659 (((-83) $) 48 T ELT)) (-1595 (((-688) $) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 44 T ELT)) (-3740 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2032 (($ $) 34 T ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-479) $) 12 T ELT) (((-468) $) NIL T ELT) (((-794 (-479)) $) NIL T ELT) (((-324) $) NIL T ELT) (((-177) $) NIL T ELT)) (-3928 (((-766) $) 11 T ELT) (($ (-479)) 13 T ELT) (($ $) NIL T ELT) (($ (-479)) 13 T ELT)) (-3110 (((-688)) NIL T CONST)) (-2036 (((-83) $ $) NIL T ELT)) (-3086 (($ $ $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2679 (($) 17 T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2547 (($ $ $) 26 T ELT)) (-2030 (($ $ $ $) 58 T ELT)) (-3365 (($ $) 46 T ELT)) (-2298 (($ $ $) 25 T ELT)) (-2645 (($) 15 T CONST)) (-2651 (($) 16 T CONST)) (-2654 (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2551 (((-83) $ $) 32 T ELT)) (-2552 (((-83) $ $) 30 T ELT)) (-3041 (((-83) $ $) 21 T ELT)) (-2669 (((-83) $ $) 31 T ELT)) (-2670 (((-83) $ $) 29 T ELT)) (-2299 (($ $ $) 24 T ELT)) (-3819 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3821 (($ $ $) 36 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 40 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-479) $) 14 T ELT))) +(((-1024) (-13 (-478) (-746) (-82) (-10 -8 (-6 -3964) (-6 -3969) (-6 -3965) (-15 -3304 ($ $ $))))) (T -1024)) +((-3304 (*1 *1 *1 *1) (-5 *1 (-1024)))) +((-479) (|%ismall?| |#1|)) +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3306 ((|#1| $) 48 T ELT)) (-3706 (($) 7 T CONST)) (-3308 ((|#1| |#1| $) 50 T ELT)) (-3307 ((|#1| $) 49 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 43 T ELT)) (-3591 (($ |#1| $) 44 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-1264 ((|#1| $) 45 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3305 (((-688) $) 47 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) 46 T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-1025 |#1|) (-111) (-1119)) (T -1025)) +((-3308 (*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1119)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1119)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1119)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1119)) (-5 *2 (-688))))) +(-13 (-76 |t#1|) (-10 -8 (-6 -3977) (-15 -3308 (|t#1| |t#1| $)) (-15 -3307 (|t#1| $)) (-15 -3306 (|t#1| $)) (-15 -3305 ((-688) $)))) +(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-3312 ((|#3| $) 87 T ELT)) (-3141 (((-3 (-479) #1="failed") $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3140 (((-479) $) NIL T ELT) (((-344 (-479)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL T ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL T ELT) (((-2 (|:| |mat| (-626 |#3|)) (|:| |vec| (-1169 |#3|))) (-626 $) (-1169 $)) 84 T ELT) (((-626 |#3|) (-626 $)) 76 T ELT)) (-3740 (($ $ (-1 |#3| |#3|) (-688)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT)) (-3311 ((|#3| $) 89 T ELT)) (-3313 ((|#4| $) 43 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 24 T ELT) (($ $ (-479)) 95 T ELT))) +(((-1026 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1|)) (-15 ** (|#1| |#1| (-479))) (-15 -3311 (|#3| |#1|)) (-15 -3312 (|#3| |#1|)) (-15 -3313 (|#4| |#1|)) (-15 -2266 ((-626 |#3|) (-626 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 |#3|)) (|:| |vec| (-1169 |#3|))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 |#1|) (-1169 |#1|))) (-15 -2266 ((-626 (-479)) (-626 |#1|))) (-15 -3928 (|#1| |#3|)) (-15 -3141 ((-3 |#3| #1="failed") |#1|)) (-15 -3140 (|#3| |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3740 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3740 (|#1| |#1| (-1 |#3| |#3|) (-688))) (-15 -3928 (|#1| (-479))) (-15 ** (|#1| |#1| (-688))) (-15 ** (|#1| |#1| (-824))) (-15 -3928 ((-766) |#1|))) (-1027 |#2| |#3| |#4| |#5|) (-688) (-955) (-193 |#2| |#3|) (-193 |#2| |#3|)) (T -1026)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3312 ((|#2| $) 87 T ELT)) (-3105 (((-83) $) 128 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3107 (((-83) $) 126 T ELT)) (-3315 (($ |#2|) 90 T ELT)) (-3706 (($) 22 T CONST)) (-3094 (($ $) 145 (|has| |#2| (-254)) ELT)) (-3096 ((|#3| $ (-479)) 140 T ELT)) (-3141 (((-3 (-479) #1="failed") $) 106 (|has| |#2| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) 103 (|has| |#2| (-944 (-344 (-479)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3140 (((-479) $) 105 (|has| |#2| (-944 (-479))) ELT) (((-344 (-479)) $) 102 (|has| |#2| (-944 (-344 (-479)))) ELT) ((|#2| $) 101 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 96 (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 95 (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) 94 T ELT) (((-626 |#2|) (-626 $)) 93 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3093 (((-688) $) 146 (|has| |#2| (-490)) ELT)) (-3097 ((|#2| $ (-479) (-479)) 138 T ELT)) (-2874 (((-579 |#2|) $) 114 (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) 40 T ELT)) (-3092 (((-688) $) 147 (|has| |#2| (-490)) ELT)) (-3091 (((-579 |#4|) $) 148 (|has| |#2| (-490)) ELT)) (-3099 (((-688) $) 134 T ELT)) (-3098 (((-688) $) 135 T ELT)) (-3309 ((|#2| $) 82 (|has| |#2| (-6 (-3979 #2="*"))) ELT)) (-3103 (((-479) $) 130 T ELT)) (-3101 (((-479) $) 132 T ELT)) (-2593 (((-579 |#2|) $) 113 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#2| $) 111 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3102 (((-479) $) 131 T ELT)) (-3100 (((-479) $) 133 T ELT)) (-3108 (($ (-579 (-579 |#2|))) 125 T ELT)) (-1937 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-3576 (((-579 (-579 |#2|)) $) 136 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 98 (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 97 (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) 92 T ELT) (((-626 |#2|) (-1169 $)) 91 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3572 (((-3 $ "failed") $) 81 (|has| |#2| (-308)) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3448 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-490)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) 116 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#2|))) 110 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) 109 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) 107 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) 124 T ELT)) (-3385 (((-83) $) 121 T ELT)) (-3547 (($) 122 T ELT)) (-3782 ((|#2| $ (-479) (-479) |#2|) 139 T ELT) ((|#2| $ (-479) (-479)) 137 T ELT)) (-3740 (($ $ (-1 |#2| |#2|) (-688)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-187)) ELT) (($ $ (-688)) 50 (|has| |#2| (-187)) ELT) (($ $ (-1080)) 60 (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 58 (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 57 (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 56 (|has| |#2| (-805 (-1080))) ELT)) (-3311 ((|#2| $) 86 T ELT)) (-3314 (($ (-579 |#2|)) 89 T ELT)) (-3106 (((-83) $) 127 T ELT)) (-3313 ((|#3| $) 88 T ELT)) (-3310 ((|#2| $) 83 (|has| |#2| (-6 (-3979 #2#))) ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) 115 (|has| $ (-6 -3977)) ELT) (((-688) |#2| $) 112 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 123 T ELT)) (-3095 ((|#4| $ (-479)) 141 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 (-479))) 104 (|has| |#2| (-944 (-344 (-479)))) ELT) (($ |#2|) 99 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) 117 (|has| $ (-6 -3977)) ELT)) (-3104 (((-83) $) 129 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1 |#2| |#2|) (-688)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-187)) ELT) (($ $ (-688)) 49 (|has| |#2| (-187)) ELT) (($ $ (-1080)) 59 (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 55 (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 54 (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 53 (|has| |#2| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#2|) 144 (|has| |#2| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 80 (|has| |#2| (-308)) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-3939 (((-688) $) 120 (|has| $ (-6 -3977)) ELT))) +(((-1027 |#1| |#2| |#3| |#4|) (-111) (-688) (-955) (-193 |t#1| |t#2|) (-193 |t#1| |t#2|)) (T -1027)) +((-3315 (*1 *1 *2) (-12 (-4 *2 (-955)) (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)))) (-3314 (*1 *1 *2) (-12 (-5 *2 (-579 *4)) (-4 *4 (-955)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4)))) (-3313 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-955)) (-4 *5 (-193 *3 *4)) (-4 *2 (-193 *3 *4)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (-4 *2 (-955)))) (-3311 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (-4 *2 (-955)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1027 *3 *4 *5 *2)) (-4 *4 (-955)) (-4 *5 (-193 *3 *4)) (-4 *2 (-193 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-955)) (-4 *2 (-193 *3 *4)) (-4 *5 (-193 *3 *4)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (|has| *2 (-6 (-3979 #1="*"))) (-4 *2 (-955)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) (|has| *2 (-6 (-3979 #1#))) (-4 *2 (-955)))) (-3572 (*1 *1 *1) (|partial| -12 (-4 *1 (-1027 *2 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-193 *2 *3)) (-4 *5 (-193 *2 *3)) (-4 *3 (-308)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4)) (-4 *4 (-308))))) +(-13 (-182 |t#2|) (-80 |t#2| |t#2|) (-959 |t#1| |t#1| |t#2| |t#3| |t#4|) (-349 |t#2|) (-323 |t#2|) (-10 -8 (IF (|has| |t#2| (-144)) (-6 (-650 |t#2|)) |%noBranch|) (-15 -3315 ($ |t#2|)) (-15 -3314 ($ (-579 |t#2|))) (-15 -3313 (|t#3| $)) (-15 -3312 (|t#2| $)) (-15 -3311 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3979 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3310 (|t#2| $)) (-15 -3309 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-308)) (PROGN (-15 -3572 ((-3 $ "failed") $)) (-15 ** ($ $ (-479)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3979 #1="*"))) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-551 (-344 (-479))) |has| |#2| (-944 (-344 (-479)))) ((-551 (-479)) . T) ((-551 |#2|) . T) ((-548 (-766)) . T) ((-184 $) OR (|has| |#2| (-187)) (|has| |#2| (-188))) ((-182 |#2|) . T) ((-188) |has| |#2| (-188)) ((-187) OR (|has| |#2| (-187)) (|has| |#2| (-188))) ((-222 |#2|) . T) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-323 |#2|) . T) ((-349 |#2|) . T) ((-423 |#2|) . T) ((-448 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-584 (-479)) . T) ((-584 |#2|) . T) ((-584 $) . T) ((-586 (-479)) |has| |#2| (-576 (-479))) ((-586 |#2|) . T) ((-586 $) . T) ((-578 |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-6 (-3979 #1#)))) ((-576 (-479)) |has| |#2| (-576 (-479))) ((-576 |#2|) . T) ((-650 |#2|) OR (|has| |#2| (-144)) (|has| |#2| (-6 (-3979 #1#)))) ((-659) . T) ((-800 $ (-1080)) OR (|has| |#2| (-805 (-1080))) (|has| |#2| (-803 (-1080)))) ((-803 (-1080)) |has| |#2| (-803 (-1080))) ((-805 (-1080)) OR (|has| |#2| (-805 (-1080))) (|has| |#2| (-803 (-1080)))) ((-959 |#1| |#1| |#2| |#3| |#4|) . T) ((-944 (-344 (-479))) |has| |#2| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#2| (-944 (-479))) ((-944 |#2|) . T) ((-957 |#2|) . T) ((-962 |#2|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3318 ((|#4| |#4|) 81 T ELT)) (-3316 ((|#4| |#4|) 76 T ELT)) (-3320 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-579 |#3|))) |#4| |#3|) 91 T ELT)) (-3319 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3317 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1028 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3316 (|#4| |#4|)) (-15 -3317 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3318 (|#4| |#4|)) (-15 -3319 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3320 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-579 |#3|))) |#4| |#3|))) (-254) (-318 |#1|) (-318 |#1|) (-623 |#1| |#2| |#3|)) (T -1028)) +((-3320 (*1 *2 *3 *4) (-12 (-4 *5 (-254)) (-4 *6 (-318 *5)) (-4 *4 (-318 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-579 *4)))) (-5 *1 (-1028 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-254)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3318 (*1 *2 *2) (-12 (-4 *3 (-254)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-3317 (*1 *2 *3) (-12 (-4 *4 (-254)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) (-3316 (*1 *2 *2) (-12 (-4 *3 (-254)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 18 T ELT)) (-3066 (((-579 |#2|) $) 174 T ELT)) (-3068 (((-1075 $) $ |#2|) 60 T ELT) (((-1075 |#1|) $) 49 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 116 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 118 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 120 (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 |#2|)) 214 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3140 ((|#1| $) 165 T ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) ((|#2| $) NIL T ELT)) (-3738 (($ $ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3941 (($ $) 218 T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) 90 T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT) (($ $ |#2|) NIL (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| (-464 |#2|) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| |#1| (-790 (-324))) (|has| |#2| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| |#1| (-790 (-479))) (|has| |#2| (-790 (-479)))) ELT)) (-2397 (((-83) $) 20 T ELT)) (-2405 (((-688) $) 30 T ELT)) (-3069 (($ (-1075 |#1|) |#2|) 54 T ELT) (($ (-1075 $) |#2|) 71 T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) 38 T ELT)) (-2878 (($ |#1| (-464 |#2|)) 78 T ELT) (($ $ |#2| (-688)) 58 T ELT) (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ |#2|) NIL T ELT)) (-2805 (((-464 |#2|) $) 205 T ELT) (((-688) $ |#2|) 206 T ELT) (((-579 (-688)) $ (-579 |#2|)) 207 T ELT)) (-1613 (($ (-1 (-464 |#2|) (-464 |#2|)) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3067 (((-3 |#2| #1#) $) 177 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2879 (($ $) 217 T ELT)) (-3158 ((|#1| $) 43 T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| |#2|) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) 39 T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 148 (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) 153 (|has| |#1| (-386)) ELT) (($ $ $) 138 (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-815)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-490)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-579 |#2|) (-579 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-579 |#2|) (-579 $)) 194 T ELT)) (-3739 (($ $ |#2|) NIL (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT) (($ $ |#2| (-688)) NIL T ELT) (($ $ (-579 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3930 (((-464 |#2|) $) 201 T ELT) (((-688) $ |#2|) 196 T ELT) (((-579 (-688)) $ (-579 |#2|)) 199 T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| |#1| (-549 (-794 (-324)))) (|has| |#2| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| |#1| (-549 (-794 (-479)))) (|has| |#2| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| |#1| (-549 (-468))) (|has| |#2| (-549 (-468)))) ELT)) (-2802 ((|#1| $) 134 (|has| |#1| (-386)) ELT) (($ $ |#2|) 137 (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3928 (((-766) $) 159 T ELT) (($ (-479)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-3799 (((-579 |#1|) $) 162 T ELT)) (-3659 ((|#1| $ (-464 |#2|)) 80 T ELT) (($ $ |#2| (-688)) NIL T ELT) (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) 87 T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) 123 (|has| |#1| (-490)) ELT)) (-2645 (($) 12 T CONST)) (-2651 (($) 14 T CONST)) (-2654 (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT) (($ $ |#2| (-688)) NIL T ELT) (($ $ (-579 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3041 (((-83) $ $) 106 T ELT)) (-3931 (($ $ |#1|) 132 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3821 (($ $ $) 55 T ELT)) (** (($ $ (-824)) 110 T ELT) (($ $ (-688)) 109 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1029 |#1| |#2|) (-855 |#1| (-464 |#2|) |#2|) (-955) (-750)) (T -1029)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 |#2|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3474 (($ $) 149 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 125 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3472 (($ $) 145 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 121 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3476 (($ $) 153 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 129 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3796 (((-851 |#1|) $ (-688)) NIL T ELT) (((-851 |#1|) $ (-688) (-688)) NIL T ELT)) (-2877 (((-83) $) NIL T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-688) $ |#2|) NIL T ELT) (((-688) $ |#2| (-688)) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ $ (-579 |#2|) (-579 (-464 |#2|))) NIL T ELT) (($ $ |#2| (-464 |#2|)) NIL T ELT) (($ |#1| (-464 |#2|)) NIL T ELT) (($ $ |#2| (-688)) 63 T ELT) (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3924 (($ $) 119 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3794 (($ $ |#2|) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3658 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3751 (($ $ (-688)) 17 T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-3925 (($ $) 117 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (($ $ |#2| $) 104 T ELT) (($ $ (-579 |#2|) (-579 $)) 99 T ELT) (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT)) (-3740 (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT) (($ $ |#2| (-688)) NIL T ELT) (($ $ (-579 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3930 (((-464 |#2|) $) NIL T ELT)) (-3321 (((-1 (-1059 |#3|) |#3|) (-579 |#2|) (-579 (-1059 |#3|))) 87 T ELT)) (-3477 (($ $) 155 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 131 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 151 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 127 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 147 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 123 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) 19 T ELT)) (-3928 (((-766) $) 194 T ELT) (($ (-479)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-144)) ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3659 ((|#1| $ (-464 |#2|)) NIL T ELT) (($ $ |#2| (-688)) NIL T ELT) (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT) ((|#3| $ (-688)) 43 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) 161 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 137 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) 157 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 133 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 165 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 141 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3483 (($ $) 167 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 143 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 163 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 139 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 159 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 135 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 52 T CONST)) (-2651 (($) 62 T CONST)) (-2654 (($ $ (-579 |#2|) (-579 (-688))) NIL T ELT) (($ $ |#2| (-688)) NIL T ELT) (($ $ (-579 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) 196 (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 66 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 109 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-344 (-479))) 114 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) 112 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1030 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -3659 (|#3| $ (-688))) (-15 -3928 ($ |#2|)) (-15 -3928 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3321 ((-1 (-1059 |#3|) |#3|) (-579 |#2|) (-579 (-1059 |#3|)))) (IF (|has| |#1| (-38 (-344 (-479)))) (PROGN (-15 -3794 ($ $ |#2| |#1|)) (-15 -3658 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-955) (-750) (-855 |#1| (-464 |#2|) |#2|)) (T -1030)) +((-3659 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *2 (-855 *4 (-464 *5) *5)) (-5 *1 (-1030 *4 *5 *2)) (-4 *4 (-955)) (-4 *5 (-750)))) (-3928 (*1 *1 *2) (-12 (-4 *3 (-955)) (-4 *2 (-750)) (-5 *1 (-1030 *3 *2 *4)) (-4 *4 (-855 *3 (-464 *2) *2)))) (-3928 (*1 *1 *2) (-12 (-4 *3 (-955)) (-4 *4 (-750)) (-5 *1 (-1030 *3 *4 *2)) (-4 *2 (-855 *3 (-464 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-955)) (-4 *4 (-750)) (-5 *1 (-1030 *3 *4 *2)) (-4 *2 (-855 *3 (-464 *4) *4)))) (-3321 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *6)) (-5 *4 (-579 (-1059 *7))) (-4 *6 (-750)) (-4 *7 (-855 *5 (-464 *6) *6)) (-4 *5 (-955)) (-5 *2 (-1 (-1059 *7) *7)) (-5 *1 (-1030 *5 *6 *7)))) (-3794 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-4 *2 (-750)) (-5 *1 (-1030 *3 *2 *4)) (-4 *4 (-855 *3 (-464 *2) *2)))) (-3658 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1030 *4 *3 *5))) (-4 *4 (-38 (-344 (-479)))) (-4 *4 (-955)) (-4 *3 (-750)) (-5 *1 (-1030 *4 *3 *5)) (-4 *5 (-855 *4 (-464 *3) *3))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |#4|)))) (-579 |#4|)) 90 T ELT)) (-3664 (((-579 $) (-579 |#4|)) 91 T ELT) (((-579 $) (-579 |#4|) (-83)) 118 T ELT)) (-3066 (((-579 |#3|) $) 37 T ELT)) (-2893 (((-83) $) 30 T ELT)) (-2884 (((-83) $) 21 (|has| |#1| (-490)) ELT)) (-3675 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3670 ((|#4| |#4| $) 97 T ELT)) (-3757 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| $) 133 T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3692 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3977)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-3706 (($) 46 T CONST)) (-2889 (((-83) $) 26 (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) 28 (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) 27 (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) 29 (|has| |#1| (-490)) ELT)) (-3671 (((-579 |#4|) (-579 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) 22 (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) 23 (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ "failed") (-579 |#4|)) 40 T ELT)) (-3140 (($ (-579 |#4|)) 39 T ELT)) (-3781 (((-3 $ #1#) $) 87 T ELT)) (-3667 ((|#4| |#4| $) 94 T ELT)) (-1341 (($ $) 69 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#4| $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-490)) ELT)) (-3676 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3665 ((|#4| |#4| $) 92 T ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3977)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#4|)) (|:| -1690 (-579 |#4|))) $) 110 T ELT)) (-3181 (((-83) |#4| $) 143 T ELT)) (-3179 (((-83) |#4| $) 140 T ELT)) (-3182 (((-83) |#4| $) 144 T ELT) (((-83) $) 141 T ELT)) (-2874 (((-579 |#4|) $) 53 (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3164 ((|#3| $) 38 T ELT)) (-2593 (((-579 |#4|) $) 54 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2899 (((-579 |#3|) $) 36 T ELT)) (-2898 (((-83) |#3| $) 35 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3175 (((-3 |#4| (-579 $)) |#4| |#4| $) 135 T ELT)) (-3174 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| |#4| $) 134 T ELT)) (-3780 (((-3 |#4| #1#) $) 88 T ELT)) (-3176 (((-579 $) |#4| $) 136 T ELT)) (-3178 (((-3 (-83) (-579 $)) |#4| $) 139 T ELT)) (-3177 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 $))) |#4| $) 138 T ELT) (((-83) |#4| $) 137 T ELT)) (-3222 (((-579 $) |#4| $) 132 T ELT) (((-579 $) (-579 |#4|) $) 131 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 130 T ELT) (((-579 $) |#4| (-579 $)) 129 T ELT)) (-3422 (($ |#4| $) 124 T ELT) (($ (-579 |#4|) $) 123 T ELT)) (-3679 (((-579 |#4|) $) 112 T ELT)) (-3673 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3668 ((|#4| |#4| $) 95 T ELT)) (-3681 (((-83) $ $) 115 T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-490)) ELT)) (-3674 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3669 ((|#4| |#4| $) 96 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3783 (((-3 |#4| #1#) $) 89 T ELT)) (-1342 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3661 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-3751 (($ $ |#4|) 82 T ELT) (((-579 $) |#4| $) 122 T ELT) (((-579 $) |#4| (-579 $)) 121 T ELT) (((-579 $) (-579 |#4|) $) 120 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 119 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) 42 T ELT)) (-3385 (((-83) $) 45 T ELT)) (-3547 (($) 44 T ELT)) (-3930 (((-688) $) 111 T ELT)) (-1934 (((-688) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 43 T ELT)) (-3954 (((-468) $) 70 (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) 61 T ELT)) (-2895 (($ $ |#3|) 32 T ELT)) (-2897 (($ $ |#3|) 34 T ELT)) (-3666 (($ $) 93 T ELT)) (-2896 (($ $ |#3|) 33 T ELT)) (-3928 (((-766) $) 13 T ELT) (((-579 |#4|) $) 41 T ELT)) (-3660 (((-688) $) 81 (|has| |#3| (-314)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3672 (((-83) $ (-1 (-83) |#4| (-579 |#4|))) 103 T ELT)) (-3173 (((-579 $) |#4| $) 128 T ELT) (((-579 $) |#4| (-579 $)) 127 T ELT) (((-579 $) (-579 |#4|) $) 126 T ELT) (((-579 $) (-579 |#4|) (-579 $)) 125 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 |#3|) $) 86 T ELT)) (-3180 (((-83) |#4| $) 142 T ELT)) (-3915 (((-83) |#3| $) 85 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3939 (((-688) $) 47 (|has| $ (-6 -3977)) ELT))) +(((-1031 |#1| |#2| |#3| |#4|) (-111) (-386) (-711) (-750) (-970 |t#1| |t#2| |t#3|)) (T -1031)) +NIL +(-13 (-1013 |t#1| |t#2| |t#3| |t#4|) (-701 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-72) . T) ((-548 (-579 |#4|)) . T) ((-548 (-766)) . T) ((-122 |#4|) . T) ((-549 (-468)) |has| |#4| (-549 (-468))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-423 |#4|) . T) ((-448 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-701 |#1| |#2| |#3| |#4|) . T) ((-883 |#1| |#2| |#3| |#4|) . T) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1013 |#1| |#2| |#3| |#4|) . T) ((-1114 |#1| |#2| |#3| |#4|) . T) ((-1119) . T)) +((-3555 (((-579 |#2|) |#1|) 15 T ELT)) (-3327 (((-579 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-579 |#2|) |#1|) 61 T ELT)) (-3325 (((-579 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-579 |#2|) |#1|) 59 T ELT)) (-3322 ((|#2| |#1|) 54 T ELT)) (-3323 (((-2 (|:| |solns| (-579 |#2|)) (|:| |maps| (-579 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3324 (((-579 |#2|) |#2| |#2|) 42 T ELT) (((-579 |#2|) |#1|) 58 T ELT)) (-3326 (((-579 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-579 |#2|) |#1|) 60 T ELT)) (-3331 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3329 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3328 ((|#2| |#2| |#2|) 50 T ELT)) (-3330 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1032 |#1| |#2|) (-10 -7 (-15 -3555 ((-579 |#2|) |#1|)) (-15 -3322 (|#2| |#1|)) (-15 -3323 ((-2 (|:| |solns| (-579 |#2|)) (|:| |maps| (-579 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3324 ((-579 |#2|) |#1|)) (-15 -3325 ((-579 |#2|) |#1|)) (-15 -3326 ((-579 |#2|) |#1|)) (-15 -3327 ((-579 |#2|) |#1|)) (-15 -3324 ((-579 |#2|) |#2| |#2|)) (-15 -3325 ((-579 |#2|) |#2| |#2| |#2|)) (-15 -3326 ((-579 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3327 ((-579 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3328 (|#2| |#2| |#2|)) (-15 -3329 (|#2| |#2| |#2| |#2|)) (-15 -3330 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3331 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1145 |#2|) (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (T -1032)) +((-3331 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2)))) (-3330 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2)))) (-3329 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2)))) (-3328 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2)))) (-3327 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-579 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1145 *3)))) (-3326 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-579 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1145 *3)))) (-3325 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-579 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1145 *3)))) (-3324 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-579 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1145 *3)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4)))) (-3324 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-2 (|:| |solns| (-579 *5)) (|:| |maps| (-579 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1032 *3 *5)) (-4 *3 (-1145 *5)))) (-3322 (*1 *2 *3) (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2)))) (-3555 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4))))) +((-3332 (((-579 (-579 (-245 (-261 |#1|)))) (-579 (-245 (-344 (-851 |#1|))))) 119 T ELT) (((-579 (-579 (-245 (-261 |#1|)))) (-579 (-245 (-344 (-851 |#1|)))) (-579 (-1080))) 118 T ELT) (((-579 (-579 (-245 (-261 |#1|)))) (-579 (-344 (-851 |#1|)))) 116 T ELT) (((-579 (-579 (-245 (-261 |#1|)))) (-579 (-344 (-851 |#1|))) (-579 (-1080))) 113 T ELT) (((-579 (-245 (-261 |#1|))) (-245 (-344 (-851 |#1|)))) 97 T ELT) (((-579 (-245 (-261 |#1|))) (-245 (-344 (-851 |#1|))) (-1080)) 98 T ELT) (((-579 (-245 (-261 |#1|))) (-344 (-851 |#1|))) 92 T ELT) (((-579 (-245 (-261 |#1|))) (-344 (-851 |#1|)) (-1080)) 82 T ELT)) (-3333 (((-579 (-579 (-261 |#1|))) (-579 (-344 (-851 |#1|))) (-579 (-1080))) 111 T ELT) (((-579 (-261 |#1|)) (-344 (-851 |#1|)) (-1080)) 54 T ELT)) (-3334 (((-1070 (-579 (-261 |#1|)) (-579 (-245 (-261 |#1|)))) (-344 (-851 |#1|)) (-1080)) 123 T ELT) (((-1070 (-579 (-261 |#1|)) (-579 (-245 (-261 |#1|)))) (-245 (-344 (-851 |#1|))) (-1080)) 122 T ELT))) +(((-1033 |#1|) (-10 -7 (-15 -3332 ((-579 (-245 (-261 |#1|))) (-344 (-851 |#1|)) (-1080))) (-15 -3332 ((-579 (-245 (-261 |#1|))) (-344 (-851 |#1|)))) (-15 -3332 ((-579 (-245 (-261 |#1|))) (-245 (-344 (-851 |#1|))) (-1080))) (-15 -3332 ((-579 (-245 (-261 |#1|))) (-245 (-344 (-851 |#1|))))) (-15 -3332 ((-579 (-579 (-245 (-261 |#1|)))) (-579 (-344 (-851 |#1|))) (-579 (-1080)))) (-15 -3332 ((-579 (-579 (-245 (-261 |#1|)))) (-579 (-344 (-851 |#1|))))) (-15 -3332 ((-579 (-579 (-245 (-261 |#1|)))) (-579 (-245 (-344 (-851 |#1|)))) (-579 (-1080)))) (-15 -3332 ((-579 (-579 (-245 (-261 |#1|)))) (-579 (-245 (-344 (-851 |#1|)))))) (-15 -3333 ((-579 (-261 |#1|)) (-344 (-851 |#1|)) (-1080))) (-15 -3333 ((-579 (-579 (-261 |#1|))) (-579 (-344 (-851 |#1|))) (-579 (-1080)))) (-15 -3334 ((-1070 (-579 (-261 |#1|)) (-579 (-245 (-261 |#1|)))) (-245 (-344 (-851 |#1|))) (-1080))) (-15 -3334 ((-1070 (-579 (-261 |#1|)) (-579 (-245 (-261 |#1|)))) (-344 (-851 |#1|)) (-1080)))) (-13 (-254) (-118))) (T -1033)) +((-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-1070 (-579 (-261 *5)) (-579 (-245 (-261 *5))))) (-5 *1 (-1033 *5)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-344 (-851 *5)))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-1070 (-579 (-261 *5)) (-579 (-245 (-261 *5))))) (-5 *1 (-1033 *5)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-344 (-851 *5)))) (-5 *4 (-579 (-1080))) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-579 (-261 *5)))) (-5 *1 (-1033 *5)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-261 *5))) (-5 *1 (-1033 *5)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-579 (-245 (-344 (-851 *4))))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-579 (-579 (-245 (-261 *4))))) (-5 *1 (-1033 *4)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-245 (-344 (-851 *5))))) (-5 *4 (-579 (-1080))) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-579 (-245 (-261 *5))))) (-5 *1 (-1033 *5)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-579 (-344 (-851 *4)))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-579 (-579 (-245 (-261 *4))))) (-5 *1 (-1033 *4)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-344 (-851 *5)))) (-5 *4 (-579 (-1080))) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-579 (-245 (-261 *5))))) (-5 *1 (-1033 *5)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-245 (-344 (-851 *4)))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-579 (-245 (-261 *4)))) (-5 *1 (-1033 *4)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-245 (-344 (-851 *5)))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-245 (-261 *5)))) (-5 *1 (-1033 *5)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-13 (-254) (-118))) (-5 *2 (-579 (-245 (-261 *4)))) (-5 *1 (-1033 *4)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-245 (-261 *5)))) (-5 *1 (-1033 *5))))) +((-3336 (((-344 (-1075 (-261 |#1|))) (-1169 (-261 |#1|)) (-344 (-1075 (-261 |#1|))) (-479)) 36 T ELT)) (-3335 (((-344 (-1075 (-261 |#1|))) (-344 (-1075 (-261 |#1|))) (-344 (-1075 (-261 |#1|))) (-344 (-1075 (-261 |#1|)))) 48 T ELT))) +(((-1034 |#1|) (-10 -7 (-15 -3335 ((-344 (-1075 (-261 |#1|))) (-344 (-1075 (-261 |#1|))) (-344 (-1075 (-261 |#1|))) (-344 (-1075 (-261 |#1|))))) (-15 -3336 ((-344 (-1075 (-261 |#1|))) (-1169 (-261 |#1|)) (-344 (-1075 (-261 |#1|))) (-479)))) (-490)) (T -1034)) +((-3336 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-344 (-1075 (-261 *5)))) (-5 *3 (-1169 (-261 *5))) (-5 *4 (-479)) (-4 *5 (-490)) (-5 *1 (-1034 *5)))) (-3335 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-344 (-1075 (-261 *3)))) (-4 *3 (-490)) (-5 *1 (-1034 *3))))) +((-3555 (((-579 (-579 (-245 (-261 |#1|)))) (-579 (-245 (-261 |#1|))) (-579 (-1080))) 244 T ELT) (((-579 (-245 (-261 |#1|))) (-261 |#1|) (-1080)) 23 T ELT) (((-579 (-245 (-261 |#1|))) (-245 (-261 |#1|)) (-1080)) 29 T ELT) (((-579 (-245 (-261 |#1|))) (-245 (-261 |#1|))) 28 T ELT) (((-579 (-245 (-261 |#1|))) (-261 |#1|)) 24 T ELT))) +(((-1035 |#1|) (-10 -7 (-15 -3555 ((-579 (-245 (-261 |#1|))) (-261 |#1|))) (-15 -3555 ((-579 (-245 (-261 |#1|))) (-245 (-261 |#1|)))) (-15 -3555 ((-579 (-245 (-261 |#1|))) (-245 (-261 |#1|)) (-1080))) (-15 -3555 ((-579 (-245 (-261 |#1|))) (-261 |#1|) (-1080))) (-15 -3555 ((-579 (-579 (-245 (-261 |#1|)))) (-579 (-245 (-261 |#1|))) (-579 (-1080))))) (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (T -1035)) +((-3555 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-1080))) (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-579 (-579 (-245 (-261 *5))))) (-5 *1 (-1035 *5)) (-5 *3 (-579 (-245 (-261 *5)))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-579 (-245 (-261 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-261 *5)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-579 (-245 (-261 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-245 (-261 *5))))) (-3555 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-579 (-245 (-261 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-245 (-261 *4))))) (-3555 (*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *2 (-579 (-245 (-261 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-261 *4))))) +((-3338 ((|#2| |#2|) 28 (|has| |#1| (-750)) ELT) ((|#2| |#2| (-1 (-83) |#1| |#1|)) 25 T ELT)) (-3337 ((|#2| |#2|) 27 (|has| |#1| (-750)) ELT) ((|#2| |#2| (-1 (-83) |#1| |#1|)) 22 T ELT))) +(((-1036 |#1| |#2|) (-10 -7 (-15 -3337 (|#2| |#2| (-1 (-83) |#1| |#1|))) (-15 -3338 (|#2| |#2| (-1 (-83) |#1| |#1|))) (IF (|has| |#1| (-750)) (PROGN (-15 -3337 (|#2| |#2|)) (-15 -3338 (|#2| |#2|))) |%noBranch|)) (-1119) (-13 (-534 (-479) |#1|) (-10 -7 (-6 -3977) (-6 -3978)))) (T -1036)) +((-3338 (*1 *2 *2) (-12 (-4 *3 (-750)) (-4 *3 (-1119)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-13 (-534 (-479) *3) (-10 -7 (-6 -3977) (-6 -3978)))))) (-3337 (*1 *2 *2) (-12 (-4 *3 (-750)) (-4 *3 (-1119)) (-5 *1 (-1036 *3 *2)) (-4 *2 (-13 (-534 (-479) *3) (-10 -7 (-6 -3977) (-6 -3978)))))) (-3338 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1036 *4 *2)) (-4 *2 (-13 (-534 (-479) *4) (-10 -7 (-6 -3977) (-6 -3978)))))) (-3337 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1036 *4 *2)) (-4 *2 (-13 (-534 (-479) *4) (-10 -7 (-6 -3977) (-6 -3978))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3870 (((-1069 3 |#1|) $) 141 T ELT)) (-3348 (((-83) $) 101 T ELT)) (-3349 (($ $ (-579 (-848 |#1|))) 44 T ELT) (($ $ (-579 (-579 |#1|))) 104 T ELT) (($ (-579 (-848 |#1|))) 103 T ELT) (((-579 (-848 |#1|)) $) 102 T ELT)) (-3354 (((-83) $) 72 T ELT)) (-3688 (($ $ (-848 |#1|)) 76 T ELT) (($ $ (-579 |#1|)) 81 T ELT) (($ $ (-688)) 83 T ELT) (($ (-848 |#1|)) 77 T ELT) (((-848 |#1|) $) 75 T ELT)) (-3340 (((-2 (|:| -3832 (-688)) (|:| |curves| (-688)) (|:| |polygons| (-688)) (|:| |constructs| (-688))) $) 139 T ELT)) (-3358 (((-688) $) 53 T ELT)) (-3359 (((-688) $) 52 T ELT)) (-3869 (($ $ (-688) (-848 |#1|)) 67 T ELT)) (-3346 (((-83) $) 111 T ELT)) (-3347 (($ $ (-579 (-579 (-848 |#1|))) (-579 (-143)) (-143)) 118 T ELT) (($ $ (-579 (-579 (-579 |#1|))) (-579 (-143)) (-143)) 120 T ELT) (($ $ (-579 (-579 (-848 |#1|))) (-83) (-83)) 115 T ELT) (($ $ (-579 (-579 (-579 |#1|))) (-83) (-83)) 127 T ELT) (($ (-579 (-579 (-848 |#1|)))) 116 T ELT) (($ (-579 (-579 (-848 |#1|))) (-83) (-83)) 117 T ELT) (((-579 (-579 (-848 |#1|))) $) 114 T ELT)) (-3500 (($ (-579 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3341 (((-579 (-143)) $) 133 T ELT)) (-3345 (((-579 (-848 |#1|)) $) 130 T ELT)) (-3342 (((-579 (-579 (-143))) $) 132 T ELT)) (-3343 (((-579 (-579 (-579 (-848 |#1|)))) $) NIL T ELT)) (-3344 (((-579 (-579 (-579 (-688)))) $) 131 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3355 (((-688) $ (-579 (-848 |#1|))) 65 T ELT)) (-3352 (((-83) $) 84 T ELT)) (-3353 (($ $ (-579 (-848 |#1|))) 86 T ELT) (($ $ (-579 (-579 |#1|))) 92 T ELT) (($ (-579 (-848 |#1|))) 87 T ELT) (((-579 (-848 |#1|)) $) 85 T ELT)) (-3360 (($) 48 T ELT) (($ (-1069 3 |#1|)) 49 T ELT)) (-3382 (($ $) 63 T ELT)) (-3356 (((-579 $) $) 62 T ELT)) (-3736 (($ (-579 $)) 59 T ELT)) (-3357 (((-579 $) $) 61 T ELT)) (-3928 (((-766) $) 146 T ELT)) (-3350 (((-83) $) 94 T ELT)) (-3351 (($ $ (-579 (-848 |#1|))) 96 T ELT) (($ $ (-579 (-579 |#1|))) 99 T ELT) (($ (-579 (-848 |#1|))) 97 T ELT) (((-579 (-848 |#1|)) $) 95 T ELT)) (-3339 (($ $) 140 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1037 |#1|) (-1038 |#1|) (-955)) (T -1037)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3870 (((-1069 3 |#1|) $) 17 T ELT)) (-3348 (((-83) $) 33 T ELT)) (-3349 (($ $ (-579 (-848 |#1|))) 37 T ELT) (($ $ (-579 (-579 |#1|))) 36 T ELT) (($ (-579 (-848 |#1|))) 35 T ELT) (((-579 (-848 |#1|)) $) 34 T ELT)) (-3354 (((-83) $) 48 T ELT)) (-3688 (($ $ (-848 |#1|)) 53 T ELT) (($ $ (-579 |#1|)) 52 T ELT) (($ $ (-688)) 51 T ELT) (($ (-848 |#1|)) 50 T ELT) (((-848 |#1|) $) 49 T ELT)) (-3340 (((-2 (|:| -3832 (-688)) (|:| |curves| (-688)) (|:| |polygons| (-688)) (|:| |constructs| (-688))) $) 19 T ELT)) (-3358 (((-688) $) 62 T ELT)) (-3359 (((-688) $) 63 T ELT)) (-3869 (($ $ (-688) (-848 |#1|)) 54 T ELT)) (-3346 (((-83) $) 25 T ELT)) (-3347 (($ $ (-579 (-579 (-848 |#1|))) (-579 (-143)) (-143)) 32 T ELT) (($ $ (-579 (-579 (-579 |#1|))) (-579 (-143)) (-143)) 31 T ELT) (($ $ (-579 (-579 (-848 |#1|))) (-83) (-83)) 30 T ELT) (($ $ (-579 (-579 (-579 |#1|))) (-83) (-83)) 29 T ELT) (($ (-579 (-579 (-848 |#1|)))) 28 T ELT) (($ (-579 (-579 (-848 |#1|))) (-83) (-83)) 27 T ELT) (((-579 (-579 (-848 |#1|))) $) 26 T ELT)) (-3500 (($ (-579 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3341 (((-579 (-143)) $) 20 T ELT)) (-3345 (((-579 (-848 |#1|)) $) 24 T ELT)) (-3342 (((-579 (-579 (-143))) $) 21 T ELT)) (-3343 (((-579 (-579 (-579 (-848 |#1|)))) $) 22 T ELT)) (-3344 (((-579 (-579 (-579 (-688)))) $) 23 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3355 (((-688) $ (-579 (-848 |#1|))) 55 T ELT)) (-3352 (((-83) $) 43 T ELT)) (-3353 (($ $ (-579 (-848 |#1|))) 47 T ELT) (($ $ (-579 (-579 |#1|))) 46 T ELT) (($ (-579 (-848 |#1|))) 45 T ELT) (((-579 (-848 |#1|)) $) 44 T ELT)) (-3360 (($) 65 T ELT) (($ (-1069 3 |#1|)) 64 T ELT)) (-3382 (($ $) 56 T ELT)) (-3356 (((-579 $) $) 57 T ELT)) (-3736 (($ (-579 $)) 59 T ELT)) (-3357 (((-579 $) $) 58 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-3350 (((-83) $) 38 T ELT)) (-3351 (($ $ (-579 (-848 |#1|))) 42 T ELT) (($ $ (-579 (-579 |#1|))) 41 T ELT) (($ (-579 (-848 |#1|))) 40 T ELT) (((-579 (-848 |#1|)) $) 39 T ELT)) (-3339 (($ $) 18 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-1038 |#1|) (-111) (-955)) (T -1038)) +((-3928 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-766)))) (-3360 (*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-955)))) (-3360 (*1 *1 *2) (-12 (-5 *2 (-1069 3 *3)) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) (-3500 (*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3500 (*1 *1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-955)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3357 (*1 *2 *1) (-12 (-4 *3 (-955)) (-5 *2 (-579 *1)) (-4 *1 (-1038 *3)))) (-3356 (*1 *2 *1) (-12 (-4 *3 (-955)) (-5 *2 (-579 *1)) (-4 *1 (-1038 *3)))) (-3382 (*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-955)))) (-3355 (*1 *2 *1 *3) (-12 (-5 *3 (-579 (-848 *4))) (-4 *1 (-1038 *4)) (-4 *4 (-955)) (-5 *2 (-688)))) (-3869 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-688)) (-5 *3 (-848 *4)) (-4 *1 (-1038 *4)) (-4 *4 (-955)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-848 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-848 *3)))) (-3354 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83)))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-848 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-579 (-848 *3))) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-848 *3))))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83)))) (-3351 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-848 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3351 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3351 (*1 *1 *2) (-12 (-5 *2 (-579 (-848 *3))) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-848 *3))))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83)))) (-3349 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-848 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3349 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) (-3349 (*1 *1 *2) (-12 (-5 *2 (-579 (-848 *3))) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-848 *3))))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83)))) (-3347 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-579 (-579 (-848 *5)))) (-5 *3 (-579 (-143))) (-5 *4 (-143)) (-4 *1 (-1038 *5)) (-4 *5 (-955)))) (-3347 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-579 (-579 (-579 *5)))) (-5 *3 (-579 (-143))) (-5 *4 (-143)) (-4 *1 (-1038 *5)) (-4 *5 (-955)))) (-3347 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-579 (-579 (-848 *4)))) (-5 *3 (-83)) (-4 *1 (-1038 *4)) (-4 *4 (-955)))) (-3347 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-579 (-579 (-579 *4)))) (-5 *3 (-83)) (-4 *1 (-1038 *4)) (-4 *4 (-955)))) (-3347 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 (-848 *3)))) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) (-3347 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-579 (-579 (-848 *4)))) (-5 *3 (-83)) (-4 *4 (-955)) (-4 *1 (-1038 *4)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-579 (-848 *3)))))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-848 *3))))) (-3344 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-579 (-579 (-688))))))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-579 (-579 (-848 *3))))))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-579 (-143)))))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-143))))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -3832 (-688)) (|:| |curves| (-688)) (|:| |polygons| (-688)) (|:| |constructs| (-688)))))) (-3339 (*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-955)))) (-3870 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-1069 3 *3))))) +(-13 (-1006) (-10 -8 (-15 -3360 ($)) (-15 -3360 ($ (-1069 3 |t#1|))) (-15 -3359 ((-688) $)) (-15 -3358 ((-688) $)) (-15 -3500 ($ (-579 $))) (-15 -3500 ($ $ $)) (-15 -3736 ($ (-579 $))) (-15 -3357 ((-579 $) $)) (-15 -3356 ((-579 $) $)) (-15 -3382 ($ $)) (-15 -3355 ((-688) $ (-579 (-848 |t#1|)))) (-15 -3869 ($ $ (-688) (-848 |t#1|))) (-15 -3688 ($ $ (-848 |t#1|))) (-15 -3688 ($ $ (-579 |t#1|))) (-15 -3688 ($ $ (-688))) (-15 -3688 ($ (-848 |t#1|))) (-15 -3688 ((-848 |t#1|) $)) (-15 -3354 ((-83) $)) (-15 -3353 ($ $ (-579 (-848 |t#1|)))) (-15 -3353 ($ $ (-579 (-579 |t#1|)))) (-15 -3353 ($ (-579 (-848 |t#1|)))) (-15 -3353 ((-579 (-848 |t#1|)) $)) (-15 -3352 ((-83) $)) (-15 -3351 ($ $ (-579 (-848 |t#1|)))) (-15 -3351 ($ $ (-579 (-579 |t#1|)))) (-15 -3351 ($ (-579 (-848 |t#1|)))) (-15 -3351 ((-579 (-848 |t#1|)) $)) (-15 -3350 ((-83) $)) (-15 -3349 ($ $ (-579 (-848 |t#1|)))) (-15 -3349 ($ $ (-579 (-579 |t#1|)))) (-15 -3349 ($ (-579 (-848 |t#1|)))) (-15 -3349 ((-579 (-848 |t#1|)) $)) (-15 -3348 ((-83) $)) (-15 -3347 ($ $ (-579 (-579 (-848 |t#1|))) (-579 (-143)) (-143))) (-15 -3347 ($ $ (-579 (-579 (-579 |t#1|))) (-579 (-143)) (-143))) (-15 -3347 ($ $ (-579 (-579 (-848 |t#1|))) (-83) (-83))) (-15 -3347 ($ $ (-579 (-579 (-579 |t#1|))) (-83) (-83))) (-15 -3347 ($ (-579 (-579 (-848 |t#1|))))) (-15 -3347 ($ (-579 (-579 (-848 |t#1|))) (-83) (-83))) (-15 -3347 ((-579 (-579 (-848 |t#1|))) $)) (-15 -3346 ((-83) $)) (-15 -3345 ((-579 (-848 |t#1|)) $)) (-15 -3344 ((-579 (-579 (-579 (-688)))) $)) (-15 -3343 ((-579 (-579 (-579 (-848 |t#1|)))) $)) (-15 -3342 ((-579 (-579 (-143))) $)) (-15 -3341 ((-579 (-143)) $)) (-15 -3340 ((-2 (|:| -3832 (-688)) (|:| |curves| (-688)) (|:| |polygons| (-688)) (|:| |constructs| (-688))) $)) (-15 -3339 ($ $)) (-15 -3870 ((-1069 3 |t#1|) $)) (-15 -3928 ((-766) $)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 185 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) 7 T ELT)) (-3548 (((-83) $ (|[\|\|]| (-457))) 19 T ELT) (((-83) $ (|[\|\|]| (-170))) 23 T ELT) (((-83) $ (|[\|\|]| (-613))) 27 T ELT) (((-83) $ (|[\|\|]| (-1180))) 31 T ELT) (((-83) $ (|[\|\|]| (-109))) 35 T ELT) (((-83) $ (|[\|\|]| (-535))) 39 T ELT) (((-83) $ (|[\|\|]| (-104))) 43 T ELT) (((-83) $ (|[\|\|]| (-1020))) 47 T ELT) (((-83) $ (|[\|\|]| (-67))) 51 T ELT) (((-83) $ (|[\|\|]| (-618))) 55 T ELT) (((-83) $ (|[\|\|]| (-451))) 59 T ELT) (((-83) $ (|[\|\|]| (-971))) 63 T ELT) (((-83) $ (|[\|\|]| (-1181))) 67 T ELT) (((-83) $ (|[\|\|]| (-458))) 71 T ELT) (((-83) $ (|[\|\|]| (-1057))) 75 T ELT) (((-83) $ (|[\|\|]| (-125))) 79 T ELT) (((-83) $ (|[\|\|]| (-609))) 83 T ELT) (((-83) $ (|[\|\|]| (-259))) 87 T ELT) (((-83) $ (|[\|\|]| (-942))) 91 T ELT) (((-83) $ (|[\|\|]| (-152))) 95 T ELT) (((-83) $ (|[\|\|]| (-877))) 99 T ELT) (((-83) $ (|[\|\|]| (-978))) 103 T ELT) (((-83) $ (|[\|\|]| (-996))) 107 T ELT) (((-83) $ (|[\|\|]| (-1001))) 111 T ELT) (((-83) $ (|[\|\|]| (-561))) 116 T ELT) (((-83) $ (|[\|\|]| (-1071))) 120 T ELT) (((-83) $ (|[\|\|]| (-127))) 124 T ELT) (((-83) $ (|[\|\|]| (-108))) 128 T ELT) (((-83) $ (|[\|\|]| (-412))) 132 T ELT) (((-83) $ (|[\|\|]| (-523))) 136 T ELT) (((-83) $ (|[\|\|]| (-440))) 140 T ELT) (((-83) $ (|[\|\|]| (-1063))) 144 T ELT) (((-83) $ (|[\|\|]| (-479))) 148 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3554 (((-457) $) 20 T ELT) (((-170) $) 24 T ELT) (((-613) $) 28 T ELT) (((-1180) $) 32 T ELT) (((-109) $) 36 T ELT) (((-535) $) 40 T ELT) (((-104) $) 44 T ELT) (((-1020) $) 48 T ELT) (((-67) $) 52 T ELT) (((-618) $) 56 T ELT) (((-451) $) 60 T ELT) (((-971) $) 64 T ELT) (((-1181) $) 68 T ELT) (((-458) $) 72 T ELT) (((-1057) $) 76 T ELT) (((-125) $) 80 T ELT) (((-609) $) 84 T ELT) (((-259) $) 88 T ELT) (((-942) $) 92 T ELT) (((-152) $) 96 T ELT) (((-877) $) 100 T ELT) (((-978) $) 104 T ELT) (((-996) $) 108 T ELT) (((-1001) $) 112 T ELT) (((-561) $) 117 T ELT) (((-1071) $) 121 T ELT) (((-127) $) 125 T ELT) (((-108) $) 129 T ELT) (((-412) $) 133 T ELT) (((-523) $) 137 T ELT) (((-440) $) 141 T ELT) (((-1063) $) 145 T ELT) (((-479) $) 149 T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1039) (-1041)) (T -1039)) +NIL +((-3361 (((-579 (-1085)) (-1063)) 9 T ELT))) +(((-1040) (-10 -7 (-15 -3361 ((-579 (-1085)) (-1063))))) (T -1040)) +((-3361 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-579 (-1085))) (-5 *1 (-1040))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-1085)) 20 T ELT) (((-1085) $) 19 T ELT)) (-3548 (((-83) $ (|[\|\|]| (-457))) 88 T ELT) (((-83) $ (|[\|\|]| (-170))) 86 T ELT) (((-83) $ (|[\|\|]| (-613))) 84 T ELT) (((-83) $ (|[\|\|]| (-1180))) 82 T ELT) (((-83) $ (|[\|\|]| (-109))) 80 T ELT) (((-83) $ (|[\|\|]| (-535))) 78 T ELT) (((-83) $ (|[\|\|]| (-104))) 76 T ELT) (((-83) $ (|[\|\|]| (-1020))) 74 T ELT) (((-83) $ (|[\|\|]| (-67))) 72 T ELT) (((-83) $ (|[\|\|]| (-618))) 70 T ELT) (((-83) $ (|[\|\|]| (-451))) 68 T ELT) (((-83) $ (|[\|\|]| (-971))) 66 T ELT) (((-83) $ (|[\|\|]| (-1181))) 64 T ELT) (((-83) $ (|[\|\|]| (-458))) 62 T ELT) (((-83) $ (|[\|\|]| (-1057))) 60 T ELT) (((-83) $ (|[\|\|]| (-125))) 58 T ELT) (((-83) $ (|[\|\|]| (-609))) 56 T ELT) (((-83) $ (|[\|\|]| (-259))) 54 T ELT) (((-83) $ (|[\|\|]| (-942))) 52 T ELT) (((-83) $ (|[\|\|]| (-152))) 50 T ELT) (((-83) $ (|[\|\|]| (-877))) 48 T ELT) (((-83) $ (|[\|\|]| (-978))) 46 T ELT) (((-83) $ (|[\|\|]| (-996))) 44 T ELT) (((-83) $ (|[\|\|]| (-1001))) 42 T ELT) (((-83) $ (|[\|\|]| (-561))) 40 T ELT) (((-83) $ (|[\|\|]| (-1071))) 38 T ELT) (((-83) $ (|[\|\|]| (-127))) 36 T ELT) (((-83) $ (|[\|\|]| (-108))) 34 T ELT) (((-83) $ (|[\|\|]| (-412))) 32 T ELT) (((-83) $ (|[\|\|]| (-523))) 30 T ELT) (((-83) $ (|[\|\|]| (-440))) 28 T ELT) (((-83) $ (|[\|\|]| (-1063))) 26 T ELT) (((-83) $ (|[\|\|]| (-479))) 24 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3554 (((-457) $) 87 T ELT) (((-170) $) 85 T ELT) (((-613) $) 83 T ELT) (((-1180) $) 81 T ELT) (((-109) $) 79 T ELT) (((-535) $) 77 T ELT) (((-104) $) 75 T ELT) (((-1020) $) 73 T ELT) (((-67) $) 71 T ELT) (((-618) $) 69 T ELT) (((-451) $) 67 T ELT) (((-971) $) 65 T ELT) (((-1181) $) 63 T ELT) (((-458) $) 61 T ELT) (((-1057) $) 59 T ELT) (((-125) $) 57 T ELT) (((-609) $) 55 T ELT) (((-259) $) 53 T ELT) (((-942) $) 51 T ELT) (((-152) $) 49 T ELT) (((-877) $) 47 T ELT) (((-978) $) 45 T ELT) (((-996) $) 43 T ELT) (((-1001) $) 41 T ELT) (((-561) $) 39 T ELT) (((-1071) $) 37 T ELT) (((-127) $) 35 T ELT) (((-108) $) 33 T ELT) (((-412) $) 31 T ELT) (((-523) $) 29 T ELT) (((-440) $) 27 T ELT) (((-1063) $) 25 T ELT) (((-479) $) 23 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-1041) (-111)) (T -1041)) +((-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-457)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-170))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-170)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-613)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1180)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-109))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-109)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-535)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-104))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-104)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1020))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1020)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-67)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-618)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-451))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-451)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-971))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-971)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1181))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1181)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-458)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1057)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-125))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-125)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-609))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-609)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-259))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-259)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-942))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-942)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-152)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-877))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-877)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-978)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-996))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-996)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1001))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1001)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-561)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1071)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-127)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-108)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-412))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-412)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-523)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-440))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-440)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1063)))) (-3548 (*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-479))) (-5 *2 (-83)))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-479))))) +(-13 (-988) (-1165) (-10 -8 (-15 -3548 ((-83) $ (|[\|\|]| (-457)))) (-15 -3554 ((-457) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-170)))) (-15 -3554 ((-170) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-613)))) (-15 -3554 ((-613) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-1180)))) (-15 -3554 ((-1180) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-109)))) (-15 -3554 ((-109) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-535)))) (-15 -3554 ((-535) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-104)))) (-15 -3554 ((-104) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-1020)))) (-15 -3554 ((-1020) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-67)))) (-15 -3554 ((-67) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-618)))) (-15 -3554 ((-618) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-451)))) (-15 -3554 ((-451) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-971)))) (-15 -3554 ((-971) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-1181)))) (-15 -3554 ((-1181) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-458)))) (-15 -3554 ((-458) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-1057)))) (-15 -3554 ((-1057) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-125)))) (-15 -3554 ((-125) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-609)))) (-15 -3554 ((-609) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-259)))) (-15 -3554 ((-259) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-942)))) (-15 -3554 ((-942) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-152)))) (-15 -3554 ((-152) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-877)))) (-15 -3554 ((-877) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-978)))) (-15 -3554 ((-978) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-996)))) (-15 -3554 ((-996) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-1001)))) (-15 -3554 ((-1001) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-561)))) (-15 -3554 ((-561) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-1071)))) (-15 -3554 ((-1071) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-127)))) (-15 -3554 ((-127) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-108)))) (-15 -3554 ((-108) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-412)))) (-15 -3554 ((-412) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-523)))) (-15 -3554 ((-523) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-440)))) (-15 -3554 ((-440) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-1063)))) (-15 -3554 ((-1063) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-479)))) (-15 -3554 ((-479) $)))) +(((-64) . T) ((-72) . T) ((-551 (-1085)) . T) ((-548 (-766)) . T) ((-548 (-1085)) . T) ((-424 (-1085)) . T) ((-1006) . T) ((-988) . T) ((-1119) . T) ((-1165) . T)) +((-3364 (((-1175) (-579 (-766))) 22 T ELT) (((-1175) (-766)) 21 T ELT)) (-3363 (((-1175) (-579 (-766))) 20 T ELT) (((-1175) (-766)) 19 T ELT)) (-3362 (((-1175) (-579 (-766))) 18 T ELT) (((-1175) (-766)) 10 T ELT) (((-1175) (-1063) (-766)) 16 T ELT))) +(((-1042) (-10 -7 (-15 -3362 ((-1175) (-1063) (-766))) (-15 -3362 ((-1175) (-766))) (-15 -3363 ((-1175) (-766))) (-15 -3364 ((-1175) (-766))) (-15 -3362 ((-1175) (-579 (-766)))) (-15 -3363 ((-1175) (-579 (-766)))) (-15 -3364 ((-1175) (-579 (-766)))))) (T -1042)) +((-3364 (*1 *2 *3) (-12 (-5 *3 (-579 (-766))) (-5 *2 (-1175)) (-5 *1 (-1042)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-579 (-766))) (-5 *2 (-1175)) (-5 *1 (-1042)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-579 (-766))) (-5 *2 (-1175)) (-5 *1 (-1042)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-1042)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-1042)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-1042)))) (-3362 (*1 *2 *3 *4) (-12 (-5 *3 (-1063)) (-5 *4 (-766)) (-5 *2 (-1175)) (-5 *1 (-1042))))) +((-3368 (($ $ $) 10 T ELT)) (-3367 (($ $) 9 T ELT)) (-3371 (($ $ $) 13 T ELT)) (-3373 (($ $ $) 15 T ELT)) (-3370 (($ $ $) 12 T ELT)) (-3372 (($ $ $) 14 T ELT)) (-3375 (($ $) 17 T ELT)) (-3374 (($ $) 16 T ELT)) (-3365 (($ $) 6 T ELT)) (-3369 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3366 (($ $ $) 8 T ELT))) +(((-1043) (-111)) (T -1043)) +((-3375 (*1 *1 *1) (-4 *1 (-1043))) (-3374 (*1 *1 *1) (-4 *1 (-1043))) (-3373 (*1 *1 *1 *1) (-4 *1 (-1043))) (-3372 (*1 *1 *1 *1) (-4 *1 (-1043))) (-3371 (*1 *1 *1 *1) (-4 *1 (-1043))) (-3370 (*1 *1 *1 *1) (-4 *1 (-1043))) (-3369 (*1 *1 *1 *1) (-4 *1 (-1043))) (-3368 (*1 *1 *1 *1) (-4 *1 (-1043))) (-3367 (*1 *1 *1) (-4 *1 (-1043))) (-3366 (*1 *1 *1 *1) (-4 *1 (-1043))) (-3369 (*1 *1 *1) (-4 *1 (-1043))) (-3365 (*1 *1 *1) (-4 *1 (-1043)))) +(-13 (-10 -8 (-15 -3365 ($ $)) (-15 -3369 ($ $)) (-15 -3366 ($ $ $)) (-15 -3367 ($ $)) (-15 -3368 ($ $ $)) (-15 -3369 ($ $ $)) (-15 -3370 ($ $ $)) (-15 -3371 ($ $ $)) (-15 -3372 ($ $ $)) (-15 -3373 ($ $ $)) (-15 -3374 ($ $)) (-15 -3375 ($ $)))) +((-2553 (((-83) $ $) 44 T ELT)) (-3384 ((|#1| $) 17 T ELT)) (-3376 (((-83) $ $ (-1 (-83) |#2| |#2|)) 39 T ELT)) (-3383 (((-83) $) 19 T ELT)) (-3381 (($ $ |#1|) 30 T ELT)) (-3379 (($ $ (-83)) 32 T ELT)) (-3378 (($ $) 33 T ELT)) (-3380 (($ $ |#2|) 31 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3377 (((-83) $ $ (-1 (-83) |#1| |#1|) (-1 (-83) |#2| |#2|)) 38 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3385 (((-83) $) 16 T ELT)) (-3547 (($) 13 T ELT)) (-3382 (($ $) 29 T ELT)) (-3512 (($ |#1| |#2| (-83)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1588 |#2|))) 23 T ELT) (((-579 $) (-579 (-2 (|:| |val| |#1|) (|:| -1588 |#2|)))) 26 T ELT) (((-579 $) |#1| (-579 |#2|)) 28 T ELT)) (-3904 ((|#2| $) 18 T ELT)) (-3928 (((-766) $) 53 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 42 T ELT))) +(((-1044 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -3547 ($)) (-15 -3385 ((-83) $)) (-15 -3384 (|#1| $)) (-15 -3904 (|#2| $)) (-15 -3383 ((-83) $)) (-15 -3512 ($ |#1| |#2| (-83))) (-15 -3512 ($ |#1| |#2|)) (-15 -3512 ($ (-2 (|:| |val| |#1|) (|:| -1588 |#2|)))) (-15 -3512 ((-579 $) (-579 (-2 (|:| |val| |#1|) (|:| -1588 |#2|))))) (-15 -3512 ((-579 $) |#1| (-579 |#2|))) (-15 -3382 ($ $)) (-15 -3381 ($ $ |#1|)) (-15 -3380 ($ $ |#2|)) (-15 -3379 ($ $ (-83))) (-15 -3378 ($ $)) (-15 -3377 ((-83) $ $ (-1 (-83) |#1| |#1|) (-1 (-83) |#2| |#2|))) (-15 -3376 ((-83) $ $ (-1 (-83) |#2| |#2|))))) (-13 (-1006) (-34)) (-13 (-1006) (-34))) (T -1044)) +((-3547 (*1 *1) (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) (-3385 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))))) (-3384 (*1 *2 *1) (-12 (-4 *2 (-13 (-1006) (-34))) (-5 *1 (-1044 *2 *3)) (-4 *3 (-13 (-1006) (-34))))) (-3904 (*1 *2 *1) (-12 (-4 *2 (-13 (-1006) (-34))) (-5 *1 (-1044 *3 *2)) (-4 *3 (-13 (-1006) (-34))))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))))) (-3512 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) (-3512 (*1 *1 *2 *3) (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1588 *4))) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1044 *3 *4)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-579 (-2 (|:| |val| *4) (|:| -1588 *5)))) (-4 *4 (-13 (-1006) (-34))) (-4 *5 (-13 (-1006) (-34))) (-5 *2 (-579 (-1044 *4 *5))) (-5 *1 (-1044 *4 *5)))) (-3512 (*1 *2 *3 *4) (-12 (-5 *4 (-579 *5)) (-4 *5 (-13 (-1006) (-34))) (-5 *2 (-579 (-1044 *3 *5))) (-5 *1 (-1044 *3 *5)) (-4 *3 (-13 (-1006) (-34))))) (-3382 (*1 *1 *1) (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) (-3381 (*1 *1 *1 *2) (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) (-3380 (*1 *1 *1 *2) (-12 (-5 *1 (-1044 *3 *2)) (-4 *3 (-13 (-1006) (-34))) (-4 *2 (-13 (-1006) (-34))))) (-3379 (*1 *1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))))) (-3378 (*1 *1 *1) (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) (-3377 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-1 (-83) *6 *6)) (-4 *5 (-13 (-1006) (-34))) (-4 *6 (-13 (-1006) (-34))) (-5 *2 (-83)) (-5 *1 (-1044 *5 *6)))) (-3376 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-83) *5 *5)) (-4 *5 (-13 (-1006) (-34))) (-5 *2 (-83)) (-5 *1 (-1044 *4 *5)) (-4 *4 (-13 (-1006) (-34)))))) +((-2553 (((-83) $ $) NIL (|has| (-1044 |#1| |#2|) (-72)) ELT)) (-3384 (((-1044 |#1| |#2|) $) 27 T ELT)) (-3393 (($ $) 91 T ELT)) (-3389 (((-83) (-1044 |#1| |#2|) $ (-1 (-83) |#2| |#2|)) 100 T ELT)) (-3386 (($ $ $ (-579 (-1044 |#1| |#2|))) 108 T ELT) (($ $ $ (-579 (-1044 |#1| |#2|)) (-1 (-83) |#2| |#2|)) 109 T ELT)) (-3010 (((-1044 |#1| |#2|) $ (-1044 |#1| |#2|)) 46 (|has| $ (-6 -3978)) ELT)) (-3770 (((-1044 |#1| |#2|) $ #1="value" (-1044 |#1| |#2|)) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 44 (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-3391 (((-579 (-2 (|:| |val| |#1|) (|:| -1588 |#2|))) $) 95 T ELT)) (-3387 (($ (-1044 |#1| |#2|) $) 42 T ELT)) (-3388 (($ (-1044 |#1| |#2|) $) 34 T ELT)) (-2874 (((-579 (-1044 |#1| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 54 T ELT)) (-3390 (((-83) (-1044 |#1| |#2|) $) 97 T ELT)) (-3012 (((-83) $ $) NIL (|has| (-1044 |#1| |#2|) (-1006)) ELT)) (-2593 (((-579 (-1044 |#1| |#2|)) $) 58 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-1044 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-1044 |#1| |#2|) (-1006))) ELT)) (-1937 (($ (-1 (-1044 |#1| |#2|) (-1044 |#1| |#2|)) $) 50 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-1044 |#1| |#2|) (-1044 |#1| |#2|)) $) 49 T ELT)) (-3015 (((-579 (-1044 |#1| |#2|)) $) 56 T ELT)) (-3509 (((-83) $) 45 T ELT)) (-3226 (((-1063) $) NIL (|has| (-1044 |#1| |#2|) (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| (-1044 |#1| |#2|) (-1006)) ELT)) (-3394 (((-3 $ "failed") $) 89 T ELT)) (-1935 (((-83) (-1 (-83) (-1044 |#1| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-1044 |#1| |#2|)))) NIL (-12 (|has| (-1044 |#1| |#2|) (-256 (-1044 |#1| |#2|))) (|has| (-1044 |#1| |#2|) (-1006))) ELT) (($ $ (-245 (-1044 |#1| |#2|))) NIL (-12 (|has| (-1044 |#1| |#2|) (-256 (-1044 |#1| |#2|))) (|has| (-1044 |#1| |#2|) (-1006))) ELT) (($ $ (-1044 |#1| |#2|) (-1044 |#1| |#2|)) NIL (-12 (|has| (-1044 |#1| |#2|) (-256 (-1044 |#1| |#2|))) (|has| (-1044 |#1| |#2|) (-1006))) ELT) (($ $ (-579 (-1044 |#1| |#2|)) (-579 (-1044 |#1| |#2|))) NIL (-12 (|has| (-1044 |#1| |#2|) (-256 (-1044 |#1| |#2|))) (|has| (-1044 |#1| |#2|) (-1006))) ELT)) (-1211 (((-83) $ $) 53 T ELT)) (-3385 (((-83) $) 24 T ELT)) (-3547 (($) 26 T ELT)) (-3782 (((-1044 |#1| |#2|) $ #1#) NIL T ELT)) (-3014 (((-479) $ $) NIL T ELT)) (-3615 (((-83) $) 47 T ELT)) (-1934 (((-688) (-1 (-83) (-1044 |#1| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-1044 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-1044 |#1| |#2|) (-1006))) ELT)) (-3382 (($ $) 52 T ELT)) (-3512 (($ (-1044 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-579 $)) 13 T ELT) (($ |#1| |#2| (-579 (-1044 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-579 |#2|)) 18 T ELT)) (-3392 (((-579 |#2|) $) 96 T ELT)) (-3928 (((-766) $) 87 (|has| (-1044 |#1| |#2|) (-548 (-766))) ELT)) (-3504 (((-579 $) $) 31 T ELT)) (-3013 (((-83) $ $) NIL (|has| (-1044 |#1| |#2|) (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| (-1044 |#1| |#2|) (-72)) ELT)) (-1936 (((-83) (-1 (-83) (-1044 |#1| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 70 (|has| (-1044 |#1| |#2|) (-72)) ELT)) (-3939 (((-688) $) 64 (|has| $ (-6 -3977)) ELT))) +(((-1045 |#1| |#2|) (-13 (-917 (-1044 |#1| |#2|)) (-10 -8 (-6 -3978) (-6 -3977) (-15 -3394 ((-3 $ "failed") $)) (-15 -3393 ($ $)) (-15 -3512 ($ (-1044 |#1| |#2|))) (-15 -3512 ($ |#1| |#2| (-579 $))) (-15 -3512 ($ |#1| |#2| (-579 (-1044 |#1| |#2|)))) (-15 -3512 ($ |#1| |#2| |#1| (-579 |#2|))) (-15 -3392 ((-579 |#2|) $)) (-15 -3391 ((-579 (-2 (|:| |val| |#1|) (|:| -1588 |#2|))) $)) (-15 -3390 ((-83) (-1044 |#1| |#2|) $)) (-15 -3389 ((-83) (-1044 |#1| |#2|) $ (-1 (-83) |#2| |#2|))) (-15 -3388 ($ (-1044 |#1| |#2|) $)) (-15 -3387 ($ (-1044 |#1| |#2|) $)) (-15 -3386 ($ $ $ (-579 (-1044 |#1| |#2|)))) (-15 -3386 ($ $ $ (-579 (-1044 |#1| |#2|)) (-1 (-83) |#2| |#2|))))) (-13 (-1006) (-34)) (-13 (-1006) (-34))) (T -1045)) +((-3394 (*1 *1 *1) (|partial| -12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) (-3393 (*1 *1 *1) (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1045 *3 *4)))) (-3512 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-579 (-1045 *2 *3))) (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) (-3512 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-579 (-1044 *2 *3))) (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))) (-5 *1 (-1045 *2 *3)))) (-3512 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-579 *3)) (-4 *3 (-13 (-1006) (-34))) (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1006) (-34))))) (-3392 (*1 *2 *1) (-12 (-5 *2 (-579 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-1045 *3 *4)) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))))) (-3390 (*1 *2 *3 *1) (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-1006) (-34))) (-4 *5 (-13 (-1006) (-34))) (-5 *2 (-83)) (-5 *1 (-1045 *4 *5)))) (-3389 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1044 *5 *6)) (-5 *4 (-1 (-83) *6 *6)) (-4 *5 (-13 (-1006) (-34))) (-4 *6 (-13 (-1006) (-34))) (-5 *2 (-83)) (-5 *1 (-1045 *5 *6)))) (-3388 (*1 *1 *2 *1) (-12 (-5 *2 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1045 *3 *4)))) (-3387 (*1 *1 *2 *1) (-12 (-5 *2 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1045 *3 *4)))) (-3386 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-579 (-1044 *3 *4))) (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1045 *3 *4)))) (-3386 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-1044 *4 *5))) (-5 *3 (-1 (-83) *5 *5)) (-4 *4 (-13 (-1006) (-34))) (-4 *5 (-13 (-1006) (-34))) (-5 *1 (-1045 *4 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3312 ((|#2| $) NIL T ELT)) (-3105 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3395 (($ (-626 |#2|)) 55 T ELT)) (-3107 (((-83) $) NIL T ELT)) (-3315 (($ |#2|) 14 T ELT)) (-3706 (($) NIL T CONST)) (-3094 (($ $) 68 (|has| |#2| (-254)) ELT)) (-3096 (((-194 |#1| |#2|) $ (-479)) 42 T ELT)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) ((|#2| $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#2|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) 82 T ELT)) (-3093 (((-688) $) 70 (|has| |#2| (-490)) ELT)) (-3097 ((|#2| $ (-479) (-479)) NIL T ELT)) (-2874 (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-3092 (((-688) $) 72 (|has| |#2| (-490)) ELT)) (-3091 (((-579 (-194 |#1| |#2|)) $) 76 (|has| |#2| (-490)) ELT)) (-3099 (((-688) $) NIL T ELT)) (-3596 (($ |#2|) 25 T ELT)) (-3098 (((-688) $) NIL T ELT)) (-3309 ((|#2| $) 66 (|has| |#2| (-6 (-3979 #2="*"))) ELT)) (-3103 (((-479) $) NIL T ELT)) (-3101 (((-479) $) NIL T ELT)) (-2593 (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-3102 (((-479) $) NIL T ELT)) (-3100 (((-479) $) NIL T ELT)) (-3108 (($ (-579 (-579 |#2|))) 37 T ELT)) (-1937 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3576 (((-579 (-579 |#2|)) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3572 (((-3 $ #1#) $) 79 (|has| |#2| (-308)) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3448 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-490)) ELT)) (-1935 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ (-479) (-479) |#2|) NIL T ELT) ((|#2| $ (-479) (-479)) NIL T ELT)) (-3740 (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-688)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT)) (-3311 ((|#2| $) NIL T ELT)) (-3314 (($ (-579 |#2|)) 50 T ELT)) (-3106 (((-83) $) NIL T ELT)) (-3313 (((-194 |#1| |#2|) $) NIL T ELT)) (-3310 ((|#2| $) 64 (|has| |#2| (-6 (-3979 #2#))) ELT)) (-1934 (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) 89 (|has| |#2| (-549 (-468))) ELT)) (-3095 (((-194 |#1| |#2|) $ (-479)) 44 T ELT)) (-3928 (((-766) $) 47 T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (($ |#2|) NIL T ELT) (((-626 |#2|) $) 52 T ELT)) (-3110 (((-688)) 23 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3104 (((-83) $) NIL T ELT)) (-2645 (($) 16 T CONST)) (-2651 (($) 21 T CONST)) (-2654 (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-187)) ELT) (($ $ (-688)) NIL (|has| |#2| (-187)) ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 62 T ELT) (($ $ (-479)) 81 (|has| |#2| (-308)) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-194 |#1| |#2|) $ (-194 |#1| |#2|)) 58 T ELT) (((-194 |#1| |#2|) (-194 |#1| |#2|) $) 60 T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-1046 |#1| |#2|) (-13 (-1027 |#1| |#2| (-194 |#1| |#2|) (-194 |#1| |#2|)) (-548 (-626 |#2|)) (-10 -8 (-15 -3596 ($ |#2|)) (-15 -3396 ($ $)) (-15 -3395 ($ (-626 |#2|))) (IF (|has| |#2| (-6 (-3979 #1="*"))) (-6 -3966) |%noBranch|) (IF (|has| |#2| (-6 (-3979 #1#))) (IF (|has| |#2| (-6 -3974)) (-6 -3974) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-549 (-468))) (-6 (-549 (-468))) |%noBranch|))) (-688) (-955)) (T -1046)) +((-3596 (*1 *1 *2) (-12 (-5 *1 (-1046 *3 *2)) (-14 *3 (-688)) (-4 *2 (-955)))) (-3396 (*1 *1 *1) (-12 (-5 *1 (-1046 *2 *3)) (-14 *2 (-688)) (-4 *3 (-955)))) (-3395 (*1 *1 *2) (-12 (-5 *2 (-626 *4)) (-4 *4 (-955)) (-5 *1 (-1046 *3 *4)) (-14 *3 (-688))))) +((-3409 (($ $) 19 T ELT)) (-3399 (($ $ (-115)) 10 T ELT) (($ $ (-112)) 14 T ELT)) (-3407 (((-83) $ $) 24 T ELT)) (-3411 (($ $) 17 T ELT)) (-3782 (((-115) $ (-479) (-115)) NIL T ELT) (((-115) $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT) (($ $ $) 31 T ELT)) (-3928 (($ (-115)) 29 T ELT) (((-766) $) NIL T ELT))) +(((-1047 |#1|) (-10 -7 (-15 -3928 ((-766) |#1|)) (-15 -3782 (|#1| |#1| |#1|)) (-15 -3399 (|#1| |#1| (-112))) (-15 -3399 (|#1| |#1| (-115))) (-15 -3928 (|#1| (-115))) (-15 -3407 ((-83) |#1| |#1|)) (-15 -3409 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3782 (|#1| |#1| (-1136 (-479)))) (-15 -3782 ((-115) |#1| (-479))) (-15 -3782 ((-115) |#1| (-479) (-115)))) (-1048)) (T -1047)) +NIL +((-2553 (((-83) $ $) 19 (|has| (-115) (-72)) ELT)) (-3408 (($ $) 129 T ELT)) (-3409 (($ $) 130 T ELT)) (-3399 (($ $ (-115)) 117 T ELT) (($ $ (-112)) 116 T ELT)) (-2185 (((-1175) $ (-479) (-479)) 44 (|has| $ (-6 -3978)) ELT)) (-3406 (((-83) $ $) 127 T ELT)) (-3405 (((-83) $ $ (-479)) 126 T ELT)) (-3400 (((-579 $) $ (-115)) 119 T ELT) (((-579 $) $ (-112)) 118 T ELT)) (-1720 (((-83) (-1 (-83) (-115) (-115)) $) 107 T ELT) (((-83) $) 101 (|has| (-115) (-750)) ELT)) (-1718 (($ (-1 (-83) (-115) (-115)) $) 98 (|has| $ (-6 -3978)) ELT) (($ $) 97 (-12 (|has| (-115) (-750)) (|has| $ (-6 -3978))) ELT)) (-2894 (($ (-1 (-83) (-115) (-115)) $) 108 T ELT) (($ $) 102 (|has| (-115) (-750)) ELT)) (-3770 (((-115) $ (-479) (-115)) 56 (|has| $ (-6 -3978)) ELT) (((-115) $ (-1136 (-479)) (-115)) 64 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) (-115)) $) 81 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-3397 (($ $ (-115)) 113 T ELT) (($ $ (-112)) 112 T ELT)) (-2284 (($ $) 99 (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) 109 T ELT)) (-3402 (($ $ (-1136 (-479)) $) 123 T ELT)) (-1341 (($ $) 84 (-12 (|has| (-115) (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ (-115) $) 83 (-12 (|has| (-115) (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) (-115)) $) 80 (|has| $ (-6 -3977)) ELT)) (-3824 (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) 82 (-12 (|has| (-115) (-1006)) (|has| $ (-6 -3977))) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) 79 (|has| $ (-6 -3977)) ELT) (((-115) (-1 (-115) (-115) (-115)) $) 78 (|has| $ (-6 -3977)) ELT)) (-1564 (((-115) $ (-479) (-115)) 57 (|has| $ (-6 -3978)) ELT)) (-3097 (((-115) $ (-479)) 55 T ELT)) (-3407 (((-83) $ $) 128 T ELT)) (-3401 (((-479) (-1 (-83) (-115)) $) 106 T ELT) (((-479) (-115) $) 105 (|has| (-115) (-1006)) ELT) (((-479) (-115) $ (-479)) 104 (|has| (-115) (-1006)) ELT) (((-479) $ $ (-479)) 122 T ELT) (((-479) (-112) $ (-479)) 121 T ELT)) (-2874 (((-579 (-115)) $) 30 (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) (-115)) 74 T ELT)) (-2187 (((-479) $) 47 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) 91 (|has| (-115) (-750)) ELT)) (-3500 (($ (-1 (-83) (-115) (-115)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-115) (-750)) ELT)) (-2593 (((-579 (-115)) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-115) $) 27 (-12 (|has| (-115) (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 48 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) 92 (|has| (-115) (-750)) ELT)) (-3403 (((-83) $ $ (-115)) 124 T ELT)) (-3404 (((-688) $ $ (-115)) 125 T ELT)) (-1937 (($ (-1 (-115) (-115)) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-115) (-115)) $) 35 T ELT) (($ (-1 (-115) (-115) (-115)) $ $) 69 T ELT)) (-3410 (($ $) 131 T ELT)) (-3411 (($ $) 132 T ELT)) (-3398 (($ $ (-115)) 115 T ELT) (($ $ (-112)) 114 T ELT)) (-3226 (((-1063) $) 22 (|has| (-115) (-1006)) ELT)) (-2291 (($ (-115) $ (-479)) 66 T ELT) (($ $ $ (-479)) 65 T ELT)) (-2190 (((-579 (-479)) $) 50 T ELT)) (-2191 (((-83) (-479) $) 51 T ELT)) (-3227 (((-1024) $) 21 (|has| (-115) (-1006)) ELT)) (-3783 (((-115) $) 46 (|has| (-479) (-750)) ELT)) (-1342 (((-3 (-115) "failed") (-1 (-83) (-115)) $) 77 T ELT)) (-2186 (($ $ (-115)) 45 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) (-115)) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-115)))) 26 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT) (($ $ (-245 (-115))) 25 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT) (($ $ (-115) (-115)) 24 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT) (($ $ (-579 (-115)) (-579 (-115))) 23 (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) (-115) $) 49 (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT)) (-2192 (((-579 (-115)) $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 (((-115) $ (-479) (-115)) 54 T ELT) (((-115) $ (-479)) 53 T ELT) (($ $ (-1136 (-479))) 75 T ELT) (($ $ $) 111 T ELT)) (-2292 (($ $ (-479)) 68 T ELT) (($ $ (-1136 (-479))) 67 T ELT)) (-1934 (((-688) (-1 (-83) (-115)) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) (-115) $) 28 (-12 (|has| (-115) (-1006)) (|has| $ (-6 -3977))) ELT)) (-1719 (($ $ $ (-479)) 100 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 85 (|has| (-115) (-549 (-468))) ELT)) (-3512 (($ (-579 (-115))) 76 T ELT)) (-3784 (($ $ (-115)) 73 T ELT) (($ (-115) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-579 $)) 70 T ELT)) (-3928 (($ (-115)) 120 T ELT) (((-766) $) 17 (|has| (-115) (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| (-115) (-72)) ELT)) (-1936 (((-83) (-1 (-83) (-115)) $) 33 (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) 93 (|has| (-115) (-750)) ELT)) (-2552 (((-83) $ $) 95 (|has| (-115) (-750)) ELT)) (-3041 (((-83) $ $) 18 (|has| (-115) (-72)) ELT)) (-2669 (((-83) $ $) 94 (|has| (-115) (-750)) ELT)) (-2670 (((-83) $ $) 96 (|has| (-115) (-750)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-1048) (-111)) (T -1048)) +((-3411 (*1 *1 *1) (-4 *1 (-1048))) (-3410 (*1 *1 *1) (-4 *1 (-1048))) (-3409 (*1 *1 *1) (-4 *1 (-1048))) (-3408 (*1 *1 *1) (-4 *1 (-1048))) (-3407 (*1 *2 *1 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-83)))) (-3406 (*1 *2 *1 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-83)))) (-3405 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1048)) (-5 *3 (-479)) (-5 *2 (-83)))) (-3404 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1048)) (-5 *3 (-115)) (-5 *2 (-688)))) (-3403 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1048)) (-5 *3 (-115)) (-5 *2 (-83)))) (-3402 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-1136 (-479))))) (-3401 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-479)))) (-3401 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-479)) (-5 *3 (-112)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-115)) (-4 *1 (-1048)))) (-3400 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-579 *1)) (-4 *1 (-1048)))) (-3400 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-579 *1)) (-4 *1 (-1048)))) (-3399 (*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-115)))) (-3399 (*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-112)))) (-3398 (*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-115)))) (-3398 (*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-112)))) (-3397 (*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-115)))) (-3397 (*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-112)))) (-3782 (*1 *1 *1 *1) (-4 *1 (-1048)))) +(-13 (-19 (-115)) (-10 -8 (-15 -3411 ($ $)) (-15 -3410 ($ $)) (-15 -3409 ($ $)) (-15 -3408 ($ $)) (-15 -3407 ((-83) $ $)) (-15 -3406 ((-83) $ $)) (-15 -3405 ((-83) $ $ (-479))) (-15 -3404 ((-688) $ $ (-115))) (-15 -3403 ((-83) $ $ (-115))) (-15 -3402 ($ $ (-1136 (-479)) $)) (-15 -3401 ((-479) $ $ (-479))) (-15 -3401 ((-479) (-112) $ (-479))) (-15 -3928 ($ (-115))) (-15 -3400 ((-579 $) $ (-115))) (-15 -3400 ((-579 $) $ (-112))) (-15 -3399 ($ $ (-115))) (-15 -3399 ($ $ (-112))) (-15 -3398 ($ $ (-115))) (-15 -3398 ($ $ (-112))) (-15 -3397 ($ $ (-115))) (-15 -3397 ($ $ (-112))) (-15 -3782 ($ $ $)))) +(((-34) . T) ((-72) OR (|has| (-115) (-1006)) (|has| (-115) (-750)) (|has| (-115) (-72))) ((-548 (-766)) OR (|has| (-115) (-1006)) (|has| (-115) (-750)) (|has| (-115) (-548 (-766)))) ((-122 (-115)) . T) ((-549 (-468)) |has| (-115) (-549 (-468))) ((-238 (-479) (-115)) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) (-115)) . T) ((-256 (-115)) -12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ((-318 (-115)) . T) ((-423 (-115)) . T) ((-534 (-479) (-115)) . T) ((-448 (-115) (-115)) -12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ((-589 (-115)) . T) ((-19 (-115)) . T) ((-750) |has| (-115) (-750)) ((-753) |has| (-115) (-750)) ((-1006) OR (|has| (-115) (-1006)) (|has| (-115) (-750))) ((-1119) . T)) +((-3418 (((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-579 |#4|) (-579 |#5|) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) (-688)) 112 T ELT)) (-3415 (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688)) 61 T ELT)) (-3419 (((-1175) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-688)) 97 T ELT)) (-3413 (((-688) (-579 |#4|) (-579 |#5|)) 30 T ELT)) (-3416 (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688)) 63 T ELT) (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688) (-83)) 65 T ELT)) (-3417 (((-579 |#5|) (-579 |#4|) (-579 |#5|) (-83) (-83) (-83) (-83) (-83)) 84 T ELT) (((-579 |#5|) (-579 |#4|) (-579 |#5|) (-83) (-83)) 85 T ELT)) (-3954 (((-1063) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) 90 T ELT)) (-3414 (((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|) 60 T ELT)) (-3412 (((-688) (-579 |#4|) (-579 |#5|)) 21 T ELT))) +(((-1049 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3412 ((-688) (-579 |#4|) (-579 |#5|))) (-15 -3413 ((-688) (-579 |#4|) (-579 |#5|))) (-15 -3414 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|)) (-15 -3415 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688))) (-15 -3415 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|)) (-15 -3416 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688) (-83))) (-15 -3416 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5| (-688))) (-15 -3416 ((-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) |#4| |#5|)) (-15 -3417 ((-579 |#5|) (-579 |#4|) (-579 |#5|) (-83) (-83))) (-15 -3417 ((-579 |#5|) (-579 |#4|) (-579 |#5|) (-83) (-83) (-83) (-83) (-83))) (-15 -3418 ((-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-579 |#4|) (-579 |#5|) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-2 (|:| |done| (-579 |#5|)) (|:| |todo| (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))))) (-688))) (-15 -3954 ((-1063) (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|)))) (-15 -3419 ((-1175) (-579 (-2 (|:| |val| (-579 |#4|)) (|:| -1588 |#5|))) (-688)))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|) (-1013 |#1| |#2| |#3| |#4|)) (T -1049)) +((-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-2 (|:| |val| (-579 *8)) (|:| -1588 *9)))) (-5 *4 (-688)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-1175)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-579 *7)) (|:| -1588 *8))) (-4 *7 (-970 *4 *5 *6)) (-4 *8 (-1013 *4 *5 *6 *7)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-1063)) (-5 *1 (-1049 *4 *5 *6 *7 *8)))) (-3418 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-579 *11)) (|:| |todo| (-579 (-2 (|:| |val| *3) (|:| -1588 *11)))))) (-5 *6 (-688)) (-5 *2 (-579 (-2 (|:| |val| (-579 *10)) (|:| -1588 *11)))) (-5 *3 (-579 *10)) (-5 *4 (-579 *11)) (-4 *10 (-970 *7 *8 *9)) (-4 *11 (-1013 *7 *8 *9 *10)) (-4 *7 (-386)) (-4 *8 (-711)) (-4 *9 (-750)) (-5 *1 (-1049 *7 *8 *9 *10 *11)))) (-3417 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-579 *9)) (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) (-3417 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-579 *9)) (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) (-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3)))) (-3416 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-688)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *3 (-970 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1013 *6 *7 *8 *3)))) (-3416 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-688)) (-5 *6 (-83)) (-4 *7 (-386)) (-4 *8 (-711)) (-4 *9 (-750)) (-4 *3 (-970 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-1049 *7 *8 *9 *3 *4)) (-4 *4 (-1013 *7 *8 *9 *3)))) (-3415 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3)))) (-3415 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-688)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *3 (-970 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1013 *6 *7 *8 *3)))) (-3414 (*1 *2 *3 *4) (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-579 *4)) (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *9)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-688)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *9)) (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-688)) (-5 *1 (-1049 *5 *6 *7 *8 *9))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |#4|)))) (-579 |#4|)) NIL T ELT)) (-3664 (((-579 $) (-579 |#4|)) 118 T ELT) (((-579 $) (-579 |#4|) (-83)) 119 T ELT) (((-579 $) (-579 |#4|) (-83) (-83)) 117 T ELT) (((-579 $) (-579 |#4|) (-83) (-83) (-83) (-83)) 120 T ELT)) (-3066 (((-579 |#3|) $) NIL T ELT)) (-2893 (((-83) $) NIL T ELT)) (-2884 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-3757 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| $) 91 T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3692 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#4| #1="failed") $ |#3|) 70 T ELT)) (-3706 (($) NIL T CONST)) (-2889 (((-83) $) 29 (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3671 (((-579 |#4|) (-579 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) NIL (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) NIL (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ #1#) (-579 |#4|)) NIL T ELT)) (-3140 (($ (-579 |#4|)) NIL T ELT)) (-3781 (((-3 $ #1#) $) 45 T ELT)) (-3667 ((|#4| |#4| $) 73 T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-3388 (($ |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-490)) ELT)) (-3676 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3665 ((|#4| |#4| $) NIL T ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3977)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#4|)) (|:| -1690 (-579 |#4|))) $) NIL T ELT)) (-3181 (((-83) |#4| $) NIL T ELT)) (-3179 (((-83) |#4| $) NIL T ELT)) (-3182 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3420 (((-2 (|:| |val| (-579 |#4|)) (|:| |towers| (-579 $))) (-579 |#4|) (-83) (-83)) 133 T ELT)) (-2874 (((-579 |#4|) $) 18 (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3164 ((|#3| $) 38 T ELT)) (-2593 (((-579 |#4|) $) 19 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 27 (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-2899 (((-579 |#3|) $) NIL T ELT)) (-2898 (((-83) |#3| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3175 (((-3 |#4| (-579 $)) |#4| |#4| $) NIL T ELT)) (-3174 (((-579 (-2 (|:| |val| |#4|) (|:| -1588 $))) |#4| |#4| $) 111 T ELT)) (-3780 (((-3 |#4| #1#) $) 42 T ELT)) (-3176 (((-579 $) |#4| $) 96 T ELT)) (-3178 (((-3 (-83) (-579 $)) |#4| $) NIL T ELT)) (-3177 (((-579 (-2 (|:| |val| (-83)) (|:| -1588 $))) |#4| $) 106 T ELT) (((-83) |#4| $) 62 T ELT)) (-3222 (((-579 $) |#4| $) 115 T ELT) (((-579 $) (-579 |#4|) $) NIL T ELT) (((-579 $) (-579 |#4|) (-579 $)) 116 T ELT) (((-579 $) |#4| (-579 $)) NIL T ELT)) (-3421 (((-579 $) (-579 |#4|) (-83) (-83) (-83)) 128 T ELT)) (-3422 (($ |#4| $) 82 T ELT) (($ (-579 |#4|) $) 83 T ELT) (((-579 $) |#4| $ (-83) (-83) (-83) (-83) (-83)) 81 T ELT)) (-3679 (((-579 |#4|) $) NIL T ELT)) (-3673 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3668 ((|#4| |#4| $) NIL T ELT)) (-3681 (((-83) $ $) NIL T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-490)) ELT)) (-3674 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 ((|#4| |#4| $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 (((-3 |#4| #1#) $) 40 T ELT)) (-1342 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3661 (((-3 $ #1#) $ |#4|) 56 T ELT)) (-3751 (($ $ |#4|) NIL T ELT) (((-579 $) |#4| $) 98 T ELT) (((-579 $) |#4| (-579 $)) NIL T ELT) (((-579 $) (-579 |#4|) $) NIL T ELT) (((-579 $) (-579 |#4|) (-579 $)) 93 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 17 T ELT)) (-3547 (($) 14 T ELT)) (-3930 (((-688) $) NIL T ELT)) (-1934 (((-688) |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (((-688) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 13 T ELT)) (-3954 (((-468) $) NIL (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) 22 T ELT)) (-2895 (($ $ |#3|) 49 T ELT)) (-2897 (($ $ |#3|) 51 T ELT)) (-3666 (($ $) NIL T ELT)) (-2896 (($ $ |#3|) NIL T ELT)) (-3928 (((-766) $) 35 T ELT) (((-579 |#4|) $) 46 T ELT)) (-3660 (((-688) $) NIL (|has| |#3| (-314)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3672 (((-83) $ (-1 (-83) |#4| (-579 |#4|))) NIL T ELT)) (-3173 (((-579 $) |#4| $) 63 T ELT) (((-579 $) |#4| (-579 $)) NIL T ELT) (((-579 $) (-579 |#4|) $) NIL T ELT) (((-579 $) (-579 |#4|) (-579 $)) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 |#3|) $) NIL T ELT)) (-3180 (((-83) |#4| $) NIL T ELT)) (-3915 (((-83) |#3| $) 69 T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-1050 |#1| |#2| |#3| |#4|) (-13 (-1013 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3422 ((-579 $) |#4| $ (-83) (-83) (-83) (-83) (-83))) (-15 -3664 ((-579 $) (-579 |#4|) (-83) (-83))) (-15 -3664 ((-579 $) (-579 |#4|) (-83) (-83) (-83) (-83))) (-15 -3421 ((-579 $) (-579 |#4|) (-83) (-83) (-83))) (-15 -3420 ((-2 (|:| |val| (-579 |#4|)) (|:| |towers| (-579 $))) (-579 |#4|) (-83) (-83))))) (-386) (-711) (-750) (-970 |#1| |#2| |#3|)) (T -1050)) +((-3422 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-1050 *5 *6 *7 *3))) (-5 *1 (-1050 *5 *6 *7 *3)) (-4 *3 (-970 *5 *6 *7)))) (-3664 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-1050 *5 *6 *7 *8))) (-5 *1 (-1050 *5 *6 *7 *8)))) (-3664 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-1050 *5 *6 *7 *8))) (-5 *1 (-1050 *5 *6 *7 *8)))) (-3421 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-1050 *5 *6 *7 *8))) (-5 *1 (-1050 *5 *6 *7 *8)))) (-3420 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-579 *8)) (|:| |towers| (-579 (-1050 *5 *6 *7 *8))))) (-5 *1 (-1050 *5 *6 *7 *8)) (-5 *3 (-579 *8))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 31 T ELT)) (-2397 (((-83) $) 29 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 28 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-688)) 30 T ELT) (($ $ (-824)) 27 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ $ $) 26 T ELT))) +(((-1051) (-111)) (T -1051)) +NIL +(-13 (-23) (-659)) +(((-23) . T) ((-25) . T) ((-72) . T) ((-548 (-766)) . T) ((-659) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3306 ((|#1| $) 38 T ELT)) (-3423 (($ (-579 |#1|)) 46 T ELT)) (-3706 (($) NIL T CONST)) (-3308 ((|#1| |#1| $) 41 T ELT)) (-3307 ((|#1| $) 36 T ELT)) (-2874 (((-579 |#1|) $) 19 (|has| $ (-6 -3977)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 26 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-1263 ((|#1| $) 39 T ELT)) (-3591 (($ |#1| $) 42 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1264 ((|#1| $) 37 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 33 T ELT)) (-3547 (($) 44 T ELT)) (-3305 (((-688) $) 31 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) 28 T ELT)) (-3928 (((-766) $) 15 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (($ (-579 |#1|)) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 32 (|has| $ (-6 -3977)) ELT))) +(((-1052 |#1|) (-13 (-1025 |#1|) (-10 -8 (-15 -3423 ($ (-579 |#1|))))) (-1119)) (T -1052)) +((-3423 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-1052 *3))))) +((-3770 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1136 (-479)) |#2|) 53 T ELT) ((|#2| $ (-479) |#2|) 50 T ELT)) (-3425 (((-83) $) 12 T ELT)) (-1937 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3783 ((|#2| $) NIL T ELT) (($ $ (-688)) 17 T ELT)) (-2186 (($ $ |#2|) 49 T ELT)) (-3426 (((-83) $) 11 T ELT)) (-3782 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1136 (-479))) 36 T ELT) ((|#2| $ (-479)) 25 T ELT) ((|#2| $ (-479) |#2|) NIL T ELT)) (-3773 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3784 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-579 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1053 |#1| |#2|) (-10 -7 (-15 -3425 ((-83) |#1|)) (-15 -3426 ((-83) |#1|)) (-15 -3770 (|#2| |#1| (-479) |#2|)) (-15 -3782 (|#2| |#1| (-479) |#2|)) (-15 -3782 (|#2| |#1| (-479))) (-15 -2186 (|#1| |#1| |#2|)) (-15 -3782 (|#1| |#1| (-1136 (-479)))) (-15 -3784 (|#1| |#1| |#2|)) (-15 -3784 (|#1| (-579 |#1|))) (-15 -3770 (|#2| |#1| (-1136 (-479)) |#2|)) (-15 -3770 (|#2| |#1| #1="last" |#2|)) (-15 -3770 (|#1| |#1| #2="rest" |#1|)) (-15 -3770 (|#2| |#1| #3="first" |#2|)) (-15 -3773 (|#1| |#1| |#2|)) (-15 -3773 (|#1| |#1| |#1|)) (-15 -3782 (|#2| |#1| #1#)) (-15 -3782 (|#1| |#1| #2#)) (-15 -3783 (|#1| |#1| (-688))) (-15 -3782 (|#2| |#1| #3#)) (-15 -3783 (|#2| |#1|)) (-15 -3784 (|#1| |#2| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -3770 (|#2| |#1| #4="value" |#2|)) (-15 -3782 (|#2| |#1| #4#)) (-15 -1937 (|#1| (-1 |#2| |#2|) |#1|))) (-1054 |#2|) (-1119)) (T -1053)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 52 T ELT)) (-3777 ((|#1| $) 71 T ELT)) (-3779 (($ $) 73 T ELT)) (-2185 (((-1175) $ (-479) (-479)) 107 (|has| $ (-6 -3978)) ELT)) (-3767 (($ $ (-479)) 58 (|has| $ (-6 -3978)) ELT)) (-3424 (((-83) $ (-688)) 90 T ELT)) (-3010 ((|#1| $ |#1|) 43 (|has| $ (-6 -3978)) ELT)) (-3769 (($ $ $) 62 (|has| $ (-6 -3978)) ELT)) (-3768 ((|#1| $ |#1|) 60 (|has| $ (-6 -3978)) ELT)) (-3771 ((|#1| $ |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3978)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -3978)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -3978)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 127 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-479) |#1|) 96 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 45 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 112 (|has| $ (-6 -3977)) ELT)) (-3778 ((|#1| $) 72 T ELT)) (-3706 (($) 7 T CONST)) (-3781 (($ $) 79 T ELT) (($ $ (-688)) 77 T ELT)) (-1341 (($ $) 109 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ (-1 (-83) |#1|) $) 113 (|has| $ (-6 -3977)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1564 ((|#1| $ (-479) |#1|) 95 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 97 T ELT)) (-3425 (((-83) $) 93 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 54 T ELT)) (-3012 (((-83) $ $) 46 (|has| |#1| (-1006)) ELT)) (-3596 (($ (-688) |#1|) 119 T ELT)) (-3701 (((-83) $ (-688)) 91 T ELT)) (-2187 (((-479) $) 105 (|has| (-479) (-750)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 104 (|has| (-479) (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3698 (((-83) $ (-688)) 92 T ELT)) (-3015 (((-579 |#1|) $) 49 T ELT)) (-3509 (((-83) $) 53 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3780 ((|#1| $) 76 T ELT) (($ $ (-688)) 74 T ELT)) (-2291 (($ $ $ (-479)) 126 T ELT) (($ |#1| $ (-479)) 125 T ELT)) (-2190 (((-579 (-479)) $) 102 T ELT)) (-2191 (((-83) (-479) $) 101 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 82 T ELT) (($ $ (-688)) 80 T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 116 T ELT)) (-2186 (($ $ |#1|) 106 (|has| $ (-6 -3978)) ELT)) (-3426 (((-83) $) 94 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#1| $) 103 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) 100 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1136 (-479))) 118 T ELT) ((|#1| $ (-479)) 99 T ELT) ((|#1| $ (-479) |#1|) 98 T ELT)) (-3014 (((-479) $ $) 48 T ELT)) (-2292 (($ $ (-1136 (-479))) 124 T ELT) (($ $ (-479)) 123 T ELT)) (-3615 (((-83) $) 50 T ELT)) (-3774 (($ $) 68 T ELT)) (-3772 (($ $) 65 (|has| $ (-6 -3978)) ELT)) (-3775 (((-688) $) 69 T ELT)) (-3776 (($ $) 70 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 108 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 117 T ELT)) (-3773 (($ $ $) 67 (|has| $ (-6 -3978)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3978)) ELT)) (-3784 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-579 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) 55 T ELT)) (-3013 (((-83) $ $) 47 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-1054 |#1|) (-111) (-1119)) (T -1054)) +((-3426 (*1 *2 *1) (-12 (-4 *1 (-1054 *3)) (-4 *3 (-1119)) (-5 *2 (-83)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-1054 *3)) (-4 *3 (-1119)) (-5 *2 (-83)))) (-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-1054 *4)) (-4 *4 (-1119)) (-5 *2 (-83)))) (-3701 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-1054 *4)) (-4 *4 (-1119)) (-5 *2 (-83)))) (-3424 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-1054 *4)) (-4 *4 (-1119)) (-5 *2 (-83))))) +(-13 (-1158 |t#1|) (-589 |t#1|) (-10 -8 (-15 -3426 ((-83) $)) (-15 -3425 ((-83) $)) (-15 -3698 ((-83) $ (-688))) (-15 -3701 ((-83) $ (-688))) (-15 -3424 ((-83) $ (-688))))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 (-479) |#1|) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-534 (-479) |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-589 |#1|) . T) ((-917 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1119) . T) ((-1158 |#1|) . T)) +((-2553 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3581 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2185 (((-1175) $ |#1| |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) NIL T ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-2219 (((-579 |#1|) $) NIL T ELT)) (-2220 (((-83) |#1| $) NIL T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2190 (((-579 |#1|) $) NIL T ELT)) (-2191 (((-83) |#1| $) NIL T ELT)) (-3227 (((-1024) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-3783 ((|#2| $) NIL (|has| |#1| (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1454 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3928 (((-766) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-548 (-766)))) ELT)) (-1254 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-1055 |#1| |#2| |#3|) (-1097 |#1| |#2|) (-1006) (-1006) |#2|) (T -1055)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3427 (((-628 $) $) 17 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3428 (($) 18 T CONST)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3041 (((-83) $ $) 8 T ELT))) +(((-1056) (-111)) (T -1056)) +((-3428 (*1 *1) (-4 *1 (-1056))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-628 *1)) (-4 *1 (-1056))))) +(-13 (-1006) (-10 -8 (-15 -3428 ($) -3934) (-15 -3427 ((-628 $) $)))) +(((-72) . T) ((-548 (-766)) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3430 (((-628 (-1039)) $) 28 T ELT)) (-3429 (((-1039) $) 16 T ELT)) (-3431 (((-1039) $) 18 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3432 (((-440) $) 14 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 38 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1057) (-13 (-988) (-10 -8 (-15 -3432 ((-440) $)) (-15 -3431 ((-1039) $)) (-15 -3430 ((-628 (-1039)) $)) (-15 -3429 ((-1039) $))))) (T -1057)) +((-3432 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-1057)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1057)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-628 (-1039))) (-5 *1 (-1057)))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1057))))) +((-3435 (((-1059 |#1|) (-1059 |#1|)) 17 T ELT)) (-3433 (((-1059 |#1|) (-1059 |#1|)) 13 T ELT)) (-3436 (((-1059 |#1|) (-1059 |#1|) (-479) (-479)) 20 T ELT)) (-3434 (((-1059 |#1|) (-1059 |#1|)) 15 T ELT))) +(((-1058 |#1|) (-10 -7 (-15 -3433 ((-1059 |#1|) (-1059 |#1|))) (-15 -3434 ((-1059 |#1|) (-1059 |#1|))) (-15 -3435 ((-1059 |#1|) (-1059 |#1|))) (-15 -3436 ((-1059 |#1|) (-1059 |#1|) (-479) (-479)))) (-13 (-490) (-118))) (T -1058)) +((-3436 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1059 *4)) (-5 *3 (-479)) (-4 *4 (-13 (-490) (-118))) (-5 *1 (-1058 *4)))) (-3435 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-13 (-490) (-118))) (-5 *1 (-1058 *3)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-13 (-490) (-118))) (-5 *1 (-1058 *3)))) (-3433 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-13 (-490) (-118))) (-5 *1 (-1058 *3))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) NIL T ELT)) (-3777 ((|#1| $) NIL T ELT)) (-3779 (($ $) 60 T ELT)) (-2185 (((-1175) $ (-479) (-479)) 93 (|has| $ (-6 -3978)) ELT)) (-3767 (($ $ (-479)) 122 (|has| $ (-6 -3978)) ELT)) (-3424 (((-83) $ (-688)) NIL T ELT)) (-3441 (((-766) $) 46 (|has| |#1| (-1006)) ELT)) (-3440 (((-83)) 49 (|has| |#1| (-1006)) ELT)) (-3010 ((|#1| $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3769 (($ $ $) 109 (|has| $ (-6 -3978)) ELT) (($ $ (-479) $) 135 T ELT)) (-3768 ((|#1| $ |#1|) 119 (|has| $ (-6 -3978)) ELT)) (-3771 ((|#1| $ |#1|) 114 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-6 -3978)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-6 -3978)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 106 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-479) |#1|) 72 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) NIL (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 75 T ELT)) (-3778 ((|#1| $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2310 (($ $) 11 T ELT)) (-3781 (($ $) 35 T ELT) (($ $ (-688)) 105 T ELT)) (-3446 (((-83) (-579 |#1|) $) 128 (|has| |#1| (-1006)) ELT)) (-3447 (($ (-579 |#1|)) 124 T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) 74 T ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1564 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) NIL T ELT)) (-3425 (((-83) $) NIL T ELT)) (-2874 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3442 (((-1175) (-479) $) 133 (|has| |#1| (-1006)) ELT)) (-2309 (((-688) $) 131 T ELT)) (-3016 (((-579 $) $) NIL T ELT)) (-3012 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3596 (($ (-688) |#1|) NIL T ELT)) (-3701 (((-83) $ (-688)) NIL T ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 89 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3698 (((-83) $ (-688)) NIL T ELT)) (-3015 (((-579 |#1|) $) NIL T ELT)) (-3509 (((-83) $) NIL T ELT)) (-2312 (($ $) 107 T ELT)) (-2313 (((-83) $) 10 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3780 ((|#1| $) NIL T ELT) (($ $ (-688)) NIL T ELT)) (-2291 (($ $ $ (-479)) NIL T ELT) (($ |#1| $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) 90 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3439 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2311 ((|#1| $) 7 T ELT)) (-3783 ((|#1| $) 34 T ELT) (($ $ (-688)) 58 T ELT)) (-3445 (((-2 (|:| |cycle?| (-83)) (|:| -2580 (-688)) (|:| |period| (-688))) (-688) $) 29 T ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-3438 (($ (-1 (-83) |#1|) $) 139 T ELT)) (-3437 (($ (-1 (-83) |#1|) $) 140 T ELT)) (-2186 (($ $ |#1|) 85 (|has| $ (-6 -3978)) ELT)) (-3751 (($ $ (-479)) 40 T ELT)) (-3426 (((-83) $) 88 T ELT)) (-2314 (((-83) $) 9 T ELT)) (-2315 (((-83) $) 130 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 25 T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) 14 T ELT)) (-3547 (($) 53 T ELT)) (-3782 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT) ((|#1| $ (-479)) 70 T ELT) ((|#1| $ (-479) |#1|) NIL T ELT)) (-3014 (((-479) $ $) 57 T ELT)) (-2292 (($ $ (-1136 (-479))) NIL T ELT) (($ $ (-479)) NIL T ELT)) (-3444 (($ (-1 $)) 56 T ELT)) (-3615 (((-83) $) 86 T ELT)) (-3774 (($ $) 87 T ELT)) (-3772 (($ $) 110 (|has| $ (-6 -3978)) ELT)) (-3775 (((-688) $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) 52 T ELT)) (-3954 (((-468) $) NIL (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 68 T ELT)) (-3443 (($ |#1| $) 108 T ELT)) (-3773 (($ $ $) 112 (|has| $ (-6 -3978)) ELT) (($ $ |#1|) 113 (|has| $ (-6 -3978)) ELT)) (-3784 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-579 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2876 (($ $) 59 T ELT)) (-3928 (($ (-579 |#1|)) 123 T ELT) (((-766) $) 50 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) NIL T ELT)) (-3013 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 126 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-1059 |#1|) (-13 (-612 |#1|) (-551 (-579 |#1|)) (-10 -8 (-6 -3978) (-15 -3447 ($ (-579 |#1|))) (IF (|has| |#1| (-1006)) (-15 -3446 ((-83) (-579 |#1|) $)) |%noBranch|) (-15 -3445 ((-2 (|:| |cycle?| (-83)) (|:| -2580 (-688)) (|:| |period| (-688))) (-688) $)) (-15 -3444 ($ (-1 $))) (-15 -3443 ($ |#1| $)) (IF (|has| |#1| (-1006)) (PROGN (-15 -3442 ((-1175) (-479) $)) (-15 -3441 ((-766) $)) (-15 -3440 ((-83)))) |%noBranch|) (-15 -3769 ($ $ (-479) $)) (-15 -3439 ($ (-1 |#1|))) (-15 -3439 ($ (-1 |#1| |#1|) |#1|)) (-15 -3438 ($ (-1 (-83) |#1|) $)) (-15 -3437 ($ (-1 (-83) |#1|) $)))) (-1119)) (T -1059)) +((-3447 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3)))) (-3446 (*1 *2 *3 *1) (-12 (-5 *3 (-579 *4)) (-4 *4 (-1006)) (-4 *4 (-1119)) (-5 *2 (-83)) (-5 *1 (-1059 *4)))) (-3445 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-83)) (|:| -2580 (-688)) (|:| |period| (-688)))) (-5 *1 (-1059 *4)) (-4 *4 (-1119)) (-5 *3 (-688)))) (-3444 (*1 *1 *2) (-12 (-5 *2 (-1 (-1059 *3))) (-5 *1 (-1059 *3)) (-4 *3 (-1119)))) (-3443 (*1 *1 *2 *1) (-12 (-5 *1 (-1059 *2)) (-4 *2 (-1119)))) (-3442 (*1 *2 *3 *1) (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-1059 *4)) (-4 *4 (-1006)) (-4 *4 (-1119)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1059 *3)) (-4 *3 (-1006)) (-4 *3 (-1119)))) (-3440 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1059 *3)) (-4 *3 (-1006)) (-4 *3 (-1119)))) (-3769 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1059 *3)) (-4 *3 (-1119)))) (-3439 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3)))) (-3439 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3)))) (-3438 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3)))) (-3437 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3))))) +((-3784 (((-1059 |#1|) (-1059 (-1059 |#1|))) 15 T ELT))) +(((-1060 |#1|) (-10 -7 (-15 -3784 ((-1059 |#1|) (-1059 (-1059 |#1|))))) (-1119)) (T -1060)) +((-3784 (*1 *2 *3) (-12 (-5 *3 (-1059 (-1059 *4))) (-5 *2 (-1059 *4)) (-5 *1 (-1060 *4)) (-4 *4 (-1119))))) +((-3823 (((-1059 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1059 |#1|)) 25 T ELT)) (-3824 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1059 |#1|)) 26 T ELT)) (-3940 (((-1059 |#2|) (-1 |#2| |#1|) (-1059 |#1|)) 16 T ELT))) +(((-1061 |#1| |#2|) (-10 -7 (-15 -3940 ((-1059 |#2|) (-1 |#2| |#1|) (-1059 |#1|))) (-15 -3823 ((-1059 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1059 |#1|))) (-15 -3824 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1059 |#1|)))) (-1119) (-1119)) (T -1061)) +((-3824 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1059 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-1061 *5 *2)))) (-3823 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1059 *6)) (-4 *6 (-1119)) (-4 *3 (-1119)) (-5 *2 (-1059 *3)) (-5 *1 (-1061 *6 *3)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1059 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1059 *6)) (-5 *1 (-1061 *5 *6))))) +((-3940 (((-1059 |#3|) (-1 |#3| |#1| |#2|) (-1059 |#1|) (-1059 |#2|)) 21 T ELT))) +(((-1062 |#1| |#2| |#3|) (-10 -7 (-15 -3940 ((-1059 |#3|) (-1 |#3| |#1| |#2|) (-1059 |#1|) (-1059 |#2|)))) (-1119) (-1119) (-1119)) (T -1062)) +((-3940 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1059 *6)) (-5 *5 (-1059 *7)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1059 *8)) (-5 *1 (-1062 *6 *7 *8))))) +((-2553 (((-83) $ $) NIL (|has| (-115) (-72)) ELT)) (-3408 (($ $) 42 T ELT)) (-3409 (($ $) NIL T ELT)) (-3399 (($ $ (-115)) NIL T ELT) (($ $ (-112)) NIL T ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3406 (((-83) $ $) 67 T ELT)) (-3405 (((-83) $ $ (-479)) 62 T ELT)) (-3517 (($ (-479)) 7 T ELT) (($ (-177)) 9 T ELT) (($ (-440)) 11 T ELT)) (-3400 (((-579 $) $ (-115)) 76 T ELT) (((-579 $) $ (-112)) 77 T ELT)) (-1720 (((-83) (-1 (-83) (-115) (-115)) $) NIL T ELT) (((-83) $) NIL (|has| (-115) (-750)) ELT)) (-1718 (($ (-1 (-83) (-115) (-115)) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| (-115) (-750))) ELT)) (-2894 (($ (-1 (-83) (-115) (-115)) $) NIL T ELT) (($ $) NIL (|has| (-115) (-750)) ELT)) (-3770 (((-115) $ (-479) (-115)) 59 (|has| $ (-6 -3978)) ELT) (((-115) $ (-1136 (-479)) (-115)) NIL (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-3397 (($ $ (-115)) 80 T ELT) (($ $ (-112)) 81 T ELT)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-3402 (($ $ (-1136 (-479)) $) 57 T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT)) (-3388 (($ (-115) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT) (($ (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-115) (-1 (-115) (-115) (-115)) $ (-115) (-115)) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT) (((-115) (-1 (-115) (-115) (-115)) $ (-115)) NIL (|has| $ (-6 -3977)) ELT) (((-115) (-1 (-115) (-115) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 (((-115) $ (-479) (-115)) NIL (|has| $ (-6 -3978)) ELT)) (-3097 (((-115) $ (-479)) NIL T ELT)) (-3407 (((-83) $ $) 91 T ELT)) (-3401 (((-479) (-1 (-83) (-115)) $) NIL T ELT) (((-479) (-115) $) NIL (|has| (-115) (-1006)) ELT) (((-479) (-115) $ (-479)) 64 (|has| (-115) (-1006)) ELT) (((-479) $ $ (-479)) 63 T ELT) (((-479) (-112) $ (-479)) 66 T ELT)) (-2874 (((-579 (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3596 (($ (-688) (-115)) 14 T ELT)) (-2187 (((-479) $) 36 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| (-115) (-750)) ELT)) (-3500 (($ (-1 (-83) (-115) (-115)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-115) (-750)) ELT)) (-2593 (((-579 (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-115) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT)) (-2188 (((-479) $) 50 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| (-115) (-750)) ELT)) (-3403 (((-83) $ $ (-115)) 92 T ELT)) (-3404 (((-688) $ $ (-115)) 88 T ELT)) (-1937 (($ (-1 (-115) (-115)) $) 41 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-115) (-115)) $) NIL T ELT) (($ (-1 (-115) (-115) (-115)) $ $) NIL T ELT)) (-3410 (($ $) 45 T ELT)) (-3411 (($ $) NIL T ELT)) (-3398 (($ $ (-115)) 78 T ELT) (($ $ (-112)) 79 T ELT)) (-3226 (((-1063) $) 46 (|has| (-115) (-1006)) ELT)) (-2291 (($ (-115) $ (-479)) NIL T ELT) (($ $ $ (-479)) 31 T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) 87 (|has| (-115) (-1006)) ELT)) (-3783 (((-115) $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 (-115) "failed") (-1 (-83) (-115)) $) NIL T ELT)) (-2186 (($ $ (-115)) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-115)))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT) (($ $ (-245 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT) (($ $ (-115) (-115)) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT) (($ $ (-579 (-115)) (-579 (-115))) NIL (-12 (|has| (-115) (-256 (-115))) (|has| (-115) (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) (-115) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT)) (-2192 (((-579 (-115)) $) NIL T ELT)) (-3385 (((-83) $) 19 T ELT)) (-3547 (($) 16 T ELT)) (-3782 (((-115) $ (-479) (-115)) NIL T ELT) (((-115) $ (-479)) 69 T ELT) (($ $ (-1136 (-479))) 29 T ELT) (($ $ $) NIL T ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-115) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-115) (-1006))) ELT)) (-1719 (($ $ $ (-479)) 83 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 24 T ELT)) (-3954 (((-468) $) NIL (|has| (-115) (-549 (-468))) ELT)) (-3512 (($ (-579 (-115))) NIL T ELT)) (-3784 (($ $ (-115)) NIL T ELT) (($ (-115) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-579 $)) 84 T ELT)) (-3928 (($ (-115)) NIL T ELT) (((-766) $) 35 (|has| (-115) (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| (-115) (-72)) ELT)) (-1936 (((-83) (-1 (-83) (-115)) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| (-115) (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| (-115) (-750)) ELT)) (-3041 (((-83) $ $) 21 (|has| (-115) (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| (-115) (-750)) ELT)) (-2670 (((-83) $ $) 22 (|has| (-115) (-750)) ELT)) (-3939 (((-688) $) 20 (|has| $ (-6 -3977)) ELT))) +(((-1063) (-13 (-1048) (-10 -8 (-15 -3517 ($ (-479))) (-15 -3517 ($ (-177))) (-15 -3517 ($ (-440)))))) (T -1063)) +((-3517 (*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-1063)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1063)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-1063))))) +((-2553 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3581 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL T ELT)) (-2185 (((-1175) $ (-1063) (-1063)) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ (-1063) |#1|) NIL T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#1| #1="failed") (-1063) $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT)) (-3387 (($ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#1| #1#) (-1063) $) NIL T ELT)) (-3388 (($ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-1063) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-1063)) NIL T ELT)) (-2874 (((-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2187 (((-1063) $) NIL (|has| (-1063) (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-1063) $) NIL (|has| (-1063) (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (OR (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006)) (|has| |#1| (-1006))) ELT)) (-2219 (((-579 (-1063)) $) NIL T ELT)) (-2220 (((-83) (-1063) $) NIL T ELT)) (-1263 (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2190 (((-579 (-1063)) $) NIL T ELT)) (-2191 (((-83) (-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL (OR (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006)) (|has| |#1| (-1006))) ELT)) (-3783 ((|#1| $) NIL (|has| (-1063) (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) #1#) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2186 (($ $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-256 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-1063)) NIL T ELT) ((|#1| $ (-1063) |#1|) NIL T ELT)) (-1454 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-1006))) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL T ELT)) (-3928 (((-766) $) NIL (OR (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-548 (-766))) (|has| |#1| (-548 (-766)))) ELT)) (-1254 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)))) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 (-1063)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-1064 |#1|) (-13 (-1097 (-1063) |#1|) (-10 -7 (-6 -3977))) (-1006)) (T -1064)) +NIL +((-3787 (((-1059 |#1|) (-1059 |#1|)) 83 T ELT)) (-3449 (((-3 (-1059 |#1|) #1="failed") (-1059 |#1|)) 39 T ELT)) (-3460 (((-1059 |#1|) (-344 (-479)) (-1059 |#1|)) 131 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3463 (((-1059 |#1|) |#1| (-1059 |#1|)) 135 (|has| |#1| (-308)) ELT)) (-3790 (((-1059 |#1|) (-1059 |#1|)) 97 T ELT)) (-3451 (((-1059 (-479)) (-479)) 63 T ELT)) (-3459 (((-1059 |#1|) (-1059 (-1059 |#1|))) 116 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3786 (((-1059 |#1|) (-479) (-479) (-1059 |#1|)) 103 T ELT)) (-3920 (((-1059 |#1|) |#1| (-479)) 51 T ELT)) (-3453 (((-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) 66 T ELT)) (-3461 (((-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) 133 (|has| |#1| (-308)) ELT)) (-3458 (((-1059 |#1|) |#1| (-1 (-1059 |#1|))) 115 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3462 (((-1059 |#1|) (-1 |#1| (-479)) |#1| (-1 (-1059 |#1|))) 134 (|has| |#1| (-308)) ELT)) (-3791 (((-1059 |#1|) (-1059 |#1|)) 96 T ELT)) (-3792 (((-1059 |#1|) (-1059 |#1|)) 82 T ELT)) (-3785 (((-1059 |#1|) (-479) (-479) (-1059 |#1|)) 104 T ELT)) (-3794 (((-1059 |#1|) |#1| (-1059 |#1|)) 113 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3450 (((-1059 (-479)) (-479)) 62 T ELT)) (-3452 (((-1059 |#1|) |#1|) 65 T ELT)) (-3788 (((-1059 |#1|) (-1059 |#1|) (-479) (-479)) 100 T ELT)) (-3455 (((-1059 |#1|) (-1 |#1| (-479)) (-1059 |#1|)) 72 T ELT)) (-3448 (((-3 (-1059 |#1|) #1#) (-1059 |#1|) (-1059 |#1|)) 37 T ELT)) (-3789 (((-1059 |#1|) (-1059 |#1|)) 98 T ELT)) (-3750 (((-1059 |#1|) (-1059 |#1|) |#1|) 77 T ELT)) (-3454 (((-1059 |#1|) (-1059 |#1|)) 68 T ELT)) (-3456 (((-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) 78 T ELT)) (-3928 (((-1059 |#1|) |#1|) 73 T ELT)) (-3457 (((-1059 |#1|) (-1059 (-1059 |#1|))) 88 T ELT)) (-3931 (((-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) 38 T ELT)) (-3819 (((-1059 |#1|) (-1059 |#1|)) 21 T ELT) (((-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) 23 T ELT)) (-3821 (((-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) 17 T ELT)) (* (((-1059 |#1|) (-1059 |#1|) |#1|) 29 T ELT) (((-1059 |#1|) |#1| (-1059 |#1|)) 26 T ELT) (((-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) 27 T ELT))) +(((-1065 |#1|) (-10 -7 (-15 -3821 ((-1059 |#1|) (-1059 |#1|) (-1059 |#1|))) (-15 -3819 ((-1059 |#1|) (-1059 |#1|) (-1059 |#1|))) (-15 -3819 ((-1059 |#1|) (-1059 |#1|))) (-15 * ((-1059 |#1|) (-1059 |#1|) (-1059 |#1|))) (-15 * ((-1059 |#1|) |#1| (-1059 |#1|))) (-15 * ((-1059 |#1|) (-1059 |#1|) |#1|)) (-15 -3448 ((-3 (-1059 |#1|) #1="failed") (-1059 |#1|) (-1059 |#1|))) (-15 -3931 ((-1059 |#1|) (-1059 |#1|) (-1059 |#1|))) (-15 -3449 ((-3 (-1059 |#1|) #1#) (-1059 |#1|))) (-15 -3920 ((-1059 |#1|) |#1| (-479))) (-15 -3450 ((-1059 (-479)) (-479))) (-15 -3451 ((-1059 (-479)) (-479))) (-15 -3452 ((-1059 |#1|) |#1|)) (-15 -3453 ((-1059 |#1|) (-1059 |#1|) (-1059 |#1|))) (-15 -3454 ((-1059 |#1|) (-1059 |#1|))) (-15 -3455 ((-1059 |#1|) (-1 |#1| (-479)) (-1059 |#1|))) (-15 -3928 ((-1059 |#1|) |#1|)) (-15 -3750 ((-1059 |#1|) (-1059 |#1|) |#1|)) (-15 -3456 ((-1059 |#1|) (-1059 |#1|) (-1059 |#1|))) (-15 -3792 ((-1059 |#1|) (-1059 |#1|))) (-15 -3787 ((-1059 |#1|) (-1059 |#1|))) (-15 -3457 ((-1059 |#1|) (-1059 (-1059 |#1|)))) (-15 -3791 ((-1059 |#1|) (-1059 |#1|))) (-15 -3790 ((-1059 |#1|) (-1059 |#1|))) (-15 -3789 ((-1059 |#1|) (-1059 |#1|))) (-15 -3788 ((-1059 |#1|) (-1059 |#1|) (-479) (-479))) (-15 -3786 ((-1059 |#1|) (-479) (-479) (-1059 |#1|))) (-15 -3785 ((-1059 |#1|) (-479) (-479) (-1059 |#1|))) (IF (|has| |#1| (-38 (-344 (-479)))) (PROGN (-15 -3794 ((-1059 |#1|) |#1| (-1059 |#1|))) (-15 -3458 ((-1059 |#1|) |#1| (-1 (-1059 |#1|)))) (-15 -3459 ((-1059 |#1|) (-1059 (-1059 |#1|)))) (-15 -3460 ((-1059 |#1|) (-344 (-479)) (-1059 |#1|)))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -3461 ((-1059 |#1|) (-1059 |#1|) (-1059 |#1|))) (-15 -3462 ((-1059 |#1|) (-1 |#1| (-479)) |#1| (-1 (-1059 |#1|)))) (-15 -3463 ((-1059 |#1|) |#1| (-1059 |#1|)))) |%noBranch|)) (-955)) (T -1065)) +((-3463 (*1 *2 *3 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-308)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3462 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-479))) (-5 *5 (-1 (-1059 *4))) (-4 *4 (-308)) (-4 *4 (-955)) (-5 *2 (-1059 *4)) (-5 *1 (-1065 *4)))) (-3461 (*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-308)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3460 (*1 *2 *3 *2) (-12 (-5 *2 (-1059 *4)) (-4 *4 (-38 *3)) (-4 *4 (-955)) (-5 *3 (-344 (-479))) (-5 *1 (-1065 *4)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-1059 (-1059 *4))) (-5 *2 (-1059 *4)) (-5 *1 (-1065 *4)) (-4 *4 (-38 (-344 (-479)))) (-4 *4 (-955)))) (-3458 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1059 *3))) (-5 *2 (-1059 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)))) (-3794 (*1 *2 *3 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3785 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1059 *4)) (-5 *3 (-479)) (-4 *4 (-955)) (-5 *1 (-1065 *4)))) (-3786 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1059 *4)) (-5 *3 (-479)) (-4 *4 (-955)) (-5 *1 (-1065 *4)))) (-3788 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1059 *4)) (-5 *3 (-479)) (-4 *4 (-955)) (-5 *1 (-1065 *4)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3790 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-1059 (-1059 *4))) (-5 *2 (-1059 *4)) (-5 *1 (-1065 *4)) (-4 *4 (-955)))) (-3787 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3792 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3456 (*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3750 (*1 *2 *2 *3) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3928 (*1 *2 *3) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-955)))) (-3455 (*1 *2 *3 *2) (-12 (-5 *2 (-1059 *4)) (-5 *3 (-1 *4 (-479))) (-4 *4 (-955)) (-5 *1 (-1065 *4)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3453 (*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3452 (*1 *2 *3) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-955)))) (-3451 (*1 *2 *3) (-12 (-5 *2 (-1059 (-479))) (-5 *1 (-1065 *4)) (-4 *4 (-955)) (-5 *3 (-479)))) (-3450 (*1 *2 *3) (-12 (-5 *2 (-1059 (-479))) (-5 *1 (-1065 *4)) (-4 *4 (-955)) (-5 *3 (-479)))) (-3920 (*1 *2 *3 *4) (-12 (-5 *4 (-479)) (-5 *2 (-1059 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-955)))) (-3449 (*1 *2 *2) (|partial| -12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3931 (*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3448 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3819 (*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) (-3821 (*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3))))) +((-3474 (((-1059 |#1|) (-1059 |#1|)) 102 T ELT)) (-3621 (((-1059 |#1|) (-1059 |#1|)) 59 T ELT)) (-3465 (((-2 (|:| -3472 (-1059 |#1|)) (|:| -3473 (-1059 |#1|))) (-1059 |#1|)) 98 T ELT)) (-3472 (((-1059 |#1|) (-1059 |#1|)) 99 T ELT)) (-3464 (((-2 (|:| -3620 (-1059 |#1|)) (|:| -3616 (-1059 |#1|))) (-1059 |#1|)) 54 T ELT)) (-3620 (((-1059 |#1|) (-1059 |#1|)) 55 T ELT)) (-3476 (((-1059 |#1|) (-1059 |#1|)) 104 T ELT)) (-3619 (((-1059 |#1|) (-1059 |#1|)) 66 T ELT)) (-3924 (((-1059 |#1|) (-1059 |#1|)) 40 T ELT)) (-3925 (((-1059 |#1|) (-1059 |#1|)) 37 T ELT)) (-3477 (((-1059 |#1|) (-1059 |#1|)) 105 T ELT)) (-3618 (((-1059 |#1|) (-1059 |#1|)) 67 T ELT)) (-3475 (((-1059 |#1|) (-1059 |#1|)) 103 T ELT)) (-3617 (((-1059 |#1|) (-1059 |#1|)) 62 T ELT)) (-3473 (((-1059 |#1|) (-1059 |#1|)) 100 T ELT)) (-3616 (((-1059 |#1|) (-1059 |#1|)) 56 T ELT)) (-3480 (((-1059 |#1|) (-1059 |#1|)) 113 T ELT)) (-3468 (((-1059 |#1|) (-1059 |#1|)) 88 T ELT)) (-3478 (((-1059 |#1|) (-1059 |#1|)) 107 T ELT)) (-3466 (((-1059 |#1|) (-1059 |#1|)) 84 T ELT)) (-3482 (((-1059 |#1|) (-1059 |#1|)) 117 T ELT)) (-3470 (((-1059 |#1|) (-1059 |#1|)) 92 T ELT)) (-3483 (((-1059 |#1|) (-1059 |#1|)) 119 T ELT)) (-3471 (((-1059 |#1|) (-1059 |#1|)) 94 T ELT)) (-3481 (((-1059 |#1|) (-1059 |#1|)) 115 T ELT)) (-3469 (((-1059 |#1|) (-1059 |#1|)) 90 T ELT)) (-3479 (((-1059 |#1|) (-1059 |#1|)) 109 T ELT)) (-3467 (((-1059 |#1|) (-1059 |#1|)) 86 T ELT)) (** (((-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) 41 T ELT))) +(((-1066 |#1|) (-10 -7 (-15 -3925 ((-1059 |#1|) (-1059 |#1|))) (-15 -3924 ((-1059 |#1|) (-1059 |#1|))) (-15 ** ((-1059 |#1|) (-1059 |#1|) (-1059 |#1|))) (-15 -3464 ((-2 (|:| -3620 (-1059 |#1|)) (|:| -3616 (-1059 |#1|))) (-1059 |#1|))) (-15 -3620 ((-1059 |#1|) (-1059 |#1|))) (-15 -3616 ((-1059 |#1|) (-1059 |#1|))) (-15 -3621 ((-1059 |#1|) (-1059 |#1|))) (-15 -3617 ((-1059 |#1|) (-1059 |#1|))) (-15 -3619 ((-1059 |#1|) (-1059 |#1|))) (-15 -3618 ((-1059 |#1|) (-1059 |#1|))) (-15 -3466 ((-1059 |#1|) (-1059 |#1|))) (-15 -3467 ((-1059 |#1|) (-1059 |#1|))) (-15 -3468 ((-1059 |#1|) (-1059 |#1|))) (-15 -3469 ((-1059 |#1|) (-1059 |#1|))) (-15 -3470 ((-1059 |#1|) (-1059 |#1|))) (-15 -3471 ((-1059 |#1|) (-1059 |#1|))) (-15 -3465 ((-2 (|:| -3472 (-1059 |#1|)) (|:| -3473 (-1059 |#1|))) (-1059 |#1|))) (-15 -3472 ((-1059 |#1|) (-1059 |#1|))) (-15 -3473 ((-1059 |#1|) (-1059 |#1|))) (-15 -3474 ((-1059 |#1|) (-1059 |#1|))) (-15 -3475 ((-1059 |#1|) (-1059 |#1|))) (-15 -3476 ((-1059 |#1|) (-1059 |#1|))) (-15 -3477 ((-1059 |#1|) (-1059 |#1|))) (-15 -3478 ((-1059 |#1|) (-1059 |#1|))) (-15 -3479 ((-1059 |#1|) (-1059 |#1|))) (-15 -3480 ((-1059 |#1|) (-1059 |#1|))) (-15 -3481 ((-1059 |#1|) (-1059 |#1|))) (-15 -3482 ((-1059 |#1|) (-1059 |#1|))) (-15 -3483 ((-1059 |#1|) (-1059 |#1|)))) (-38 (-344 (-479)))) (T -1066)) +((-3483 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3465 (*1 *2 *3) (-12 (-4 *4 (-38 (-344 (-479)))) (-5 *2 (-2 (|:| -3472 (-1059 *4)) (|:| -3473 (-1059 *4)))) (-5 *1 (-1066 *4)) (-5 *3 (-1059 *4)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3464 (*1 *2 *3) (-12 (-4 *4 (-38 (-344 (-479)))) (-5 *2 (-2 (|:| -3620 (-1059 *4)) (|:| -3616 (-1059 *4)))) (-5 *1 (-1066 *4)) (-5 *3 (-1059 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3))))) +((-3474 (((-1059 |#1|) (-1059 |#1|)) 60 T ELT)) (-3621 (((-1059 |#1|) (-1059 |#1|)) 42 T ELT)) (-3472 (((-1059 |#1|) (-1059 |#1|)) 56 T ELT)) (-3620 (((-1059 |#1|) (-1059 |#1|)) 38 T ELT)) (-3476 (((-1059 |#1|) (-1059 |#1|)) 63 T ELT)) (-3619 (((-1059 |#1|) (-1059 |#1|)) 45 T ELT)) (-3924 (((-1059 |#1|) (-1059 |#1|)) 34 T ELT)) (-3925 (((-1059 |#1|) (-1059 |#1|)) 29 T ELT)) (-3477 (((-1059 |#1|) (-1059 |#1|)) 64 T ELT)) (-3618 (((-1059 |#1|) (-1059 |#1|)) 46 T ELT)) (-3475 (((-1059 |#1|) (-1059 |#1|)) 61 T ELT)) (-3617 (((-1059 |#1|) (-1059 |#1|)) 43 T ELT)) (-3473 (((-1059 |#1|) (-1059 |#1|)) 58 T ELT)) (-3616 (((-1059 |#1|) (-1059 |#1|)) 40 T ELT)) (-3480 (((-1059 |#1|) (-1059 |#1|)) 68 T ELT)) (-3468 (((-1059 |#1|) (-1059 |#1|)) 50 T ELT)) (-3478 (((-1059 |#1|) (-1059 |#1|)) 66 T ELT)) (-3466 (((-1059 |#1|) (-1059 |#1|)) 48 T ELT)) (-3482 (((-1059 |#1|) (-1059 |#1|)) 71 T ELT)) (-3470 (((-1059 |#1|) (-1059 |#1|)) 53 T ELT)) (-3483 (((-1059 |#1|) (-1059 |#1|)) 72 T ELT)) (-3471 (((-1059 |#1|) (-1059 |#1|)) 54 T ELT)) (-3481 (((-1059 |#1|) (-1059 |#1|)) 70 T ELT)) (-3469 (((-1059 |#1|) (-1059 |#1|)) 52 T ELT)) (-3479 (((-1059 |#1|) (-1059 |#1|)) 69 T ELT)) (-3467 (((-1059 |#1|) (-1059 |#1|)) 51 T ELT)) (** (((-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) 36 T ELT))) +(((-1067 |#1|) (-10 -7 (-15 -3925 ((-1059 |#1|) (-1059 |#1|))) (-15 -3924 ((-1059 |#1|) (-1059 |#1|))) (-15 ** ((-1059 |#1|) (-1059 |#1|) (-1059 |#1|))) (-15 -3620 ((-1059 |#1|) (-1059 |#1|))) (-15 -3616 ((-1059 |#1|) (-1059 |#1|))) (-15 -3621 ((-1059 |#1|) (-1059 |#1|))) (-15 -3617 ((-1059 |#1|) (-1059 |#1|))) (-15 -3619 ((-1059 |#1|) (-1059 |#1|))) (-15 -3618 ((-1059 |#1|) (-1059 |#1|))) (-15 -3466 ((-1059 |#1|) (-1059 |#1|))) (-15 -3467 ((-1059 |#1|) (-1059 |#1|))) (-15 -3468 ((-1059 |#1|) (-1059 |#1|))) (-15 -3469 ((-1059 |#1|) (-1059 |#1|))) (-15 -3470 ((-1059 |#1|) (-1059 |#1|))) (-15 -3471 ((-1059 |#1|) (-1059 |#1|))) (-15 -3472 ((-1059 |#1|) (-1059 |#1|))) (-15 -3473 ((-1059 |#1|) (-1059 |#1|))) (-15 -3474 ((-1059 |#1|) (-1059 |#1|))) (-15 -3475 ((-1059 |#1|) (-1059 |#1|))) (-15 -3476 ((-1059 |#1|) (-1059 |#1|))) (-15 -3477 ((-1059 |#1|) (-1059 |#1|))) (-15 -3478 ((-1059 |#1|) (-1059 |#1|))) (-15 -3479 ((-1059 |#1|) (-1059 |#1|))) (-15 -3480 ((-1059 |#1|) (-1059 |#1|))) (-15 -3481 ((-1059 |#1|) (-1059 |#1|))) (-15 -3482 ((-1059 |#1|) (-1059 |#1|))) (-15 -3483 ((-1059 |#1|) (-1059 |#1|)))) (-38 (-344 (-479)))) (T -1067)) +((-3483 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3482 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3478 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3471 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3470 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3469 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3619 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3924 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) (-3925 (*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) +((-3484 (((-863 |#2|) |#2| |#2|) 51 T ELT)) (-3485 ((|#2| |#2| |#1|) 19 (|has| |#1| (-254)) ELT))) +(((-1068 |#1| |#2|) (-10 -7 (-15 -3484 ((-863 |#2|) |#2| |#2|)) (IF (|has| |#1| (-254)) (-15 -3485 (|#2| |#2| |#1|)) |%noBranch|)) (-490) (-1145 |#1|)) (T -1068)) +((-3485 (*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-4 *3 (-490)) (-5 *1 (-1068 *3 *2)) (-4 *2 (-1145 *3)))) (-3484 (*1 *2 *3 *3) (-12 (-4 *4 (-490)) (-5 *2 (-863 *3)) (-5 *1 (-1068 *4 *3)) (-4 *3 (-1145 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3493 (($ $ (-579 (-688))) 79 T ELT)) (-3870 (($) 33 T ELT)) (-3502 (($ $) 51 T ELT)) (-3733 (((-579 $) $) 60 T ELT)) (-3508 (((-83) $) 19 T ELT)) (-3486 (((-579 (-848 |#2|)) $) 86 T ELT)) (-3487 (($ $) 80 T ELT)) (-3503 (((-688) $) 47 T ELT)) (-3596 (($) 32 T ELT)) (-3496 (($ $ (-579 (-688)) (-848 |#2|)) 72 T ELT) (($ $ (-579 (-688)) (-688)) 73 T ELT) (($ $ (-688) (-848 |#2|)) 75 T ELT)) (-3500 (($ $ $) 57 T ELT) (($ (-579 $)) 59 T ELT)) (-3488 (((-688) $) 87 T ELT)) (-3509 (((-83) $) 15 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3507 (((-83) $) 22 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3489 (((-143) $) 85 T ELT)) (-3492 (((-848 |#2|) $) 81 T ELT)) (-3491 (((-688) $) 82 T ELT)) (-3490 (((-83) $) 84 T ELT)) (-3494 (($ $ (-579 (-688)) (-143)) 78 T ELT)) (-3501 (($ $) 52 T ELT)) (-3928 (((-766) $) 99 T ELT)) (-3495 (($ $ (-579 (-688)) (-83)) 77 T ELT)) (-3504 (((-579 $) $) 11 T ELT)) (-3505 (($ $ (-688)) 46 T ELT)) (-3506 (($ $) 43 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3497 (($ $ $ (-848 |#2|) (-688)) 68 T ELT)) (-3498 (($ $ (-848 |#2|)) 67 T ELT)) (-3499 (($ $ (-579 (-688)) (-848 |#2|)) 66 T ELT) (($ $ (-579 (-688)) (-688)) 70 T ELT) (((-688) $ (-848 |#2|)) 71 T ELT)) (-3041 (((-83) $ $) 92 T ELT))) +(((-1069 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -3509 ((-83) $)) (-15 -3508 ((-83) $)) (-15 -3507 ((-83) $)) (-15 -3596 ($)) (-15 -3870 ($)) (-15 -3506 ($ $)) (-15 -3505 ($ $ (-688))) (-15 -3504 ((-579 $) $)) (-15 -3503 ((-688) $)) (-15 -3502 ($ $)) (-15 -3501 ($ $)) (-15 -3500 ($ $ $)) (-15 -3500 ($ (-579 $))) (-15 -3733 ((-579 $) $)) (-15 -3499 ($ $ (-579 (-688)) (-848 |#2|))) (-15 -3498 ($ $ (-848 |#2|))) (-15 -3497 ($ $ $ (-848 |#2|) (-688))) (-15 -3496 ($ $ (-579 (-688)) (-848 |#2|))) (-15 -3499 ($ $ (-579 (-688)) (-688))) (-15 -3496 ($ $ (-579 (-688)) (-688))) (-15 -3499 ((-688) $ (-848 |#2|))) (-15 -3496 ($ $ (-688) (-848 |#2|))) (-15 -3495 ($ $ (-579 (-688)) (-83))) (-15 -3494 ($ $ (-579 (-688)) (-143))) (-15 -3493 ($ $ (-579 (-688)))) (-15 -3492 ((-848 |#2|) $)) (-15 -3491 ((-688) $)) (-15 -3490 ((-83) $)) (-15 -3489 ((-143) $)) (-15 -3488 ((-688) $)) (-15 -3487 ($ $)) (-15 -3486 ((-579 (-848 |#2|)) $)))) (-824) (-955)) (T -1069)) +((-3509 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3596 (*1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955)))) (-3870 (*1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955)))) (-3506 (*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955)))) (-3505 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-579 (-1069 *3 *4))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3503 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3502 (*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955)))) (-3501 (*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955)))) (-3500 (*1 *1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955)))) (-3500 (*1 *1 *2) (-12 (-5 *2 (-579 (-1069 *3 *4))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-579 (-1069 *3 *4))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3499 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-688))) (-5 *3 (-848 *5)) (-4 *5 (-955)) (-5 *1 (-1069 *4 *5)) (-14 *4 (-824)))) (-3498 (*1 *1 *1 *2) (-12 (-5 *2 (-848 *4)) (-4 *4 (-955)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)))) (-3497 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-848 *5)) (-5 *3 (-688)) (-4 *5 (-955)) (-5 *1 (-1069 *4 *5)) (-14 *4 (-824)))) (-3496 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-688))) (-5 *3 (-848 *5)) (-4 *5 (-955)) (-5 *1 (-1069 *4 *5)) (-14 *4 (-824)))) (-3499 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-688))) (-5 *3 (-688)) (-5 *1 (-1069 *4 *5)) (-14 *4 (-824)) (-4 *5 (-955)))) (-3496 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-688))) (-5 *3 (-688)) (-5 *1 (-1069 *4 *5)) (-14 *4 (-824)) (-4 *5 (-955)))) (-3499 (*1 *2 *1 *3) (-12 (-5 *3 (-848 *5)) (-4 *5 (-955)) (-5 *2 (-688)) (-5 *1 (-1069 *4 *5)) (-14 *4 (-824)))) (-3496 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-688)) (-5 *3 (-848 *5)) (-4 *5 (-955)) (-5 *1 (-1069 *4 *5)) (-14 *4 (-824)))) (-3495 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-688))) (-5 *3 (-83)) (-5 *1 (-1069 *4 *5)) (-14 *4 (-824)) (-4 *5 (-955)))) (-3494 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-688))) (-5 *3 (-143)) (-5 *1 (-1069 *4 *5)) (-14 *4 (-824)) (-4 *5 (-955)))) (-3493 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-688))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3492 (*1 *2 *1) (-12 (-5 *2 (-848 *4)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-143)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955)))) (-3487 (*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-579 (-848 *4))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3510 ((|#2| $) 11 T ELT)) (-3511 ((|#1| $) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3512 (($ |#1| |#2|) 9 T ELT)) (-3928 (((-766) $) 16 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1070 |#1| |#2|) (-13 (-1006) (-10 -8 (-15 -3512 ($ |#1| |#2|)) (-15 -3511 (|#1| $)) (-15 -3510 (|#2| $)))) (-1006) (-1006)) (T -1070)) +((-3512 (*1 *1 *2 *3) (-12 (-5 *1 (-1070 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3511 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1006)))) (-3510 (*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-1070 *3 *2)) (-4 *3 (-1006))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3513 (((-1039) $) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 16 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1071) (-13 (-988) (-10 -8 (-15 -3513 ((-1039) $))))) (T -1071)) +((-3513 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1071))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 (((-1079 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) 11 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-2050 (($ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-2048 (((-83) $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-3753 (($ $ (-479)) NIL T ELT) (($ $ (-479) (-479)) 75 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) $) NIL T ELT)) (-3713 (((-1079 |#1| |#2| |#3|) $) 42 T ELT)) (-3710 (((-3 (-1079 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3711 (((-1079 |#1| |#2| |#3|) $) 33 T ELT)) (-3474 (($ $) 116 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 92 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1#) $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-3757 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3472 (($ $) 112 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 88 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3605 (((-479) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) ELT)) (-3800 (($ (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|)))) NIL T ELT)) (-3476 (($ $) 120 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 96 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-1079 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1080) #1#) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-944 (-1080))) (|has| |#1| (-308))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) ELT) (((-3 (-479) #1#) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) ELT)) (-3140 (((-1079 |#1| |#2| |#3|) $) 140 T ELT) (((-1080) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-944 (-1080))) (|has| |#1| (-308))) ELT) (((-344 (-479)) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) ELT) (((-479) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) ELT)) (-3712 (($ $) 37 T ELT) (($ (-479) $) 38 T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-1079 |#1| |#2| |#3|)) (-626 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-1079 |#1| |#2| |#3|))) (|:| |vec| (-1169 (-1079 |#1| |#2| |#3|)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-576 (-479))) (|has| |#1| (-308))) ELT) (((-626 (-479)) (-626 $)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-576 (-479))) (|has| |#1| (-308))) ELT)) (-3449 (((-3 $ #1#) $) 54 T ELT)) (-3709 (((-344 (-851 |#1|)) $ (-479)) 74 (|has| |#1| (-490)) ELT) (((-344 (-851 |#1|)) $ (-479) (-479)) 76 (|has| |#1| (-490)) ELT)) (-2979 (($) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-478)) (|has| |#1| (-308))) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3170 (((-83) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) ELT)) (-2877 (((-83) $) 28 T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-790 (-324))) (|has| |#1| (-308))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-790 (-479))) (|has| |#1| (-308))) ELT)) (-3754 (((-479) $) NIL T ELT) (((-479) $ (-479)) 26 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2983 (((-1079 |#1| |#2| |#3|) $) 44 (|has| |#1| (-308)) ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3427 (((-628 $) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-1056)) (|has| |#1| (-308))) ELT)) (-3171 (((-83) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) ELT)) (-3759 (($ $ (-824)) NIL T ELT)) (-3797 (($ (-1 |#1| (-479)) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-479)) 19 T ELT) (($ $ (-987) (-479)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-479))) NIL T ELT)) (-2516 (($ $ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-2842 (($ $ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-308)) ELT)) (-3924 (($ $) 81 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2267 (((-626 (-1079 |#1| |#2| |#3|)) (-1169 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-1079 |#1| |#2| |#3|))) (|:| |vec| (-1169 (-1079 |#1| |#2| |#3|)))) (-1169 $) $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-576 (-479))) (|has| |#1| (-308))) ELT) (((-626 (-479)) (-1169 $)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-576 (-479))) (|has| |#1| (-308))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3761 (($ (-479) (-1079 |#1| |#2| |#3|)) 36 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3794 (($ $) 79 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT) (($ $ (-1166 |#2|)) 80 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3428 (($) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-1056)) (|has| |#1| (-308))) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3112 (($ $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3114 (((-1079 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-478)) (|has| |#1| (-308))) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-479)) 158 T ELT)) (-3448 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3925 (($ $) 82 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-479)))) ELT) (($ $ (-1080) (-1079 |#1| |#2| |#3|)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-448 (-1080) (-1079 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-579 (-1080)) (-579 (-1079 |#1| |#2| |#3|))) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-448 (-1080) (-1079 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-579 (-245 (-1079 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-256 (-1079 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-245 (-1079 |#1| |#2| |#3|))) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-256 (-1079 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-256 (-1079 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-579 (-1079 |#1| |#2| |#3|)) (-579 (-1079 |#1| |#2| |#3|))) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-256 (-1079 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-479)) NIL T ELT) (($ $ $) 61 (|has| (-479) (-1016)) ELT) (($ $ (-1079 |#1| |#2| |#3|)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-238 (-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1 (-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|)) (-688)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1166 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT)) (-2980 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2982 (((-1079 |#1| |#2| |#3|) $) 46 (|has| |#1| (-308)) ELT)) (-3930 (((-479) $) 43 T ELT)) (-3477 (($ $) 122 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 98 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 118 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 94 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 114 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 90 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3954 (((-468) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-549 (-468))) (|has| |#1| (-308))) ELT) (((-324) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-927)) (|has| |#1| (-308))) ELT) (((-177) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-927)) (|has| |#1| (-308))) ELT) (((-794 (-324)) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-549 (-794 (-324)))) (|has| |#1| (-308))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-549 (-794 (-479)))) (|has| |#1| (-308))) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-2876 (($ $) NIL T ELT)) (-3928 (((-766) $) 162 T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1079 |#1| |#2| |#3|)) 30 T ELT) (($ (-1166 |#2|)) 25 T ELT) (($ (-1080)) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-944 (-1080))) (|has| |#1| (-308))) ELT) (($ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT) (($ (-344 (-479))) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) (|has| |#1| (-38 (-344 (-479))))) ELT)) (-3659 ((|#1| $ (-479)) 77 T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-116)) (|has| |#1| (-308))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-3755 ((|#1| $) 12 T ELT)) (-3115 (((-1079 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-478)) (|has| |#1| (-308))) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) 128 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 104 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-3478 (($ $) 124 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 100 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 132 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 108 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-479)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-479)))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) 134 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 110 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 130 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 106 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 126 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 102 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3365 (($ $) NIL (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) ELT)) (-2645 (($) 21 T CONST)) (-2651 (($) 16 T CONST)) (-2654 (($ $ (-1 (-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|)) (-688)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1166 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT)) (-2551 (((-83) $ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-2552 (((-83) $ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-2670 (((-83) $ $) NIL (OR (-12 (|has| (-1079 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1079 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 49 (|has| |#1| (-308)) ELT) (($ (-1079 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3|)) 50 (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 23 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 60 T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 137 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1079 |#1| |#2| |#3|)) 48 (|has| |#1| (-308)) ELT) (($ (-1079 |#1| |#2| |#3|) $) 47 (|has| |#1| (-308)) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1072 |#1| |#2| |#3|) (-13 (-1133 |#1| (-1079 |#1| |#2| |#3|)) (-800 $ (-1166 |#2|)) (-10 -8 (-15 -3928 ($ (-1166 |#2|))) (IF (|has| |#1| (-38 (-344 (-479)))) (-15 -3794 ($ $ (-1166 |#2|))) |%noBranch|))) (-955) (-1080) |#1|) (T -1072)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-955)) (-14 *5 *3))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1072 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3)))) +((-3514 ((|#2| |#2| (-997 |#2|)) 26 T ELT) ((|#2| |#2| (-1080)) 28 T ELT))) +(((-1073 |#1| |#2|) (-10 -7 (-15 -3514 (|#2| |#2| (-1080))) (-15 -3514 (|#2| |#2| (-997 |#2|)))) (-13 (-490) (-944 (-479)) (-576 (-479))) (-13 (-358 |#1|) (-131) (-27) (-1105))) (T -1073)) +((-3514 (*1 *2 *2 *3) (-12 (-5 *3 (-997 *2)) (-4 *2 (-13 (-358 *4) (-131) (-27) (-1105))) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1073 *4 *2)))) (-3514 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1073 *4 *2)) (-4 *2 (-13 (-358 *4) (-131) (-27) (-1105)))))) +((-3514 (((-3 (-344 (-851 |#1|)) (-261 |#1|)) (-344 (-851 |#1|)) (-997 (-344 (-851 |#1|)))) 31 T ELT) (((-344 (-851 |#1|)) (-851 |#1|) (-997 (-851 |#1|))) 44 T ELT) (((-3 (-344 (-851 |#1|)) (-261 |#1|)) (-344 (-851 |#1|)) (-1080)) 33 T ELT) (((-344 (-851 |#1|)) (-851 |#1|) (-1080)) 36 T ELT))) +(((-1074 |#1|) (-10 -7 (-15 -3514 ((-344 (-851 |#1|)) (-851 |#1|) (-1080))) (-15 -3514 ((-3 (-344 (-851 |#1|)) (-261 |#1|)) (-344 (-851 |#1|)) (-1080))) (-15 -3514 ((-344 (-851 |#1|)) (-851 |#1|) (-997 (-851 |#1|)))) (-15 -3514 ((-3 (-344 (-851 |#1|)) (-261 |#1|)) (-344 (-851 |#1|)) (-997 (-344 (-851 |#1|)))))) (-13 (-490) (-944 (-479)))) (T -1074)) +((-3514 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-344 (-851 *5)))) (-5 *3 (-344 (-851 *5))) (-4 *5 (-13 (-490) (-944 (-479)))) (-5 *2 (-3 *3 (-261 *5))) (-5 *1 (-1074 *5)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *4 (-997 (-851 *5))) (-5 *3 (-851 *5)) (-4 *5 (-13 (-490) (-944 (-479)))) (-5 *2 (-344 *3)) (-5 *1 (-1074 *5)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)))) (-5 *2 (-3 (-344 (-851 *5)) (-261 *5))) (-5 *1 (-1074 *5)) (-5 *3 (-344 (-851 *5))))) (-3514 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)))) (-5 *2 (-344 (-851 *5))) (-5 *1 (-1074 *5)) (-5 *3 (-851 *5))))) +((-2553 (((-83) $ $) 172 T ELT)) (-3172 (((-83) $) 44 T ELT)) (-3749 (((-1169 |#1|) $ (-688)) NIL T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3747 (($ (-1075 |#1|)) NIL T ELT)) (-3068 (((-1075 $) $ (-987)) 83 T ELT) (((-1075 |#1|) $) 72 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) 166 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-987))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3737 (($ $ $) 160 (|has| |#1| (-490)) ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 97 (|has| |#1| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) 117 (|has| |#1| (-815)) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3743 (($ $ (-688)) 62 T ELT)) (-3742 (($ $ (-688)) 64 T ELT)) (-3733 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-386)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-987) #1#) $) NIL T ELT)) (-3140 ((|#1| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-987) $) NIL T ELT)) (-3738 (($ $ $ (-987)) NIL (|has| |#1| (-144)) ELT) ((|#1| $ $) 162 (|has| |#1| (-144)) ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) 81 T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#1|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3741 (($ $ $) 133 T ELT)) (-3735 (($ $ $) NIL (|has| |#1| (-490)) ELT)) (-3734 (((-2 (|:| -3936 |#1|) (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-490)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3485 (($ $) 167 (|has| |#1| (-386)) ELT) (($ $ (-987)) NIL (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| (-688) $) 70 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-987) (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-987) (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-3515 (((-766) $ (-766)) 150 T ELT)) (-3754 (((-688) $ $) NIL (|has| |#1| (-490)) ELT)) (-2397 (((-83) $) 49 T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| |#1| (-1056)) ELT)) (-3069 (($ (-1075 |#1|) (-987)) 74 T ELT) (($ (-1075 $) (-987)) 91 T ELT)) (-3759 (($ $ (-688)) 52 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-688)) 89 T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-987)) NIL T ELT) (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 155 T ELT)) (-2805 (((-688) $) NIL T ELT) (((-688) $ (-987)) NIL T ELT) (((-579 (-688)) $ (-579 (-987))) NIL T ELT)) (-1613 (($ (-1 (-688) (-688)) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3748 (((-1075 |#1|) $) NIL T ELT)) (-3067 (((-3 (-987) #1#) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) NIL T ELT) (((-626 |#1|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) 77 T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) NIL (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3744 (((-2 (|:| -1961 $) (|:| -2887 $)) $ (-688)) 61 T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-987)) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3794 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3428 (($) NIL (|has| |#1| (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) 51 T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 105 (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-386)) ELT) (($ $ $) 169 (|has| |#1| (-386)) ELT)) (-3720 (($ $ (-688) |#1| $) 125 T ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 103 (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 102 (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) 110 (|has| |#1| (-815)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3448 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-987) |#1|) NIL T ELT) (($ $ (-579 (-987)) (-579 |#1|)) NIL T ELT) (($ $ (-987) $) NIL T ELT) (($ $ (-579 (-987)) (-579 $)) NIL T ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-344 $) (-344 $) (-344 $)) NIL (|has| |#1| (-490)) ELT) ((|#1| (-344 $) |#1|) NIL (|has| |#1| (-308)) ELT) (((-344 $) $ (-344 $)) NIL (|has| |#1| (-490)) ELT)) (-3746 (((-3 $ #1#) $ (-688)) 55 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 173 (|has| |#1| (-308)) ELT)) (-3739 (($ $ (-987)) NIL (|has| |#1| (-144)) ELT) ((|#1| $) 158 (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987))) NIL T ELT) (($ $ (-987)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-3930 (((-688) $) 79 T ELT) (((-688) $ (-987)) NIL T ELT) (((-579 (-688)) $ (-579 (-987))) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-987) (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-987) (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-987) (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT)) (-2802 ((|#1| $) 164 (|has| |#1| (-386)) ELT) (($ $ (-987)) NIL (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3736 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT) (((-3 (-344 $) #1#) (-344 $) $) NIL (|has| |#1| (-490)) ELT)) (-3928 (((-766) $) 151 T ELT) (($ (-479)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-987)) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-688)) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) 42 (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) 18 T CONST)) (-2651 (($) 20 T CONST)) (-2654 (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987))) NIL T ELT) (($ $ (-987)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#1| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) 122 T ELT)) (-3931 (($ $ |#1|) 174 (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 92 T ELT)) (** (($ $ (-824)) 14 T ELT) (($ $ (-688)) 12 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1075 |#1|) (-13 (-1145 |#1|) (-10 -8 (-15 -3515 ((-766) $ (-766))) (-15 -3720 ($ $ (-688) |#1| $)))) (-955)) (T -1075)) +((-3515 (*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1075 *3)) (-4 *3 (-955)))) (-3720 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-688)) (-5 *1 (-1075 *3)) (-4 *3 (-955))))) +((-3940 (((-1075 |#2|) (-1 |#2| |#1|) (-1075 |#1|)) 13 T ELT))) +(((-1076 |#1| |#2|) (-10 -7 (-15 -3940 ((-1075 |#2|) (-1 |#2| |#1|) (-1075 |#1|)))) (-955) (-955)) (T -1076)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1075 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-5 *2 (-1075 *6)) (-5 *1 (-1076 *5 *6))))) +((-3953 (((-342 (-1075 (-344 |#4|))) (-1075 (-344 |#4|))) 51 T ELT)) (-3714 (((-342 (-1075 (-344 |#4|))) (-1075 (-344 |#4|))) 52 T ELT))) +(((-1077 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3714 ((-342 (-1075 (-344 |#4|))) (-1075 (-344 |#4|)))) (-15 -3953 ((-342 (-1075 (-344 |#4|))) (-1075 (-344 |#4|))))) (-711) (-750) (-386) (-855 |#3| |#1| |#2|)) (T -1077)) +((-3953 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-386)) (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-342 (-1075 (-344 *7)))) (-5 *1 (-1077 *4 *5 *6 *7)) (-5 *3 (-1075 (-344 *7))))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-386)) (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-342 (-1075 (-344 *7)))) (-5 *1 (-1077 *4 *5 *6 *7)) (-5 *3 (-1075 (-344 *7)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) 11 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-344 (-479))) NIL T ELT) (($ $ (-344 (-479)) (-344 (-479))) NIL T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|))) $) NIL T ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-688) (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|)))) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-1072 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1079 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3140 (((-1072 |#1| |#2| |#3|) $) NIL T ELT) (((-1079 |#1| |#2| |#3|) $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3763 (((-344 (-479)) $) 59 T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3764 (($ (-344 (-479)) (-1072 |#1| |#2| |#3|)) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2877 (((-83) $) NIL T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-344 (-479)) $) NIL T ELT) (((-344 (-479)) $ (-344 (-479))) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-344 (-479))) 20 T ELT) (($ $ (-987) (-344 (-479))) NIL T ELT) (($ $ (-579 (-987)) (-579 (-344 (-479)))) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3924 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3762 (((-1072 |#1| |#2| |#3|) $) 41 T ELT)) (-3760 (((-3 (-1072 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3761 (((-1072 |#1| |#2| |#3|) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3794 (($ $) 39 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT) (($ $ (-1166 |#2|)) 40 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-344 (-479))) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-344 (-479))) NIL T ELT) (($ $ $) NIL (|has| (-344 (-479)) (-1016)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-1166 |#2|)) 38 T ELT)) (-3930 (((-344 (-479)) $) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) NIL T ELT)) (-3928 (((-766) $) 62 T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1072 |#1| |#2| |#3|)) 30 T ELT) (($ (-1079 |#1| |#2| |#3|)) 31 T ELT) (($ (-1166 |#2|)) 26 T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-344 (-479))) NIL T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-3755 ((|#1| $) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-344 (-479))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 22 T CONST)) (-2651 (($) 16 T CONST)) (-2654 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-1166 |#2|)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 24 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1078 |#1| |#2| |#3|) (-13 (-1154 |#1| (-1072 |#1| |#2| |#3|)) (-800 $ (-1166 |#2|)) (-944 (-1079 |#1| |#2| |#3|)) (-551 (-1166 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-344 (-479)))) (-15 -3794 ($ $ (-1166 |#2|))) |%noBranch|))) (-955) (-1080) |#1|) (T -1078)) +((-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1078 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 129 T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) 119 T ELT)) (-3793 (((-1138 |#2| |#1|) $ (-688)) 69 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-688)) 85 T ELT) (($ $ (-688) (-688)) 82 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-688)) (|:| |c| |#1|))) $) 105 T ELT)) (-3474 (($ $) 173 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 149 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3472 (($ $) 169 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 145 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-1059 (-2 (|:| |k| (-688)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1059 |#1|)) 113 T ELT)) (-3476 (($ $) 177 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 153 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) 25 T ELT)) (-3798 (($ $) 28 T ELT)) (-3796 (((-851 |#1|) $ (-688)) 81 T ELT) (((-851 |#1|) $ (-688) (-688)) 83 T ELT)) (-2877 (((-83) $) 124 T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-688) $) 126 T ELT) (((-688) $ (-688)) 128 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) NIL T ELT)) (-3797 (($ (-1 |#1| (-479)) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-688)) 13 T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3924 (($ $) 135 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3794 (($ $) 133 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT) (($ $ (-1166 |#2|)) 134 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3751 (($ $ (-688)) 15 T ELT)) (-3448 (((-3 $ #1#) $ $) 26 (|has| |#1| (-490)) ELT)) (-3925 (($ $) 137 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-688)))) ELT)) (-3782 ((|#1| $ (-688)) 122 T ELT) (($ $ $) 132 (|has| (-688) (-1016)) ELT)) (-3740 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-1166 |#2|)) 31 T ELT)) (-3930 (((-688) $) NIL T ELT)) (-3477 (($ $) 179 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 155 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 175 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 151 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 171 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 147 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) NIL T ELT)) (-3928 (((-766) $) 206 T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ |#1|) 130 (|has| |#1| (-144)) ELT) (($ (-1138 |#2| |#1|)) 55 T ELT) (($ (-1166 |#2|)) 36 T ELT)) (-3799 (((-1059 |#1|) $) 101 T ELT)) (-3659 ((|#1| $ (-688)) 121 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-3755 ((|#1| $) 58 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) 185 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 161 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) 181 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 157 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 189 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 165 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-688)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-688)))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) 191 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 167 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 187 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 163 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 183 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 159 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 17 T CONST)) (-2651 (($) 20 T CONST)) (-2654 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-1166 |#2|)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3821 (($ $ $) 35 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-308)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 141 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1079 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-800 $ (-1166 |#2|)) (-10 -8 (-15 -3928 ($ (-1138 |#2| |#1|))) (-15 -3793 ((-1138 |#2| |#1|) $ (-688))) (-15 -3928 ($ (-1166 |#2|))) (IF (|has| |#1| (-38 (-344 (-479)))) (-15 -3794 ($ $ (-1166 |#2|))) |%noBranch|))) (-955) (-1080) |#1|) (T -1079)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3) (-5 *1 (-1079 *3 *4 *5)))) (-3793 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1079 *4 *5 *6)) (-4 *4 (-955)) (-14 *5 (-1080)) (-14 *6 *4))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1079 *3 *4 *5)) (-4 *3 (-955)) (-14 *5 *3))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1079 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3519 (($ $ (-579 (-766))) 48 T ELT)) (-3520 (($ $ (-579 (-766))) 46 T ELT)) (-3517 (((-1063) $) 88 T ELT)) (-3522 (((-2 (|:| -2569 (-579 (-766))) (|:| -2468 (-579 (-766))) (|:| |presup| (-579 (-766))) (|:| -2567 (-579 (-766))) (|:| |args| (-579 (-766)))) $) 95 T ELT)) (-3523 (((-83) $) 86 T ELT)) (-3521 (($ $ (-579 (-579 (-766)))) 45 T ELT) (($ $ (-2 (|:| -2569 (-579 (-766))) (|:| -2468 (-579 (-766))) (|:| |presup| (-579 (-766))) (|:| -2567 (-579 (-766))) (|:| |args| (-579 (-766))))) 85 T ELT)) (-3706 (($) 151 T CONST)) (-3141 (((-3 (-440) "failed") $) 155 T ELT)) (-3140 (((-440) $) NIL T ELT)) (-3525 (((-1175)) 123 T ELT)) (-2781 (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 55 T ELT) (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 62 T ELT)) (-3596 (($) 109 T ELT) (($ $) 118 T ELT)) (-3524 (($ $) 87 T ELT)) (-2516 (($ $ $) NIL T ELT)) (-2842 (($ $ $) NIL T ELT)) (-3516 (((-579 $) $) 124 T ELT)) (-3226 (((-1063) $) 101 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3782 (($ $ (-579 (-766))) 47 T ELT)) (-3954 (((-468) $) 33 T ELT) (((-1080) $) 34 T ELT) (((-794 (-479)) $) 66 T ELT) (((-794 (-324)) $) 64 T ELT)) (-3928 (((-766) $) 41 T ELT) (($ (-1063)) 35 T ELT) (($ (-440)) 153 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3518 (($ $ (-579 (-766))) 49 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 37 T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) 38 T ELT))) +(((-1080) (-13 (-750) (-549 (-468)) (-549 (-1080)) (-551 (-1063)) (-944 (-440)) (-549 (-794 (-479))) (-549 (-794 (-324))) (-790 (-479)) (-790 (-324)) (-10 -8 (-15 -3596 ($)) (-15 -3596 ($ $)) (-15 -3525 ((-1175))) (-15 -3524 ($ $)) (-15 -3523 ((-83) $)) (-15 -3522 ((-2 (|:| -2569 (-579 (-766))) (|:| -2468 (-579 (-766))) (|:| |presup| (-579 (-766))) (|:| -2567 (-579 (-766))) (|:| |args| (-579 (-766)))) $)) (-15 -3521 ($ $ (-579 (-579 (-766))))) (-15 -3521 ($ $ (-2 (|:| -2569 (-579 (-766))) (|:| -2468 (-579 (-766))) (|:| |presup| (-579 (-766))) (|:| -2567 (-579 (-766))) (|:| |args| (-579 (-766)))))) (-15 -3520 ($ $ (-579 (-766)))) (-15 -3519 ($ $ (-579 (-766)))) (-15 -3518 ($ $ (-579 (-766)))) (-15 -3782 ($ $ (-579 (-766)))) (-15 -3517 ((-1063) $)) (-15 -3516 ((-579 $) $)) (-15 -3706 ($) -3934)))) (T -1080)) +((-3596 (*1 *1) (-5 *1 (-1080))) (-3596 (*1 *1 *1) (-5 *1 (-1080))) (-3525 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1080)))) (-3524 (*1 *1 *1) (-5 *1 (-1080))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1080)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2569 (-579 (-766))) (|:| -2468 (-579 (-766))) (|:| |presup| (-579 (-766))) (|:| -2567 (-579 (-766))) (|:| |args| (-579 (-766))))) (-5 *1 (-1080)))) (-3521 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-579 (-766)))) (-5 *1 (-1080)))) (-3521 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2569 (-579 (-766))) (|:| -2468 (-579 (-766))) (|:| |presup| (-579 (-766))) (|:| -2567 (-579 (-766))) (|:| |args| (-579 (-766))))) (-5 *1 (-1080)))) (-3520 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-1080)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-1080)))) (-3518 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-1080)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-1080)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1080)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-1080)))) (-3706 (*1 *1) (-5 *1 (-1080)))) +((-3526 (((-1169 |#1|) |#1| (-824)) 18 T ELT) (((-1169 |#1|) (-579 |#1|)) 25 T ELT))) +(((-1081 |#1|) (-10 -7 (-15 -3526 ((-1169 |#1|) (-579 |#1|))) (-15 -3526 ((-1169 |#1|) |#1| (-824)))) (-955)) (T -1081)) +((-3526 (*1 *2 *3 *4) (-12 (-5 *4 (-824)) (-5 *2 (-1169 *3)) (-5 *1 (-1081 *3)) (-4 *3 (-955)))) (-3526 (*1 *2 *3) (-12 (-5 *3 (-579 *4)) (-4 *4 (-955)) (-5 *2 (-1169 *4)) (-5 *1 (-1081 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3140 (((-479) $) NIL (|has| |#1| (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| |#1| (-944 (-344 (-479)))) ELT) ((|#1| $) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3485 (($ $) NIL (|has| |#1| (-386)) ELT)) (-1612 (($ $ |#1| (-878) $) NIL T ELT)) (-2397 (((-83) $) 18 T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-878)) NIL T ELT)) (-2805 (((-878) $) NIL T ELT)) (-1613 (($ (-1 (-878) (-878)) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#1| $) NIL T ELT)) (-3720 (($ $ (-878) |#1| $) NIL (-12 (|has| (-878) (-102)) (|has| |#1| (-490))) ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-490)) ELT)) (-3930 (((-878) $) NIL T ELT)) (-2802 ((|#1| $) NIL (|has| |#1| (-386)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ |#1|) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-944 (-344 (-479))))) ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-878)) NIL T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2645 (($) 13 T CONST)) (-2651 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 22 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1082 |#1|) (-13 (-273 |#1| (-878)) (-10 -8 (IF (|has| |#1| (-490)) (IF (|has| (-878) (-102)) (-15 -3720 ($ $ (-878) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3975)) (-6 -3975) |%noBranch|))) (-955)) (T -1082)) +((-3720 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-878)) (-4 *2 (-102)) (-5 *1 (-1082 *3)) (-4 *3 (-490)) (-4 *3 (-955))))) +((-3527 (((-1084) (-1080) $) 26 T ELT)) (-3537 (($) 30 T ELT)) (-3529 (((-3 (|:| |fst| (-371)) (|:| -3892 #1="void")) (-1080) $) 23 T ELT)) (-3531 (((-1175) (-1080) (-3 (|:| |fst| (-371)) (|:| -3892 #1#)) $) 42 T ELT) (((-1175) (-1080) (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) 43 T ELT) (((-1175) (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) 44 T ELT)) (-3539 (((-1175) (-1080)) 59 T ELT)) (-3530 (((-1175) (-1080) $) 56 T ELT) (((-1175) (-1080)) 57 T ELT) (((-1175)) 58 T ELT)) (-3535 (((-1175) (-1080)) 38 T ELT)) (-3533 (((-1080)) 37 T ELT)) (-3547 (($) 35 T ELT)) (-3546 (((-373) (-1080) (-373) (-1080) $) 46 T ELT) (((-373) (-579 (-1080)) (-373) (-1080) $) 50 T ELT) (((-373) (-1080) (-373)) 47 T ELT) (((-373) (-1080) (-373) (-1080)) 51 T ELT)) (-3534 (((-1080)) 36 T ELT)) (-3928 (((-766) $) 29 T ELT)) (-3536 (((-1175)) 31 T ELT) (((-1175) (-1080)) 34 T ELT)) (-3528 (((-579 (-1080)) (-1080) $) 25 T ELT)) (-3532 (((-1175) (-1080) (-579 (-1080)) $) 39 T ELT) (((-1175) (-1080) (-579 (-1080))) 40 T ELT) (((-1175) (-579 (-1080))) 41 T ELT))) +(((-1083) (-13 (-548 (-766)) (-10 -8 (-15 -3537 ($)) (-15 -3536 ((-1175))) (-15 -3536 ((-1175) (-1080))) (-15 -3546 ((-373) (-1080) (-373) (-1080) $)) (-15 -3546 ((-373) (-579 (-1080)) (-373) (-1080) $)) (-15 -3546 ((-373) (-1080) (-373))) (-15 -3546 ((-373) (-1080) (-373) (-1080))) (-15 -3535 ((-1175) (-1080))) (-15 -3534 ((-1080))) (-15 -3533 ((-1080))) (-15 -3532 ((-1175) (-1080) (-579 (-1080)) $)) (-15 -3532 ((-1175) (-1080) (-579 (-1080)))) (-15 -3532 ((-1175) (-579 (-1080)))) (-15 -3531 ((-1175) (-1080) (-3 (|:| |fst| (-371)) (|:| -3892 #1="void")) $)) (-15 -3531 ((-1175) (-1080) (-3 (|:| |fst| (-371)) (|:| -3892 #1#)))) (-15 -3531 ((-1175) (-3 (|:| |fst| (-371)) (|:| -3892 #1#)))) (-15 -3530 ((-1175) (-1080) $)) (-15 -3530 ((-1175) (-1080))) (-15 -3530 ((-1175))) (-15 -3539 ((-1175) (-1080))) (-15 -3547 ($)) (-15 -3529 ((-3 (|:| |fst| (-371)) (|:| -3892 #1#)) (-1080) $)) (-15 -3528 ((-579 (-1080)) (-1080) $)) (-15 -3527 ((-1084) (-1080) $))))) (T -1083)) +((-3537 (*1 *1) (-5 *1 (-1083))) (-3536 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3546 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-373)) (-5 *3 (-1080)) (-5 *1 (-1083)))) (-3546 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-373)) (-5 *3 (-579 (-1080))) (-5 *4 (-1080)) (-5 *1 (-1083)))) (-3546 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1080)) (-5 *1 (-1083)))) (-3546 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-373)) (-5 *3 (-1080)) (-5 *1 (-1083)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3534 (*1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1083)))) (-3533 (*1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1083)))) (-3532 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-579 (-1080))) (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-1080))) (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-579 (-1080))) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3531 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1080)) (-5 *4 (-3 (|:| |fst| (-371)) (|:| -3892 #1="void"))) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-1080)) (-5 *4 (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3530 (*1 *2 *3 *1) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3530 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) (-3547 (*1 *1) (-5 *1 (-1083))) (-3529 (*1 *2 *3 *1) (-12 (-5 *3 (-1080)) (-5 *2 (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) (-5 *1 (-1083)))) (-3528 (*1 *2 *3 *1) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-1083)) (-5 *3 (-1080)))) (-3527 (*1 *2 *3 *1) (-12 (-5 *3 (-1080)) (-5 *2 (-1084)) (-5 *1 (-1083))))) +((-3541 (((-579 (-579 (-3 (|:| -3524 (-1080)) (|:| -3209 (-579 (-3 (|:| S (-1080)) (|:| P (-851 (-479))))))))) $) 66 T ELT)) (-3543 (((-579 (-3 (|:| -3524 (-1080)) (|:| -3209 (-579 (-3 (|:| S (-1080)) (|:| P (-851 (-479)))))))) (-371) $) 47 T ELT)) (-3538 (($ (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| (-373))))) 17 T ELT)) (-3539 (((-1175) $) 73 T ELT)) (-3544 (((-579 (-1080)) $) 22 T ELT)) (-3540 (((-1008) $) 60 T ELT)) (-3545 (((-373) (-1080) $) 27 T ELT)) (-3542 (((-579 (-1080)) $) 30 T ELT)) (-3547 (($) 19 T ELT)) (-3546 (((-373) (-579 (-1080)) (-373) $) 25 T ELT) (((-373) (-1080) (-373) $) 24 T ELT)) (-3928 (((-766) $) 12 T ELT) (((-1092 (-1080) (-373)) $) 13 T ELT))) +(((-1084) (-13 (-548 (-766)) (-10 -8 (-15 -3928 ((-1092 (-1080) (-373)) $)) (-15 -3547 ($)) (-15 -3546 ((-373) (-579 (-1080)) (-373) $)) (-15 -3546 ((-373) (-1080) (-373) $)) (-15 -3545 ((-373) (-1080) $)) (-15 -3544 ((-579 (-1080)) $)) (-15 -3543 ((-579 (-3 (|:| -3524 (-1080)) (|:| -3209 (-579 (-3 (|:| S (-1080)) (|:| P (-851 (-479)))))))) (-371) $)) (-15 -3542 ((-579 (-1080)) $)) (-15 -3541 ((-579 (-579 (-3 (|:| -3524 (-1080)) (|:| -3209 (-579 (-3 (|:| S (-1080)) (|:| P (-851 (-479))))))))) $)) (-15 -3540 ((-1008) $)) (-15 -3539 ((-1175) $)) (-15 -3538 ($ (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| (-373))))))))) (T -1084)) +((-3928 (*1 *2 *1) (-12 (-5 *2 (-1092 (-1080) (-373))) (-5 *1 (-1084)))) (-3547 (*1 *1) (-5 *1 (-1084))) (-3546 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-373)) (-5 *3 (-579 (-1080))) (-5 *1 (-1084)))) (-3546 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-373)) (-5 *3 (-1080)) (-5 *1 (-1084)))) (-3545 (*1 *2 *3 *1) (-12 (-5 *3 (-1080)) (-5 *2 (-373)) (-5 *1 (-1084)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-1084)))) (-3543 (*1 *2 *3 *1) (-12 (-5 *3 (-371)) (-5 *2 (-579 (-3 (|:| -3524 (-1080)) (|:| -3209 (-579 (-3 (|:| S (-1080)) (|:| P (-851 (-479))))))))) (-5 *1 (-1084)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-1084)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-579 (-579 (-3 (|:| -3524 (-1080)) (|:| -3209 (-579 (-3 (|:| S (-1080)) (|:| P (-851 (-479)))))))))) (-5 *1 (-1084)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-1084)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1084)))) (-3538 (*1 *1 *2) (-12 (-5 *2 (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| (-373))))) (-5 *1 (-1084))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3141 (((-3 (-479) #1="failed") $) 29 T ELT) (((-3 (-177) #1#) $) 35 T ELT) (((-3 (-440) #1#) $) 43 T ELT) (((-3 (-1063) #1#) $) 47 T ELT)) (-3140 (((-479) $) 30 T ELT) (((-177) $) 36 T ELT) (((-440) $) 40 T ELT) (((-1063) $) 48 T ELT)) (-3552 (((-83) $) 53 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3551 (((-3 (-479) (-177) (-440) (-1063) $) $) 56 T ELT)) (-3550 (((-579 $) $) 58 T ELT)) (-3954 (((-1008) $) 24 T ELT) (($ (-1008)) 25 T ELT)) (-3549 (((-83) $) 57 T ELT)) (-3928 (((-766) $) 23 T ELT) (($ (-479)) 26 T ELT) (($ (-177)) 32 T ELT) (($ (-440)) 38 T ELT) (($ (-1063)) 44 T ELT) (((-468) $) 60 T ELT) (((-479) $) 31 T ELT) (((-177) $) 37 T ELT) (((-440) $) 41 T ELT) (((-1063) $) 49 T ELT)) (-3548 (((-83) $ (|[\|\|]| (-479))) 10 T ELT) (((-83) $ (|[\|\|]| (-177))) 13 T ELT) (((-83) $ (|[\|\|]| (-440))) 19 T ELT) (((-83) $ (|[\|\|]| (-1063))) 16 T ELT)) (-3553 (($ (-440) (-579 $)) 51 T ELT) (($ $ (-579 $)) 52 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3554 (((-479) $) 27 T ELT) (((-177) $) 33 T ELT) (((-440) $) 39 T ELT) (((-1063) $) 45 T ELT)) (-3041 (((-83) $ $) 7 T ELT))) +(((-1085) (-13 (-1165) (-1006) (-944 (-479)) (-944 (-177)) (-944 (-440)) (-944 (-1063)) (-548 (-468)) (-10 -8 (-15 -3954 ((-1008) $)) (-15 -3954 ($ (-1008))) (-15 -3928 ((-479) $)) (-15 -3554 ((-479) $)) (-15 -3928 ((-177) $)) (-15 -3554 ((-177) $)) (-15 -3928 ((-440) $)) (-15 -3554 ((-440) $)) (-15 -3928 ((-1063) $)) (-15 -3554 ((-1063) $)) (-15 -3553 ($ (-440) (-579 $))) (-15 -3553 ($ $ (-579 $))) (-15 -3552 ((-83) $)) (-15 -3551 ((-3 (-479) (-177) (-440) (-1063) $) $)) (-15 -3550 ((-579 $) $)) (-15 -3549 ((-83) $)) (-15 -3548 ((-83) $ (|[\|\|]| (-479)))) (-15 -3548 ((-83) $ (|[\|\|]| (-177)))) (-15 -3548 ((-83) $ (|[\|\|]| (-440)))) (-15 -3548 ((-83) $ (|[\|\|]| (-1063))))))) (T -1085)) +((-3954 (*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-1085)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-1085)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1085)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1085)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1085)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1085)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-1085)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-1085)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1085)))) (-3554 (*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1085)))) (-3553 (*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-579 (-1085))) (-5 *1 (-1085)))) (-3553 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-1085))) (-5 *1 (-1085)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1085)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-3 (-479) (-177) (-440) (-1063) (-1085))) (-5 *1 (-1085)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-579 (-1085))) (-5 *1 (-1085)))) (-3549 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1085)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-479))) (-5 *2 (-83)) (-5 *1 (-1085)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-83)) (-5 *1 (-1085)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-440))) (-5 *2 (-83)) (-5 *1 (-1085)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-83)) (-5 *1 (-1085))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3120 (((-688)) 21 T ELT)) (-3706 (($) 10 T CONST)) (-2979 (($) 25 T ELT)) (-2516 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2842 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-1997 (((-824) $) 23 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) 22 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT))) +(((-1086 |#1|) (-13 (-746) (-10 -8 (-15 -3706 ($) -3934))) (-824)) (T -1086)) +((-3706 (*1 *1) (-12 (-5 *1 (-1086 *2)) (-14 *2 (-824))))) +((-479) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) 24 T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) 18 T CONST)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2842 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-3707 (($ $ $) 20 T ELT)) (-3708 (($ $ $) 19 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) 22 T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) 21 T ELT))) +(((-1087 |#1|) (-13 (-746) (-600) (-10 -8 (-15 -3708 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -3706 ($) -3934))) (-824)) (T -1087)) +((-3708 (*1 *1 *1 *1) (-12 (-5 *1 (-1087 *2)) (-14 *2 (-824)))) (-3707 (*1 *1 *1 *1) (-12 (-5 *1 (-1087 *2)) (-14 *2 (-824)))) (-3706 (*1 *1) (-12 (-5 *1 (-1087 *2)) (-14 *2 (-824))))) +((-688) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 9 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 7 T ELT))) +(((-1088) (-1006)) (T -1088)) +NIL +((-3556 (((-579 (-579 (-851 |#1|))) (-579 (-344 (-851 |#1|))) (-579 (-1080))) 69 T ELT)) (-3555 (((-579 (-245 (-344 (-851 |#1|)))) (-245 (-344 (-851 |#1|)))) 81 T ELT) (((-579 (-245 (-344 (-851 |#1|)))) (-344 (-851 |#1|))) 77 T ELT) (((-579 (-245 (-344 (-851 |#1|)))) (-245 (-344 (-851 |#1|))) (-1080)) 82 T ELT) (((-579 (-245 (-344 (-851 |#1|)))) (-344 (-851 |#1|)) (-1080)) 76 T ELT) (((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-245 (-344 (-851 |#1|))))) 108 T ELT) (((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-344 (-851 |#1|)))) 107 T ELT) (((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-245 (-344 (-851 |#1|)))) (-579 (-1080))) 109 T ELT) (((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-344 (-851 |#1|))) (-579 (-1080))) 106 T ELT))) +(((-1089 |#1|) (-10 -7 (-15 -3555 ((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-344 (-851 |#1|))) (-579 (-1080)))) (-15 -3555 ((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-245 (-344 (-851 |#1|)))) (-579 (-1080)))) (-15 -3555 ((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-344 (-851 |#1|))))) (-15 -3555 ((-579 (-579 (-245 (-344 (-851 |#1|))))) (-579 (-245 (-344 (-851 |#1|)))))) (-15 -3555 ((-579 (-245 (-344 (-851 |#1|)))) (-344 (-851 |#1|)) (-1080))) (-15 -3555 ((-579 (-245 (-344 (-851 |#1|)))) (-245 (-344 (-851 |#1|))) (-1080))) (-15 -3555 ((-579 (-245 (-344 (-851 |#1|)))) (-344 (-851 |#1|)))) (-15 -3555 ((-579 (-245 (-344 (-851 |#1|)))) (-245 (-344 (-851 |#1|))))) (-15 -3556 ((-579 (-579 (-851 |#1|))) (-579 (-344 (-851 |#1|))) (-579 (-1080))))) (-490)) (T -1089)) +((-3556 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-344 (-851 *5)))) (-5 *4 (-579 (-1080))) (-4 *5 (-490)) (-5 *2 (-579 (-579 (-851 *5)))) (-5 *1 (-1089 *5)))) (-3555 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-579 (-245 (-344 (-851 *4))))) (-5 *1 (-1089 *4)) (-5 *3 (-245 (-344 (-851 *4)))))) (-3555 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-579 (-245 (-344 (-851 *4))))) (-5 *1 (-1089 *4)) (-5 *3 (-344 (-851 *4))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-490)) (-5 *2 (-579 (-245 (-344 (-851 *5))))) (-5 *1 (-1089 *5)) (-5 *3 (-245 (-344 (-851 *5)))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *4 (-1080)) (-4 *5 (-490)) (-5 *2 (-579 (-245 (-344 (-851 *5))))) (-5 *1 (-1089 *5)) (-5 *3 (-344 (-851 *5))))) (-3555 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *4)))))) (-5 *1 (-1089 *4)) (-5 *3 (-579 (-245 (-344 (-851 *4))))))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-579 (-344 (-851 *4)))) (-4 *4 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *4)))))) (-5 *1 (-1089 *4)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *4 (-579 (-1080))) (-4 *5 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *5)))))) (-5 *1 (-1089 *5)) (-5 *3 (-579 (-245 (-344 (-851 *5))))))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-344 (-851 *5)))) (-5 *4 (-579 (-1080))) (-4 *5 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *5)))))) (-5 *1 (-1089 *5))))) +((-3561 (((-1063)) 7 T ELT)) (-3558 (((-1063)) 11 T CONST)) (-3557 (((-1175) (-1063)) 13 T ELT)) (-3560 (((-1063)) 8 T CONST)) (-3559 (((-101)) 10 T CONST))) +(((-1090) (-13 (-1119) (-10 -7 (-15 -3561 ((-1063))) (-15 -3560 ((-1063)) -3934) (-15 -3559 ((-101)) -3934) (-15 -3558 ((-1063)) -3934) (-15 -3557 ((-1175) (-1063)))))) (T -1090)) +((-3561 (*1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1090)))) (-3560 (*1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1090)))) (-3559 (*1 *2) (-12 (-5 *2 (-101)) (-5 *1 (-1090)))) (-3558 (*1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1090)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1090))))) +((-3565 (((-579 (-579 |#1|)) (-579 (-579 |#1|)) (-579 (-579 (-579 |#1|)))) 56 T ELT)) (-3568 (((-579 (-579 (-579 |#1|))) (-579 (-579 |#1|))) 38 T ELT)) (-3569 (((-1093 (-579 |#1|)) (-579 |#1|)) 49 T ELT)) (-3571 (((-579 (-579 |#1|)) (-579 |#1|)) 45 T ELT)) (-3574 (((-2 (|:| |f1| (-579 |#1|)) (|:| |f2| (-579 (-579 (-579 |#1|)))) (|:| |f3| (-579 (-579 |#1|))) (|:| |f4| (-579 (-579 (-579 |#1|))))) (-579 (-579 (-579 |#1|)))) 53 T ELT)) (-3573 (((-2 (|:| |f1| (-579 |#1|)) (|:| |f2| (-579 (-579 (-579 |#1|)))) (|:| |f3| (-579 (-579 |#1|))) (|:| |f4| (-579 (-579 (-579 |#1|))))) (-579 |#1|) (-579 (-579 (-579 |#1|))) (-579 (-579 |#1|)) (-579 (-579 (-579 |#1|))) (-579 (-579 (-579 |#1|))) (-579 (-579 (-579 |#1|)))) 52 T ELT)) (-3570 (((-579 (-579 |#1|)) (-579 (-579 |#1|))) 43 T ELT)) (-3572 (((-579 |#1|) (-579 |#1|)) 46 T ELT)) (-3564 (((-579 (-579 (-579 |#1|))) (-579 |#1|) (-579 (-579 (-579 |#1|)))) 32 T ELT)) (-3563 (((-579 (-579 (-579 |#1|))) (-1 (-83) |#1| |#1|) (-579 |#1|) (-579 (-579 (-579 |#1|)))) 29 T ELT)) (-3562 (((-2 (|:| |fs| (-83)) (|:| |sd| (-579 |#1|)) (|:| |td| (-579 (-579 |#1|)))) (-1 (-83) |#1| |#1|) (-579 |#1|) (-579 (-579 |#1|))) 24 T ELT)) (-3566 (((-579 (-579 |#1|)) (-579 (-579 (-579 |#1|)))) 58 T ELT)) (-3567 (((-579 (-579 |#1|)) (-1093 (-579 |#1|))) 60 T ELT))) +(((-1091 |#1|) (-10 -7 (-15 -3562 ((-2 (|:| |fs| (-83)) (|:| |sd| (-579 |#1|)) (|:| |td| (-579 (-579 |#1|)))) (-1 (-83) |#1| |#1|) (-579 |#1|) (-579 (-579 |#1|)))) (-15 -3563 ((-579 (-579 (-579 |#1|))) (-1 (-83) |#1| |#1|) (-579 |#1|) (-579 (-579 (-579 |#1|))))) (-15 -3564 ((-579 (-579 (-579 |#1|))) (-579 |#1|) (-579 (-579 (-579 |#1|))))) (-15 -3565 ((-579 (-579 |#1|)) (-579 (-579 |#1|)) (-579 (-579 (-579 |#1|))))) (-15 -3566 ((-579 (-579 |#1|)) (-579 (-579 (-579 |#1|))))) (-15 -3567 ((-579 (-579 |#1|)) (-1093 (-579 |#1|)))) (-15 -3568 ((-579 (-579 (-579 |#1|))) (-579 (-579 |#1|)))) (-15 -3569 ((-1093 (-579 |#1|)) (-579 |#1|))) (-15 -3570 ((-579 (-579 |#1|)) (-579 (-579 |#1|)))) (-15 -3571 ((-579 (-579 |#1|)) (-579 |#1|))) (-15 -3572 ((-579 |#1|) (-579 |#1|))) (-15 -3573 ((-2 (|:| |f1| (-579 |#1|)) (|:| |f2| (-579 (-579 (-579 |#1|)))) (|:| |f3| (-579 (-579 |#1|))) (|:| |f4| (-579 (-579 (-579 |#1|))))) (-579 |#1|) (-579 (-579 (-579 |#1|))) (-579 (-579 |#1|)) (-579 (-579 (-579 |#1|))) (-579 (-579 (-579 |#1|))) (-579 (-579 (-579 |#1|))))) (-15 -3574 ((-2 (|:| |f1| (-579 |#1|)) (|:| |f2| (-579 (-579 (-579 |#1|)))) (|:| |f3| (-579 (-579 |#1|))) (|:| |f4| (-579 (-579 (-579 |#1|))))) (-579 (-579 (-579 |#1|)))))) (-750)) (T -1091)) +((-3574 (*1 *2 *3) (-12 (-4 *4 (-750)) (-5 *2 (-2 (|:| |f1| (-579 *4)) (|:| |f2| (-579 (-579 (-579 *4)))) (|:| |f3| (-579 (-579 *4))) (|:| |f4| (-579 (-579 (-579 *4)))))) (-5 *1 (-1091 *4)) (-5 *3 (-579 (-579 (-579 *4)))))) (-3573 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-750)) (-5 *3 (-579 *6)) (-5 *5 (-579 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-579 *5)) (|:| |f3| *5) (|:| |f4| (-579 *5)))) (-5 *1 (-1091 *6)) (-5 *4 (-579 *5)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-1091 *3)))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-750)) (-5 *2 (-579 (-579 *4))) (-5 *1 (-1091 *4)) (-5 *3 (-579 *4)))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-750)) (-5 *1 (-1091 *3)))) (-3569 (*1 *2 *3) (-12 (-4 *4 (-750)) (-5 *2 (-1093 (-579 *4))) (-5 *1 (-1091 *4)) (-5 *3 (-579 *4)))) (-3568 (*1 *2 *3) (-12 (-4 *4 (-750)) (-5 *2 (-579 (-579 (-579 *4)))) (-5 *1 (-1091 *4)) (-5 *3 (-579 (-579 *4))))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-1093 (-579 *4))) (-4 *4 (-750)) (-5 *2 (-579 (-579 *4))) (-5 *1 (-1091 *4)))) (-3566 (*1 *2 *3) (-12 (-5 *3 (-579 (-579 (-579 *4)))) (-5 *2 (-579 (-579 *4))) (-5 *1 (-1091 *4)) (-4 *4 (-750)))) (-3565 (*1 *2 *2 *3) (-12 (-5 *3 (-579 (-579 (-579 *4)))) (-5 *2 (-579 (-579 *4))) (-4 *4 (-750)) (-5 *1 (-1091 *4)))) (-3564 (*1 *2 *3 *2) (-12 (-5 *2 (-579 (-579 (-579 *4)))) (-5 *3 (-579 *4)) (-4 *4 (-750)) (-5 *1 (-1091 *4)))) (-3563 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-579 (-579 (-579 *5)))) (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-579 *5)) (-4 *5 (-750)) (-5 *1 (-1091 *5)))) (-3562 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-83) *6 *6)) (-4 *6 (-750)) (-5 *4 (-579 *6)) (-5 *2 (-2 (|:| |fs| (-83)) (|:| |sd| *4) (|:| |td| (-579 *4)))) (-5 *1 (-1091 *6)) (-5 *5 (-579 *4))))) +((-2553 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3581 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2185 (((-1175) $ |#1| |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) NIL T ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2187 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2188 ((|#1| $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3978)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-2219 (((-579 |#1|) $) NIL T ELT)) (-2220 (((-83) |#1| $) NIL T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2190 (((-579 |#1|) $) NIL T ELT)) (-2191 (((-83) |#1| $) NIL T ELT)) (-3227 (((-1024) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ELT)) (-3783 ((|#2| $) NIL (|has| |#1| (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2186 (($ $ |#2|) NIL (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1454 (($) NIL T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-6 -3977)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (((-688) |#2| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT) (((-688) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3928 (((-766) $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-548 (-766)))) ELT)) (-1254 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) NIL (OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-1092 |#1| |#2|) (-13 (-1097 |#1| |#2|) (-10 -7 (-6 -3977))) (-1006) (-1006)) (T -1092)) +NIL +((-3575 (($ (-579 (-579 |#1|))) 10 T ELT)) (-3576 (((-579 (-579 |#1|)) $) 11 T ELT)) (-3928 (((-766) $) 33 T ELT))) +(((-1093 |#1|) (-10 -8 (-15 -3575 ($ (-579 (-579 |#1|)))) (-15 -3576 ((-579 (-579 |#1|)) $)) (-15 -3928 ((-766) $))) (-1006)) (T -1093)) +((-3928 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1093 *3)) (-4 *3 (-1006)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-579 (-579 *3))) (-5 *1 (-1093 *3)) (-4 *3 (-1006)))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-5 *1 (-1093 *3))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3577 (($ |#1| (-55)) 11 T ELT)) (-3524 ((|#1| $) 13 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2618 (((-83) $ |#1|) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2506 (((-55) $) 15 T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1094 |#1|) (-13 (-741 |#1|) (-10 -8 (-15 -3577 ($ |#1| (-55))))) (-1006)) (T -1094)) +((-3577 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1094 *2)) (-4 *2 (-1006))))) +((-3578 ((|#1| (-579 |#1|)) 46 T ELT)) (-3580 ((|#1| |#1| (-479)) 24 T ELT)) (-3579 (((-1075 |#1|) |#1| (-824)) 20 T ELT))) +(((-1095 |#1|) (-10 -7 (-15 -3578 (|#1| (-579 |#1|))) (-15 -3579 ((-1075 |#1|) |#1| (-824))) (-15 -3580 (|#1| |#1| (-479)))) (-308)) (T -1095)) +((-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-1095 *2)) (-4 *2 (-308)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-824)) (-5 *2 (-1075 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-308)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-5 *1 (-1095 *2)) (-4 *2 (-308))))) +((-3581 (($) 10 T ELT) (($ (-579 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3387 (($ (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) $) 67 T ELT) (($ (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2874 (((-579 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) $) 39 T ELT) (((-579 |#3|) $) 41 T ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1263 (((-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) $) 60 T ELT)) (-3591 (($ (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2190 (((-579 |#2|) $) 19 T ELT)) (-2191 (((-83) |#2| $) 65 T ELT)) (-1342 (((-3 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) $) 64 T ELT)) (-1264 (((-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) $) 69 T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-83) (-1 (-83) |#3|) $) 73 T ELT)) (-2192 (((-579 |#3|) $) 43 T ELT)) (-3782 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-688) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-688) |#3| $) NIL T ELT) (((-688) (-1 (-83) |#3|) $) 79 T ELT)) (-3928 (((-766) $) 27 T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-83) (-1 (-83) |#3|) $) 71 T ELT)) (-3041 (((-83) $ $) 51 T ELT))) +(((-1096 |#1| |#2| |#3|) (-10 -7 (-15 -3041 ((-83) |#1| |#1|)) (-15 -3928 ((-766) |#1|)) (-15 -3940 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3581 (|#1| (-579 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))))) (-15 -3581 (|#1|)) (-15 -3940 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1937 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1936 ((-83) (-1 (-83) |#3|) |#1|)) (-15 -1935 ((-83) (-1 (-83) |#3|) |#1|)) (-15 -1934 ((-688) (-1 (-83) |#3|) |#1|)) (-15 -2874 ((-579 |#3|) |#1|)) (-15 -1934 ((-688) |#3| |#1|)) (-15 -3782 (|#3| |#1| |#2| |#3|)) (-15 -3782 (|#3| |#1| |#2|)) (-15 -2192 ((-579 |#3|) |#1|)) (-15 -2191 ((-83) |#2| |#1|)) (-15 -2190 ((-579 |#2|) |#1|)) (-15 -3387 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3387 (|#1| (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3387 (|#1| (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1342 ((-3 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1263 ((-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3591 (|#1| (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1264 ((-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1934 ((-688) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2874 ((-579 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1934 ((-688) (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1935 ((-83) (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1936 ((-83) (-1 (-83) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1937 (|#1| (-1 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3940 (|#1| (-1 (-2 (|:| -3842 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3842 |#2|) (|:| |entry| |#3|))) |#1|))) (-1097 |#2| |#3|) (-1006) (-1006)) (T -1096)) +NIL +((-2553 (((-83) $ $) 19 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3581 (($) 77 T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 76 T ELT)) (-2185 (((-1175) $ |#1| |#1|) 104 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1558 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-6 -3977)) ELT)) (-3692 (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 59 (|has| $ (-6 -3977)) ELT)) (-2218 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-3706 (($) 7 T CONST)) (-1341 (($ $) 62 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT)) (-3387 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 51 (|has| $ (-6 -3977)) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 50 (|has| $ (-6 -3977)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3388 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 61 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 58 (|has| $ (-6 -3977)) ELT)) (-3824 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 60 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 57 (|has| $ (-6 -3977)) ELT) (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-6 -3977)) ELT)) (-1564 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#2| $ |#1|) 93 T ELT)) (-2874 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) 84 (|has| $ (-6 -3977)) ELT)) (-2187 ((|#1| $) 101 (|has| |#1| (-750)) ELT)) (-2593 (((-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3977)) ELT) (((-579 |#2|) $) 85 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (((-83) |#2| $) 87 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 ((|#1| $) 100 (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 34 (|has| $ (-6 -3978)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3226 (((-1063) $) 22 (OR (|has| |#2| (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-2219 (((-579 |#1|) $) 67 T ELT)) (-2220 (((-83) |#1| $) 68 T ELT)) (-1263 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-3591 (($ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-2190 (((-579 |#1|) $) 98 T ELT)) (-2191 (((-83) |#1| $) 97 T ELT)) (-3227 (((-1024) $) 21 (OR (|has| |#2| (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT)) (-3783 ((|#2| $) 102 (|has| |#1| (-750)) ELT)) (-1342 (((-3 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 55 T ELT)) (-2186 (($ $ |#2|) 103 (|has| $ (-6 -3978)) ELT)) (-1264 (((-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 45 T ELT)) (-1935 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) 82 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-245 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) 91 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-245 |#2|)) 89 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT) (($ $ (-579 (-245 |#2|))) 88 (-12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#2| $) 99 (-12 (|has| $ (-6 -3977)) (|has| |#2| (-1006))) ELT)) (-2192 (((-579 |#2|) $) 96 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1454 (($) 53 T ELT) (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 52 T ELT)) (-1934 (((-688) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) |#2| $) 86 (-12 (|has| |#2| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#2|) $) 83 (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 63 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ELT)) (-3512 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 54 T ELT)) (-3928 (((-766) $) 17 (OR (|has| |#2| (-548 (-766))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766)))) ELT)) (-1254 (((-83) $ $) 20 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1265 (($ (-579 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) 46 T ELT)) (-1936 (((-83) (-1 (-83) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) $) 33 (|has| $ (-6 -3977)) ELT) (((-83) (-1 (-83) |#2|) $) 81 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-1097 |#1| |#2|) (-111) (-1006) (-1006)) (T -1097)) +((-3770 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) (-3581 (*1 *1) (-12 (-4 *1 (-1097 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) (-3581 (*1 *1 *2) (-12 (-5 *2 (-579 (-2 (|:| -3842 *3) (|:| |entry| *4)))) (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *1 (-1097 *3 *4)))) (-3940 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1097 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) +(-13 (-545 |t#1| |t#2|) (-534 |t#1| |t#2|) (-10 -8 (-15 -3770 (|t#2| $ |t#1| |t#2|)) (-15 -3581 ($)) (-15 -3581 ($ (-579 (-2 (|:| -3842 |t#1|) (|:| |entry| |t#2|))))) (-15 -3940 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-76 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1006)) (|has| |#2| (-72))) ((-548 (-766)) OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-548 (-766))) (|has| |#2| (-1006)) (|has| |#2| (-548 (-766)))) ((-122 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-549 (-468)) |has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-549 (-468))) ((-181 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-190 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-238 |#1| |#2|) . T) ((-240 |#1| |#2|) . T) ((-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ((-256 |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-423 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) . T) ((-423 |#2|) . T) ((-534 |#1| |#2|) . T) ((-448 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3842 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-256 (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006))) ((-448 |#2| |#2|) -12 (|has| |#2| (-256 |#2|)) (|has| |#2| (-1006))) ((-545 |#1| |#2|) . T) ((-1006) OR (|has| (-2 (|:| -3842 |#1|) (|:| |entry| |#2|)) (-1006)) (|has| |#2| (-1006))) ((-1119) . T)) +((-3587 (((-83)) 29 T ELT)) (-3584 (((-1175) (-1063)) 31 T ELT)) (-3588 (((-83)) 41 T ELT)) (-3585 (((-1175)) 39 T ELT)) (-3583 (((-1175) (-1063) (-1063)) 30 T ELT)) (-3589 (((-83)) 42 T ELT)) (-3591 (((-1175) |#1| |#2|) 53 T ELT)) (-3582 (((-1175)) 26 T ELT)) (-3590 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3586 (((-1175)) 40 T ELT))) +(((-1098 |#1| |#2|) (-10 -7 (-15 -3582 ((-1175))) (-15 -3583 ((-1175) (-1063) (-1063))) (-15 -3584 ((-1175) (-1063))) (-15 -3585 ((-1175))) (-15 -3586 ((-1175))) (-15 -3587 ((-83))) (-15 -3588 ((-83))) (-15 -3589 ((-83))) (-15 -3590 ((-3 |#2| "failed") |#1|)) (-15 -3591 ((-1175) |#1| |#2|))) (-1006) (-1006)) (T -1098)) +((-3591 (*1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3590 (*1 *2 *3) (|partial| -12 (-4 *2 (-1006)) (-5 *1 (-1098 *3 *2)) (-4 *3 (-1006)))) (-3589 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3588 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3587 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3586 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3585 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1098 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)))) (-3583 (*1 *2 *3 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1098 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)))) (-3582 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3597 (((-579 (-1063)) $) 37 T ELT)) (-3593 (((-579 (-1063)) $ (-579 (-1063))) 40 T ELT)) (-3592 (((-579 (-1063)) $ (-579 (-1063))) 39 T ELT)) (-3594 (((-579 (-1063)) $ (-579 (-1063))) 41 T ELT)) (-3595 (((-579 (-1063)) $) 36 T ELT)) (-3596 (($) 26 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3598 (((-579 (-1063)) $) 38 T ELT)) (-3599 (((-1175) $ (-479)) 33 T ELT) (((-1175) $) 34 T ELT)) (-3954 (($ (-766) (-479)) 31 T ELT) (($ (-766) (-479) (-766)) NIL T ELT)) (-3928 (((-766) $) 47 T ELT) (($ (-766)) 30 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1099) (-13 (-1006) (-551 (-766)) (-10 -8 (-15 -3954 ($ (-766) (-479))) (-15 -3954 ($ (-766) (-479) (-766))) (-15 -3599 ((-1175) $ (-479))) (-15 -3599 ((-1175) $)) (-15 -3598 ((-579 (-1063)) $)) (-15 -3597 ((-579 (-1063)) $)) (-15 -3596 ($)) (-15 -3595 ((-579 (-1063)) $)) (-15 -3594 ((-579 (-1063)) $ (-579 (-1063)))) (-15 -3593 ((-579 (-1063)) $ (-579 (-1063)))) (-15 -3592 ((-579 (-1063)) $ (-579 (-1063))))))) (T -1099)) +((-3954 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-479)) (-5 *1 (-1099)))) (-3954 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-766)) (-5 *3 (-479)) (-5 *1 (-1099)))) (-3599 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-1099)))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1099)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099)))) (-3596 (*1 *1) (-5 *1 (-1099))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099)))) (-3594 (*1 *2 *1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099)))) (-3593 (*1 *2 *1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099)))) (-3592 (*1 *2 *1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099))))) +((-3928 (((-1099) |#1|) 11 T ELT))) +(((-1100 |#1|) (-10 -7 (-15 -3928 ((-1099) |#1|))) (-1006)) (T -1100)) +((-3928 (*1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *1 (-1100 *3)) (-4 *3 (-1006))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3604 (((-1063) $ (-1063)) 21 T ELT) (((-1063) $) 20 T ELT)) (-1685 (((-1063) $ (-1063)) 19 T ELT)) (-1689 (($ $ (-1063)) NIL T ELT)) (-3602 (((-3 (-1063) #1="failed") $) 11 T ELT)) (-3603 (((-1063) $) 8 T ELT)) (-3601 (((-3 (-1063) #1#) $) 12 T ELT)) (-1686 (((-1063) $) 9 T ELT)) (-1690 (($ (-332)) NIL T ELT) (($ (-332) (-1063)) NIL T ELT)) (-3524 (((-332) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-1687 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3600 (((-83) $) 25 T ELT)) (-3928 (((-766) $) NIL T ELT)) (-1688 (($ $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1101) (-13 (-310 (-332) (-1063)) (-10 -8 (-15 -3604 ((-1063) $ (-1063))) (-15 -3604 ((-1063) $)) (-15 -3603 ((-1063) $)) (-15 -3602 ((-3 (-1063) #1="failed") $)) (-15 -3601 ((-3 (-1063) #1#) $)) (-15 -3600 ((-83) $))))) (T -1101)) +((-3604 (*1 *2 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1101)))) (-3604 (*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1101)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1101)))) (-3602 (*1 *2 *1) (|partial| -12 (-5 *2 (-1063)) (-5 *1 (-1101)))) (-3601 (*1 *2 *1) (|partial| -12 (-5 *2 (-1063)) (-5 *1 (-1101)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1101))))) +((-3605 (((-3 (-479) #1="failed") |#1|) 19 T ELT)) (-3606 (((-3 (-479) #1#) |#1|) 14 T ELT)) (-3607 (((-479) (-1063)) 33 T ELT))) +(((-1102 |#1|) (-10 -7 (-15 -3605 ((-3 (-479) #1="failed") |#1|)) (-15 -3606 ((-3 (-479) #1#) |#1|)) (-15 -3607 ((-479) (-1063)))) (-955)) (T -1102)) +((-3607 (*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-479)) (-5 *1 (-1102 *4)) (-4 *4 (-955)))) (-3606 (*1 *2 *3) (|partial| -12 (-5 *2 (-479)) (-5 *1 (-1102 *3)) (-4 *3 (-955)))) (-3605 (*1 *2 *3) (|partial| -12 (-5 *2 (-479)) (-5 *1 (-1102 *3)) (-4 *3 (-955))))) +((-3608 (((-1037 (-177))) 9 T ELT))) +(((-1103) (-10 -7 (-15 -3608 ((-1037 (-177)))))) (T -1103)) +((-3608 (*1 *2) (-12 (-5 *2 (-1037 (-177))) (-5 *1 (-1103))))) +((-3609 (($) 12 T ELT)) (-3480 (($ $) 36 T ELT)) (-3478 (($ $) 34 T ELT)) (-3466 (($ $) 26 T ELT)) (-3482 (($ $) 18 T ELT)) (-3483 (($ $) 16 T ELT)) (-3481 (($ $) 20 T ELT)) (-3469 (($ $) 31 T ELT)) (-3479 (($ $) 35 T ELT)) (-3467 (($ $) 30 T ELT))) +(((-1104 |#1|) (-10 -7 (-15 -3609 (|#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3467 (|#1| |#1|))) (-1105)) (T -1104)) +NIL +((-3474 (($ $) 26 T ELT)) (-3621 (($ $) 11 T ELT)) (-3472 (($ $) 27 T ELT)) (-3620 (($ $) 10 T ELT)) (-3476 (($ $) 28 T ELT)) (-3619 (($ $) 9 T ELT)) (-3609 (($) 16 T ELT)) (-3924 (($ $) 19 T ELT)) (-3925 (($ $) 18 T ELT)) (-3477 (($ $) 29 T ELT)) (-3618 (($ $) 8 T ELT)) (-3475 (($ $) 30 T ELT)) (-3617 (($ $) 7 T ELT)) (-3473 (($ $) 31 T ELT)) (-3616 (($ $) 6 T ELT)) (-3480 (($ $) 20 T ELT)) (-3468 (($ $) 32 T ELT)) (-3478 (($ $) 21 T ELT)) (-3466 (($ $) 33 T ELT)) (-3482 (($ $) 22 T ELT)) (-3470 (($ $) 34 T ELT)) (-3483 (($ $) 23 T ELT)) (-3471 (($ $) 35 T ELT)) (-3481 (($ $) 24 T ELT)) (-3469 (($ $) 36 T ELT)) (-3479 (($ $) 25 T ELT)) (-3467 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1105) (-111)) (T -1105)) +((-3609 (*1 *1) (-4 *1 (-1105)))) +(-13 (-1108) (-66) (-427) (-35) (-236) (-10 -8 (-15 -3609 ($)))) +(((-35) . T) ((-66) . T) ((-236) . T) ((-427) . T) ((-1108) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 19 T ELT)) (-3614 (($ |#1| (-579 $)) 28 T ELT) (($ (-579 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3010 ((|#1| $ |#1|) 14 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 13 (|has| $ (-6 -3978)) ELT)) (-3706 (($) NIL T CONST)) (-2874 (((-579 |#1|) $) 70 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 59 T ELT)) (-3012 (((-83) $ $) 50 (|has| |#1| (-1006)) ELT)) (-2593 (((-579 |#1|) $) 71 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 69 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3015 (((-579 |#1|) $) 55 T ELT)) (-3509 (((-83) $) 53 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 67 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 102 T ELT)) (-3385 (((-83) $) 9 T ELT)) (-3547 (($) 10 T ELT)) (-3782 ((|#1| $ #1#) NIL T ELT)) (-3014 (((-479) $ $) 48 T ELT)) (-3610 (((-579 $) $) 84 T ELT)) (-3611 (((-83) $ $) 105 T ELT)) (-3612 (((-579 $) $) 100 T ELT)) (-3613 (($ $) 101 T ELT)) (-3615 (((-83) $) 77 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 25 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 17 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3382 (($ $) 83 T ELT)) (-3928 (((-766) $) 86 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) 12 T ELT)) (-3013 (((-83) $ $) 39 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 66 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 37 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 81 (|has| $ (-6 -3977)) ELT))) +(((-1106 |#1|) (-13 (-917 |#1|) (-10 -8 (-6 -3977) (-6 -3978) (-15 -3614 ($ |#1| (-579 $))) (-15 -3614 ($ (-579 |#1|))) (-15 -3614 ($ |#1|)) (-15 -3615 ((-83) $)) (-15 -3613 ($ $)) (-15 -3612 ((-579 $) $)) (-15 -3611 ((-83) $ $)) (-15 -3610 ((-579 $) $)))) (-1006)) (T -1106)) +((-3615 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1106 *3)) (-4 *3 (-1006)))) (-3614 (*1 *1 *2 *3) (-12 (-5 *3 (-579 (-1106 *2))) (-5 *1 (-1106 *2)) (-4 *2 (-1006)))) (-3614 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-1106 *3)))) (-3614 (*1 *1 *2) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1006)))) (-3613 (*1 *1 *1) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1006)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-579 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1006)))) (-3611 (*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1106 *3)) (-4 *3 (-1006)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-579 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1006))))) +((-3621 (($ $) 15 T ELT)) (-3619 (($ $) 12 T ELT)) (-3618 (($ $) 10 T ELT)) (-3617 (($ $) 17 T ELT))) +(((-1107 |#1|) (-10 -7 (-15 -3617 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3621 (|#1| |#1|))) (-1108)) (T -1107)) +NIL +((-3621 (($ $) 11 T ELT)) (-3620 (($ $) 10 T ELT)) (-3619 (($ $) 9 T ELT)) (-3618 (($ $) 8 T ELT)) (-3617 (($ $) 7 T ELT)) (-3616 (($ $) 6 T ELT))) +(((-1108) (-111)) (T -1108)) +((-3621 (*1 *1 *1) (-4 *1 (-1108))) (-3620 (*1 *1 *1) (-4 *1 (-1108))) (-3619 (*1 *1 *1) (-4 *1 (-1108))) (-3618 (*1 *1 *1) (-4 *1 (-1108))) (-3617 (*1 *1 *1) (-4 *1 (-1108))) (-3616 (*1 *1 *1) (-4 *1 (-1108)))) +(-13 (-10 -8 (-15 -3616 ($ $)) (-15 -3617 ($ $)) (-15 -3618 ($ $)) (-15 -3619 ($ $)) (-15 -3620 ($ $)) (-15 -3621 ($ $)))) +((-3624 ((|#2| |#2|) 95 T ELT)) (-3627 (((-83) |#2|) 29 T ELT)) (-3625 ((|#2| |#2|) 33 T ELT)) (-3626 ((|#2| |#2|) 35 T ELT)) (-3622 ((|#2| |#2| (-1080)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3628 (((-140 |#2|) |#2|) 31 T ELT)) (-3623 ((|#2| |#2| (-1080)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1109 |#1| |#2|) (-10 -7 (-15 -3622 (|#2| |#2|)) (-15 -3622 (|#2| |#2| (-1080))) (-15 -3623 (|#2| |#2|)) (-15 -3623 (|#2| |#2| (-1080))) (-15 -3624 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -3627 ((-83) |#2|)) (-15 -3628 ((-140 |#2|) |#2|))) (-13 (-386) (-944 (-479)) (-576 (-479))) (-13 (-27) (-1105) (-358 |#1|))) (T -1109)) +((-3628 (*1 *2 *3) (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-140 *3)) (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) (-3627 (*1 *2 *3) (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-83)) (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *3))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *3))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *3))))) (-3623 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4))))) (-3623 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *3))))) (-3622 (*1 *2 *2 *3) (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4))))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *3)))))) +((-3629 ((|#4| |#4| |#1|) 31 T ELT)) (-3630 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1110 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3629 (|#4| |#4| |#1|)) (-15 -3630 (|#4| |#4| |#1|))) (-490) (-318 |#1|) (-318 |#1|) (-623 |#1| |#2| |#3|)) (T -1110)) +((-3630 (*1 *2 *2 *3) (-12 (-4 *3 (-490)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) (-3629 (*1 *2 *2 *3) (-12 (-4 *3 (-490)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +((-3648 ((|#2| |#2|) 148 T ELT)) (-3650 ((|#2| |#2|) 145 T ELT)) (-3647 ((|#2| |#2|) 136 T ELT)) (-3649 ((|#2| |#2|) 133 T ELT)) (-3646 ((|#2| |#2|) 141 T ELT)) (-3645 ((|#2| |#2|) 129 T ELT)) (-3634 ((|#2| |#2|) 44 T ELT)) (-3633 ((|#2| |#2|) 105 T ELT)) (-3631 ((|#2| |#2|) 88 T ELT)) (-3644 ((|#2| |#2|) 143 T ELT)) (-3643 ((|#2| |#2|) 131 T ELT)) (-3656 ((|#2| |#2|) 153 T ELT)) (-3654 ((|#2| |#2|) 151 T ELT)) (-3655 ((|#2| |#2|) 152 T ELT)) (-3653 ((|#2| |#2|) 150 T ELT)) (-3632 ((|#2| |#2|) 163 T ELT)) (-3657 ((|#2| |#2|) 30 (-12 (|has| |#2| (-549 (-794 |#1|))) (|has| |#2| (-790 |#1|)) (|has| |#1| (-549 (-794 |#1|))) (|has| |#1| (-790 |#1|))) ELT)) (-3635 ((|#2| |#2|) 89 T ELT)) (-3636 ((|#2| |#2|) 154 T ELT)) (-3945 ((|#2| |#2|) 155 T ELT)) (-3642 ((|#2| |#2|) 142 T ELT)) (-3641 ((|#2| |#2|) 130 T ELT)) (-3640 ((|#2| |#2|) 149 T ELT)) (-3652 ((|#2| |#2|) 147 T ELT)) (-3639 ((|#2| |#2|) 137 T ELT)) (-3651 ((|#2| |#2|) 135 T ELT)) (-3638 ((|#2| |#2|) 139 T ELT)) (-3637 ((|#2| |#2|) 127 T ELT))) +(((-1111 |#1| |#2|) (-10 -7 (-15 -3945 (|#2| |#2|)) (-15 -3631 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -3633 (|#2| |#2|)) (-15 -3634 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3642 (|#2| |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (IF (|has| |#1| (-790 |#1|)) (IF (|has| |#1| (-549 (-794 |#1|))) (IF (|has| |#2| (-549 (-794 |#1|))) (IF (|has| |#2| (-790 |#1|)) (-15 -3657 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-386) (-13 (-358 |#1|) (-1105))) (T -1111)) +((-3657 (*1 *2 *2) (-12 (-4 *3 (-549 (-794 *3))) (-4 *3 (-790 *3)) (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-549 (-794 *3))) (-4 *2 (-790 *3)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3647 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3634 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3633 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-1080)) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3796 (((-851 |#1|) $ (-688)) 18 T ELT) (((-851 |#1|) $ (-688) (-688)) NIL T ELT)) (-2877 (((-83) $) NIL T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-688) $ (-1080)) NIL T ELT) (((-688) $ (-1080) (-688)) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ $ (-579 (-1080)) (-579 (-464 (-1080)))) NIL T ELT) (($ $ (-1080) (-464 (-1080))) NIL T ELT) (($ |#1| (-464 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3924 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3794 (($ $ (-1080)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080) |#1|) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3658 (($ (-1 $) (-1080) |#1|) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3751 (($ $ (-688)) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (($ $ (-1080) $) NIL T ELT) (($ $ (-579 (-1080)) (-579 $)) NIL T ELT) (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT)) (-3740 (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) NIL T ELT)) (-3930 (((-464 (-1080)) $) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-1080)) NIL T ELT) (($ (-851 |#1|)) NIL T ELT)) (-3659 ((|#1| $ (-464 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (((-851 |#1|) $ (-688)) NIL T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-2654 (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1112 |#1|) (-13 (-673 |#1| (-1080)) (-10 -8 (-15 -3659 ((-851 |#1|) $ (-688))) (-15 -3928 ($ (-1080))) (-15 -3928 ($ (-851 |#1|))) (IF (|has| |#1| (-38 (-344 (-479)))) (PROGN (-15 -3794 ($ $ (-1080) |#1|)) (-15 -3658 ($ (-1 $) (-1080) |#1|))) |%noBranch|))) (-955)) (T -1112)) +((-3659 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *2 (-851 *4)) (-5 *1 (-1112 *4)) (-4 *4 (-955)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1112 *3)) (-4 *3 (-955)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-851 *3)) (-4 *3 (-955)) (-5 *1 (-1112 *3)))) (-3794 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *1 (-1112 *3)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)))) (-3658 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1112 *4))) (-5 *3 (-1080)) (-5 *1 (-1112 *4)) (-4 *4 (-38 (-344 (-479)))) (-4 *4 (-955))))) +((-3675 (((-83) |#5| $) 68 T ELT) (((-83) $) 109 T ELT)) (-3670 ((|#5| |#5| $) 83 T ELT)) (-3692 (($ (-1 (-83) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3671 (((-579 |#5|) (-579 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|)) 81 T ELT)) (-3141 (((-3 $ #1#) (-579 |#5|)) 134 T ELT)) (-3781 (((-3 $ #1#) $) 119 T ELT)) (-3667 ((|#5| |#5| $) 101 T ELT)) (-3676 (((-83) |#5| $ (-1 (-83) |#5| |#5|)) 36 T ELT)) (-3665 ((|#5| |#5| $) 105 T ELT)) (-3824 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|)) 77 T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#5|)) (|:| -1690 (-579 |#5|))) $) 63 T ELT)) (-3677 (((-83) |#5| $) 66 T ELT) (((-83) $) 110 T ELT)) (-3164 ((|#4| $) 115 T ELT)) (-3780 (((-3 |#5| #1#) $) 117 T ELT)) (-3679 (((-579 |#5|) $) 55 T ELT)) (-3673 (((-83) |#5| $) 75 T ELT) (((-83) $) 114 T ELT)) (-3668 ((|#5| |#5| $) 89 T ELT)) (-3681 (((-83) $ $) 29 T ELT)) (-3674 (((-83) |#5| $) 71 T ELT) (((-83) $) 112 T ELT)) (-3669 ((|#5| |#5| $) 86 T ELT)) (-3783 (((-3 |#5| #1#) $) 116 T ELT)) (-3751 (($ $ |#5|) 135 T ELT)) (-3930 (((-688) $) 60 T ELT)) (-3512 (($ (-579 |#5|)) 132 T ELT)) (-2895 (($ $ |#4|) 130 T ELT)) (-2897 (($ $ |#4|) 128 T ELT)) (-3666 (($ $) 127 T ELT)) (-3928 (((-766) $) NIL T ELT) (((-579 |#5|) $) 120 T ELT)) (-3660 (((-688) $) 139 T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#5|))) #1#) (-579 |#5|) (-1 (-83) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#5|))) #1#) (-579 |#5|) (-1 (-83) |#5|) (-1 (-83) |#5| |#5|)) 51 T ELT)) (-3672 (((-83) $ (-1 (-83) |#5| (-579 |#5|))) 107 T ELT)) (-3662 (((-579 |#4|) $) 122 T ELT)) (-3915 (((-83) |#4| $) 125 T ELT)) (-3041 (((-83) $ $) 20 T ELT))) +(((-1113 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3660 ((-688) |#1|)) (-15 -3751 (|#1| |#1| |#5|)) (-15 -3692 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3915 ((-83) |#4| |#1|)) (-15 -3662 ((-579 |#4|) |#1|)) (-15 -3781 ((-3 |#1| #1#) |#1|)) (-15 -3780 ((-3 |#5| #1#) |#1|)) (-15 -3783 ((-3 |#5| #1#) |#1|)) (-15 -3665 (|#5| |#5| |#1|)) (-15 -3666 (|#1| |#1|)) (-15 -3667 (|#5| |#5| |#1|)) (-15 -3668 (|#5| |#5| |#1|)) (-15 -3669 (|#5| |#5| |#1|)) (-15 -3670 (|#5| |#5| |#1|)) (-15 -3671 ((-579 |#5|) (-579 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|))) (-15 -3824 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-83) |#5| |#5|))) (-15 -3673 ((-83) |#1|)) (-15 -3674 ((-83) |#1|)) (-15 -3675 ((-83) |#1|)) (-15 -3672 ((-83) |#1| (-1 (-83) |#5| (-579 |#5|)))) (-15 -3673 ((-83) |#5| |#1|)) (-15 -3674 ((-83) |#5| |#1|)) (-15 -3675 ((-83) |#5| |#1|)) (-15 -3676 ((-83) |#5| |#1| (-1 (-83) |#5| |#5|))) (-15 -3677 ((-83) |#1|)) (-15 -3677 ((-83) |#5| |#1|)) (-15 -3678 ((-2 (|:| -3843 (-579 |#5|)) (|:| -1690 (-579 |#5|))) |#1|)) (-15 -3930 ((-688) |#1|)) (-15 -3679 ((-579 |#5|) |#1|)) (-15 -3680 ((-3 (-2 (|:| |bas| |#1|) (|:| -3306 (-579 |#5|))) #1#) (-579 |#5|) (-1 (-83) |#5|) (-1 (-83) |#5| |#5|))) (-15 -3680 ((-3 (-2 (|:| |bas| |#1|) (|:| -3306 (-579 |#5|))) #1#) (-579 |#5|) (-1 (-83) |#5| |#5|))) (-15 -3681 ((-83) |#1| |#1|)) (-15 -2895 (|#1| |#1| |#4|)) (-15 -2897 (|#1| |#1| |#4|)) (-15 -3164 (|#4| |#1|)) (-15 -3141 ((-3 |#1| #1#) (-579 |#5|))) (-15 -3928 ((-579 |#5|) |#1|)) (-15 -3512 (|#1| (-579 |#5|))) (-15 -3824 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3824 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3692 (|#1| (-1 (-83) |#5|) |#1|)) (-15 -3824 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3928 ((-766) |#1|)) (-15 -3041 ((-83) |#1| |#1|))) (-1114 |#2| |#3| |#4| |#5|) (-490) (-711) (-750) (-970 |#2| |#3| |#4|)) (T -1113)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |#4|)))) (-579 |#4|)) 90 T ELT)) (-3664 (((-579 $) (-579 |#4|)) 91 T ELT)) (-3066 (((-579 |#3|) $) 37 T ELT)) (-2893 (((-83) $) 30 T ELT)) (-2884 (((-83) $) 21 (|has| |#1| (-490)) ELT)) (-3675 (((-83) |#4| $) 106 T ELT) (((-83) $) 102 T ELT)) (-3670 ((|#4| |#4| $) 97 T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-3692 (($ (-1 (-83) |#4|) $) 66 (|has| $ (-6 -3977)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-3706 (($) 46 T CONST)) (-2889 (((-83) $) 26 (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) 28 (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) 27 (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) 29 (|has| |#1| (-490)) ELT)) (-3671 (((-579 |#4|) (-579 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 98 T ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) 22 (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) 23 (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ "failed") (-579 |#4|)) 40 T ELT)) (-3140 (($ (-579 |#4|)) 39 T ELT)) (-3781 (((-3 $ "failed") $) 87 T ELT)) (-3667 ((|#4| |#4| $) 94 T ELT)) (-1341 (($ $) 69 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#4| $) 68 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#4|) $) 65 (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-490)) ELT)) (-3676 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) 107 T ELT)) (-3665 ((|#4| |#4| $) 92 T ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -3977)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 99 T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#4|)) (|:| -1690 (-579 |#4|))) $) 110 T ELT)) (-2874 (((-579 |#4|) $) 53 (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) |#4| $) 109 T ELT) (((-83) $) 108 T ELT)) (-3164 ((|#3| $) 38 T ELT)) (-2593 (((-579 |#4|) $) 54 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) 56 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-2899 (((-579 |#3|) $) 36 T ELT)) (-2898 (((-83) |#3| $) 35 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3780 (((-3 |#4| "failed") $) 88 T ELT)) (-3679 (((-579 |#4|) $) 112 T ELT)) (-3673 (((-83) |#4| $) 104 T ELT) (((-83) $) 100 T ELT)) (-3668 ((|#4| |#4| $) 95 T ELT)) (-3681 (((-83) $ $) 115 T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-490)) ELT)) (-3674 (((-83) |#4| $) 105 T ELT) (((-83) $) 101 T ELT)) (-3669 ((|#4| |#4| $) 96 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3783 (((-3 |#4| "failed") $) 89 T ELT)) (-1342 (((-3 |#4| "failed") (-1 (-83) |#4|) $) 62 T ELT)) (-3661 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-3751 (($ $ |#4|) 82 T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) 51 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) 60 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) 58 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) 57 (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) 42 T ELT)) (-3385 (((-83) $) 45 T ELT)) (-3547 (($) 44 T ELT)) (-3930 (((-688) $) 111 T ELT)) (-1934 (((-688) |#4| $) 55 (-12 (|has| |#4| (-1006)) (|has| $ (-6 -3977))) ELT) (((-688) (-1 (-83) |#4|) $) 52 (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) 43 T ELT)) (-3954 (((-468) $) 70 (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) 61 T ELT)) (-2895 (($ $ |#3|) 32 T ELT)) (-2897 (($ $ |#3|) 34 T ELT)) (-3666 (($ $) 93 T ELT)) (-2896 (($ $ |#3|) 33 T ELT)) (-3928 (((-766) $) 13 T ELT) (((-579 |#4|) $) 41 T ELT)) (-3660 (((-688) $) 81 (|has| |#3| (-314)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) "failed") (-579 |#4|) (-1 (-83) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) "failed") (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) 113 T ELT)) (-3672 (((-83) $ (-1 (-83) |#4| (-579 |#4|))) 103 T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) 50 (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 |#3|) $) 86 T ELT)) (-3915 (((-83) |#3| $) 85 T ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3939 (((-688) $) 47 (|has| $ (-6 -3977)) ELT))) +(((-1114 |#1| |#2| |#3| |#4|) (-111) (-490) (-711) (-750) (-970 |t#1| |t#2| |t#3|)) (T -1114)) +((-3681 (*1 *2 *1 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) (-3680 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-83) *8 *8)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3306 (-579 *8)))) (-5 *3 (-579 *8)) (-4 *1 (-1114 *5 *6 *7 *8)))) (-3680 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-83) *9)) (-5 *5 (-1 (-83) *9 *9)) (-4 *9 (-970 *6 *7 *8)) (-4 *6 (-490)) (-4 *7 (-711)) (-4 *8 (-750)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3306 (-579 *9)))) (-5 *3 (-579 *9)) (-4 *1 (-1114 *6 *7 *8 *9)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-579 *6)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-688)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-2 (|:| -3843 (-579 *6)) (|:| -1690 (-579 *6)))))) (-3677 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) (-3676 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *1 (-1114 *5 *6 *7 *3)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-83)))) (-3675 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3674 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3673 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3672 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-83) *7 (-579 *7))) (-4 *1 (-1114 *4 *5 *6 *7)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) (-3824 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-83) *2 *2)) (-4 *1 (-1114 *5 *6 *7 *2)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *2 (-970 *5 *6 *7)))) (-3671 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-579 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-83) *8 *8)) (-4 *1 (-1114 *5 *6 *7 *8)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-970 *5 *6 *7)))) (-3670 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3669 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3668 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3667 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3666 (*1 *1 *1) (-12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-490)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *5 (-970 *2 *3 *4)))) (-3665 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-1114 *4 *5 *6 *7)))) (-3663 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-579 (-2 (|:| -3843 *1) (|:| -1690 (-579 *7))))) (-5 *3 (-579 *7)) (-4 *1 (-1114 *4 *5 *6 *7)))) (-3783 (*1 *2 *1) (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3780 (*1 *2 *1) (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3781 (*1 *1 *1) (|partial| -12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-490)) (-4 *3 (-711)) (-4 *4 (-750)) (-4 *5 (-970 *2 *3 *4)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-579 *5)))) (-3915 (*1 *2 *3 *1) (-12 (-4 *1 (-1114 *4 *5 *3 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *3 (-750)) (-4 *6 (-970 *4 *5 *3)) (-5 *2 (-83)))) (-3692 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1114 *4 *5 *3 *2)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *3 (-750)) (-4 *2 (-970 *4 *5 *3)))) (-3661 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3751 (*1 *1 *1 *2) (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *5 (-314)) (-5 *2 (-688))))) +(-13 (-883 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -3977) (-6 -3978) (-15 -3681 ((-83) $ $)) (-15 -3680 ((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |t#4|))) "failed") (-579 |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3680 ((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |t#4|))) "failed") (-579 |t#4|) (-1 (-83) |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3679 ((-579 |t#4|) $)) (-15 -3930 ((-688) $)) (-15 -3678 ((-2 (|:| -3843 (-579 |t#4|)) (|:| -1690 (-579 |t#4|))) $)) (-15 -3677 ((-83) |t#4| $)) (-15 -3677 ((-83) $)) (-15 -3676 ((-83) |t#4| $ (-1 (-83) |t#4| |t#4|))) (-15 -3675 ((-83) |t#4| $)) (-15 -3674 ((-83) |t#4| $)) (-15 -3673 ((-83) |t#4| $)) (-15 -3672 ((-83) $ (-1 (-83) |t#4| (-579 |t#4|)))) (-15 -3675 ((-83) $)) (-15 -3674 ((-83) $)) (-15 -3673 ((-83) $)) (-15 -3824 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3671 ((-579 |t#4|) (-579 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-83) |t#4| |t#4|))) (-15 -3670 (|t#4| |t#4| $)) (-15 -3669 (|t#4| |t#4| $)) (-15 -3668 (|t#4| |t#4| $)) (-15 -3667 (|t#4| |t#4| $)) (-15 -3666 ($ $)) (-15 -3665 (|t#4| |t#4| $)) (-15 -3664 ((-579 $) (-579 |t#4|))) (-15 -3663 ((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |t#4|)))) (-579 |t#4|))) (-15 -3783 ((-3 |t#4| "failed") $)) (-15 -3780 ((-3 |t#4| "failed") $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -3662 ((-579 |t#3|) $)) (-15 -3915 ((-83) |t#3| $)) (-15 -3692 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3661 ((-3 $ "failed") $ |t#4|)) (-15 -3751 ($ $ |t#4|)) (IF (|has| |t#3| (-314)) (-15 -3660 ((-688) $)) |%noBranch|))) +(((-34) . T) ((-72) . T) ((-548 (-579 |#4|)) . T) ((-548 (-766)) . T) ((-122 |#4|) . T) ((-549 (-468)) |has| |#4| (-549 (-468))) ((-256 |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-423 |#4|) . T) ((-448 |#4| |#4|) -12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ((-883 |#1| |#2| |#3| |#4|) . T) ((-1006) . T) ((-1119) . T)) +((-3687 (($ |#1| (-579 (-579 (-848 (-177)))) (-83)) 19 T ELT)) (-3686 (((-83) $ (-83)) 18 T ELT)) (-3685 (((-83) $) 17 T ELT)) (-3683 (((-579 (-579 (-848 (-177)))) $) 13 T ELT)) (-3682 ((|#1| $) 8 T ELT)) (-3684 (((-83) $) 15 T ELT))) +(((-1115 |#1|) (-10 -8 (-15 -3682 (|#1| $)) (-15 -3683 ((-579 (-579 (-848 (-177)))) $)) (-15 -3684 ((-83) $)) (-15 -3685 ((-83) $)) (-15 -3686 ((-83) $ (-83))) (-15 -3687 ($ |#1| (-579 (-579 (-848 (-177)))) (-83)))) (-881)) (T -1115)) +((-3687 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-83)) (-5 *1 (-1115 *2)) (-4 *2 (-881)))) (-3686 (*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1115 *3)) (-4 *3 (-881)))) (-3685 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1115 *3)) (-4 *3 (-881)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1115 *3)) (-4 *3 (-881)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *1 (-1115 *3)) (-4 *3 (-881)))) (-3682 (*1 *2 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-881))))) +((-3689 (((-848 (-177)) (-848 (-177))) 31 T ELT)) (-3688 (((-848 (-177)) (-177) (-177) (-177) (-177)) 10 T ELT)) (-3691 (((-579 (-848 (-177))) (-848 (-177)) (-848 (-177)) (-848 (-177)) (-177) (-579 (-579 (-177)))) 57 T ELT)) (-3818 (((-177) (-848 (-177)) (-848 (-177))) 27 T ELT)) (-3816 (((-848 (-177)) (-848 (-177)) (-848 (-177))) 28 T ELT)) (-3690 (((-579 (-579 (-177))) (-479)) 45 T ELT)) (-3819 (((-848 (-177)) (-848 (-177)) (-848 (-177))) 26 T ELT)) (-3821 (((-848 (-177)) (-848 (-177)) (-848 (-177))) 24 T ELT)) (* (((-848 (-177)) (-177) (-848 (-177))) 22 T ELT))) +(((-1116) (-10 -7 (-15 -3688 ((-848 (-177)) (-177) (-177) (-177) (-177))) (-15 * ((-848 (-177)) (-177) (-848 (-177)))) (-15 -3821 ((-848 (-177)) (-848 (-177)) (-848 (-177)))) (-15 -3819 ((-848 (-177)) (-848 (-177)) (-848 (-177)))) (-15 -3818 ((-177) (-848 (-177)) (-848 (-177)))) (-15 -3816 ((-848 (-177)) (-848 (-177)) (-848 (-177)))) (-15 -3689 ((-848 (-177)) (-848 (-177)))) (-15 -3690 ((-579 (-579 (-177))) (-479))) (-15 -3691 ((-579 (-848 (-177))) (-848 (-177)) (-848 (-177)) (-848 (-177)) (-177) (-579 (-579 (-177))))))) (T -1116)) +((-3691 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-579 (-579 (-177)))) (-5 *4 (-177)) (-5 *2 (-579 (-848 *4))) (-5 *1 (-1116)) (-5 *3 (-848 *4)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-579 (-579 (-177)))) (-5 *1 (-1116)))) (-3689 (*1 *2 *2) (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116)))) (-3816 (*1 *2 *2 *2) (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116)))) (-3818 (*1 *2 *3 *3) (-12 (-5 *3 (-848 (-177))) (-5 *2 (-177)) (-5 *1 (-1116)))) (-3819 (*1 *2 *2 *2) (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116)))) (-3821 (*1 *2 *2 *2) (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-848 (-177))) (-5 *3 (-177)) (-5 *1 (-1116)))) (-3688 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116)) (-5 *3 (-177))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3692 ((|#1| $ (-688)) 18 T ELT)) (-3815 (((-688) $) 13 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3928 (((-863 |#1|) $) 12 T ELT) (($ (-863 |#1|)) 11 T ELT) (((-766) $) 29 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3041 (((-83) $ $) 22 (|has| |#1| (-1006)) ELT))) +(((-1117 |#1|) (-13 (-424 (-863 |#1|)) (-10 -8 (-15 -3692 (|#1| $ (-688))) (-15 -3815 ((-688) $)) (IF (|has| |#1| (-548 (-766))) (-6 (-548 (-766))) |%noBranch|) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|))) (-1119)) (T -1117)) +((-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *1 (-1117 *2)) (-4 *2 (-1119)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-1117 *3)) (-4 *3 (-1119))))) +((-3695 (((-342 (-1075 (-1075 |#1|))) (-1075 (-1075 |#1|)) (-479)) 92 T ELT)) (-3693 (((-342 (-1075 (-1075 |#1|))) (-1075 (-1075 |#1|))) 84 T ELT)) (-3694 (((-342 (-1075 (-1075 |#1|))) (-1075 (-1075 |#1|))) 68 T ELT))) +(((-1118 |#1|) (-10 -7 (-15 -3693 ((-342 (-1075 (-1075 |#1|))) (-1075 (-1075 |#1|)))) (-15 -3694 ((-342 (-1075 (-1075 |#1|))) (-1075 (-1075 |#1|)))) (-15 -3695 ((-342 (-1075 (-1075 |#1|))) (-1075 (-1075 |#1|)) (-479)))) (-295)) (T -1118)) +((-3695 (*1 *2 *3 *4) (-12 (-5 *4 (-479)) (-4 *5 (-295)) (-5 *2 (-342 (-1075 (-1075 *5)))) (-5 *1 (-1118 *5)) (-5 *3 (-1075 (-1075 *5))))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-342 (-1075 (-1075 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-1075 (-1075 *4))))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-295)) (-5 *2 (-342 (-1075 (-1075 *4)))) (-5 *1 (-1118 *4)) (-5 *3 (-1075 (-1075 *4)))))) +NIL (((-1119) (-111)) (T -1119)) -((-3699 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-83)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-341 *1)) (-4 *1 (-1119)))) (-3751 (*1 *1 *1) (-4 *1 (-1119))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-341 *1)) (-4 *1 (-1119))))) -(-13 (-385) (-10 -8 (-15 -3699 ((-83) $)) (-15 -3947 ((-341 $) $)) (-15 -3751 ($ $)) (-15 -3708 ((-341 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-242) . T) ((-385) . T) ((-489) . T) ((-583 (-478)) . T) ((-583 $) . T) ((-585 $) . T) ((-577 $) . T) ((-649 $) . T) ((-658) . T) ((-956 $) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-3701 (($ $ $) NIL T ELT)) (-3702 (($ $ $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2293 (($ $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) NIL T ELT))) -(((-1120) (-13 (-745) (-599) (-10 -8 (-15 -3702 ($ $ $)) (-15 -3701 ($ $ $)) (-15 -3700 ($) -3928)))) (T -1120)) -((-3702 (*1 *1 *1 *1) (-5 *1 (-1120))) (-3701 (*1 *1 *1 *1) (-5 *1 (-1120))) (-3700 (*1 *1) (-5 *1 (-1120)))) -((-687) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-3701 (($ $ $) NIL T ELT)) (-3702 (($ $ $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2293 (($ $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) NIL T ELT))) -(((-1121) (-13 (-745) (-599) (-10 -8 (-15 -3702 ($ $ $)) (-15 -3701 ($ $ $)) (-15 -3700 ($) -3928)))) (T -1121)) -((-3702 (*1 *1 *1 *1) (-5 *1 (-1121))) (-3701 (*1 *1 *1 *1) (-5 *1 (-1121))) (-3700 (*1 *1) (-5 *1 (-1121)))) -((-687) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-3701 (($ $ $) NIL T ELT)) (-3702 (($ $ $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2293 (($ $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) NIL T ELT))) -(((-1122) (-13 (-745) (-599) (-10 -8 (-15 -3702 ($ $ $)) (-15 -3701 ($ $ $)) (-15 -3700 ($) -3928)))) (T -1122)) -((-3702 (*1 *1 *1 *1) (-5 *1 (-1122))) (-3701 (*1 *1 *1 *1) (-5 *1 (-1122))) (-3700 (*1 *1) (-5 *1 (-1122)))) -((-687) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-2295 (($ $) NIL T ELT)) (-3117 (((-687)) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2975 (($) NIL T ELT)) (-2511 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2838 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1992 (((-823) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2382 (($ (-823)) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT)) (-3701 (($ $ $) NIL T ELT)) (-3702 (($ $ $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2293 (($ $ $) NIL T ELT)) (-2546 (((-83) $ $) NIL T ELT)) (-2547 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL T ELT)) (-2666 (((-83) $ $) NIL T ELT)) (-2294 (($ $ $) NIL T ELT))) -(((-1123) (-13 (-745) (-599) (-10 -8 (-15 -3702 ($ $ $)) (-15 -3701 ($ $ $)) (-15 -3700 ($) -3928)))) (T -1123)) -((-3702 (*1 *1 *1 *1) (-5 *1 (-1123))) (-3701 (*1 *1 *1 *1) (-5 *1 (-1123))) (-3700 (*1 *1) (-5 *1 (-1123)))) -((-687) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3110 (((-1154 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) 10 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2045 (($ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2043 (((-83) $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-3747 (($ $ (-478)) NIL T ELT) (($ $ (-478) (-478)) NIL T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) NIL T ELT)) (-3707 (((-1154 |#1| |#2| |#3|) $) NIL T ELT)) (-3704 (((-3 (-1154 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3705 (((-1154 |#1| |#2| |#3|) $) NIL T ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1#) $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-3751 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3599 (((-478) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-3794 (($ (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) NIL T ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-1154 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1075) #1#) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-943 (-1075))) (|has| |#1| (-308))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT)) (-3137 (((-1154 |#1| |#2| |#3|) $) NIL T ELT) (((-1075) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-943 (-1075))) (|has| |#1| (-308))) ELT) (((-343 (-478)) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT) (((-478) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) ELT)) (-3706 (($ $) NIL T ELT) (($ (-478) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-1154 |#1| |#2| |#3|)) (-625 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-1154 |#1| |#2| |#3|))) (|:| |vec| (-1164 (-1154 |#1| |#2| |#3|)))) (-625 $) (-1164 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3703 (((-343 (-850 |#1|)) $ (-478)) NIL (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) NIL (|has| |#1| (-489)) ELT)) (-2975 (($) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3168 (((-83) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-2873 (((-83) $) NIL T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-789 (-323))) (|has| |#1| (-308))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-789 (-478))) (|has| |#1| (-308))) ELT)) (-3748 (((-478) $) NIL T ELT) (((-478) $ (-478)) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2979 (((-1154 |#1| |#2| |#3|) $) NIL (|has| |#1| (-308)) ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3422 (((-627 $) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-308))) ELT)) (-3169 (((-83) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-3753 (($ $ (-823)) NIL T ELT)) (-3791 (($ (-1 |#1| (-478)) $) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-478)) 18 T ELT) (($ $ (-985) (-478)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-478))) NIL T ELT)) (-2511 (($ $ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2838 (($ $ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-308)) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2262 (((-625 (-1154 |#1| |#2| |#3|)) (-1164 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-1154 |#1| |#2| |#3|))) (|:| |vec| (-1164 (-1154 |#1| |#2| |#3|)))) (-1164 $) $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-1164 $)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-575 (-478))) (|has| |#1| (-308))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3755 (($ (-478) (-1154 |#1| |#2| |#3|)) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3788 (($ $) 27 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT) (($ $ (-1161 |#2|)) 28 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3423 (($) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-1052)) (|has| |#1| (-308))) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3109 (($ $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3111 (((-1154 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-478)) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT) (($ $ (-1075) (-1154 |#1| |#2| |#3|)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-447 (-1075) (-1154 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1075)) (-578 (-1154 |#1| |#2| |#3|))) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-447 (-1075) (-1154 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-245 (-1154 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-256 (-1154 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-245 (-1154 |#1| |#2| |#3|))) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-256 (-1154 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-256 (-1154 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1154 |#1| |#2| |#3|)) (-578 (-1154 |#1| |#2| |#3|))) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-256 (-1154 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-478)) NIL T ELT) (($ $ $) NIL (|has| (-478) (-1013)) ELT) (($ $ (-1154 |#1| |#2| |#3|)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-238 (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1 (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|)) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1161 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2976 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2978 (((-1154 |#1| |#2| |#3|) $) NIL (|has| |#1| (-308)) ELT)) (-3924 (((-478) $) NIL T ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3948 (((-467) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-548 (-467))) (|has| |#1| (-308))) ELT) (((-323) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-926)) (|has| |#1| (-308))) ELT) (((-177) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-926)) (|has| |#1| (-308))) ELT) (((-793 (-323)) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-548 (-793 (-323)))) (|has| |#1| (-308))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-548 (-793 (-478)))) (|has| |#1| (-308))) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) ELT)) (-2872 (($ $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1154 |#1| |#2| |#3|)) NIL T ELT) (($ (-1161 |#2|)) 24 T ELT) (($ (-1075)) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-943 (-1075))) (|has| |#1| (-308))) ELT) (($ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT) (($ (-343 (-478))) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-943 (-478))) (|has| |#1| (-308))) (|has| |#1| (-38 (-343 (-478))))) ELT)) (-3653 ((|#1| $ (-478)) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-116)) (|has| |#1| (-308))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-3749 ((|#1| $) 11 T ELT)) (-3112 (((-1154 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-477)) (|has| |#1| (-308))) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-814)) (|has| |#1| (-308))) (|has| |#1| (-489))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-478)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3360 (($ $) NIL (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) ELT)) (-2640 (($) 20 T CONST)) (-2647 (($) 15 T CONST)) (-2650 (($ $ (-1 (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|)) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1161 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-802 (-1075))) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2546 (((-83) $ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2547 (((-83) $ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-2665 (((-83) $ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-2666 (((-83) $ $) NIL (OR (-12 (|has| (-1154 |#1| |#2| |#3|) (-733)) (|has| |#1| (-308))) (-12 (|has| (-1154 |#1| |#2| |#3|) (-749)) (|has| |#1| (-308)))) ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT) (($ (-1154 |#1| |#2| |#3|) (-1154 |#1| |#2| |#3|)) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 22 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1154 |#1| |#2| |#3|)) NIL (|has| |#1| (-308)) ELT) (($ (-1154 |#1| |#2| |#3|) $) NIL (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1124 |#1| |#2| |#3|) (-13 (-1128 |#1| (-1154 |#1| |#2| |#3|)) (-799 $ (-1161 |#2|)) (-10 -8 (-15 -3922 ($ (-1161 |#2|))) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3788 ($ $ (-1161 |#2|))) |%noBranch|))) (-954) (-1075) |#1|) (T -1124)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1124 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1124 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) -((-3934 (((-1124 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1124 |#1| |#3| |#5|)) 23 T ELT))) -(((-1125 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3934 ((-1124 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1124 |#1| |#3| |#5|)))) (-954) (-954) (-1075) (-1075) |#1| |#2|) (T -1125)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5 *7 *9)) (-4 *5 (-954)) (-4 *6 (-954)) (-14 *7 (-1075)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1124 *6 *8 *10)) (-5 *1 (-1125 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1075))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 (-985)) $) 92 T ELT)) (-3807 (((-1075) $) 126 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-478)) 121 T ELT) (($ $ (-478) (-478)) 120 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 127 T ELT)) (-3469 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) 188 (|has| |#1| (-308)) ELT)) (-3018 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1591 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3467 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 198 T ELT)) (-3471 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) 22 T CONST)) (-2544 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3935 (($ $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3703 (((-343 (-850 |#1|)) $ (-478)) 196 (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) 195 (|has| |#1| (-489)) ELT)) (-2543 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 176 (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-2873 (((-83) $) 91 T ELT)) (-3603 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-478) $) 123 T ELT) (((-478) $ (-478)) 122 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) 124 T ELT)) (-3791 (($ (-1 |#1| (-478)) $) 197 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 185 (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) 79 T ELT)) (-2874 (($ |#1| (-478)) 78 T ELT) (($ $ (-985) (-478)) 94 T ELT) (($ $ (-578 (-985)) (-578 (-478))) 93 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3918 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 82 T ELT)) (-3155 ((|#1| $) 83 T ELT)) (-1874 (($ (-578 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3788 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) 193 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 175 (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3708 (((-341 $) $) 186 (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-478)) 118 T ELT)) (-3443 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 177 (|has| |#1| (-308)) ELT)) (-3919 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT)) (-1590 (((-687) $) 179 (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-478)) 128 T ELT) (($ $ $) 104 (|has| (-478) (-1013)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1075)) 116 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1075))) 114 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075) (-687)) 113 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT)) (-3924 (((-478) $) 81 T ELT)) (-3472 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) 90 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-478)) 76 T ELT)) (-2683 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-3749 ((|#1| $) 125 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3475 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3473 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-478)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1075)) 115 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1075))) 111 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075) (-687)) 110 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| (-478) |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1126 |#1|) (-111) (-954)) (T -1126)) -((-3794 (*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-4 *3 (-954)) (-4 *1 (-1126 *3)))) (-3791 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *1 (-1126 *3)) (-4 *3 (-954)))) (-3703 (*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-1126 *4)) (-4 *4 (-954)) (-4 *4 (-489)) (-5 *2 (-343 (-850 *4))))) (-3703 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-4 *1 (-1126 *4)) (-4 *4 (-954)) (-4 *4 (-489)) (-5 *2 (-343 (-850 *4))))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1126 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) (-3788 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1075)) (-4 *1 (-1126 *3)) (-4 *3 (-954)) (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1100)) (-4 *3 (-38 (-343 (-478)))))) (-12 (-5 *2 (-1075)) (-4 *1 (-1126 *3)) (-4 *3 (-954)) (-12 (|has| *3 (-15 -3063 ((-578 *2) *3))) (|has| *3 (-15 -3788 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478))))))))) -(-13 (-1143 |t#1| (-478)) (-10 -8 (-15 -3794 ($ (-1055 (-2 (|:| |k| (-478)) (|:| |c| |t#1|))))) (-15 -3791 ($ (-1 |t#1| (-478)) $)) (IF (|has| |t#1| (-489)) (PROGN (-15 -3703 ((-343 (-850 |t#1|)) $ (-478))) (-15 -3703 ((-343 (-850 |t#1|)) $ (-478) (-478)))) |%noBranch|) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3788 ($ $)) (IF (|has| |t#1| (-15 -3788 (|t#1| |t#1| (-1075)))) (IF (|has| |t#1| (-15 -3063 ((-578 (-1075)) |t#1|))) (-15 -3788 ($ $ (-1075))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1100)) (IF (|has| |t#1| (-864)) (IF (|has| |t#1| (-29 (-478))) (-15 -3788 ($ $ (-1075))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-908)) (-6 (-1100))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-478)) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-478) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-478) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-478) |#1|))) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-478) |#1|) . T) ((-238 $ $) |has| (-478) (-1013)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-308) |has| |#1| (-308)) ((-385) |has| |#1| (-308)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-649 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ((-802 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ((-804 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ((-879 |#1| (-478) (-985)) . T) ((-825) |has| |#1| (-308)) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-956 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1100) |has| |#1| (-38 (-343 (-478)))) ((-1103) |has| |#1| (-38 (-343 (-478)))) ((-1114) . T) ((-1119) |has| |#1| (-308)) ((-1143 |#1| (-478)) . T)) -((-3170 (((-83) $) 12 T ELT)) (-3138 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1075) #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT)) (-3137 ((|#3| $) 14 T ELT) (((-1075) $) NIL T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) NIL T ELT))) -(((-1127 |#1| |#2| |#3|) (-10 -7 (-15 -3138 ((-3 (-478) #1="failed") |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3138 ((-3 (-1075) #1#) |#1|)) (-15 -3137 ((-1075) |#1|)) (-15 -3138 ((-3 |#3| #1#) |#1|)) (-15 -3137 (|#3| |#1|)) (-15 -3170 ((-83) |#1|))) (-1128 |#2| |#3|) (-954) (-1157 |#2|)) (T -1127)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3110 ((|#2| $) 263 (-2542 (|has| |#2| (-254)) (|has| |#1| (-308))) ELT)) (-3063 (((-578 (-985)) $) 92 T ELT)) (-3807 (((-1075) $) 126 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-478)) 121 T ELT) (($ $ (-478) (-478)) 120 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 127 T ELT)) (-3707 ((|#2| $) 299 T ELT)) (-3704 (((-3 |#2| "failed") $) 295 T ELT)) (-3705 ((|#2| $) 296 T ELT)) (-3469 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 272 (-2542 (|has| |#2| (-814)) (|has| |#1| (-308))) ELT)) (-3751 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) 188 (|has| |#1| (-308)) ELT)) (-3018 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1="failed") (-578 (-1070 $)) (-1070 $)) 269 (-2542 (|has| |#2| (-814)) (|has| |#1| (-308))) ELT)) (-1591 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3467 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3599 (((-478) $) 281 (-2542 (|has| |#2| (-733)) (|has| |#1| (-308))) ELT)) (-3794 (($ (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 198 T ELT)) (-3471 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-478) #2#) $) 292 (-2542 (|has| |#2| (-943 (-478))) (|has| |#1| (-308))) ELT) (((-3 (-343 (-478)) #2#) $) 290 (-2542 (|has| |#2| (-943 (-478))) (|has| |#1| (-308))) ELT) (((-3 (-1075) #2#) $) 274 (-2542 (|has| |#2| (-943 (-1075))) (|has| |#1| (-308))) ELT)) (-3137 ((|#2| $) 303 T ELT) (((-478) $) 291 (-2542 (|has| |#2| (-943 (-478))) (|has| |#1| (-308))) ELT) (((-343 (-478)) $) 289 (-2542 (|has| |#2| (-943 (-478))) (|has| |#1| (-308))) ELT) (((-1075) $) 273 (-2542 (|has| |#2| (-943 (-1075))) (|has| |#1| (-308))) ELT)) (-3706 (($ $) 298 T ELT) (($ (-478) $) 297 T ELT)) (-2544 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3935 (($ $) 77 T ELT)) (-2261 (((-625 |#2|) (-625 $)) 251 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) 250 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 249 (-2542 (|has| |#2| (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-625 $)) 248 (-2542 (|has| |#2| (-575 (-478))) (|has| |#1| (-308))) ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3703 (((-343 (-850 |#1|)) $ (-478)) 196 (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) 195 (|has| |#1| (-489)) ELT)) (-2975 (($) 265 (-2542 (|has| |#2| (-477)) (|has| |#1| (-308))) ELT)) (-2543 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 176 (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-3168 (((-83) $) 279 (-2542 (|has| |#2| (-733)) (|has| |#1| (-308))) ELT)) (-2873 (((-83) $) 91 T ELT)) (-3603 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 257 (-2542 (|has| |#2| (-789 (-323))) (|has| |#1| (-308))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 256 (-2542 (|has| |#2| (-789 (-478))) (|has| |#1| (-308))) ELT)) (-3748 (((-478) $) 123 T ELT) (((-478) $ (-478)) 122 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2977 (($ $) 261 (|has| |#1| (-308)) ELT)) (-2979 ((|#2| $) 259 (|has| |#1| (-308)) ELT)) (-2992 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3422 (((-627 $) $) 293 (-2542 (|has| |#2| (-1052)) (|has| |#1| (-308))) ELT)) (-3169 (((-83) $) 280 (-2542 (|has| |#2| (-733)) (|has| |#1| (-308))) ELT)) (-3753 (($ $ (-823)) 124 T ELT)) (-3791 (($ (-1 |#1| (-478)) $) 197 T ELT)) (-1588 (((-3 (-578 $) #3="failed") (-578 $) $) 185 (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) 79 T ELT)) (-2874 (($ |#1| (-478)) 78 T ELT) (($ $ (-985) (-478)) 94 T ELT) (($ $ (-578 (-985)) (-578 (-478))) 93 T ELT)) (-2511 (($ $ $) 288 (-2542 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-2838 (($ $ $) 287 (-2542 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-308)) ELT)) (-3918 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2262 (((-625 |#2|) (-1164 $)) 253 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) 252 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 247 (-2542 (|has| |#2| (-575 (-478))) (|has| |#1| (-308))) ELT) (((-625 (-478)) (-1164 $)) 246 (-2542 (|has| |#2| (-575 (-478))) (|has| |#1| (-308))) ELT)) (-2875 (($ $) 82 T ELT)) (-3155 ((|#1| $) 83 T ELT)) (-1874 (($ (-578 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3755 (($ (-478) |#2|) 300 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3788 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) 193 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3423 (($) 294 (-2542 (|has| |#2| (-1052)) (|has| |#1| (-308))) CONST)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 175 (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3109 (($ $) 264 (-2542 (|has| |#2| (-254)) (|has| |#1| (-308))) ELT)) (-3111 ((|#2| $) 267 (-2542 (|has| |#2| (-477)) (|has| |#1| (-308))) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 270 (-2542 (|has| |#2| (-814)) (|has| |#1| (-308))) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 271 (-2542 (|has| |#2| (-814)) (|has| |#1| (-308))) ELT)) (-3708 (((-341 $) $) 186 (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-478)) 118 T ELT)) (-3443 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 177 (|has| |#1| (-308)) ELT)) (-3919 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT) (($ $ (-1075) |#2|) 240 (-2542 (|has| |#2| (-447 (-1075) |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-578 (-1075)) (-578 |#2|)) 239 (-2542 (|has| |#2| (-447 (-1075) |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-578 (-245 |#2|))) 238 (-2542 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-245 |#2|)) 237 (-2542 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT) (($ $ |#2| |#2|) 236 (-2542 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) 235 (-2542 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT)) (-1590 (((-687) $) 179 (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-478)) 128 T ELT) (($ $ $) 104 (|has| (-478) (-1013)) ELT) (($ $ |#2|) 234 (-2542 (|has| |#2| (-238 |#2| |#2|)) (|has| |#1| (-308))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1 |#2| |#2|) (-687)) 243 (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-308)) ELT) (($ $) 108 (OR (-2542 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) 106 (OR (-2542 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075)) 116 (OR (-2542 (|has| |#2| (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075))) 114 (OR (-2542 (|has| |#2| (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1075) (-687)) 113 (OR (-2542 (|has| |#2| (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 112 (OR (-2542 (|has| |#2| (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2976 (($ $) 262 (|has| |#1| (-308)) ELT)) (-2978 ((|#2| $) 260 (|has| |#1| (-308)) ELT)) (-3924 (((-478) $) 81 T ELT)) (-3472 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3948 (((-177) $) 278 (-2542 (|has| |#2| (-926)) (|has| |#1| (-308))) ELT) (((-323) $) 277 (-2542 (|has| |#2| (-926)) (|has| |#1| (-308))) ELT) (((-467) $) 276 (-2542 (|has| |#2| (-548 (-467))) (|has| |#1| (-308))) ELT) (((-793 (-323)) $) 255 (-2542 (|has| |#2| (-548 (-793 (-323)))) (|has| |#1| (-308))) ELT) (((-793 (-478)) $) 254 (-2542 (|has| |#2| (-548 (-793 (-478)))) (|has| |#1| (-308))) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) 268 (-2542 (-2542 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#1| (-308))) ELT)) (-2872 (($ $) 90 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ |#2|) 301 T ELT) (($ (-1075)) 275 (-2542 (|has| |#2| (-943 (-1075))) (|has| |#1| (-308))) ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-478)) 76 T ELT)) (-2683 (((-627 $) $) 65 (OR (-2542 (OR (|has| |#2| (-116)) (-2542 (|has| $ (-116)) (|has| |#2| (-814)))) (|has| |#1| (-308))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) 37 T CONST)) (-3749 ((|#1| $) 125 T ELT)) (-3112 ((|#2| $) 266 (-2542 (|has| |#2| (-477)) (|has| |#1| (-308))) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3475 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3473 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-478)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3360 (($ $) 282 (-2542 (|has| |#2| (-733)) (|has| |#1| (-308))) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1 |#2| |#2|) (-687)) 245 (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-308)) ELT) (($ $) 107 (OR (-2542 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) 105 (OR (-2542 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075)) 115 (OR (-2542 (|has| |#2| (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075))) 111 (OR (-2542 (|has| |#2| (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-1075) (-687)) 110 (OR (-2542 (|has| |#2| (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 109 (OR (-2542 (|has| |#2| (-804 (-1075))) (|has| |#1| (-308))) (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|))))) ELT)) (-2546 (((-83) $ $) 286 (-2542 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-2547 (((-83) $ $) 284 (-2542 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-2665 (((-83) $ $) 285 (-2542 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-2666 (((-83) $ $) 283 (-2542 (|has| |#2| (-749)) (|has| |#1| (-308))) ELT)) (-3925 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-308)) ELT) (($ |#2| $) 232 (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1128 |#1| |#2|) (-111) (-954) (-1157 |t#1|)) (T -1128)) -((-3924 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1157 *3)) (-5 *2 (-478)))) (-3755 (*1 *1 *2 *3) (-12 (-5 *2 (-478)) (-4 *4 (-954)) (-4 *1 (-1128 *4 *3)) (-4 *3 (-1157 *4)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1157 *3)))) (-3706 (*1 *1 *1) (-12 (-4 *1 (-1128 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1157 *2)))) (-3706 (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1157 *3)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1157 *3)))) (-3704 (*1 *2 *1) (|partial| -12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1157 *3))))) -(-13 (-1126 |t#1|) (-943 |t#2|) (-550 |t#2|) (-10 -8 (-15 -3755 ($ (-478) |t#2|)) (-15 -3924 ((-478) $)) (-15 -3707 (|t#2| $)) (-15 -3706 ($ $)) (-15 -3706 ($ (-478) $)) (-15 -3705 (|t#2| $)) (-15 -3704 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-308)) (-6 (-897 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-478)) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 |#2|) |has| |#1| (-308)) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-80 |#1| |#1|) . T) ((-80 |#2| |#2|) |has| |#1| (-308)) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-116))) (|has| |#1| (-116))) ((-118) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-550 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 (-1075)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1075)))) ((-550 |#1|) |has| |#1| (-144)) ((-550 |#2|) . T) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-548 (-177)) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) ((-548 (-323)) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) ((-548 (-467)) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-478))))) ((-184 $) OR (|has| |#1| (-15 * (|#1| (-478) |#1|))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (-12 (|has| |#1| (-308)) (|has| |#2| (-188)))) ((-182 |#2|) |has| |#1| (-308)) ((-188) OR (|has| |#1| (-15 * (|#1| (-478) |#1|))) (-12 (|has| |#1| (-308)) (|has| |#2| (-188)))) ((-187) OR (|has| |#1| (-15 * (|#1| (-478) |#1|))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (-12 (|has| |#1| (-308)) (|has| |#2| (-188)))) ((-222 |#2|) |has| |#1| (-308)) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-478) |#1|) . T) ((-238 |#2| $) -12 (|has| |#1| (-308)) (|has| |#2| (-238 |#2| |#2|))) ((-238 $ $) |has| (-478) (-1013)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-256 |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ((-308) |has| |#1| (-308)) ((-284 |#2|) |has| |#1| (-308)) ((-322 |#2|) |has| |#1| (-308)) ((-336 |#2|) |has| |#1| (-308)) ((-385) |has| |#1| (-308)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-447 (-1075) |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-447 (-1075) |#2|))) ((-447 |#2| |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 |#2|) |has| |#1| (-308)) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-585 (-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-308)) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-577 |#1|) |has| |#1| (-144)) ((-577 |#2|) |has| |#1| (-308)) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-575 (-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ((-575 |#2|) |has| |#1| (-308)) ((-649 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-649 |#1|) |has| |#1| (-144)) ((-649 |#2|) |has| |#1| (-308)) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-658) . T) ((-707) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-709) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-711) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-714) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-733) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-748) -12 (|has| |#1| (-308)) (|has| |#2| (-733))) ((-749) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) (-12 (|has| |#1| (-308)) (|has| |#2| (-733)))) ((-752) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) (-12 (|has| |#1| (-308)) (|has| |#2| (-733)))) ((-799 $ (-1075)) OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1075))))) ((-802 (-1075)) OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1075))))) ((-804 (-1075)) OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-802 (-1075))))) ((-789 (-323)) -12 (|has| |#1| (-308)) (|has| |#2| (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-789 (-478)))) ((-787 |#2|) |has| |#1| (-308)) ((-814) -12 (|has| |#1| (-308)) (|has| |#2| (-814))) ((-879 |#1| (-478) (-985)) . T) ((-825) |has| |#1| (-308)) ((-897 |#2|) |has| |#1| (-308)) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-926) -12 (|has| |#1| (-308)) (|has| |#2| (-926))) ((-943 (-343 (-478))) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ((-943 (-478)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ((-943 (-1075)) -12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1075)))) ((-943 |#2|) . T) ((-956 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-956 |#1|) . T) ((-956 |#2|) |has| |#1| (-308)) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-961 |#1|) . T) ((-961 |#2|) |has| |#1| (-308)) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1052) -12 (|has| |#1| (-308)) (|has| |#2| (-1052))) ((-1100) |has| |#1| (-38 (-343 (-478)))) ((-1103) |has| |#1| (-38 (-343 (-478)))) ((-1114) . T) ((-1119) |has| |#1| (-308)) ((-1126 |#1|) . T) ((-1143 |#1| (-478)) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 83 T ELT)) (-3110 ((|#2| $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-254))) ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) 102 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-478)) 111 T ELT) (($ $ (-478) (-478)) 114 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|))) $) 51 T ELT)) (-3707 ((|#2| $) 11 T ELT)) (-3704 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3705 ((|#2| $) 36 T ELT)) (-3469 (($ $) 208 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 184 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1#) $ $) NIL T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-3751 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3467 (($ $) 204 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 180 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3599 (((-478) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) ELT)) (-3794 (($ (-1055 (-2 (|:| |k| (-478)) (|:| |c| |#1|)))) 59 T ELT)) (-3471 (($ $) 212 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 188 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-478) #1#) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ELT) (((-3 (-1075) #1#) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1075)))) ELT)) (-3137 ((|#2| $) 158 T ELT) (((-478) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ELT) (((-343 (-478)) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-478)))) ELT) (((-1075) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1075)))) ELT)) (-3706 (($ $) 65 T ELT) (($ (-478) $) 28 T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 |#2|) (-625 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ELT) (((-625 (-478)) (-625 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ELT)) (-3444 (((-3 $ #1#) $) 90 T ELT)) (-3703 (((-343 (-850 |#1|)) $ (-478)) 126 (|has| |#1| (-489)) ELT) (((-343 (-850 |#1|)) $ (-478) (-478)) 128 (|has| |#1| (-489)) ELT)) (-2975 (($) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-477))) ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3168 (((-83) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) ELT)) (-2873 (((-83) $) 76 T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-789 (-478)))) ELT)) (-3748 (((-478) $) 107 T ELT) (((-478) $ (-478)) 109 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2977 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2979 ((|#2| $) 167 (|has| |#1| (-308)) ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3422 (((-627 $) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-1052))) ELT)) (-3169 (((-83) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) ELT)) (-3753 (($ $ (-823)) 150 T ELT)) (-3791 (($ (-1 |#1| (-478)) $) 146 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-478)) 20 T ELT) (($ $ (-985) (-478)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-478))) NIL T ELT)) (-2511 (($ $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-2838 (($ $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-308)) ELT)) (-3918 (($ $) 178 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2262 (((-625 |#2|) (-1164 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ELT) (((-625 (-478)) (-1164 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-575 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3755 (($ (-478) |#2|) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 161 (|has| |#1| (-308)) ELT)) (-3788 (($ $) 230 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) 235 (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT)) (-3423 (($) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-1052))) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3109 (($ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-254))) ELT)) (-3111 ((|#2| $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-477))) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-478)) 140 T ELT)) (-3443 (((-3 $ #1#) $ $) 130 (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (($ $) 176 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) ELT) (($ $ (-1075) |#2|) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-447 (-1075) |#2|))) ELT) (($ $ (-578 (-1075)) (-578 |#2|)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-447 (-1075) |#2|))) ELT) (($ $ (-578 (-245 |#2|))) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-478)) 105 T ELT) (($ $ $) 92 (|has| (-478) (-1013)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-238 |#2| |#2|))) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-308)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075)) 155 (OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075))))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075))))) ELT)) (-2976 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2978 ((|#2| $) 168 (|has| |#1| (-308)) ELT)) (-3924 (((-478) $) 12 T ELT)) (-3472 (($ $) 214 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 190 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 210 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 186 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 206 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 182 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3948 (((-177) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-926))) ELT) (((-323) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-926))) ELT) (((-467) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-548 (-467)))) ELT) (((-793 (-323)) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-548 (-793 (-478))))) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-308)) (|has| |#2| (-814))) ELT)) (-2872 (($ $) 138 T ELT)) (-3922 (((-765) $) 268 T ELT) (($ (-478)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-144)) ELT) (($ |#2|) 21 T ELT) (($ (-1075)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-943 (-1075)))) ELT) (($ (-343 (-478))) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-478)) 87 T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-308)) (|has| |#2| (-814))) (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| |#2| (-116)))) ELT)) (-3107 (((-687)) 157 T CONST)) (-3749 ((|#1| $) 104 T ELT)) (-3112 ((|#2| $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-477))) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) 220 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 196 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) 216 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 192 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 224 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 200 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-478)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-478)))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) 226 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 202 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 222 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 198 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 218 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3360 (($ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-733))) ELT)) (-2640 (($) 13 T CONST)) (-2647 (($) 18 T CONST)) (-2650 (($ $ (-1 |#2| |#2|) (-687)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-308)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-687)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075))))) ELT) (($ $ (-578 (-1075))) NIL (OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075))))) ELT) (($ $ (-1075) (-687)) NIL (OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075))))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (OR (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-478) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-804 (-1075))))) ELT)) (-2546 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-2547 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-3037 (((-83) $ $) 74 T ELT)) (-2665 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-2666 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-749))) ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 165 (|has| |#1| (-308)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3815 (($ $ $) 78 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 86 T ELT) (($ $ (-478)) 162 (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 174 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-308)) ELT) (($ |#2| $) 163 (|has| |#1| (-308)) ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1129 |#1| |#2|) (-1128 |#1| |#2|) (-954) (-1157 |#1|)) (T -1129)) -NIL -((-3710 (((-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| |#1|) (|:| -2377 (-478)))))) |#1| (-83)) 13 T ELT)) (-3709 (((-341 |#1|) |#1|) 26 T ELT)) (-3708 (((-341 |#1|) |#1|) 24 T ELT))) -(((-1130 |#1|) (-10 -7 (-15 -3708 ((-341 |#1|) |#1|)) (-15 -3709 ((-341 |#1|) |#1|)) (-15 -3710 ((-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| |#1|) (|:| -2377 (-478)))))) |#1| (-83)))) (-1140 (-478))) (T -1130)) -((-3710 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 (-2 (|:| |contp| (-478)) (|:| -1762 (-578 (-2 (|:| |irr| *3) (|:| -2377 (-478))))))) (-5 *1 (-1130 *3)) (-4 *3 (-1140 (-478))))) (-3709 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1140 (-478))))) (-3708 (*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1140 (-478)))))) -((-2548 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3712 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3934 (((-1055 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-748)) ELT)) (-3210 ((|#1| $) 15 T ELT)) (-3212 ((|#1| $) 12 T ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-3208 (((-478) $) 19 T ELT)) (-3209 ((|#1| $) 18 T ELT)) (-3211 ((|#1| $) 13 T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3711 (((-83) $) 17 T ELT)) (-3939 (((-1055 |#1|) $) 41 (|has| |#1| (-748)) ELT) (((-1055 |#1|) (-578 $)) 40 (|has| |#1| (-748)) ELT)) (-3948 (($ |#1|) 26 T ELT)) (-3922 (($ (-992 |#1|)) 25 T ELT) (((-765) $) 37 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-1003)) ELT)) (-3713 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3213 (($ $ (-478)) 14 T ELT)) (-3037 (((-83) $ $) 30 (|has| |#1| (-1003)) ELT))) -(((-1131 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -3713 ($ |#1|)) (-15 -3712 ($ |#1|)) (-15 -3922 ($ (-992 |#1|))) (-15 -3711 ((-83) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |#1| (-748)) (-6 (-998 |#1| (-1055 |#1|))) |%noBranch|))) (-1114)) (T -1131)) -((-3713 (*1 *1 *2) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-1114)))) (-3712 (*1 *1 *2) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-1114)))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-992 *3)) (-4 *3 (-1114)) (-5 *1 (-1131 *3)))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1131 *3)) (-4 *3 (-1114))))) -((-3934 (((-1055 |#2|) (-1 |#2| |#1|) (-1131 |#1|)) 23 (|has| |#1| (-748)) ELT) (((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|)) 17 T ELT))) -(((-1132 |#1| |#2|) (-10 -7 (-15 -3934 ((-1131 |#2|) (-1 |#2| |#1|) (-1131 |#1|))) (IF (|has| |#1| (-748)) (-15 -3934 ((-1055 |#2|) (-1 |#2| |#1|) (-1131 |#1|))) |%noBranch|)) (-1114) (-1114)) (T -1132)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-748)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-1055 *6)) (-5 *1 (-1132 *5 *6)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-1131 *6)) (-5 *1 (-1132 *5 *6))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3743 (((-1164 |#2|) $ (-687)) NIL T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3741 (($ (-1070 |#2|)) NIL T ELT)) (-3065 (((-1070 $) $ (-985)) NIL T ELT) (((-1070 |#2|) $) NIL T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#2| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#2| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#2| (-489)) ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-985))) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3731 (($ $ $) NIL (|has| |#2| (-489)) ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3751 (($ $) NIL (|has| |#2| (-385)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#2| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1#) (-578 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-1591 (((-83) $ $) NIL (|has| |#2| (-308)) ELT)) (-3737 (($ $ (-687)) NIL T ELT)) (-3736 (($ $ (-687)) NIL T ELT)) (-3727 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-385)) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-3 (-478) #1#) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-3 (-985) #1#) $) NIL T ELT)) (-3137 ((|#2| $) NIL T ELT) (((-343 (-478)) $) NIL (|has| |#2| (-943 (-343 (-478)))) ELT) (((-478) $) NIL (|has| |#2| (-943 (-478))) ELT) (((-985) $) NIL T ELT)) (-3732 (($ $ $ (-985)) NIL (|has| |#2| (-144)) ELT) ((|#2| $ $) NIL (|has| |#2| (-144)) ELT)) (-2544 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3935 (($ $) NIL T ELT)) (-2261 (((-625 (-478)) (-625 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-625 $) (-1164 $)) NIL T ELT) (((-625 |#2|) (-625 $)) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3735 (($ $ $) NIL T ELT)) (-3729 (($ $ $) NIL (|has| |#2| (-489)) ELT)) (-3728 (((-2 (|:| -3930 |#2|) (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#2| (-489)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#2| (-308)) ELT)) (-3480 (($ $) NIL (|has| |#2| (-385)) ELT) (($ $ (-985)) NIL (|has| |#2| (-385)) ELT)) (-2799 (((-578 $) $) NIL T ELT)) (-3699 (((-83) $) NIL (|has| |#2| (-814)) ELT)) (-1607 (($ $ |#2| (-687) $) NIL T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) NIL (-12 (|has| (-985) (-789 (-323))) (|has| |#2| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) NIL (-12 (|has| (-985) (-789 (-478))) (|has| |#2| (-789 (-478)))) ELT)) (-3748 (((-687) $ $) NIL (|has| |#2| (-489)) ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-3422 (((-627 $) $) NIL (|has| |#2| (-1052)) ELT)) (-3066 (($ (-1070 |#2|) (-985)) NIL T ELT) (($ (-1070 $) (-985)) NIL T ELT)) (-3753 (($ $ (-687)) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#2| (-308)) ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#2| (-687)) 18 T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-985)) NIL T ELT) (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL T ELT)) (-2801 (((-687) $) NIL T ELT) (((-687) $ (-985)) NIL T ELT) (((-578 (-687)) $ (-578 (-985))) NIL T ELT)) (-1608 (($ (-1 (-687) (-687)) $) NIL T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3742 (((-1070 |#2|) $) NIL T ELT)) (-3064 (((-3 (-985) #1#) $) NIL T ELT)) (-2262 (((-625 (-478)) (-1164 $)) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) NIL (|has| |#2| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#2|)) (|:| |vec| (-1164 |#2|))) (-1164 $) $) NIL T ELT) (((-625 |#2|) (-1164 $)) NIL T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#2| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3738 (((-2 (|:| -1956 $) (|:| -2883 $)) $ (-687)) NIL T ELT)) (-2804 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2803 (((-3 (-578 $) #1#) $) NIL T ELT)) (-2805 (((-3 (-2 (|:| |var| (-985)) (|:| -2383 (-687))) #1#) $) NIL T ELT)) (-3788 (($ $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT)) (-3423 (($) NIL (|has| |#2| (-1052)) CONST)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 ((|#2| $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#2| (-385)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#2| (-385)) ELT) (($ $ $) NIL (|has| |#2| (-385)) ELT)) (-3714 (($ $ (-687) |#2| $) NIL T ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) NIL (|has| |#2| (-814)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#2| (-814)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3443 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-489)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#2| (-308)) ELT)) (-3744 (($ $ (-578 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-985) |#2|) NIL T ELT) (($ $ (-578 (-985)) (-578 |#2|)) NIL T ELT) (($ $ (-985) $) NIL T ELT) (($ $ (-578 (-985)) (-578 $)) NIL T ELT)) (-1590 (((-687) $) NIL (|has| |#2| (-308)) ELT)) (-3776 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-343 $) (-343 $) (-343 $)) NIL (|has| |#2| (-489)) ELT) ((|#2| (-343 $) |#2|) NIL (|has| |#2| (-308)) ELT) (((-343 $) $ (-343 $)) NIL (|has| |#2| (-489)) ELT)) (-3740 (((-3 $ #1#) $ (-687)) NIL T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3733 (($ $ (-985)) NIL (|has| |#2| (-144)) ELT) ((|#2| $) NIL (|has| |#2| (-144)) ELT)) (-3734 (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985))) NIL T ELT) (($ $ (-985)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT)) (-3924 (((-687) $) NIL T ELT) (((-687) $ (-985)) NIL T ELT) (((-578 (-687)) $ (-578 (-985))) NIL T ELT)) (-3948 (((-793 (-323)) $) NIL (-12 (|has| (-985) (-548 (-793 (-323)))) (|has| |#2| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) NIL (-12 (|has| (-985) (-548 (-793 (-478)))) (|has| |#2| (-548 (-793 (-478))))) ELT) (((-467) $) NIL (-12 (|has| (-985) (-548 (-467))) (|has| |#2| (-548 (-467)))) ELT)) (-2798 ((|#2| $) NIL (|has| |#2| (-385)) ELT) (($ $ (-985)) NIL (|has| |#2| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-814))) ELT)) (-3730 (((-3 $ #1#) $ $) NIL (|has| |#2| (-489)) ELT) (((-3 (-343 $) #1#) (-343 $) $) NIL (|has| |#2| (-489)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-985)) NIL T ELT) (($ (-1161 |#1|)) 20 T ELT) (($ (-343 (-478))) NIL (OR (|has| |#2| (-38 (-343 (-478)))) (|has| |#2| (-943 (-343 (-478))))) ELT) (($ $) NIL (|has| |#2| (-489)) ELT)) (-3793 (((-578 |#2|) $) NIL T ELT)) (-3653 ((|#2| $ (-687)) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-2683 (((-627 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-814))) (|has| |#2| (-116))) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL (|has| |#2| (-489)) ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) 14 T CONST)) (-2650 (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985))) NIL T ELT) (($ $ (-985)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1075)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) NIL (|has| |#2| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (|has| |#2| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-343 (-478))) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) NIL (|has| |#2| (-38 (-343 (-478)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1133 |#1| |#2|) (-13 (-1140 |#2|) (-550 (-1161 |#1|)) (-10 -8 (-15 -3714 ($ $ (-687) |#2| $)))) (-1075) (-954)) (T -1133)) -((-3714 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1133 *4 *3)) (-14 *4 (-1075)) (-4 *3 (-954))))) -((-3934 (((-1133 |#3| |#4|) (-1 |#4| |#2|) (-1133 |#1| |#2|)) 15 T ELT))) -(((-1134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 ((-1133 |#3| |#4|) (-1 |#4| |#2|) (-1133 |#1| |#2|)))) (-1075) (-954) (-1075) (-954)) (T -1134)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1133 *5 *6)) (-14 *5 (-1075)) (-4 *6 (-954)) (-4 *8 (-954)) (-5 *2 (-1133 *7 *8)) (-5 *1 (-1134 *5 *6 *7 *8)) (-14 *7 (-1075))))) -((-3717 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3715 ((|#1| |#3|) 13 T ELT)) (-3716 ((|#3| |#3|) 19 T ELT))) -(((-1135 |#1| |#2| |#3|) (-10 -7 (-15 -3715 (|#1| |#3|)) (-15 -3716 (|#3| |#3|)) (-15 -3717 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-489) (-897 |#1|) (-1140 |#2|)) (T -1135)) -((-3717 (*1 *2 *3) (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1135 *4 *5 *3)) (-4 *3 (-1140 *5)))) (-3716 (*1 *2 *2) (-12 (-4 *3 (-489)) (-4 *4 (-897 *3)) (-5 *1 (-1135 *3 *4 *2)) (-4 *2 (-1140 *4)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-1135 *2 *4 *3)) (-4 *3 (-1140 *4))))) -((-3719 (((-3 |#2| #1="failed") |#2| (-687) |#1|) 35 T ELT)) (-3718 (((-3 |#2| #1#) |#2| (-687)) 36 T ELT)) (-3721 (((-3 (-2 (|:| -3119 |#2|) (|:| -3118 |#2|)) #1#) |#2|) 50 T ELT)) (-3722 (((-578 |#2|) |#2|) 52 T ELT)) (-3720 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1136 |#1| |#2|) (-10 -7 (-15 -3718 ((-3 |#2| #1="failed") |#2| (-687))) (-15 -3719 ((-3 |#2| #1#) |#2| (-687) |#1|)) (-15 -3720 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3721 ((-3 (-2 (|:| -3119 |#2|) (|:| -3118 |#2|)) #1#) |#2|)) (-15 -3722 ((-578 |#2|) |#2|))) (-13 (-489) (-118)) (-1140 |#1|)) (T -1136)) -((-3722 (*1 *2 *3) (-12 (-4 *4 (-13 (-489) (-118))) (-5 *2 (-578 *3)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1140 *4)))) (-3721 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-489) (-118))) (-5 *2 (-2 (|:| -3119 *3) (|:| -3118 *3))) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1140 *4)))) (-3720 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1140 *3)))) (-3719 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-687)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-1136 *4 *2)) (-4 *2 (-1140 *4)))) (-3718 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-687)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-1136 *4 *2)) (-4 *2 (-1140 *4))))) -((-3723 (((-3 (-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1137 |#1| |#2|) (-10 -7 (-15 -3723 ((-3 (-2 (|:| -1956 |#2|) (|:| -2883 |#2|)) "failed") |#2| |#2|))) (-489) (-1140 |#1|)) (T -1137)) -((-3723 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-1137 *4 *3)) (-4 *3 (-1140 *4))))) -((-3724 ((|#2| |#2| |#2|) 22 T ELT)) (-3725 ((|#2| |#2| |#2|) 36 T ELT)) (-3726 ((|#2| |#2| |#2| (-687) (-687)) 44 T ELT))) -(((-1138 |#1| |#2|) (-10 -7 (-15 -3724 (|#2| |#2| |#2|)) (-15 -3725 (|#2| |#2| |#2|)) (-15 -3726 (|#2| |#2| |#2| (-687) (-687)))) (-954) (-1140 |#1|)) (T -1138)) -((-3726 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-1140 *4)))) (-3725 (*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1140 *3)))) (-3724 (*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1140 *3))))) -((-3743 (((-1164 |#2|) $ (-687)) 129 T ELT)) (-3063 (((-578 (-985)) $) 16 T ELT)) (-3741 (($ (-1070 |#2|)) 80 T ELT)) (-2800 (((-687) $) NIL T ELT) (((-687) $ (-578 (-985))) 21 T ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 217 T ELT)) (-3751 (($ $) 207 T ELT)) (-3947 (((-341 $) $) 205 T ELT)) (-2685 (((-3 (-578 (-1070 $)) #1="failed") (-578 (-1070 $)) (-1070 $)) 95 T ELT)) (-3737 (($ $ (-687)) 84 T ELT)) (-3736 (($ $ (-687)) 86 T ELT)) (-3727 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3138 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-343 (-478)) #1#) $) NIL T ELT) (((-3 (-478) #1#) $) NIL T ELT) (((-3 (-985) #1#) $) NIL T ELT)) (-3137 ((|#2| $) 130 T ELT) (((-343 (-478)) $) NIL T ELT) (((-478) $) NIL T ELT) (((-985) $) NIL T ELT)) (-3729 (($ $ $) 182 T ELT)) (-3728 (((-2 (|:| -3930 |#2|) (|:| -1956 $) (|:| -2883 $)) $ $) 185 T ELT)) (-3748 (((-687) $ $) 202 T ELT)) (-3422 (((-627 $) $) 149 T ELT)) (-2874 (($ |#2| (-687)) NIL T ELT) (($ $ (-985) (-687)) 59 T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-2801 (((-687) $) NIL T ELT) (((-687) $ (-985)) 54 T ELT) (((-578 (-687)) $ (-578 (-985))) 55 T ELT)) (-3742 (((-1070 |#2|) $) 72 T ELT)) (-3064 (((-3 (-985) #1#) $) 52 T ELT)) (-3738 (((-2 (|:| -1956 $) (|:| -2883 $)) $ (-687)) 83 T ELT)) (-3788 (($ $) 232 T ELT)) (-3423 (($) 134 T CONST)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 214 T ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 101 T ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 99 T ELT)) (-3708 (((-341 $) $) 120 T ELT)) (-3744 (($ $ (-578 (-245 $))) 51 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-578 $) (-578 $)) NIL T ELT) (($ $ (-985) |#2|) 39 T ELT) (($ $ (-578 (-985)) (-578 |#2|)) 36 T ELT) (($ $ (-985) $) 32 T ELT) (($ $ (-578 (-985)) (-578 $)) 30 T ELT)) (-1590 (((-687) $) 220 T ELT)) (-3776 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-343 $) (-343 $) (-343 $)) 176 T ELT) ((|#2| (-343 $) |#2|) 219 T ELT) (((-343 $) $ (-343 $)) 201 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 225 T ELT)) (-3734 (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985))) NIL T ELT) (($ $ (-985)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-687)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1075)) NIL T ELT) (($ $ (-578 (-1075))) NIL T ELT) (($ $ (-1075) (-687)) NIL T ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL T ELT)) (-3924 (((-687) $) NIL T ELT) (((-687) $ (-985)) 17 T ELT) (((-578 (-687)) $ (-578 (-985))) 23 T ELT)) (-2798 ((|#2| $) NIL T ELT) (($ $ (-985)) 151 T ELT)) (-3730 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-343 $) #1#) (-343 $) $) 189 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-985)) 64 T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT))) -(((-1139 |#1| |#2|) (-10 -7 (-15 -3922 (|#1| |#1|)) (-15 -2689 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3734 (|#1| |#1| (-578 (-1075)) (-578 (-687)))) (-15 -3734 (|#1| |#1| (-1075) (-687))) (-15 -3734 (|#1| |#1| (-578 (-1075)))) (-15 -3734 (|#1| |#1| (-1075))) (-15 -3947 ((-341 |#1|) |#1|)) (-15 -3751 (|#1| |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3423 (|#1|) -3928) (-15 -3422 ((-627 |#1|) |#1|)) (-15 -3776 ((-343 |#1|) |#1| (-343 |#1|))) (-15 -1590 ((-687) |#1|)) (-15 -2860 ((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3776 (|#2| (-343 |#1|) |#2|)) (-15 -3727 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3728 ((-2 (|:| -3930 |#2|) (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| |#1|)) (-15 -3729 (|#1| |#1| |#1|)) (-15 -3730 ((-3 (-343 |#1|) #1="failed") (-343 |#1|) |#1|)) (-15 -3730 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3748 ((-687) |#1| |#1|)) (-15 -3776 ((-343 |#1|) (-343 |#1|) (-343 |#1|))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3736 (|#1| |#1| (-687))) (-15 -3737 (|#1| |#1| (-687))) (-15 -3738 ((-2 (|:| -1956 |#1|) (|:| -2883 |#1|)) |#1| (-687))) (-15 -3741 (|#1| (-1070 |#2|))) (-15 -3742 ((-1070 |#2|) |#1|)) (-15 -3743 ((-1164 |#2|) |#1| (-687))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|) (-687))) (-15 -3734 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3734 (|#1| |#1| (-687))) (-15 -3734 (|#1| |#1|)) (-15 -3776 (|#1| |#1| |#1|)) (-15 -3776 (|#2| |#1| |#2|)) (-15 -3708 ((-341 |#1|) |#1|)) (-15 -2688 ((-341 (-1070 |#1|)) (-1070 |#1|))) (-15 -2687 ((-341 (-1070 |#1|)) (-1070 |#1|))) (-15 -2686 ((-341 (-1070 |#1|)) (-1070 |#1|))) (-15 -2685 ((-3 (-578 (-1070 |#1|)) #1#) (-578 (-1070 |#1|)) (-1070 |#1|))) (-15 -2798 (|#1| |#1| (-985))) (-15 -3063 ((-578 (-985)) |#1|)) (-15 -2800 ((-687) |#1| (-578 (-985)))) (-15 -2800 ((-687) |#1|)) (-15 -2874 (|#1| |#1| (-578 (-985)) (-578 (-687)))) (-15 -2874 (|#1| |#1| (-985) (-687))) (-15 -2801 ((-578 (-687)) |#1| (-578 (-985)))) (-15 -2801 ((-687) |#1| (-985))) (-15 -3064 ((-3 (-985) #1#) |#1|)) (-15 -3924 ((-578 (-687)) |#1| (-578 (-985)))) (-15 -3924 ((-687) |#1| (-985))) (-15 -3922 (|#1| (-985))) (-15 -3138 ((-3 (-985) #1#) |#1|)) (-15 -3137 ((-985) |#1|)) (-15 -3744 (|#1| |#1| (-578 (-985)) (-578 |#1|))) (-15 -3744 (|#1| |#1| (-985) |#1|)) (-15 -3744 (|#1| |#1| (-578 (-985)) (-578 |#2|))) (-15 -3744 (|#1| |#1| (-985) |#2|)) (-15 -3744 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3744 (|#1| |#1| |#1| |#1|)) (-15 -3744 (|#1| |#1| (-245 |#1|))) (-15 -3744 (|#1| |#1| (-578 (-245 |#1|)))) (-15 -3924 ((-687) |#1|)) (-15 -2874 (|#1| |#2| (-687))) (-15 -3138 ((-3 (-478) #1#) |#1|)) (-15 -3137 ((-478) |#1|)) (-15 -3138 ((-3 (-343 (-478)) #1#) |#1|)) (-15 -3137 ((-343 (-478)) |#1|)) (-15 -3137 (|#2| |#1|)) (-15 -3138 ((-3 |#2| #1#) |#1|)) (-15 -3922 (|#1| |#2|)) (-15 -2801 ((-687) |#1|)) (-15 -2798 (|#2| |#1|)) (-15 -3734 (|#1| |#1| (-985))) (-15 -3734 (|#1| |#1| (-578 (-985)))) (-15 -3734 (|#1| |#1| (-985) (-687))) (-15 -3734 (|#1| |#1| (-578 (-985)) (-578 (-687)))) (-15 -3922 (|#1| (-478))) (-15 -3922 ((-765) |#1|))) (-1140 |#2|) (-954)) (T -1139)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3743 (((-1164 |#1|) $ (-687)) 268 T ELT)) (-3063 (((-578 (-985)) $) 120 T ELT)) (-3741 (($ (-1070 |#1|)) 266 T ELT)) (-3065 (((-1070 $) $ (-985)) 135 T ELT) (((-1070 |#1|) $) 134 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 97 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 98 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 100 (|has| |#1| (-489)) ELT)) (-2800 (((-687) $) 122 T ELT) (((-687) $ (-578 (-985))) 121 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3731 (($ $ $) 253 (|has| |#1| (-489)) ELT)) (-2688 (((-341 (-1070 $)) (-1070 $)) 110 (|has| |#1| (-814)) ELT)) (-3751 (($ $) 108 (|has| |#1| (-385)) ELT)) (-3947 (((-341 $) $) 107 (|has| |#1| (-385)) ELT)) (-2685 (((-3 (-578 (-1070 $)) #1="failed") (-578 (-1070 $)) (-1070 $)) 113 (|has| |#1| (-814)) ELT)) (-1591 (((-83) $ $) 238 (|has| |#1| (-308)) ELT)) (-3737 (($ $ (-687)) 261 T ELT)) (-3736 (($ $ (-687)) 260 T ELT)) (-3727 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-385)) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-343 (-478)) #2#) $) 175 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-3 (-478) #2#) $) 173 (|has| |#1| (-943 (-478))) ELT) (((-3 (-985) #2#) $) 150 T ELT)) (-3137 ((|#1| $) 177 T ELT) (((-343 (-478)) $) 176 (|has| |#1| (-943 (-343 (-478)))) ELT) (((-478) $) 174 (|has| |#1| (-943 (-478))) ELT) (((-985) $) 151 T ELT)) (-3732 (($ $ $ (-985)) 118 (|has| |#1| (-144)) ELT) ((|#1| $ $) 256 (|has| |#1| (-144)) ELT)) (-2544 (($ $ $) 242 (|has| |#1| (-308)) ELT)) (-3935 (($ $) 168 T ELT)) (-2261 (((-625 (-478)) (-625 $)) 146 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-625 $) (-1164 $)) 145 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-625 $) (-1164 $)) 144 T ELT) (((-625 |#1|) (-625 $)) 143 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 241 (|has| |#1| (-308)) ELT)) (-3735 (($ $ $) 259 T ELT)) (-3729 (($ $ $) 250 (|has| |#1| (-489)) ELT)) (-3728 (((-2 (|:| -3930 |#1|) (|:| -1956 $) (|:| -2883 $)) $ $) 249 (|has| |#1| (-489)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 236 (|has| |#1| (-308)) ELT)) (-3480 (($ $) 190 (|has| |#1| (-385)) ELT) (($ $ (-985)) 115 (|has| |#1| (-385)) ELT)) (-2799 (((-578 $) $) 119 T ELT)) (-3699 (((-83) $) 106 (|has| |#1| (-814)) ELT)) (-1607 (($ $ |#1| (-687) $) 186 T ELT)) (-2777 (((-791 (-323) $) $ (-793 (-323)) (-791 (-323) $)) 94 (-12 (|has| (-985) (-789 (-323))) (|has| |#1| (-789 (-323)))) ELT) (((-791 (-478) $) $ (-793 (-478)) (-791 (-478) $)) 93 (-12 (|has| (-985) (-789 (-478))) (|has| |#1| (-789 (-478)))) ELT)) (-3748 (((-687) $ $) 254 (|has| |#1| (-489)) ELT)) (-2392 (((-83) $) 40 T ELT)) (-2400 (((-687) $) 183 T ELT)) (-3422 (((-627 $) $) 234 (|has| |#1| (-1052)) ELT)) (-3066 (($ (-1070 |#1|) (-985)) 127 T ELT) (($ (-1070 $) (-985)) 126 T ELT)) (-3753 (($ $ (-687)) 265 T ELT)) (-1588 (((-3 (-578 $) #3="failed") (-578 $) $) 245 (|has| |#1| (-308)) ELT)) (-2802 (((-578 $) $) 136 T ELT)) (-3913 (((-83) $) 166 T ELT)) (-2874 (($ |#1| (-687)) 167 T ELT) (($ $ (-985) (-687)) 129 T ELT) (($ $ (-578 (-985)) (-578 (-687))) 128 T ELT)) (-3739 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $ (-985)) 130 T ELT) (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 263 T ELT)) (-2801 (((-687) $) 184 T ELT) (((-687) $ (-985)) 132 T ELT) (((-578 (-687)) $ (-578 (-985))) 131 T ELT)) (-1608 (($ (-1 (-687) (-687)) $) 185 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3742 (((-1070 |#1|) $) 267 T ELT)) (-3064 (((-3 (-985) #4="failed") $) 133 T ELT)) (-2262 (((-625 (-478)) (-1164 $)) 148 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 (-478))) (|:| |vec| (-1164 (-478)))) (-1164 $) $) 147 (|has| |#1| (-575 (-478))) ELT) (((-2 (|:| |mat| (-625 |#1|)) (|:| |vec| (-1164 |#1|))) (-1164 $) $) 142 T ELT) (((-625 |#1|) (-1164 $)) 141 T ELT)) (-2875 (($ $) 163 T ELT)) (-3155 ((|#1| $) 162 T ELT)) (-1874 (($ (-578 $)) 104 (|has| |#1| (-385)) ELT) (($ $ $) 103 (|has| |#1| (-385)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3738 (((-2 (|:| -1956 $) (|:| -2883 $)) $ (-687)) 262 T ELT)) (-2804 (((-3 (-578 $) #4#) $) 124 T ELT)) (-2803 (((-3 (-578 $) #4#) $) 125 T ELT)) (-2805 (((-3 (-2 (|:| |var| (-985)) (|:| -2383 (-687))) #4#) $) 123 T ELT)) (-3788 (($ $) 246 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3423 (($) 233 (|has| |#1| (-1052)) CONST)) (-3223 (((-1020) $) 12 T ELT)) (-1780 (((-83) $) 180 T ELT)) (-1779 ((|#1| $) 181 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 105 (|has| |#1| (-385)) ELT)) (-3125 (($ (-578 $)) 102 (|has| |#1| (-385)) ELT) (($ $ $) 101 (|has| |#1| (-385)) ELT)) (-2686 (((-341 (-1070 $)) (-1070 $)) 112 (|has| |#1| (-814)) ELT)) (-2687 (((-341 (-1070 $)) (-1070 $)) 111 (|has| |#1| (-814)) ELT)) (-3708 (((-341 $) $) 109 (|has| |#1| (-814)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 243 (|has| |#1| (-308)) ELT)) (-3443 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-489)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 237 (|has| |#1| (-308)) ELT)) (-3744 (($ $ (-578 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-578 $) (-578 $)) 156 T ELT) (($ $ (-985) |#1|) 155 T ELT) (($ $ (-578 (-985)) (-578 |#1|)) 154 T ELT) (($ $ (-985) $) 153 T ELT) (($ $ (-578 (-985)) (-578 $)) 152 T ELT)) (-1590 (((-687) $) 239 (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-343 $) (-343 $) (-343 $)) 255 (|has| |#1| (-489)) ELT) ((|#1| (-343 $) |#1|) 247 (|has| |#1| (-308)) ELT) (((-343 $) $ (-343 $)) 235 (|has| |#1| (-489)) ELT)) (-3740 (((-3 $ "failed") $ (-687)) 264 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 240 (|has| |#1| (-308)) ELT)) (-3733 (($ $ (-985)) 117 (|has| |#1| (-144)) ELT) ((|#1| $) 257 (|has| |#1| (-144)) ELT)) (-3734 (($ $ (-578 (-985)) (-578 (-687))) 49 T ELT) (($ $ (-985) (-687)) 48 T ELT) (($ $ (-578 (-985))) 47 T ELT) (($ $ (-985)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-687)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1075)) 232 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 230 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 229 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 228 (|has| |#1| (-804 (-1075))) ELT)) (-3924 (((-687) $) 164 T ELT) (((-687) $ (-985)) 140 T ELT) (((-578 (-687)) $ (-578 (-985))) 139 T ELT)) (-3948 (((-793 (-323)) $) 92 (-12 (|has| (-985) (-548 (-793 (-323)))) (|has| |#1| (-548 (-793 (-323))))) ELT) (((-793 (-478)) $) 91 (-12 (|has| (-985) (-548 (-793 (-478)))) (|has| |#1| (-548 (-793 (-478))))) ELT) (((-467) $) 90 (-12 (|has| (-985) (-548 (-467))) (|has| |#1| (-548 (-467)))) ELT)) (-2798 ((|#1| $) 189 (|has| |#1| (-385)) ELT) (($ $ (-985)) 116 (|has| |#1| (-385)) ELT)) (-2684 (((-3 (-1164 $) #1#) (-625 $)) 114 (-2542 (|has| $ (-116)) (|has| |#1| (-814))) ELT)) (-3730 (((-3 $ "failed") $ $) 252 (|has| |#1| (-489)) ELT) (((-3 (-343 $) "failed") (-343 $) $) 251 (|has| |#1| (-489)) ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-985)) 149 T ELT) (($ (-343 (-478))) 88 (OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ELT) (($ $) 95 (|has| |#1| (-489)) ELT)) (-3793 (((-578 |#1|) $) 182 T ELT)) (-3653 ((|#1| $ (-687)) 169 T ELT) (($ $ (-985) (-687)) 138 T ELT) (($ $ (-578 (-985)) (-578 (-687))) 137 T ELT)) (-2683 (((-627 $) $) 89 (OR (-2542 (|has| $ (-116)) (|has| |#1| (-814))) (|has| |#1| (-116))) ELT)) (-3107 (((-687)) 37 T CONST)) (-1606 (($ $ $ (-687)) 187 (|has| |#1| (-144)) ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 99 (|has| |#1| (-489)) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-578 (-985)) (-578 (-687))) 52 T ELT) (($ $ (-985) (-687)) 51 T ELT) (($ $ (-578 (-985))) 50 T ELT) (($ $ (-985)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-687)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-687)) 269 T ELT) (($ $ (-1075)) 231 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075))) 227 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-1075) (-687)) 226 (|has| |#1| (-804 (-1075))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 225 (|has| |#1| (-804 (-1075))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ (-343 (-478)) $) 171 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-1140 |#1|) (-111) (-954)) (T -1140)) -((-3743 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1140 *4)) (-4 *4 (-954)) (-5 *2 (-1164 *4)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-954)) (-5 *2 (-1070 *3)))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-954)) (-4 *1 (-1140 *3)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1140 *3)) (-4 *3 (-954)))) (-3740 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-687)) (-4 *1 (-1140 *3)) (-4 *3 (-954)))) (-3739 (*1 *2 *1 *1) (-12 (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-1140 *3)))) (-3738 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-1140 *4)))) (-3737 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1140 *3)) (-4 *3 (-954)))) (-3736 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1140 *3)) (-4 *3 (-954)))) (-3735 (*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)))) (-3734 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-954)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-144)))) (-3732 (*1 *2 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-144)))) (-3776 (*1 *2 *2 *2) (-12 (-5 *2 (-343 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-954)) (-4 *3 (-489)))) (-3748 (*1 *2 *1 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-954)) (-4 *3 (-489)) (-5 *2 (-687)))) (-3731 (*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) (-3730 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) (-3730 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-343 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-954)) (-4 *3 (-489)))) (-3729 (*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) (-3728 (*1 *2 *1 *1) (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -3930 *3) (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-1140 *3)))) (-3727 (*1 *2 *1 *1) (-12 (-4 *3 (-385)) (-4 *3 (-954)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1140 *3)))) (-3776 (*1 *2 *3 *2) (-12 (-5 *3 (-343 *1)) (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478))))))) -(-13 (-854 |t#1| (-687) (-985)) (-238 |t#1| |t#1|) (-238 $ $) (-188) (-182 |t#1|) (-10 -8 (-15 -3743 ((-1164 |t#1|) $ (-687))) (-15 -3742 ((-1070 |t#1|) $)) (-15 -3741 ($ (-1070 |t#1|))) (-15 -3753 ($ $ (-687))) (-15 -3740 ((-3 $ "failed") $ (-687))) (-15 -3739 ((-2 (|:| -1956 $) (|:| -2883 $)) $ $)) (-15 -3738 ((-2 (|:| -1956 $) (|:| -2883 $)) $ (-687))) (-15 -3737 ($ $ (-687))) (-15 -3736 ($ $ (-687))) (-15 -3735 ($ $ $)) (-15 -3734 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1052)) (-6 (-1052)) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-15 -3733 (|t#1| $)) (-15 -3732 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-489)) (PROGN (-6 (-238 (-343 $) (-343 $))) (-15 -3776 ((-343 $) (-343 $) (-343 $))) (-15 -3748 ((-687) $ $)) (-15 -3731 ($ $ $)) (-15 -3730 ((-3 $ "failed") $ $)) (-15 -3730 ((-3 (-343 $) "failed") (-343 $) $)) (-15 -3729 ($ $ $)) (-15 -3728 ((-2 (|:| -3930 |t#1|) (|:| -1956 $) (|:| -2883 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-385)) (-15 -3727 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-6 (-254)) (-6 -3967) (-15 -3776 (|t#1| (-343 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-343 (-478)))) (-15 -3788 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-687)) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-943 (-343 (-478)))) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 (-985)) . T) ((-550 |#1|) . T) ((-550 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-548 (-467)) -12 (|has| |#1| (-548 (-467))) (|has| (-985) (-548 (-467)))) ((-548 (-793 (-323))) -12 (|has| |#1| (-548 (-793 (-323)))) (|has| (-985) (-548 (-793 (-323))))) ((-548 (-793 (-478))) -12 (|has| |#1| (-548 (-793 (-478)))) (|has| (-985) (-548 (-793 (-478))))) ((-184 $) . T) ((-182 |#1|) . T) ((-188) . T) ((-187) . T) ((-222 |#1|) . T) ((-238 (-343 $) (-343 $)) |has| |#1| (-489)) ((-238 |#1| |#1|) . T) ((-238 $ $) . T) ((-242) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-256 $) . T) ((-273 |#1| (-687)) . T) ((-322 |#1|) . T) ((-348 |#1|) . T) ((-385) OR (|has| |#1| (-814)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-447 (-985) |#1|) . T) ((-447 (-985) $) . T) ((-447 $ $) . T) ((-489) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 (-478)) |has| |#1| (-575 (-478))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-575 (-478)) |has| |#1| (-575 (-478))) ((-575 |#1|) . T) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-985)) . T) ((-799 $ (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-802 (-985)) . T) ((-802 (-1075)) |has| |#1| (-802 (-1075))) ((-804 (-985)) . T) ((-804 (-1075)) OR (|has| |#1| (-804 (-1075))) (|has| |#1| (-802 (-1075)))) ((-789 (-323)) -12 (|has| |#1| (-789 (-323))) (|has| (-985) (-789 (-323)))) ((-789 (-478)) -12 (|has| |#1| (-789 (-478))) (|has| (-985) (-789 (-478)))) ((-854 |#1| (-687) (-985)) . T) ((-814) |has| |#1| (-814)) ((-825) |has| |#1| (-308)) ((-943 (-343 (-478))) |has| |#1| (-943 (-343 (-478)))) ((-943 (-478)) |has| |#1| (-943 (-478))) ((-943 (-985)) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-814)) (|has| |#1| (-489)) (|has| |#1| (-385)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1052) |has| |#1| (-1052)) ((-1114) . T) ((-1119) |has| |#1| (-814))) -((-3934 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1141 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#4| (-1 |#3| |#1|) |#2|))) (-954) (-1140 |#1|) (-954) (-1140 |#3|)) (T -1141)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-1140 *6)) (-5 *1 (-1141 *5 *4 *6 *2)) (-4 *4 (-1140 *5))))) -((-3063 (((-578 (-985)) $) 34 T ELT)) (-3935 (($ $) 31 T ELT)) (-2874 (($ |#2| |#3|) NIL T ELT) (($ $ (-985) |#3|) 28 T ELT) (($ $ (-578 (-985)) (-578 |#3|)) 27 T ELT)) (-2875 (($ $) 14 T ELT)) (-3155 ((|#2| $) 12 T ELT)) (-3924 ((|#3| $) 10 T ELT))) -(((-1142 |#1| |#2| |#3|) (-10 -7 (-15 -3063 ((-578 (-985)) |#1|)) (-15 -2874 (|#1| |#1| (-578 (-985)) (-578 |#3|))) (-15 -2874 (|#1| |#1| (-985) |#3|)) (-15 -3935 (|#1| |#1|)) (-15 -2874 (|#1| |#2| |#3|)) (-15 -3924 (|#3| |#1|)) (-15 -2875 (|#1| |#1|)) (-15 -3155 (|#2| |#1|))) (-1143 |#2| |#3|) (-954) (-709)) (T -1142)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 (-985)) $) 92 T ELT)) (-3807 (((-1075) $) 126 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3747 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-3750 (((-1055 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3935 (($ $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2873 (((-83) $) 91 T ELT)) (-3748 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3753 (($ $ (-823)) 124 T ELT)) (-3913 (((-83) $) 79 T ELT)) (-2874 (($ |#1| |#2|) 78 T ELT) (($ $ (-985) |#2|) 94 T ELT) (($ $ (-578 (-985)) (-578 |#2|)) 93 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2875 (($ $) 82 T ELT)) (-3155 ((|#1| $) 83 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3745 (($ $ |#2|) 118 T ELT)) (-3443 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-3744 (((-1055 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3776 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1013)) ELT)) (-3734 (($ $ (-1075)) 116 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-578 (-1075))) 114 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1075) (-687)) 113 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3924 ((|#2| $) 81 T ELT)) (-2872 (($ $) 90 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3653 ((|#1| $ |#2|) 76 T ELT)) (-2683 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-3749 ((|#1| $) 125 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3746 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1075)) 115 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-578 (-1075))) 111 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1075) (-687)) 110 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1143 |#1| |#2|) (-111) (-954) (-709)) (T -1143)) -((-3750 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-1055 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-1075)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3748 (*1 *2 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3747 (*1 *1 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3747 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3746 (*1 *2 *1 *3) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-709)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3922 (*2 (-1075)))) (-4 *2 (-954)))) (-3745 (*1 *1 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) (-3744 (*1 *2 *1 *3) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1055 *3))))) -(-13 (-879 |t#1| |t#2| (-985)) (-238 |t#2| |t#1|) (-10 -8 (-15 -3750 ((-1055 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3807 ((-1075) $)) (-15 -3749 (|t#1| $)) (-15 -3753 ($ $ (-823))) (-15 -3748 (|t#2| $)) (-15 -3748 (|t#2| $ |t#2|)) (-15 -3747 ($ $ |t#2|)) (-15 -3747 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3922 (|t#1| (-1075)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3746 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3745 ($ $ |t#2|)) (IF (|has| |t#2| (-1013)) (-6 (-238 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-188)) (IF (|has| |t#1| (-802 (-1075))) (-6 (-802 (-1075))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3744 ((-1055 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-188) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-187) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238 |#2| |#1|) . T) ((-238 $ $) |has| |#2| (-1013)) ((-242) |has| |#1| (-489)) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-799 $ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-802 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-804 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-879 |#1| |#2| (-985)) . T) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-3751 ((|#2| |#2|) 12 T ELT)) (-3947 (((-341 |#2|) |#2|) 14 T ELT)) (-3752 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-478))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-478)))) 30 T ELT))) -(((-1144 |#1| |#2|) (-10 -7 (-15 -3947 ((-341 |#2|) |#2|)) (-15 -3751 (|#2| |#2|)) (-15 -3752 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-478))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-478)))))) (-489) (-13 (-1140 |#1|) (-489) (-10 -8 (-15 -3125 ($ $ $))))) (T -1144)) -((-3752 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-478)))) (-4 *4 (-13 (-1140 *3) (-489) (-10 -8 (-15 -3125 ($ $ $))))) (-4 *3 (-489)) (-5 *1 (-1144 *3 *4)))) (-3751 (*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-13 (-1140 *3) (-489) (-10 -8 (-15 -3125 ($ $ $))))))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-1144 *4 *3)) (-4 *3 (-13 (-1140 *4) (-489) (-10 -8 (-15 -3125 ($ $ $)))))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) 11 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-343 (-478))) NIL T ELT) (($ $ (-343 (-478)) (-343 (-478))) NIL T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) NIL T ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-687) (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) NIL T ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-1124 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1154 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3137 (((-1124 |#1| |#2| |#3|) $) NIL T ELT) (((-1154 |#1| |#2| |#3|) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3757 (((-343 (-478)) $) 68 T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3758 (($ (-343 (-478)) (-1124 |#1| |#2| |#3|)) NIL T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2873 (((-83) $) NIL T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-343 (-478)) $) NIL T ELT) (((-343 (-478)) $ (-343 (-478))) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) NIL T ELT) (($ $ (-343 (-478))) NIL T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-343 (-478))) 30 T ELT) (($ $ (-985) (-343 (-478))) NIL T ELT) (($ $ (-578 (-985)) (-578 (-343 (-478)))) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3756 (((-1124 |#1| |#2| |#3|) $) 71 T ELT)) (-3754 (((-3 (-1124 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3755 (((-1124 |#1| |#2| |#3|) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3788 (($ $) 39 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) NIL (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT) (($ $ (-1161 |#2|)) 40 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-343 (-478))) NIL T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-343 (-478))) NIL T ELT) (($ $ $) NIL (|has| (-343 (-478)) (-1013)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1161 |#2|)) 38 T ELT)) (-3924 (((-343 (-478)) $) NIL T ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) NIL T ELT)) (-3922 (((-765) $) 107 T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1124 |#1| |#2| |#3|)) 16 T ELT) (($ (-1154 |#1| |#2| |#3|)) 17 T ELT) (($ (-1161 |#2|)) 36 T ELT) (($ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-343 (-478))) NIL T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-3749 ((|#1| $) 12 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-343 (-478))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 32 T CONST)) (-2647 (($) 26 T CONST)) (-2650 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-1161 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 34 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ (-478)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1145 |#1| |#2| |#3|) (-13 (-1149 |#1| (-1124 |#1| |#2| |#3|)) (-799 $ (-1161 |#2|)) (-943 (-1154 |#1| |#2| |#3|)) (-550 (-1161 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3788 ($ $ (-1161 |#2|))) |%noBranch|))) (-954) (-1075) |#1|) (T -1145)) -((-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) -((-3934 (((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|)) 24 T ELT))) -(((-1146 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3934 ((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|)))) (-954) (-954) (-1075) (-1075) |#1| |#2|) (T -1146)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5 *7 *9)) (-4 *5 (-954)) (-4 *6 (-954)) (-14 *7 (-1075)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1145 *6 *8 *10)) (-5 *1 (-1146 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1075))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 (-985)) $) 92 T ELT)) (-3807 (((-1075) $) 126 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-343 (-478))) 121 T ELT) (($ $ (-343 (-478)) (-343 (-478))) 120 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) 127 T ELT)) (-3469 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) 188 (|has| |#1| (-308)) ELT)) (-3018 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1591 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3467 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-687) (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) 196 T ELT)) (-3471 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) 22 T CONST)) (-2544 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3935 (($ $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 176 (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-2873 (((-83) $) 91 T ELT)) (-3603 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-343 (-478)) $) 123 T ELT) (((-343 (-478)) $ (-343 (-478))) 122 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) 124 T ELT) (($ $ (-343 (-478))) 195 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 185 (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) 79 T ELT)) (-2874 (($ |#1| (-343 (-478))) 78 T ELT) (($ $ (-985) (-343 (-478))) 94 T ELT) (($ $ (-578 (-985)) (-578 (-343 (-478)))) 93 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3918 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 82 T ELT)) (-3155 ((|#1| $) 83 T ELT)) (-1874 (($ (-578 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3788 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) 193 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 175 (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3708 (((-341 $) $) 186 (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-343 (-478))) 118 T ELT)) (-3443 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 177 (|has| |#1| (-308)) ELT)) (-3919 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1590 (((-687) $) 179 (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-343 (-478))) 128 T ELT) (($ $ $) 104 (|has| (-343 (-478)) (-1013)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1075)) 116 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) 114 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) 113 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3924 (((-343 (-478)) $) 81 T ELT)) (-3472 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) 90 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-343 (-478))) 76 T ELT)) (-2683 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-3749 ((|#1| $) 125 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3475 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3473 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-343 (-478))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1075)) 115 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) 111 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) 110 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1147 |#1|) (-111) (-954)) (T -1147)) -((-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| *4)))) (-4 *4 (-954)) (-4 *1 (-1147 *4)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-1147 *3)) (-4 *3 (-954)))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) (-3788 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1075)) (-4 *1 (-1147 *3)) (-4 *3 (-954)) (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1100)) (-4 *3 (-38 (-343 (-478)))))) (-12 (-5 *2 (-1075)) (-4 *1 (-1147 *3)) (-4 *3 (-954)) (-12 (|has| *3 (-15 -3063 ((-578 *2) *3))) (|has| *3 (-15 -3788 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478))))))))) -(-13 (-1143 |t#1| (-343 (-478))) (-10 -8 (-15 -3794 ($ (-687) (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |t#1|))))) (-15 -3753 ($ $ (-343 (-478)))) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3788 ($ $)) (IF (|has| |t#1| (-15 -3788 (|t#1| |t#1| (-1075)))) (IF (|has| |t#1| (-15 -3063 ((-578 (-1075)) |t#1|))) (-15 -3788 ($ $ (-1075))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1100)) (IF (|has| |t#1| (-864)) (IF (|has| |t#1| (-29 (-478))) (-15 -3788 ($ $ (-1075))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-908)) (-6 (-1100))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-343 (-478))) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-343 (-478)) |#1|) . T) ((-238 $ $) |has| (-343 (-478)) (-1013)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-308) |has| |#1| (-308)) ((-385) |has| |#1| (-308)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-649 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-802 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-804 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-879 |#1| (-343 (-478)) (-985)) . T) ((-825) |has| |#1| (-308)) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-956 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1100) |has| |#1| (-38 (-343 (-478)))) ((-1103) |has| |#1| (-38 (-343 (-478)))) ((-1114) . T) ((-1119) |has| |#1| (-308)) ((-1143 |#1| (-343 (-478))) . T)) -((-3170 (((-83) $) 12 T ELT)) (-3138 (((-3 |#3| "failed") $) 17 T ELT)) (-3137 ((|#3| $) 14 T ELT))) -(((-1148 |#1| |#2| |#3|) (-10 -7 (-15 -3138 ((-3 |#3| "failed") |#1|)) (-15 -3137 (|#3| |#1|)) (-15 -3170 ((-83) |#1|))) (-1149 |#2| |#3|) (-954) (-1126 |#2|)) (T -1148)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 (-985)) $) 92 T ELT)) (-3807 (((-1075) $) 126 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-343 (-478))) 121 T ELT) (($ $ (-343 (-478)) (-343 (-478))) 120 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) 127 T ELT)) (-3469 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) 188 (|has| |#1| (-308)) ELT)) (-3018 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1591 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3467 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-687) (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) 196 T ELT)) (-3471 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#2| "failed") $) 209 T ELT)) (-3137 ((|#2| $) 210 T ELT)) (-2544 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3935 (($ $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3757 (((-343 (-478)) $) 206 T ELT)) (-2543 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-3758 (($ (-343 (-478)) |#2|) 207 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 176 (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-2873 (((-83) $) 91 T ELT)) (-3603 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-343 (-478)) $) 123 T ELT) (((-343 (-478)) $ (-343 (-478))) 122 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) 124 T ELT) (($ $ (-343 (-478))) 195 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 185 (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) 79 T ELT)) (-2874 (($ |#1| (-343 (-478))) 78 T ELT) (($ $ (-985) (-343 (-478))) 94 T ELT) (($ $ (-578 (-985)) (-578 (-343 (-478)))) 93 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3918 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 82 T ELT)) (-3155 ((|#1| $) 83 T ELT)) (-1874 (($ (-578 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3756 ((|#2| $) 205 T ELT)) (-3754 (((-3 |#2| "failed") $) 203 T ELT)) (-3755 ((|#2| $) 204 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3788 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) 193 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 175 (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3708 (((-341 $) $) 186 (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-343 (-478))) 118 T ELT)) (-3443 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 177 (|has| |#1| (-308)) ELT)) (-3919 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1590 (((-687) $) 179 (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-343 (-478))) 128 T ELT) (($ $ $) 104 (|has| (-343 (-478)) (-1013)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1075)) 116 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) 114 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) 113 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3924 (((-343 (-478)) $) 81 T ELT)) (-3472 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) 90 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ |#2|) 208 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-343 (-478))) 76 T ELT)) (-2683 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-3749 ((|#1| $) 125 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3475 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3473 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-343 (-478))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1075)) 115 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) 111 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) 110 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1149 |#1| |#2|) (-111) (-954) (-1126 |t#1|)) (T -1149)) -((-3924 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1126 *3)) (-5 *2 (-343 (-478))))) (-3758 (*1 *1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-4 *4 (-954)) (-4 *1 (-1149 *4 *3)) (-4 *3 (-1126 *4)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1126 *3)) (-5 *2 (-343 (-478))))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1126 *3)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1126 *3)))) (-3754 (*1 *2 *1) (|partial| -12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1126 *3))))) -(-13 (-1147 |t#1|) (-943 |t#2|) (-550 |t#2|) (-10 -8 (-15 -3758 ($ (-343 (-478)) |t#2|)) (-15 -3757 ((-343 (-478)) $)) (-15 -3756 (|t#2| $)) (-15 -3924 ((-343 (-478)) $)) (-15 -3755 (|t#2| $)) (-15 -3754 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-343 (-478))) . T) ((-25) . T) ((-38 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 |#2|) . T) ((-550 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-343 (-478)) |#1|) . T) ((-238 $ $) |has| (-343 (-478)) (-1013)) ((-242) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-308) |has| |#1| (-308)) ((-385) |has| |#1| (-308)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-489) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-583 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-649 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) OR (|has| |#1| (-489)) (|has| |#1| (-308))) ((-658) . T) ((-799 $ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-802 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-804 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ((-879 |#1| (-343 (-478)) (-985)) . T) ((-825) |has| |#1| (-308)) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-943 |#2|) . T) ((-956 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-961 (-343 (-478))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-343 (-478))))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1100) |has| |#1| (-38 (-343 (-478)))) ((-1103) |has| |#1| (-38 (-343 (-478)))) ((-1114) . T) ((-1119) |has| |#1| (-308)) ((-1143 |#1| (-343 (-478))) . T) ((-1147 |#1|) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) 104 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-343 (-478))) 116 T ELT) (($ $ (-343 (-478)) (-343 (-478))) 118 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|))) $) 54 T ELT)) (-3469 (($ $) 192 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3751 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3947 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1591 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3467 (($ $) 188 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-687) (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#1|)))) 65 T ELT)) (-3471 (($ $) 196 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 172 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) NIL T ELT)) (-3137 ((|#2| $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) 85 T ELT)) (-3757 (((-343 (-478)) $) 13 T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3758 (($ (-343 (-478)) |#2|) 11 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) NIL (|has| |#1| (-308)) ELT)) (-3699 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2873 (((-83) $) 74 T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-343 (-478)) $) 113 T ELT) (((-343 (-478)) $ (-343 (-478))) 114 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) 130 T ELT) (($ $ (-343 (-478))) 128 T ELT)) (-1588 (((-3 (-578 $) #1#) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-343 (-478))) 33 T ELT) (($ $ (-985) (-343 (-478))) NIL T ELT) (($ $ (-578 (-985)) (-578 (-343 (-478)))) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3918 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-1874 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3756 ((|#2| $) 12 T ELT)) (-3754 (((-3 |#2| #1#) $) 44 T ELT)) (-3755 ((|#2| $) 45 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-2464 (($ $) 101 (|has| |#1| (-308)) ELT)) (-3788 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) 151 (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) NIL (|has| |#1| (-308)) ELT)) (-3125 (($ (-578 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3708 (((-341 $) $) NIL (|has| |#1| (-308)) ELT)) (-1589 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3745 (($ $ (-343 (-478))) 122 T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) ELT)) (-1590 (((-687) $) NIL (|has| |#1| (-308)) ELT)) (-3776 ((|#1| $ (-343 (-478))) 108 T ELT) (($ $ $) 94 (|has| (-343 (-478)) (-1013)) ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3734 (($ $ (-1075)) 138 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3924 (((-343 (-478)) $) 16 T ELT)) (-3472 (($ $) 198 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 174 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 194 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 190 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) 120 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-144)) ELT) (($ |#2|) 34 T ELT) (($ (-343 (-478))) 139 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT)) (-3653 ((|#1| $ (-343 (-478))) 107 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 127 T CONST)) (-3749 ((|#1| $) 106 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) 204 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 180 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) 200 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 176 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 208 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 184 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-343 (-478))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-343 (-478))))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) 210 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 186 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 206 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 182 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 202 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 178 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 21 T CONST)) (-2647 (($) 17 T CONST)) (-2650 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-343 (-478)) |#1|))) ELT)) (-3037 (((-83) $ $) 72 T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 100 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3815 (($ $ $) 76 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 82 T ELT) (($ $ (-478)) 157 (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1150 |#1| |#2|) (-1149 |#1| |#2|) (-954) (-1126 |#1|)) (T -1150)) -NIL -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 37 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-2043 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 (-478) #1#) $) NIL (|has| (-1145 |#2| |#3| |#4|) (-943 (-478))) ELT) (((-3 (-343 (-478)) #1#) $) NIL (|has| (-1145 |#2| |#3| |#4|) (-943 (-343 (-478)))) ELT) (((-3 (-1145 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3137 (((-478) $) NIL (|has| (-1145 |#2| |#3| |#4|) (-943 (-478))) ELT) (((-343 (-478)) $) NIL (|has| (-1145 |#2| |#3| |#4|) (-943 (-343 (-478)))) ELT) (((-1145 |#2| |#3| |#4|) $) NIL T ELT)) (-3935 (($ $) 41 T ELT)) (-3444 (((-3 $ #1#) $) 27 T ELT)) (-3480 (($ $) NIL (|has| (-1145 |#2| |#3| |#4|) (-385)) ELT)) (-1607 (($ $ (-1145 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) 11 T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ (-1145 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) 25 T ELT)) (-2801 (((-266 |#2| |#3| |#4|) $) NIL T ELT)) (-1608 (($ (-1 (-266 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) $) NIL T ELT)) (-3934 (($ (-1 (-1145 |#2| |#3| |#4|) (-1145 |#2| |#3| |#4|)) $) NIL T ELT)) (-3760 (((-3 (-743 |#2|) #1#) $) 91 T ELT)) (-2875 (($ $) NIL T ELT)) (-3155 (((-1145 |#2| |#3| |#4|) $) 20 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-1780 (((-83) $) NIL T ELT)) (-1779 (((-1145 |#2| |#3| |#4|) $) NIL T ELT)) (-3443 (((-3 $ #1#) $ (-1145 |#2| |#3| |#4|)) NIL (|has| (-1145 |#2| |#3| |#4|) (-489)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3759 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1145 |#2| |#3| |#4|)) (|:| |%expon| (-266 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#2|)))))) (|:| |%type| (-1059))) #1#) $) 74 T ELT)) (-3924 (((-266 |#2| |#3| |#4|) $) 17 T ELT)) (-2798 (((-1145 |#2| |#3| |#4|) $) NIL (|has| (-1145 |#2| |#3| |#4|) (-385)) ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ (-1145 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-343 (-478))) NIL (OR (|has| (-1145 |#2| |#3| |#4|) (-943 (-343 (-478)))) (|has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478))))) ELT)) (-3793 (((-578 (-1145 |#2| |#3| |#4|)) $) NIL T ELT)) (-3653 (((-1145 |#2| |#3| |#4|) $ (-266 |#2| |#3| |#4|)) NIL T ELT)) (-2683 (((-627 $) $) NIL (|has| (-1145 |#2| |#3| |#4|) (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-1606 (($ $ $ (-687)) NIL (|has| (-1145 |#2| |#3| |#4|) (-144)) ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2044 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-2647 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ (-1145 |#2| |#3| |#4|)) NIL (|has| (-1145 |#2| |#3| |#4|) (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1145 |#2| |#3| |#4|)) NIL T ELT) (($ (-1145 |#2| |#3| |#4|) $) NIL T ELT) (($ (-343 (-478)) $) NIL (|has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| (-1145 |#2| |#3| |#4|) (-38 (-343 (-478)))) ELT))) -(((-1151 |#1| |#2| |#3| |#4|) (-13 (-273 (-1145 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) (-489) (-10 -8 (-15 -3760 ((-3 (-743 |#2|) #1="failed") $)) (-15 -3759 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1145 |#2| |#3| |#4|)) (|:| |%expon| (-266 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-343 (-478))) (|:| |c| |#2|)))))) (|:| |%type| (-1059))) #1#) $)))) (-13 (-943 (-478)) (-575 (-478)) (-385)) (-13 (-27) (-1100) (-357 |#1|)) (-1075) |#2|) (T -1151)) -((-3760 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) (-5 *2 (-743 *4)) (-5 *1 (-1151 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1100) (-357 *3))) (-14 *5 (-1075)) (-14 *6 *4))) (-3759 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1145 *4 *5 *6)) (|:| |%expon| (-266 *4 *5 *6)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-343 (-478))) (|:| |c| *4)))))) (|:| |%type| (-1059)))) (-5 *1 (-1151 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1100) (-357 *3))) (-14 *5 (-1075)) (-14 *6 *4)))) -((-3379 ((|#2| $) 34 T ELT)) (-3771 ((|#2| $) 18 T ELT)) (-3773 (($ $) 44 T ELT)) (-3761 (($ $ (-478)) 79 T ELT)) (-3006 ((|#2| $ |#2|) 76 T ELT)) (-3762 ((|#2| $ |#2|) 72 T ELT)) (-3764 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3007 (($ $ (-578 $)) 75 T ELT)) (-3772 ((|#2| $) 17 T ELT)) (-3775 (($ $) NIL T ELT) (($ $ (-687)) 52 T ELT)) (-3012 (((-578 $) $) 31 T ELT)) (-3008 (((-83) $ $) 63 T ELT)) (-3504 (((-83) $) 33 T ELT)) (-3774 ((|#2| $) 25 T ELT) (($ $ (-687)) 58 T ELT)) (-3776 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3609 (((-83) $) 23 T ELT)) (-3768 (($ $) 47 T ELT)) (-3766 (($ $) 80 T ELT)) (-3769 (((-687) $) 51 T ELT)) (-3770 (($ $) 50 T ELT)) (-3778 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3499 (((-578 $) $) 32 T ELT)) (-3037 (((-83) $ $) 61 T ELT)) (-3933 (((-687) $) 43 T ELT))) -(((-1152 |#1| |#2|) (-10 -7 (-15 -3037 ((-83) |#1| |#1|)) (-15 -3761 (|#1| |#1| (-478))) (-15 -3764 (|#2| |#1| #1="last" |#2|)) (-15 -3762 (|#2| |#1| |#2|)) (-15 -3764 (|#1| |#1| #2="rest" |#1|)) (-15 -3764 (|#2| |#1| #3="first" |#2|)) (-15 -3766 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3769 ((-687) |#1|)) (-15 -3770 (|#1| |#1|)) (-15 -3771 (|#2| |#1|)) (-15 -3772 (|#2| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3774 (|#1| |#1| (-687))) (-15 -3776 (|#2| |#1| #1#)) (-15 -3774 (|#2| |#1|)) (-15 -3775 (|#1| |#1| (-687))) (-15 -3776 (|#1| |#1| #2#)) (-15 -3775 (|#1| |#1|)) (-15 -3776 (|#2| |#1| #3#)) (-15 -3778 (|#1| |#2| |#1|)) (-15 -3778 (|#1| |#1| |#1|)) (-15 -3006 (|#2| |#1| |#2|)) (-15 -3764 (|#2| |#1| #4="value" |#2|)) (-15 -3007 (|#1| |#1| (-578 |#1|))) (-15 -3008 ((-83) |#1| |#1|)) (-15 -3609 ((-83) |#1|)) (-15 -3776 (|#2| |#1| #4#)) (-15 -3379 (|#2| |#1|)) (-15 -3504 ((-83) |#1|)) (-15 -3012 ((-578 |#1|) |#1|)) (-15 -3499 ((-578 |#1|) |#1|)) (-15 -3933 ((-687) |#1|))) (-1153 |#2|) (-1114)) (T -1152)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3379 ((|#1| $) 52 T ELT)) (-3771 ((|#1| $) 71 T ELT)) (-3773 (($ $) 73 T ELT)) (-3761 (($ $ (-478)) 58 (|has| $ (-6 -3972)) ELT)) (-3006 ((|#1| $ |#1|) 43 (|has| $ (-6 -3972)) ELT)) (-3763 (($ $ $) 62 (|has| $ (-6 -3972)) ELT)) (-3762 ((|#1| $ |#1|) 60 (|has| $ (-6 -3972)) ELT)) (-3765 ((|#1| $ |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-3764 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3972)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3972)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3972)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3972)) ELT)) (-3007 (($ $ (-578 $)) 45 (|has| $ (-6 -3972)) ELT)) (-3772 ((|#1| $) 72 T ELT)) (-3700 (($) 7 T CONST)) (-3775 (($ $) 79 T ELT) (($ $ (-687)) 77 T ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3012 (((-578 $) $) 54 T ELT)) (-3008 (((-83) $ $) 46 (|has| |#1| (-1003)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3011 (((-578 |#1|) $) 49 T ELT)) (-3504 (((-83) $) 53 T ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-3774 ((|#1| $) 76 T ELT) (($ $ (-687)) 74 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 82 T ELT) (($ $ (-687)) 80 T ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3010 (((-478) $ $) 48 T ELT)) (-3609 (((-83) $) 50 T ELT)) (-3768 (($ $) 68 T ELT)) (-3766 (($ $) 65 (|has| $ (-6 -3972)) ELT)) (-3769 (((-687) $) 69 T ELT)) (-3770 (($ $) 70 T ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3377 (($ $) 10 T ELT)) (-3767 (($ $ $) 67 (|has| $ (-6 -3972)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3972)) ELT)) (-3778 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-3499 (((-578 $) $) 55 T ELT)) (-3009 (((-83) $ $) 47 (|has| |#1| (-1003)) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-1153 |#1|) (-111) (-1114)) (T -1153)) -((-3778 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3778 (*1 *1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1153 *3)) (-4 *3 (-1114)))) (-3775 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1153 *3)) (-4 *3 (-1114)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1153 *3)) (-4 *3 (-1114)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1153 *3)) (-4 *3 (-1114)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3770 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1114)) (-5 *2 (-687)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3767 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3767 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3766 (*1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3765 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3764 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3763 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3764 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3972)) (-4 *1 (-1153 *3)) (-4 *3 (-1114)))) (-3762 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3764 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-478)) (|has| *1 (-6 -3972)) (-4 *1 (-1153 *3)) (-4 *3 (-1114))))) -(-13 (-916 |t#1|) (-10 -8 (-15 -3778 ($ $ $)) (-15 -3778 ($ |t#1| $)) (-15 -3777 (|t#1| $)) (-15 -3776 (|t#1| $ "first")) (-15 -3777 ($ $ (-687))) (-15 -3775 ($ $)) (-15 -3776 ($ $ "rest")) (-15 -3775 ($ $ (-687))) (-15 -3774 (|t#1| $)) (-15 -3776 (|t#1| $ "last")) (-15 -3774 ($ $ (-687))) (-15 -3773 ($ $)) (-15 -3772 (|t#1| $)) (-15 -3771 (|t#1| $)) (-15 -3770 ($ $)) (-15 -3769 ((-687) $)) (-15 -3768 ($ $)) (IF (|has| $ (-6 -3972)) (PROGN (-15 -3767 ($ $ $)) (-15 -3767 ($ $ |t#1|)) (-15 -3766 ($ $)) (-15 -3765 (|t#1| $ |t#1|)) (-15 -3764 (|t#1| $ "first" |t#1|)) (-15 -3763 ($ $ $)) (-15 -3764 ($ $ "rest" $)) (-15 -3762 (|t#1| $ |t#1|)) (-15 -3764 (|t#1| $ "last" |t#1|)) (-15 -3761 ($ $ (-478)))) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-547 (-765)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-422 |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-916 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1114) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3063 (((-578 (-985)) $) NIL T ELT)) (-3807 (((-1075) $) 87 T ELT)) (-3787 (((-1133 |#2| |#1|) $ (-687)) 70 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) NIL (|has| |#1| (-489)) ELT)) (-2045 (($ $) NIL (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 139 (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-687)) 125 T ELT) (($ $ (-687) (-687)) 127 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-687)) (|:| |c| |#1|))) $) 42 T ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3018 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-1055 (-2 (|:| |k| (-687)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1055 |#1|)) NIL T ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) NIL T CONST)) (-3781 (($ $) 131 T ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3792 (($ $) 137 T ELT)) (-3790 (((-850 |#1|) $ (-687)) 60 T ELT) (((-850 |#1|) $ (-687) (-687)) 62 T ELT)) (-2873 (((-83) $) NIL T ELT)) (-3603 (($) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-687) $) NIL T ELT) (((-687) $ (-687)) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3784 (($ $) 115 T ELT)) (-2992 (($ $ (-478)) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3780 (($ (-478) (-478) $) 133 T ELT)) (-3753 (($ $ (-823)) 136 T ELT)) (-3791 (($ (-1 |#1| (-478)) $) 109 T ELT)) (-3913 (((-83) $) NIL T ELT)) (-2874 (($ |#1| (-687)) 16 T ELT) (($ $ (-985) (-687)) NIL T ELT) (($ $ (-578 (-985)) (-578 (-687))) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3785 (($ $) 113 T ELT)) (-3786 (($ $) 111 T ELT)) (-3779 (($ (-478) (-478) $) 135 T ELT)) (-3788 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) 153 (OR (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100))) (-12 (|has| |#1| (-38 (-343 (-478)))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))))) ELT) (($ $ (-1161 |#2|)) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3782 (($ $ (-478) (-478)) 119 T ELT)) (-3745 (($ $ (-687)) 121 T ELT)) (-3443 (((-3 $ #1#) $ $) NIL (|has| |#1| (-489)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3783 (($ $) 117 T ELT)) (-3744 (((-1055 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) ELT)) (-3776 ((|#1| $ (-687)) 93 T ELT) (($ $ $) 129 (|has| (-687) (-1013)) ELT)) (-3734 (($ $ (-1075)) 106 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-1161 |#2|)) 101 T ELT)) (-3924 (((-687) $) NIL T ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) 123 T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) 26 T ELT) (($ (-343 (-478))) 145 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) NIL (|has| |#1| (-489)) ELT) (($ |#1|) 25 (|has| |#1| (-144)) ELT) (($ (-1133 |#2| |#1|)) 78 T ELT) (($ (-1161 |#2|)) 22 T ELT)) (-3793 (((-1055 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ (-687)) 92 T ELT)) (-2683 (((-627 $) $) NIL (|has| |#1| (-116)) ELT)) (-3107 (((-687)) NIL T CONST)) (-3749 ((|#1| $) 88 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-687)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 18 T CONST)) (-2647 (($) 13 T CONST)) (-2650 (($ $ (-1075)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1075) (-687)) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) NIL (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) NIL (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-1161 |#2|)) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3925 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3815 (($ $ $) 20 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-343 (-478)) $) NIL (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) NIL (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1154 |#1| |#2| |#3|) (-13 (-1157 |#1|) (-799 $ (-1161 |#2|)) (-10 -8 (-15 -3922 ($ (-1133 |#2| |#1|))) (-15 -3787 ((-1133 |#2| |#1|) $ (-687))) (-15 -3922 ($ (-1161 |#2|))) (-15 -3786 ($ $)) (-15 -3785 ($ $)) (-15 -3784 ($ $)) (-15 -3783 ($ $)) (-15 -3782 ($ $ (-478) (-478))) (-15 -3781 ($ $)) (-15 -3780 ($ (-478) (-478) $)) (-15 -3779 ($ (-478) (-478) $)) (IF (|has| |#1| (-38 (-343 (-478)))) (-15 -3788 ($ $ (-1161 |#2|))) |%noBranch|))) (-954) (-1075) |#1|) (T -1154)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-1133 *4 *3)) (-4 *3 (-954)) (-14 *4 (-1075)) (-14 *5 *3) (-5 *1 (-1154 *3 *4 *5)))) (-3787 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1133 *5 *4)) (-5 *1 (-1154 *4 *5 *6)) (-4 *4 (-954)) (-14 *5 (-1075)) (-14 *6 *4))) (-3922 (*1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-954)) (-14 *5 *3))) (-3786 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2))) (-3785 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2))) (-3784 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2))) (-3783 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2))) (-3782 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1075)) (-14 *5 *3))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2))) (-3780 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1075)) (-14 *5 *3))) (-3779 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1075)) (-14 *5 *3))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3)))) -((-3934 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3934 (|#4| (-1 |#2| |#1|) |#3|))) (-954) (-954) (-1157 |#1|) (-1157 |#2|)) (T -1155)) -((-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-1157 *6)) (-5 *1 (-1155 *5 *6 *4 *2)) (-4 *4 (-1157 *5))))) -((-3170 (((-83) $) 17 T ELT)) (-3469 (($ $) 105 T ELT)) (-3615 (($ $) 81 T ELT)) (-3467 (($ $) 101 T ELT)) (-3614 (($ $) 77 T ELT)) (-3471 (($ $) 109 T ELT)) (-3613 (($ $) 85 T ELT)) (-3918 (($ $) 75 T ELT)) (-3919 (($ $) 73 T ELT)) (-3472 (($ $) 111 T ELT)) (-3612 (($ $) 87 T ELT)) (-3470 (($ $) 107 T ELT)) (-3611 (($ $) 83 T ELT)) (-3468 (($ $) 103 T ELT)) (-3610 (($ $) 79 T ELT)) (-3922 (((-765) $) 61 T ELT) (($ (-478)) NIL T ELT) (($ (-343 (-478))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3475 (($ $) 117 T ELT)) (-3463 (($ $) 93 T ELT)) (-3473 (($ $) 113 T ELT)) (-3461 (($ $) 89 T ELT)) (-3477 (($ $) 121 T ELT)) (-3465 (($ $) 97 T ELT)) (-3478 (($ $) 123 T ELT)) (-3466 (($ $) 99 T ELT)) (-3476 (($ $) 119 T ELT)) (-3464 (($ $) 95 T ELT)) (-3474 (($ $) 115 T ELT)) (-3462 (($ $) 91 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-343 (-478))) 71 T ELT))) -(((-1156 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-343 (-478)))) (-15 -3615 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3613 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3611 (|#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3464 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3470 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3922 (|#1| |#2|)) (-15 -3922 (|#1| |#1|)) (-15 -3922 (|#1| (-343 (-478)))) (-15 -3922 (|#1| (-478))) (-15 ** (|#1| |#1| (-687))) (-15 ** (|#1| |#1| (-823))) (-15 -3170 ((-83) |#1|)) (-15 -3922 ((-765) |#1|))) (-1157 |#2|) (-954)) (T -1156)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3063 (((-578 (-985)) $) 92 T ELT)) (-3807 (((-1075) $) 126 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 68 (|has| |#1| (-489)) ELT)) (-2045 (($ $) 69 (|has| |#1| (-489)) ELT)) (-2043 (((-83) $) 71 (|has| |#1| (-489)) ELT)) (-3747 (($ $ (-687)) 121 T ELT) (($ $ (-687) (-687)) 120 T ELT)) (-3750 (((-1055 (-2 (|:| |k| (-687)) (|:| |c| |#1|))) $) 127 T ELT)) (-3469 (($ $) 160 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3615 (($ $) 143 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3018 (($ $) 142 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3467 (($ $) 159 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3614 (($ $) 144 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3794 (($ (-1055 (-2 (|:| |k| (-687)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1055 |#1|)) 178 T ELT)) (-3471 (($ $) 158 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3613 (($ $) 145 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3700 (($) 22 T CONST)) (-3935 (($ $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3792 (($ $) 177 T ELT)) (-3790 (((-850 |#1|) $ (-687)) 175 T ELT) (((-850 |#1|) $ (-687) (-687)) 174 T ELT)) (-2873 (((-83) $) 91 T ELT)) (-3603 (($) 170 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3748 (((-687) $) 123 T ELT) (((-687) $ (-687)) 122 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-2992 (($ $ (-478)) 141 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3753 (($ $ (-823)) 124 T ELT)) (-3791 (($ (-1 |#1| (-478)) $) 176 T ELT)) (-3913 (((-83) $) 79 T ELT)) (-2874 (($ |#1| (-687)) 78 T ELT) (($ $ (-985) (-687)) 94 T ELT) (($ $ (-578 (-985)) (-578 (-687))) 93 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3918 (($ $) 167 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2875 (($ $) 82 T ELT)) (-3155 ((|#1| $) 83 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3788 (($ $) 172 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-1075)) 171 (OR (-12 (|has| |#1| (-29 (-478))) (|has| |#1| (-864)) (|has| |#1| (-1100)) (|has| |#1| (-38 (-343 (-478))))) (-12 (|has| |#1| (-15 -3063 ((-578 (-1075)) |#1|))) (|has| |#1| (-15 -3788 (|#1| |#1| (-1075)))) (|has| |#1| (-38 (-343 (-478)))))) ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3745 (($ $ (-687)) 118 T ELT)) (-3443 (((-3 $ "failed") $ $) 67 (|has| |#1| (-489)) ELT)) (-3919 (($ $) 168 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3744 (((-1055 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) ELT)) (-3776 ((|#1| $ (-687)) 128 T ELT) (($ $ $) 104 (|has| (-687) (-1013)) ELT)) (-3734 (($ $ (-1075)) 116 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075))) 114 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1075) (-687)) 113 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 112 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) 106 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT)) (-3924 (((-687) $) 81 T ELT)) (-3472 (($ $) 157 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3612 (($ $) 146 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3470 (($ $) 156 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3611 (($ $) 147 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3468 (($ $) 155 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3610 (($ $) 148 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2872 (($ $) 90 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ (-343 (-478))) 74 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $) 66 (|has| |#1| (-489)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3793 (((-1055 |#1|) $) 179 T ELT)) (-3653 ((|#1| $ (-687)) 76 T ELT)) (-2683 (((-627 $) $) 65 (|has| |#1| (-116)) ELT)) (-3107 (((-687)) 37 T CONST)) (-3749 ((|#1| $) 125 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-3475 (($ $) 166 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3463 (($ $) 154 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2044 (((-83) $ $) 70 (|has| |#1| (-489)) ELT)) (-3473 (($ $) 165 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3461 (($ $) 153 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3477 (($ $) 164 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3465 (($ $) 152 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3746 ((|#1| $ (-687)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-687)))) (|has| |#1| (-15 -3922 (|#1| (-1075))))) ELT)) (-3478 (($ $) 163 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3466 (($ $) 151 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3476 (($ $) 162 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3464 (($ $) 150 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3474 (($ $) 161 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-3462 (($ $) 149 (|has| |#1| (-38 (-343 (-478)))) ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-2650 (($ $ (-1075)) 115 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075))) 111 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-1075) (-687)) 110 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $ (-578 (-1075)) (-578 (-687))) 109 (-12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT) (($ $ (-687)) 105 (|has| |#1| (-15 * (|#1| (-687) |#1|))) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 140 (|has| |#1| (-38 (-343 (-478)))) ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-343 (-478)) $) 73 (|has| |#1| (-38 (-343 (-478)))) ELT) (($ $ (-343 (-478))) 72 (|has| |#1| (-38 (-343 (-478)))) ELT))) -(((-1157 |#1|) (-111) (-954)) (T -1157)) -((-3794 (*1 *1 *2) (-12 (-5 *2 (-1055 (-2 (|:| |k| (-687)) (|:| |c| *3)))) (-4 *3 (-954)) (-4 *1 (-1157 *3)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-954)) (-5 *2 (-1055 *3)))) (-3794 (*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-4 *1 (-1157 *3)))) (-3792 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-954)))) (-3791 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *1 (-1157 *3)) (-4 *3 (-954)))) (-3790 (*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1157 *4)) (-4 *4 (-954)) (-5 *2 (-850 *4)))) (-3790 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-4 *1 (-1157 *4)) (-4 *4 (-954)) (-5 *2 (-850 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) (-3788 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1075)) (-4 *1 (-1157 *3)) (-4 *3 (-954)) (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1100)) (-4 *3 (-38 (-343 (-478)))))) (-12 (-5 *2 (-1075)) (-4 *1 (-1157 *3)) (-4 *3 (-954)) (-12 (|has| *3 (-15 -3063 ((-578 *2) *3))) (|has| *3 (-15 -3788 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478))))))))) -(-13 (-1143 |t#1| (-687)) (-10 -8 (-15 -3794 ($ (-1055 (-2 (|:| |k| (-687)) (|:| |c| |t#1|))))) (-15 -3793 ((-1055 |t#1|) $)) (-15 -3794 ($ (-1055 |t#1|))) (-15 -3792 ($ $)) (-15 -3791 ($ (-1 |t#1| (-478)) $)) (-15 -3790 ((-850 |t#1|) $ (-687))) (-15 -3790 ((-850 |t#1|) $ (-687) (-687))) (IF (|has| |t#1| (-308)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-343 (-478)))) (PROGN (-15 -3788 ($ $)) (IF (|has| |t#1| (-15 -3788 (|t#1| |t#1| (-1075)))) (IF (|has| |t#1| (-15 -3063 ((-578 (-1075)) |t#1|))) (-15 -3788 ($ $ (-1075))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1100)) (IF (|has| |t#1| (-864)) (IF (|has| |t#1| (-29 (-478))) (-15 -3788 ($ $ (-1075))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-908)) (-6 (-1100))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-687)) . T) ((-25) . T) ((-38 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-489)) ((-35) |has| |#1| (-38 (-343 (-478)))) ((-66) |has| |#1| (-38 (-343 (-478)))) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-550 (-478)) . T) ((-550 |#1|) |has| |#1| (-144)) ((-550 $) |has| |#1| (-489)) ((-547 (-765)) . T) ((-144) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-687) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-687) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-687) |#1|))) ((-236) |has| |#1| (-38 (-343 (-478)))) ((-238 (-687) |#1|) . T) ((-238 $ $) |has| (-687) (-1013)) ((-242) |has| |#1| (-489)) ((-426) |has| |#1| (-38 (-343 (-478)))) ((-489) |has| |#1| (-489)) ((-583 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-577 |#1|) |has| |#1| (-144)) ((-577 $) |has| |#1| (-489)) ((-649 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-649 |#1|) |has| |#1| (-144)) ((-649 $) |has| |#1| (-489)) ((-658) . T) ((-799 $ (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ((-802 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ((-804 (-1075)) -12 (|has| |#1| (-802 (-1075))) (|has| |#1| (-15 * (|#1| (-687) |#1|)))) ((-879 |#1| (-687) (-985)) . T) ((-908) |has| |#1| (-38 (-343 (-478)))) ((-956 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-956 |#1|) . T) ((-956 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-961 (-343 (-478))) |has| |#1| (-38 (-343 (-478)))) ((-961 |#1|) . T) ((-961 $) OR (|has| |#1| (-489)) (|has| |#1| (-144))) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1100) |has| |#1| (-38 (-343 (-478)))) ((-1103) |has| |#1| (-38 (-343 (-478)))) ((-1114) . T) ((-1143 |#1| (-687)) . T)) -((-3797 (((-1 (-1055 |#1|) (-578 (-1055 |#1|))) (-1 |#2| (-578 |#2|))) 24 T ELT)) (-3796 (((-1 (-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3795 (((-1 (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3800 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3799 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3801 ((|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|)) 60 T ELT)) (-3802 (((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|)))) 66 T ELT)) (-3798 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1158 |#1| |#2|) (-10 -7 (-15 -3795 ((-1 (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2|))) (-15 -3796 ((-1 (-1055 |#1|) (-1055 |#1|) (-1055 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3797 ((-1 (-1055 |#1|) (-578 (-1055 |#1|))) (-1 |#2| (-578 |#2|)))) (-15 -3798 (|#2| |#2| |#2|)) (-15 -3799 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3800 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3801 (|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|))) (-15 -3802 ((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|)))))) (-38 (-343 (-478))) (-1157 |#1|)) (T -1158)) -((-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 (-1 *6 (-578 *6)))) (-4 *5 (-38 (-343 (-478)))) (-4 *6 (-1157 *5)) (-5 *2 (-578 *6)) (-5 *1 (-1158 *5 *6)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-578 *2))) (-5 *4 (-578 *5)) (-4 *5 (-38 (-343 (-478)))) (-4 *2 (-1157 *5)) (-5 *1 (-1158 *5 *2)))) (-3800 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1158 *4 *2)) (-4 *4 (-38 (-343 (-478)))))) (-3799 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1158 *4 *2)) (-4 *4 (-38 (-343 (-478)))))) (-3798 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1158 *3 *2)) (-4 *2 (-1157 *3)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-578 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-1 (-1055 *4) (-578 (-1055 *4)))) (-5 *1 (-1158 *4 *5)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-1 (-1055 *4) (-1055 *4) (-1055 *4))) (-5 *1 (-1158 *4 *5)))) (-3795 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-38 (-343 (-478)))) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1158 *4 *5))))) -((-3804 ((|#2| |#4| (-687)) 31 T ELT)) (-3803 ((|#4| |#2|) 26 T ELT)) (-3806 ((|#4| (-343 |#2|)) 49 (|has| |#1| (-489)) ELT)) (-3805 (((-1 |#4| (-578 |#4|)) |#3|) 43 T ELT))) -(((-1159 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3803 (|#4| |#2|)) (-15 -3804 (|#2| |#4| (-687))) (-15 -3805 ((-1 |#4| (-578 |#4|)) |#3|)) (IF (|has| |#1| (-489)) (-15 -3806 (|#4| (-343 |#2|))) |%noBranch|)) (-954) (-1140 |#1|) (-595 |#2|) (-1157 |#1|)) (T -1159)) -((-3806 (*1 *2 *3) (-12 (-5 *3 (-343 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-489)) (-4 *4 (-954)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *5 *6 *2)) (-4 *6 (-595 *5)))) (-3805 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *5 (-1140 *4)) (-5 *2 (-1 *6 (-578 *6))) (-5 *1 (-1159 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-1157 *4)))) (-3804 (*1 *2 *3 *4) (-12 (-5 *4 (-687)) (-4 *5 (-954)) (-4 *2 (-1140 *5)) (-5 *1 (-1159 *5 *2 *6 *3)) (-4 *6 (-595 *2)) (-4 *3 (-1157 *5)))) (-3803 (*1 *2 *3) (-12 (-4 *4 (-954)) (-4 *3 (-1140 *4)) (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *3 *5 *2)) (-4 *5 (-595 *3))))) -NIL -(((-1160) (-111)) (T -1160)) -NIL -(-13 (-10 -7 (-6 -2269))) -((-2548 (((-83) $ $) NIL T ELT)) (-3807 (((-1075)) 12 T ELT)) (-3222 (((-1059) $) 18 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 11 T ELT) (((-1075) $) 8 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 15 T ELT))) -(((-1161 |#1|) (-13 (-1003) (-547 (-1075)) (-10 -8 (-15 -3922 ((-1075) $)) (-15 -3807 ((-1075))))) (-1075)) (T -1161)) -((-3922 (*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1161 *3)) (-14 *3 *2))) (-3807 (*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1161 *3)) (-14 *3 *2)))) -((-3814 (($ (-687)) 19 T ELT)) (-3811 (((-625 |#2|) $ $) 41 T ELT)) (-3808 ((|#2| $) 51 T ELT)) (-3809 ((|#2| $) 50 T ELT)) (-3812 ((|#2| $ $) 36 T ELT)) (-3810 (($ $ $) 47 T ELT)) (-3813 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3815 (($ $ $) 15 T ELT)) (* (($ (-478) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1162 |#1| |#2|) (-10 -7 (-15 -3808 (|#2| |#1|)) (-15 -3809 (|#2| |#1|)) (-15 -3810 (|#1| |#1| |#1|)) (-15 -3811 ((-625 |#2|) |#1| |#1|)) (-15 -3812 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-478) |#1|)) (-15 -3813 (|#1| |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3814 (|#1| (-687))) (-15 -3815 (|#1| |#1| |#1|))) (-1163 |#2|) (-1114)) (T -1162)) -NIL -((-2548 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3814 (($ (-687)) 121 (|has| |#1| (-23)) ELT)) (-2180 (((-1170) $ (-478) (-478)) 44 (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3972)) ELT) (($ $) 97 (-12 (|has| |#1| (-749)) (|has| $ (-6 -3972))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) 56 (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) 64 (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3971)) ELT)) (-3700 (($) 7 T CONST)) (-2279 (($ $) 99 (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) 109 T ELT)) (-1336 (($ $) 84 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-3383 (($ |#1| $) 83 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) 57 (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) 55 T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) 106 T ELT) (((-478) |#1| $) 105 (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) 104 (|has| |#1| (-1003)) ELT)) (-2870 (((-578 |#1|) $) 30 (|has| $ (-6 -3971)) ELT)) (-3811 (((-625 |#1|) $ $) 114 (|has| |#1| (-954)) ELT)) (-3590 (($ (-687) |#1|) 74 T ELT)) (-2182 (((-478) $) 47 (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) 91 (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) 29 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-2183 (((-478) $) 48 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) 92 (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3808 ((|#1| $) 111 (-12 (|has| |#1| (-954)) (|has| |#1| (-908))) ELT)) (-3809 ((|#1| $) 112 (-12 (|has| |#1| (-954)) (|has| |#1| (-908))) ELT)) (-3222 (((-1059) $) 22 (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) 66 T ELT) (($ $ $ (-478)) 65 T ELT)) (-2185 (((-578 (-478)) $) 50 T ELT)) (-2186 (((-83) (-478) $) 51 T ELT)) (-3223 (((-1020) $) 21 (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) 46 (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2181 (($ $ |#1|) 45 (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) 11 T ELT)) (-2184 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) 52 T ELT)) (-3380 (((-83) $) 8 T ELT)) (-3541 (($) 9 T ELT)) (-3776 ((|#1| $ (-478) |#1|) 54 T ELT) ((|#1| $ (-478)) 53 T ELT) (($ $ (-1131 (-478))) 75 T ELT)) (-3812 ((|#1| $ $) 115 (|has| |#1| (-954)) ELT)) (-2287 (($ $ (-478)) 68 T ELT) (($ $ (-1131 (-478))) 67 T ELT)) (-3810 (($ $ $) 113 (|has| |#1| (-954)) ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -3971))) ELT)) (-1714 (($ $ $ (-478)) 100 (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) 10 T ELT)) (-3948 (((-467) $) 85 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 76 T ELT)) (-3778 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-578 $)) 70 T ELT)) (-3922 (((-765) $) 17 (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) 93 (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) 95 (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) 94 (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) 96 (|has| |#1| (-749)) ELT)) (-3813 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3815 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-478) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-658)) ELT) (($ $ |#1|) 116 (|has| |#1| (-658)) ELT)) (-3933 (((-687) $) 6 (|has| $ (-6 -3971)) ELT))) -(((-1163 |#1|) (-111) (-1114)) (T -1163)) -((-3815 (*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-25)))) (-3814 (*1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1163 *3)) (-4 *3 (-23)) (-4 *3 (-1114)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-21)))) (-3813 (*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-4 *1 (-1163 *3)) (-4 *3 (-1114)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-658)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-658)))) (-3812 (*1 *2 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-954)))) (-3811 (*1 *2 *1 *1) (-12 (-4 *1 (-1163 *3)) (-4 *3 (-1114)) (-4 *3 (-954)) (-5 *2 (-625 *3)))) (-3810 (*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-954)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-908)) (-4 *2 (-954)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-908)) (-4 *2 (-954))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3815 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3814 ($ (-687))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3813 ($ $)) (-15 -3813 ($ $ $)) (-15 * ($ (-478) $))) |%noBranch|) (IF (|has| |t#1| (-658)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-954)) (PROGN (-15 -3812 (|t#1| $ $)) (-15 -3811 ((-625 |t#1|) $ $)) (-15 -3810 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-908)) (IF (|has| |t#1| (-954)) (PROGN (-15 -3809 (|t#1| $)) (-15 -3808 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-72) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-72))) ((-547 (-765)) OR (|has| |#1| (-1003)) (|has| |#1| (-749)) (|has| |#1| (-547 (-765)))) ((-122 |#1|) . T) ((-548 (-467)) |has| |#1| (-548 (-467))) ((-238 (-478) |#1|) . T) ((-238 (-1131 (-478)) $) . T) ((-240 (-478) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-317 |#1|) . T) ((-422 |#1|) . T) ((-533 (-478) |#1|) . T) ((-447 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-749) |has| |#1| (-749)) ((-752) |has| |#1| (-749)) ((-1003) OR (|has| |#1| (-1003)) (|has| |#1| (-749))) ((-1114) . T)) -((-2548 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3814 (($ (-687)) NIL (|has| |#1| (-23)) ELT)) (-3816 (($ (-578 |#1|)) 11 T ELT)) (-2180 (((-1170) $ (-478) (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-1715 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-749)) ELT)) (-1713 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3972)) (|has| |#1| (-749))) ELT)) (-2890 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-749)) ELT)) (-3764 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT) ((|#1| $ (-1131 (-478)) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3686 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3700 (($) NIL T CONST)) (-2279 (($ $) NIL (|has| $ (-6 -3972)) ELT)) (-2280 (($ $) NIL T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-3383 (($ |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3818 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3971)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-1559 ((|#1| $ (-478) |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-3094 ((|#1| $ (-478)) NIL T ELT)) (-3396 (((-478) (-1 (-83) |#1|) $) NIL T ELT) (((-478) |#1| $) NIL (|has| |#1| (-1003)) ELT) (((-478) |#1| $ (-478)) NIL (|has| |#1| (-1003)) ELT)) (-2870 (((-578 |#1|) $) 16 (|has| $ (-6 -3971)) ELT)) (-3811 (((-625 |#1|) $ $) NIL (|has| |#1| (-954)) ELT)) (-3590 (($ (-687) |#1|) NIL T ELT)) (-2182 (((-478) $) NIL (|has| (-478) (-749)) ELT)) (-2511 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-3495 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-2588 (((-578 |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2183 (((-478) $) 12 (|has| (-478) (-749)) ELT)) (-2838 (($ $ $) NIL (|has| |#1| (-749)) ELT)) (-1932 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3808 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3809 ((|#1| $) NIL (-12 (|has| |#1| (-908)) (|has| |#1| (-954))) ELT)) (-3222 (((-1059) $) NIL (|has| |#1| (-1003)) ELT)) (-2286 (($ |#1| $ (-478)) NIL T ELT) (($ $ $ (-478)) NIL T ELT)) (-2185 (((-578 (-478)) $) NIL T ELT)) (-2186 (((-83) (-478) $) NIL T ELT)) (-3223 (((-1020) $) NIL (|has| |#1| (-1003)) ELT)) (-3777 ((|#1| $) NIL (|has| (-478) (-749)) ELT)) (-1337 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2181 (($ $ |#1|) NIL (|has| $ (-6 -3972)) ELT)) (-1930 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-2184 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-2187 (((-578 |#1|) $) NIL T ELT)) (-3380 (((-83) $) NIL T ELT)) (-3541 (($) NIL T ELT)) (-3776 ((|#1| $ (-478) |#1|) NIL T ELT) ((|#1| $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-3812 ((|#1| $ $) NIL (|has| |#1| (-954)) ELT)) (-2287 (($ $ (-478)) NIL T ELT) (($ $ (-1131 (-478))) NIL T ELT)) (-3810 (($ $ $) NIL (|has| |#1| (-954)) ELT)) (-1929 (((-687) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT) (((-687) |#1| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#1| (-1003))) ELT)) (-1714 (($ $ $ (-478)) NIL (|has| $ (-6 -3972)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) 20 (|has| |#1| (-548 (-467))) ELT)) (-3507 (($ (-578 |#1|)) 10 T ELT)) (-3778 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-578 $)) NIL T ELT)) (-3922 (((-765) $) NIL (|has| |#1| (-547 (-765))) ELT)) (-1249 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1931 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2546 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2547 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3037 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2665 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-2666 (((-83) $ $) NIL (|has| |#1| (-749)) ELT)) (-3813 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3815 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-478) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-658)) ELT) (($ $ |#1|) NIL (|has| |#1| (-658)) ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-1164 |#1|) (-13 (-1163 |#1|) (-10 -8 (-15 -3816 ($ (-578 |#1|))))) (-1114)) (T -1164)) -((-3816 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-1164 *3))))) -((-3817 (((-1164 |#2|) (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|) 13 T ELT)) (-3818 ((|#2| (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|) 15 T ELT)) (-3934 (((-3 (-1164 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1164 |#1|)) 30 T ELT) (((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|)) 18 T ELT))) -(((-1165 |#1| |#2|) (-10 -7 (-15 -3817 ((-1164 |#2|) (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|)) (-15 -3818 (|#2| (-1 |#2| |#1| |#2|) (-1164 |#1|) |#2|)) (-15 -3934 ((-1164 |#2|) (-1 |#2| |#1|) (-1164 |#1|))) (-15 -3934 ((-3 (-1164 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1164 |#1|)))) (-1114) (-1114)) (T -1165)) -((-3934 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-1164 *6)) (-5 *1 (-1165 *5 *6)))) (-3934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-1164 *6)) (-5 *1 (-1165 *5 *6)))) (-3818 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1164 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) (-5 *1 (-1165 *5 *2)))) (-3817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1164 *6)) (-4 *6 (-1114)) (-4 *5 (-1114)) (-5 *2 (-1164 *5)) (-5 *1 (-1165 *6 *5))))) -((-3819 (((-401) (-578 (-578 (-847 (-177)))) (-578 (-218))) 22 T ELT) (((-401) (-578 (-578 (-847 (-177))))) 21 T ELT) (((-401) (-578 (-578 (-847 (-177)))) (-776) (-776) (-823) (-578 (-218))) 20 T ELT)) (-3820 (((-1167) (-578 (-578 (-847 (-177)))) (-578 (-218))) 30 T ELT) (((-1167) (-578 (-578 (-847 (-177)))) (-776) (-776) (-823) (-578 (-218))) 29 T ELT)) (-3922 (((-1167) (-401)) 46 T ELT))) -(((-1166) (-10 -7 (-15 -3819 ((-401) (-578 (-578 (-847 (-177)))) (-776) (-776) (-823) (-578 (-218)))) (-15 -3819 ((-401) (-578 (-578 (-847 (-177)))))) (-15 -3819 ((-401) (-578 (-578 (-847 (-177)))) (-578 (-218)))) (-15 -3820 ((-1167) (-578 (-578 (-847 (-177)))) (-776) (-776) (-823) (-578 (-218)))) (-15 -3820 ((-1167) (-578 (-578 (-847 (-177)))) (-578 (-218)))) (-15 -3922 ((-1167) (-401))))) (T -1166)) -((-3922 (*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1167)) (-5 *1 (-1166)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-578 (-218))) (-5 *2 (-1167)) (-5 *1 (-1166)))) (-3820 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *6 (-578 (-218))) (-5 *2 (-1167)) (-5 *1 (-1166)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-578 (-218))) (-5 *2 (-401)) (-5 *1 (-1166)))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-401)) (-5 *1 (-1166)))) (-3819 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *6 (-578 (-218))) (-5 *2 (-401)) (-5 *1 (-1166))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3838 (((-1059) $ (-1059)) 107 T ELT) (((-1059) $ (-1059) (-1059)) 105 T ELT) (((-1059) $ (-1059) (-578 (-1059))) 104 T ELT)) (-3834 (($) 69 T ELT)) (-3821 (((-1170) $ (-401) (-823)) 54 T ELT)) (-3827 (((-1170) $ (-823) (-1059)) 89 T ELT) (((-1170) $ (-823) (-776)) 90 T ELT)) (-3849 (((-1170) $ (-823) (-323) (-323)) 57 T ELT)) (-3859 (((-1170) $ (-1059)) 84 T ELT)) (-3822 (((-1170) $ (-823) (-1059)) 94 T ELT)) (-3823 (((-1170) $ (-823) (-323) (-323)) 58 T ELT)) (-3860 (((-1170) $ (-823) (-823)) 55 T ELT)) (-3840 (((-1170) $) 85 T ELT)) (-3825 (((-1170) $ (-823) (-1059)) 93 T ELT)) (-3829 (((-1170) $ (-401) (-823)) 41 T ELT)) (-3826 (((-1170) $ (-823) (-1059)) 92 T ELT)) (-3862 (((-578 (-218)) $) 29 T ELT) (($ $ (-578 (-218))) 30 T ELT)) (-3861 (((-1170) $ (-687) (-687)) 52 T ELT)) (-3833 (($ $) 70 T ELT) (($ (-401) (-578 (-218))) 71 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3836 (((-478) $) 48 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3830 (((-1164 (-3 (-401) "undefined")) $) 47 T ELT)) (-3831 (((-1164 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3826 (-478)) (|:| -3824 (-478)) (|:| |spline| (-478)) (|:| -3855 (-478)) (|:| |axesColor| (-776)) (|:| -3827 (-478)) (|:| |unitsColor| (-776)) (|:| |showing| (-478)))) $) 46 T ELT)) (-3832 (((-1170) $ (-823) (-177) (-177) (-177) (-177) (-478) (-478) (-478) (-478) (-776) (-478) (-776) (-478)) 83 T ELT)) (-3835 (((-578 (-847 (-177))) $) NIL T ELT)) (-3828 (((-401) $ (-823)) 43 T ELT)) (-3858 (((-1170) $ (-687) (-687) (-823) (-823)) 50 T ELT)) (-3856 (((-1170) $ (-1059)) 95 T ELT)) (-3824 (((-1170) $ (-823) (-1059)) 91 T ELT)) (-3922 (((-765) $) 102 T ELT)) (-3837 (((-1170) $) 96 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3855 (((-1170) $ (-823) (-1059)) 87 T ELT) (((-1170) $ (-823) (-776)) 88 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1167) (-13 (-1003) (-10 -8 (-15 -3835 ((-578 (-847 (-177))) $)) (-15 -3834 ($)) (-15 -3833 ($ $)) (-15 -3862 ((-578 (-218)) $)) (-15 -3862 ($ $ (-578 (-218)))) (-15 -3833 ($ (-401) (-578 (-218)))) (-15 -3832 ((-1170) $ (-823) (-177) (-177) (-177) (-177) (-478) (-478) (-478) (-478) (-776) (-478) (-776) (-478))) (-15 -3831 ((-1164 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3826 (-478)) (|:| -3824 (-478)) (|:| |spline| (-478)) (|:| -3855 (-478)) (|:| |axesColor| (-776)) (|:| -3827 (-478)) (|:| |unitsColor| (-776)) (|:| |showing| (-478)))) $)) (-15 -3830 ((-1164 (-3 (-401) "undefined")) $)) (-15 -3859 ((-1170) $ (-1059))) (-15 -3829 ((-1170) $ (-401) (-823))) (-15 -3828 ((-401) $ (-823))) (-15 -3855 ((-1170) $ (-823) (-1059))) (-15 -3855 ((-1170) $ (-823) (-776))) (-15 -3827 ((-1170) $ (-823) (-1059))) (-15 -3827 ((-1170) $ (-823) (-776))) (-15 -3826 ((-1170) $ (-823) (-1059))) (-15 -3825 ((-1170) $ (-823) (-1059))) (-15 -3824 ((-1170) $ (-823) (-1059))) (-15 -3856 ((-1170) $ (-1059))) (-15 -3837 ((-1170) $)) (-15 -3858 ((-1170) $ (-687) (-687) (-823) (-823))) (-15 -3823 ((-1170) $ (-823) (-323) (-323))) (-15 -3849 ((-1170) $ (-823) (-323) (-323))) (-15 -3822 ((-1170) $ (-823) (-1059))) (-15 -3861 ((-1170) $ (-687) (-687))) (-15 -3821 ((-1170) $ (-401) (-823))) (-15 -3860 ((-1170) $ (-823) (-823))) (-15 -3838 ((-1059) $ (-1059))) (-15 -3838 ((-1059) $ (-1059) (-1059))) (-15 -3838 ((-1059) $ (-1059) (-578 (-1059)))) (-15 -3840 ((-1170) $)) (-15 -3836 ((-478) $)) (-15 -3922 ((-765) $))))) (T -1167)) -((-3922 (*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1167)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-578 (-847 (-177)))) (-5 *1 (-1167)))) (-3834 (*1 *1) (-5 *1 (-1167))) (-3833 (*1 *1 *1) (-5 *1 (-1167))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1167)))) (-3862 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1167)))) (-3833 (*1 *1 *2 *3) (-12 (-5 *2 (-401)) (-5 *3 (-578 (-218))) (-5 *1 (-1167)))) (-3832 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-823)) (-5 *4 (-177)) (-5 *5 (-478)) (-5 *6 (-776)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1164 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3826 (-478)) (|:| -3824 (-478)) (|:| |spline| (-478)) (|:| -3855 (-478)) (|:| |axesColor| (-776)) (|:| -3827 (-478)) (|:| |unitsColor| (-776)) (|:| |showing| (-478))))) (-5 *1 (-1167)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1164 (-3 (-401) "undefined"))) (-5 *1 (-1167)))) (-3859 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3829 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-401)) (-5 *4 (-823)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3828 (*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-401)) (-5 *1 (-1167)))) (-3855 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3855 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-776)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3827 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3827 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-776)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3826 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3825 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3824 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3856 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3858 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-687)) (-5 *4 (-823)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3823 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-823)) (-5 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3849 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-823)) (-5 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3822 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3861 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3821 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-401)) (-5 *4 (-823)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3860 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3838 (*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1167)))) (-3838 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1167)))) (-3838 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-1059)) (-5 *1 (-1167)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1167))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3850 (((-1170) $ (-323)) 168 T ELT) (((-1170) $ (-323) (-323) (-323)) 169 T ELT)) (-3838 (((-1059) $ (-1059)) 177 T ELT) (((-1059) $ (-1059) (-1059)) 175 T ELT) (((-1059) $ (-1059) (-578 (-1059))) 174 T ELT)) (-3866 (($) 67 T ELT)) (-3857 (((-1170) $ (-323) (-323) (-323) (-323) (-323)) 140 T ELT) (((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) $) 138 T ELT) (((-1170) $ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 139 T ELT) (((-1170) $ (-478) (-478) (-323) (-323) (-323)) 143 T ELT) (((-1170) $ (-323) (-323)) 144 T ELT) (((-1170) $ (-323) (-323) (-323)) 151 T ELT)) (-3869 (((-323)) 121 T ELT) (((-323) (-323)) 122 T ELT)) (-3871 (((-323)) 116 T ELT) (((-323) (-323)) 118 T ELT)) (-3870 (((-323)) 119 T ELT) (((-323) (-323)) 120 T ELT)) (-3867 (((-323)) 125 T ELT) (((-323) (-323)) 126 T ELT)) (-3868 (((-323)) 123 T ELT) (((-323) (-323)) 124 T ELT)) (-3849 (((-1170) $ (-323) (-323)) 170 T ELT)) (-3859 (((-1170) $ (-1059)) 152 T ELT)) (-3864 (((-1033 (-177)) $) 68 T ELT) (($ $ (-1033 (-177))) 69 T ELT)) (-3845 (((-1170) $ (-1059)) 186 T ELT)) (-3844 (((-1170) $ (-1059)) 187 T ELT)) (-3851 (((-1170) $ (-323) (-323)) 150 T ELT) (((-1170) $ (-478) (-478)) 167 T ELT)) (-3860 (((-1170) $ (-823) (-823)) 159 T ELT)) (-3840 (((-1170) $) 136 T ELT)) (-3848 (((-1170) $ (-1059)) 185 T ELT)) (-3853 (((-1170) $ (-1059)) 133 T ELT)) (-3862 (((-578 (-218)) $) 70 T ELT) (($ $ (-578 (-218))) 71 T ELT)) (-3861 (((-1170) $ (-687) (-687)) 158 T ELT)) (-3863 (((-1170) $ (-687) (-847 (-177))) 192 T ELT)) (-3865 (($ $) 73 T ELT) (($ (-1033 (-177)) (-1059)) 74 T ELT) (($ (-1033 (-177)) (-578 (-218))) 75 T ELT)) (-3842 (((-1170) $ (-323) (-323) (-323)) 130 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3836 (((-478) $) 127 T ELT)) (-3841 (((-1170) $ (-323)) 172 T ELT)) (-3846 (((-1170) $ (-323)) 190 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3847 (((-1170) $ (-323)) 189 T ELT)) (-3852 (((-1170) $ (-1059)) 135 T ELT)) (-3858 (((-1170) $ (-687) (-687) (-823) (-823)) 157 T ELT)) (-3854 (((-1170) $ (-1059)) 132 T ELT)) (-3856 (((-1170) $ (-1059)) 134 T ELT)) (-3839 (((-1170) $ (-128) (-128)) 156 T ELT)) (-3922 (((-765) $) 165 T ELT)) (-3837 (((-1170) $) 137 T ELT)) (-3843 (((-1170) $ (-1059)) 188 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3855 (((-1170) $ (-1059)) 131 T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1168) (-13 (-1003) (-10 -8 (-15 -3871 ((-323))) (-15 -3871 ((-323) (-323))) (-15 -3870 ((-323))) (-15 -3870 ((-323) (-323))) (-15 -3869 ((-323))) (-15 -3869 ((-323) (-323))) (-15 -3868 ((-323))) (-15 -3868 ((-323) (-323))) (-15 -3867 ((-323))) (-15 -3867 ((-323) (-323))) (-15 -3866 ($)) (-15 -3865 ($ $)) (-15 -3865 ($ (-1033 (-177)) (-1059))) (-15 -3865 ($ (-1033 (-177)) (-578 (-218)))) (-15 -3864 ((-1033 (-177)) $)) (-15 -3864 ($ $ (-1033 (-177)))) (-15 -3863 ((-1170) $ (-687) (-847 (-177)))) (-15 -3862 ((-578 (-218)) $)) (-15 -3862 ($ $ (-578 (-218)))) (-15 -3861 ((-1170) $ (-687) (-687))) (-15 -3860 ((-1170) $ (-823) (-823))) (-15 -3859 ((-1170) $ (-1059))) (-15 -3858 ((-1170) $ (-687) (-687) (-823) (-823))) (-15 -3857 ((-1170) $ (-323) (-323) (-323) (-323) (-323))) (-15 -3857 ((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) $)) (-15 -3857 ((-1170) $ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3857 ((-1170) $ (-478) (-478) (-323) (-323) (-323))) (-15 -3857 ((-1170) $ (-323) (-323))) (-15 -3857 ((-1170) $ (-323) (-323) (-323))) (-15 -3856 ((-1170) $ (-1059))) (-15 -3855 ((-1170) $ (-1059))) (-15 -3854 ((-1170) $ (-1059))) (-15 -3853 ((-1170) $ (-1059))) (-15 -3852 ((-1170) $ (-1059))) (-15 -3851 ((-1170) $ (-323) (-323))) (-15 -3851 ((-1170) $ (-478) (-478))) (-15 -3850 ((-1170) $ (-323))) (-15 -3850 ((-1170) $ (-323) (-323) (-323))) (-15 -3849 ((-1170) $ (-323) (-323))) (-15 -3848 ((-1170) $ (-1059))) (-15 -3847 ((-1170) $ (-323))) (-15 -3846 ((-1170) $ (-323))) (-15 -3845 ((-1170) $ (-1059))) (-15 -3844 ((-1170) $ (-1059))) (-15 -3843 ((-1170) $ (-1059))) (-15 -3842 ((-1170) $ (-323) (-323) (-323))) (-15 -3841 ((-1170) $ (-323))) (-15 -3840 ((-1170) $)) (-15 -3839 ((-1170) $ (-128) (-128))) (-15 -3838 ((-1059) $ (-1059))) (-15 -3838 ((-1059) $ (-1059) (-1059))) (-15 -3838 ((-1059) $ (-1059) (-578 (-1059)))) (-15 -3837 ((-1170) $)) (-15 -3836 ((-478) $))))) (T -1168)) -((-3871 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3870 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3870 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3869 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3869 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3868 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3868 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3867 (*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3867 (*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) (-3866 (*1 *1) (-5 *1 (-1168))) (-3865 (*1 *1 *1) (-5 *1 (-1168))) (-3865 (*1 *1 *2 *3) (-12 (-5 *2 (-1033 (-177))) (-5 *3 (-1059)) (-5 *1 (-1168)))) (-3865 (*1 *1 *2 *3) (-12 (-5 *2 (-1033 (-177))) (-5 *3 (-578 (-218))) (-5 *1 (-1168)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-1033 (-177))) (-5 *1 (-1168)))) (-3864 (*1 *1 *1 *2) (-12 (-5 *2 (-1033 (-177))) (-5 *1 (-1168)))) (-3863 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-687)) (-5 *4 (-847 (-177))) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1168)))) (-3862 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1168)))) (-3861 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3860 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3859 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3858 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-687)) (-5 *4 (-823)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3857 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *1 (-1168)))) (-3857 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3857 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-478)) (-5 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3857 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3857 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3856 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3855 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3854 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3853 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3851 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3851 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3850 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3849 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3847 (*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3846 (*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3845 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3844 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3843 (*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3842 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3841 (*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3839 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-128)) (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3838 (*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1168)))) (-3838 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1168)))) (-3838 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-1059)) (-5 *1 (-1168)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1168)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1168))))) -((-3880 (((-578 (-1059)) (-578 (-1059))) 103 T ELT) (((-578 (-1059))) 96 T ELT)) (-3881 (((-578 (-1059))) 94 T ELT)) (-3878 (((-578 (-823)) (-578 (-823))) 69 T ELT) (((-578 (-823))) 64 T ELT)) (-3877 (((-578 (-687)) (-578 (-687))) 61 T ELT) (((-578 (-687))) 55 T ELT)) (-3879 (((-1170)) 71 T ELT)) (-3883 (((-823) (-823)) 87 T ELT) (((-823)) 86 T ELT)) (-3882 (((-823) (-823)) 85 T ELT) (((-823)) 84 T ELT)) (-3875 (((-776) (-776)) 81 T ELT) (((-776)) 80 T ELT)) (-3885 (((-177)) 91 T ELT) (((-177) (-323)) 93 T ELT)) (-3884 (((-823)) 88 T ELT) (((-823) (-823)) 89 T ELT)) (-3876 (((-823) (-823)) 83 T ELT) (((-823)) 82 T ELT)) (-3872 (((-776) (-776)) 75 T ELT) (((-776)) 73 T ELT)) (-3873 (((-776) (-776)) 77 T ELT) (((-776)) 76 T ELT)) (-3874 (((-776) (-776)) 79 T ELT) (((-776)) 78 T ELT))) -(((-1169) (-10 -7 (-15 -3872 ((-776))) (-15 -3872 ((-776) (-776))) (-15 -3873 ((-776))) (-15 -3873 ((-776) (-776))) (-15 -3874 ((-776))) (-15 -3874 ((-776) (-776))) (-15 -3875 ((-776))) (-15 -3875 ((-776) (-776))) (-15 -3876 ((-823))) (-15 -3876 ((-823) (-823))) (-15 -3877 ((-578 (-687)))) (-15 -3877 ((-578 (-687)) (-578 (-687)))) (-15 -3878 ((-578 (-823)))) (-15 -3878 ((-578 (-823)) (-578 (-823)))) (-15 -3879 ((-1170))) (-15 -3880 ((-578 (-1059)))) (-15 -3880 ((-578 (-1059)) (-578 (-1059)))) (-15 -3881 ((-578 (-1059)))) (-15 -3882 ((-823))) (-15 -3883 ((-823))) (-15 -3882 ((-823) (-823))) (-15 -3883 ((-823) (-823))) (-15 -3884 ((-823) (-823))) (-15 -3884 ((-823))) (-15 -3885 ((-177) (-323))) (-15 -3885 ((-177))))) (T -1169)) -((-3885 (*1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1169)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *2 (-177)) (-5 *1 (-1169)))) (-3884 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) (-3883 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) (-3882 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) (-3881 (*1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1169)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1169)))) (-3880 (*1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1169)))) (-3879 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169)))) (-3878 (*1 *2 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1169)))) (-3878 (*1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1169)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1169)))) (-3877 (*1 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1169)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) (-3876 (*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) (-3875 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) (-3874 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) (-3874 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) (-3873 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) (-3872 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) (-3872 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169))))) -((-3886 (($) 6 T ELT)) (-3922 (((-765) $) 9 T ELT))) -(((-1170) (-13 (-547 (-765)) (-10 -8 (-15 -3886 ($))))) (T -1170)) -((-3886 (*1 *1) (-5 *1 (-1170)))) -((-3925 (($ $ |#2|) 10 T ELT))) -(((-1171 |#1| |#2|) (-10 -7 (-15 -3925 (|#1| |#1| |#2|))) (-1172 |#2|) (-308)) (T -1171)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3887 (((-105)) 38 T ELT)) (-3922 (((-765) $) 13 T ELT)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ |#1|) 39 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-1172 |#1|) (-111) (-308)) (T -1172)) -((-3925 (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-308)))) (-3887 (*1 *2) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-308)) (-5 *2 (-105))))) -(-13 (-649 |t#1|) (-10 -8 (-15 -3925 ($ $ |t#1|)) (-15 -3887 ((-105))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-585 |#1|) . T) ((-577 |#1|) . T) ((-649 |#1|) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-1003) . T) ((-1114) . T)) -((-3892 (((-578 (-1107 |#1|)) (-1075) (-1107 |#1|)) 83 T ELT)) (-3890 (((-1055 (-1055 (-850 |#1|))) (-1075) (-1055 (-850 |#1|))) 63 T ELT)) (-3893 (((-1 (-1055 (-1107 |#1|)) (-1055 (-1107 |#1|))) (-687) (-1107 |#1|) (-1055 (-1107 |#1|))) 74 T ELT)) (-3888 (((-1 (-1055 (-850 |#1|)) (-1055 (-850 |#1|))) (-687)) 65 T ELT)) (-3891 (((-1 (-1070 (-850 |#1|)) (-850 |#1|)) (-1075)) 32 T ELT)) (-3889 (((-1 (-1055 (-850 |#1|)) (-1055 (-850 |#1|))) (-687)) 64 T ELT))) -(((-1173 |#1|) (-10 -7 (-15 -3888 ((-1 (-1055 (-850 |#1|)) (-1055 (-850 |#1|))) (-687))) (-15 -3889 ((-1 (-1055 (-850 |#1|)) (-1055 (-850 |#1|))) (-687))) (-15 -3890 ((-1055 (-1055 (-850 |#1|))) (-1075) (-1055 (-850 |#1|)))) (-15 -3891 ((-1 (-1070 (-850 |#1|)) (-850 |#1|)) (-1075))) (-15 -3892 ((-578 (-1107 |#1|)) (-1075) (-1107 |#1|))) (-15 -3893 ((-1 (-1055 (-1107 |#1|)) (-1055 (-1107 |#1|))) (-687) (-1107 |#1|) (-1055 (-1107 |#1|))))) (-308)) (T -1173)) -((-3893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-687)) (-4 *6 (-308)) (-5 *4 (-1107 *6)) (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1173 *6)) (-5 *5 (-1055 *4)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-4 *5 (-308)) (-5 *2 (-578 (-1107 *5))) (-5 *1 (-1173 *5)) (-5 *4 (-1107 *5)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1 (-1070 (-850 *4)) (-850 *4))) (-5 *1 (-1173 *4)) (-4 *4 (-308)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-1075)) (-4 *5 (-308)) (-5 *2 (-1055 (-1055 (-850 *5)))) (-5 *1 (-1173 *5)) (-5 *4 (-1055 (-850 *5))))) (-3889 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-1055 (-850 *4)) (-1055 (-850 *4)))) (-5 *1 (-1173 *4)) (-4 *4 (-308)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-1055 (-850 *4)) (-1055 (-850 *4)))) (-5 *1 (-1173 *4)) (-4 *4 (-308))))) -((-3895 (((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|) 80 T ELT)) (-3894 (((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|)))) 79 T ELT))) -(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3894 ((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))))) (-15 -3895 ((-2 (|:| -1994 (-625 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-625 |#2|))) |#2|))) (-295) (-1140 |#1|) (-1140 |#2|) (-346 |#2| |#3|)) (T -1174)) -((-3895 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 *3)) (-5 *2 (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) (-5 *1 (-1174 *4 *3 *5 *6)) (-4 *6 (-346 *3 *5)))) (-3894 (*1 *2) (-12 (-4 *3 (-295)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-2 (|:| -1994 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) (-5 *1 (-1174 *3 *4 *5 *6)) (-4 *6 (-346 *4 *5))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3896 (((-1035) $) 12 T ELT)) (-3897 (((-1035) $) 10 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 18 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1175) (-13 (-986) (-10 -8 (-15 -3897 ((-1035) $)) (-15 -3896 ((-1035) $))))) (T -1175)) -((-3897 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1175)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1175))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3898 (((-1035) $) 11 T ELT)) (-3922 (((-765) $) 17 T ELT) (($ (-1080)) NIL T ELT) (((-1080) $) NIL T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT))) -(((-1176) (-13 (-986) (-10 -8 (-15 -3898 ((-1035) $))))) (T -1176)) -((-3898 (*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1176))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 59 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 82 T ELT) (($ (-478)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT)) (-3107 (((-687)) NIL T CONST)) (-3899 (((-1170) (-687)) 16 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 36 T CONST)) (-2647 (($) 85 T CONST)) (-3037 (((-83) $ $) 88 T ELT)) (-3925 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-3813 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 64 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) -(((-1177 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-954) (-423 |#4|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3925 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3899 ((-1170) (-687))))) (-954) (-749) (-710) (-854 |#1| |#3| |#2|) (-578 |#2|) (-578 (-687)) (-687)) (T -1177)) -((-3925 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-308)) (-4 *2 (-954)) (-4 *3 (-749)) (-4 *4 (-710)) (-14 *6 (-578 *3)) (-5 *1 (-1177 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-854 *2 *4 *3)) (-14 *7 (-578 (-687))) (-14 *8 (-687)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) (-14 *8 (-578 *5)) (-5 *2 (-1170)) (-5 *1 (-1177 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-854 *4 *6 *5)) (-14 *9 (-578 *3)) (-14 *10 *3)))) -((-2548 (((-83) $ $) NIL T ELT)) (-3657 (((-578 (-2 (|:| -3837 $) (|:| -1685 (-578 |#4|)))) (-578 |#4|)) NIL T ELT)) (-3658 (((-578 $) (-578 |#4|)) 95 T ELT)) (-3063 (((-578 |#3|) $) NIL T ELT)) (-2889 (((-83) $) NIL T ELT)) (-2880 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3669 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3664 ((|#4| |#4| $) NIL T ELT)) (-2890 (((-2 (|:| |under| $) (|:| -3111 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3686 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3700 (($) NIL T CONST)) (-2885 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-2887 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2886 (((-83) $ $) NIL (|has| |#1| (-489)) ELT)) (-2888 (((-83) $) NIL (|has| |#1| (-489)) ELT)) (-3665 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 31 T ELT)) (-2881 (((-578 |#4|) (-578 |#4|) $) 28 (|has| |#1| (-489)) ELT)) (-2882 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-489)) ELT)) (-3138 (((-3 $ #1#) (-578 |#4|)) NIL T ELT)) (-3137 (($ (-578 |#4|)) NIL T ELT)) (-3775 (((-3 $ #1#) $) 77 T ELT)) (-3661 ((|#4| |#4| $) 82 T ELT)) (-1336 (($ $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-3383 (($ |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-2883 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3670 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3659 ((|#4| |#4| $) NIL T ELT)) (-3818 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3971)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3971)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3672 (((-2 (|:| -3837 (-578 |#4|)) (|:| -1685 (-578 |#4|))) $) NIL T ELT)) (-2870 (((-578 |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3671 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3161 ((|#3| $) 83 T ELT)) (-2588 (((-578 |#4|) $) 32 (|has| $ (-6 -3971)) ELT)) (-3225 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT)) (-3902 (((-3 $ #1#) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-578 |#4|)) 38 T ELT)) (-1932 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3972)) ELT)) (-3934 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2895 (((-578 |#3|) $) NIL T ELT)) (-2894 (((-83) |#3| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3774 (((-3 |#4| #1#) $) NIL T ELT)) (-3673 (((-578 |#4|) $) 53 T ELT)) (-3667 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3662 ((|#4| |#4| $) 81 T ELT)) (-3675 (((-83) $ $) 92 T ELT)) (-2884 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-489)) ELT)) (-3668 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3663 ((|#4| |#4| $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3777 (((-3 |#4| #1#) $) 76 T ELT)) (-1337 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3655 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3745 (($ $ |#4|) NIL T ELT)) (-1930 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3744 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT) (($ $ (-578 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1003))) ELT)) (-1206 (((-83) $ $) NIL T ELT)) (-3380 (((-83) $) 74 T ELT)) (-3541 (($) 45 T ELT)) (-3924 (((-687) $) NIL T ELT)) (-1929 (((-687) |#4| $) NIL (-12 (|has| $ (-6 -3971)) (|has| |#4| (-1003))) ELT) (((-687) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3377 (($ $) NIL T ELT)) (-3948 (((-467) $) NIL (|has| |#4| (-548 (-467))) ELT)) (-3507 (($ (-578 |#4|)) NIL T ELT)) (-2891 (($ $ |#3|) NIL T ELT)) (-2893 (($ $ |#3|) NIL T ELT)) (-3660 (($ $) NIL T ELT)) (-2892 (($ $ |#3|) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (((-578 |#4|) $) 62 T ELT)) (-3654 (((-687) $) NIL (|has| |#3| (-313)) ELT)) (-3901 (((-3 $ #1#) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-578 |#4|)) 44 T ELT)) (-3900 (((-578 $) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-578 $) (-578 |#4|)) 73 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3674 (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3301 (-578 |#4|))) #1#) (-578 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3666 (((-83) $ (-1 (-83) |#4| (-578 |#4|))) NIL T ELT)) (-1931 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3971)) ELT)) (-3656 (((-578 |#3|) $) NIL T ELT)) (-3909 (((-83) |#3| $) NIL T ELT)) (-3037 (((-83) $ $) NIL T ELT)) (-3933 (((-687) $) NIL (|has| $ (-6 -3971)) ELT))) -(((-1178 |#1| |#2| |#3| |#4|) (-13 (-1109 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3902 ((-3 $ #1="failed") (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3902 ((-3 $ #1#) (-578 |#4|))) (-15 -3901 ((-3 $ #1#) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3901 ((-3 $ #1#) (-578 |#4|))) (-15 -3900 ((-578 $) (-578 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3900 ((-578 $) (-578 |#4|))))) (-489) (-710) (-749) (-969 |#1| |#2| |#3|)) (T -1178)) -((-3902 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1178 *5 *6 *7 *8)))) (-3902 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1178 *3 *4 *5 *6)))) (-3901 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1178 *5 *6 *7 *8)))) (-3901 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1178 *3 *4 *5 *6)))) (-3900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) (-5 *2 (-578 (-1178 *6 *7 *8 *9))) (-5 *1 (-1178 *6 *7 *8 *9)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 (-1178 *4 *5 *6 *7))) (-5 *1 (-1178 *4 *5 *6 *7))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3700 (($) 22 T CONST)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-1179 |#1|) (-111) (-954)) (T -1179)) -NIL -(-13 (-954) (-80 |t#1| |t#1|) (-550 |t#1|) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 |#1|) |has| |#1| (-144)) ((-649 |#1|) |has| |#1| (-144)) ((-658) . T) ((-956 |#1|) . T) ((-961 |#1|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T)) -((-2548 (((-83) $ $) 69 T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3910 (((-578 |#1|) $) 54 T ELT)) (-3923 (($ $ (-687)) 47 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3911 (($ $ (-687)) 25 (|has| |#2| (-144)) ELT) (($ $ $) 26 (|has| |#2| (-144)) ELT)) (-3700 (($) NIL T CONST)) (-3915 (($ $ $) 72 T ELT) (($ $ (-732 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3138 (((-3 (-732 |#1|) #1#) $) NIL T ELT)) (-3137 (((-732 |#1|) $) NIL T ELT)) (-3935 (($ $) 40 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3927 (((-83) $) NIL T ELT)) (-3926 (($ $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-3914 (($ (-732 |#1|) |#2|) 39 T ELT)) (-3912 (($ $) 41 T ELT)) (-3917 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3931 (((-732 |#1|) $) NIL T ELT)) (-3932 (((-732 |#1|) $) 42 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3916 (($ $ $) 71 T ELT) (($ $ (-732 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1732 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2875 (((-732 |#1|) $) 36 T ELT)) (-3155 ((|#2| $) 38 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3924 (((-687) $) 44 T ELT)) (-3929 (((-83) $) 48 T ELT)) (-3928 ((|#2| $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-732 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-478)) NIL T ELT)) (-3793 (((-578 |#2|) $) NIL T ELT)) (-3653 ((|#2| $ (-732 |#1|)) NIL T ELT)) (-3930 ((|#2| $ $) 78 T ELT) ((|#2| $ (-732 |#1|)) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 14 T CONST)) (-2647 (($) 20 T CONST)) (-2646 (((-578 (-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3037 (((-83) $ $) 45 T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 29 T ELT)) (** (($ $ (-687)) NIL T ELT) (($ $ (-823)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-732 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) -(((-1180 |#1| |#2|) (-13 (-328 |#2| (-732 |#1|)) (-1187 |#1| |#2|)) (-749) (-954)) (T -1180)) -NIL -((-3918 ((|#3| |#3| (-687)) 28 T ELT)) (-3919 ((|#3| |#3| (-687)) 34 T ELT)) (-3903 ((|#3| |#3| |#3| (-687)) 35 T ELT))) -(((-1181 |#1| |#2| |#3|) (-10 -7 (-15 -3919 (|#3| |#3| (-687))) (-15 -3918 (|#3| |#3| (-687))) (-15 -3903 (|#3| |#3| |#3| (-687)))) (-13 (-954) (-649 (-343 (-478)))) (-749) (-1187 |#2| |#1|)) (T -1181)) -((-3903 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) (-5 *1 (-1181 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) (-3918 (*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) (-5 *1 (-1181 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) (-3919 (*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) (-5 *1 (-1181 *4 *5 *2)) (-4 *2 (-1187 *5 *4))))) -((-3908 (((-83) $) 15 T ELT)) (-3909 (((-83) $) 14 T ELT)) (-3904 (($ $) 19 T ELT) (($ $ (-687)) 21 T ELT))) -(((-1182 |#1| |#2|) (-10 -7 (-15 -3904 (|#1| |#1| (-687))) (-15 -3904 (|#1| |#1|)) (-15 -3908 ((-83) |#1|)) (-15 -3909 ((-83) |#1|))) (-1183 |#2|) (-308)) (T -1182)) -NIL -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-2046 (((-2 (|:| -1755 $) (|:| -3958 $) (|:| |associate| $)) $) 52 T ELT)) (-2045 (($ $) 51 T ELT)) (-2043 (((-83) $) 49 T ELT)) (-3908 (((-83) $) 111 T ELT)) (-3905 (((-687)) 107 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3751 (($ $) 88 T ELT)) (-3947 (((-341 $) $) 87 T ELT)) (-1591 (((-83) $ $) 72 T ELT)) (-3700 (($) 22 T CONST)) (-3138 (((-3 |#1| "failed") $) 118 T ELT)) (-3137 ((|#1| $) 119 T ELT)) (-2544 (($ $ $) 68 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-2543 (($ $ $) 69 T ELT)) (-2722 (((-2 (|:| -3930 (-578 $)) (|:| -2391 $)) (-578 $)) 63 T ELT)) (-1747 (($ $ (-687)) 104 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT) (($ $) 103 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3699 (((-83) $) 86 T ELT)) (-3748 (((-736 (-823)) $) 101 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-2392 (((-83) $) 40 T ELT)) (-1588 (((-3 (-578 $) #1="failed") (-578 $) $) 65 T ELT)) (-1874 (($ $ $) 57 T ELT) (($ (-578 $)) 56 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-2464 (($ $) 85 T ELT)) (-3907 (((-83) $) 110 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-2689 (((-1070 $) (-1070 $) (-1070 $)) 55 T ELT)) (-3125 (($ $ $) 59 T ELT) (($ (-578 $)) 58 T ELT)) (-3708 (((-341 $) $) 89 T ELT)) (-3906 (((-736 (-823))) 108 T ELT)) (-1589 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2391 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3443 (((-3 $ "failed") $ $) 53 T ELT)) (-2721 (((-627 (-578 $)) (-578 $) $) 62 T ELT)) (-1590 (((-687) $) 71 T ELT)) (-2860 (((-2 (|:| -1956 $) (|:| -2883 $)) $ $) 70 T ELT)) (-1748 (((-3 (-687) "failed") $ $) 102 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3887 (((-105)) 116 T ELT)) (-3924 (((-736 (-823)) $) 109 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ $) 54 T ELT) (($ (-343 (-478))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2683 (((-627 $) $) 100 (OR (|has| |#1| (-116)) (|has| |#1| (-313))) ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2044 (((-83) $ $) 50 T ELT)) (-3909 (((-83) $) 112 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3904 (($ $) 106 (|has| |#1| (-313)) ELT) (($ $ (-687)) 105 (|has| |#1| (-313)) ELT)) (-3037 (((-83) $ $) 8 T ELT)) (-3925 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT) (($ $ (-478)) 84 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-343 (-478))) 83 T ELT) (($ (-343 (-478)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) -(((-1183 |#1|) (-111) (-308)) (T -1183)) -((-3909 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-83)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-83)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-83)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-736 (-823))))) (-3906 (*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-736 (-823))))) (-3905 (*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-687)))) (-3904 (*1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-308)) (-4 *2 (-313)))) (-3904 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-4 *3 (-313))))) -(-13 (-308) (-943 |t#1|) (-1172 |t#1|) (-10 -8 (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-338)) |%noBranch|) (-15 -3909 ((-83) $)) (-15 -3908 ((-83) $)) (-15 -3907 ((-83) $)) (-15 -3924 ((-736 (-823)) $)) (-15 -3906 ((-736 (-823)))) (-15 -3905 ((-687))) (IF (|has| |t#1| (-313)) (PROGN (-6 (-338)) (-15 -3904 ($ $)) (-15 -3904 ($ $ (-687)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-343 (-478))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-343 (-478)) (-343 (-478))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-313)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-550 (-343 (-478))) . T) ((-550 (-478)) . T) ((-550 |#1|) . T) ((-550 $) . T) ((-547 (-765)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-338) OR (|has| |#1| (-313)) (|has| |#1| (-116))) ((-385) . T) ((-489) . T) ((-583 (-343 (-478))) . T) ((-583 (-478)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-585 (-343 (-478))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-577 (-343 (-478))) . T) ((-577 |#1|) . T) ((-577 $) . T) ((-649 (-343 (-478))) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-658) . T) ((-825) . T) ((-943 |#1|) . T) ((-956 (-343 (-478))) . T) ((-956 |#1|) . T) ((-956 $) . T) ((-961 (-343 (-478))) . T) ((-961 |#1|) . T) ((-961 $) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1119) . T) ((-1172 |#1|) . T)) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3910 (((-578 |#1|) $) 52 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3911 (($ $ $) 55 (|has| |#2| (-144)) ELT) (($ $ (-687)) 54 (|has| |#2| (-144)) ELT)) (-3700 (($) 22 T CONST)) (-3915 (($ $ |#1|) 66 T ELT) (($ $ (-732 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3138 (((-3 (-732 |#1|) "failed") $) 76 T ELT)) (-3137 (((-732 |#1|) $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3927 (((-83) $) 57 T ELT)) (-3926 (($ $) 56 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3913 (((-83) $) 62 T ELT)) (-3914 (($ (-732 |#1|) |#2|) 63 T ELT)) (-3912 (($ $) 61 T ELT)) (-3917 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-3931 (((-732 |#1|) $) 73 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-3916 (($ $ |#1|) 69 T ELT) (($ $ (-732 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3929 (((-83) $) 59 T ELT)) (-3928 ((|#2| $) 58 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-732 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-3930 ((|#2| $ (-732 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1184 |#1| |#2|) (-111) (-749) (-954)) (T -1184)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-732 *3)))) (-3917 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-2 (|:| |k| (-732 *3)) (|:| |c| *4))))) (-3930 (*1 *2 *1 *3) (-12 (-5 *3 (-732 *4)) (-4 *1 (-1184 *4 *2)) (-4 *4 (-749)) (-4 *2 (-954)))) (-3930 (*1 *2 *1 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) (-3916 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3916 (*1 *1 *1 *2) (-12 (-5 *2 (-732 *3)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) (-3916 (*1 *1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3915 (*1 *1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3915 (*1 *1 *1 *2) (-12 (-5 *2 (-732 *3)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) (-3915 (*1 *1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3914 (*1 *1 *2 *3) (-12 (-5 *2 (-732 *4)) (-4 *4 (-749)) (-4 *1 (-1184 *4 *3)) (-4 *3 (-954)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) (-3912 (*1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3922 (*1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3929 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) (-3926 (*1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) (-3911 (*1 *1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)) (-4 *3 (-144)))) (-3911 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-4 *4 (-144)))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-578 *3))))) -(-13 (-954) (-1179 |t#2|) (-943 (-732 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3931 ((-732 |t#1|) $)) (-15 -3917 ((-2 (|:| |k| (-732 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3930 (|t#2| $ (-732 |t#1|))) (-15 -3930 (|t#2| $ $)) (-15 -3916 ($ $ |t#1|)) (-15 -3916 ($ $ (-732 |t#1|))) (-15 -3916 ($ $ $)) (-15 -3915 ($ $ |t#1|)) (-15 -3915 ($ $ (-732 |t#1|))) (-15 -3915 ($ $ $)) (-15 -3914 ($ (-732 |t#1|) |t#2|)) (-15 -3913 ((-83) $)) (-15 -3912 ($ $)) (-15 -3922 ($ |t#1|)) (-15 -3929 ((-83) $)) (-15 -3928 (|t#2| $)) (-15 -3927 ((-83) $)) (-15 -3926 ($ $)) (IF (|has| |t#2| (-144)) (PROGN (-15 -3911 ($ $ $)) (-15 -3911 ($ $ (-687)))) |%noBranch|) (-15 -3934 ($ (-1 |t#2| |t#2|) $)) (-15 -3910 ((-578 |t#1|) $)) (IF (|has| |t#2| (-6 -3964)) (-6 -3964) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-144)) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 (-732 |#1|)) . T) ((-550 |#2|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-577 |#2|) |has| |#2| (-144)) ((-649 |#2|) |has| |#2| (-144)) ((-658) . T) ((-943 (-732 |#1|)) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1179 |#2|) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3910 (((-578 |#1|) $) 99 T ELT)) (-3923 (($ $ (-687)) 103 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3911 (($ $ $) NIL (|has| |#2| (-144)) ELT) (($ $ (-687)) NIL (|has| |#2| (-144)) ELT)) (-3700 (($) NIL T CONST)) (-3915 (($ $ |#1|) NIL T ELT) (($ $ (-732 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3138 (((-3 (-732 |#1|) #1#) $) NIL T ELT) (((-3 (-796 |#1|) #1#) $) NIL T ELT)) (-3137 (((-732 |#1|) $) NIL T ELT) (((-796 |#1|) $) NIL T ELT)) (-3935 (($ $) 102 T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3927 (((-83) $) 90 T ELT)) (-3926 (($ $) 93 T ELT)) (-3920 (($ $ $ (-687)) 104 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-3914 (($ (-732 |#1|) |#2|) NIL T ELT) (($ (-796 |#1|) |#2|) 28 T ELT)) (-3912 (($ $) 120 T ELT)) (-3917 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3931 (((-732 |#1|) $) NIL T ELT)) (-3932 (((-732 |#1|) $) NIL T ELT)) (-3934 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3916 (($ $ |#1|) NIL T ELT) (($ $ (-732 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3918 (($ $ (-687)) 113 (|has| |#2| (-649 (-343 (-478)))) ELT)) (-1732 (((-2 (|:| |k| (-796 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2875 (((-796 |#1|) $) 84 T ELT)) (-3155 ((|#2| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3919 (($ $ (-687)) 110 (|has| |#2| (-649 (-343 (-478)))) ELT)) (-3924 (((-687) $) 100 T ELT)) (-3929 (((-83) $) 85 T ELT)) (-3928 ((|#2| $) 88 T ELT)) (-3922 (((-765) $) 70 T ELT) (($ (-478)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-732 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-796 |#1|)) NIL T ELT) (($ (-601 |#1| |#2|)) 47 T ELT) (((-1180 |#1| |#2|) $) 77 T ELT) (((-1189 |#1| |#2|) $) 82 T ELT)) (-3793 (((-578 |#2|) $) NIL T ELT)) (-3653 ((|#2| $ (-796 |#1|)) NIL T ELT)) (-3930 ((|#2| $ (-732 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 21 T CONST)) (-2647 (($) 27 T CONST)) (-2646 (((-578 (-2 (|:| |k| (-796 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3921 (((-3 (-601 |#1| |#2|) #1#) $) 119 T ELT)) (-3037 (((-83) $ $) 78 T ELT)) (-3813 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3815 (($ $ $) 20 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-796 |#1|)) NIL T ELT))) -(((-1185 |#1| |#2|) (-13 (-1187 |#1| |#2|) (-328 |#2| (-796 |#1|)) (-10 -8 (-15 -3922 ($ (-601 |#1| |#2|))) (-15 -3922 ((-1180 |#1| |#2|) $)) (-15 -3922 ((-1189 |#1| |#2|) $)) (-15 -3921 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3920 ($ $ $ (-687))) (IF (|has| |#2| (-649 (-343 (-478)))) (PROGN (-15 -3919 ($ $ (-687))) (-15 -3918 ($ $ (-687)))) |%noBranch|))) (-749) (-144)) (T -1185)) -((-3922 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *1 (-1185 *3 *4)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1189 *3 *4)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3921 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3920 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-1185 *3 *4)) (-4 *4 (-649 (-343 (-478)))) (-4 *3 (-749)) (-4 *4 (-144)))) (-3918 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-1185 *3 *4)) (-4 *4 (-649 (-343 (-478)))) (-4 *3 (-749)) (-4 *4 (-144))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3910 (((-578 (-1075)) $) NIL T ELT)) (-3938 (($ (-1180 (-1075) |#1|)) NIL T ELT)) (-3923 (($ $ (-687)) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3911 (($ $ $) NIL (|has| |#1| (-144)) ELT) (($ $ (-687)) NIL (|has| |#1| (-144)) ELT)) (-3700 (($) NIL T CONST)) (-3915 (($ $ (-1075)) NIL T ELT) (($ $ (-732 (-1075))) NIL T ELT) (($ $ $) NIL T ELT)) (-3138 (((-3 (-732 (-1075)) #1#) $) NIL T ELT)) (-3137 (((-732 (-1075)) $) NIL T ELT)) (-3444 (((-3 $ #1#) $) NIL T ELT)) (-3927 (((-83) $) NIL T ELT)) (-3926 (($ $) NIL T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-3914 (($ (-732 (-1075)) |#1|) NIL T ELT)) (-3912 (($ $) NIL T ELT)) (-3917 (((-2 (|:| |k| (-732 (-1075))) (|:| |c| |#1|)) $) NIL T ELT)) (-3931 (((-732 (-1075)) $) NIL T ELT)) (-3932 (((-732 (-1075)) $) NIL T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3916 (($ $ (-1075)) NIL T ELT) (($ $ (-732 (-1075))) NIL T ELT) (($ $ $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3939 (((-1180 (-1075) |#1|) $) NIL T ELT)) (-3924 (((-687) $) NIL T ELT)) (-3929 (((-83) $) NIL T ELT)) (-3928 ((|#1| $) NIL T ELT)) (-3922 (((-765) $) NIL T ELT) (($ (-478)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-732 (-1075))) NIL T ELT) (($ (-1075)) NIL T ELT)) (-3930 ((|#1| $ (-732 (-1075))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3107 (((-687)) NIL T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) NIL T CONST)) (-3937 (((-578 (-2 (|:| |k| (-1075)) (|:| |c| $))) $) NIL T ELT)) (-2647 (($) NIL T CONST)) (-3037 (((-83) $ $) NIL T ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) NIL T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) NIL T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1075) $) NIL T ELT))) -(((-1186 |#1|) (-13 (-1187 (-1075) |#1|) (-10 -8 (-15 -3939 ((-1180 (-1075) |#1|) $)) (-15 -3938 ($ (-1180 (-1075) |#1|))) (-15 -3937 ((-578 (-2 (|:| |k| (-1075)) (|:| |c| $))) $)))) (-954)) (T -1186)) -((-3939 (*1 *2 *1) (-12 (-5 *2 (-1180 (-1075) *3)) (-5 *1 (-1186 *3)) (-4 *3 (-954)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1180 (-1075) *3)) (-4 *3 (-954)) (-5 *1 (-1186 *3)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-1075)) (|:| |c| (-1186 *3))))) (-5 *1 (-1186 *3)) (-4 *3 (-954))))) -((-2548 (((-83) $ $) 7 T ELT)) (-3170 (((-83) $) 21 T ELT)) (-3910 (((-578 |#1|) $) 52 T ELT)) (-3923 (($ $ (-687)) 86 T ELT)) (-1295 (((-3 $ "failed") $ $) 25 T ELT)) (-3911 (($ $ $) 55 (|has| |#2| (-144)) ELT) (($ $ (-687)) 54 (|has| |#2| (-144)) ELT)) (-3700 (($) 22 T CONST)) (-3915 (($ $ |#1|) 66 T ELT) (($ $ (-732 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3138 (((-3 (-732 |#1|) "failed") $) 76 T ELT)) (-3137 (((-732 |#1|) $) 77 T ELT)) (-3444 (((-3 $ "failed") $) 42 T ELT)) (-3927 (((-83) $) 57 T ELT)) (-3926 (($ $) 56 T ELT)) (-2392 (((-83) $) 40 T ELT)) (-3913 (((-83) $) 62 T ELT)) (-3914 (($ (-732 |#1|) |#2|) 63 T ELT)) (-3912 (($ $) 61 T ELT)) (-3917 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-3931 (((-732 |#1|) $) 73 T ELT)) (-3932 (((-732 |#1|) $) 88 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-3916 (($ $ |#1|) 69 T ELT) (($ $ (-732 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3222 (((-1059) $) 11 T ELT)) (-3223 (((-1020) $) 12 T ELT)) (-3924 (((-687) $) 87 T ELT)) (-3929 (((-83) $) 59 T ELT)) (-3928 ((|#2| $) 58 T ELT)) (-3922 (((-765) $) 13 T ELT) (($ (-478)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-732 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-3930 ((|#2| $ (-732 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3107 (((-687)) 37 T CONST)) (-1249 (((-83) $ $) 6 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 39 T CONST)) (-3037 (((-83) $ $) 8 T ELT)) (-3813 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3815 (($ $ $) 18 T ELT)) (** (($ $ (-823)) 33 T ELT) (($ $ (-687)) 41 T ELT)) (* (($ (-823) $) 17 T ELT) (($ (-687) $) 20 T ELT) (($ (-478) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1187 |#1| |#2|) (-111) (-749) (-954)) (T -1187)) -((-3932 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-732 *3)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-687)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954))))) -(-13 (-1184 |t#1| |t#2|) (-10 -8 (-15 -3932 ((-732 |t#1|) $)) (-15 -3924 ((-687) $)) (-15 -3923 ($ $ (-687))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-144)) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-550 (-478)) . T) ((-550 (-732 |#1|)) . T) ((-550 |#2|) . T) ((-547 (-765)) . T) ((-583 (-478)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-577 |#2|) |has| |#2| (-144)) ((-649 |#2|) |has| |#2| (-144)) ((-658) . T) ((-943 (-732 |#1|)) . T) ((-956 |#2|) . T) ((-961 |#2|) . T) ((-954) . T) ((-962) . T) ((-1013) . T) ((-1003) . T) ((-1114) . T) ((-1179 |#2|) . T) ((-1184 |#1| |#2|) . T)) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) NIL T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3700 (($) NIL T CONST)) (-3138 (((-3 |#2| #1#) $) NIL T ELT)) (-3137 ((|#2| $) NIL T ELT)) (-3935 (($ $) NIL T ELT)) (-3444 (((-3 $ #1#) $) 43 T ELT)) (-3927 (((-83) $) 37 T ELT)) (-3926 (($ $) 38 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-2400 (((-687) $) NIL T ELT)) (-2802 (((-578 $) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-3914 (($ |#2| |#1|) NIL T ELT)) (-3931 ((|#2| $) 25 T ELT)) (-3932 ((|#2| $) 23 T ELT)) (-3934 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1732 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2875 ((|#2| $) NIL T ELT)) (-3155 ((|#1| $) NIL T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3929 (((-83) $) 33 T ELT)) (-3928 ((|#1| $) 34 T ELT)) (-3922 (((-765) $) 66 T ELT) (($ (-478)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3793 (((-578 |#1|) $) NIL T ELT)) (-3653 ((|#1| $ |#2|) NIL T ELT)) (-3930 ((|#1| $ |#2|) 29 T ELT)) (-3107 (((-687)) 14 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 30 T CONST)) (-2647 (($) 11 T CONST)) (-2646 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3037 (((-83) $ $) 31 T ELT)) (-3925 (($ $ |#1|) 68 (|has| |#1| (-308)) ELT)) (-3813 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3815 (($ $ $) 51 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 53 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3933 (((-687) $) 18 T ELT))) -(((-1188 |#1| |#2|) (-13 (-954) (-1179 |#1|) (-328 |#1| |#2|) (-550 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3933 ((-687) $)) (-15 -3932 (|#2| $)) (-15 -3931 (|#2| $)) (-15 -3935 ($ $)) (-15 -3930 (|#1| $ |#2|)) (-15 -3929 ((-83) $)) (-15 -3928 (|#1| $)) (-15 -3927 ((-83) $)) (-15 -3926 ($ $)) (-15 -3934 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-308)) (-15 -3925 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3964)) (-6 -3964) |%noBranch|) (IF (|has| |#1| (-6 -3968)) (-6 -3968) |%noBranch|) (IF (|has| |#1| (-6 -3969)) (-6 -3969) |%noBranch|))) (-954) (-747)) (T -1188)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1188 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747)))) (-3935 (*1 *1 *1) (-12 (-5 *1 (-1188 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747)))) (-3934 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-1188 *3 *4)) (-4 *4 (-747)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747)))) (-3932 (*1 *2 *1) (-12 (-4 *2 (-747)) (-5 *1 (-1188 *3 *2)) (-4 *3 (-954)))) (-3931 (*1 *2 *1) (-12 (-4 *2 (-747)) (-5 *1 (-1188 *3 *2)) (-4 *3 (-954)))) (-3930 (*1 *2 *1 *3) (-12 (-4 *2 (-954)) (-5 *1 (-1188 *2 *3)) (-4 *3 (-747)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747)))) (-3928 (*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-1188 *2 *3)) (-4 *3 (-747)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747)))) (-3926 (*1 *1 *1) (-12 (-5 *1 (-1188 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *1 (-1188 *2 *3)) (-4 *2 (-308)) (-4 *2 (-954)) (-4 *3 (-747))))) -((-2548 (((-83) $ $) 27 T ELT)) (-3170 (((-83) $) NIL T ELT)) (-3910 (((-578 |#1|) $) 132 T ELT)) (-3938 (($ (-1180 |#1| |#2|)) 50 T ELT)) (-3923 (($ $ (-687)) 38 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3911 (($ $ $) 54 (|has| |#2| (-144)) ELT) (($ $ (-687)) 52 (|has| |#2| (-144)) ELT)) (-3700 (($) NIL T CONST)) (-3915 (($ $ |#1|) 114 T ELT) (($ $ (-732 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3138 (((-3 (-732 |#1|) #1#) $) NIL T ELT)) (-3137 (((-732 |#1|) $) NIL T ELT)) (-3444 (((-3 $ #1#) $) 122 T ELT)) (-3927 (((-83) $) 117 T ELT)) (-3926 (($ $) 118 T ELT)) (-2392 (((-83) $) NIL T ELT)) (-3913 (((-83) $) NIL T ELT)) (-3914 (($ (-732 |#1|) |#2|) 20 T ELT)) (-3912 (($ $) NIL T ELT)) (-3917 (((-2 (|:| |k| (-732 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3931 (((-732 |#1|) $) 123 T ELT)) (-3932 (((-732 |#1|) $) 126 T ELT)) (-3934 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3916 (($ $ |#1|) 112 T ELT) (($ $ (-732 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3939 (((-1180 |#1| |#2|) $) 94 T ELT)) (-3924 (((-687) $) 129 T ELT)) (-3929 (((-83) $) 81 T ELT)) (-3928 ((|#2| $) 32 T ELT)) (-3922 (((-765) $) 73 T ELT) (($ (-478)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-732 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3930 ((|#2| $ (-732 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3107 (((-687)) 120 T CONST)) (-1249 (((-83) $ $) NIL T ELT)) (-2640 (($) 15 T CONST)) (-3937 (((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2647 (($) 33 T CONST)) (-3037 (((-83) $ $) 14 T ELT)) (-3813 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3815 (($ $ $) 61 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 55 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) 53 T ELT) (($ (-478) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1189 |#1| |#2|) (-13 (-1187 |#1| |#2|) (-10 -8 (-15 -3939 ((-1180 |#1| |#2|) $)) (-15 -3938 ($ (-1180 |#1| |#2|))) (-15 -3937 ((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-749) (-954)) (T -1189)) -((-3939 (*1 *2 *1) (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-1180 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *1 (-1189 *3 *4)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| *3) (|:| |c| (-1189 *3 *4))))) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3941 (($ (-578 (-823))) 11 T ELT)) (-3940 (((-877) $) 12 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3922 (((-765) $) 25 T ELT) (($ (-877)) 14 T ELT) (((-877) $) 13 T ELT)) (-1249 (((-83) $ $) NIL T ELT)) (-3037 (((-83) $ $) 17 T ELT))) -(((-1190) (-13 (-1003) (-423 (-877)) (-10 -8 (-15 -3941 ($ (-578 (-823)))) (-15 -3940 ((-877) $))))) (T -1190)) -((-3941 (*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1190)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1190))))) -((-3942 (((-578 (-1055 |#1|)) (-1 (-578 (-1055 |#1|)) (-578 (-1055 |#1|))) (-478)) 16 T ELT) (((-1055 |#1|) (-1 (-1055 |#1|) (-1055 |#1|))) 13 T ELT))) -(((-1191 |#1|) (-10 -7 (-15 -3942 ((-1055 |#1|) (-1 (-1055 |#1|) (-1055 |#1|)))) (-15 -3942 ((-578 (-1055 |#1|)) (-1 (-578 (-1055 |#1|)) (-578 (-1055 |#1|))) (-478)))) (-1114)) (T -1191)) -((-3942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 (-1055 *5)) (-578 (-1055 *5)))) (-5 *4 (-478)) (-5 *2 (-578 (-1055 *5))) (-5 *1 (-1191 *5)) (-4 *5 (-1114)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-1 (-1055 *4) (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-1114))))) -((-3944 (((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|))) 174 T ELT) (((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83)) 173 T ELT) (((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83)) 172 T ELT) (((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83) (-83)) 171 T ELT) (((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-951 |#1| |#2|)) 156 T ELT)) (-3943 (((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|))) 85 T ELT) (((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)) (-83)) 84 T ELT) (((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)) (-83) (-83)) 83 T ELT)) (-3947 (((-578 (-1046 |#1| (-463 (-766 |#3|)) (-766 |#3|) (-696 |#1| (-766 |#3|)))) (-951 |#1| |#2|)) 73 T ELT)) (-3945 (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|))) 140 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83)) 139 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83)) 138 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83) (-83)) 137 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-951 |#1| |#2|)) 132 T ELT)) (-3946 (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|))) 145 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83)) 144 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83)) 143 T ELT) (((-578 (-578 (-930 (-343 |#1|)))) (-951 |#1| |#2|)) 142 T ELT)) (-3948 (((-578 (-696 |#1| (-766 |#3|))) (-1046 |#1| (-463 (-766 |#3|)) (-766 |#3|) (-696 |#1| (-766 |#3|)))) 111 T ELT) (((-1070 (-930 (-343 |#1|))) (-1070 |#1|)) 102 T ELT) (((-850 (-930 (-343 |#1|))) (-696 |#1| (-766 |#3|))) 109 T ELT) (((-850 (-930 (-343 |#1|))) (-850 |#1|)) 107 T ELT) (((-696 |#1| (-766 |#3|)) (-696 |#1| (-766 |#2|))) 33 T ELT))) -(((-1192 |#1| |#2| |#3|) (-10 -7 (-15 -3943 ((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)) (-83) (-83))) (-15 -3943 ((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)) (-83))) (-15 -3943 ((-578 (-951 |#1| |#2|)) (-578 (-850 |#1|)))) (-15 -3944 ((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-951 |#1| |#2|))) (-15 -3944 ((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83) (-83))) (-15 -3944 ((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83) (-83))) (-15 -3944 ((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)) (-83))) (-15 -3944 ((-578 (-2 (|:| -1730 (-1070 |#1|)) (|:| -3205 (-578 (-850 |#1|))))) (-578 (-850 |#1|)))) (-15 -3945 ((-578 (-578 (-930 (-343 |#1|)))) (-951 |#1| |#2|))) (-15 -3945 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83) (-83))) (-15 -3945 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83))) (-15 -3945 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83))) (-15 -3945 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)))) (-15 -3946 ((-578 (-578 (-930 (-343 |#1|)))) (-951 |#1| |#2|))) (-15 -3946 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83) (-83))) (-15 -3946 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)) (-83))) (-15 -3946 ((-578 (-578 (-930 (-343 |#1|)))) (-578 (-850 |#1|)))) (-15 -3947 ((-578 (-1046 |#1| (-463 (-766 |#3|)) (-766 |#3|) (-696 |#1| (-766 |#3|)))) (-951 |#1| |#2|))) (-15 -3948 ((-696 |#1| (-766 |#3|)) (-696 |#1| (-766 |#2|)))) (-15 -3948 ((-850 (-930 (-343 |#1|))) (-850 |#1|))) (-15 -3948 ((-850 (-930 (-343 |#1|))) (-696 |#1| (-766 |#3|)))) (-15 -3948 ((-1070 (-930 (-343 |#1|))) (-1070 |#1|))) (-15 -3948 ((-578 (-696 |#1| (-766 |#3|))) (-1046 |#1| (-463 (-766 |#3|)) (-766 |#3|) (-696 |#1| (-766 |#3|)))))) (-13 (-748) (-254) (-118) (-926)) (-578 (-1075)) (-578 (-1075))) (T -1192)) -((-3948 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 (-463 (-766 *6)) (-766 *6) (-696 *4 (-766 *6)))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *6 (-578 (-1075))) (-5 *2 (-578 (-696 *4 (-766 *6)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-578 (-1075))))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-1070 (-930 (-343 *4)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075))))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-696 *4 (-766 *6))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *6 (-578 (-1075))) (-5 *2 (-850 (-930 (-343 *4)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-578 (-1075))))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-850 *4)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-850 (-930 (-343 *4)))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075))))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-696 *4 (-766 *5))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1075))) (-5 *2 (-696 *4 (-766 *6))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-578 (-1075))))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1075))) (-5 *2 (-578 (-1046 *4 (-463 (-766 *6)) (-766 *6) (-696 *4 (-766 *6))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-578 (-1075))))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075))))) (-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) (-3946 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1075))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-578 (-1075))))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075))))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) (-3945 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) (-3945 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1075))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-578 (-1075))))) (-3944 (*1 *2 *3) (-12 (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-2 (|:| -1730 (-1070 *4)) (|:| -3205 (-578 (-850 *4)))))) (-5 *1 (-1192 *4 *5 *6)) (-5 *3 (-578 (-850 *4))) (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075))))) (-3944 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) (-3944 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) (-3944 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *5 (-578 (-1075))) (-5 *2 (-578 (-2 (|:| -1730 (-1070 *4)) (|:| -3205 (-578 (-850 *4)))))) (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-578 (-1075))))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *4 *5))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075))))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) (-3943 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075)))))) -((-3951 (((-3 (-1164 (-343 (-478))) #1="failed") (-1164 |#1|) |#1|) 21 T ELT)) (-3949 (((-83) (-1164 |#1|)) 12 T ELT)) (-3950 (((-3 (-1164 (-478)) #1#) (-1164 |#1|)) 16 T ELT))) -(((-1193 |#1|) (-10 -7 (-15 -3949 ((-83) (-1164 |#1|))) (-15 -3950 ((-3 (-1164 (-478)) #1="failed") (-1164 |#1|))) (-15 -3951 ((-3 (-1164 (-343 (-478))) #1#) (-1164 |#1|) |#1|))) (-13 (-954) (-575 (-478)))) (T -1193)) -((-3951 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) (-5 *2 (-1164 (-343 (-478)))) (-5 *1 (-1193 *4)))) (-3950 (*1 *2 *3) (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) (-5 *2 (-1164 (-478))) (-5 *1 (-1193 *4)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) (-5 *2 (-83)) (-5 *1 (-1193 *4))))) -((-2548 (((-83) $ $) NIL T ELT)) (-3170 (((-83) $) 12 T ELT)) (-1295 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3117 (((-687)) 9 T ELT)) (-3700 (($) NIL T CONST)) (-3444 (((-3 $ #1#) $) 57 T ELT)) (-2975 (($) 46 T ELT)) (-2392 (((-83) $) 38 T ELT)) (-3422 (((-627 $) $) 36 T ELT)) (-1992 (((-823) $) 14 T ELT)) (-3222 (((-1059) $) NIL T ELT)) (-3423 (($) 26 T CONST)) (-2382 (($ (-823)) 47 T ELT)) (-3223 (((-1020) $) NIL T ELT)) (-3948 (((-478) $) 16 T ELT)) (-3922 (((-765) $) 21 T ELT) (($ (-478)) 18 T ELT)) (-3107 (((-687)) 10 T CONST)) (-1249 (((-83) $ $) 59 T ELT)) (-2640 (($) 23 T CONST)) (-2647 (($) 25 T CONST)) (-3037 (((-83) $ $) 31 T ELT)) (-3813 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3815 (($ $ $) 29 T ELT)) (** (($ $ (-823)) NIL T ELT) (($ $ (-687)) 52 T ELT)) (* (($ (-823) $) NIL T ELT) (($ (-687) $) NIL T ELT) (($ (-478) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1194 |#1|) (-13 (-144) (-313) (-548 (-478)) (-1052)) (-823)) (T -1194)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 2795015 2795020 2795025 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2795000 2795005 2795010 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2794985 2794990 2794995 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2794970 2794975 2794980 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1194 2794013 2794888 2794965 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1193 2793228 2793407 2793626 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1192 2784387 2786256 2788190 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1191 2783775 2783928 2784117 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1190 2783237 2783540 2783653 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1189 2780861 2782699 2782902 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1188 2777689 2779278 2779849 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1187 2775034 2776702 2776756 "XPOLYC" 2777041 XPOLYC (NIL T T) -9 NIL 2777154 NIL) (-1186 2772617 2774538 2774741 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1185 2768929 2771476 2771864 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1184 2763864 2765435 2765489 "XFALG" 2767634 XFALG (NIL T T) -9 NIL 2768418 NIL) (-1183 2759108 2761779 2761821 "XF" 2762439 XF (NIL T) -9 NIL 2762835 NIL) (-1182 2758826 2758936 2759103 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1181 2758053 2758175 2758379 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1180 2755859 2757953 2758048 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1179 2754528 2755261 2755303 "XALG" 2755308 XALG (NIL T) -9 NIL 2755417 NIL) (-1178 2748085 2752938 2753416 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1177 2746392 2747330 2747651 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1176 2745991 2746263 2746332 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1175 2745478 2745781 2745874 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1174 2744555 2744765 2745060 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1173 2742851 2743314 2743776 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1172 2741783 2742337 2742379 "VSPACE" 2742515 VSPACE (NIL T) -9 NIL 2742589 NIL) (-1171 2741654 2741687 2741778 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1170 2741497 2741551 2741619 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1169 2738480 2739275 2740012 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1168 2729578 2732179 2734352 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1167 2723155 2725046 2726625 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1166 2721639 2722034 2722440 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1165 2720466 2720747 2721063 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1164 2715580 2720293 2720385 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1163 2708694 2713302 2713345 "VECTCAT" 2714333 VECTCAT (NIL T) -9 NIL 2714917 NIL) (-1162 2707973 2708299 2708689 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1161 2707467 2707709 2707829 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1160 2707400 2707405 2707435 "UTYPE" 2707440 UTYPE (NIL) -9 NIL NIL NIL) (-1159 2706387 2706563 2706824 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1158 2704238 2704746 2705270 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1157 2694208 2700116 2700158 "UTSCAT" 2701256 UTSCAT (NIL T) -9 NIL 2702013 NIL) (-1156 2692273 2693216 2694203 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1155 2691947 2691996 2692127 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1154 2683722 2690143 2690622 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1153 2677729 2680542 2680585 "URAGG" 2682655 URAGG (NIL T) -9 NIL 2683377 NIL) (-1152 2675744 2676706 2677724 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1151 2671515 2674720 2675182 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1150 2664008 2671439 2671510 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1149 2652747 2660172 2660233 "UPXSCCA" 2660801 UPXSCCA (NIL T T) -9 NIL 2661033 NIL) (-1148 2652468 2652570 2652742 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1147 2641108 2648258 2648300 "UPXSCAT" 2648940 UPXSCAT (NIL T) -9 NIL 2649548 NIL) (-1146 2640621 2640706 2640883 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1145 2632371 2640212 2640474 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1144 2631266 2631536 2631886 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1143 2624057 2627480 2627534 "UPSCAT" 2628603 UPSCAT (NIL T T) -9 NIL 2629367 NIL) (-1142 2623477 2623729 2624052 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1141 2623151 2623200 2623331 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1140 2607372 2616261 2616303 "UPOLYC" 2618381 UPOLYC (NIL T) -9 NIL 2619601 NIL) (-1139 2601427 2604275 2607367 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1138 2600863 2600988 2601151 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1137 2600497 2600584 2600723 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1136 2599310 2599577 2599881 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1135 2598643 2598773 2598958 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1134 2598235 2598310 2598457 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1133 2589063 2598001 2598129 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1132 2588425 2588562 2588767 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1131 2587031 2587877 2588150 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1130 2586260 2586457 2586682 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1129 2573134 2586184 2586255 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1128 2553074 2566247 2566308 "ULSCCAT" 2566939 ULSCCAT (NIL T T) -9 NIL 2567226 NIL) (-1127 2552409 2552695 2553069 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1126 2540869 2547941 2547983 "ULSCAT" 2548836 ULSCAT (NIL T) -9 NIL 2549566 NIL) (-1125 2540382 2540467 2540644 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1124 2522563 2539881 2540122 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1123 2521597 2522290 2522404 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2522515) (-1122 2520630 2521323 2521437 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2521548) (-1121 2519663 2520356 2520470 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2520581) (-1120 2518696 2519389 2519503 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2519614) (-1119 2516791 2517950 2517980 "UFD" 2518191 UFD (NIL) -9 NIL 2518304 NIL) (-1118 2516635 2516692 2516786 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1117 2515887 2516094 2516310 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1116 2514107 2514560 2515025 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1115 2513832 2514072 2514102 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1114 2513765 2513770 2513800 "TYPE" 2513805 TYPE (NIL) -9 NIL NIL NIL) (-1113 2512924 2513144 2513384 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1112 2512102 2512533 2512768 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1111 2510256 2510829 2511368 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1110 2509290 2509526 2509762 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1109 2497656 2502124 2502220 "TSETCAT" 2507435 TSETCAT (NIL T T T T) -9 NIL 2508947 NIL) (-1108 2493993 2495809 2497651 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1107 2488449 2493219 2493501 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1106 2483786 2484799 2485728 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1105 2483283 2483358 2483521 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1104 2481359 2481649 2482004 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1103 2480843 2480992 2481022 "TRIGCAT" 2481235 TRIGCAT (NIL) -9 NIL NIL NIL) (-1102 2480594 2480697 2480838 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1101 2477590 2479703 2479981 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1100 2476696 2477392 2477422 "TRANFUN" 2477457 TRANFUN (NIL) -9 NIL 2477523 NIL) (-1099 2476160 2476411 2476691 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1098 2475997 2476035 2476096 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1097 2475454 2475585 2475736 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1096 2474195 2474852 2475088 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1095 2474007 2474044 2474116 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1094 2472221 2472867 2473296 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1093 2470601 2470938 2471260 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1092 2461671 2468414 2468470 "TBAGG" 2468872 TBAGG (NIL T T) -9 NIL 2469085 NIL) (-1091 2458202 2459894 2461666 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1090 2457679 2457804 2457949 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1089 2457189 2457509 2457599 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1088 2456686 2456803 2456941 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1087 2449773 2456588 2456681 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1086 2445526 2446821 2448066 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1085 2444895 2445054 2445235 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1084 2442049 2442802 2443585 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1083 2441823 2442013 2442044 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1082 2440777 2441462 2441588 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2441774) (-1081 2440041 2440589 2440668 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2440728) (-1080 2436864 2438023 2438723 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1079 2434547 2435230 2435864 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1078 2430625 2431671 2432648 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1077 2427788 2430280 2430509 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1076 2427384 2427471 2427593 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1075 2424008 2425482 2426301 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1074 2417032 2423205 2423498 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1073 2408782 2416623 2416885 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1072 2408061 2408200 2408417 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1071 2407745 2407810 2407921 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1070 2398532 2407457 2407582 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1069 2397268 2397564 2397917 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1068 2396676 2396753 2396943 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1067 2378892 2396175 2396416 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1066 2378228 2378509 2378649 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1065 2372830 2374089 2375042 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1064 2372362 2372462 2372626 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1063 2367473 2368755 2369902 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1062 2361931 2363402 2364713 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1061 2354846 2356910 2358701 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1060 2347676 2354758 2354841 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1059 2342370 2347390 2347505 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1058 2341957 2342040 2342184 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1057 2341108 2341309 2341544 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1056 2340848 2340906 2340999 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1055 2333586 2339053 2339659 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1054 2332762 2332967 2333198 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1053 2332007 2332378 2332525 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1052 2331507 2331749 2331779 "STEP" 2331873 STEP (NIL) -9 NIL 2331944 NIL) (-1051 2324610 2331425 2331502 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1050 2318837 2323420 2323463 "STAGG" 2323890 STAGG (NIL T) -9 NIL 2324064 NIL) (-1049 2317216 2317964 2318832 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1048 2315373 2317043 2317135 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1047 2314696 2315204 2315234 "SRING" 2315239 SRING (NIL) -9 NIL 2315259 NIL) (-1046 2307318 2313234 2313673 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1045 2301092 2302531 2304035 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1044 2293529 2298440 2298470 "SRAGG" 2299769 SRAGG (NIL) -9 NIL 2300373 NIL) (-1043 2292826 2293146 2293524 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1042 2286945 2292148 2292571 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1041 2281158 2284327 2285049 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1040 2277587 2278406 2279043 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1039 2276562 2276867 2276897 "SPFCAT" 2277341 SPFCAT (NIL) -9 NIL NIL NIL) (-1038 2275499 2275751 2276015 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1037 2266071 2268411 2268441 "SPADXPT" 2273144 SPADXPT (NIL) -9 NIL 2275334 NIL) (-1036 2265873 2265919 2265988 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1035 2263463 2265837 2265868 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1034 2255149 2257238 2257280 "SPACEC" 2261595 SPACEC (NIL T) -9 NIL 2263400 NIL) (-1033 2252978 2255096 2255144 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1032 2251911 2252100 2252389 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1031 2250315 2250648 2251059 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1030 2249580 2249814 2250075 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1029 2245760 2246720 2247715 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1028 2242118 2242817 2243546 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1027 2235916 2241470 2241566 "SNTSCAT" 2241571 SNTSCAT (NIL T T T T) -9 NIL 2241641 NIL) (-1026 2229801 2234557 2234947 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1025 2223637 2229720 2229796 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1024 2222069 2222400 2222798 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1023 2213765 2218679 2218781 "SMATCAT" 2220124 SMATCAT (NIL NIL T T T) -9 NIL 2220672 NIL) (-1022 2211606 2212590 2213760 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1021 2209210 2210824 2210867 "SKAGG" 2211128 SKAGG (NIL T) -9 NIL 2211262 NIL) (-1020 2205320 2209030 2209141 "SINT" NIL SINT (NIL) -8 NIL NIL 2209182) (-1019 2205130 2205174 2205240 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1018 2204205 2204437 2204705 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1017 2203209 2203371 2203647 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1016 2202555 2202862 2203002 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1015 2200666 2201158 2201664 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1014 2194205 2200585 2200661 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1013 2193720 2193957 2193987 "SGROUP" 2194080 SGROUP (NIL) -9 NIL 2194142 NIL) (-1012 2193610 2193642 2193715 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1011 2191033 2191802 2192524 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1010 2184930 2190484 2190580 "SFRTCAT" 2190585 SFRTCAT (NIL T T T T) -9 NIL 2190623 NIL) (-1009 2179322 2180435 2181562 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1008 2173498 2174659 2175823 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1007 2172470 2173372 2173493 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1006 2168090 2168985 2169080 "SEXCAT" 2171693 SEXCAT (NIL T T T T T) -9 NIL 2172244 NIL) (-1005 2167063 2168017 2168085 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1004 2165454 2166039 2166341 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1003 2164989 2165174 2165204 "SETCAT" 2165321 SETCAT (NIL) -9 NIL 2165405 NIL) (-1002 2164821 2164885 2164984 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1001 2161056 2163287 2163330 "SETAGG" 2164198 SETAGG (NIL T) -9 NIL 2164536 NIL) (-1000 2160662 2160814 2161051 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-999 2157618 2160611 2160657 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-998 2156752 2157118 2157177 "SEGXCAT" 2157460 SEGXCAT (NIL T T) -9 NIL 2157579 NIL) (-997 2155687 2155955 2155996 "SEGCAT" 2156510 SEGCAT (NIL T) -9 NIL 2156731 NIL) (-996 2155376 2155439 2155548 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-995 2154460 2154922 2155125 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-994 2154041 2154320 2154394 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-993 2153419 2153552 2153751 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-992 2152489 2153236 2153414 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-991 2151744 2152439 2152484 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-990 2143345 2151615 2151739 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-989 2142205 2142495 2142812 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-988 2141511 2141723 2141911 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-987 2140861 2141018 2141194 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-986 2140446 2140677 2140705 "SASTCAT" 2140710 SASTCAT (NIL) -9 NIL 2140723 NIL) (-985 2139913 2140338 2140412 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-984 2139516 2139557 2139728 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-983 2139147 2139188 2139345 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-982 2132292 2139064 2139142 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-981 2130942 2131271 2131667 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-980 2129703 2130064 2130364 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-979 2129327 2129548 2129629 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-978 2126787 2127421 2127874 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-977 2126626 2126659 2126727 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-976 2122254 2123122 2124033 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-975 2111085 2116639 2116733 "RSETCAT" 2120789 RSETCAT (NIL T T T T) -9 NIL 2121877 NIL) (-974 2109623 2110265 2111080 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-973 2103397 2104842 2106349 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-972 2101291 2101848 2101920 "RRCC" 2102993 RRCC (NIL T T) -9 NIL 2103334 NIL) (-971 2100816 2101015 2101286 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-970 2100286 2100596 2100694 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-969 2072929 2083577 2083641 "RPOLCAT" 2094115 RPOLCAT (NIL T T T) -9 NIL 2097260 NIL) (-968 2067028 2069851 2072924 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-967 2063259 2066776 2066914 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-966 2061587 2062326 2062582 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-965 2057318 2060068 2060096 "RNS" 2060358 RNS (NIL) -9 NIL 2060610 NIL) (-964 2056221 2056708 2057245 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-963 2055343 2055744 2055943 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-962 2054643 2055143 2055171 "RNG" 2055176 RNG (NIL) -9 NIL 2055197 NIL) (-961 2053948 2054422 2054462 "RMODULE" 2054467 RMODULE (NIL T) -9 NIL 2054493 NIL) (-960 2052887 2052993 2053323 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-959 2049765 2052477 2052770 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-958 2042457 2044918 2045030 "RMATCAT" 2048335 RMATCAT (NIL NIL NIL T T T) -9 NIL 2049312 NIL) (-957 2041974 2042153 2042452 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-956 2041554 2041765 2041806 "RLINSET" 2041867 RLINSET (NIL T) -9 NIL 2041911 NIL) (-955 2041199 2041280 2041406 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-954 2040134 2040803 2040831 "RING" 2040886 RING (NIL) -9 NIL 2040977 NIL) (-953 2039979 2040035 2040129 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-952 2039036 2039302 2039557 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-951 2030023 2038664 2038865 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-950 2029291 2029771 2029810 "RGBCSPC" 2029867 RGBCSPC (NIL T) -9 NIL 2029918 NIL) (-949 2028368 2028823 2028862 "RGBCMDL" 2029090 RGBCMDL (NIL T) -9 NIL 2029204 NIL) (-948 2028080 2028149 2028250 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-947 2027843 2027884 2027979 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-946 2026267 2026697 2027077 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-945 2023854 2024522 2025190 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-944 2023404 2023502 2023662 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-943 2023026 2023124 2023165 "RETRACT" 2023296 RETRACT (NIL T) -9 NIL 2023383 NIL) (-942 2022906 2022937 2023021 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-941 2022508 2022780 2022847 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-940 2021052 2021879 2022076 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-939 2020743 2020804 2020900 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-938 2020486 2020527 2020632 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-937 2020221 2020262 2020371 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-936 2015292 2016743 2017958 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-935 2012391 2013149 2013957 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-934 2010360 2010982 2011582 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-933 2002995 2008911 2009347 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-932 2002307 2002587 2002736 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-931 2001792 2001907 2002072 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-930 1997449 2001195 2001416 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-929 1996681 1996880 1997093 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-928 1993971 1994809 1995691 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-927 1990553 1991589 1992648 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-926 1990389 1990442 1990470 "REAL" 1990475 REAL (NIL) -9 NIL 1990510 NIL) (-925 1989879 1990183 1990274 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-924 1989359 1989437 1989642 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-923 1988595 1988786 1988996 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-922 1987483 1987780 1988147 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-921 1985750 1986220 1986753 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-920 1984672 1984949 1985336 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-919 1983499 1983808 1984227 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-918 1976938 1980385 1980413 "RCFIELD" 1981690 RCFIELD (NIL) -9 NIL 1982420 NIL) (-917 1975556 1976168 1976865 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-916 1971768 1973660 1973701 "RCAGG" 1974768 RCAGG (NIL T) -9 NIL 1975229 NIL) (-915 1971495 1971605 1971763 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-914 1970940 1971069 1971230 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-913 1970557 1970636 1970755 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-912 1969972 1970122 1970272 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-911 1969754 1969804 1969875 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-910 1962260 1968872 1969180 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-909 1952026 1962127 1962255 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-908 1951660 1951753 1951781 "RADCAT" 1951938 RADCAT (NIL) -9 NIL NIL NIL) (-907 1951498 1951558 1951655 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-906 1949598 1951329 1951418 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-905 1949279 1949328 1949455 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-904 1941657 1945676 1945716 "QUATCAT" 1946494 QUATCAT (NIL T) -9 NIL 1947258 NIL) (-903 1938907 1940187 1941563 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-902 1934811 1938857 1938902 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-901 1932210 1933877 1933918 "QUAGG" 1934293 QUAGG (NIL T) -9 NIL 1934467 NIL) (-900 1931812 1932084 1932151 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-899 1930850 1931448 1931611 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-898 1930531 1930580 1930707 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-897 1920244 1926351 1926391 "QFCAT" 1927049 QFCAT (NIL T) -9 NIL 1928042 NIL) (-896 1917128 1918567 1920150 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-895 1916674 1916808 1916938 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-894 1910870 1912031 1913193 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-893 1910289 1910469 1910701 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-892 1908111 1908639 1909062 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-891 1907010 1907252 1907569 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-890 1905371 1905569 1905922 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-889 1901127 1902343 1902384 "PTRANFN" 1904268 PTRANFN (NIL T) -9 NIL NIL NIL) (-888 1899774 1900119 1900440 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-887 1899467 1899530 1899637 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-886 1893552 1898275 1898315 "PTCAT" 1898607 PTCAT (NIL T) -9 NIL 1898760 NIL) (-885 1893245 1893286 1893410 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-884 1892124 1892440 1892774 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-883 1881003 1883564 1885873 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-882 1873922 1876818 1876912 "PSETCAT" 1879886 PSETCAT (NIL T T T T) -9 NIL 1880693 NIL) (-881 1872372 1873106 1873917 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-880 1871700 1871892 1871920 "PSCURVE" 1872185 PSCURVE (NIL) -9 NIL 1872349 NIL) (-879 1867390 1869148 1869212 "PSCAT" 1870047 PSCAT (NIL T T T) -9 NIL 1870286 NIL) (-878 1866704 1866986 1867385 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-877 1865133 1866016 1866279 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-876 1864624 1864927 1865018 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-875 1855644 1858066 1860254 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-874 1853399 1854976 1855016 "PRQAGG" 1855199 PRQAGG (NIL T) -9 NIL 1855300 NIL) (-873 1852584 1853030 1853058 "PROPLOG" 1853197 PROPLOG (NIL) -9 NIL 1853311 NIL) (-872 1852259 1852322 1852445 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-871 1851698 1851836 1852007 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-870 1849946 1850709 1851006 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-869 1849498 1849630 1849758 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-868 1844154 1848438 1849258 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-867 1843983 1844021 1844080 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-866 1843422 1843562 1843713 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-865 1841890 1842309 1842775 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-864 1841610 1841670 1841698 "PRIMCAT" 1841821 PRIMCAT (NIL) -9 NIL NIL NIL) (-863 1840781 1840977 1841205 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-862 1836659 1840731 1840776 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-861 1836358 1836420 1836531 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-860 1833558 1836007 1836240 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-859 1833015 1833170 1833198 "PPCURVE" 1833401 PPCURVE (NIL) -9 NIL 1833535 NIL) (-858 1832628 1832873 1832956 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-857 1830384 1830805 1831397 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-856 1829827 1829891 1830124 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-855 1826547 1827033 1827644 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-854 1812229 1818293 1818357 "POLYCAT" 1821842 POLYCAT (NIL T T T) -9 NIL 1823719 NIL) (-853 1807739 1809886 1812224 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-852 1807396 1807470 1807589 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-851 1807089 1807152 1807259 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-850 1800516 1806822 1806981 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-849 1799403 1799666 1799942 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-848 1798007 1798320 1798650 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-847 1793169 1797957 1798002 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-846 1791657 1792068 1792443 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-845 1790414 1790723 1791119 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-844 1790085 1790169 1790286 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-843 1789664 1789739 1789913 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-842 1789150 1789246 1789406 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-841 1788622 1788742 1788896 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-840 1787517 1787735 1788112 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-839 1787128 1787213 1787365 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-838 1786679 1786761 1786942 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-837 1786371 1786452 1786565 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-836 1785884 1785959 1786167 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-835 1785232 1785360 1785562 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-834 1784594 1784728 1784891 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-833 1783898 1784080 1784261 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-832 1783624 1783697 1783790 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-831 1780235 1781405 1782305 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-830 1779328 1779526 1779758 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-829 1774951 1776312 1777433 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-828 1754872 1759759 1764606 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-827 1754612 1754665 1754768 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-826 1754053 1754187 1754367 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-825 1752150 1753309 1753337 "PID" 1753534 PID (NIL) -9 NIL 1753661 NIL) (-824 1751938 1751981 1752056 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-823 1751125 1751785 1751872 "PI" NIL PI (NIL) -8 NIL NIL 1751912) (-822 1750577 1750728 1750904 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-821 1746905 1747863 1748768 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-820 1745269 1745558 1745924 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-819 1744711 1744826 1744987 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-818 1741316 1743580 1743933 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-817 1739922 1740202 1740527 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-816 1738687 1738941 1739289 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-815 1737397 1737624 1737976 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-814 1734495 1735993 1736021 "PFECAT" 1736614 PFECAT (NIL) -9 NIL 1736991 NIL) (-813 1734118 1734283 1734490 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-812 1732942 1733224 1733525 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-811 1731124 1731511 1731941 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-810 1727158 1731050 1731119 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-809 1723085 1724224 1725083 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-808 1721035 1722122 1722163 "PERMCAT" 1722560 PERMCAT (NIL T) -9 NIL 1722855 NIL) (-807 1720731 1720778 1720901 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-806 1717185 1718863 1719507 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-805 1714650 1716940 1717061 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-804 1713531 1713794 1713835 "PDSPC" 1714368 PDSPC (NIL T) -9 NIL 1714613 NIL) (-803 1712898 1713164 1713526 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-802 1711621 1712552 1712593 "PDRING" 1712598 PDRING (NIL T) -9 NIL 1712625 NIL) (-801 1710374 1711132 1711185 "PDMOD" 1711190 PDMOD (NIL T T) -9 NIL 1711293 NIL) (-800 1709467 1709679 1709928 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-799 1709084 1709151 1709205 "PDDOM" 1709370 PDDOM (NIL T T) -9 NIL 1709450 NIL) (-798 1708936 1708972 1709079 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-797 1708722 1708761 1708850 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-796 1707039 1707793 1708092 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-795 1706728 1706791 1706900 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-794 1704866 1705296 1705747 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-793 1698486 1700315 1701607 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-792 1698117 1698190 1698322 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-791 1695819 1696499 1696980 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-790 1694023 1694451 1694854 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-789 1693481 1693729 1693770 "PATMAB" 1693877 PATMAB (NIL T) -9 NIL 1693960 NIL) (-788 1692128 1692532 1692789 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-787 1691666 1691797 1691838 "PATAB" 1691843 PATAB (NIL T) -9 NIL 1692015 NIL) (-786 1690209 1690646 1691069 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-785 1689887 1689962 1690064 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-784 1689576 1689639 1689748 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-783 1689381 1689427 1689494 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-782 1689059 1689134 1689236 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-781 1688748 1688811 1688920 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-780 1688439 1688509 1688606 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-779 1688128 1688191 1688300 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-778 1687289 1687668 1687847 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-777 1686896 1686994 1687113 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-776 1685864 1686289 1686508 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-775 1684529 1685183 1685543 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-774 1677683 1683933 1684127 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-773 1670168 1677181 1677365 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-772 1666981 1668834 1668874 "PADICCT" 1669455 PADICCT (NIL NIL) -9 NIL 1669737 NIL) (-771 1665035 1666931 1666976 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-770 1664197 1664407 1664673 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-769 1663539 1663682 1663886 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-768 1661984 1662947 1663225 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-767 1661508 1661767 1661864 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-766 1660567 1661245 1661417 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-765 1650989 1653858 1656057 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-764 1650383 1650695 1650821 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-763 1649666 1649859 1649887 "OUTBCON" 1650203 OUTBCON (NIL) -9 NIL 1650367 NIL) (-762 1649374 1649504 1649661 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-761 1648755 1648900 1649061 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-760 1648126 1648553 1648642 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-759 1647553 1647968 1647996 "OSGROUP" 1648001 OSGROUP (NIL) -9 NIL 1648023 NIL) (-758 1646517 1646778 1647063 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-757 1643850 1646392 1646512 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-756 1641055 1643601 1643727 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-755 1639073 1639601 1640161 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-754 1632503 1634981 1635021 "OREPCAT" 1637342 OREPCAT (NIL T) -9 NIL 1638444 NIL) (-753 1630529 1631463 1632498 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-752 1629738 1630009 1630037 "ORDTYPE" 1630342 ORDTYPE (NIL) -9 NIL 1630500 NIL) (-751 1629272 1629483 1629733 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-750 1628734 1629110 1629267 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-749 1628240 1628603 1628631 "ORDSET" 1628636 ORDSET (NIL) -9 NIL 1628658 NIL) (-748 1626906 1627866 1627894 "ORDRING" 1627899 ORDRING (NIL) -9 NIL 1627927 NIL) (-747 1626166 1626723 1626751 "ORDMON" 1626756 ORDMON (NIL) -9 NIL 1626777 NIL) (-746 1625470 1625632 1625824 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-745 1624693 1625201 1625229 "ORDFIN" 1625294 ORDFIN (NIL) -9 NIL 1625368 NIL) (-744 1624087 1624226 1624412 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-743 1620861 1623055 1623461 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-742 1620268 1620623 1620728 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-741 1620076 1620121 1620187 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-740 1619389 1619665 1619706 "OPERCAT" 1619917 OPERCAT (NIL T) -9 NIL 1620013 NIL) (-739 1619201 1619268 1619384 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-738 1616631 1618003 1618499 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-737 1616052 1616179 1616353 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-736 1613052 1615191 1615557 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-735 1609695 1612494 1612534 "OMSAGG" 1612595 OMSAGG (NIL T) -9 NIL 1612659 NIL) (-734 1608171 1609366 1609534 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-733 1606468 1607647 1607675 "OINTDOM" 1607680 OINTDOM (NIL) -9 NIL 1607701 NIL) (-732 1603898 1605470 1605799 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-731 1603152 1603848 1603893 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-730 1600418 1602993 1603147 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-729 1592019 1600289 1600413 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-728 1585529 1591910 1592014 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-727 1584501 1584738 1585011 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-726 1582135 1582805 1583509 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-725 1577912 1578872 1579895 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-724 1577420 1577508 1577702 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-723 1574869 1575451 1576124 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-722 1572264 1572772 1573368 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-721 1569261 1569800 1570446 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-720 1568616 1568724 1568982 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-719 1567774 1567899 1568120 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-718 1564058 1564854 1565767 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-717 1563498 1563593 1563815 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-716 1563179 1563228 1563355 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-715 1559846 1562978 1563097 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-714 1559049 1559640 1559668 "OCAMON" 1559673 OCAMON (NIL) -9 NIL 1559694 NIL) (-713 1553352 1556101 1556141 "OC" 1557236 OC (NIL T) -9 NIL 1558092 NIL) (-712 1551352 1552278 1553258 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-711 1550780 1551198 1551226 "OASGP" 1551231 OASGP (NIL) -9 NIL 1551251 NIL) (-710 1549886 1550504 1550532 "OAMONS" 1550572 OAMONS (NIL) -9 NIL 1550615 NIL) (-709 1549074 1549624 1549652 "OAMON" 1549709 OAMON (NIL) -9 NIL 1549760 NIL) (-708 1548970 1549002 1549069 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-707 1547764 1548507 1548535 "OAGROUP" 1548681 OAGROUP (NIL) -9 NIL 1548773 NIL) (-706 1547555 1547642 1547759 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-705 1547295 1547351 1547439 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-704 1542357 1543920 1545447 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-703 1539052 1540086 1541121 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-702 1538162 1538395 1538613 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-701 1527023 1530051 1532499 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-700 1520922 1526476 1526570 "NTSCAT" 1526575 NTSCAT (NIL T T T T) -9 NIL 1526613 NIL) (-699 1520263 1520442 1520635 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-698 1519956 1520019 1520126 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-697 1507687 1517576 1518386 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-696 1496760 1507552 1507682 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-695 1495480 1495805 1496162 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-694 1494316 1494580 1494938 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-693 1493483 1493616 1493832 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-692 1491801 1492120 1492526 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-691 1491514 1491548 1491672 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-690 1491333 1491368 1491437 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-689 1491109 1491299 1491328 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-688 1490673 1490740 1490917 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-687 1488991 1490036 1490291 "NNI" NIL NNI (NIL) -8 NIL NIL 1490638) (-686 1487719 1488056 1488420 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-685 1486696 1486948 1487250 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-684 1485786 1486348 1486389 "NETCLT" 1486560 NETCLT (NIL T) -9 NIL 1486641 NIL) (-683 1484690 1484957 1485238 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-682 1484489 1484532 1484607 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-681 1483020 1483408 1483828 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-680 1481696 1482631 1482659 "NASRING" 1482769 NASRING (NIL) -9 NIL 1482849 NIL) (-679 1481541 1481597 1481691 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-678 1480513 1481160 1481188 "NARNG" 1481305 NARNG (NIL) -9 NIL 1481396 NIL) (-677 1480289 1480374 1480508 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-676 1479098 1479821 1479861 "NAALG" 1479940 NAALG (NIL T) -9 NIL 1480001 NIL) (-675 1478968 1479003 1479093 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-674 1473947 1475132 1476318 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-673 1473342 1473429 1473613 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-672 1465443 1469872 1469924 "MTSCAT" 1470984 MTSCAT (NIL T T) -9 NIL 1471498 NIL) (-671 1465209 1465269 1465361 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-670 1465035 1465074 1465134 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-669 1461909 1464598 1464639 "MSETAGG" 1464644 MSETAGG (NIL T) -9 NIL 1464678 NIL) (-668 1458046 1460955 1461273 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-667 1454384 1456143 1456883 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-666 1454021 1454094 1454223 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-665 1453674 1453715 1453859 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-664 1451539 1451876 1452307 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-663 1445001 1451438 1451534 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-662 1444526 1444567 1444775 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-661 1444085 1444134 1444317 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-660 1443359 1443452 1443671 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-659 1441976 1442337 1442727 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-658 1441130 1441509 1441537 "MONOID" 1441755 MONOID (NIL) -9 NIL 1441899 NIL) (-657 1440789 1440939 1441125 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-656 1429815 1436623 1436682 "MONOGEN" 1437356 MONOGEN (NIL T T) -9 NIL 1437812 NIL) (-655 1427827 1428713 1429696 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-654 1426553 1427097 1427125 "MONADWU" 1427516 MONADWU (NIL) -9 NIL 1427751 NIL) (-653 1426101 1426301 1426548 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-652 1425390 1425691 1425719 "MONAD" 1425926 MONAD (NIL) -9 NIL 1426038 NIL) (-651 1425157 1425253 1425385 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-650 1423547 1424317 1424596 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-649 1422724 1423220 1423260 "MODULE" 1423265 MODULE (NIL T) -9 NIL 1423303 NIL) (-648 1422403 1422529 1422719 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-647 1420178 1421000 1421314 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-646 1417421 1418774 1419287 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-645 1416055 1416629 1416905 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-644 1405338 1414720 1415133 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-643 1402358 1404338 1404607 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-642 1401442 1401809 1401999 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-641 1401011 1401060 1401239 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-640 1398924 1399858 1399898 "MLO" 1400315 MLO (NIL T) -9 NIL 1400555 NIL) (-639 1396805 1397332 1397927 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-638 1396273 1396369 1396523 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-637 1395943 1396019 1396142 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-636 1395155 1395341 1395569 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-635 1394648 1394764 1394920 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-634 1394020 1394134 1394319 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-633 1393047 1393320 1393597 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-632 1392480 1392568 1392739 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-631 1389661 1390531 1391401 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-630 1388328 1388676 1389029 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-629 1384997 1387464 1387505 "MDAGG" 1387762 MDAGG (NIL T) -9 NIL 1387907 NIL) (-628 1384271 1384435 1384635 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-627 1383349 1383635 1383865 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-626 1381446 1382023 1382584 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-625 1377217 1381036 1381283 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-624 1373566 1374335 1375069 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-623 1372319 1372488 1372817 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-622 1361844 1365433 1365509 "MATCAT" 1370497 MATCAT (NIL T T T) -9 NIL 1371965 NIL) (-621 1359125 1360431 1361839 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-620 1357526 1357886 1358270 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-619 1356659 1356856 1357078 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-618 1355410 1355736 1356063 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-617 1354572 1354974 1355150 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-616 1354241 1354305 1354428 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-615 1353889 1353962 1354076 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-614 1353424 1353539 1353681 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-613 1351633 1352401 1352702 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-612 1351127 1351429 1351519 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-611 1344648 1349454 1349495 "LZSTAGG" 1350272 LZSTAGG (NIL T) -9 NIL 1350562 NIL) (-610 1341767 1343201 1344643 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-609 1339154 1340120 1340603 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-608 1338735 1339014 1339088 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-607 1330963 1338596 1338730 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-606 1330326 1330471 1330699 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-605 1327810 1328508 1329220 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-604 1325922 1326245 1326693 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-603 1319103 1325021 1325062 "LSAGG" 1325124 LSAGG (NIL T) -9 NIL 1325202 NIL) (-602 1316797 1317896 1319098 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-601 1314309 1316146 1316395 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-600 1313976 1314067 1314190 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-599 1313659 1313738 1313766 "LOGIC" 1313877 LOGIC (NIL) -9 NIL 1313959 NIL) (-598 1313554 1313583 1313654 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-597 1312873 1313031 1313224 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-596 1311658 1311907 1312258 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-595 1307570 1310305 1310345 "LODOCAT" 1310777 LODOCAT (NIL T) -9 NIL 1310988 NIL) (-594 1307363 1307439 1307565 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-593 1304427 1307240 1307358 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-592 1301589 1304377 1304422 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-591 1298740 1301519 1301584 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-590 1297793 1297968 1298270 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-589 1295957 1297055 1297308 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-588 1291064 1294128 1294169 "LNAGG" 1295031 LNAGG (NIL T) -9 NIL 1295466 NIL) (-587 1290451 1290718 1291059 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-586 1287023 1287964 1288601 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-585 1286328 1286802 1286842 "LMODULE" 1286847 LMODULE (NIL T) -9 NIL 1286873 NIL) (-584 1283507 1286065 1286187 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-583 1283087 1283298 1283339 "LLINSET" 1283400 LLINSET (NIL T) -9 NIL 1283444 NIL) (-582 1282763 1283023 1283082 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-581 1282362 1282442 1282581 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-580 1280813 1281161 1281560 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-579 1279984 1280180 1280408 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-578 1273031 1279240 1279494 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-577 1272620 1272853 1272894 "LINSET" 1272899 LINSET (NIL T) -9 NIL 1272932 NIL) (-576 1271553 1272243 1272410 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-575 1269862 1270586 1270626 "LINEXP" 1271112 LINEXP (NIL T) -9 NIL 1271385 NIL) (-574 1268571 1269471 1269652 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-573 1267398 1267670 1267972 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-572 1266611 1267200 1267310 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-571 1264161 1264883 1265633 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-570 1262791 1263088 1263479 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-569 1261627 1262198 1262238 "LIECAT" 1262378 LIECAT (NIL T) -9 NIL 1262529 NIL) (-568 1261501 1261534 1261622 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-567 1255789 1261191 1261419 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-566 1248138 1255465 1255621 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-565 1244590 1245539 1246474 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-564 1243215 1244122 1244150 "LFCAT" 1244357 LFCAT (NIL) -9 NIL 1244496 NIL) (-563 1241457 1241786 1242130 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-562 1238974 1239639 1240320 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-561 1235986 1236964 1237467 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-560 1235477 1235780 1235871 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-559 1234184 1234508 1234908 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-558 1233450 1233535 1233761 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-557 1228517 1232018 1232554 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-556 1228142 1228192 1228352 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-555 1227001 1227712 1227752 "LALG" 1227813 LALG (NIL T) -9 NIL 1227871 NIL) (-554 1226784 1226861 1226996 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-553 1224701 1226052 1226303 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-552 1224530 1224560 1224601 "KVTFROM" 1224663 KVTFROM (NIL T) -9 NIL NIL NIL) (-551 1223465 1224068 1224250 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-550 1223294 1223324 1223365 "KRCFROM" 1223427 KRCFROM (NIL T) -9 NIL NIL NIL) (-549 1222396 1222593 1222888 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-548 1222225 1222255 1222296 "KONVERT" 1222358 KONVERT (NIL T) -9 NIL NIL NIL) (-547 1222054 1222084 1222125 "KOERCE" 1222187 KOERCE (NIL T) -9 NIL NIL NIL) (-546 1221624 1221717 1221849 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-545 1219677 1220571 1220943 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-544 1212866 1217881 1217935 "KDAGG" 1218311 KDAGG (NIL T T) -9 NIL 1218518 NIL) (-543 1212514 1212656 1212861 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-542 1205344 1212295 1212452 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-541 1204997 1205277 1205339 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-540 1203967 1204466 1204715 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-539 1203093 1203542 1203747 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-538 1201959 1202450 1202749 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-537 1201241 1201640 1201801 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-536 1200954 1201188 1201236 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-535 1195241 1200644 1200872 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-534 1194659 1194992 1195112 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-533 1190833 1192848 1192902 "IXAGG" 1193829 IXAGG (NIL T T) -9 NIL 1194286 NIL) (-532 1190039 1190410 1190828 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-531 1185293 1189975 1190034 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-530 1184260 1184535 1184798 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-529 1182922 1183129 1183422 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-528 1181873 1182095 1182378 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-527 1181548 1181611 1181734 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-526 1180810 1181182 1181356 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-525 1178850 1180086 1180360 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-524 1168462 1174167 1175324 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-523 1167710 1167861 1168096 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-522 1167201 1167504 1167595 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-521 1166494 1166585 1166798 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-520 1165626 1165851 1166091 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-519 1164039 1164420 1164848 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-518 1163824 1163868 1163944 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-517 1162674 1162971 1163266 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-516 1161947 1162298 1162449 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-515 1161150 1161281 1161494 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-514 1159305 1159802 1160346 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-513 1156418 1157654 1158343 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-512 1156243 1156283 1156343 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-511 1152305 1156169 1156238 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-510 1150372 1152244 1152300 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-509 1149746 1150044 1150173 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-508 1149199 1149487 1149619 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-507 1148283 1148905 1149031 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-506 1147696 1148187 1148215 "IOBCON" 1148220 IOBCON (NIL) -9 NIL 1148241 NIL) (-505 1147267 1147331 1147513 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-504 1139311 1141682 1144007 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-503 1136422 1137205 1138069 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-502 1136099 1136196 1136313 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-501 1133605 1136035 1136094 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-500 1131717 1132246 1132813 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-499 1131219 1131333 1131473 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-498 1129603 1130009 1130471 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-497 1127382 1127976 1128587 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-496 1124755 1125365 1126085 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-495 1124159 1124317 1124525 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-494 1123678 1123764 1123952 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-493 1121883 1122404 1122861 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-492 1114965 1116618 1118347 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-491 1114331 1114493 1114666 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-490 1112204 1112668 1113212 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-489 1110418 1111306 1111334 "INTDOM" 1111633 INTDOM (NIL) -9 NIL 1111838 NIL) (-488 1109971 1110173 1110413 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-487 1105869 1108276 1108330 "INTCAT" 1109126 INTCAT (NIL T) -9 NIL 1109442 NIL) (-486 1105434 1105554 1105681 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-485 1104274 1104446 1104752 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-484 1103847 1103943 1104100 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-483 1096887 1103702 1103842 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-482 1096185 1096740 1096805 "INT8" NIL INT8 (NIL) -8 NIL NIL 1096839) (-481 1095482 1096037 1096102 "INT64" NIL INT64 (NIL) -8 NIL NIL 1096136) (-480 1094779 1095334 1095399 "INT32" NIL INT32 (NIL) -8 NIL NIL 1095433) (-479 1094076 1094631 1094696 "INT16" NIL INT16 (NIL) -8 NIL NIL 1094730) (-478 1090603 1093995 1094071 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-477 1084751 1088169 1088197 "INS" 1089127 INS (NIL) -9 NIL 1089786 NIL) (-476 1082813 1083731 1084678 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-475 1081872 1082095 1082370 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-474 1081086 1081227 1081424 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-473 1080076 1080217 1080454 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-472 1079228 1079392 1079652 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-471 1078508 1078623 1078811 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-470 1077247 1077516 1077840 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-469 1076527 1076668 1076851 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-468 1076190 1076262 1076360 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-467 1073268 1074754 1075277 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-466 1072867 1072974 1073088 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-465 1072026 1072668 1072769 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-464 1070876 1071144 1071465 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-463 1069948 1070806 1070871 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-462 1069573 1069653 1069770 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-461 1068488 1069032 1069236 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-460 1064583 1065638 1066581 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-459 1063440 1063762 1063790 "INBCON" 1064302 INBCON (NIL) -9 NIL 1064567 NIL) (-458 1062894 1063159 1063435 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-457 1062388 1062690 1062780 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-456 1061845 1062154 1062259 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-455 1057945 1061737 1061840 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-454 1056785 1056924 1057239 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-453 1055209 1055476 1055813 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-452 1053025 1055091 1055204 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-451 1047932 1052956 1053020 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-450 1047312 1047646 1047761 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-449 1042119 1046750 1046936 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-448 1041181 1042041 1042114 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-447 1040753 1040830 1040884 "IEVALAB" 1041091 IEVALAB (NIL T T) -9 NIL NIL NIL) (-446 1040508 1040588 1040748 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-445 1039581 1040428 1040503 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-444 1038723 1039501 1039576 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-443 1038126 1038657 1038718 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-442 1036618 1037142 1037193 "IDPC" 1037699 IDPC (NIL T T) -9 NIL 1037979 NIL) (-441 1035984 1036540 1036613 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-440 1035233 1035906 1035979 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-439 1034926 1035139 1035199 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-438 1031997 1032878 1033770 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-437 1025623 1026900 1027939 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-436 1024885 1025015 1025214 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-435 1024058 1024557 1024695 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-434 1022447 1022778 1023169 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-433 1018216 1022403 1022442 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-432 1015474 1016098 1016793 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-431 1013700 1014180 1014713 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-430 1011464 1013592 1013695 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-429 1007333 1011402 1011459 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-428 1000976 1006297 1006765 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-427 1000544 1000607 1000780 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-426 1000036 1000185 1000213 "HYPCAT" 1000420 HYPCAT (NIL) -9 NIL NIL NIL) (-425 999692 999845 1000031 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-424 999305 999550 999633 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-423 999138 999187 999228 "HOMOTOP" 999233 HOMOTOP (NIL T) -9 NIL 999266 NIL) (-422 995718 997092 997133 "HOAGG" 998108 HOAGG (NIL T) -9 NIL 998829 NIL) (-421 994724 995194 995713 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-420 987988 994449 994597 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-419 986923 987181 987444 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-418 985890 986788 986918 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-417 984084 985723 985811 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-416 983399 983751 983884 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-415 976952 983332 983394 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-414 970155 976688 976839 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-413 969608 969765 969928 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-412 962691 969499 969603 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-411 962182 962485 962576 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-410 959796 961969 962148 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-409 955189 959679 959791 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-408 948275 955086 955184 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-407 940276 947644 947899 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-406 939312 939821 939849 "GROUP" 940052 GROUP (NIL) -9 NIL 940186 NIL) (-405 938855 939056 939307 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-404 937527 937866 938253 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-403 936361 936718 936769 "GRMOD" 937298 GRMOD (NIL T T) -9 NIL 937464 NIL) (-402 936180 936228 936356 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-401 932311 933519 934516 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-400 931033 931357 931672 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-399 930586 930714 930855 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-398 929671 930170 930221 "GRALG" 930374 GRALG (NIL T T) -9 NIL 930464 NIL) (-397 929390 929491 929666 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-396 926107 929072 929248 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-395 925520 925583 925840 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-394 921406 922270 922795 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-393 920581 920783 921021 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-392 915584 916511 917530 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-391 915332 915389 915478 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-390 914814 914903 915068 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-389 914323 914364 914577 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-388 913124 913407 913711 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-387 906463 912814 912975 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-386 896278 901253 902357 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-385 894418 895459 895487 "GCDDOM" 895742 GCDDOM (NIL) -9 NIL 895899 NIL) (-384 894041 894198 894413 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-383 884834 887304 889692 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-382 882969 883294 883712 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-381 881910 882099 882366 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-380 880781 880988 881292 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-379 880244 880386 880534 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-378 878856 879204 879517 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-377 877401 877722 878044 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-376 875027 875383 875788 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-375 868282 869942 871519 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-374 867934 868155 868223 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-373 867558 867779 867860 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-372 865655 866338 866798 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-371 864248 864555 864947 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-370 862903 863262 863586 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-369 862206 862330 862517 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-368 861180 861446 861793 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-367 858838 859368 859850 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-366 858421 858481 858650 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-365 856785 857635 857938 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-364 855933 856067 856290 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-363 855104 855265 855492 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-362 851099 854050 854091 "FSAGG" 854461 FSAGG (NIL T) -9 NIL 854720 NIL) (-361 849453 850212 851004 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-360 847409 847705 848249 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-359 846456 846638 846938 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-358 846137 846186 846313 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-357 826517 835919 835960 "FS" 839830 FS (NIL T) -9 NIL 842108 NIL) (-356 818748 822241 826220 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-355 818282 818409 818561 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-354 812848 815975 816015 "FRNAALG" 817335 FRNAALG (NIL T) -9 NIL 817933 NIL) (-353 809589 810840 812098 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-352 809270 809319 809446 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-351 807757 808314 808608 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-350 807043 807136 807423 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-349 804877 805643 805959 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-348 803986 804429 804470 "FRETRCT" 804475 FRETRCT (NIL T) -9 NIL 804646 NIL) (-347 803359 803637 803981 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-346 800191 801649 801708 "FRAMALG" 802590 FRAMALG (NIL T T) -9 NIL 802882 NIL) (-345 798787 799338 799968 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-344 798480 798543 798650 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-343 792185 798285 798475 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-342 791878 791941 792048 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-341 784250 788757 790085 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-340 778116 781557 781585 "FPS" 782704 FPS (NIL) -9 NIL 783260 NIL) (-339 777673 777806 777970 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-338 774572 776552 776580 "FPC" 776805 FPC (NIL) -9 NIL 776947 NIL) (-337 774418 774470 774567 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-336 773207 773916 773957 "FPATMAB" 773962 FPATMAB (NIL T) -9 NIL 774114 NIL) (-335 771637 772233 772580 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-334 771212 771270 771443 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-333 769747 770610 770784 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-332 768374 768879 768907 "FNCAT" 769364 FNCAT (NIL) -9 NIL 769621 NIL) (-331 767831 768341 768369 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-330 766418 767780 767826 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-329 763018 764376 764417 "FMONCAT" 765634 FMONCAT (NIL T) -9 NIL 766238 NIL) (-328 759919 760966 761019 "FMCAT" 762200 FMCAT (NIL T T) -9 NIL 762692 NIL) (-327 758651 759742 759841 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-326 757779 758499 758646 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-325 755966 756418 756912 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-324 753901 754437 755015 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-323 747351 752238 752852 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-322 745875 746945 746985 "FLINEXP" 746990 FLINEXP (NIL T) -9 NIL 747083 NIL) (-321 745284 745543 745870 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-320 744499 744658 744879 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-319 741425 742473 742525 "FLALG" 743752 FLALG (NIL T T) -9 NIL 744219 NIL) (-318 740596 740757 740984 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-317 734017 738027 738068 "FLAGG" 739323 FLAGG (NIL T) -9 NIL 739968 NIL) (-316 733125 733529 734012 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-315 729774 730976 731035 "FINRALG" 732163 FINRALG (NIL T T) -9 NIL 732671 NIL) (-314 729165 729430 729769 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-313 728475 728771 728799 "FINITE" 728995 FINITE (NIL) -9 NIL 729102 NIL) (-312 720479 723039 723079 "FINAALG" 726731 FINAALG (NIL T) -9 NIL 728169 NIL) (-311 716746 717991 719114 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-310 715310 715729 715783 "FILECAT" 716467 FILECAT (NIL T T) -9 NIL 716683 NIL) (-309 714661 715135 715238 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-308 711997 713813 713841 "FIELD" 713881 FIELD (NIL) -9 NIL 713961 NIL) (-307 711022 711483 711992 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-306 709026 709972 710318 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-305 708269 708450 708669 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-304 703603 708207 708264 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-303 703265 703332 703467 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-302 702805 702847 703056 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-301 699485 700362 701139 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-300 694833 699417 699480 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-299 689576 694322 694512 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-298 684121 688857 689115 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-297 678392 683572 683783 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-296 677415 677625 677940 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-295 672944 675586 675614 "FFIELDC" 676233 FFIELDC (NIL) -9 NIL 676608 NIL) (-294 672013 672453 672939 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-293 671628 671686 671810 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-292 669772 670295 670812 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-291 664930 669571 669672 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-290 660094 664719 664826 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-289 654824 659885 659993 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-288 654278 654327 654562 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-287 632941 643913 643999 "FFCAT" 649149 FFCAT (NIL T T T) -9 NIL 650585 NIL) (-286 629181 630407 631713 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-285 624088 629112 629176 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-284 623016 623485 623526 "FEVALAB" 623610 FEVALAB (NIL T) -9 NIL 623871 NIL) (-283 622421 622673 623011 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-282 619291 620171 620286 "FDIVCAT" 621853 FDIVCAT (NIL T T T T) -9 NIL 622289 NIL) (-281 619085 619117 619286 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-280 618392 618485 618762 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-279 616910 617876 618079 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-278 616003 616387 616589 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-277 615125 615614 615754 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-276 606800 611381 611421 "FAXF" 613222 FAXF (NIL T) -9 NIL 613912 NIL) (-275 604716 605520 606335 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-274 599580 604238 604412 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-273 594129 596487 596539 "FAMR" 597550 FAMR (NIL T T) -9 NIL 598009 NIL) (-272 593328 593693 594124 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-271 592381 593270 593323 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-270 590018 590866 590919 "FAMONC" 591860 FAMONC (NIL T T) -9 NIL 592245 NIL) (-269 588606 589876 590013 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-268 586686 587047 587449 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-267 585963 586160 586382 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-266 577887 585410 585609 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-265 575918 576484 577066 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-264 572820 573462 574182 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-263 567977 568684 569489 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-262 567666 567729 567838 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-261 552619 566715 567141 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-260 543210 551939 552227 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-259 542704 543006 543096 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-258 542480 542670 542699 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-257 542169 542237 542350 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-256 541686 541828 541869 "EVALAB" 542039 EVALAB (NIL T) -9 NIL 542143 NIL) (-255 541314 541460 541681 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-254 538445 539978 540006 "EUCDOM" 540560 EUCDOM (NIL) -9 NIL 540909 NIL) (-253 537372 537865 538440 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-252 537097 537153 537253 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-251 536785 536849 536958 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-250 530568 532468 532496 "ES" 535238 ES (NIL) -9 NIL 536622 NIL) (-249 527083 528615 530407 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-248 526431 526584 526760 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-247 519520 526335 526426 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-246 519209 519272 519381 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-245 512935 515961 517394 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-244 509238 510334 511427 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-243 508067 508417 508722 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-242 507040 507709 507737 "ENTIRER" 507742 ENTIRER (NIL) -9 NIL 507786 NIL) (-241 503737 505470 505819 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-240 502841 503052 503106 "ELTAGG" 503486 ELTAGG (NIL T T) -9 NIL 503697 NIL) (-239 502621 502695 502836 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-238 502379 502414 502468 "ELTAB" 502552 ELTAB (NIL T T) -9 NIL 502604 NIL) (-237 501630 501800 501999 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-236 501354 501428 501456 "ELEMFUN" 501561 ELEMFUN (NIL) -9 NIL NIL NIL) (-235 501254 501281 501349 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-234 495812 499307 499348 "ELAGG" 500285 ELAGG (NIL T) -9 NIL 500745 NIL) (-233 494610 495148 495807 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-232 494028 494195 494351 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-231 492941 493260 493539 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-230 486334 488332 489159 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-229 480313 482309 483119 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-228 478127 478533 479004 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-227 469127 471040 472581 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-226 468240 468741 468890 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-225 466950 467624 467664 "DVARCAT" 467947 DVARCAT (NIL T) -9 NIL 468087 NIL) (-224 466369 466633 466945 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-223 458500 466237 466364 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-222 456850 457641 457682 "DSEXT" 458045 DSEXT (NIL T) -9 NIL 458339 NIL) (-221 455655 456179 456845 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-220 455379 455444 455542 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-219 451535 452749 453878 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-218 447193 448544 449604 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-217 445868 446229 446615 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-216 445560 445617 445733 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-215 444545 444839 445125 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-214 444130 444205 444355 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-213 436639 438715 440794 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-212 432220 433215 434270 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-211 428827 430896 430937 "DQAGG" 431566 DQAGG (NIL T) -9 NIL 431839 NIL) (-210 415461 423036 423118 "DPOLCAT" 424955 DPOLCAT (NIL T T T T) -9 NIL 425498 NIL) (-209 411869 413517 415456 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-208 404956 411767 411864 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-207 397952 404785 404951 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-206 397545 397805 397894 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-205 396959 397407 397487 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-204 396245 396570 396721 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-203 389448 395981 396132 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-202 387240 388526 388566 "DMEXT" 388571 DMEXT (NIL T) -9 NIL 388746 NIL) (-201 386896 386958 387102 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-200 380221 386381 386571 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-199 376899 379056 379097 "DLAGG" 379647 DLAGG (NIL T) -9 NIL 379876 NIL) (-198 375338 376147 376175 "DIVRING" 376267 DIVRING (NIL) -9 NIL 376350 NIL) (-197 374789 375033 375333 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-196 373217 373634 374040 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-195 372254 372475 372740 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-194 365827 372186 372249 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-193 354286 360647 360700 "DIRPCAT" 360956 DIRPCAT (NIL NIL T) -9 NIL 361829 NIL) (-192 352292 353062 353949 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-191 351739 351905 352091 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-190 348297 350637 350678 "DIOPS" 351110 DIOPS (NIL T) -9 NIL 351336 NIL) (-189 347957 348101 348292 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-188 346873 347640 347668 "DIFRING" 347673 DIFRING (NIL) -9 NIL 347694 NIL) (-187 346521 346619 346647 "DIFFSPC" 346766 DIFFSPC (NIL) -9 NIL 346841 NIL) (-186 346262 346364 346516 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-185 345208 345802 345842 "DIFFMOD" 345847 DIFFMOD (NIL T) -9 NIL 345944 NIL) (-184 344904 344961 345002 "DIFFDOM" 345123 DIFFDOM (NIL T) -9 NIL 345191 NIL) (-183 344785 344815 344899 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-182 342546 344005 344045 "DIFEXT" 344050 DIFEXT (NIL T) -9 NIL 344202 NIL) (-181 339719 342059 342100 "DIAGG" 342105 DIAGG (NIL T) -9 NIL 342125 NIL) (-180 339275 339465 339714 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-179 334487 338465 338742 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-178 330945 331998 333008 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-177 325559 330099 330426 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-176 324125 324417 324792 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-175 321309 322497 322893 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-174 319029 321140 321229 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-173 318412 318557 318739 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-172 315742 316462 317258 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-171 313857 314313 314873 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-170 313240 313573 313687 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-169 306504 312965 313113 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-168 304424 304934 305438 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-167 304063 304112 304263 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-166 303322 303884 303975 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-165 301346 301788 302148 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-164 300638 300927 301073 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-163 300089 300235 300387 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-162 297451 298244 298971 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-161 296890 297036 297207 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-160 294962 295273 295640 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-159 294519 294774 294875 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-158 293732 294115 294143 "CTORCAT" 294324 CTORCAT (NIL) -9 NIL 294436 NIL) (-157 293435 293569 293727 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-156 292928 293185 293293 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-155 292344 292775 292848 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-154 291803 291920 292073 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-153 288197 288953 289708 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-152 287688 287991 288082 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-151 286907 287116 287344 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-150 286411 286516 286720 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-149 286164 286198 286304 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-148 283103 283865 284583 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-147 282622 282764 282903 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-146 278579 281085 281577 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-145 278453 278480 278508 "CONDUIT" 278545 CONDUIT (NIL) -9 NIL NIL NIL) (-144 277420 278089 278117 "COMRING" 278122 COMRING (NIL) -9 NIL 278172 NIL) (-143 276585 276952 277130 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-142 276281 276322 276450 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-141 275974 276037 276144 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-140 264880 275924 275969 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-139 264341 264480 264640 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-138 264094 264135 264233 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-137 245613 257801 257841 "COMPCAT" 258842 COMPCAT (NIL T) -9 NIL 260184 NIL) (-136 238151 241664 245257 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-135 237910 237944 238046 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-134 237740 237779 237837 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-133 237321 237600 237674 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-132 236898 237139 237226 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-131 236099 236345 236373 "COMBOPC" 236709 COMBOPC (NIL) -9 NIL 236882 NIL) (-130 235163 235415 235657 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-129 232101 232783 233404 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-128 230981 231432 231667 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-127 230472 230775 230866 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-126 230159 230212 230337 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-125 229629 229939 230037 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-124 226191 227247 228313 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-123 224550 225471 225709 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-122 220674 222682 222723 "CLAGG" 223649 CLAGG (NIL T) -9 NIL 224182 NIL) (-121 219567 220094 220669 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-120 219196 219287 219427 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-119 217133 217640 218188 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-118 216182 216851 216879 "CHARZ" 216884 CHARZ (NIL) -9 NIL 216898 NIL) (-117 215976 216022 216100 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-116 214903 215604 215632 "CHARNZ" 215693 CHARNZ (NIL) -9 NIL 215741 NIL) (-115 212381 213478 214001 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-114 212089 212168 212196 "CFCAT" 212307 CFCAT (NIL) -9 NIL NIL NIL) (-113 211432 211561 211743 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-112 207421 210845 211125 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-111 206799 206986 207163 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-110 206327 206746 206794 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-109 205800 206109 206206 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-108 205291 205594 205685 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-107 204540 204700 204921 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-106 200640 201897 202605 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-105 199038 200037 200288 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-104 198619 198898 198972 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-103 198065 198318 198346 "CACHSET" 198478 CACHSET (NIL) -9 NIL 198556 NIL) (-102 197460 197844 197872 "CABMON" 197922 CABMON (NIL) -9 NIL 197978 NIL) (-101 196990 197254 197364 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-100 192323 196649 196819 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-99 191299 192003 192136 "BYTE" NIL BYTE (NIL) -8 NIL NIL 192295) (-98 188774 191070 191174 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-97 186205 188517 188636 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-96 183457 185661 185700 "BTCAT" 185767 BTCAT (NIL T) -9 NIL 185843 NIL) (-95 183208 183306 183452 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-94 178330 182451 182477 "BTAGG" 182588 BTAGG (NIL) -9 NIL 182696 NIL) (-93 177961 178122 178325 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-92 175023 177431 177643 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-91 174293 174445 174623 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-90 170838 173011 173050 "BRAGG" 173691 BRAGG (NIL T) -9 NIL 173948 NIL) (-89 169793 170288 170833 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-88 162391 169298 169479 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-87 160447 162343 162386 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-86 160180 160216 160327 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-85 158419 158852 159300 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-84 154385 155801 156691 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-83 153261 154152 154274 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-82 152859 153016 153042 "BOOLE" 153150 BOOLE (NIL) -9 NIL 153231 NIL) (-81 152652 152733 152854 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-80 151833 152329 152379 "BMODULE" 152384 BMODULE (NIL T T) -9 NIL 152448 NIL) (-79 147450 151690 151759 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-78 146971 147115 147253 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140241 146701 146846 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 137987 139482 139521 "BGAGG" 139777 BGAGG (NIL T) -9 NIL 139914 NIL) (-75 137856 137894 137982 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136707 136908 137193 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133345 135865 136192 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 132942 133035 133061 "BASTYPE" 133232 BASTYPE (NIL) -9 NIL 133328 NIL) (-71 132712 132808 132937 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132227 132315 132465 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131126 131801 131986 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 130852 130857 130883 "ATTREG" 130888 ATTREG (NIL) -9 NIL NIL NIL) (-67 130457 130729 130794 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 129957 130106 130132 "ATRIG" 130333 ATRIG (NIL) -9 NIL NIL NIL) (-65 129812 129865 129952 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129394 129625 129651 "ASTCAT" 129656 ASTCAT (NIL) -9 NIL 129686 NIL) (-63 129193 129270 129389 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127352 129026 129114 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126159 126472 126837 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 123959 126063 126154 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123150 123341 123562 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118737 122881 122995 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 112915 114947 115022 "ARR2CAT" 117652 ARR2CAT (NIL T T T) -9 NIL 118410 NIL) (-56 111292 112062 112910 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110660 111031 111153 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109592 109760 110056 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109293 109347 109465 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108676 108822 108978 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108081 108371 108491 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105713 106810 107133 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105238 105498 105594 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 98997 104300 104742 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94619 96220 96270 "AMR" 97008 AMR (NIL T T) -9 NIL 97605 NIL) (-46 93973 94253 94614 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77153 93907 93968 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73588 76829 76998 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70598 71258 71865 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69977 70090 70274 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66389 67014 67606 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55942 66082 66232 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55259 55413 55591 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54060 54793 54831 "ALGEBRA" 54836 ALGEBRA (NIL T) -9 NIL 54876 NIL) (-37 53846 53923 54055 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33855 51064 51116 "ALAGG" 51254 ALAGG (NIL T T) -9 NIL 51419 NIL) (-35 33355 33504 33530 "AHYP" 33731 AHYP (NIL) -9 NIL NIL NIL) (-34 32663 32844 32870 "AGG" 33151 AGG (NIL) -9 NIL 33338 NIL) (-33 32452 32539 32658 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30591 31051 31451 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30086 30389 30478 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29463 29754 29908 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17112 26326 26364 "ACFS" 26971 ACFS (NIL T) -9 NIL 27210 NIL) (-28 15735 16345 17107 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11378 13692 13718 "ACF" 14597 ACF (NIL) -9 NIL 15009 NIL) (-26 10474 10880 11373 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 9988 10228 10254 "ABELSG" 10346 ABELSG (NIL) -9 NIL 10411 NIL) (-24 9886 9917 9983 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9164 9507 9533 "ABELMON" 9702 ABELMON (NIL) -9 NIL 9811 NIL) (-22 8907 9016 9159 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8162 8614 8640 "ABELGRP" 8712 ABELGRP (NIL) -9 NIL 8787 NIL) (-20 7776 7941 8157 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +NIL +(-13 (-10 -7 (-6 -2274))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 9 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1120) (-988)) (T -1120)) +NIL +((-3699 (((-83)) 18 T ELT)) (-3696 (((-1175) (-579 |#1|) (-579 |#1|)) 22 T ELT) (((-1175) (-579 |#1|)) 23 T ELT)) (-3701 (((-83) |#1| |#1|) 37 (|has| |#1| (-750)) ELT)) (-3698 (((-83) |#1| |#1| (-1 (-83) |#1| |#1|)) 29 T ELT) (((-3 (-83) "failed") |#1| |#1|) 27 T ELT)) (-3700 ((|#1| (-579 |#1|)) 38 (|has| |#1| (-750)) ELT) ((|#1| (-579 |#1|) (-1 (-83) |#1| |#1|)) 32 T ELT)) (-3697 (((-2 (|:| -3213 (-579 |#1|)) (|:| -3212 (-579 |#1|)))) 20 T ELT))) +(((-1121 |#1|) (-10 -7 (-15 -3696 ((-1175) (-579 |#1|))) (-15 -3696 ((-1175) (-579 |#1|) (-579 |#1|))) (-15 -3697 ((-2 (|:| -3213 (-579 |#1|)) (|:| -3212 (-579 |#1|))))) (-15 -3698 ((-3 (-83) "failed") |#1| |#1|)) (-15 -3698 ((-83) |#1| |#1| (-1 (-83) |#1| |#1|))) (-15 -3700 (|#1| (-579 |#1|) (-1 (-83) |#1| |#1|))) (-15 -3699 ((-83))) (IF (|has| |#1| (-750)) (PROGN (-15 -3700 (|#1| (-579 |#1|))) (-15 -3701 ((-83) |#1| |#1|))) |%noBranch|)) (-1006)) (T -1121)) +((-3701 (*1 *2 *3 *3) (-12 (-5 *2 (-83)) (-5 *1 (-1121 *3)) (-4 *3 (-750)) (-4 *3 (-1006)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-1006)) (-4 *2 (-750)) (-5 *1 (-1121 *2)))) (-3699 (*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1121 *3)) (-4 *3 (-1006)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *2)) (-5 *4 (-1 (-83) *2 *2)) (-5 *1 (-1121 *2)) (-4 *2 (-1006)))) (-3698 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *3 (-1006)) (-5 *2 (-83)) (-5 *1 (-1121 *3)))) (-3698 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-83)) (-5 *1 (-1121 *3)) (-4 *3 (-1006)))) (-3697 (*1 *2) (-12 (-5 *2 (-2 (|:| -3213 (-579 *3)) (|:| -3212 (-579 *3)))) (-5 *1 (-1121 *3)) (-4 *3 (-1006)))) (-3696 (*1 *2 *3 *3) (-12 (-5 *3 (-579 *4)) (-4 *4 (-1006)) (-5 *2 (-1175)) (-5 *1 (-1121 *4)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-579 *4)) (-4 *4 (-1006)) (-5 *2 (-1175)) (-5 *1 (-1121 *4))))) +((-3702 (((-1175) (-579 (-1080)) (-579 (-1080))) 14 T ELT) (((-1175) (-579 (-1080))) 12 T ELT)) (-3704 (((-1175)) 16 T ELT)) (-3703 (((-2 (|:| -3212 (-579 (-1080))) (|:| -3213 (-579 (-1080))))) 20 T ELT))) +(((-1122) (-10 -7 (-15 -3702 ((-1175) (-579 (-1080)))) (-15 -3702 ((-1175) (-579 (-1080)) (-579 (-1080)))) (-15 -3703 ((-2 (|:| -3212 (-579 (-1080))) (|:| -3213 (-579 (-1080)))))) (-15 -3704 ((-1175))))) (T -1122)) +((-3704 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1122)))) (-3703 (*1 *2) (-12 (-5 *2 (-2 (|:| -3212 (-579 (-1080))) (|:| -3213 (-579 (-1080))))) (-5 *1 (-1122)))) (-3702 (*1 *2 *3 *3) (-12 (-5 *3 (-579 (-1080))) (-5 *2 (-1175)) (-5 *1 (-1122)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-579 (-1080))) (-5 *2 (-1175)) (-5 *1 (-1122))))) +((-3757 (($ $) 17 T ELT)) (-3705 (((-83) $) 27 T ELT))) +(((-1123 |#1|) (-10 -7 (-15 -3757 (|#1| |#1|)) (-15 -3705 ((-83) |#1|))) (-1124)) (T -1123)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 63 T ELT)) (-3953 (((-342 $) $) 64 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3705 (((-83) $) 65 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3714 (((-342 $) $) 62 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1124) (-111)) (T -1124)) +((-3705 (*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-83)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-342 *1)) (-4 *1 (-1124)))) (-3757 (*1 *1 *1) (-4 *1 (-1124))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-342 *1)) (-4 *1 (-1124))))) +(-13 (-386) (-10 -8 (-15 -3705 ((-83) $)) (-15 -3953 ((-342 $) $)) (-15 -3757 ($ $)) (-15 -3714 ((-342 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-80 $ $) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-242) . T) ((-386) . T) ((-490) . T) ((-584 (-479)) . T) ((-584 $) . T) ((-586 $) . T) ((-578 $) . T) ((-650 $) . T) ((-659) . T) ((-957 $) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-3707 (($ $ $) NIL T ELT)) (-3708 (($ $ $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT))) +(((-1125) (-13 (-746) (-600) (-10 -8 (-15 -3708 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -3706 ($) -3934)))) (T -1125)) +((-3708 (*1 *1 *1 *1) (-5 *1 (-1125))) (-3707 (*1 *1 *1 *1) (-5 *1 (-1125))) (-3706 (*1 *1) (-5 *1 (-1125)))) +((-688) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-3707 (($ $ $) NIL T ELT)) (-3708 (($ $ $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT))) +(((-1126) (-13 (-746) (-600) (-10 -8 (-15 -3708 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -3706 ($) -3934)))) (T -1126)) +((-3708 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3707 (*1 *1 *1 *1) (-5 *1 (-1126))) (-3706 (*1 *1) (-5 *1 (-1126)))) +((-688) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-3707 (($ $ $) NIL T ELT)) (-3708 (($ $ $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT))) +(((-1127) (-13 (-746) (-600) (-10 -8 (-15 -3708 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -3706 ($) -3934)))) (T -1127)) +((-3708 (*1 *1 *1 *1) (-5 *1 (-1127))) (-3707 (*1 *1 *1 *1) (-5 *1 (-1127))) (-3706 (*1 *1) (-5 *1 (-1127)))) +((-688) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-2300 (($ $) NIL T ELT)) (-3120 (((-688)) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2979 (($) NIL T ELT)) (-2516 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2842 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1997 (((-824) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2387 (($ (-824)) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT)) (-3707 (($ $ $) NIL T ELT)) (-3708 (($ $ $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2298 (($ $ $) NIL T ELT)) (-2551 (((-83) $ $) NIL T ELT)) (-2552 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL T ELT)) (-2670 (((-83) $ $) NIL T ELT)) (-2299 (($ $ $) NIL T ELT))) +(((-1128) (-13 (-746) (-600) (-10 -8 (-15 -3708 ($ $ $)) (-15 -3707 ($ $ $)) (-15 -3706 ($) -3934)))) (T -1128)) +((-3708 (*1 *1 *1 *1) (-5 *1 (-1128))) (-3707 (*1 *1 *1 *1) (-5 *1 (-1128))) (-3706 (*1 *1) (-5 *1 (-1128)))) +((-688) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3113 (((-1159 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) 10 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-2050 (($ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-2048 (((-83) $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-3753 (($ $ (-479)) NIL T ELT) (($ $ (-479) (-479)) NIL T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) $) NIL T ELT)) (-3713 (((-1159 |#1| |#2| |#3|) $) NIL T ELT)) (-3710 (((-3 (-1159 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3711 (((-1159 |#1| |#2| |#3|) $) NIL T ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1#) $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-3757 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3605 (((-479) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) ELT)) (-3800 (($ (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|)))) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-1159 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1080) #1#) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-944 (-1080))) (|has| |#1| (-308))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) ELT) (((-3 (-479) #1#) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) ELT)) (-3140 (((-1159 |#1| |#2| |#3|) $) NIL T ELT) (((-1080) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-944 (-1080))) (|has| |#1| (-308))) ELT) (((-344 (-479)) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) ELT) (((-479) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) ELT)) (-3712 (($ $) NIL T ELT) (($ (-479) $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-1159 |#1| |#2| |#3|)) (-626 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-1159 |#1| |#2| |#3|))) (|:| |vec| (-1169 (-1159 |#1| |#2| |#3|)))) (-626 $) (-1169 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-576 (-479))) (|has| |#1| (-308))) ELT) (((-626 (-479)) (-626 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-576 (-479))) (|has| |#1| (-308))) ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3709 (((-344 (-851 |#1|)) $ (-479)) NIL (|has| |#1| (-490)) ELT) (((-344 (-851 |#1|)) $ (-479) (-479)) NIL (|has| |#1| (-490)) ELT)) (-2979 (($) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-478)) (|has| |#1| (-308))) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3170 (((-83) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) ELT)) (-2877 (((-83) $) NIL T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-790 (-324))) (|has| |#1| (-308))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-790 (-479))) (|has| |#1| (-308))) ELT)) (-3754 (((-479) $) NIL T ELT) (((-479) $ (-479)) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2983 (((-1159 |#1| |#2| |#3|) $) NIL (|has| |#1| (-308)) ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3427 (((-628 $) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1056)) (|has| |#1| (-308))) ELT)) (-3171 (((-83) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) ELT)) (-3759 (($ $ (-824)) NIL T ELT)) (-3797 (($ (-1 |#1| (-479)) $) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-479)) 18 T ELT) (($ $ (-987) (-479)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-479))) NIL T ELT)) (-2516 (($ $ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-2842 (($ $ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-308)) ELT)) (-3924 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2267 (((-626 (-1159 |#1| |#2| |#3|)) (-1169 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-1159 |#1| |#2| |#3|))) (|:| |vec| (-1169 (-1159 |#1| |#2| |#3|)))) (-1169 $) $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-576 (-479))) (|has| |#1| (-308))) ELT) (((-626 (-479)) (-1169 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-576 (-479))) (|has| |#1| (-308))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3761 (($ (-479) (-1159 |#1| |#2| |#3|)) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3794 (($ $) 27 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT) (($ $ (-1166 |#2|)) 28 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3428 (($) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-1056)) (|has| |#1| (-308))) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3112 (($ $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-254)) (|has| |#1| (-308))) ELT)) (-3114 (((-1159 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-478)) (|has| |#1| (-308))) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-479)) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-479)))) ELT) (($ $ (-1080) (-1159 |#1| |#2| |#3|)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-448 (-1080) (-1159 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-579 (-1080)) (-579 (-1159 |#1| |#2| |#3|))) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-448 (-1080) (-1159 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-579 (-245 (-1159 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-256 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-245 (-1159 |#1| |#2| |#3|))) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-256 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-256 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT) (($ $ (-579 (-1159 |#1| |#2| |#3|)) (-579 (-1159 |#1| |#2| |#3|))) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-256 (-1159 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-479)) NIL T ELT) (($ $ $) NIL (|has| (-479) (-1016)) ELT) (($ $ (-1159 |#1| |#2| |#3|)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-238 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|))) (|has| |#1| (-308))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) (-688)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1166 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT)) (-2980 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2982 (((-1159 |#1| |#2| |#3|) $) NIL (|has| |#1| (-308)) ELT)) (-3930 (((-479) $) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3954 (((-468) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-549 (-468))) (|has| |#1| (-308))) ELT) (((-324) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-927)) (|has| |#1| (-308))) ELT) (((-177) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-927)) (|has| |#1| (-308))) ELT) (((-794 (-324)) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-549 (-794 (-324)))) (|has| |#1| (-308))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-549 (-794 (-479)))) (|has| |#1| (-308))) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) ELT)) (-2876 (($ $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1159 |#1| |#2| |#3|)) NIL T ELT) (($ (-1166 |#2|)) 24 T ELT) (($ (-1080)) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-944 (-1080))) (|has| |#1| (-308))) ELT) (($ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT) (($ (-344 (-479))) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-944 (-479))) (|has| |#1| (-308))) (|has| |#1| (-38 (-344 (-479))))) ELT)) (-3659 ((|#1| $ (-479)) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-116)) (|has| |#1| (-308))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-3755 ((|#1| $) 11 T ELT)) (-3115 (((-1159 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-478)) (|has| |#1| (-308))) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-815)) (|has| |#1| (-308))) (|has| |#1| (-490))) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-479)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-479)))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3365 (($ $) NIL (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) ELT)) (-2645 (($) 20 T CONST)) (-2651 (($) 15 T CONST)) (-2654 (($ $ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) (-688)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|))) NIL (|has| |#1| (-308)) ELT) (($ $ (-1166 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-188)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-803 (-1080))) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT)) (-2551 (((-83) $ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-2552 (((-83) $ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-2669 (((-83) $ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-2670 (((-83) $ $) NIL (OR (-12 (|has| (-1159 |#1| |#2| |#3|) (-734)) (|has| |#1| (-308))) (-12 (|has| (-1159 |#1| |#2| |#3|) (-750)) (|has| |#1| (-308)))) ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT) (($ (-1159 |#1| |#2| |#3|) (-1159 |#1| |#2| |#3|)) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 22 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1159 |#1| |#2| |#3|)) NIL (|has| |#1| (-308)) ELT) (($ (-1159 |#1| |#2| |#3|) $) NIL (|has| |#1| (-308)) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1129 |#1| |#2| |#3|) (-13 (-1133 |#1| (-1159 |#1| |#2| |#3|)) (-800 $ (-1166 |#2|)) (-10 -8 (-15 -3928 ($ (-1166 |#2|))) (IF (|has| |#1| (-38 (-344 (-479)))) (-15 -3794 ($ $ (-1166 |#2|))) |%noBranch|))) (-955) (-1080) |#1|) (T -1129)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1129 *3 *4 *5)) (-4 *3 (-955)) (-14 *5 *3))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1129 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3)))) +((-3940 (((-1129 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1129 |#1| |#3| |#5|)) 23 T ELT))) +(((-1130 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3940 ((-1129 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1129 |#1| |#3| |#5|)))) (-955) (-955) (-1080) (-1080) |#1| |#2|) (T -1130)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5 *7 *9)) (-4 *5 (-955)) (-4 *6 (-955)) (-14 *7 (-1080)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1129 *6 *8 *10)) (-5 *1 (-1130 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1080))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 (-987)) $) 92 T ELT)) (-3813 (((-1080) $) 126 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 68 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 69 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 71 (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-479)) 121 T ELT) (($ $ (-479) (-479)) 120 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) $) 127 T ELT)) (-3474 (($ $) 160 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 143 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) 188 (|has| |#1| (-308)) ELT)) (-3022 (($ $) 142 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1596 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3472 (($ $) 159 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 144 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|)))) 198 T ELT)) (-3476 (($ $) 158 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 145 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) 22 T CONST)) (-2549 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3941 (($ $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3709 (((-344 (-851 |#1|)) $ (-479)) 196 (|has| |#1| (-490)) ELT) (((-344 (-851 |#1|)) $ (-479) (-479)) 195 (|has| |#1| (-490)) ELT)) (-2548 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 176 (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-2877 (((-83) $) 91 T ELT)) (-3609 (($) 170 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-479) $) 123 T ELT) (((-479) $ (-479)) 122 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 141 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) 124 T ELT)) (-3797 (($ (-1 |#1| (-479)) $) 197 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 185 (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) 79 T ELT)) (-2878 (($ |#1| (-479)) 78 T ELT) (($ $ (-987) (-479)) 94 T ELT) (($ $ (-579 (-987)) (-579 (-479))) 93 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3924 (($ $) 167 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) 82 T ELT)) (-3158 ((|#1| $) 83 T ELT)) (-1879 (($ (-579 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3794 (($ $) 194 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) 193 (OR (-12 (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105)) (|has| |#1| (-38 (-344 (-479))))) (-12 (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-38 (-344 (-479)))))) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 175 (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3714 (((-342 $) $) 186 (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-479)) 118 T ELT)) (-3448 (((-3 $ "failed") $ $) 67 (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 177 (|has| |#1| (-308)) ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-479)))) ELT)) (-1595 (((-688) $) 179 (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-479)) 128 T ELT) (($ $ $) 104 (|has| (-479) (-1016)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1080)) 116 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-579 (-1080))) 114 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080) (-688)) 113 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 112 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-479) |#1|))) ELT) (($ $ (-688)) 106 (|has| |#1| (-15 * (|#1| (-479) |#1|))) ELT)) (-3930 (((-479) $) 81 T ELT)) (-3477 (($ $) 157 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 146 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 156 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 147 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 155 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 148 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) 90 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ (-344 (-479))) 74 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) 66 (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-479)) 76 T ELT)) (-2687 (((-628 $) $) 65 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-3755 ((|#1| $) 125 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3480 (($ $) 166 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 154 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) 70 (|has| |#1| (-490)) ELT)) (-3478 (($ $) 165 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 153 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 164 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 152 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-479)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-479)))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) 163 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 151 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 162 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 150 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 161 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 149 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1080)) 115 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-579 (-1080))) 111 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080) (-688)) 110 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 109 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-479) |#1|))) ELT) (($ $ (-688)) 105 (|has| |#1| (-15 * (|#1| (-479) |#1|))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 140 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-344 (-479)) $) 73 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 72 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1131 |#1|) (-111) (-955)) (T -1131)) +((-3800 (*1 *1 *2) (-12 (-5 *2 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *3)))) (-4 *3 (-955)) (-4 *1 (-1131 *3)))) (-3797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-479))) (-4 *1 (-1131 *3)) (-4 *3 (-955)))) (-3709 (*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-1131 *4)) (-4 *4 (-955)) (-4 *4 (-490)) (-5 *2 (-344 (-851 *4))))) (-3709 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-479)) (-4 *1 (-1131 *4)) (-4 *4 (-955)) (-4 *4 (-490)) (-5 *2 (-344 (-851 *4))))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1131 *2)) (-4 *2 (-955)) (-4 *2 (-38 (-344 (-479)))))) (-3794 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1080)) (-4 *1 (-1131 *3)) (-4 *3 (-955)) (-12 (-4 *3 (-29 (-479))) (-4 *3 (-865)) (-4 *3 (-1105)) (-4 *3 (-38 (-344 (-479)))))) (-12 (-5 *2 (-1080)) (-4 *1 (-1131 *3)) (-4 *3 (-955)) (-12 (|has| *3 (-15 -3066 ((-579 *2) *3))) (|has| *3 (-15 -3794 (*3 *3 *2))) (-4 *3 (-38 (-344 (-479))))))))) +(-13 (-1148 |t#1| (-479)) (-10 -8 (-15 -3800 ($ (-1059 (-2 (|:| |k| (-479)) (|:| |c| |t#1|))))) (-15 -3797 ($ (-1 |t#1| (-479)) $)) (IF (|has| |t#1| (-490)) (PROGN (-15 -3709 ((-344 (-851 |t#1|)) $ (-479))) (-15 -3709 ((-344 (-851 |t#1|)) $ (-479) (-479)))) |%noBranch|) (IF (|has| |t#1| (-38 (-344 (-479)))) (PROGN (-15 -3794 ($ $)) (IF (|has| |t#1| (-15 -3794 (|t#1| |t#1| (-1080)))) (IF (|has| |t#1| (-15 -3066 ((-579 (-1080)) |t#1|))) (-15 -3794 ($ $ (-1080))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-865)) (IF (|has| |t#1| (-29 (-479))) (-15 -3794 ($ $ (-1080))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-909)) (-6 (-1105))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-479)) . T) ((-25) . T) ((-38 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-344 (-479)))) ((-66) |has| |#1| (-38 (-344 (-479)))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-551 (-479)) . T) ((-551 |#1|) |has| |#1| (-144)) ((-551 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-479) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-479) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-479) |#1|))) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-344 (-479)))) ((-238 (-479) |#1|) . T) ((-238 $ $) |has| (-479) (-1016)) ((-242) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-308) |has| |#1| (-308)) ((-386) |has| |#1| (-308)) ((-427) |has| |#1| (-38 (-344 (-479)))) ((-490) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-584 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-650 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-659) . T) ((-800 $ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ((-803 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ((-805 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ((-880 |#1| (-479) (-987)) . T) ((-826) |has| |#1| (-308)) ((-909) |has| |#1| (-38 (-344 (-479)))) ((-957 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-962 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1105) |has| |#1| (-38 (-344 (-479)))) ((-1108) |has| |#1| (-38 (-344 (-479)))) ((-1119) . T) ((-1124) |has| |#1| (-308)) ((-1148 |#1| (-479)) . T)) +((-3172 (((-83) $) 12 T ELT)) (-3141 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1080) #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 (-479) #1#) $) NIL T ELT)) (-3140 ((|#3| $) 14 T ELT) (((-1080) $) NIL T ELT) (((-344 (-479)) $) NIL T ELT) (((-479) $) NIL T ELT))) +(((-1132 |#1| |#2| |#3|) (-10 -7 (-15 -3141 ((-3 (-479) #1="failed") |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3141 ((-3 (-1080) #1#) |#1|)) (-15 -3140 ((-1080) |#1|)) (-15 -3141 ((-3 |#3| #1#) |#1|)) (-15 -3140 (|#3| |#1|)) (-15 -3172 ((-83) |#1|))) (-1133 |#2| |#3|) (-955) (-1162 |#2|)) (T -1132)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3113 ((|#2| $) 263 (-2547 (|has| |#2| (-254)) (|has| |#1| (-308))) ELT)) (-3066 (((-579 (-987)) $) 92 T ELT)) (-3813 (((-1080) $) 126 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 68 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 69 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 71 (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-479)) 121 T ELT) (($ $ (-479) (-479)) 120 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) $) 127 T ELT)) (-3713 ((|#2| $) 299 T ELT)) (-3710 (((-3 |#2| "failed") $) 295 T ELT)) (-3711 ((|#2| $) 296 T ELT)) (-3474 (($ $) 160 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 143 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 272 (-2547 (|has| |#2| (-815)) (|has| |#1| (-308))) ELT)) (-3757 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) 188 (|has| |#1| (-308)) ELT)) (-3022 (($ $) 142 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1="failed") (-579 (-1075 $)) (-1075 $)) 269 (-2547 (|has| |#2| (-815)) (|has| |#1| (-308))) ELT)) (-1596 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3472 (($ $) 159 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 144 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3605 (((-479) $) 281 (-2547 (|has| |#2| (-734)) (|has| |#1| (-308))) ELT)) (-3800 (($ (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|)))) 198 T ELT)) (-3476 (($ $) 158 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 145 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-479) #2#) $) 292 (-2547 (|has| |#2| (-944 (-479))) (|has| |#1| (-308))) ELT) (((-3 (-344 (-479)) #2#) $) 290 (-2547 (|has| |#2| (-944 (-479))) (|has| |#1| (-308))) ELT) (((-3 (-1080) #2#) $) 274 (-2547 (|has| |#2| (-944 (-1080))) (|has| |#1| (-308))) ELT)) (-3140 ((|#2| $) 303 T ELT) (((-479) $) 291 (-2547 (|has| |#2| (-944 (-479))) (|has| |#1| (-308))) ELT) (((-344 (-479)) $) 289 (-2547 (|has| |#2| (-944 (-479))) (|has| |#1| (-308))) ELT) (((-1080) $) 273 (-2547 (|has| |#2| (-944 (-1080))) (|has| |#1| (-308))) ELT)) (-3712 (($ $) 298 T ELT) (($ (-479) $) 297 T ELT)) (-2549 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3941 (($ $) 77 T ELT)) (-2266 (((-626 |#2|) (-626 $)) 251 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) 250 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 249 (-2547 (|has| |#2| (-576 (-479))) (|has| |#1| (-308))) ELT) (((-626 (-479)) (-626 $)) 248 (-2547 (|has| |#2| (-576 (-479))) (|has| |#1| (-308))) ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3709 (((-344 (-851 |#1|)) $ (-479)) 196 (|has| |#1| (-490)) ELT) (((-344 (-851 |#1|)) $ (-479) (-479)) 195 (|has| |#1| (-490)) ELT)) (-2979 (($) 265 (-2547 (|has| |#2| (-478)) (|has| |#1| (-308))) ELT)) (-2548 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 176 (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-3170 (((-83) $) 279 (-2547 (|has| |#2| (-734)) (|has| |#1| (-308))) ELT)) (-2877 (((-83) $) 91 T ELT)) (-3609 (($) 170 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 257 (-2547 (|has| |#2| (-790 (-324))) (|has| |#1| (-308))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 256 (-2547 (|has| |#2| (-790 (-479))) (|has| |#1| (-308))) ELT)) (-3754 (((-479) $) 123 T ELT) (((-479) $ (-479)) 122 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2981 (($ $) 261 (|has| |#1| (-308)) ELT)) (-2983 ((|#2| $) 259 (|has| |#1| (-308)) ELT)) (-2996 (($ $ (-479)) 141 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3427 (((-628 $) $) 293 (-2547 (|has| |#2| (-1056)) (|has| |#1| (-308))) ELT)) (-3171 (((-83) $) 280 (-2547 (|has| |#2| (-734)) (|has| |#1| (-308))) ELT)) (-3759 (($ $ (-824)) 124 T ELT)) (-3797 (($ (-1 |#1| (-479)) $) 197 T ELT)) (-1593 (((-3 (-579 $) #3="failed") (-579 $) $) 185 (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) 79 T ELT)) (-2878 (($ |#1| (-479)) 78 T ELT) (($ $ (-987) (-479)) 94 T ELT) (($ $ (-579 (-987)) (-579 (-479))) 93 T ELT)) (-2516 (($ $ $) 288 (-2547 (|has| |#2| (-750)) (|has| |#1| (-308))) ELT)) (-2842 (($ $ $) 287 (-2547 (|has| |#2| (-750)) (|has| |#1| (-308))) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-308)) ELT)) (-3924 (($ $) 167 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2267 (((-626 |#2|) (-1169 $)) 253 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) 252 (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 247 (-2547 (|has| |#2| (-576 (-479))) (|has| |#1| (-308))) ELT) (((-626 (-479)) (-1169 $)) 246 (-2547 (|has| |#2| (-576 (-479))) (|has| |#1| (-308))) ELT)) (-2879 (($ $) 82 T ELT)) (-3158 ((|#1| $) 83 T ELT)) (-1879 (($ (-579 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3761 (($ (-479) |#2|) 300 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3794 (($ $) 194 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) 193 (OR (-12 (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105)) (|has| |#1| (-38 (-344 (-479))))) (-12 (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-38 (-344 (-479)))))) ELT)) (-3428 (($) 294 (-2547 (|has| |#2| (-1056)) (|has| |#1| (-308))) CONST)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 175 (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3112 (($ $) 264 (-2547 (|has| |#2| (-254)) (|has| |#1| (-308))) ELT)) (-3114 ((|#2| $) 267 (-2547 (|has| |#2| (-478)) (|has| |#1| (-308))) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 270 (-2547 (|has| |#2| (-815)) (|has| |#1| (-308))) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 271 (-2547 (|has| |#2| (-815)) (|has| |#1| (-308))) ELT)) (-3714 (((-342 $) $) 186 (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-479)) 118 T ELT)) (-3448 (((-3 $ "failed") $ $) 67 (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 177 (|has| |#1| (-308)) ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-479)))) ELT) (($ $ (-1080) |#2|) 240 (-2547 (|has| |#2| (-448 (-1080) |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-579 (-1080)) (-579 |#2|)) 239 (-2547 (|has| |#2| (-448 (-1080) |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-579 (-245 |#2|))) 238 (-2547 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-245 |#2|)) 237 (-2547 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT) (($ $ |#2| |#2|) 236 (-2547 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) 235 (-2547 (|has| |#2| (-256 |#2|)) (|has| |#1| (-308))) ELT)) (-1595 (((-688) $) 179 (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-479)) 128 T ELT) (($ $ $) 104 (|has| (-479) (-1016)) ELT) (($ $ |#2|) 234 (-2547 (|has| |#2| (-238 |#2| |#2|)) (|has| |#1| (-308))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1 |#2| |#2|) (-688)) 243 (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-308)) ELT) (($ $) 108 (OR (-2547 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-688)) 106 (OR (-2547 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080)) 116 (OR (-2547 (|has| |#2| (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080))) 114 (OR (-2547 (|has| |#2| (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-1080) (-688)) 113 (OR (-2547 (|has| |#2| (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 112 (OR (-2547 (|has| |#2| (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT)) (-2980 (($ $) 262 (|has| |#1| (-308)) ELT)) (-2982 ((|#2| $) 260 (|has| |#1| (-308)) ELT)) (-3930 (((-479) $) 81 T ELT)) (-3477 (($ $) 157 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 146 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 156 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 147 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 155 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 148 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3954 (((-177) $) 278 (-2547 (|has| |#2| (-927)) (|has| |#1| (-308))) ELT) (((-324) $) 277 (-2547 (|has| |#2| (-927)) (|has| |#1| (-308))) ELT) (((-468) $) 276 (-2547 (|has| |#2| (-549 (-468))) (|has| |#1| (-308))) ELT) (((-794 (-324)) $) 255 (-2547 (|has| |#2| (-549 (-794 (-324)))) (|has| |#1| (-308))) ELT) (((-794 (-479)) $) 254 (-2547 (|has| |#2| (-549 (-794 (-479)))) (|has| |#1| (-308))) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) 268 (-2547 (-2547 (|has| $ (-116)) (|has| |#2| (-815))) (|has| |#1| (-308))) ELT)) (-2876 (($ $) 90 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ |#2|) 301 T ELT) (($ (-1080)) 275 (-2547 (|has| |#2| (-944 (-1080))) (|has| |#1| (-308))) ELT) (($ (-344 (-479))) 74 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) 66 (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-479)) 76 T ELT)) (-2687 (((-628 $) $) 65 (OR (-2547 (OR (|has| |#2| (-116)) (-2547 (|has| $ (-116)) (|has| |#2| (-815)))) (|has| |#1| (-308))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) 37 T CONST)) (-3755 ((|#1| $) 125 T ELT)) (-3115 ((|#2| $) 266 (-2547 (|has| |#2| (-478)) (|has| |#1| (-308))) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3480 (($ $) 166 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 154 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) 70 (|has| |#1| (-490)) ELT)) (-3478 (($ $) 165 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 153 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 164 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 152 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-479)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-479)))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) 163 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 151 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 162 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 150 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 161 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 149 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3365 (($ $) 282 (-2547 (|has| |#2| (-734)) (|has| |#1| (-308))) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1 |#2| |#2|) (-688)) 245 (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-308)) ELT) (($ $) 107 (OR (-2547 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-688)) 105 (OR (-2547 (|has| |#2| (-187)) (|has| |#1| (-308))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080)) 115 (OR (-2547 (|has| |#2| (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080))) 111 (OR (-2547 (|has| |#2| (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-1080) (-688)) 110 (OR (-2547 (|has| |#2| (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 109 (OR (-2547 (|has| |#2| (-805 (-1080))) (|has| |#1| (-308))) (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|))))) ELT)) (-2551 (((-83) $ $) 286 (-2547 (|has| |#2| (-750)) (|has| |#1| (-308))) ELT)) (-2552 (((-83) $ $) 284 (-2547 (|has| |#2| (-750)) (|has| |#1| (-308))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-2669 (((-83) $ $) 285 (-2547 (|has| |#2| (-750)) (|has| |#1| (-308))) ELT)) (-2670 (((-83) $ $) 283 (-2547 (|has| |#2| (-750)) (|has| |#1| (-308))) ELT)) (-3931 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 140 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-308)) ELT) (($ |#2| $) 232 (|has| |#1| (-308)) ELT) (($ (-344 (-479)) $) 73 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 72 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1133 |#1| |#2|) (-111) (-955) (-1162 |t#1|)) (T -1133)) +((-3930 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1162 *3)) (-5 *2 (-479)))) (-3761 (*1 *1 *2 *3) (-12 (-5 *2 (-479)) (-4 *4 (-955)) (-4 *1 (-1133 *4 *3)) (-4 *3 (-1162 *4)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1162 *3)))) (-3712 (*1 *1 *1) (-12 (-4 *1 (-1133 *2 *3)) (-4 *2 (-955)) (-4 *3 (-1162 *2)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-479)) (-4 *1 (-1133 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1162 *3)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1162 *3)))) (-3710 (*1 *2 *1) (|partial| -12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1162 *3))))) +(-13 (-1131 |t#1|) (-944 |t#2|) (-551 |t#2|) (-10 -8 (-15 -3761 ($ (-479) |t#2|)) (-15 -3930 ((-479) $)) (-15 -3713 (|t#2| $)) (-15 -3712 ($ $)) (-15 -3712 ($ (-479) $)) (-15 -3711 (|t#2| $)) (-15 -3710 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-308)) (-6 (-898 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-479)) . T) ((-25) . T) ((-38 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 |#2|) |has| |#1| (-308)) ((-38 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-344 (-479)))) ((-66) |has| |#1| (-38 (-344 (-479)))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-80 |#1| |#1|) . T) ((-80 |#2| |#2|) |has| |#1| (-308)) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-116))) (|has| |#1| (-116))) ((-118) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-551 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-551 (-479)) . T) ((-551 (-1080)) -12 (|has| |#1| (-308)) (|has| |#2| (-944 (-1080)))) ((-551 |#1|) |has| |#1| (-144)) ((-551 |#2|) . T) ((-551 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-549 (-177)) -12 (|has| |#1| (-308)) (|has| |#2| (-927))) ((-549 (-324)) -12 (|has| |#1| (-308)) (|has| |#2| (-927))) ((-549 (-468)) -12 (|has| |#1| (-308)) (|has| |#2| (-549 (-468)))) ((-549 (-794 (-324))) -12 (|has| |#1| (-308)) (|has| |#2| (-549 (-794 (-324))))) ((-549 (-794 (-479))) -12 (|has| |#1| (-308)) (|has| |#2| (-549 (-794 (-479))))) ((-184 $) OR (|has| |#1| (-15 * (|#1| (-479) |#1|))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (-12 (|has| |#1| (-308)) (|has| |#2| (-188)))) ((-182 |#2|) |has| |#1| (-308)) ((-188) OR (|has| |#1| (-15 * (|#1| (-479) |#1|))) (-12 (|has| |#1| (-308)) (|has| |#2| (-188)))) ((-187) OR (|has| |#1| (-15 * (|#1| (-479) |#1|))) (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (-12 (|has| |#1| (-308)) (|has| |#2| (-188)))) ((-222 |#2|) |has| |#1| (-308)) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-344 (-479)))) ((-238 (-479) |#1|) . T) ((-238 |#2| $) -12 (|has| |#1| (-308)) (|has| |#2| (-238 |#2| |#2|))) ((-238 $ $) |has| (-479) (-1016)) ((-242) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-256 |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ((-308) |has| |#1| (-308)) ((-284 |#2|) |has| |#1| (-308)) ((-323 |#2|) |has| |#1| (-308)) ((-337 |#2|) |has| |#1| (-308)) ((-386) |has| |#1| (-308)) ((-427) |has| |#1| (-38 (-344 (-479)))) ((-448 (-1080) |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-448 (-1080) |#2|))) ((-448 |#2| |#2|) -12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ((-490) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-584 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 |#2|) |has| |#1| (-308)) ((-584 $) . T) ((-586 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-586 (-479)) -12 (|has| |#1| (-308)) (|has| |#2| (-576 (-479)))) ((-586 |#1|) . T) ((-586 |#2|) |has| |#1| (-308)) ((-586 $) . T) ((-578 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-578 |#1|) |has| |#1| (-144)) ((-578 |#2|) |has| |#1| (-308)) ((-578 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-576 (-479)) -12 (|has| |#1| (-308)) (|has| |#2| (-576 (-479)))) ((-576 |#2|) |has| |#1| (-308)) ((-650 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-650 |#1|) |has| |#1| (-144)) ((-650 |#2|) |has| |#1| (-308)) ((-650 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-659) . T) ((-708) -12 (|has| |#1| (-308)) (|has| |#2| (-734))) ((-710) -12 (|has| |#1| (-308)) (|has| |#2| (-734))) ((-712) -12 (|has| |#1| (-308)) (|has| |#2| (-734))) ((-715) -12 (|has| |#1| (-308)) (|has| |#2| (-734))) ((-734) -12 (|has| |#1| (-308)) (|has| |#2| (-734))) ((-749) -12 (|has| |#1| (-308)) (|has| |#2| (-734))) ((-750) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-750))) (-12 (|has| |#1| (-308)) (|has| |#2| (-734)))) ((-753) OR (-12 (|has| |#1| (-308)) (|has| |#2| (-750))) (-12 (|has| |#1| (-308)) (|has| |#2| (-734)))) ((-800 $ (-1080)) OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-803 (-1080))))) ((-803 (-1080)) OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-803 (-1080))))) ((-805 (-1080)) OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-803 (-1080))))) ((-790 (-324)) -12 (|has| |#1| (-308)) (|has| |#2| (-790 (-324)))) ((-790 (-479)) -12 (|has| |#1| (-308)) (|has| |#2| (-790 (-479)))) ((-788 |#2|) |has| |#1| (-308)) ((-815) -12 (|has| |#1| (-308)) (|has| |#2| (-815))) ((-880 |#1| (-479) (-987)) . T) ((-826) |has| |#1| (-308)) ((-898 |#2|) |has| |#1| (-308)) ((-909) |has| |#1| (-38 (-344 (-479)))) ((-927) -12 (|has| |#1| (-308)) (|has| |#2| (-927))) ((-944 (-344 (-479))) -12 (|has| |#1| (-308)) (|has| |#2| (-944 (-479)))) ((-944 (-479)) -12 (|has| |#1| (-308)) (|has| |#2| (-944 (-479)))) ((-944 (-1080)) -12 (|has| |#1| (-308)) (|has| |#2| (-944 (-1080)))) ((-944 |#2|) . T) ((-957 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-957 |#1|) . T) ((-957 |#2|) |has| |#1| (-308)) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-962 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-962 |#1|) . T) ((-962 |#2|) |has| |#1| (-308)) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1056) -12 (|has| |#1| (-308)) (|has| |#2| (-1056))) ((-1105) |has| |#1| (-38 (-344 (-479)))) ((-1108) |has| |#1| (-38 (-344 (-479)))) ((-1119) . T) ((-1124) |has| |#1| (-308)) ((-1131 |#1|) . T) ((-1148 |#1| (-479)) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 83 T ELT)) (-3113 ((|#2| $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-254))) ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) 102 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-479)) 111 T ELT) (($ $ (-479) (-479)) 114 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|))) $) 51 T ELT)) (-3713 ((|#2| $) 11 T ELT)) (-3710 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3711 ((|#2| $) 36 T ELT)) (-3474 (($ $) 208 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 184 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1#) $ $) NIL T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-815))) ELT)) (-3757 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-815))) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3472 (($ $) 204 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 180 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3605 (((-479) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-734))) ELT)) (-3800 (($ (-1059 (-2 (|:| |k| (-479)) (|:| |c| |#1|)))) 59 T ELT)) (-3476 (($ $) 212 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 188 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-479) #1#) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-944 (-479)))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-944 (-479)))) ELT) (((-3 (-1080) #1#) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-944 (-1080)))) ELT)) (-3140 ((|#2| $) 158 T ELT) (((-479) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-944 (-479)))) ELT) (((-344 (-479)) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-944 (-479)))) ELT) (((-1080) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-944 (-1080)))) ELT)) (-3712 (($ $) 65 T ELT) (($ (-479) $) 28 T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 |#2|) (-626 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-576 (-479)))) ELT) (((-626 (-479)) (-626 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-576 (-479)))) ELT)) (-3449 (((-3 $ #1#) $) 90 T ELT)) (-3709 (((-344 (-851 |#1|)) $ (-479)) 126 (|has| |#1| (-490)) ELT) (((-344 (-851 |#1|)) $ (-479) (-479)) 128 (|has| |#1| (-490)) ELT)) (-2979 (($) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-478))) ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-3170 (((-83) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-734))) ELT)) (-2877 (((-83) $) 76 T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-790 (-479)))) ELT)) (-3754 (((-479) $) 107 T ELT) (((-479) $ (-479)) 109 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2981 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2983 ((|#2| $) 167 (|has| |#1| (-308)) ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3427 (((-628 $) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-1056))) ELT)) (-3171 (((-83) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-734))) ELT)) (-3759 (($ $ (-824)) 150 T ELT)) (-3797 (($ (-1 |#1| (-479)) $) 146 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-479)) 20 T ELT) (($ $ (-987) (-479)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-479))) NIL T ELT)) (-2516 (($ $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-750))) ELT)) (-2842 (($ $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-750))) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-308)) ELT)) (-3924 (($ $) 178 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2267 (((-626 |#2|) (-1169 $)) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-576 (-479)))) ELT) (((-626 (-479)) (-1169 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-576 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3761 (($ (-479) |#2|) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 161 (|has| |#1| (-308)) ELT)) (-3794 (($ $) 230 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) 235 (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT)) (-3428 (($) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-1056))) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3112 (($ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-254))) ELT)) (-3114 ((|#2| $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-478))) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-815))) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-815))) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-479)) 140 T ELT)) (-3448 (((-3 $ #1#) $ $) 130 (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3925 (($ $) 176 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-479)))) ELT) (($ $ (-1080) |#2|) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-448 (-1080) |#2|))) ELT) (($ $ (-579 (-1080)) (-579 |#2|)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-448 (-1080) |#2|))) ELT) (($ $ (-579 (-245 |#2|))) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT) (($ $ (-245 |#2|)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT) (($ $ (-579 |#2|) (-579 |#2|)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-256 |#2|))) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-479)) 105 T ELT) (($ $ $) 92 (|has| (-479) (-1016)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-238 |#2| |#2|))) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1 |#2| |#2|) (-688)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-308)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080)) 155 (OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080))))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080))))) ELT)) (-2980 (($ $) NIL (|has| |#1| (-308)) ELT)) (-2982 ((|#2| $) 168 (|has| |#1| (-308)) ELT)) (-3930 (((-479) $) 12 T ELT)) (-3477 (($ $) 214 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 190 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 210 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 186 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 206 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 182 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3954 (((-177) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-927))) ELT) (((-324) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-927))) ELT) (((-468) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-549 (-468)))) ELT) (((-794 (-324)) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-549 (-794 (-479))))) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#1| (-308)) (|has| |#2| (-815))) ELT)) (-2876 (($ $) 138 T ELT)) (-3928 (((-766) $) 268 T ELT) (($ (-479)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-144)) ELT) (($ |#2|) 21 T ELT) (($ (-1080)) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-944 (-1080)))) ELT) (($ (-344 (-479))) 171 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-479)) 87 T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#1| (-308)) (|has| |#2| (-815))) (|has| |#1| (-116)) (-12 (|has| |#1| (-308)) (|has| |#2| (-116)))) ELT)) (-3110 (((-688)) 157 T CONST)) (-3755 ((|#1| $) 104 T ELT)) (-3115 ((|#2| $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-478))) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) 220 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 196 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) 216 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 192 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 224 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 200 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-479)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-479)))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) 226 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 202 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 222 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 198 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 218 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 194 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3365 (($ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-734))) ELT)) (-2645 (($) 13 T CONST)) (-2651 (($) 18 T CONST)) (-2654 (($ $ (-1 |#2| |#2|) (-688)) NIL (|has| |#1| (-308)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-308)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-688)) NIL (OR (-12 (|has| |#1| (-308)) (|has| |#2| (-187))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080))))) ELT) (($ $ (-579 (-1080))) NIL (OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080))))) ELT) (($ $ (-1080) (-688)) NIL (OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080))))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (OR (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-479) |#1|)))) (-12 (|has| |#1| (-308)) (|has| |#2| (-805 (-1080))))) ELT)) (-2551 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-750))) ELT)) (-2552 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-750))) ELT)) (-3041 (((-83) $ $) 74 T ELT)) (-2669 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-750))) ELT)) (-2670 (((-83) $ $) NIL (-12 (|has| |#1| (-308)) (|has| |#2| (-750))) ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 165 (|has| |#1| (-308)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3821 (($ $ $) 78 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 86 T ELT) (($ $ (-479)) 162 (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 174 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-308)) ELT) (($ |#2| $) 163 (|has| |#1| (-308)) ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1134 |#1| |#2|) (-1133 |#1| |#2|) (-955) (-1162 |#1|)) (T -1134)) +NIL +((-3716 (((-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| |#1|) (|:| -2382 (-479)))))) |#1| (-83)) 13 T ELT)) (-3715 (((-342 |#1|) |#1|) 26 T ELT)) (-3714 (((-342 |#1|) |#1|) 24 T ELT))) +(((-1135 |#1|) (-10 -7 (-15 -3714 ((-342 |#1|) |#1|)) (-15 -3715 ((-342 |#1|) |#1|)) (-15 -3716 ((-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| |#1|) (|:| -2382 (-479)))))) |#1| (-83)))) (-1145 (-479))) (T -1135)) +((-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 (-2 (|:| |contp| (-479)) (|:| -1767 (-579 (-2 (|:| |irr| *3) (|:| -2382 (-479))))))) (-5 *1 (-1135 *3)) (-4 *3 (-1145 (-479))))) (-3715 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-1135 *3)) (-4 *3 (-1145 (-479))))) (-3714 (*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-1135 *3)) (-4 *3 (-1145 (-479)))))) +((-2553 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3718 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3940 (((-1059 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-749)) ELT)) (-3213 ((|#1| $) 15 T ELT)) (-3215 ((|#1| $) 12 T ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-3211 (((-479) $) 19 T ELT)) (-3212 ((|#1| $) 18 T ELT)) (-3214 ((|#1| $) 13 T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3717 (((-83) $) 17 T ELT)) (-3945 (((-1059 |#1|) $) 41 (|has| |#1| (-749)) ELT) (((-1059 |#1|) (-579 $)) 40 (|has| |#1| (-749)) ELT)) (-3954 (($ |#1|) 26 T ELT)) (-3928 (($ (-994 |#1|)) 25 T ELT) (((-766) $) 37 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-1006)) ELT)) (-3719 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3216 (($ $ (-479)) 14 T ELT)) (-3041 (((-83) $ $) 30 (|has| |#1| (-1006)) ELT))) +(((-1136 |#1|) (-13 (-999 |#1|) (-10 -8 (-15 -3719 ($ |#1|)) (-15 -3718 ($ |#1|)) (-15 -3928 ($ (-994 |#1|))) (-15 -3717 ((-83) $)) (IF (|has| |#1| (-1006)) (-6 (-1006)) |%noBranch|) (IF (|has| |#1| (-749)) (-6 (-1000 |#1| (-1059 |#1|))) |%noBranch|))) (-1119)) (T -1136)) +((-3719 (*1 *1 *2) (-12 (-5 *1 (-1136 *2)) (-4 *2 (-1119)))) (-3718 (*1 *1 *2) (-12 (-5 *1 (-1136 *2)) (-4 *2 (-1119)))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1119)) (-5 *1 (-1136 *3)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1136 *3)) (-4 *3 (-1119))))) +((-3940 (((-1059 |#2|) (-1 |#2| |#1|) (-1136 |#1|)) 23 (|has| |#1| (-749)) ELT) (((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|)) 17 T ELT))) +(((-1137 |#1| |#2|) (-10 -7 (-15 -3940 ((-1136 |#2|) (-1 |#2| |#1|) (-1136 |#1|))) (IF (|has| |#1| (-749)) (-15 -3940 ((-1059 |#2|) (-1 |#2| |#1|) (-1136 |#1|))) |%noBranch|)) (-1119) (-1119)) (T -1137)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-749)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1059 *6)) (-5 *1 (-1137 *5 *6)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1136 *6)) (-5 *1 (-1137 *5 *6))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3749 (((-1169 |#2|) $ (-688)) NIL T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3747 (($ (-1075 |#2|)) NIL T ELT)) (-3068 (((-1075 $) $ (-987)) NIL T ELT) (((-1075 |#2|) $) NIL T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#2| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#2| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#2| (-490)) ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-987))) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3737 (($ $ $) NIL (|has| |#2| (-490)) ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3757 (($ $) NIL (|has| |#2| (-386)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#2| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1#) (-579 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-1596 (((-83) $ $) NIL (|has| |#2| (-308)) ELT)) (-3743 (($ $ (-688)) NIL T ELT)) (-3742 (($ $ (-688)) NIL T ELT)) (-3733 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-386)) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-3 (-479) #1#) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-3 (-987) #1#) $) NIL T ELT)) (-3140 ((|#2| $) NIL T ELT) (((-344 (-479)) $) NIL (|has| |#2| (-944 (-344 (-479)))) ELT) (((-479) $) NIL (|has| |#2| (-944 (-479))) ELT) (((-987) $) NIL T ELT)) (-3738 (($ $ $ (-987)) NIL (|has| |#2| (-144)) ELT) ((|#2| $ $) NIL (|has| |#2| (-144)) ELT)) (-2549 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3941 (($ $) NIL T ELT)) (-2266 (((-626 (-479)) (-626 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-626 $) (-1169 $)) NIL T ELT) (((-626 |#2|) (-626 $)) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2548 (($ $ $) NIL (|has| |#2| (-308)) ELT)) (-3741 (($ $ $) NIL T ELT)) (-3735 (($ $ $) NIL (|has| |#2| (-490)) ELT)) (-3734 (((-2 (|:| -3936 |#2|) (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#2| (-490)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#2| (-308)) ELT)) (-3485 (($ $) NIL (|has| |#2| (-386)) ELT) (($ $ (-987)) NIL (|has| |#2| (-386)) ELT)) (-2803 (((-579 $) $) NIL T ELT)) (-3705 (((-83) $) NIL (|has| |#2| (-815)) ELT)) (-1612 (($ $ |#2| (-688) $) NIL T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) NIL (-12 (|has| (-987) (-790 (-324))) (|has| |#2| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) NIL (-12 (|has| (-987) (-790 (-479))) (|has| |#2| (-790 (-479)))) ELT)) (-3754 (((-688) $ $) NIL (|has| |#2| (-490)) ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-3427 (((-628 $) $) NIL (|has| |#2| (-1056)) ELT)) (-3069 (($ (-1075 |#2|) (-987)) NIL T ELT) (($ (-1075 $) (-987)) NIL T ELT)) (-3759 (($ $ (-688)) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#2| (-308)) ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#2| (-688)) 18 T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-987)) NIL T ELT) (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL T ELT)) (-2805 (((-688) $) NIL T ELT) (((-688) $ (-987)) NIL T ELT) (((-579 (-688)) $ (-579 (-987))) NIL T ELT)) (-1613 (($ (-1 (-688) (-688)) $) NIL T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3748 (((-1075 |#2|) $) NIL T ELT)) (-3067 (((-3 (-987) #1#) $) NIL T ELT)) (-2267 (((-626 (-479)) (-1169 $)) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) NIL (|has| |#2| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#2|)) (|:| |vec| (-1169 |#2|))) (-1169 $) $) NIL T ELT) (((-626 |#2|) (-1169 $)) NIL T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) NIL (|has| |#2| (-386)) ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3744 (((-2 (|:| -1961 $) (|:| -2887 $)) $ (-688)) NIL T ELT)) (-2808 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2807 (((-3 (-579 $) #1#) $) NIL T ELT)) (-2809 (((-3 (-2 (|:| |var| (-987)) (|:| -2388 (-688))) #1#) $) NIL T ELT)) (-3794 (($ $) NIL (|has| |#2| (-38 (-344 (-479)))) ELT)) (-3428 (($) NIL (|has| |#2| (-1056)) CONST)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 ((|#2| $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#2| (-386)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#2| (-386)) ELT) (($ $ $) NIL (|has| |#2| (-386)) ELT)) (-3720 (($ $ (-688) |#2| $) NIL T ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) NIL (|has| |#2| (-815)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#2| (-815)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3448 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-490)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#2| (-308)) ELT)) (-3750 (($ $ (-579 (-245 $))) NIL T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-987) |#2|) NIL T ELT) (($ $ (-579 (-987)) (-579 |#2|)) NIL T ELT) (($ $ (-987) $) NIL T ELT) (($ $ (-579 (-987)) (-579 $)) NIL T ELT)) (-1595 (((-688) $) NIL (|has| |#2| (-308)) ELT)) (-3782 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-344 $) (-344 $) (-344 $)) NIL (|has| |#2| (-490)) ELT) ((|#2| (-344 $) |#2|) NIL (|has| |#2| (-308)) ELT) (((-344 $) $ (-344 $)) NIL (|has| |#2| (-490)) ELT)) (-3746 (((-3 $ #1#) $ (-688)) NIL T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#2| (-308)) ELT)) (-3739 (($ $ (-987)) NIL (|has| |#2| (-144)) ELT) ((|#2| $) NIL (|has| |#2| (-144)) ELT)) (-3740 (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987))) NIL T ELT) (($ $ (-987)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT)) (-3930 (((-688) $) NIL T ELT) (((-688) $ (-987)) NIL T ELT) (((-579 (-688)) $ (-579 (-987))) NIL T ELT)) (-3954 (((-794 (-324)) $) NIL (-12 (|has| (-987) (-549 (-794 (-324)))) (|has| |#2| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) NIL (-12 (|has| (-987) (-549 (-794 (-479)))) (|has| |#2| (-549 (-794 (-479))))) ELT) (((-468) $) NIL (-12 (|has| (-987) (-549 (-468))) (|has| |#2| (-549 (-468)))) ELT)) (-2802 ((|#2| $) NIL (|has| |#2| (-386)) ELT) (($ $ (-987)) NIL (|has| |#2| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) NIL (-12 (|has| $ (-116)) (|has| |#2| (-815))) ELT)) (-3736 (((-3 $ #1#) $ $) NIL (|has| |#2| (-490)) ELT) (((-3 (-344 $) #1#) (-344 $) $) NIL (|has| |#2| (-490)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-987)) NIL T ELT) (($ (-1166 |#1|)) 20 T ELT) (($ (-344 (-479))) NIL (OR (|has| |#2| (-38 (-344 (-479)))) (|has| |#2| (-944 (-344 (-479))))) ELT) (($ $) NIL (|has| |#2| (-490)) ELT)) (-3799 (((-579 |#2|) $) NIL T ELT)) (-3659 ((|#2| $ (-688)) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-2687 (((-628 $) $) NIL (OR (-12 (|has| $ (-116)) (|has| |#2| (-815))) (|has| |#2| (-116))) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| |#2| (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL (|has| |#2| (-490)) ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) 14 T CONST)) (-2654 (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987))) NIL T ELT) (($ $ (-987)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1080)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) NIL (|has| |#2| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (|has| |#2| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#2|) NIL (|has| |#2| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-344 (-479))) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) NIL (|has| |#2| (-38 (-344 (-479)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1138 |#1| |#2|) (-13 (-1145 |#2|) (-551 (-1166 |#1|)) (-10 -8 (-15 -3720 ($ $ (-688) |#2| $)))) (-1080) (-955)) (T -1138)) +((-3720 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-688)) (-5 *1 (-1138 *4 *3)) (-14 *4 (-1080)) (-4 *3 (-955))))) +((-3940 (((-1138 |#3| |#4|) (-1 |#4| |#2|) (-1138 |#1| |#2|)) 15 T ELT))) +(((-1139 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 ((-1138 |#3| |#4|) (-1 |#4| |#2|) (-1138 |#1| |#2|)))) (-1080) (-955) (-1080) (-955)) (T -1139)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1138 *5 *6)) (-14 *5 (-1080)) (-4 *6 (-955)) (-4 *8 (-955)) (-5 *2 (-1138 *7 *8)) (-5 *1 (-1139 *5 *6 *7 *8)) (-14 *7 (-1080))))) +((-3723 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3721 ((|#1| |#3|) 13 T ELT)) (-3722 ((|#3| |#3|) 19 T ELT))) +(((-1140 |#1| |#2| |#3|) (-10 -7 (-15 -3721 (|#1| |#3|)) (-15 -3722 (|#3| |#3|)) (-15 -3723 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-490) (-898 |#1|) (-1145 |#2|)) (T -1140)) +((-3723 (*1 *2 *3) (-12 (-4 *4 (-490)) (-4 *5 (-898 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1140 *4 *5 *3)) (-4 *3 (-1145 *5)))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-490)) (-4 *4 (-898 *3)) (-5 *1 (-1140 *3 *4 *2)) (-4 *2 (-1145 *4)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-898 *2)) (-4 *2 (-490)) (-5 *1 (-1140 *2 *4 *3)) (-4 *3 (-1145 *4))))) +((-3725 (((-3 |#2| #1="failed") |#2| (-688) |#1|) 35 T ELT)) (-3724 (((-3 |#2| #1#) |#2| (-688)) 36 T ELT)) (-3727 (((-3 (-2 (|:| -3122 |#2|) (|:| -3121 |#2|)) #1#) |#2|) 50 T ELT)) (-3728 (((-579 |#2|) |#2|) 52 T ELT)) (-3726 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1141 |#1| |#2|) (-10 -7 (-15 -3724 ((-3 |#2| #1="failed") |#2| (-688))) (-15 -3725 ((-3 |#2| #1#) |#2| (-688) |#1|)) (-15 -3726 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3727 ((-3 (-2 (|:| -3122 |#2|) (|:| -3121 |#2|)) #1#) |#2|)) (-15 -3728 ((-579 |#2|) |#2|))) (-13 (-490) (-118)) (-1145 |#1|)) (T -1141)) +((-3728 (*1 *2 *3) (-12 (-4 *4 (-13 (-490) (-118))) (-5 *2 (-579 *3)) (-5 *1 (-1141 *4 *3)) (-4 *3 (-1145 *4)))) (-3727 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-490) (-118))) (-5 *2 (-2 (|:| -3122 *3) (|:| -3121 *3))) (-5 *1 (-1141 *4 *3)) (-4 *3 (-1145 *4)))) (-3726 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-490) (-118))) (-5 *1 (-1141 *3 *2)) (-4 *2 (-1145 *3)))) (-3725 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-688)) (-4 *4 (-13 (-490) (-118))) (-5 *1 (-1141 *4 *2)) (-4 *2 (-1145 *4)))) (-3724 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-688)) (-4 *4 (-13 (-490) (-118))) (-5 *1 (-1141 *4 *2)) (-4 *2 (-1145 *4))))) +((-3729 (((-3 (-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1142 |#1| |#2|) (-10 -7 (-15 -3729 ((-3 (-2 (|:| -1961 |#2|) (|:| -2887 |#2|)) "failed") |#2| |#2|))) (-490) (-1145 |#1|)) (T -1142)) +((-3729 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-490)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-1142 *4 *3)) (-4 *3 (-1145 *4))))) +((-3730 ((|#2| |#2| |#2|) 22 T ELT)) (-3731 ((|#2| |#2| |#2|) 36 T ELT)) (-3732 ((|#2| |#2| |#2| (-688) (-688)) 44 T ELT))) +(((-1143 |#1| |#2|) (-10 -7 (-15 -3730 (|#2| |#2| |#2|)) (-15 -3731 (|#2| |#2| |#2|)) (-15 -3732 (|#2| |#2| |#2| (-688) (-688)))) (-955) (-1145 |#1|)) (T -1143)) +((-3732 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-688)) (-4 *4 (-955)) (-5 *1 (-1143 *4 *2)) (-4 *2 (-1145 *4)))) (-3731 (*1 *2 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1145 *3)))) (-3730 (*1 *2 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1145 *3))))) +((-3749 (((-1169 |#2|) $ (-688)) 129 T ELT)) (-3066 (((-579 (-987)) $) 16 T ELT)) (-3747 (($ (-1075 |#2|)) 80 T ELT)) (-2804 (((-688) $) NIL T ELT) (((-688) $ (-579 (-987))) 21 T ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 217 T ELT)) (-3757 (($ $) 207 T ELT)) (-3953 (((-342 $) $) 205 T ELT)) (-2689 (((-3 (-579 (-1075 $)) #1="failed") (-579 (-1075 $)) (-1075 $)) 95 T ELT)) (-3743 (($ $ (-688)) 84 T ELT)) (-3742 (($ $ (-688)) 86 T ELT)) (-3733 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3141 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-344 (-479)) #1#) $) NIL T ELT) (((-3 (-479) #1#) $) NIL T ELT) (((-3 (-987) #1#) $) NIL T ELT)) (-3140 ((|#2| $) 130 T ELT) (((-344 (-479)) $) NIL T ELT) (((-479) $) NIL T ELT) (((-987) $) NIL T ELT)) (-3735 (($ $ $) 182 T ELT)) (-3734 (((-2 (|:| -3936 |#2|) (|:| -1961 $) (|:| -2887 $)) $ $) 185 T ELT)) (-3754 (((-688) $ $) 202 T ELT)) (-3427 (((-628 $) $) 149 T ELT)) (-2878 (($ |#2| (-688)) NIL T ELT) (($ $ (-987) (-688)) 59 T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-2805 (((-688) $) NIL T ELT) (((-688) $ (-987)) 54 T ELT) (((-579 (-688)) $ (-579 (-987))) 55 T ELT)) (-3748 (((-1075 |#2|) $) 72 T ELT)) (-3067 (((-3 (-987) #1#) $) 52 T ELT)) (-3744 (((-2 (|:| -1961 $) (|:| -2887 $)) $ (-688)) 83 T ELT)) (-3794 (($ $) 232 T ELT)) (-3428 (($) 134 T CONST)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 214 T ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 101 T ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 99 T ELT)) (-3714 (((-342 $) $) 120 T ELT)) (-3750 (($ $ (-579 (-245 $))) 51 T ELT) (($ $ (-245 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-579 $) (-579 $)) NIL T ELT) (($ $ (-987) |#2|) 39 T ELT) (($ $ (-579 (-987)) (-579 |#2|)) 36 T ELT) (($ $ (-987) $) 32 T ELT) (($ $ (-579 (-987)) (-579 $)) 30 T ELT)) (-1595 (((-688) $) 220 T ELT)) (-3782 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-344 $) (-344 $) (-344 $)) 176 T ELT) ((|#2| (-344 $) |#2|) 219 T ELT) (((-344 $) $ (-344 $)) 201 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 225 T ELT)) (-3740 (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987))) NIL T ELT) (($ $ (-987)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-688)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1080)) NIL T ELT) (($ $ (-579 (-1080))) NIL T ELT) (($ $ (-1080) (-688)) NIL T ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL T ELT)) (-3930 (((-688) $) NIL T ELT) (((-688) $ (-987)) 17 T ELT) (((-579 (-688)) $ (-579 (-987))) 23 T ELT)) (-2802 ((|#2| $) NIL T ELT) (($ $ (-987)) 151 T ELT)) (-3736 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-344 $) #1#) (-344 $) $) 189 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-987)) 64 T ELT) (($ (-344 (-479))) NIL T ELT) (($ $) NIL T ELT))) +(((-1144 |#1| |#2|) (-10 -7 (-15 -3928 (|#1| |#1|)) (-15 -2693 ((-1075 |#1|) (-1075 |#1|) (-1075 |#1|))) (-15 -3740 (|#1| |#1| (-579 (-1080)) (-579 (-688)))) (-15 -3740 (|#1| |#1| (-1080) (-688))) (-15 -3740 (|#1| |#1| (-579 (-1080)))) (-15 -3740 (|#1| |#1| (-1080))) (-15 -3953 ((-342 |#1|) |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3428 (|#1|) -3934) (-15 -3427 ((-628 |#1|) |#1|)) (-15 -3782 ((-344 |#1|) |#1| (-344 |#1|))) (-15 -1595 ((-688) |#1|)) (-15 -2864 ((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3782 (|#2| (-344 |#1|) |#2|)) (-15 -3733 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3734 ((-2 (|:| -3936 |#2|) (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| |#1|)) (-15 -3735 (|#1| |#1| |#1|)) (-15 -3736 ((-3 (-344 |#1|) #1="failed") (-344 |#1|) |#1|)) (-15 -3736 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3754 ((-688) |#1| |#1|)) (-15 -3782 ((-344 |#1|) (-344 |#1|) (-344 |#1|))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3742 (|#1| |#1| (-688))) (-15 -3743 (|#1| |#1| (-688))) (-15 -3744 ((-2 (|:| -1961 |#1|) (|:| -2887 |#1|)) |#1| (-688))) (-15 -3747 (|#1| (-1075 |#2|))) (-15 -3748 ((-1075 |#2|) |#1|)) (-15 -3749 ((-1169 |#2|) |#1| (-688))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|) (-688))) (-15 -3740 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3740 (|#1| |#1| (-688))) (-15 -3740 (|#1| |#1|)) (-15 -3782 (|#1| |#1| |#1|)) (-15 -3782 (|#2| |#1| |#2|)) (-15 -3714 ((-342 |#1|) |#1|)) (-15 -2692 ((-342 (-1075 |#1|)) (-1075 |#1|))) (-15 -2691 ((-342 (-1075 |#1|)) (-1075 |#1|))) (-15 -2690 ((-342 (-1075 |#1|)) (-1075 |#1|))) (-15 -2689 ((-3 (-579 (-1075 |#1|)) #1#) (-579 (-1075 |#1|)) (-1075 |#1|))) (-15 -2802 (|#1| |#1| (-987))) (-15 -3066 ((-579 (-987)) |#1|)) (-15 -2804 ((-688) |#1| (-579 (-987)))) (-15 -2804 ((-688) |#1|)) (-15 -2878 (|#1| |#1| (-579 (-987)) (-579 (-688)))) (-15 -2878 (|#1| |#1| (-987) (-688))) (-15 -2805 ((-579 (-688)) |#1| (-579 (-987)))) (-15 -2805 ((-688) |#1| (-987))) (-15 -3067 ((-3 (-987) #1#) |#1|)) (-15 -3930 ((-579 (-688)) |#1| (-579 (-987)))) (-15 -3930 ((-688) |#1| (-987))) (-15 -3928 (|#1| (-987))) (-15 -3141 ((-3 (-987) #1#) |#1|)) (-15 -3140 ((-987) |#1|)) (-15 -3750 (|#1| |#1| (-579 (-987)) (-579 |#1|))) (-15 -3750 (|#1| |#1| (-987) |#1|)) (-15 -3750 (|#1| |#1| (-579 (-987)) (-579 |#2|))) (-15 -3750 (|#1| |#1| (-987) |#2|)) (-15 -3750 (|#1| |#1| (-579 |#1|) (-579 |#1|))) (-15 -3750 (|#1| |#1| |#1| |#1|)) (-15 -3750 (|#1| |#1| (-245 |#1|))) (-15 -3750 (|#1| |#1| (-579 (-245 |#1|)))) (-15 -3930 ((-688) |#1|)) (-15 -2878 (|#1| |#2| (-688))) (-15 -3141 ((-3 (-479) #1#) |#1|)) (-15 -3140 ((-479) |#1|)) (-15 -3141 ((-3 (-344 (-479)) #1#) |#1|)) (-15 -3140 ((-344 (-479)) |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3141 ((-3 |#2| #1#) |#1|)) (-15 -3928 (|#1| |#2|)) (-15 -2805 ((-688) |#1|)) (-15 -2802 (|#2| |#1|)) (-15 -3740 (|#1| |#1| (-987))) (-15 -3740 (|#1| |#1| (-579 (-987)))) (-15 -3740 (|#1| |#1| (-987) (-688))) (-15 -3740 (|#1| |#1| (-579 (-987)) (-579 (-688)))) (-15 -3928 (|#1| (-479))) (-15 -3928 ((-766) |#1|))) (-1145 |#2|) (-955)) (T -1144)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3749 (((-1169 |#1|) $ (-688)) 268 T ELT)) (-3066 (((-579 (-987)) $) 120 T ELT)) (-3747 (($ (-1075 |#1|)) 266 T ELT)) (-3068 (((-1075 $) $ (-987)) 135 T ELT) (((-1075 |#1|) $) 134 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 97 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 98 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 100 (|has| |#1| (-490)) ELT)) (-2804 (((-688) $) 122 T ELT) (((-688) $ (-579 (-987))) 121 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3737 (($ $ $) 253 (|has| |#1| (-490)) ELT)) (-2692 (((-342 (-1075 $)) (-1075 $)) 110 (|has| |#1| (-815)) ELT)) (-3757 (($ $) 108 (|has| |#1| (-386)) ELT)) (-3953 (((-342 $) $) 107 (|has| |#1| (-386)) ELT)) (-2689 (((-3 (-579 (-1075 $)) #1="failed") (-579 (-1075 $)) (-1075 $)) 113 (|has| |#1| (-815)) ELT)) (-1596 (((-83) $ $) 238 (|has| |#1| (-308)) ELT)) (-3743 (($ $ (-688)) 261 T ELT)) (-3742 (($ $ (-688)) 260 T ELT)) (-3733 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-386)) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-344 (-479)) #2#) $) 175 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-3 (-479) #2#) $) 173 (|has| |#1| (-944 (-479))) ELT) (((-3 (-987) #2#) $) 150 T ELT)) (-3140 ((|#1| $) 177 T ELT) (((-344 (-479)) $) 176 (|has| |#1| (-944 (-344 (-479)))) ELT) (((-479) $) 174 (|has| |#1| (-944 (-479))) ELT) (((-987) $) 151 T ELT)) (-3738 (($ $ $ (-987)) 118 (|has| |#1| (-144)) ELT) ((|#1| $ $) 256 (|has| |#1| (-144)) ELT)) (-2549 (($ $ $) 242 (|has| |#1| (-308)) ELT)) (-3941 (($ $) 168 T ELT)) (-2266 (((-626 (-479)) (-626 $)) 146 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-626 $) (-1169 $)) 145 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-626 $) (-1169 $)) 144 T ELT) (((-626 |#1|) (-626 $)) 143 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 241 (|has| |#1| (-308)) ELT)) (-3741 (($ $ $) 259 T ELT)) (-3735 (($ $ $) 250 (|has| |#1| (-490)) ELT)) (-3734 (((-2 (|:| -3936 |#1|) (|:| -1961 $) (|:| -2887 $)) $ $) 249 (|has| |#1| (-490)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 236 (|has| |#1| (-308)) ELT)) (-3485 (($ $) 190 (|has| |#1| (-386)) ELT) (($ $ (-987)) 115 (|has| |#1| (-386)) ELT)) (-2803 (((-579 $) $) 119 T ELT)) (-3705 (((-83) $) 106 (|has| |#1| (-815)) ELT)) (-1612 (($ $ |#1| (-688) $) 186 T ELT)) (-2781 (((-792 (-324) $) $ (-794 (-324)) (-792 (-324) $)) 94 (-12 (|has| (-987) (-790 (-324))) (|has| |#1| (-790 (-324)))) ELT) (((-792 (-479) $) $ (-794 (-479)) (-792 (-479) $)) 93 (-12 (|has| (-987) (-790 (-479))) (|has| |#1| (-790 (-479)))) ELT)) (-3754 (((-688) $ $) 254 (|has| |#1| (-490)) ELT)) (-2397 (((-83) $) 40 T ELT)) (-2405 (((-688) $) 183 T ELT)) (-3427 (((-628 $) $) 234 (|has| |#1| (-1056)) ELT)) (-3069 (($ (-1075 |#1|) (-987)) 127 T ELT) (($ (-1075 $) (-987)) 126 T ELT)) (-3759 (($ $ (-688)) 265 T ELT)) (-1593 (((-3 (-579 $) #3="failed") (-579 $) $) 245 (|has| |#1| (-308)) ELT)) (-2806 (((-579 $) $) 136 T ELT)) (-3919 (((-83) $) 166 T ELT)) (-2878 (($ |#1| (-688)) 167 T ELT) (($ $ (-987) (-688)) 129 T ELT) (($ $ (-579 (-987)) (-579 (-688))) 128 T ELT)) (-3745 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $ (-987)) 130 T ELT) (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 263 T ELT)) (-2805 (((-688) $) 184 T ELT) (((-688) $ (-987)) 132 T ELT) (((-579 (-688)) $ (-579 (-987))) 131 T ELT)) (-1613 (($ (-1 (-688) (-688)) $) 185 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3748 (((-1075 |#1|) $) 267 T ELT)) (-3067 (((-3 (-987) #4="failed") $) 133 T ELT)) (-2267 (((-626 (-479)) (-1169 $)) 148 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 (-479))) (|:| |vec| (-1169 (-479)))) (-1169 $) $) 147 (|has| |#1| (-576 (-479))) ELT) (((-2 (|:| |mat| (-626 |#1|)) (|:| |vec| (-1169 |#1|))) (-1169 $) $) 142 T ELT) (((-626 |#1|) (-1169 $)) 141 T ELT)) (-2879 (($ $) 163 T ELT)) (-3158 ((|#1| $) 162 T ELT)) (-1879 (($ (-579 $)) 104 (|has| |#1| (-386)) ELT) (($ $ $) 103 (|has| |#1| (-386)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3744 (((-2 (|:| -1961 $) (|:| -2887 $)) $ (-688)) 262 T ELT)) (-2808 (((-3 (-579 $) #4#) $) 124 T ELT)) (-2807 (((-3 (-579 $) #4#) $) 125 T ELT)) (-2809 (((-3 (-2 (|:| |var| (-987)) (|:| -2388 (-688))) #4#) $) 123 T ELT)) (-3794 (($ $) 246 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3428 (($) 233 (|has| |#1| (-1056)) CONST)) (-3227 (((-1024) $) 12 T ELT)) (-1785 (((-83) $) 180 T ELT)) (-1784 ((|#1| $) 181 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 105 (|has| |#1| (-386)) ELT)) (-3128 (($ (-579 $)) 102 (|has| |#1| (-386)) ELT) (($ $ $) 101 (|has| |#1| (-386)) ELT)) (-2690 (((-342 (-1075 $)) (-1075 $)) 112 (|has| |#1| (-815)) ELT)) (-2691 (((-342 (-1075 $)) (-1075 $)) 111 (|has| |#1| (-815)) ELT)) (-3714 (((-342 $) $) 109 (|has| |#1| (-815)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 243 (|has| |#1| (-308)) ELT)) (-3448 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-490)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 237 (|has| |#1| (-308)) ELT)) (-3750 (($ $ (-579 (-245 $))) 159 T ELT) (($ $ (-245 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-579 $) (-579 $)) 156 T ELT) (($ $ (-987) |#1|) 155 T ELT) (($ $ (-579 (-987)) (-579 |#1|)) 154 T ELT) (($ $ (-987) $) 153 T ELT) (($ $ (-579 (-987)) (-579 $)) 152 T ELT)) (-1595 (((-688) $) 239 (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-344 $) (-344 $) (-344 $)) 255 (|has| |#1| (-490)) ELT) ((|#1| (-344 $) |#1|) 247 (|has| |#1| (-308)) ELT) (((-344 $) $ (-344 $)) 235 (|has| |#1| (-490)) ELT)) (-3746 (((-3 $ "failed") $ (-688)) 264 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 240 (|has| |#1| (-308)) ELT)) (-3739 (($ $ (-987)) 117 (|has| |#1| (-144)) ELT) ((|#1| $) 257 (|has| |#1| (-144)) ELT)) (-3740 (($ $ (-579 (-987)) (-579 (-688))) 49 T ELT) (($ $ (-987) (-688)) 48 T ELT) (($ $ (-579 (-987))) 47 T ELT) (($ $ (-987)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-688)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1080)) 232 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 230 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 229 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 228 (|has| |#1| (-805 (-1080))) ELT)) (-3930 (((-688) $) 164 T ELT) (((-688) $ (-987)) 140 T ELT) (((-579 (-688)) $ (-579 (-987))) 139 T ELT)) (-3954 (((-794 (-324)) $) 92 (-12 (|has| (-987) (-549 (-794 (-324)))) (|has| |#1| (-549 (-794 (-324))))) ELT) (((-794 (-479)) $) 91 (-12 (|has| (-987) (-549 (-794 (-479)))) (|has| |#1| (-549 (-794 (-479))))) ELT) (((-468) $) 90 (-12 (|has| (-987) (-549 (-468))) (|has| |#1| (-549 (-468)))) ELT)) (-2802 ((|#1| $) 189 (|has| |#1| (-386)) ELT) (($ $ (-987)) 116 (|has| |#1| (-386)) ELT)) (-2688 (((-3 (-1169 $) #1#) (-626 $)) 114 (-2547 (|has| $ (-116)) (|has| |#1| (-815))) ELT)) (-3736 (((-3 $ "failed") $ $) 252 (|has| |#1| (-490)) ELT) (((-3 (-344 $) "failed") (-344 $) $) 251 (|has| |#1| (-490)) ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-987)) 149 T ELT) (($ (-344 (-479))) 88 (OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ELT) (($ $) 95 (|has| |#1| (-490)) ELT)) (-3799 (((-579 |#1|) $) 182 T ELT)) (-3659 ((|#1| $ (-688)) 169 T ELT) (($ $ (-987) (-688)) 138 T ELT) (($ $ (-579 (-987)) (-579 (-688))) 137 T ELT)) (-2687 (((-628 $) $) 89 (OR (-2547 (|has| $ (-116)) (|has| |#1| (-815))) (|has| |#1| (-116))) ELT)) (-3110 (((-688)) 37 T CONST)) (-1611 (($ $ $ (-688)) 187 (|has| |#1| (-144)) ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 99 (|has| |#1| (-490)) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-579 (-987)) (-579 (-688))) 52 T ELT) (($ $ (-987) (-688)) 51 T ELT) (($ $ (-579 (-987))) 50 T ELT) (($ $ (-987)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-688)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-688)) 269 T ELT) (($ $ (-1080)) 231 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080))) 227 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-1080) (-688)) 226 (|has| |#1| (-805 (-1080))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 225 (|has| |#1| (-805 (-1080))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 170 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 172 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ (-344 (-479)) $) 171 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-1145 |#1|) (-111) (-955)) (T -1145)) +((-3749 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-1145 *4)) (-4 *4 (-955)) (-5 *2 (-1169 *4)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-955)) (-5 *2 (-1075 *3)))) (-3747 (*1 *1 *2) (-12 (-5 *2 (-1075 *3)) (-4 *3 (-955)) (-4 *1 (-1145 *3)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1145 *3)) (-4 *3 (-955)))) (-3746 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-688)) (-4 *1 (-1145 *3)) (-4 *3 (-955)))) (-3745 (*1 *2 *1 *1) (-12 (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-1145 *3)))) (-3744 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *4 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-1145 *4)))) (-3743 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1145 *3)) (-4 *3 (-955)))) (-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1145 *3)) (-4 *3 (-955)))) (-3741 (*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)))) (-3740 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-955)))) (-3739 (*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-144)))) (-3738 (*1 *2 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-144)))) (-3782 (*1 *2 *2 *2) (-12 (-5 *2 (-344 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-955)) (-4 *3 (-490)))) (-3754 (*1 *2 *1 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-955)) (-4 *3 (-490)) (-5 *2 (-688)))) (-3737 (*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-490)))) (-3736 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-490)))) (-3736 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-344 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-955)) (-4 *3 (-490)))) (-3735 (*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-490)))) (-3734 (*1 *2 *1 *1) (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -3936 *3) (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-1145 *3)))) (-3733 (*1 *2 *1 *1) (-12 (-4 *3 (-386)) (-4 *3 (-955)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1145 *3)))) (-3782 (*1 *2 *3 *2) (-12 (-5 *3 (-344 *1)) (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-38 (-344 (-479))))))) +(-13 (-855 |t#1| (-688) (-987)) (-238 |t#1| |t#1|) (-238 $ $) (-188) (-182 |t#1|) (-10 -8 (-15 -3749 ((-1169 |t#1|) $ (-688))) (-15 -3748 ((-1075 |t#1|) $)) (-15 -3747 ($ (-1075 |t#1|))) (-15 -3759 ($ $ (-688))) (-15 -3746 ((-3 $ "failed") $ (-688))) (-15 -3745 ((-2 (|:| -1961 $) (|:| -2887 $)) $ $)) (-15 -3744 ((-2 (|:| -1961 $) (|:| -2887 $)) $ (-688))) (-15 -3743 ($ $ (-688))) (-15 -3742 ($ $ (-688))) (-15 -3741 ($ $ $)) (-15 -3740 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1056)) (-6 (-1056)) |%noBranch|) (IF (|has| |t#1| (-144)) (PROGN (-15 -3739 (|t#1| $)) (-15 -3738 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-490)) (PROGN (-6 (-238 (-344 $) (-344 $))) (-15 -3782 ((-344 $) (-344 $) (-344 $))) (-15 -3754 ((-688) $ $)) (-15 -3737 ($ $ $)) (-15 -3736 ((-3 $ "failed") $ $)) (-15 -3736 ((-3 (-344 $) "failed") (-344 $) $)) (-15 -3735 ($ $ $)) (-15 -3734 ((-2 (|:| -3936 |t#1|) (|:| -1961 $) (|:| -2887 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-386)) (-15 -3733 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-6 (-254)) (-6 -3973) (-15 -3782 (|t#1| (-344 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-344 (-479)))) (-15 -3794 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-688)) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-944 (-344 (-479)))) (|has| |#1| (-38 (-344 (-479))))) ((-551 (-479)) . T) ((-551 (-987)) . T) ((-551 |#1|) . T) ((-551 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308))) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-549 (-468)) -12 (|has| |#1| (-549 (-468))) (|has| (-987) (-549 (-468)))) ((-549 (-794 (-324))) -12 (|has| |#1| (-549 (-794 (-324)))) (|has| (-987) (-549 (-794 (-324))))) ((-549 (-794 (-479))) -12 (|has| |#1| (-549 (-794 (-479)))) (|has| (-987) (-549 (-794 (-479))))) ((-184 $) . T) ((-182 |#1|) . T) ((-188) . T) ((-187) . T) ((-222 |#1|) . T) ((-238 (-344 $) (-344 $)) |has| |#1| (-490)) ((-238 |#1| |#1|) . T) ((-238 $ $) . T) ((-242) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-256 $) . T) ((-273 |#1| (-688)) . T) ((-323 |#1|) . T) ((-349 |#1|) . T) ((-386) OR (|has| |#1| (-815)) (|has| |#1| (-386)) (|has| |#1| (-308))) ((-448 (-987) |#1|) . T) ((-448 (-987) $) . T) ((-448 $ $) . T) ((-490) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308))) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 (-479)) |has| |#1| (-576 (-479))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308))) ((-576 (-479)) |has| |#1| (-576 (-479))) ((-576 |#1|) . T) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308))) ((-659) . T) ((-800 $ (-987)) . T) ((-800 $ (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-803 (-987)) . T) ((-803 (-1080)) |has| |#1| (-803 (-1080))) ((-805 (-987)) . T) ((-805 (-1080)) OR (|has| |#1| (-805 (-1080))) (|has| |#1| (-803 (-1080)))) ((-790 (-324)) -12 (|has| |#1| (-790 (-324))) (|has| (-987) (-790 (-324)))) ((-790 (-479)) -12 (|has| |#1| (-790 (-479))) (|has| (-987) (-790 (-479)))) ((-855 |#1| (-688) (-987)) . T) ((-815) |has| |#1| (-815)) ((-826) |has| |#1| (-308)) ((-944 (-344 (-479))) |has| |#1| (-944 (-344 (-479)))) ((-944 (-479)) |has| |#1| (-944 (-479))) ((-944 (-987)) . T) ((-944 |#1|) . T) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-815)) (|has| |#1| (-490)) (|has| |#1| (-386)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1056) |has| |#1| (-1056)) ((-1119) . T) ((-1124) |has| |#1| (-815))) +((-3940 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1146 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#4| (-1 |#3| |#1|) |#2|))) (-955) (-1145 |#1|) (-955) (-1145 |#3|)) (T -1146)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-4 *2 (-1145 *6)) (-5 *1 (-1146 *5 *4 *6 *2)) (-4 *4 (-1145 *5))))) +((-3066 (((-579 (-987)) $) 34 T ELT)) (-3941 (($ $) 31 T ELT)) (-2878 (($ |#2| |#3|) NIL T ELT) (($ $ (-987) |#3|) 28 T ELT) (($ $ (-579 (-987)) (-579 |#3|)) 27 T ELT)) (-2879 (($ $) 14 T ELT)) (-3158 ((|#2| $) 12 T ELT)) (-3930 ((|#3| $) 10 T ELT))) +(((-1147 |#1| |#2| |#3|) (-10 -7 (-15 -3066 ((-579 (-987)) |#1|)) (-15 -2878 (|#1| |#1| (-579 (-987)) (-579 |#3|))) (-15 -2878 (|#1| |#1| (-987) |#3|)) (-15 -3941 (|#1| |#1|)) (-15 -2878 (|#1| |#2| |#3|)) (-15 -3930 (|#3| |#1|)) (-15 -2879 (|#1| |#1|)) (-15 -3158 (|#2| |#1|))) (-1148 |#2| |#3|) (-955) (-710)) (T -1147)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 (-987)) $) 92 T ELT)) (-3813 (((-1080) $) 126 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 68 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 69 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 71 (|has| |#1| (-490)) ELT)) (-3753 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-3756 (((-1059 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3941 (($ $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2877 (((-83) $) 91 T ELT)) (-3754 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3759 (($ $ (-824)) 124 T ELT)) (-3919 (((-83) $) 79 T ELT)) (-2878 (($ |#1| |#2|) 78 T ELT) (($ $ (-987) |#2|) 94 T ELT) (($ $ (-579 (-987)) (-579 |#2|)) 93 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-2879 (($ $) 82 T ELT)) (-3158 ((|#1| $) 83 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3751 (($ $ |#2|) 118 T ELT)) (-3448 (((-3 $ "failed") $ $) 67 (|has| |#1| (-490)) ELT)) (-3750 (((-1059 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3782 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1016)) ELT)) (-3740 (($ $ (-1080)) 116 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-579 (-1080))) 114 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1080) (-688)) 113 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 112 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-688)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3930 ((|#2| $) 81 T ELT)) (-2876 (($ $) 90 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 (-479))) 74 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) 66 (|has| |#1| (-490)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3659 ((|#1| $ |#2|) 76 T ELT)) (-2687 (((-628 $) $) 65 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-3755 ((|#1| $) 125 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 70 (|has| |#1| (-490)) ELT)) (-3752 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1080)) 115 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-579 (-1080))) 111 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1080) (-688)) 110 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 109 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-688)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-344 (-479)) $) 73 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 72 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1148 |#1| |#2|) (-111) (-955) (-710)) (T -1148)) +((-3756 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-1059 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3813 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-1080)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-1148 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-824)) (-4 *1 (-1148 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) (-3754 (*1 *2 *1 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) (-3753 (*1 *1 *1 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) (-3753 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) (-3752 (*1 *2 *1 *3) (-12 (-4 *1 (-1148 *2 *3)) (-4 *3 (-710)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3928 (*2 (-1080)))) (-4 *2 (-955)))) (-3751 (*1 *1 *1 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) (-3750 (*1 *2 *1 *3) (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1059 *3))))) +(-13 (-880 |t#1| |t#2| (-987)) (-238 |t#2| |t#1|) (-10 -8 (-15 -3756 ((-1059 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3813 ((-1080) $)) (-15 -3755 (|t#1| $)) (-15 -3759 ($ $ (-824))) (-15 -3754 (|t#2| $)) (-15 -3754 (|t#2| $ |t#2|)) (-15 -3753 ($ $ |t#2|)) (-15 -3753 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3928 (|t#1| (-1080)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3752 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3751 ($ $ |t#2|)) (IF (|has| |t#2| (-1016)) (-6 (-238 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-188)) (IF (|has| |t#1| (-803 (-1080))) (-6 (-803 (-1080))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3750 ((-1059 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-490)) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-551 (-479)) . T) ((-551 |#1|) |has| |#1| (-144)) ((-551 $) |has| |#1| (-490)) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-188) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-187) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238 |#2| |#1|) . T) ((-238 $ $) |has| |#2| (-1016)) ((-242) |has| |#1| (-490)) ((-490) |has| |#1| (-490)) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) |has| |#1| (-490)) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) |has| |#1| (-490)) ((-659) . T) ((-800 $ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-803 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-805 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-880 |#1| |#2| (-987)) . T) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-3757 ((|#2| |#2|) 12 T ELT)) (-3953 (((-342 |#2|) |#2|) 14 T ELT)) (-3758 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-479))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-479)))) 30 T ELT))) +(((-1149 |#1| |#2|) (-10 -7 (-15 -3953 ((-342 |#2|) |#2|)) (-15 -3757 (|#2| |#2|)) (-15 -3758 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-479))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-479)))))) (-490) (-13 (-1145 |#1|) (-490) (-10 -8 (-15 -3128 ($ $ $))))) (T -1149)) +((-3758 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-479)))) (-4 *4 (-13 (-1145 *3) (-490) (-10 -8 (-15 -3128 ($ $ $))))) (-4 *3 (-490)) (-5 *1 (-1149 *3 *4)))) (-3757 (*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-1149 *3 *2)) (-4 *2 (-13 (-1145 *3) (-490) (-10 -8 (-15 -3128 ($ $ $))))))) (-3953 (*1 *2 *3) (-12 (-4 *4 (-490)) (-5 *2 (-342 *3)) (-5 *1 (-1149 *4 *3)) (-4 *3 (-13 (-1145 *4) (-490) (-10 -8 (-15 -3128 ($ $ $)))))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) 11 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-344 (-479))) NIL T ELT) (($ $ (-344 (-479)) (-344 (-479))) NIL T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|))) $) NIL T ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-688) (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|)))) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-1129 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1159 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3140 (((-1129 |#1| |#2| |#3|) $) NIL T ELT) (((-1159 |#1| |#2| |#3|) $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3763 (((-344 (-479)) $) 68 T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3764 (($ (-344 (-479)) (-1129 |#1| |#2| |#3|)) NIL T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2877 (((-83) $) NIL T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-344 (-479)) $) NIL T ELT) (((-344 (-479)) $ (-344 (-479))) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) NIL T ELT) (($ $ (-344 (-479))) NIL T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-344 (-479))) 30 T ELT) (($ $ (-987) (-344 (-479))) NIL T ELT) (($ $ (-579 (-987)) (-579 (-344 (-479)))) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3924 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3762 (((-1129 |#1| |#2| |#3|) $) 71 T ELT)) (-3760 (((-3 (-1129 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3761 (((-1129 |#1| |#2| |#3|) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3794 (($ $) 39 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) NIL (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT) (($ $ (-1166 |#2|)) 40 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-344 (-479))) NIL T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-344 (-479))) NIL T ELT) (($ $ $) NIL (|has| (-344 (-479)) (-1016)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-1166 |#2|)) 38 T ELT)) (-3930 (((-344 (-479)) $) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) NIL T ELT)) (-3928 (((-766) $) 107 T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT) (($ (-1129 |#1| |#2| |#3|)) 16 T ELT) (($ (-1159 |#1| |#2| |#3|)) 17 T ELT) (($ (-1166 |#2|)) 36 T ELT) (($ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-344 (-479))) NIL T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-3755 ((|#1| $) 12 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-344 (-479))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 32 T CONST)) (-2651 (($) 26 T CONST)) (-2654 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-1166 |#2|)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 34 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ (-479)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1150 |#1| |#2| |#3|) (-13 (-1154 |#1| (-1129 |#1| |#2| |#3|)) (-800 $ (-1166 |#2|)) (-944 (-1159 |#1| |#2| |#3|)) (-551 (-1166 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-344 (-479)))) (-15 -3794 ($ $ (-1166 |#2|))) |%noBranch|))) (-955) (-1080) |#1|) (T -1150)) +((-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3)))) +((-3940 (((-1150 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1150 |#1| |#3| |#5|)) 24 T ELT))) +(((-1151 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3940 ((-1150 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1150 |#1| |#3| |#5|)))) (-955) (-955) (-1080) (-1080) |#1| |#2|) (T -1151)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5 *7 *9)) (-4 *5 (-955)) (-4 *6 (-955)) (-14 *7 (-1080)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1150 *6 *8 *10)) (-5 *1 (-1151 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1080))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 (-987)) $) 92 T ELT)) (-3813 (((-1080) $) 126 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 68 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 69 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 71 (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-344 (-479))) 121 T ELT) (($ $ (-344 (-479)) (-344 (-479))) 120 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|))) $) 127 T ELT)) (-3474 (($ $) 160 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 143 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) 188 (|has| |#1| (-308)) ELT)) (-3022 (($ $) 142 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1596 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3472 (($ $) 159 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 144 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-688) (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|)))) 196 T ELT)) (-3476 (($ $) 158 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 145 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) 22 T CONST)) (-2549 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3941 (($ $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 176 (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-2877 (((-83) $) 91 T ELT)) (-3609 (($) 170 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-344 (-479)) $) 123 T ELT) (((-344 (-479)) $ (-344 (-479))) 122 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 141 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) 124 T ELT) (($ $ (-344 (-479))) 195 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 185 (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) 79 T ELT)) (-2878 (($ |#1| (-344 (-479))) 78 T ELT) (($ $ (-987) (-344 (-479))) 94 T ELT) (($ $ (-579 (-987)) (-579 (-344 (-479)))) 93 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3924 (($ $) 167 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) 82 T ELT)) (-3158 ((|#1| $) 83 T ELT)) (-1879 (($ (-579 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3794 (($ $) 194 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) 193 (OR (-12 (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105)) (|has| |#1| (-38 (-344 (-479))))) (-12 (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-38 (-344 (-479)))))) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 175 (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3714 (((-342 $) $) 186 (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-344 (-479))) 118 T ELT)) (-3448 (((-3 $ "failed") $ $) 67 (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 177 (|has| |#1| (-308)) ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) ELT)) (-1595 (((-688) $) 179 (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-344 (-479))) 128 T ELT) (($ $ $) 104 (|has| (-344 (-479)) (-1016)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1080)) 116 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) 114 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) 113 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 112 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) 106 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT)) (-3930 (((-344 (-479)) $) 81 T ELT)) (-3477 (($ $) 157 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 146 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 156 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 147 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 155 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 148 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) 90 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ (-344 (-479))) 74 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) 66 (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-344 (-479))) 76 T ELT)) (-2687 (((-628 $) $) 65 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-3755 ((|#1| $) 125 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3480 (($ $) 166 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 154 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) 70 (|has| |#1| (-490)) ELT)) (-3478 (($ $) 165 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 153 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 164 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 152 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-344 (-479))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) 163 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 151 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 162 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 150 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 161 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 149 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1080)) 115 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) 111 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) 110 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 109 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) 105 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 140 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-344 (-479)) $) 73 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 72 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1152 |#1|) (-111) (-955)) (T -1152)) +((-3800 (*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-5 *3 (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| *4)))) (-4 *4 (-955)) (-4 *1 (-1152 *4)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-4 *1 (-1152 *3)) (-4 *3 (-955)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-955)) (-4 *2 (-38 (-344 (-479)))))) (-3794 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1080)) (-4 *1 (-1152 *3)) (-4 *3 (-955)) (-12 (-4 *3 (-29 (-479))) (-4 *3 (-865)) (-4 *3 (-1105)) (-4 *3 (-38 (-344 (-479)))))) (-12 (-5 *2 (-1080)) (-4 *1 (-1152 *3)) (-4 *3 (-955)) (-12 (|has| *3 (-15 -3066 ((-579 *2) *3))) (|has| *3 (-15 -3794 (*3 *3 *2))) (-4 *3 (-38 (-344 (-479))))))))) +(-13 (-1148 |t#1| (-344 (-479))) (-10 -8 (-15 -3800 ($ (-688) (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |t#1|))))) (-15 -3759 ($ $ (-344 (-479)))) (IF (|has| |t#1| (-38 (-344 (-479)))) (PROGN (-15 -3794 ($ $)) (IF (|has| |t#1| (-15 -3794 (|t#1| |t#1| (-1080)))) (IF (|has| |t#1| (-15 -3066 ((-579 (-1080)) |t#1|))) (-15 -3794 ($ $ (-1080))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-865)) (IF (|has| |t#1| (-29 (-479))) (-15 -3794 ($ $ (-1080))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-909)) (-6 (-1105))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-344 (-479))) . T) ((-25) . T) ((-38 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-344 (-479)))) ((-66) |has| |#1| (-38 (-344 (-479)))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-551 (-479)) . T) ((-551 |#1|) |has| |#1| (-144)) ((-551 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-344 (-479)))) ((-238 (-344 (-479)) |#1|) . T) ((-238 $ $) |has| (-344 (-479)) (-1016)) ((-242) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-308) |has| |#1| (-308)) ((-386) |has| |#1| (-308)) ((-427) |has| |#1| (-38 (-344 (-479)))) ((-490) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-584 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-650 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-659) . T) ((-800 $ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ((-803 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ((-805 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ((-880 |#1| (-344 (-479)) (-987)) . T) ((-826) |has| |#1| (-308)) ((-909) |has| |#1| (-38 (-344 (-479)))) ((-957 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-962 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1105) |has| |#1| (-38 (-344 (-479)))) ((-1108) |has| |#1| (-38 (-344 (-479)))) ((-1119) . T) ((-1124) |has| |#1| (-308)) ((-1148 |#1| (-344 (-479))) . T)) +((-3172 (((-83) $) 12 T ELT)) (-3141 (((-3 |#3| "failed") $) 17 T ELT)) (-3140 ((|#3| $) 14 T ELT))) +(((-1153 |#1| |#2| |#3|) (-10 -7 (-15 -3141 ((-3 |#3| "failed") |#1|)) (-15 -3140 (|#3| |#1|)) (-15 -3172 ((-83) |#1|))) (-1154 |#2| |#3|) (-955) (-1131 |#2|)) (T -1153)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 (-987)) $) 92 T ELT)) (-3813 (((-1080) $) 126 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 68 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 69 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 71 (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-344 (-479))) 121 T ELT) (($ $ (-344 (-479)) (-344 (-479))) 120 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|))) $) 127 T ELT)) (-3474 (($ $) 160 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 143 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 187 (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) 188 (|has| |#1| (-308)) ELT)) (-3022 (($ $) 142 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1596 (((-83) $ $) 178 (|has| |#1| (-308)) ELT)) (-3472 (($ $) 159 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 144 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-688) (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|)))) 196 T ELT)) (-3476 (($ $) 158 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 145 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#2| "failed") $) 209 T ELT)) (-3140 ((|#2| $) 210 T ELT)) (-2549 (($ $ $) 182 (|has| |#1| (-308)) ELT)) (-3941 (($ $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3763 (((-344 (-479)) $) 206 T ELT)) (-2548 (($ $ $) 181 (|has| |#1| (-308)) ELT)) (-3764 (($ (-344 (-479)) |#2|) 207 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 176 (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) 189 (|has| |#1| (-308)) ELT)) (-2877 (((-83) $) 91 T ELT)) (-3609 (($) 170 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-344 (-479)) $) 123 T ELT) (((-344 (-479)) $ (-344 (-479))) 122 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 141 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) 124 T ELT) (($ $ (-344 (-479))) 195 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 185 (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) 79 T ELT)) (-2878 (($ |#1| (-344 (-479))) 78 T ELT) (($ $ (-987) (-344 (-479))) 94 T ELT) (($ $ (-579 (-987)) (-579 (-344 (-479)))) 93 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3924 (($ $) 167 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) 82 T ELT)) (-3158 ((|#1| $) 83 T ELT)) (-1879 (($ (-579 $)) 174 (|has| |#1| (-308)) ELT) (($ $ $) 173 (|has| |#1| (-308)) ELT)) (-3762 ((|#2| $) 205 T ELT)) (-3760 (((-3 |#2| "failed") $) 203 T ELT)) (-3761 ((|#2| $) 204 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 190 (|has| |#1| (-308)) ELT)) (-3794 (($ $) 194 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) 193 (OR (-12 (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105)) (|has| |#1| (-38 (-344 (-479))))) (-12 (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-38 (-344 (-479)))))) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 175 (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) 172 (|has| |#1| (-308)) ELT) (($ $ $) 171 (|has| |#1| (-308)) ELT)) (-3714 (((-342 $) $) 186 (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 183 (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-344 (-479))) 118 T ELT)) (-3448 (((-3 $ "failed") $ $) 67 (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 177 (|has| |#1| (-308)) ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) ELT)) (-1595 (((-688) $) 179 (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-344 (-479))) 128 T ELT) (($ $ $) 104 (|has| (-344 (-479)) (-1016)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 180 (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1080)) 116 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) 114 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) 113 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 112 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) 106 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT)) (-3930 (((-344 (-479)) $) 81 T ELT)) (-3477 (($ $) 157 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 146 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 156 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 147 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 155 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 148 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) 90 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT) (($ |#2|) 208 T ELT) (($ (-344 (-479))) 74 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) 66 (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-344 (-479))) 76 T ELT)) (-2687 (((-628 $) $) 65 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-3755 ((|#1| $) 125 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3480 (($ $) 166 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 154 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) 70 (|has| |#1| (-490)) ELT)) (-3478 (($ $) 165 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 153 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 164 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 152 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-344 (-479))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) 163 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 151 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 162 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 150 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 161 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 149 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1080)) 115 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) 111 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) 110 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 109 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) 105 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT) (($ $ $) 192 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 191 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 140 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-344 (-479)) $) 73 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 72 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1154 |#1| |#2|) (-111) (-955) (-1131 |t#1|)) (T -1154)) +((-3930 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1131 *3)) (-5 *2 (-344 (-479))))) (-3764 (*1 *1 *2 *3) (-12 (-5 *2 (-344 (-479))) (-4 *4 (-955)) (-4 *1 (-1154 *4 *3)) (-4 *3 (-1131 *4)))) (-3763 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1131 *3)) (-5 *2 (-344 (-479))))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1131 *3)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1131 *3)))) (-3760 (*1 *2 *1) (|partial| -12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1131 *3))))) +(-13 (-1152 |t#1|) (-944 |t#2|) (-551 |t#2|) (-10 -8 (-15 -3764 ($ (-344 (-479)) |t#2|)) (-15 -3763 ((-344 (-479)) $)) (-15 -3762 (|t#2| $)) (-15 -3930 ((-344 (-479)) $)) (-15 -3761 (|t#2| $)) (-15 -3760 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-344 (-479))) . T) ((-25) . T) ((-38 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-35) |has| |#1| (-38 (-344 (-479)))) ((-66) |has| |#1| (-38 (-344 (-479)))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-551 (-479)) . T) ((-551 |#1|) |has| |#1| (-144)) ((-551 |#2|) . T) ((-551 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ((-198) |has| |#1| (-308)) ((-236) |has| |#1| (-38 (-344 (-479)))) ((-238 (-344 (-479)) |#1|) . T) ((-238 $ $) |has| (-344 (-479)) (-1016)) ((-242) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-254) |has| |#1| (-308)) ((-308) |has| |#1| (-308)) ((-386) |has| |#1| (-308)) ((-427) |has| |#1| (-38 (-344 (-479)))) ((-490) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-584 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-650 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) OR (|has| |#1| (-490)) (|has| |#1| (-308))) ((-659) . T) ((-800 $ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ((-803 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ((-805 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ((-880 |#1| (-344 (-479)) (-987)) . T) ((-826) |has| |#1| (-308)) ((-909) |has| |#1| (-38 (-344 (-479)))) ((-944 |#2|) . T) ((-957 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-962 (-344 (-479))) OR (|has| |#1| (-308)) (|has| |#1| (-38 (-344 (-479))))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-308)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1105) |has| |#1| (-38 (-344 (-479)))) ((-1108) |has| |#1| (-38 (-344 (-479)))) ((-1119) . T) ((-1124) |has| |#1| (-308)) ((-1148 |#1| (-344 (-479))) . T) ((-1152 |#1|) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) 104 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-344 (-479))) 116 T ELT) (($ $ (-344 (-479)) (-344 (-479))) 118 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|))) $) 54 T ELT)) (-3474 (($ $) 192 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 168 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $) NIL (|has| |#1| (-308)) ELT)) (-3953 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1596 (((-83) $ $) NIL (|has| |#1| (-308)) ELT)) (-3472 (($ $) 188 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 164 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-688) (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#1|)))) 65 T ELT)) (-3476 (($ $) 196 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 172 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) NIL T ELT)) (-3140 ((|#2| $) NIL T ELT)) (-2549 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) 85 T ELT)) (-3763 (((-344 (-479)) $) 13 T ELT)) (-2548 (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3764 (($ (-344 (-479)) |#2|) 11 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) NIL (|has| |#1| (-308)) ELT)) (-3705 (((-83) $) NIL (|has| |#1| (-308)) ELT)) (-2877 (((-83) $) 74 T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-344 (-479)) $) 113 T ELT) (((-344 (-479)) $ (-344 (-479))) 114 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) 130 T ELT) (($ $ (-344 (-479))) 128 T ELT)) (-1593 (((-3 (-579 $) #1#) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-344 (-479))) 33 T ELT) (($ $ (-987) (-344 (-479))) NIL T ELT) (($ $ (-579 (-987)) (-579 (-344 (-479)))) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3924 (($ $) 162 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1879 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3762 ((|#2| $) 12 T ELT)) (-3760 (((-3 |#2| #1#) $) 44 T ELT)) (-3761 ((|#2| $) 45 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-2469 (($ $) 101 (|has| |#1| (-308)) ELT)) (-3794 (($ $) 146 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) 151 (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) NIL (|has| |#1| (-308)) ELT)) (-3128 (($ (-579 $)) NIL (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-308)) ELT)) (-3714 (((-342 $) $) NIL (|has| |#1| (-308)) ELT)) (-1594 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-308)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3751 (($ $ (-344 (-479))) 122 T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) NIL (|has| |#1| (-308)) ELT)) (-3925 (($ $) 160 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) ELT)) (-1595 (((-688) $) NIL (|has| |#1| (-308)) ELT)) (-3782 ((|#1| $ (-344 (-479))) 108 T ELT) (($ $ $) 94 (|has| (-344 (-479)) (-1016)) ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) NIL (|has| |#1| (-308)) ELT)) (-3740 (($ $ (-1080)) 138 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT)) (-3930 (((-344 (-479)) $) 16 T ELT)) (-3477 (($ $) 198 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 174 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 194 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 170 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 190 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 166 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) 120 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-144)) ELT) (($ |#2|) 34 T ELT) (($ (-344 (-479))) 139 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT)) (-3659 ((|#1| $ (-344 (-479))) 107 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 127 T CONST)) (-3755 ((|#1| $) 106 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) 204 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 180 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) 200 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 176 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 208 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 184 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-344 (-479))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-344 (-479))))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) 210 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 186 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 206 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 182 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 202 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 178 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 21 T CONST)) (-2651 (($) 17 T CONST)) (-2654 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-344 (-479)) |#1|))) ELT)) (-3041 (((-83) $ $) 72 T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT) (($ $ $) 100 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3821 (($ $ $) 76 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 82 T ELT) (($ $ (-479)) 157 (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 158 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1155 |#1| |#2|) (-1154 |#1| |#2|) (-955) (-1131 |#1|)) (T -1155)) +NIL +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 37 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-2048 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 (-479) #1#) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-944 (-479))) ELT) (((-3 (-344 (-479)) #1#) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-944 (-344 (-479)))) ELT) (((-3 (-1150 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3140 (((-479) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-944 (-479))) ELT) (((-344 (-479)) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-944 (-344 (-479)))) ELT) (((-1150 |#2| |#3| |#4|) $) NIL T ELT)) (-3941 (($ $) 41 T ELT)) (-3449 (((-3 $ #1#) $) 27 T ELT)) (-3485 (($ $) NIL (|has| (-1150 |#2| |#3| |#4|) (-386)) ELT)) (-1612 (($ $ (-1150 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) 11 T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ (-1150 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) 25 T ELT)) (-2805 (((-266 |#2| |#3| |#4|) $) NIL T ELT)) (-1613 (($ (-1 (-266 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) $) NIL T ELT)) (-3940 (($ (-1 (-1150 |#2| |#3| |#4|) (-1150 |#2| |#3| |#4|)) $) NIL T ELT)) (-3766 (((-3 (-744 |#2|) #1#) $) 91 T ELT)) (-2879 (($ $) NIL T ELT)) (-3158 (((-1150 |#2| |#3| |#4|) $) 20 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-1785 (((-83) $) NIL T ELT)) (-1784 (((-1150 |#2| |#3| |#4|) $) NIL T ELT)) (-3448 (((-3 $ #1#) $ (-1150 |#2| |#3| |#4|)) NIL (|has| (-1150 |#2| |#3| |#4|) (-490)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3765 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 |#2| |#3| |#4|)) (|:| |%expon| (-266 |#2| |#3| |#4|)) (|:| |%expTerms| (-579 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#2|)))))) (|:| |%type| (-1063))) #1#) $) 74 T ELT)) (-3930 (((-266 |#2| |#3| |#4|) $) 17 T ELT)) (-2802 (((-1150 |#2| |#3| |#4|) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-386)) ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ (-1150 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-344 (-479))) NIL (OR (|has| (-1150 |#2| |#3| |#4|) (-944 (-344 (-479)))) (|has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479))))) ELT)) (-3799 (((-579 (-1150 |#2| |#3| |#4|)) $) NIL T ELT)) (-3659 (((-1150 |#2| |#3| |#4|) $ (-266 |#2| |#3| |#4|)) NIL T ELT)) (-2687 (((-628 $) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-1611 (($ $ $ (-688)) NIL (|has| (-1150 |#2| |#3| |#4|) (-144)) ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2049 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-2651 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ (-1150 |#2| |#3| |#4|)) NIL (|has| (-1150 |#2| |#3| |#4|) (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1150 |#2| |#3| |#4|)) NIL T ELT) (($ (-1150 |#2| |#3| |#4|) $) NIL T ELT) (($ (-344 (-479)) $) NIL (|has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| (-1150 |#2| |#3| |#4|) (-38 (-344 (-479)))) ELT))) +(((-1156 |#1| |#2| |#3| |#4|) (-13 (-273 (-1150 |#2| |#3| |#4|) (-266 |#2| |#3| |#4|)) (-490) (-10 -8 (-15 -3766 ((-3 (-744 |#2|) #1="failed") $)) (-15 -3765 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 |#2| |#3| |#4|)) (|:| |%expon| (-266 |#2| |#3| |#4|)) (|:| |%expTerms| (-579 (-2 (|:| |k| (-344 (-479))) (|:| |c| |#2|)))))) (|:| |%type| (-1063))) #1#) $)))) (-13 (-944 (-479)) (-576 (-479)) (-386)) (-13 (-27) (-1105) (-358 |#1|)) (-1080) |#2|) (T -1156)) +((-3766 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-944 (-479)) (-576 (-479)) (-386))) (-5 *2 (-744 *4)) (-5 *1 (-1156 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-358 *3))) (-14 *5 (-1080)) (-14 *6 *4))) (-3765 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-944 (-479)) (-576 (-479)) (-386))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1150 *4 *5 *6)) (|:| |%expon| (-266 *4 *5 *6)) (|:| |%expTerms| (-579 (-2 (|:| |k| (-344 (-479))) (|:| |c| *4)))))) (|:| |%type| (-1063)))) (-5 *1 (-1156 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-358 *3))) (-14 *5 (-1080)) (-14 *6 *4)))) +((-3384 ((|#2| $) 34 T ELT)) (-3777 ((|#2| $) 18 T ELT)) (-3779 (($ $) 44 T ELT)) (-3767 (($ $ (-479)) 79 T ELT)) (-3010 ((|#2| $ |#2|) 76 T ELT)) (-3768 ((|#2| $ |#2|) 72 T ELT)) (-3770 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3011 (($ $ (-579 $)) 75 T ELT)) (-3778 ((|#2| $) 17 T ELT)) (-3781 (($ $) NIL T ELT) (($ $ (-688)) 52 T ELT)) (-3016 (((-579 $) $) 31 T ELT)) (-3012 (((-83) $ $) 63 T ELT)) (-3509 (((-83) $) 33 T ELT)) (-3780 ((|#2| $) 25 T ELT) (($ $ (-688)) 58 T ELT)) (-3782 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3615 (((-83) $) 23 T ELT)) (-3774 (($ $) 47 T ELT)) (-3772 (($ $) 80 T ELT)) (-3775 (((-688) $) 51 T ELT)) (-3776 (($ $) 50 T ELT)) (-3784 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3504 (((-579 $) $) 32 T ELT)) (-3041 (((-83) $ $) 61 T ELT)) (-3939 (((-688) $) 43 T ELT))) +(((-1157 |#1| |#2|) (-10 -7 (-15 -3041 ((-83) |#1| |#1|)) (-15 -3767 (|#1| |#1| (-479))) (-15 -3770 (|#2| |#1| #1="last" |#2|)) (-15 -3768 (|#2| |#1| |#2|)) (-15 -3770 (|#1| |#1| #2="rest" |#1|)) (-15 -3770 (|#2| |#1| #3="first" |#2|)) (-15 -3772 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3775 ((-688) |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3777 (|#2| |#1|)) (-15 -3778 (|#2| |#1|)) (-15 -3779 (|#1| |#1|)) (-15 -3780 (|#1| |#1| (-688))) (-15 -3782 (|#2| |#1| #1#)) (-15 -3780 (|#2| |#1|)) (-15 -3781 (|#1| |#1| (-688))) (-15 -3782 (|#1| |#1| #2#)) (-15 -3781 (|#1| |#1|)) (-15 -3782 (|#2| |#1| #3#)) (-15 -3784 (|#1| |#2| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -3010 (|#2| |#1| |#2|)) (-15 -3770 (|#2| |#1| #4="value" |#2|)) (-15 -3011 (|#1| |#1| (-579 |#1|))) (-15 -3012 ((-83) |#1| |#1|)) (-15 -3615 ((-83) |#1|)) (-15 -3782 (|#2| |#1| #4#)) (-15 -3384 (|#2| |#1|)) (-15 -3509 ((-83) |#1|)) (-15 -3016 ((-579 |#1|) |#1|)) (-15 -3504 ((-579 |#1|) |#1|)) (-15 -3939 ((-688) |#1|))) (-1158 |#2|) (-1119)) (T -1157)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3384 ((|#1| $) 52 T ELT)) (-3777 ((|#1| $) 71 T ELT)) (-3779 (($ $) 73 T ELT)) (-3767 (($ $ (-479)) 58 (|has| $ (-6 -3978)) ELT)) (-3010 ((|#1| $ |#1|) 43 (|has| $ (-6 -3978)) ELT)) (-3769 (($ $ $) 62 (|has| $ (-6 -3978)) ELT)) (-3768 ((|#1| $ |#1|) 60 (|has| $ (-6 -3978)) ELT)) (-3771 ((|#1| $ |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-3770 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -3978)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -3978)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -3978)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -3978)) ELT)) (-3011 (($ $ (-579 $)) 45 (|has| $ (-6 -3978)) ELT)) (-3778 ((|#1| $) 72 T ELT)) (-3706 (($) 7 T CONST)) (-3781 (($ $) 79 T ELT) (($ $ (-688)) 77 T ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3016 (((-579 $) $) 54 T ELT)) (-3012 (((-83) $ $) 46 (|has| |#1| (-1006)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3015 (((-579 |#1|) $) 49 T ELT)) (-3509 (((-83) $) 53 T ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-3780 ((|#1| $) 76 T ELT) (($ $ (-688)) 74 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 82 T ELT) (($ $ (-688)) 80 T ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3014 (((-479) $ $) 48 T ELT)) (-3615 (((-83) $) 50 T ELT)) (-3774 (($ $) 68 T ELT)) (-3772 (($ $) 65 (|has| $ (-6 -3978)) ELT)) (-3775 (((-688) $) 69 T ELT)) (-3776 (($ $) 70 T ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3382 (($ $) 10 T ELT)) (-3773 (($ $ $) 67 (|has| $ (-6 -3978)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -3978)) ELT)) (-3784 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-3504 (((-579 $) $) 55 T ELT)) (-3013 (((-83) $ $) 47 (|has| |#1| (-1006)) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-1158 |#1|) (-111) (-1119)) (T -1158)) +((-3784 (*1 *1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3784 (*1 *1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3783 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1158 *3)) (-4 *3 (-1119)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3782 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1158 *3)) (-4 *3 (-1119)))) (-3781 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1158 *3)) (-4 *3 (-1119)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3782 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1158 *3)) (-4 *3 (-1119)))) (-3779 (*1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3776 (*1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1119)) (-5 *2 (-688)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3773 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3773 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3772 (*1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3771 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3770 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3769 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3770 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -3978)) (-4 *1 (-1158 *3)) (-4 *3 (-1119)))) (-3768 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3770 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-479)) (|has| *1 (-6 -3978)) (-4 *1 (-1158 *3)) (-4 *3 (-1119))))) +(-13 (-917 |t#1|) (-10 -8 (-15 -3784 ($ $ $)) (-15 -3784 ($ |t#1| $)) (-15 -3783 (|t#1| $)) (-15 -3782 (|t#1| $ "first")) (-15 -3783 ($ $ (-688))) (-15 -3781 ($ $)) (-15 -3782 ($ $ "rest")) (-15 -3781 ($ $ (-688))) (-15 -3780 (|t#1| $)) (-15 -3782 (|t#1| $ "last")) (-15 -3780 ($ $ (-688))) (-15 -3779 ($ $)) (-15 -3778 (|t#1| $)) (-15 -3777 (|t#1| $)) (-15 -3776 ($ $)) (-15 -3775 ((-688) $)) (-15 -3774 ($ $)) (IF (|has| $ (-6 -3978)) (PROGN (-15 -3773 ($ $ $)) (-15 -3773 ($ $ |t#1|)) (-15 -3772 ($ $)) (-15 -3771 (|t#1| $ |t#1|)) (-15 -3770 (|t#1| $ "first" |t#1|)) (-15 -3769 ($ $ $)) (-15 -3770 ($ $ "rest" $)) (-15 -3768 (|t#1| $ |t#1|)) (-15 -3770 (|t#1| $ "last" |t#1|)) (-15 -3767 ($ $ (-479)))) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-548 (-766)))) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-423 |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-917 |#1|) . T) ((-1006) |has| |#1| (-1006)) ((-1119) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3066 (((-579 (-987)) $) NIL T ELT)) (-3813 (((-1080) $) 87 T ELT)) (-3793 (((-1138 |#2| |#1|) $ (-688)) 70 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) NIL (|has| |#1| (-490)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 139 (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-688)) 125 T ELT) (($ $ (-688) (-688)) 127 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-688)) (|:| |c| |#1|))) $) 42 T ELT)) (-3474 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3022 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3472 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-1059 (-2 (|:| |k| (-688)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1059 |#1|)) NIL T ELT)) (-3476 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) NIL T CONST)) (-3787 (($ $) 131 T ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3798 (($ $) 137 T ELT)) (-3796 (((-851 |#1|) $ (-688)) 60 T ELT) (((-851 |#1|) $ (-688) (-688)) 62 T ELT)) (-2877 (((-83) $) NIL T ELT)) (-3609 (($) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-688) $) NIL T ELT) (((-688) $ (-688)) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3790 (($ $) 115 T ELT)) (-2996 (($ $ (-479)) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3786 (($ (-479) (-479) $) 133 T ELT)) (-3759 (($ $ (-824)) 136 T ELT)) (-3797 (($ (-1 |#1| (-479)) $) 109 T ELT)) (-3919 (((-83) $) NIL T ELT)) (-2878 (($ |#1| (-688)) 16 T ELT) (($ $ (-987) (-688)) NIL T ELT) (($ $ (-579 (-987)) (-579 (-688))) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3924 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3791 (($ $) 113 T ELT)) (-3792 (($ $) 111 T ELT)) (-3785 (($ (-479) (-479) $) 135 T ELT)) (-3794 (($ $) 147 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) 153 (OR (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105))) (-12 (|has| |#1| (-38 (-344 (-479)))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))))) ELT) (($ $ (-1166 |#2|)) 148 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3788 (($ $ (-479) (-479)) 119 T ELT)) (-3751 (($ $ (-688)) 121 T ELT)) (-3448 (((-3 $ #1#) $ $) NIL (|has| |#1| (-490)) ELT)) (-3925 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3789 (($ $) 117 T ELT)) (-3750 (((-1059 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-688)))) ELT)) (-3782 ((|#1| $ (-688)) 93 T ELT) (($ $ $) 129 (|has| (-688) (-1016)) ELT)) (-3740 (($ $ (-1080)) 106 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-1166 |#2|)) 101 T ELT)) (-3930 (((-688) $) NIL T ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) 123 T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) 26 T ELT) (($ (-344 (-479))) 145 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) NIL (|has| |#1| (-490)) ELT) (($ |#1|) 25 (|has| |#1| (-144)) ELT) (($ (-1138 |#2| |#1|)) 78 T ELT) (($ (-1166 |#2|)) 22 T ELT)) (-3799 (((-1059 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ (-688)) 92 T ELT)) (-2687 (((-628 $) $) NIL (|has| |#1| (-116)) ELT)) (-3110 (((-688)) NIL T CONST)) (-3755 ((|#1| $) 88 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3480 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-3478 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-688)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-688)))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 18 T CONST)) (-2651 (($) 13 T CONST)) (-2654 (($ $ (-1080)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-1080) (-688)) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) NIL (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-688)) NIL (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-1166 |#2|)) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3931 (($ $ |#1|) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3821 (($ $ $) 20 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-308)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-344 (-479)) $) NIL (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) NIL (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1159 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-800 $ (-1166 |#2|)) (-10 -8 (-15 -3928 ($ (-1138 |#2| |#1|))) (-15 -3793 ((-1138 |#2| |#1|) $ (-688))) (-15 -3928 ($ (-1166 |#2|))) (-15 -3792 ($ $)) (-15 -3791 ($ $)) (-15 -3790 ($ $)) (-15 -3789 ($ $)) (-15 -3788 ($ $ (-479) (-479))) (-15 -3787 ($ $)) (-15 -3786 ($ (-479) (-479) $)) (-15 -3785 ($ (-479) (-479) $)) (IF (|has| |#1| (-38 (-344 (-479)))) (-15 -3794 ($ $ (-1166 |#2|))) |%noBranch|))) (-955) (-1080) |#1|) (T -1159)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3) (-5 *1 (-1159 *3 *4 *5)))) (-3793 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1159 *4 *5 *6)) (-4 *4 (-955)) (-14 *5 (-1080)) (-14 *6 *4))) (-3928 (*1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-955)) (-14 *5 *3))) (-3792 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2))) (-3791 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2))) (-3790 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2))) (-3789 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2))) (-3788 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3))) (-3787 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2))) (-3786 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3))) (-3785 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3))) (-3794 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3)))) +((-3940 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1160 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 (|#4| (-1 |#2| |#1|) |#3|))) (-955) (-955) (-1162 |#1|) (-1162 |#2|)) (T -1160)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-4 *2 (-1162 *6)) (-5 *1 (-1160 *5 *6 *4 *2)) (-4 *4 (-1162 *5))))) +((-3172 (((-83) $) 17 T ELT)) (-3474 (($ $) 105 T ELT)) (-3621 (($ $) 81 T ELT)) (-3472 (($ $) 101 T ELT)) (-3620 (($ $) 77 T ELT)) (-3476 (($ $) 109 T ELT)) (-3619 (($ $) 85 T ELT)) (-3924 (($ $) 75 T ELT)) (-3925 (($ $) 73 T ELT)) (-3477 (($ $) 111 T ELT)) (-3618 (($ $) 87 T ELT)) (-3475 (($ $) 107 T ELT)) (-3617 (($ $) 83 T ELT)) (-3473 (($ $) 103 T ELT)) (-3616 (($ $) 79 T ELT)) (-3928 (((-766) $) 61 T ELT) (($ (-479)) NIL T ELT) (($ (-344 (-479))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3480 (($ $) 117 T ELT)) (-3468 (($ $) 93 T ELT)) (-3478 (($ $) 113 T ELT)) (-3466 (($ $) 89 T ELT)) (-3482 (($ $) 121 T ELT)) (-3470 (($ $) 97 T ELT)) (-3483 (($ $) 123 T ELT)) (-3471 (($ $) 99 T ELT)) (-3481 (($ $) 119 T ELT)) (-3469 (($ $) 95 T ELT)) (-3479 (($ $) 115 T ELT)) (-3467 (($ $) 91 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-344 (-479))) 71 T ELT))) +(((-1161 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-344 (-479)))) (-15 -3621 (|#1| |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3619 (|#1| |#1|)) (-15 -3618 (|#1| |#1|)) (-15 -3617 (|#1| |#1|)) (-15 -3616 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3469 (|#1| |#1|)) (-15 -3471 (|#1| |#1|)) (-15 -3470 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3468 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3475 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -3472 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -3481 (|#1| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -3482 (|#1| |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3480 (|#1| |#1|)) (-15 -3924 (|#1| |#1|)) (-15 -3925 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3928 (|#1| |#2|)) (-15 -3928 (|#1| |#1|)) (-15 -3928 (|#1| (-344 (-479)))) (-15 -3928 (|#1| (-479))) (-15 ** (|#1| |#1| (-688))) (-15 ** (|#1| |#1| (-824))) (-15 -3172 ((-83) |#1|)) (-15 -3928 ((-766) |#1|))) (-1162 |#2|) (-955)) (T -1161)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3066 (((-579 (-987)) $) 92 T ELT)) (-3813 (((-1080) $) 126 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 68 (|has| |#1| (-490)) ELT)) (-2050 (($ $) 69 (|has| |#1| (-490)) ELT)) (-2048 (((-83) $) 71 (|has| |#1| (-490)) ELT)) (-3753 (($ $ (-688)) 121 T ELT) (($ $ (-688) (-688)) 120 T ELT)) (-3756 (((-1059 (-2 (|:| |k| (-688)) (|:| |c| |#1|))) $) 127 T ELT)) (-3474 (($ $) 160 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3621 (($ $) 143 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3022 (($ $) 142 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3472 (($ $) 159 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3620 (($ $) 144 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3800 (($ (-1059 (-2 (|:| |k| (-688)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1059 |#1|)) 178 T ELT)) (-3476 (($ $) 158 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3619 (($ $) 145 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3706 (($) 22 T CONST)) (-3941 (($ $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3798 (($ $) 177 T ELT)) (-3796 (((-851 |#1|) $ (-688)) 175 T ELT) (((-851 |#1|) $ (-688) (-688)) 174 T ELT)) (-2877 (((-83) $) 91 T ELT)) (-3609 (($) 170 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3754 (((-688) $) 123 T ELT) (((-688) $ (-688)) 122 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-2996 (($ $ (-479)) 141 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3759 (($ $ (-824)) 124 T ELT)) (-3797 (($ (-1 |#1| (-479)) $) 176 T ELT)) (-3919 (((-83) $) 79 T ELT)) (-2878 (($ |#1| (-688)) 78 T ELT) (($ $ (-987) (-688)) 94 T ELT) (($ $ (-579 (-987)) (-579 (-688))) 93 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3924 (($ $) 167 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2879 (($ $) 82 T ELT)) (-3158 ((|#1| $) 83 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3794 (($ $) 172 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-1080)) 171 (OR (-12 (|has| |#1| (-29 (-479))) (|has| |#1| (-865)) (|has| |#1| (-1105)) (|has| |#1| (-38 (-344 (-479))))) (-12 (|has| |#1| (-15 -3066 ((-579 (-1080)) |#1|))) (|has| |#1| (-15 -3794 (|#1| |#1| (-1080)))) (|has| |#1| (-38 (-344 (-479)))))) ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3751 (($ $ (-688)) 118 T ELT)) (-3448 (((-3 $ "failed") $ $) 67 (|has| |#1| (-490)) ELT)) (-3925 (($ $) 168 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3750 (((-1059 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-688)))) ELT)) (-3782 ((|#1| $ (-688)) 128 T ELT) (($ $ $) 104 (|has| (-688) (-1016)) ELT)) (-3740 (($ $ (-1080)) 116 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080))) 114 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-1080) (-688)) 113 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 112 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-688)) 106 (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT)) (-3930 (((-688) $) 81 T ELT)) (-3477 (($ $) 157 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3618 (($ $) 146 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3475 (($ $) 156 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3617 (($ $) 147 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3473 (($ $) 155 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3616 (($ $) 148 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2876 (($ $) 90 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ (-344 (-479))) 74 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $) 66 (|has| |#1| (-490)) ELT) (($ |#1|) 64 (|has| |#1| (-144)) ELT)) (-3799 (((-1059 |#1|) $) 179 T ELT)) (-3659 ((|#1| $ (-688)) 76 T ELT)) (-2687 (((-628 $) $) 65 (|has| |#1| (-116)) ELT)) (-3110 (((-688)) 37 T CONST)) (-3755 ((|#1| $) 125 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-3480 (($ $) 166 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3468 (($ $) 154 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2049 (((-83) $ $) 70 (|has| |#1| (-490)) ELT)) (-3478 (($ $) 165 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3466 (($ $) 153 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3482 (($ $) 164 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3470 (($ $) 152 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3752 ((|#1| $ (-688)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-688)))) (|has| |#1| (-15 -3928 (|#1| (-1080))))) ELT)) (-3483 (($ $) 163 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3471 (($ $) 151 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3481 (($ $) 162 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3469 (($ $) 150 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3479 (($ $) 161 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-3467 (($ $) 149 (|has| |#1| (-38 (-344 (-479)))) ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-2654 (($ $ (-1080)) 115 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080))) 111 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-1080) (-688)) 110 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $ (-579 (-1080)) (-579 (-688))) 109 (-12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT) (($ $ (-688)) 105 (|has| |#1| (-15 * (|#1| (-688) |#1|))) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 75 (|has| |#1| (-308)) ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-308)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 140 (|has| |#1| (-38 (-344 (-479)))) ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-344 (-479)) $) 73 (|has| |#1| (-38 (-344 (-479)))) ELT) (($ $ (-344 (-479))) 72 (|has| |#1| (-38 (-344 (-479)))) ELT))) +(((-1162 |#1|) (-111) (-955)) (T -1162)) +((-3800 (*1 *1 *2) (-12 (-5 *2 (-1059 (-2 (|:| |k| (-688)) (|:| |c| *3)))) (-4 *3 (-955)) (-4 *1 (-1162 *3)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-955)) (-5 *2 (-1059 *3)))) (-3800 (*1 *1 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-4 *1 (-1162 *3)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-955)))) (-3797 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-479))) (-4 *1 (-1162 *3)) (-4 *3 (-955)))) (-3796 (*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-1162 *4)) (-4 *4 (-955)) (-5 *2 (-851 *4)))) (-3796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-4 *1 (-1162 *4)) (-4 *4 (-955)) (-5 *2 (-851 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-955)) (-4 *2 (-38 (-344 (-479)))))) (-3794 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1080)) (-4 *1 (-1162 *3)) (-4 *3 (-955)) (-12 (-4 *3 (-29 (-479))) (-4 *3 (-865)) (-4 *3 (-1105)) (-4 *3 (-38 (-344 (-479)))))) (-12 (-5 *2 (-1080)) (-4 *1 (-1162 *3)) (-4 *3 (-955)) (-12 (|has| *3 (-15 -3066 ((-579 *2) *3))) (|has| *3 (-15 -3794 (*3 *3 *2))) (-4 *3 (-38 (-344 (-479))))))))) +(-13 (-1148 |t#1| (-688)) (-10 -8 (-15 -3800 ($ (-1059 (-2 (|:| |k| (-688)) (|:| |c| |t#1|))))) (-15 -3799 ((-1059 |t#1|) $)) (-15 -3800 ($ (-1059 |t#1|))) (-15 -3798 ($ $)) (-15 -3797 ($ (-1 |t#1| (-479)) $)) (-15 -3796 ((-851 |t#1|) $ (-688))) (-15 -3796 ((-851 |t#1|) $ (-688) (-688))) (IF (|has| |t#1| (-308)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-344 (-479)))) (PROGN (-15 -3794 ($ $)) (IF (|has| |t#1| (-15 -3794 (|t#1| |t#1| (-1080)))) (IF (|has| |t#1| (-15 -3066 ((-579 (-1080)) |t#1|))) (-15 -3794 ($ $ (-1080))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1105)) (IF (|has| |t#1| (-865)) (IF (|has| |t#1| (-29 (-479))) (-15 -3794 ($ $ (-1080))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-909)) (-6 (-1105))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-688)) . T) ((-25) . T) ((-38 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-38 |#1|) |has| |#1| (-144)) ((-38 $) |has| |#1| (-490)) ((-35) |has| |#1| (-38 (-344 (-479)))) ((-66) |has| |#1| (-38 (-344 (-479)))) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-80 |#1| |#1|) . T) ((-80 $ $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-102) . T) ((-116) |has| |#1| (-116)) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-551 (-479)) . T) ((-551 |#1|) |has| |#1| (-144)) ((-551 $) |has| |#1| (-490)) ((-548 (-766)) . T) ((-144) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-184 $) |has| |#1| (-15 * (|#1| (-688) |#1|))) ((-188) |has| |#1| (-15 * (|#1| (-688) |#1|))) ((-187) |has| |#1| (-15 * (|#1| (-688) |#1|))) ((-236) |has| |#1| (-38 (-344 (-479)))) ((-238 (-688) |#1|) . T) ((-238 $ $) |has| (-688) (-1016)) ((-242) |has| |#1| (-490)) ((-427) |has| |#1| (-38 (-344 (-479)))) ((-490) |has| |#1| (-490)) ((-584 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-578 |#1|) |has| |#1| (-144)) ((-578 $) |has| |#1| (-490)) ((-650 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-650 |#1|) |has| |#1| (-144)) ((-650 $) |has| |#1| (-490)) ((-659) . T) ((-800 $ (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ((-803 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ((-805 (-1080)) -12 (|has| |#1| (-803 (-1080))) (|has| |#1| (-15 * (|#1| (-688) |#1|)))) ((-880 |#1| (-688) (-987)) . T) ((-909) |has| |#1| (-38 (-344 (-479)))) ((-957 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-957 |#1|) . T) ((-957 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-962 (-344 (-479))) |has| |#1| (-38 (-344 (-479)))) ((-962 |#1|) . T) ((-962 $) OR (|has| |#1| (-490)) (|has| |#1| (-144))) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1105) |has| |#1| (-38 (-344 (-479)))) ((-1108) |has| |#1| (-38 (-344 (-479)))) ((-1119) . T) ((-1148 |#1| (-688)) . T)) +((-3803 (((-1 (-1059 |#1|) (-579 (-1059 |#1|))) (-1 |#2| (-579 |#2|))) 24 T ELT)) (-3802 (((-1 (-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3801 (((-1 (-1059 |#1|) (-1059 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3806 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3805 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3807 ((|#2| (-1 |#2| (-579 |#2|)) (-579 |#1|)) 60 T ELT)) (-3808 (((-579 |#2|) (-579 |#1|) (-579 (-1 |#2| (-579 |#2|)))) 66 T ELT)) (-3804 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1163 |#1| |#2|) (-10 -7 (-15 -3801 ((-1 (-1059 |#1|) (-1059 |#1|)) (-1 |#2| |#2|))) (-15 -3802 ((-1 (-1059 |#1|) (-1059 |#1|) (-1059 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3803 ((-1 (-1059 |#1|) (-579 (-1059 |#1|))) (-1 |#2| (-579 |#2|)))) (-15 -3804 (|#2| |#2| |#2|)) (-15 -3805 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3806 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3807 (|#2| (-1 |#2| (-579 |#2|)) (-579 |#1|))) (-15 -3808 ((-579 |#2|) (-579 |#1|) (-579 (-1 |#2| (-579 |#2|)))))) (-38 (-344 (-479))) (-1162 |#1|)) (T -1163)) +((-3808 (*1 *2 *3 *4) (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 (-1 *6 (-579 *6)))) (-4 *5 (-38 (-344 (-479)))) (-4 *6 (-1162 *5)) (-5 *2 (-579 *6)) (-5 *1 (-1163 *5 *6)))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-579 *2))) (-5 *4 (-579 *5)) (-4 *5 (-38 (-344 (-479)))) (-4 *2 (-1162 *5)) (-5 *1 (-1163 *5 *2)))) (-3806 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1162 *4)) (-5 *1 (-1163 *4 *2)) (-4 *4 (-38 (-344 (-479)))))) (-3805 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1162 *4)) (-5 *1 (-1163 *4 *2)) (-4 *4 (-38 (-344 (-479)))))) (-3804 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-1162 *3)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-579 *5))) (-4 *5 (-1162 *4)) (-4 *4 (-38 (-344 (-479)))) (-5 *2 (-1 (-1059 *4) (-579 (-1059 *4)))) (-5 *1 (-1163 *4 *5)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1162 *4)) (-4 *4 (-38 (-344 (-479)))) (-5 *2 (-1 (-1059 *4) (-1059 *4) (-1059 *4))) (-5 *1 (-1163 *4 *5)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1162 *4)) (-4 *4 (-38 (-344 (-479)))) (-5 *2 (-1 (-1059 *4) (-1059 *4))) (-5 *1 (-1163 *4 *5))))) +((-3810 ((|#2| |#4| (-688)) 31 T ELT)) (-3809 ((|#4| |#2|) 26 T ELT)) (-3812 ((|#4| (-344 |#2|)) 49 (|has| |#1| (-490)) ELT)) (-3811 (((-1 |#4| (-579 |#4|)) |#3|) 43 T ELT))) +(((-1164 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3809 (|#4| |#2|)) (-15 -3810 (|#2| |#4| (-688))) (-15 -3811 ((-1 |#4| (-579 |#4|)) |#3|)) (IF (|has| |#1| (-490)) (-15 -3812 (|#4| (-344 |#2|))) |%noBranch|)) (-955) (-1145 |#1|) (-596 |#2|) (-1162 |#1|)) (T -1164)) +((-3812 (*1 *2 *3) (-12 (-5 *3 (-344 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-490)) (-4 *4 (-955)) (-4 *2 (-1162 *4)) (-5 *1 (-1164 *4 *5 *6 *2)) (-4 *6 (-596 *5)))) (-3811 (*1 *2 *3) (-12 (-4 *4 (-955)) (-4 *5 (-1145 *4)) (-5 *2 (-1 *6 (-579 *6))) (-5 *1 (-1164 *4 *5 *3 *6)) (-4 *3 (-596 *5)) (-4 *6 (-1162 *4)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-688)) (-4 *5 (-955)) (-4 *2 (-1145 *5)) (-5 *1 (-1164 *5 *2 *6 *3)) (-4 *6 (-596 *2)) (-4 *3 (-1162 *5)))) (-3809 (*1 *2 *3) (-12 (-4 *4 (-955)) (-4 *3 (-1145 *4)) (-4 *2 (-1162 *4)) (-5 *1 (-1164 *4 *3 *5 *2)) (-4 *5 (-596 *3))))) +NIL +(((-1165) (-111)) (T -1165)) +NIL +(-13 (-10 -7 (-6 -2274))) +((-2553 (((-83) $ $) NIL T ELT)) (-3813 (((-1080)) 12 T ELT)) (-3226 (((-1063) $) 18 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 11 T ELT) (((-1080) $) 8 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 15 T ELT))) +(((-1166 |#1|) (-13 (-1006) (-548 (-1080)) (-10 -8 (-15 -3928 ((-1080) $)) (-15 -3813 ((-1080))))) (-1080)) (T -1166)) +((-3928 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1166 *3)) (-14 *3 *2))) (-3813 (*1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1166 *3)) (-14 *3 *2)))) +((-3820 (($ (-688)) 19 T ELT)) (-3817 (((-626 |#2|) $ $) 41 T ELT)) (-3814 ((|#2| $) 51 T ELT)) (-3815 ((|#2| $) 50 T ELT)) (-3818 ((|#2| $ $) 36 T ELT)) (-3816 (($ $ $) 47 T ELT)) (-3819 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3821 (($ $ $) 15 T ELT)) (* (($ (-479) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1167 |#1| |#2|) (-10 -7 (-15 -3814 (|#2| |#1|)) (-15 -3815 (|#2| |#1|)) (-15 -3816 (|#1| |#1| |#1|)) (-15 -3817 ((-626 |#2|) |#1| |#1|)) (-15 -3818 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-479) |#1|)) (-15 -3819 (|#1| |#1| |#1|)) (-15 -3819 (|#1| |#1|)) (-15 -3820 (|#1| (-688))) (-15 -3821 (|#1| |#1| |#1|))) (-1168 |#2|) (-1119)) (T -1167)) +NIL +((-2553 (((-83) $ $) 19 (|has| |#1| (-72)) ELT)) (-3820 (($ (-688)) 121 (|has| |#1| (-23)) ELT)) (-2185 (((-1175) $ (-479) (-479)) 44 (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) 107 T ELT) (((-83) $) 101 (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) 98 (|has| $ (-6 -3978)) ELT) (($ $) 97 (-12 (|has| |#1| (-750)) (|has| $ (-6 -3978))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) 56 (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) 64 (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) 81 (|has| $ (-6 -3977)) ELT)) (-3706 (($) 7 T CONST)) (-2284 (($ $) 99 (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) 109 T ELT)) (-1341 (($ $) 84 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-3388 (($ |#1| $) 83 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) (($ (-1 (-83) |#1|) $) 80 (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) 57 (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) 55 T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) 106 T ELT) (((-479) |#1| $) 105 (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) 104 (|has| |#1| (-1006)) ELT)) (-2874 (((-579 |#1|) $) 30 (|has| $ (-6 -3977)) ELT)) (-3817 (((-626 |#1|) $ $) 114 (|has| |#1| (-955)) ELT)) (-3596 (($ (-688) |#1|) 74 T ELT)) (-2187 (((-479) $) 47 (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) 91 (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) 29 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) 27 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-2188 (((-479) $) 48 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) 92 (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3814 ((|#1| $) 111 (-12 (|has| |#1| (-955)) (|has| |#1| (-909))) ELT)) (-3815 ((|#1| $) 112 (-12 (|has| |#1| (-955)) (|has| |#1| (-909))) ELT)) (-3226 (((-1063) $) 22 (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) 66 T ELT) (($ $ $ (-479)) 65 T ELT)) (-2190 (((-579 (-479)) $) 50 T ELT)) (-2191 (((-83) (-479) $) 51 T ELT)) (-3227 (((-1024) $) 21 (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) 46 (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) 77 T ELT)) (-2186 (($ $ |#1|) 45 (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) 26 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) 25 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) 23 (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) 11 T ELT)) (-2189 (((-83) |#1| $) 49 (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) 52 T ELT)) (-3385 (((-83) $) 8 T ELT)) (-3547 (($) 9 T ELT)) (-3782 ((|#1| $ (-479) |#1|) 54 T ELT) ((|#1| $ (-479)) 53 T ELT) (($ $ (-1136 (-479))) 75 T ELT)) (-3818 ((|#1| $ $) 115 (|has| |#1| (-955)) ELT)) (-2292 (($ $ (-479)) 68 T ELT) (($ $ (-1136 (-479))) 67 T ELT)) (-3816 (($ $ $) 113 (|has| |#1| (-955)) ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) 31 (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) 28 (-12 (|has| |#1| (-1006)) (|has| $ (-6 -3977))) ELT)) (-1719 (($ $ $ (-479)) 100 (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) 10 T ELT)) (-3954 (((-468) $) 85 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 76 T ELT)) (-3784 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-579 $)) 70 T ELT)) (-3928 (((-766) $) 17 (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) 20 (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) 33 (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) 93 (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) 95 (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) 18 (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) 94 (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) 96 (|has| |#1| (-750)) ELT)) (-3819 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-3821 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-479) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-659)) ELT) (($ $ |#1|) 116 (|has| |#1| (-659)) ELT)) (-3939 (((-688) $) 6 (|has| $ (-6 -3977)) ELT))) +(((-1168 |#1|) (-111) (-1119)) (T -1168)) +((-3821 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-25)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1168 *3)) (-4 *3 (-23)) (-4 *3 (-1119)))) (-3819 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-21)))) (-3819 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-479)) (-4 *1 (-1168 *3)) (-4 *3 (-1119)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-659)))) (-3818 (*1 *2 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-955)))) (-3817 (*1 *2 *1 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1119)) (-4 *3 (-955)) (-5 *2 (-626 *3)))) (-3816 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-955)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-909)) (-4 *2 (-955)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-909)) (-4 *2 (-955))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3821 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3820 ($ (-688))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3819 ($ $)) (-15 -3819 ($ $ $)) (-15 * ($ (-479) $))) |%noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-955)) (PROGN (-15 -3818 (|t#1| $ $)) (-15 -3817 ((-626 |t#1|) $ $)) (-15 -3816 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-909)) (IF (|has| |t#1| (-955)) (PROGN (-15 -3815 (|t#1| $)) (-15 -3814 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-72) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-72))) ((-548 (-766)) OR (|has| |#1| (-1006)) (|has| |#1| (-750)) (|has| |#1| (-548 (-766)))) ((-122 |#1|) . T) ((-549 (-468)) |has| |#1| (-549 (-468))) ((-238 (-479) |#1|) . T) ((-238 (-1136 (-479)) $) . T) ((-240 (-479) |#1|) . T) ((-256 |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-318 |#1|) . T) ((-423 |#1|) . T) ((-534 (-479) |#1|) . T) ((-448 |#1| |#1|) -12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ((-589 |#1|) . T) ((-19 |#1|) . T) ((-750) |has| |#1| (-750)) ((-753) |has| |#1| (-750)) ((-1006) OR (|has| |#1| (-1006)) (|has| |#1| (-750))) ((-1119) . T)) +((-2553 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-3820 (($ (-688)) NIL (|has| |#1| (-23)) ELT)) (-3822 (($ (-579 |#1|)) 11 T ELT)) (-2185 (((-1175) $ (-479) (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-1720 (((-83) (-1 (-83) |#1| |#1|) $) NIL T ELT) (((-83) $) NIL (|has| |#1| (-750)) ELT)) (-1718 (($ (-1 (-83) |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT) (($ $) NIL (-12 (|has| $ (-6 -3978)) (|has| |#1| (-750))) ELT)) (-2894 (($ (-1 (-83) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-750)) ELT)) (-3770 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT) ((|#1| $ (-1136 (-479)) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3692 (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3706 (($) NIL T CONST)) (-2284 (($ $) NIL (|has| $ (-6 -3978)) ELT)) (-2285 (($ $) NIL T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-3388 (($ |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) (($ (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3824 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -3977)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-1564 ((|#1| $ (-479) |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-3097 ((|#1| $ (-479)) NIL T ELT)) (-3401 (((-479) (-1 (-83) |#1|) $) NIL T ELT) (((-479) |#1| $) NIL (|has| |#1| (-1006)) ELT) (((-479) |#1| $ (-479)) NIL (|has| |#1| (-1006)) ELT)) (-2874 (((-579 |#1|) $) 16 (|has| $ (-6 -3977)) ELT)) (-3817 (((-626 |#1|) $ $) NIL (|has| |#1| (-955)) ELT)) (-3596 (($ (-688) |#1|) NIL T ELT)) (-2187 (((-479) $) NIL (|has| (-479) (-750)) ELT)) (-2516 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-3500 (($ (-1 (-83) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-2593 (((-579 |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2188 (((-479) $) 12 (|has| (-479) (-750)) ELT)) (-2842 (($ $ $) NIL (|has| |#1| (-750)) ELT)) (-1937 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3814 ((|#1| $) NIL (-12 (|has| |#1| (-909)) (|has| |#1| (-955))) ELT)) (-3815 ((|#1| $) NIL (-12 (|has| |#1| (-909)) (|has| |#1| (-955))) ELT)) (-3226 (((-1063) $) NIL (|has| |#1| (-1006)) ELT)) (-2291 (($ |#1| $ (-479)) NIL T ELT) (($ $ $ (-479)) NIL T ELT)) (-2190 (((-579 (-479)) $) NIL T ELT)) (-2191 (((-83) (-479) $) NIL T ELT)) (-3227 (((-1024) $) NIL (|has| |#1| (-1006)) ELT)) (-3783 ((|#1| $) NIL (|has| (-479) (-750)) ELT)) (-1342 (((-3 |#1| "failed") (-1 (-83) |#1|) $) NIL T ELT)) (-2186 (($ $ |#1|) NIL (|has| $ (-6 -3978)) ELT)) (-1935 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 (-245 |#1|))) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-245 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT) (($ $ (-579 |#1|) (-579 |#1|)) NIL (-12 (|has| |#1| (-256 |#1|)) (|has| |#1| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-2189 (((-83) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-2192 (((-579 |#1|) $) NIL T ELT)) (-3385 (((-83) $) NIL T ELT)) (-3547 (($) NIL T ELT)) (-3782 ((|#1| $ (-479) |#1|) NIL T ELT) ((|#1| $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-3818 ((|#1| $ $) NIL (|has| |#1| (-955)) ELT)) (-2292 (($ $ (-479)) NIL T ELT) (($ $ (-1136 (-479))) NIL T ELT)) (-3816 (($ $ $) NIL (|has| |#1| (-955)) ELT)) (-1934 (((-688) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT) (((-688) |#1| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#1| (-1006))) ELT)) (-1719 (($ $ $ (-479)) NIL (|has| $ (-6 -3978)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) 20 (|has| |#1| (-549 (-468))) ELT)) (-3512 (($ (-579 |#1|)) 10 T ELT)) (-3784 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-579 $)) NIL T ELT)) (-3928 (((-766) $) NIL (|has| |#1| (-548 (-766))) ELT)) (-1254 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-1936 (((-83) (-1 (-83) |#1|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2551 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2552 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3041 (((-83) $ $) NIL (|has| |#1| (-72)) ELT)) (-2669 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-2670 (((-83) $ $) NIL (|has| |#1| (-750)) ELT)) (-3819 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3821 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-479) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-659)) ELT) (($ $ |#1|) NIL (|has| |#1| (-659)) ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-1169 |#1|) (-13 (-1168 |#1|) (-10 -8 (-15 -3822 ($ (-579 |#1|))))) (-1119)) (T -1169)) +((-3822 (*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-1169 *3))))) +((-3823 (((-1169 |#2|) (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|) 13 T ELT)) (-3824 ((|#2| (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|) 15 T ELT)) (-3940 (((-3 (-1169 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1169 |#1|)) 30 T ELT) (((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|)) 18 T ELT))) +(((-1170 |#1| |#2|) (-10 -7 (-15 -3823 ((-1169 |#2|) (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|)) (-15 -3824 (|#2| (-1 |#2| |#1| |#2|) (-1169 |#1|) |#2|)) (-15 -3940 ((-1169 |#2|) (-1 |#2| |#1|) (-1169 |#1|))) (-15 -3940 ((-3 (-1169 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1169 |#1|)))) (-1119) (-1119)) (T -1170)) +((-3940 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1169 *6)) (-5 *1 (-1170 *5 *6)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1169 *6)) (-5 *1 (-1170 *5 *6)))) (-3824 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1169 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-1170 *5 *2)))) (-3823 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1169 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-1169 *5)) (-5 *1 (-1170 *6 *5))))) +((-3825 (((-402) (-579 (-579 (-848 (-177)))) (-579 (-218))) 22 T ELT) (((-402) (-579 (-579 (-848 (-177))))) 21 T ELT) (((-402) (-579 (-579 (-848 (-177)))) (-777) (-777) (-824) (-579 (-218))) 20 T ELT)) (-3826 (((-1172) (-579 (-579 (-848 (-177)))) (-579 (-218))) 30 T ELT) (((-1172) (-579 (-579 (-848 (-177)))) (-777) (-777) (-824) (-579 (-218))) 29 T ELT)) (-3928 (((-1172) (-402)) 46 T ELT))) +(((-1171) (-10 -7 (-15 -3825 ((-402) (-579 (-579 (-848 (-177)))) (-777) (-777) (-824) (-579 (-218)))) (-15 -3825 ((-402) (-579 (-579 (-848 (-177)))))) (-15 -3825 ((-402) (-579 (-579 (-848 (-177)))) (-579 (-218)))) (-15 -3826 ((-1172) (-579 (-579 (-848 (-177)))) (-777) (-777) (-824) (-579 (-218)))) (-15 -3826 ((-1172) (-579 (-579 (-848 (-177)))) (-579 (-218)))) (-15 -3928 ((-1172) (-402))))) (T -1171)) +((-3928 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1172)) (-5 *1 (-1171)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-1171)))) (-3826 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-777)) (-5 *5 (-824)) (-5 *6 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-1171)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-579 (-218))) (-5 *2 (-402)) (-5 *1 (-1171)))) (-3825 (*1 *2 *3) (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *2 (-402)) (-5 *1 (-1171)))) (-3825 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-777)) (-5 *5 (-824)) (-5 *6 (-579 (-218))) (-5 *2 (-402)) (-5 *1 (-1171))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3844 (((-1063) $ (-1063)) 107 T ELT) (((-1063) $ (-1063) (-1063)) 105 T ELT) (((-1063) $ (-1063) (-579 (-1063))) 104 T ELT)) (-3840 (($) 69 T ELT)) (-3827 (((-1175) $ (-402) (-824)) 54 T ELT)) (-3833 (((-1175) $ (-824) (-1063)) 89 T ELT) (((-1175) $ (-824) (-777)) 90 T ELT)) (-3855 (((-1175) $ (-824) (-324) (-324)) 57 T ELT)) (-3865 (((-1175) $ (-1063)) 84 T ELT)) (-3828 (((-1175) $ (-824) (-1063)) 94 T ELT)) (-3829 (((-1175) $ (-824) (-324) (-324)) 58 T ELT)) (-3866 (((-1175) $ (-824) (-824)) 55 T ELT)) (-3846 (((-1175) $) 85 T ELT)) (-3831 (((-1175) $ (-824) (-1063)) 93 T ELT)) (-3835 (((-1175) $ (-402) (-824)) 41 T ELT)) (-3832 (((-1175) $ (-824) (-1063)) 92 T ELT)) (-3868 (((-579 (-218)) $) 29 T ELT) (($ $ (-579 (-218))) 30 T ELT)) (-3867 (((-1175) $ (-688) (-688)) 52 T ELT)) (-3839 (($ $) 70 T ELT) (($ (-402) (-579 (-218))) 71 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3842 (((-479) $) 48 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3836 (((-1169 (-3 (-402) "undefined")) $) 47 T ELT)) (-3837 (((-1169 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3832 (-479)) (|:| -3830 (-479)) (|:| |spline| (-479)) (|:| -3861 (-479)) (|:| |axesColor| (-777)) (|:| -3833 (-479)) (|:| |unitsColor| (-777)) (|:| |showing| (-479)))) $) 46 T ELT)) (-3838 (((-1175) $ (-824) (-177) (-177) (-177) (-177) (-479) (-479) (-479) (-479) (-777) (-479) (-777) (-479)) 83 T ELT)) (-3841 (((-579 (-848 (-177))) $) NIL T ELT)) (-3834 (((-402) $ (-824)) 43 T ELT)) (-3864 (((-1175) $ (-688) (-688) (-824) (-824)) 50 T ELT)) (-3862 (((-1175) $ (-1063)) 95 T ELT)) (-3830 (((-1175) $ (-824) (-1063)) 91 T ELT)) (-3928 (((-766) $) 102 T ELT)) (-3843 (((-1175) $) 96 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3861 (((-1175) $ (-824) (-1063)) 87 T ELT) (((-1175) $ (-824) (-777)) 88 T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1172) (-13 (-1006) (-10 -8 (-15 -3841 ((-579 (-848 (-177))) $)) (-15 -3840 ($)) (-15 -3839 ($ $)) (-15 -3868 ((-579 (-218)) $)) (-15 -3868 ($ $ (-579 (-218)))) (-15 -3839 ($ (-402) (-579 (-218)))) (-15 -3838 ((-1175) $ (-824) (-177) (-177) (-177) (-177) (-479) (-479) (-479) (-479) (-777) (-479) (-777) (-479))) (-15 -3837 ((-1169 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3832 (-479)) (|:| -3830 (-479)) (|:| |spline| (-479)) (|:| -3861 (-479)) (|:| |axesColor| (-777)) (|:| -3833 (-479)) (|:| |unitsColor| (-777)) (|:| |showing| (-479)))) $)) (-15 -3836 ((-1169 (-3 (-402) "undefined")) $)) (-15 -3865 ((-1175) $ (-1063))) (-15 -3835 ((-1175) $ (-402) (-824))) (-15 -3834 ((-402) $ (-824))) (-15 -3861 ((-1175) $ (-824) (-1063))) (-15 -3861 ((-1175) $ (-824) (-777))) (-15 -3833 ((-1175) $ (-824) (-1063))) (-15 -3833 ((-1175) $ (-824) (-777))) (-15 -3832 ((-1175) $ (-824) (-1063))) (-15 -3831 ((-1175) $ (-824) (-1063))) (-15 -3830 ((-1175) $ (-824) (-1063))) (-15 -3862 ((-1175) $ (-1063))) (-15 -3843 ((-1175) $)) (-15 -3864 ((-1175) $ (-688) (-688) (-824) (-824))) (-15 -3829 ((-1175) $ (-824) (-324) (-324))) (-15 -3855 ((-1175) $ (-824) (-324) (-324))) (-15 -3828 ((-1175) $ (-824) (-1063))) (-15 -3867 ((-1175) $ (-688) (-688))) (-15 -3827 ((-1175) $ (-402) (-824))) (-15 -3866 ((-1175) $ (-824) (-824))) (-15 -3844 ((-1063) $ (-1063))) (-15 -3844 ((-1063) $ (-1063) (-1063))) (-15 -3844 ((-1063) $ (-1063) (-579 (-1063)))) (-15 -3846 ((-1175) $)) (-15 -3842 ((-479) $)) (-15 -3928 ((-766) $))))) (T -1172)) +((-3928 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1172)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-579 (-848 (-177)))) (-5 *1 (-1172)))) (-3840 (*1 *1) (-5 *1 (-1172))) (-3839 (*1 *1 *1) (-5 *1 (-1172))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-579 (-218))) (-5 *1 (-1172)))) (-3868 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-218))) (-5 *1 (-1172)))) (-3839 (*1 *1 *2 *3) (-12 (-5 *2 (-402)) (-5 *3 (-579 (-218))) (-5 *1 (-1172)))) (-3838 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-824)) (-5 *4 (-177)) (-5 *5 (-479)) (-5 *6 (-777)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1169 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)) (|:| -3832 (-479)) (|:| -3830 (-479)) (|:| |spline| (-479)) (|:| -3861 (-479)) (|:| |axesColor| (-777)) (|:| -3833 (-479)) (|:| |unitsColor| (-777)) (|:| |showing| (-479))))) (-5 *1 (-1172)))) (-3836 (*1 *2 *1) (-12 (-5 *2 (-1169 (-3 (-402) "undefined"))) (-5 *1 (-1172)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3835 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-402)) (-5 *4 (-824)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3834 (*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-402)) (-5 *1 (-1172)))) (-3861 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3861 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-777)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3833 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3833 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-777)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3831 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3830 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3862 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3864 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-688)) (-5 *4 (-824)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3829 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-824)) (-5 *4 (-324)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3855 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-824)) (-5 *4 (-324)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3828 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3867 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3827 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-402)) (-5 *4 (-824)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3866 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3844 (*1 *2 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1172)))) (-3844 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1172)))) (-3844 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-1063)) (-5 *1 (-1172)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1172)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1172))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3856 (((-1175) $ (-324)) 168 T ELT) (((-1175) $ (-324) (-324) (-324)) 169 T ELT)) (-3844 (((-1063) $ (-1063)) 177 T ELT) (((-1063) $ (-1063) (-1063)) 175 T ELT) (((-1063) $ (-1063) (-579 (-1063))) 174 T ELT)) (-3872 (($) 67 T ELT)) (-3863 (((-1175) $ (-324) (-324) (-324) (-324) (-324)) 140 T ELT) (((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) $) 138 T ELT) (((-1175) $ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) 139 T ELT) (((-1175) $ (-479) (-479) (-324) (-324) (-324)) 143 T ELT) (((-1175) $ (-324) (-324)) 144 T ELT) (((-1175) $ (-324) (-324) (-324)) 151 T ELT)) (-3875 (((-324)) 121 T ELT) (((-324) (-324)) 122 T ELT)) (-3877 (((-324)) 116 T ELT) (((-324) (-324)) 118 T ELT)) (-3876 (((-324)) 119 T ELT) (((-324) (-324)) 120 T ELT)) (-3873 (((-324)) 125 T ELT) (((-324) (-324)) 126 T ELT)) (-3874 (((-324)) 123 T ELT) (((-324) (-324)) 124 T ELT)) (-3855 (((-1175) $ (-324) (-324)) 170 T ELT)) (-3865 (((-1175) $ (-1063)) 152 T ELT)) (-3870 (((-1037 (-177)) $) 68 T ELT) (($ $ (-1037 (-177))) 69 T ELT)) (-3851 (((-1175) $ (-1063)) 186 T ELT)) (-3850 (((-1175) $ (-1063)) 187 T ELT)) (-3857 (((-1175) $ (-324) (-324)) 150 T ELT) (((-1175) $ (-479) (-479)) 167 T ELT)) (-3866 (((-1175) $ (-824) (-824)) 159 T ELT)) (-3846 (((-1175) $) 136 T ELT)) (-3854 (((-1175) $ (-1063)) 185 T ELT)) (-3859 (((-1175) $ (-1063)) 133 T ELT)) (-3868 (((-579 (-218)) $) 70 T ELT) (($ $ (-579 (-218))) 71 T ELT)) (-3867 (((-1175) $ (-688) (-688)) 158 T ELT)) (-3869 (((-1175) $ (-688) (-848 (-177))) 192 T ELT)) (-3871 (($ $) 73 T ELT) (($ (-1037 (-177)) (-1063)) 74 T ELT) (($ (-1037 (-177)) (-579 (-218))) 75 T ELT)) (-3848 (((-1175) $ (-324) (-324) (-324)) 130 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3842 (((-479) $) 127 T ELT)) (-3847 (((-1175) $ (-324)) 172 T ELT)) (-3852 (((-1175) $ (-324)) 190 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3853 (((-1175) $ (-324)) 189 T ELT)) (-3858 (((-1175) $ (-1063)) 135 T ELT)) (-3864 (((-1175) $ (-688) (-688) (-824) (-824)) 157 T ELT)) (-3860 (((-1175) $ (-1063)) 132 T ELT)) (-3862 (((-1175) $ (-1063)) 134 T ELT)) (-3845 (((-1175) $ (-128) (-128)) 156 T ELT)) (-3928 (((-766) $) 165 T ELT)) (-3843 (((-1175) $) 137 T ELT)) (-3849 (((-1175) $ (-1063)) 188 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3861 (((-1175) $ (-1063)) 131 T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1173) (-13 (-1006) (-10 -8 (-15 -3877 ((-324))) (-15 -3877 ((-324) (-324))) (-15 -3876 ((-324))) (-15 -3876 ((-324) (-324))) (-15 -3875 ((-324))) (-15 -3875 ((-324) (-324))) (-15 -3874 ((-324))) (-15 -3874 ((-324) (-324))) (-15 -3873 ((-324))) (-15 -3873 ((-324) (-324))) (-15 -3872 ($)) (-15 -3871 ($ $)) (-15 -3871 ($ (-1037 (-177)) (-1063))) (-15 -3871 ($ (-1037 (-177)) (-579 (-218)))) (-15 -3870 ((-1037 (-177)) $)) (-15 -3870 ($ $ (-1037 (-177)))) (-15 -3869 ((-1175) $ (-688) (-848 (-177)))) (-15 -3868 ((-579 (-218)) $)) (-15 -3868 ($ $ (-579 (-218)))) (-15 -3867 ((-1175) $ (-688) (-688))) (-15 -3866 ((-1175) $ (-824) (-824))) (-15 -3865 ((-1175) $ (-1063))) (-15 -3864 ((-1175) $ (-688) (-688) (-824) (-824))) (-15 -3863 ((-1175) $ (-324) (-324) (-324) (-324) (-324))) (-15 -3863 ((-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))) $)) (-15 -3863 ((-1175) $ (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177))))) (-15 -3863 ((-1175) $ (-479) (-479) (-324) (-324) (-324))) (-15 -3863 ((-1175) $ (-324) (-324))) (-15 -3863 ((-1175) $ (-324) (-324) (-324))) (-15 -3862 ((-1175) $ (-1063))) (-15 -3861 ((-1175) $ (-1063))) (-15 -3860 ((-1175) $ (-1063))) (-15 -3859 ((-1175) $ (-1063))) (-15 -3858 ((-1175) $ (-1063))) (-15 -3857 ((-1175) $ (-324) (-324))) (-15 -3857 ((-1175) $ (-479) (-479))) (-15 -3856 ((-1175) $ (-324))) (-15 -3856 ((-1175) $ (-324) (-324) (-324))) (-15 -3855 ((-1175) $ (-324) (-324))) (-15 -3854 ((-1175) $ (-1063))) (-15 -3853 ((-1175) $ (-324))) (-15 -3852 ((-1175) $ (-324))) (-15 -3851 ((-1175) $ (-1063))) (-15 -3850 ((-1175) $ (-1063))) (-15 -3849 ((-1175) $ (-1063))) (-15 -3848 ((-1175) $ (-324) (-324) (-324))) (-15 -3847 ((-1175) $ (-324))) (-15 -3846 ((-1175) $)) (-15 -3845 ((-1175) $ (-128) (-128))) (-15 -3844 ((-1063) $ (-1063))) (-15 -3844 ((-1063) $ (-1063) (-1063))) (-15 -3844 ((-1063) $ (-1063) (-579 (-1063)))) (-15 -3843 ((-1175) $)) (-15 -3842 ((-479) $))))) (T -1173)) +((-3877 (*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3876 (*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3875 (*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3875 (*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3874 (*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3874 (*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3873 (*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) (-3872 (*1 *1) (-5 *1 (-1173))) (-3871 (*1 *1 *1) (-5 *1 (-1173))) (-3871 (*1 *1 *2 *3) (-12 (-5 *2 (-1037 (-177))) (-5 *3 (-1063)) (-5 *1 (-1173)))) (-3871 (*1 *1 *2 *3) (-12 (-5 *2 (-1037 (-177))) (-5 *3 (-579 (-218))) (-5 *1 (-1173)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1037 (-177))) (-5 *1 (-1173)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-1037 (-177))) (-5 *1 (-1173)))) (-3869 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-688)) (-5 *4 (-848 (-177))) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-579 (-218))) (-5 *1 (-1173)))) (-3868 (*1 *1 *1 *2) (-12 (-5 *2 (-579 (-218))) (-5 *1 (-1173)))) (-3867 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3866 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3865 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3864 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-688)) (-5 *4 (-824)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3863 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *1 (-1173)))) (-3863 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3863 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-479)) (-5 *4 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3863 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3863 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3862 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3859 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3857 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3857 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3856 (*1 *2 *1 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3856 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3854 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3853 (*1 *2 *1 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3851 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3849 (*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3848 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3847 (*1 *2 *1 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3845 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-128)) (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3844 (*1 *2 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1173)))) (-3844 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1173)))) (-3844 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-1063)) (-5 *1 (-1173)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1173)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1173))))) +((-3886 (((-579 (-1063)) (-579 (-1063))) 103 T ELT) (((-579 (-1063))) 96 T ELT)) (-3887 (((-579 (-1063))) 94 T ELT)) (-3884 (((-579 (-824)) (-579 (-824))) 69 T ELT) (((-579 (-824))) 64 T ELT)) (-3883 (((-579 (-688)) (-579 (-688))) 61 T ELT) (((-579 (-688))) 55 T ELT)) (-3885 (((-1175)) 71 T ELT)) (-3889 (((-824) (-824)) 87 T ELT) (((-824)) 86 T ELT)) (-3888 (((-824) (-824)) 85 T ELT) (((-824)) 84 T ELT)) (-3881 (((-777) (-777)) 81 T ELT) (((-777)) 80 T ELT)) (-3891 (((-177)) 91 T ELT) (((-177) (-324)) 93 T ELT)) (-3890 (((-824)) 88 T ELT) (((-824) (-824)) 89 T ELT)) (-3882 (((-824) (-824)) 83 T ELT) (((-824)) 82 T ELT)) (-3878 (((-777) (-777)) 75 T ELT) (((-777)) 73 T ELT)) (-3879 (((-777) (-777)) 77 T ELT) (((-777)) 76 T ELT)) (-3880 (((-777) (-777)) 79 T ELT) (((-777)) 78 T ELT))) +(((-1174) (-10 -7 (-15 -3878 ((-777))) (-15 -3878 ((-777) (-777))) (-15 -3879 ((-777))) (-15 -3879 ((-777) (-777))) (-15 -3880 ((-777))) (-15 -3880 ((-777) (-777))) (-15 -3881 ((-777))) (-15 -3881 ((-777) (-777))) (-15 -3882 ((-824))) (-15 -3882 ((-824) (-824))) (-15 -3883 ((-579 (-688)))) (-15 -3883 ((-579 (-688)) (-579 (-688)))) (-15 -3884 ((-579 (-824)))) (-15 -3884 ((-579 (-824)) (-579 (-824)))) (-15 -3885 ((-1175))) (-15 -3886 ((-579 (-1063)))) (-15 -3886 ((-579 (-1063)) (-579 (-1063)))) (-15 -3887 ((-579 (-1063)))) (-15 -3888 ((-824))) (-15 -3889 ((-824))) (-15 -3888 ((-824) (-824))) (-15 -3889 ((-824) (-824))) (-15 -3890 ((-824) (-824))) (-15 -3890 ((-824))) (-15 -3891 ((-177) (-324))) (-15 -3891 ((-177))))) (T -1174)) +((-3891 (*1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1174)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-324)) (-5 *2 (-177)) (-5 *1 (-1174)))) (-3890 (*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) (-3890 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) (-3889 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) (-3888 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) (-3889 (*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) (-3888 (*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) (-3887 (*1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1174)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1174)))) (-3886 (*1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1174)))) (-3885 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1174)))) (-3884 (*1 *2 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1174)))) (-3884 (*1 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1174)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-579 (-688))) (-5 *1 (-1174)))) (-3883 (*1 *2) (-12 (-5 *2 (-579 (-688))) (-5 *1 (-1174)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) (-3882 (*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) (-3881 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) (-3881 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) (-3880 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) (-3879 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) (-3878 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) (-3878 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174))))) +((-3892 (($) 6 T ELT)) (-3928 (((-766) $) 9 T ELT))) +(((-1175) (-13 (-548 (-766)) (-10 -8 (-15 -3892 ($))))) (T -1175)) +((-3892 (*1 *1) (-5 *1 (-1175)))) +((-3931 (($ $ |#2|) 10 T ELT))) +(((-1176 |#1| |#2|) (-10 -7 (-15 -3931 (|#1| |#1| |#2|))) (-1177 |#2|) (-308)) (T -1176)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3893 (((-105)) 38 T ELT)) (-3928 (((-766) $) 13 T ELT)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ |#1|) 39 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-1177 |#1|) (-111) (-308)) (T -1177)) +((-3931 (*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-308)))) (-3893 (*1 *2) (-12 (-4 *1 (-1177 *3)) (-4 *3 (-308)) (-5 *2 (-105))))) +(-13 (-650 |t#1|) (-10 -8 (-15 -3931 ($ $ |t#1|)) (-15 -3893 ((-105))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-586 |#1|) . T) ((-578 |#1|) . T) ((-650 |#1|) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-1006) . T) ((-1119) . T)) +((-3898 (((-579 (-1112 |#1|)) (-1080) (-1112 |#1|)) 83 T ELT)) (-3896 (((-1059 (-1059 (-851 |#1|))) (-1080) (-1059 (-851 |#1|))) 63 T ELT)) (-3899 (((-1 (-1059 (-1112 |#1|)) (-1059 (-1112 |#1|))) (-688) (-1112 |#1|) (-1059 (-1112 |#1|))) 74 T ELT)) (-3894 (((-1 (-1059 (-851 |#1|)) (-1059 (-851 |#1|))) (-688)) 65 T ELT)) (-3897 (((-1 (-1075 (-851 |#1|)) (-851 |#1|)) (-1080)) 32 T ELT)) (-3895 (((-1 (-1059 (-851 |#1|)) (-1059 (-851 |#1|))) (-688)) 64 T ELT))) +(((-1178 |#1|) (-10 -7 (-15 -3894 ((-1 (-1059 (-851 |#1|)) (-1059 (-851 |#1|))) (-688))) (-15 -3895 ((-1 (-1059 (-851 |#1|)) (-1059 (-851 |#1|))) (-688))) (-15 -3896 ((-1059 (-1059 (-851 |#1|))) (-1080) (-1059 (-851 |#1|)))) (-15 -3897 ((-1 (-1075 (-851 |#1|)) (-851 |#1|)) (-1080))) (-15 -3898 ((-579 (-1112 |#1|)) (-1080) (-1112 |#1|))) (-15 -3899 ((-1 (-1059 (-1112 |#1|)) (-1059 (-1112 |#1|))) (-688) (-1112 |#1|) (-1059 (-1112 |#1|))))) (-308)) (T -1178)) +((-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-688)) (-4 *6 (-308)) (-5 *4 (-1112 *6)) (-5 *2 (-1 (-1059 *4) (-1059 *4))) (-5 *1 (-1178 *6)) (-5 *5 (-1059 *4)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-1080)) (-4 *5 (-308)) (-5 *2 (-579 (-1112 *5))) (-5 *1 (-1178 *5)) (-5 *4 (-1112 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1 (-1075 (-851 *4)) (-851 *4))) (-5 *1 (-1178 *4)) (-4 *4 (-308)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-1080)) (-4 *5 (-308)) (-5 *2 (-1059 (-1059 (-851 *5)))) (-5 *1 (-1178 *5)) (-5 *4 (-1059 (-851 *5))))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-1059 (-851 *4)) (-1059 (-851 *4)))) (-5 *1 (-1178 *4)) (-4 *4 (-308)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-1059 (-851 *4)) (-1059 (-851 *4)))) (-5 *1 (-1178 *4)) (-4 *4 (-308))))) +((-3901 (((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|) 80 T ELT)) (-3900 (((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|)))) 79 T ELT))) +(((-1179 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3900 ((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))))) (-15 -3901 ((-2 (|:| -1999 (-626 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-626 |#2|))) |#2|))) (-295) (-1145 |#1|) (-1145 |#2|) (-347 |#2| |#3|)) (T -1179)) +((-3901 (*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 *3)) (-5 *2 (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) (-5 *1 (-1179 *4 *3 *5 *6)) (-4 *6 (-347 *3 *5)))) (-3900 (*1 *2) (-12 (-4 *3 (-295)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-2 (|:| -1999 (-626 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-626 *4)))) (-5 *1 (-1179 *3 *4 *5 *6)) (-4 *6 (-347 *4 *5))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3902 (((-1039) $) 12 T ELT)) (-3903 (((-1039) $) 10 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 18 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1180) (-13 (-988) (-10 -8 (-15 -3903 ((-1039) $)) (-15 -3902 ((-1039) $))))) (T -1180)) +((-3903 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1180)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1180))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3904 (((-1039) $) 11 T ELT)) (-3928 (((-766) $) 17 T ELT) (($ (-1085)) NIL T ELT) (((-1085) $) NIL T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT))) +(((-1181) (-13 (-988) (-10 -8 (-15 -3904 ((-1039) $))))) (T -1181)) +((-3904 (*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1181))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 59 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 82 T ELT) (($ (-479)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-144)) ELT)) (-3110 (((-688)) NIL T CONST)) (-3905 (((-1175) (-688)) 16 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 36 T CONST)) (-2651 (($) 85 T CONST)) (-3041 (((-83) $ $) 88 T ELT)) (-3931 (((-3 $ #1#) $ $) NIL (|has| |#1| (-308)) ELT)) (-3819 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 64 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-144)) ELT) (($ $ |#1|) NIL (|has| |#1| (-144)) ELT))) +(((-1182 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-955) (-424 |#4|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-308)) (-15 -3931 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3905 ((-1175) (-688))))) (-955) (-750) (-711) (-855 |#1| |#3| |#2|) (-579 |#2|) (-579 (-688)) (-688)) (T -1182)) +((-3931 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-308)) (-4 *2 (-955)) (-4 *3 (-750)) (-4 *4 (-711)) (-14 *6 (-579 *3)) (-5 *1 (-1182 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-855 *2 *4 *3)) (-14 *7 (-579 (-688))) (-14 *8 (-688)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-688)) (-4 *4 (-955)) (-4 *5 (-750)) (-4 *6 (-711)) (-14 *8 (-579 *5)) (-5 *2 (-1175)) (-5 *1 (-1182 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-855 *4 *6 *5)) (-14 *9 (-579 *3)) (-14 *10 *3)))) +((-2553 (((-83) $ $) NIL T ELT)) (-3663 (((-579 (-2 (|:| -3843 $) (|:| -1690 (-579 |#4|)))) (-579 |#4|)) NIL T ELT)) (-3664 (((-579 $) (-579 |#4|)) 95 T ELT)) (-3066 (((-579 |#3|) $) NIL T ELT)) (-2893 (((-83) $) NIL T ELT)) (-2884 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3675 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3670 ((|#4| |#4| $) NIL T ELT)) (-2894 (((-2 (|:| |under| $) (|:| -3114 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3692 (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3706 (($) NIL T CONST)) (-2889 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-2891 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2890 (((-83) $ $) NIL (|has| |#1| (-490)) ELT)) (-2892 (((-83) $) NIL (|has| |#1| (-490)) ELT)) (-3671 (((-579 |#4|) (-579 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) 31 T ELT)) (-2885 (((-579 |#4|) (-579 |#4|) $) 28 (|has| |#1| (-490)) ELT)) (-2886 (((-579 |#4|) (-579 |#4|) $) NIL (|has| |#1| (-490)) ELT)) (-3141 (((-3 $ #1#) (-579 |#4|)) NIL T ELT)) (-3140 (($ (-579 |#4|)) NIL T ELT)) (-3781 (((-3 $ #1#) $) 77 T ELT)) (-3667 ((|#4| |#4| $) 82 T ELT)) (-1341 (($ $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-3388 (($ |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (($ (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-2887 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-490)) ELT)) (-3676 (((-83) |#4| $ (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3665 ((|#4| |#4| $) NIL T ELT)) (-3824 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -3977)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -3977)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3678 (((-2 (|:| -3843 (-579 |#4|)) (|:| -1690 (-579 |#4|))) $) NIL T ELT)) (-2874 (((-579 |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3677 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3164 ((|#3| $) 83 T ELT)) (-2593 (((-579 |#4|) $) 32 (|has| $ (-6 -3977)) ELT)) (-3229 (((-83) |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT)) (-3908 (((-3 $ #1#) (-579 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-579 |#4|)) 38 T ELT)) (-1937 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3978)) ELT)) (-3940 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2899 (((-579 |#3|) $) NIL T ELT)) (-2898 (((-83) |#3| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3780 (((-3 |#4| #1#) $) NIL T ELT)) (-3679 (((-579 |#4|) $) 53 T ELT)) (-3673 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3668 ((|#4| |#4| $) 81 T ELT)) (-3681 (((-83) $ $) 92 T ELT)) (-2888 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-490)) ELT)) (-3674 (((-83) |#4| $) NIL T ELT) (((-83) $) NIL T ELT)) (-3669 ((|#4| |#4| $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3783 (((-3 |#4| #1#) $) 76 T ELT)) (-1342 (((-3 |#4| #1#) (-1 (-83) |#4|) $) NIL T ELT)) (-3661 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3751 (($ $ |#4|) NIL T ELT)) (-1935 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3750 (($ $ (-579 |#4|) (-579 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-245 |#4|)) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT) (($ $ (-579 (-245 |#4|))) NIL (-12 (|has| |#4| (-256 |#4|)) (|has| |#4| (-1006))) ELT)) (-1211 (((-83) $ $) NIL T ELT)) (-3385 (((-83) $) 74 T ELT)) (-3547 (($) 45 T ELT)) (-3930 (((-688) $) NIL T ELT)) (-1934 (((-688) |#4| $) NIL (-12 (|has| $ (-6 -3977)) (|has| |#4| (-1006))) ELT) (((-688) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3382 (($ $) NIL T ELT)) (-3954 (((-468) $) NIL (|has| |#4| (-549 (-468))) ELT)) (-3512 (($ (-579 |#4|)) NIL T ELT)) (-2895 (($ $ |#3|) NIL T ELT)) (-2897 (($ $ |#3|) NIL T ELT)) (-3666 (($ $) NIL T ELT)) (-2896 (($ $ |#3|) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (((-579 |#4|) $) 62 T ELT)) (-3660 (((-688) $) NIL (|has| |#3| (-314)) ELT)) (-3907 (((-3 $ #1#) (-579 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-579 |#4|)) 44 T ELT)) (-3906 (((-579 $) (-579 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-579 $) (-579 |#4|)) 73 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3680 (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3306 (-579 |#4|))) #1#) (-579 |#4|) (-1 (-83) |#4|) (-1 (-83) |#4| |#4|)) NIL T ELT)) (-3672 (((-83) $ (-1 (-83) |#4| (-579 |#4|))) NIL T ELT)) (-1936 (((-83) (-1 (-83) |#4|) $) NIL (|has| $ (-6 -3977)) ELT)) (-3662 (((-579 |#3|) $) NIL T ELT)) (-3915 (((-83) |#3| $) NIL T ELT)) (-3041 (((-83) $ $) NIL T ELT)) (-3939 (((-688) $) NIL (|has| $ (-6 -3977)) ELT))) +(((-1183 |#1| |#2| |#3| |#4|) (-13 (-1114 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3908 ((-3 $ #1="failed") (-579 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3908 ((-3 $ #1#) (-579 |#4|))) (-15 -3907 ((-3 $ #1#) (-579 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3907 ((-3 $ #1#) (-579 |#4|))) (-15 -3906 ((-579 $) (-579 |#4|) (-1 (-83) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3906 ((-579 $) (-579 |#4|))))) (-490) (-711) (-750) (-970 |#1| |#2| |#3|)) (T -1183)) +((-3908 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-579 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-1183 *5 *6 *7 *8)))) (-3908 (*1 *1 *2) (|partial| -12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-1183 *3 *4 *5 *6)))) (-3907 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-579 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-1183 *5 *6 *7 *8)))) (-3907 (*1 *1 *2) (|partial| -12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-1183 *3 *4 *5 *6)))) (-3906 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-579 *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-970 *6 *7 *8)) (-4 *6 (-490)) (-4 *7 (-711)) (-4 *8 (-750)) (-5 *2 (-579 (-1183 *6 *7 *8 *9))) (-5 *1 (-1183 *6 *7 *8 *9)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 (-1183 *4 *5 *6 *7))) (-5 *1 (-1183 *4 *5 *6 *7))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3706 (($) 22 T CONST)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +(((-1184 |#1|) (-111) (-955)) (T -1184)) +NIL +(-13 (-955) (-80 |t#1| |t#1|) (-551 |t#1|) (-10 -7 (IF (|has| |t#1| (-144)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-144)) ((-72) . T) ((-80 |#1| |#1|) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 |#1|) |has| |#1| (-144)) ((-650 |#1|) |has| |#1| (-144)) ((-659) . T) ((-957 |#1|) . T) ((-962 |#1|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T)) +((-2553 (((-83) $ $) 69 T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3916 (((-579 |#1|) $) 54 T ELT)) (-3929 (($ $ (-688)) 47 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3917 (($ $ (-688)) 25 (|has| |#2| (-144)) ELT) (($ $ $) 26 (|has| |#2| (-144)) ELT)) (-3706 (($) NIL T CONST)) (-3921 (($ $ $) 72 T ELT) (($ $ (-733 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3141 (((-3 (-733 |#1|) #1#) $) NIL T ELT)) (-3140 (((-733 |#1|) $) NIL T ELT)) (-3941 (($ $) 40 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3933 (((-83) $) NIL T ELT)) (-3932 (($ $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-3920 (($ (-733 |#1|) |#2|) 39 T ELT)) (-3918 (($ $) 41 T ELT)) (-3923 (((-2 (|:| |k| (-733 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3937 (((-733 |#1|) $) NIL T ELT)) (-3938 (((-733 |#1|) $) 42 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3922 (($ $ $) 71 T ELT) (($ $ (-733 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1737 (((-2 (|:| |k| (-733 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2879 (((-733 |#1|) $) 36 T ELT)) (-3158 ((|#2| $) 38 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3930 (((-688) $) 44 T ELT)) (-3935 (((-83) $) 48 T ELT)) (-3934 ((|#2| $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-733 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-479)) NIL T ELT)) (-3799 (((-579 |#2|) $) NIL T ELT)) (-3659 ((|#2| $ (-733 |#1|)) NIL T ELT)) (-3936 ((|#2| $ $) 78 T ELT) ((|#2| $ (-733 |#1|)) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 14 T CONST)) (-2651 (($) 20 T CONST)) (-2650 (((-579 (-2 (|:| |k| (-733 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3041 (((-83) $ $) 45 T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 29 T ELT)) (** (($ $ (-688)) NIL T ELT) (($ $ (-824)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-733 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT))) +(((-1185 |#1| |#2|) (-13 (-329 |#2| (-733 |#1|)) (-1192 |#1| |#2|)) (-750) (-955)) (T -1185)) +NIL +((-3924 ((|#3| |#3| (-688)) 28 T ELT)) (-3925 ((|#3| |#3| (-688)) 34 T ELT)) (-3909 ((|#3| |#3| |#3| (-688)) 35 T ELT))) +(((-1186 |#1| |#2| |#3|) (-10 -7 (-15 -3925 (|#3| |#3| (-688))) (-15 -3924 (|#3| |#3| (-688))) (-15 -3909 (|#3| |#3| |#3| (-688)))) (-13 (-955) (-650 (-344 (-479)))) (-750) (-1192 |#2| |#1|)) (T -1186)) +((-3909 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-688)) (-4 *4 (-13 (-955) (-650 (-344 (-479))))) (-4 *5 (-750)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1192 *5 *4)))) (-3924 (*1 *2 *2 *3) (-12 (-5 *3 (-688)) (-4 *4 (-13 (-955) (-650 (-344 (-479))))) (-4 *5 (-750)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1192 *5 *4)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-688)) (-4 *4 (-13 (-955) (-650 (-344 (-479))))) (-4 *5 (-750)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1192 *5 *4))))) +((-3914 (((-83) $) 15 T ELT)) (-3915 (((-83) $) 14 T ELT)) (-3910 (($ $) 19 T ELT) (($ $ (-688)) 21 T ELT))) +(((-1187 |#1| |#2|) (-10 -7 (-15 -3910 (|#1| |#1| (-688))) (-15 -3910 (|#1| |#1|)) (-15 -3914 ((-83) |#1|)) (-15 -3915 ((-83) |#1|))) (-1188 |#2|) (-308)) (T -1187)) +NIL +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-2051 (((-2 (|:| -1760 $) (|:| -3964 $) (|:| |associate| $)) $) 52 T ELT)) (-2050 (($ $) 51 T ELT)) (-2048 (((-83) $) 49 T ELT)) (-3914 (((-83) $) 111 T ELT)) (-3911 (((-688)) 107 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3757 (($ $) 88 T ELT)) (-3953 (((-342 $) $) 87 T ELT)) (-1596 (((-83) $ $) 72 T ELT)) (-3706 (($) 22 T CONST)) (-3141 (((-3 |#1| "failed") $) 118 T ELT)) (-3140 ((|#1| $) 119 T ELT)) (-2549 (($ $ $) 68 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-2548 (($ $ $) 69 T ELT)) (-2726 (((-2 (|:| -3936 (-579 $)) (|:| -2396 $)) (-579 $)) 63 T ELT)) (-1752 (($ $ (-688)) 104 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT) (($ $) 103 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3705 (((-83) $) 86 T ELT)) (-3754 (((-737 (-824)) $) 101 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-2397 (((-83) $) 40 T ELT)) (-1593 (((-3 (-579 $) #1="failed") (-579 $) $) 65 T ELT)) (-1879 (($ $ $) 57 T ELT) (($ (-579 $)) 56 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-2469 (($ $) 85 T ELT)) (-3913 (((-83) $) 110 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-2693 (((-1075 $) (-1075 $) (-1075 $)) 55 T ELT)) (-3128 (($ $ $) 59 T ELT) (($ (-579 $)) 58 T ELT)) (-3714 (((-342 $) $) 89 T ELT)) (-3912 (((-737 (-824))) 108 T ELT)) (-1594 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2396 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3448 (((-3 $ "failed") $ $) 53 T ELT)) (-2725 (((-628 (-579 $)) (-579 $) $) 62 T ELT)) (-1595 (((-688) $) 71 T ELT)) (-2864 (((-2 (|:| -1961 $) (|:| -2887 $)) $ $) 70 T ELT)) (-1753 (((-3 (-688) "failed") $ $) 102 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3893 (((-105)) 116 T ELT)) (-3930 (((-737 (-824)) $) 109 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ $) 54 T ELT) (($ (-344 (-479))) 81 T ELT) (($ |#1|) 117 T ELT)) (-2687 (((-628 $) $) 100 (OR (|has| |#1| (-116)) (|has| |#1| (-314))) ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2049 (((-83) $ $) 50 T ELT)) (-3915 (((-83) $) 112 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3910 (($ $) 106 (|has| |#1| (-314)) ELT) (($ $ (-688)) 105 (|has| |#1| (-314)) ELT)) (-3041 (((-83) $ $) 8 T ELT)) (-3931 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT) (($ $ (-479)) 84 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-344 (-479))) 83 T ELT) (($ (-344 (-479)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +(((-1188 |#1|) (-111) (-308)) (T -1188)) +((-3915 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-83)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-83)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-83)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-737 (-824))))) (-3912 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-737 (-824))))) (-3911 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-688)))) (-3910 (*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-308)) (-4 *2 (-314)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-4 *3 (-314))))) +(-13 (-308) (-944 |t#1|) (-1177 |t#1|) (-10 -8 (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-116)) (-6 (-339)) |%noBranch|) (-15 -3915 ((-83) $)) (-15 -3914 ((-83) $)) (-15 -3913 ((-83) $)) (-15 -3930 ((-737 (-824)) $)) (-15 -3912 ((-737 (-824)))) (-15 -3911 ((-688))) (IF (|has| |t#1| (-314)) (PROGN (-6 (-339)) (-15 -3910 ($ $)) (-15 -3910 ($ $ (-688)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-344 (-479))) . T) ((-38 $) . T) ((-72) . T) ((-80 (-344 (-479)) (-344 (-479))) . T) ((-80 |#1| |#1|) . T) ((-80 $ $) . T) ((-102) . T) ((-116) OR (|has| |#1| (-314)) (|has| |#1| (-116))) ((-118) |has| |#1| (-118)) ((-551 (-344 (-479))) . T) ((-551 (-479)) . T) ((-551 |#1|) . T) ((-551 $) . T) ((-548 (-766)) . T) ((-144) . T) ((-198) . T) ((-242) . T) ((-254) . T) ((-308) . T) ((-339) OR (|has| |#1| (-314)) (|has| |#1| (-116))) ((-386) . T) ((-490) . T) ((-584 (-344 (-479))) . T) ((-584 (-479)) . T) ((-584 |#1|) . T) ((-584 $) . T) ((-586 (-344 (-479))) . T) ((-586 |#1|) . T) ((-586 $) . T) ((-578 (-344 (-479))) . T) ((-578 |#1|) . T) ((-578 $) . T) ((-650 (-344 (-479))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-826) . T) ((-944 |#1|) . T) ((-957 (-344 (-479))) . T) ((-957 |#1|) . T) ((-957 $) . T) ((-962 (-344 (-479))) . T) ((-962 |#1|) . T) ((-962 $) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1124) . T) ((-1177 |#1|) . T)) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3916 (((-579 |#1|) $) 52 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3917 (($ $ $) 55 (|has| |#2| (-144)) ELT) (($ $ (-688)) 54 (|has| |#2| (-144)) ELT)) (-3706 (($) 22 T CONST)) (-3921 (($ $ |#1|) 66 T ELT) (($ $ (-733 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3141 (((-3 (-733 |#1|) "failed") $) 76 T ELT)) (-3140 (((-733 |#1|) $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3933 (((-83) $) 57 T ELT)) (-3932 (($ $) 56 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3919 (((-83) $) 62 T ELT)) (-3920 (($ (-733 |#1|) |#2|) 63 T ELT)) (-3918 (($ $) 61 T ELT)) (-3923 (((-2 (|:| |k| (-733 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-3937 (((-733 |#1|) $) 73 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-3922 (($ $ |#1|) 69 T ELT) (($ $ (-733 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3935 (((-83) $) 59 T ELT)) (-3934 ((|#2| $) 58 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-733 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-3936 ((|#2| $ (-733 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1189 |#1| |#2|) (-111) (-750) (-955)) (T -1189)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-750)) (-4 *2 (-955)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-733 *3)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-2 (|:| |k| (-733 *3)) (|:| |c| *4))))) (-3936 (*1 *2 *1 *3) (-12 (-5 *3 (-733 *4)) (-4 *1 (-1189 *4 *2)) (-4 *4 (-750)) (-4 *2 (-955)))) (-3936 (*1 *2 *1 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-750)) (-4 *2 (-955)))) (-3922 (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) (-3922 (*1 *1 *1 *2) (-12 (-5 *2 (-733 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)))) (-3922 (*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) (-3921 (*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) (-3921 (*1 *1 *1 *2) (-12 (-5 *2 (-733 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)))) (-3921 (*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) (-3920 (*1 *1 *2 *3) (-12 (-5 *2 (-733 *4)) (-4 *4 (-750)) (-4 *1 (-1189 *4 *3)) (-4 *3 (-955)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-83)))) (-3918 (*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) (-3928 (*1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-83)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-750)) (-4 *2 (-955)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-83)))) (-3932 (*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)) (-4 *3 (-144)))) (-3917 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-4 *4 (-144)))) (-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-579 *3))))) +(-13 (-955) (-1184 |t#2|) (-944 (-733 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3937 ((-733 |t#1|) $)) (-15 -3923 ((-2 (|:| |k| (-733 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3936 (|t#2| $ (-733 |t#1|))) (-15 -3936 (|t#2| $ $)) (-15 -3922 ($ $ |t#1|)) (-15 -3922 ($ $ (-733 |t#1|))) (-15 -3922 ($ $ $)) (-15 -3921 ($ $ |t#1|)) (-15 -3921 ($ $ (-733 |t#1|))) (-15 -3921 ($ $ $)) (-15 -3920 ($ (-733 |t#1|) |t#2|)) (-15 -3919 ((-83) $)) (-15 -3918 ($ $)) (-15 -3928 ($ |t#1|)) (-15 -3935 ((-83) $)) (-15 -3934 (|t#2| $)) (-15 -3933 ((-83) $)) (-15 -3932 ($ $)) (IF (|has| |t#2| (-144)) (PROGN (-15 -3917 ($ $ $)) (-15 -3917 ($ $ (-688)))) |%noBranch|) (-15 -3940 ($ (-1 |t#2| |t#2|) $)) (-15 -3916 ((-579 |t#1|) $)) (IF (|has| |t#2| (-6 -3970)) (-6 -3970) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-144)) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 (-733 |#1|)) . T) ((-551 |#2|) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#2|) . T) ((-584 $) . T) ((-586 |#2|) . T) ((-586 $) . T) ((-578 |#2|) |has| |#2| (-144)) ((-650 |#2|) |has| |#2| (-144)) ((-659) . T) ((-944 (-733 |#1|)) . T) ((-957 |#2|) . T) ((-962 |#2|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1184 |#2|) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3916 (((-579 |#1|) $) 99 T ELT)) (-3929 (($ $ (-688)) 103 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3917 (($ $ $) NIL (|has| |#2| (-144)) ELT) (($ $ (-688)) NIL (|has| |#2| (-144)) ELT)) (-3706 (($) NIL T CONST)) (-3921 (($ $ |#1|) NIL T ELT) (($ $ (-733 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3141 (((-3 (-733 |#1|) #1#) $) NIL T ELT) (((-3 (-797 |#1|) #1#) $) NIL T ELT)) (-3140 (((-733 |#1|) $) NIL T ELT) (((-797 |#1|) $) NIL T ELT)) (-3941 (($ $) 102 T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3933 (((-83) $) 90 T ELT)) (-3932 (($ $) 93 T ELT)) (-3926 (($ $ $ (-688)) 104 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-3920 (($ (-733 |#1|) |#2|) NIL T ELT) (($ (-797 |#1|) |#2|) 28 T ELT)) (-3918 (($ $) 120 T ELT)) (-3923 (((-2 (|:| |k| (-733 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3937 (((-733 |#1|) $) NIL T ELT)) (-3938 (((-733 |#1|) $) NIL T ELT)) (-3940 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3922 (($ $ |#1|) NIL T ELT) (($ $ (-733 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3924 (($ $ (-688)) 113 (|has| |#2| (-650 (-344 (-479)))) ELT)) (-1737 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2879 (((-797 |#1|) $) 84 T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3925 (($ $ (-688)) 110 (|has| |#2| (-650 (-344 (-479)))) ELT)) (-3930 (((-688) $) 100 T ELT)) (-3935 (((-83) $) 85 T ELT)) (-3934 ((|#2| $) 88 T ELT)) (-3928 (((-766) $) 70 T ELT) (($ (-479)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-733 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-797 |#1|)) NIL T ELT) (($ (-602 |#1| |#2|)) 47 T ELT) (((-1185 |#1| |#2|) $) 77 T ELT) (((-1194 |#1| |#2|) $) 82 T ELT)) (-3799 (((-579 |#2|) $) NIL T ELT)) (-3659 ((|#2| $ (-797 |#1|)) NIL T ELT)) (-3936 ((|#2| $ (-733 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 21 T CONST)) (-2651 (($) 27 T CONST)) (-2650 (((-579 (-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3927 (((-3 (-602 |#1| |#2|) #1#) $) 119 T ELT)) (-3041 (((-83) $ $) 78 T ELT)) (-3819 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3821 (($ $ $) 20 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-797 |#1|)) NIL T ELT))) +(((-1190 |#1| |#2|) (-13 (-1192 |#1| |#2|) (-329 |#2| (-797 |#1|)) (-10 -8 (-15 -3928 ($ (-602 |#1| |#2|))) (-15 -3928 ((-1185 |#1| |#2|) $)) (-15 -3928 ((-1194 |#1| |#2|) $)) (-15 -3927 ((-3 (-602 |#1| |#2|) "failed") $)) (-15 -3926 ($ $ $ (-688))) (IF (|has| |#2| (-650 (-344 (-479)))) (PROGN (-15 -3925 ($ $ (-688))) (-15 -3924 ($ $ (-688)))) |%noBranch|))) (-750) (-144)) (T -1190)) +((-3928 (*1 *1 *2) (-12 (-5 *2 (-602 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) (-5 *1 (-1190 *3 *4)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) (-3927 (*1 *2 *1) (|partial| -12 (-5 *2 (-602 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) (-3926 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-1190 *3 *4)) (-4 *4 (-650 (-344 (-479)))) (-4 *3 (-750)) (-4 *4 (-144)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-1190 *3 *4)) (-4 *4 (-650 (-344 (-479)))) (-4 *3 (-750)) (-4 *4 (-144))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3916 (((-579 (-1080)) $) NIL T ELT)) (-3944 (($ (-1185 (-1080) |#1|)) NIL T ELT)) (-3929 (($ $ (-688)) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3917 (($ $ $) NIL (|has| |#1| (-144)) ELT) (($ $ (-688)) NIL (|has| |#1| (-144)) ELT)) (-3706 (($) NIL T CONST)) (-3921 (($ $ (-1080)) NIL T ELT) (($ $ (-733 (-1080))) NIL T ELT) (($ $ $) NIL T ELT)) (-3141 (((-3 (-733 (-1080)) #1#) $) NIL T ELT)) (-3140 (((-733 (-1080)) $) NIL T ELT)) (-3449 (((-3 $ #1#) $) NIL T ELT)) (-3933 (((-83) $) NIL T ELT)) (-3932 (($ $) NIL T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-3920 (($ (-733 (-1080)) |#1|) NIL T ELT)) (-3918 (($ $) NIL T ELT)) (-3923 (((-2 (|:| |k| (-733 (-1080))) (|:| |c| |#1|)) $) NIL T ELT)) (-3937 (((-733 (-1080)) $) NIL T ELT)) (-3938 (((-733 (-1080)) $) NIL T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3922 (($ $ (-1080)) NIL T ELT) (($ $ (-733 (-1080))) NIL T ELT) (($ $ $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3945 (((-1185 (-1080) |#1|) $) NIL T ELT)) (-3930 (((-688) $) NIL T ELT)) (-3935 (((-83) $) NIL T ELT)) (-3934 ((|#1| $) NIL T ELT)) (-3928 (((-766) $) NIL T ELT) (($ (-479)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-733 (-1080))) NIL T ELT) (($ (-1080)) NIL T ELT)) (-3936 ((|#1| $ (-733 (-1080))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3110 (((-688)) NIL T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) NIL T CONST)) (-3943 (((-579 (-2 (|:| |k| (-1080)) (|:| |c| $))) $) NIL T ELT)) (-2651 (($) NIL T CONST)) (-3041 (((-83) $ $) NIL T ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) NIL T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) NIL T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1080) $) NIL T ELT))) +(((-1191 |#1|) (-13 (-1192 (-1080) |#1|) (-10 -8 (-15 -3945 ((-1185 (-1080) |#1|) $)) (-15 -3944 ($ (-1185 (-1080) |#1|))) (-15 -3943 ((-579 (-2 (|:| |k| (-1080)) (|:| |c| $))) $)))) (-955)) (T -1191)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-1185 (-1080) *3)) (-5 *1 (-1191 *3)) (-4 *3 (-955)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1185 (-1080) *3)) (-4 *3 (-955)) (-5 *1 (-1191 *3)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |k| (-1080)) (|:| |c| (-1191 *3))))) (-5 *1 (-1191 *3)) (-4 *3 (-955))))) +((-2553 (((-83) $ $) 7 T ELT)) (-3172 (((-83) $) 21 T ELT)) (-3916 (((-579 |#1|) $) 52 T ELT)) (-3929 (($ $ (-688)) 86 T ELT)) (-1300 (((-3 $ "failed") $ $) 25 T ELT)) (-3917 (($ $ $) 55 (|has| |#2| (-144)) ELT) (($ $ (-688)) 54 (|has| |#2| (-144)) ELT)) (-3706 (($) 22 T CONST)) (-3921 (($ $ |#1|) 66 T ELT) (($ $ (-733 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3141 (((-3 (-733 |#1|) "failed") $) 76 T ELT)) (-3140 (((-733 |#1|) $) 77 T ELT)) (-3449 (((-3 $ "failed") $) 42 T ELT)) (-3933 (((-83) $) 57 T ELT)) (-3932 (($ $) 56 T ELT)) (-2397 (((-83) $) 40 T ELT)) (-3919 (((-83) $) 62 T ELT)) (-3920 (($ (-733 |#1|) |#2|) 63 T ELT)) (-3918 (($ $) 61 T ELT)) (-3923 (((-2 (|:| |k| (-733 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-3937 (((-733 |#1|) $) 73 T ELT)) (-3938 (((-733 |#1|) $) 88 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-3922 (($ $ |#1|) 69 T ELT) (($ $ (-733 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3226 (((-1063) $) 11 T ELT)) (-3227 (((-1024) $) 12 T ELT)) (-3930 (((-688) $) 87 T ELT)) (-3935 (((-83) $) 59 T ELT)) (-3934 ((|#2| $) 58 T ELT)) (-3928 (((-766) $) 13 T ELT) (($ (-479)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-733 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-3936 ((|#2| $ (-733 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3110 (((-688)) 37 T CONST)) (-1254 (((-83) $ $) 6 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 39 T CONST)) (-3041 (((-83) $ $) 8 T ELT)) (-3819 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-3821 (($ $ $) 18 T ELT)) (** (($ $ (-824)) 33 T ELT) (($ $ (-688)) 41 T ELT)) (* (($ (-824) $) 17 T ELT) (($ (-688) $) 20 T ELT) (($ (-479) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1192 |#1| |#2|) (-111) (-750) (-955)) (T -1192)) +((-3938 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-733 *3)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-688)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955))))) +(-13 (-1189 |t#1| |t#2|) (-10 -8 (-15 -3938 ((-733 |t#1|) $)) (-15 -3930 ((-688) $)) (-15 -3929 ($ $ (-688))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-144)) ((-72) . T) ((-80 |#2| |#2|) . T) ((-102) . T) ((-551 (-479)) . T) ((-551 (-733 |#1|)) . T) ((-551 |#2|) . T) ((-548 (-766)) . T) ((-584 (-479)) . T) ((-584 |#2|) . T) ((-584 $) . T) ((-586 |#2|) . T) ((-586 $) . T) ((-578 |#2|) |has| |#2| (-144)) ((-650 |#2|) |has| |#2| (-144)) ((-659) . T) ((-944 (-733 |#1|)) . T) ((-957 |#2|) . T) ((-962 |#2|) . T) ((-955) . T) ((-963) . T) ((-1016) . T) ((-1006) . T) ((-1119) . T) ((-1184 |#2|) . T) ((-1189 |#1| |#2|) . T)) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) NIL T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3706 (($) NIL T CONST)) (-3141 (((-3 |#2| #1#) $) NIL T ELT)) (-3140 ((|#2| $) NIL T ELT)) (-3941 (($ $) NIL T ELT)) (-3449 (((-3 $ #1#) $) 43 T ELT)) (-3933 (((-83) $) 37 T ELT)) (-3932 (($ $) 38 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-2405 (((-688) $) NIL T ELT)) (-2806 (((-579 $) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-3920 (($ |#2| |#1|) NIL T ELT)) (-3937 ((|#2| $) 25 T ELT)) (-3938 ((|#2| $) 23 T ELT)) (-3940 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1737 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2879 ((|#2| $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3935 (((-83) $) 33 T ELT)) (-3934 ((|#1| $) 34 T ELT)) (-3928 (((-766) $) 66 T ELT) (($ (-479)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3799 (((-579 |#1|) $) NIL T ELT)) (-3659 ((|#1| $ |#2|) NIL T ELT)) (-3936 ((|#1| $ |#2|) 29 T ELT)) (-3110 (((-688)) 14 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 30 T CONST)) (-2651 (($) 11 T CONST)) (-2650 (((-579 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3041 (((-83) $ $) 31 T ELT)) (-3931 (($ $ |#1|) 68 (|has| |#1| (-308)) ELT)) (-3819 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3821 (($ $ $) 51 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 53 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3939 (((-688) $) 18 T ELT))) +(((-1193 |#1| |#2|) (-13 (-955) (-1184 |#1|) (-329 |#1| |#2|) (-551 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3939 ((-688) $)) (-15 -3938 (|#2| $)) (-15 -3937 (|#2| $)) (-15 -3941 ($ $)) (-15 -3936 (|#1| $ |#2|)) (-15 -3935 ((-83) $)) (-15 -3934 (|#1| $)) (-15 -3933 ((-83) $)) (-15 -3932 ($ $)) (-15 -3940 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-308)) (-15 -3931 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3970)) (-6 -3970) |%noBranch|) (IF (|has| |#1| (-6 -3974)) (-6 -3974) |%noBranch|) (IF (|has| |#1| (-6 -3975)) (-6 -3975) |%noBranch|))) (-955) (-748)) (T -1193)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-955)) (-4 *3 (-748)))) (-3941 (*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-955)) (-4 *3 (-748)))) (-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-1193 *3 *4)) (-4 *4 (-748)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-955)) (-4 *4 (-748)))) (-3938 (*1 *2 *1) (-12 (-4 *2 (-748)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-955)))) (-3937 (*1 *2 *1) (-12 (-4 *2 (-748)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-955)))) (-3936 (*1 *2 *1 *3) (-12 (-4 *2 (-955)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-748)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-955)) (-4 *4 (-748)))) (-3934 (*1 *2 *1) (-12 (-4 *2 (-955)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-748)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-955)) (-4 *4 (-748)))) (-3932 (*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-955)) (-4 *3 (-748)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-308)) (-4 *2 (-955)) (-4 *3 (-748))))) +((-2553 (((-83) $ $) 27 T ELT)) (-3172 (((-83) $) NIL T ELT)) (-3916 (((-579 |#1|) $) 132 T ELT)) (-3944 (($ (-1185 |#1| |#2|)) 50 T ELT)) (-3929 (($ $ (-688)) 38 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3917 (($ $ $) 54 (|has| |#2| (-144)) ELT) (($ $ (-688)) 52 (|has| |#2| (-144)) ELT)) (-3706 (($) NIL T CONST)) (-3921 (($ $ |#1|) 114 T ELT) (($ $ (-733 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3141 (((-3 (-733 |#1|) #1#) $) NIL T ELT)) (-3140 (((-733 |#1|) $) NIL T ELT)) (-3449 (((-3 $ #1#) $) 122 T ELT)) (-3933 (((-83) $) 117 T ELT)) (-3932 (($ $) 118 T ELT)) (-2397 (((-83) $) NIL T ELT)) (-3919 (((-83) $) NIL T ELT)) (-3920 (($ (-733 |#1|) |#2|) 20 T ELT)) (-3918 (($ $) NIL T ELT)) (-3923 (((-2 (|:| |k| (-733 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3937 (((-733 |#1|) $) 123 T ELT)) (-3938 (((-733 |#1|) $) 126 T ELT)) (-3940 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3922 (($ $ |#1|) 112 T ELT) (($ $ (-733 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3945 (((-1185 |#1| |#2|) $) 94 T ELT)) (-3930 (((-688) $) 129 T ELT)) (-3935 (((-83) $) 81 T ELT)) (-3934 ((|#2| $) 32 T ELT)) (-3928 (((-766) $) 73 T ELT) (($ (-479)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-733 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3936 ((|#2| $ (-733 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3110 (((-688)) 120 T CONST)) (-1254 (((-83) $ $) NIL T ELT)) (-2645 (($) 15 T CONST)) (-3943 (((-579 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2651 (($) 33 T CONST)) (-3041 (((-83) $ $) 14 T ELT)) (-3819 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3821 (($ $ $) 61 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 55 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) 53 T ELT) (($ (-479) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1194 |#1| |#2|) (-13 (-1192 |#1| |#2|) (-10 -8 (-15 -3945 ((-1185 |#1| |#2|) $)) (-15 -3944 ($ (-1185 |#1| |#2|))) (-15 -3943 ((-579 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-750) (-955)) (T -1194)) +((-3945 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *1 (-1194 *3 *4)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-579 (-2 (|:| |k| *3) (|:| |c| (-1194 *3 *4))))) (-5 *1 (-1194 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3947 (($ (-579 (-824))) 11 T ELT)) (-3946 (((-878) $) 12 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3928 (((-766) $) 25 T ELT) (($ (-878)) 14 T ELT) (((-878) $) 13 T ELT)) (-1254 (((-83) $ $) NIL T ELT)) (-3041 (((-83) $ $) 17 T ELT))) +(((-1195) (-13 (-1006) (-424 (-878)) (-10 -8 (-15 -3947 ($ (-579 (-824)))) (-15 -3946 ((-878) $))))) (T -1195)) +((-3947 (*1 *1 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1195)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-1195))))) +((-3948 (((-579 (-1059 |#1|)) (-1 (-579 (-1059 |#1|)) (-579 (-1059 |#1|))) (-479)) 16 T ELT) (((-1059 |#1|) (-1 (-1059 |#1|) (-1059 |#1|))) 13 T ELT))) +(((-1196 |#1|) (-10 -7 (-15 -3948 ((-1059 |#1|) (-1 (-1059 |#1|) (-1059 |#1|)))) (-15 -3948 ((-579 (-1059 |#1|)) (-1 (-579 (-1059 |#1|)) (-579 (-1059 |#1|))) (-479)))) (-1119)) (T -1196)) +((-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-579 (-1059 *5)) (-579 (-1059 *5)))) (-5 *4 (-479)) (-5 *2 (-579 (-1059 *5))) (-5 *1 (-1196 *5)) (-4 *5 (-1119)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-1 (-1059 *4) (-1059 *4))) (-5 *2 (-1059 *4)) (-5 *1 (-1196 *4)) (-4 *4 (-1119))))) +((-3950 (((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|))) 174 T ELT) (((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83)) 173 T ELT) (((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83) (-83)) 172 T ELT) (((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83) (-83) (-83)) 171 T ELT) (((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-952 |#1| |#2|)) 156 T ELT)) (-3949 (((-579 (-952 |#1| |#2|)) (-579 (-851 |#1|))) 85 T ELT) (((-579 (-952 |#1| |#2|)) (-579 (-851 |#1|)) (-83)) 84 T ELT) (((-579 (-952 |#1| |#2|)) (-579 (-851 |#1|)) (-83) (-83)) 83 T ELT)) (-3953 (((-579 (-1050 |#1| (-464 (-767 |#3|)) (-767 |#3|) (-697 |#1| (-767 |#3|)))) (-952 |#1| |#2|)) 73 T ELT)) (-3951 (((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|))) 140 T ELT) (((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83)) 139 T ELT) (((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83) (-83)) 138 T ELT) (((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83) (-83) (-83)) 137 T ELT) (((-579 (-579 (-931 (-344 |#1|)))) (-952 |#1| |#2|)) 132 T ELT)) (-3952 (((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|))) 145 T ELT) (((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83)) 144 T ELT) (((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83) (-83)) 143 T ELT) (((-579 (-579 (-931 (-344 |#1|)))) (-952 |#1| |#2|)) 142 T ELT)) (-3954 (((-579 (-697 |#1| (-767 |#3|))) (-1050 |#1| (-464 (-767 |#3|)) (-767 |#3|) (-697 |#1| (-767 |#3|)))) 111 T ELT) (((-1075 (-931 (-344 |#1|))) (-1075 |#1|)) 102 T ELT) (((-851 (-931 (-344 |#1|))) (-697 |#1| (-767 |#3|))) 109 T ELT) (((-851 (-931 (-344 |#1|))) (-851 |#1|)) 107 T ELT) (((-697 |#1| (-767 |#3|)) (-697 |#1| (-767 |#2|))) 33 T ELT))) +(((-1197 |#1| |#2| |#3|) (-10 -7 (-15 -3949 ((-579 (-952 |#1| |#2|)) (-579 (-851 |#1|)) (-83) (-83))) (-15 -3949 ((-579 (-952 |#1| |#2|)) (-579 (-851 |#1|)) (-83))) (-15 -3949 ((-579 (-952 |#1| |#2|)) (-579 (-851 |#1|)))) (-15 -3950 ((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-952 |#1| |#2|))) (-15 -3950 ((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83) (-83) (-83))) (-15 -3950 ((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83) (-83))) (-15 -3950 ((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)) (-83))) (-15 -3950 ((-579 (-2 (|:| -1735 (-1075 |#1|)) (|:| -3208 (-579 (-851 |#1|))))) (-579 (-851 |#1|)))) (-15 -3951 ((-579 (-579 (-931 (-344 |#1|)))) (-952 |#1| |#2|))) (-15 -3951 ((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83) (-83) (-83))) (-15 -3951 ((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83) (-83))) (-15 -3951 ((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83))) (-15 -3951 ((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)))) (-15 -3952 ((-579 (-579 (-931 (-344 |#1|)))) (-952 |#1| |#2|))) (-15 -3952 ((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83) (-83))) (-15 -3952 ((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)) (-83))) (-15 -3952 ((-579 (-579 (-931 (-344 |#1|)))) (-579 (-851 |#1|)))) (-15 -3953 ((-579 (-1050 |#1| (-464 (-767 |#3|)) (-767 |#3|) (-697 |#1| (-767 |#3|)))) (-952 |#1| |#2|))) (-15 -3954 ((-697 |#1| (-767 |#3|)) (-697 |#1| (-767 |#2|)))) (-15 -3954 ((-851 (-931 (-344 |#1|))) (-851 |#1|))) (-15 -3954 ((-851 (-931 (-344 |#1|))) (-697 |#1| (-767 |#3|)))) (-15 -3954 ((-1075 (-931 (-344 |#1|))) (-1075 |#1|))) (-15 -3954 ((-579 (-697 |#1| (-767 |#3|))) (-1050 |#1| (-464 (-767 |#3|)) (-767 |#3|) (-697 |#1| (-767 |#3|)))))) (-13 (-749) (-254) (-118) (-927)) (-579 (-1080)) (-579 (-1080))) (T -1197)) +((-3954 (*1 *2 *3) (-12 (-5 *3 (-1050 *4 (-464 (-767 *6)) (-767 *6) (-697 *4 (-767 *6)))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-14 *6 (-579 (-1080))) (-5 *2 (-579 (-697 *4 (-767 *6)))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-579 (-1080))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-1075 *4)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-1075 (-931 (-344 *4)))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-697 *4 (-767 *6))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-14 *6 (-579 (-1080))) (-5 *2 (-851 (-931 (-344 *4)))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-579 (-1080))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-851 *4)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-851 (-931 (-344 *4)))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080))))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-697 *4 (-767 *5))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-14 *5 (-579 (-1080))) (-5 *2 (-697 *4 (-767 *6))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-579 (-1080))))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-952 *4 *5)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-14 *5 (-579 (-1080))) (-5 *2 (-579 (-1050 *4 (-464 (-767 *6)) (-767 *6) (-697 *4 (-767 *6))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-579 (-1080))))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-579 (-931 (-344 *4))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080))))) (-3952 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) (-3952 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-952 *4 *5)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-14 *5 (-579 (-1080))) (-5 *2 (-579 (-579 (-931 (-344 *4))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-579 (-1080))))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-579 (-931 (-344 *4))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080))))) (-3951 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) (-3951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) (-3951 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-952 *4 *5)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-14 *5 (-579 (-1080))) (-5 *2 (-579 (-579 (-931 (-344 *4))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-579 (-1080))))) (-3950 (*1 *2 *3) (-12 (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-2 (|:| -1735 (-1075 *4)) (|:| -3208 (-579 (-851 *4)))))) (-5 *1 (-1197 *4 *5 *6)) (-5 *3 (-579 (-851 *4))) (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080))))) (-3950 (*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) (-3950 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) (-3950 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-952 *4 *5)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-14 *5 (-579 (-1080))) (-5 *2 (-579 (-2 (|:| -1735 (-1075 *4)) (|:| -3208 (-579 (-851 *4)))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-579 (-1080))))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-952 *4 *5))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080))))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-952 *5 *6))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) (-3949 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-952 *5 *6))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080)))))) +((-3957 (((-3 (-1169 (-344 (-479))) #1="failed") (-1169 |#1|) |#1|) 21 T ELT)) (-3955 (((-83) (-1169 |#1|)) 12 T ELT)) (-3956 (((-3 (-1169 (-479)) #1#) (-1169 |#1|)) 16 T ELT))) +(((-1198 |#1|) (-10 -7 (-15 -3955 ((-83) (-1169 |#1|))) (-15 -3956 ((-3 (-1169 (-479)) #1="failed") (-1169 |#1|))) (-15 -3957 ((-3 (-1169 (-344 (-479))) #1#) (-1169 |#1|) |#1|))) (-13 (-955) (-576 (-479)))) (T -1198)) +((-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 (-479)))) (-5 *2 (-1169 (-344 (-479)))) (-5 *1 (-1198 *4)))) (-3956 (*1 *2 *3) (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 (-479)))) (-5 *2 (-1169 (-479))) (-5 *1 (-1198 *4)))) (-3955 (*1 *2 *3) (-12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 (-479)))) (-5 *2 (-83)) (-5 *1 (-1198 *4))))) +((-2553 (((-83) $ $) NIL T ELT)) (-3172 (((-83) $) 12 T ELT)) (-1300 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3120 (((-688)) 9 T ELT)) (-3706 (($) NIL T CONST)) (-3449 (((-3 $ #1#) $) 57 T ELT)) (-2979 (($) 46 T ELT)) (-2397 (((-83) $) 38 T ELT)) (-3427 (((-628 $) $) 36 T ELT)) (-1997 (((-824) $) 14 T ELT)) (-3226 (((-1063) $) NIL T ELT)) (-3428 (($) 26 T CONST)) (-2387 (($ (-824)) 47 T ELT)) (-3227 (((-1024) $) NIL T ELT)) (-3954 (((-479) $) 16 T ELT)) (-3928 (((-766) $) 21 T ELT) (($ (-479)) 18 T ELT)) (-3110 (((-688)) 10 T CONST)) (-1254 (((-83) $ $) 59 T ELT)) (-2645 (($) 23 T CONST)) (-2651 (($) 25 T CONST)) (-3041 (((-83) $ $) 31 T ELT)) (-3819 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3821 (($ $ $) 29 T ELT)) (** (($ $ (-824)) NIL T ELT) (($ $ (-688)) 52 T ELT)) (* (($ (-824) $) NIL T ELT) (($ (-688) $) NIL T ELT) (($ (-479) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1199 |#1|) (-13 (-144) (-314) (-549 (-479)) (-1056)) (-824)) (T -1199)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 2797105 2797110 2797115 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2797090 2797095 2797100 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2797075 2797080 2797085 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2797060 2797065 2797070 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1199 2796103 2796978 2797055 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1198 2795318 2795497 2795716 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1197 2786477 2788346 2790280 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1196 2785865 2786018 2786207 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1195 2785327 2785630 2785743 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1194 2782951 2784789 2784992 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1193 2779779 2781368 2781939 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1192 2777124 2778792 2778846 "XPOLYC" 2779131 XPOLYC (NIL T T) -9 NIL 2779244 NIL) (-1191 2774707 2776628 2776831 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1190 2771019 2773566 2773954 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1189 2765954 2767525 2767579 "XFALG" 2769724 XFALG (NIL T T) -9 NIL 2770508 NIL) (-1188 2761198 2763869 2763911 "XF" 2764529 XF (NIL T) -9 NIL 2764925 NIL) (-1187 2760916 2761026 2761193 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1186 2760143 2760265 2760469 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1185 2757949 2760043 2760138 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1184 2756618 2757351 2757393 "XALG" 2757398 XALG (NIL T) -9 NIL 2757507 NIL) (-1183 2750175 2755028 2755506 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1182 2748482 2749420 2749741 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1181 2748081 2748353 2748422 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1180 2747568 2747871 2747964 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1179 2746645 2746855 2747150 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1178 2744941 2745404 2745866 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1177 2743873 2744427 2744469 "VSPACE" 2744605 VSPACE (NIL T) -9 NIL 2744679 NIL) (-1176 2743744 2743777 2743868 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1175 2743587 2743641 2743709 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1174 2740570 2741365 2742102 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1173 2731668 2734269 2736442 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1172 2725245 2727136 2728715 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1171 2723729 2724124 2724530 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1170 2722556 2722837 2723153 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1169 2717670 2722383 2722475 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1168 2710784 2715392 2715435 "VECTCAT" 2716423 VECTCAT (NIL T) -9 NIL 2717007 NIL) (-1167 2710063 2710389 2710779 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1166 2709557 2709799 2709919 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1165 2709490 2709495 2709525 "UTYPE" 2709530 UTYPE (NIL) -9 NIL NIL NIL) (-1164 2708477 2708653 2708914 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1163 2706328 2706836 2707360 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1162 2696298 2702206 2702248 "UTSCAT" 2703346 UTSCAT (NIL T) -9 NIL 2704103 NIL) (-1161 2694363 2695306 2696293 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1160 2694037 2694086 2694217 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1159 2685812 2692233 2692712 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1158 2679819 2682632 2682675 "URAGG" 2684745 URAGG (NIL T) -9 NIL 2685467 NIL) (-1157 2677834 2678796 2679814 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1156 2673605 2676810 2677272 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1155 2666098 2673529 2673600 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1154 2654837 2662262 2662323 "UPXSCCA" 2662891 UPXSCCA (NIL T T) -9 NIL 2663123 NIL) (-1153 2654558 2654660 2654832 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1152 2643198 2650348 2650390 "UPXSCAT" 2651030 UPXSCAT (NIL T) -9 NIL 2651638 NIL) (-1151 2642711 2642796 2642973 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1150 2634461 2642302 2642564 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1149 2633356 2633626 2633976 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1148 2626147 2629570 2629624 "UPSCAT" 2630693 UPSCAT (NIL T T) -9 NIL 2631457 NIL) (-1147 2625567 2625819 2626142 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1146 2625241 2625290 2625421 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1145 2609462 2618351 2618393 "UPOLYC" 2620471 UPOLYC (NIL T) -9 NIL 2621691 NIL) (-1144 2603517 2606365 2609457 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1143 2602953 2603078 2603241 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1142 2602587 2602674 2602813 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1141 2601400 2601667 2601971 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1140 2600733 2600863 2601048 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1139 2600325 2600400 2600547 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1138 2591153 2600091 2600219 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1137 2590515 2590652 2590857 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1136 2589120 2589966 2590240 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1135 2588349 2588546 2588771 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1134 2575223 2588273 2588344 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1133 2555163 2568336 2568397 "ULSCCAT" 2569028 ULSCCAT (NIL T T) -9 NIL 2569315 NIL) (-1132 2554498 2554784 2555158 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1131 2542958 2550030 2550072 "ULSCAT" 2550925 ULSCAT (NIL T) -9 NIL 2551655 NIL) (-1130 2542471 2542556 2542733 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1129 2524652 2541970 2542211 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1128 2523686 2524379 2524493 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2524604) (-1127 2522719 2523412 2523526 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2523637) (-1126 2521752 2522445 2522559 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2522670) (-1125 2520785 2521478 2521592 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2521703) (-1124 2518880 2520039 2520069 "UFD" 2520280 UFD (NIL) -9 NIL 2520393 NIL) (-1123 2518724 2518781 2518875 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1122 2517976 2518183 2518399 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1121 2516196 2516649 2517114 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1120 2515921 2516161 2516191 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1119 2515854 2515859 2515889 "TYPE" 2515894 TYPE (NIL) -9 NIL NIL NIL) (-1118 2515013 2515233 2515473 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1117 2514191 2514622 2514857 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1116 2512345 2512918 2513457 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1115 2511379 2511615 2511851 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1114 2499745 2504213 2504309 "TSETCAT" 2509524 TSETCAT (NIL T T T T) -9 NIL 2511036 NIL) (-1113 2496082 2497898 2499740 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1112 2490538 2495308 2495590 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1111 2485875 2486888 2487817 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1110 2485372 2485447 2485610 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1109 2483448 2483738 2484093 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1108 2482932 2483081 2483111 "TRIGCAT" 2483324 TRIGCAT (NIL) -9 NIL NIL NIL) (-1107 2482683 2482786 2482927 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1106 2479679 2481792 2482070 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1105 2478785 2479481 2479511 "TRANFUN" 2479546 TRANFUN (NIL) -9 NIL 2479612 NIL) (-1104 2478249 2478500 2478780 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1103 2478086 2478124 2478185 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1102 2477543 2477674 2477825 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1101 2476284 2476941 2477177 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1100 2476096 2476133 2476205 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1099 2474310 2474956 2475385 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1098 2472690 2473027 2473349 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1097 2463760 2470503 2470559 "TBAGG" 2470961 TBAGG (NIL T T) -9 NIL 2471174 NIL) (-1096 2460291 2461983 2463755 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1095 2459768 2459893 2460038 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1094 2459278 2459598 2459688 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1093 2458775 2458892 2459030 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1092 2451862 2458677 2458770 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1091 2447615 2448910 2450155 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1090 2446984 2447143 2447324 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1089 2444138 2444891 2445674 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1088 2443912 2444102 2444133 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1087 2442866 2443551 2443677 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2443863) (-1086 2442130 2442678 2442757 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2442817) (-1085 2438953 2440112 2440812 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1084 2436636 2437319 2437953 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1083 2432714 2433760 2434737 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1082 2429877 2432369 2432598 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1081 2429473 2429560 2429682 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1080 2426097 2427571 2428390 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1079 2419121 2425294 2425587 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1078 2410871 2418712 2418974 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1077 2410150 2410289 2410506 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1076 2409834 2409899 2410010 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1075 2400621 2409546 2409671 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1074 2399357 2399653 2400006 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1073 2398765 2398842 2399032 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1072 2380981 2398264 2398505 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1071 2380580 2380852 2380921 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1070 2379916 2380197 2380337 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1069 2374518 2375777 2376730 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1068 2374050 2374150 2374314 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1067 2369161 2370443 2371590 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1066 2363619 2365090 2366401 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1065 2356534 2358598 2360389 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1064 2349364 2356446 2356529 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1063 2344058 2349078 2349193 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1062 2343645 2343728 2343872 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1061 2342796 2342997 2343232 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1060 2342536 2342594 2342687 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1059 2335274 2340741 2341347 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1058 2334450 2334655 2334886 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1057 2333695 2334066 2334213 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1056 2333195 2333437 2333467 "STEP" 2333561 STEP (NIL) -9 NIL 2333632 NIL) (-1055 2326298 2333113 2333190 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1054 2320525 2325108 2325151 "STAGG" 2325578 STAGG (NIL T) -9 NIL 2325752 NIL) (-1053 2318904 2319652 2320520 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1052 2317061 2318731 2318823 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1051 2316384 2316892 2316922 "SRING" 2316927 SRING (NIL) -9 NIL 2316947 NIL) (-1050 2309006 2314922 2315361 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1049 2302780 2304219 2305723 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1048 2295217 2300128 2300158 "SRAGG" 2301457 SRAGG (NIL) -9 NIL 2302061 NIL) (-1047 2294514 2294834 2295212 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1046 2288633 2293836 2294259 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1045 2282846 2286015 2286737 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1044 2279275 2280094 2280731 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1043 2278250 2278555 2278585 "SPFCAT" 2279029 SPFCAT (NIL) -9 NIL NIL NIL) (-1042 2277187 2277439 2277703 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1041 2267963 2270235 2270265 "SPADXPT" 2274900 SPADXPT (NIL) -9 NIL 2277022 NIL) (-1040 2267765 2267811 2267880 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1039 2265423 2267729 2267760 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1038 2257109 2259198 2259240 "SPACEC" 2263555 SPACEC (NIL T) -9 NIL 2265360 NIL) (-1037 2254938 2257056 2257104 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1036 2253871 2254060 2254349 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1035 2252275 2252608 2253019 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1034 2251540 2251774 2252035 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1033 2247720 2248680 2249675 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1032 2244078 2244777 2245506 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1031 2237876 2243430 2243526 "SNTSCAT" 2243531 SNTSCAT (NIL T T T T) -9 NIL 2243601 NIL) (-1030 2231761 2236517 2236907 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1029 2225597 2231680 2231756 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1028 2224029 2224360 2224758 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1027 2215725 2220639 2220741 "SMATCAT" 2222084 SMATCAT (NIL NIL T T T) -9 NIL 2222632 NIL) (-1026 2213566 2214550 2215720 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1025 2211170 2212784 2212827 "SKAGG" 2213088 SKAGG (NIL T) -9 NIL 2213222 NIL) (-1024 2207280 2210990 2211101 "SINT" NIL SINT (NIL) -8 NIL NIL 2211142) (-1023 2207090 2207134 2207200 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1022 2206165 2206397 2206665 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1021 2205169 2205331 2205607 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1020 2204515 2204855 2204978 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1019 2203861 2204168 2204308 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1018 2201972 2202464 2202970 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1017 2195511 2201891 2201967 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1016 2195026 2195263 2195293 "SGROUP" 2195386 SGROUP (NIL) -9 NIL 2195448 NIL) (-1015 2194916 2194948 2195021 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1014 2192339 2193108 2193830 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1013 2186236 2191790 2191886 "SFRTCAT" 2191891 SFRTCAT (NIL T T T T) -9 NIL 2191929 NIL) (-1012 2180628 2181741 2182868 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1011 2174804 2175965 2177129 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1010 2173776 2174678 2174799 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1009 2169396 2170291 2170386 "SEXCAT" 2172999 SEXCAT (NIL T T T T T) -9 NIL 2173550 NIL) (-1008 2168369 2169323 2169391 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1007 2166760 2167345 2167647 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1006 2166295 2166480 2166510 "SETCAT" 2166627 SETCAT (NIL) -9 NIL 2166711 NIL) (-1005 2166127 2166191 2166290 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1004 2162362 2164593 2164636 "SETAGG" 2165504 SETAGG (NIL T) -9 NIL 2165842 NIL) (-1003 2161968 2162120 2162357 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1002 2158922 2161915 2161963 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1001 2158388 2158698 2158798 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1000 2157517 2157883 2157944 "SEGXCAT" 2158230 SEGXCAT (NIL T T) -9 NIL 2158349 NIL) (-999 2156452 2156720 2156761 "SEGCAT" 2157275 SEGCAT (NIL T) -9 NIL 2157496 NIL) (-998 2156141 2156204 2156313 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-997 2155225 2155687 2155890 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-996 2154806 2155085 2155159 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-995 2154184 2154317 2154516 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-994 2153253 2154000 2154179 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-993 2152508 2153203 2153248 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-992 2144109 2152379 2152503 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-991 2142969 2143259 2143576 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-990 2142275 2142487 2142675 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-989 2141625 2141782 2141958 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-988 2141210 2141441 2141469 "SASTCAT" 2141474 SASTCAT (NIL) -9 NIL 2141487 NIL) (-987 2140677 2141102 2141176 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-986 2140280 2140321 2140492 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-985 2139911 2139952 2140109 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-984 2133056 2139828 2139906 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-983 2131706 2132035 2132431 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-982 2130467 2130828 2131128 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-981 2130091 2130312 2130393 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-980 2127551 2128185 2128638 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-979 2127390 2127423 2127491 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-978 2126881 2127184 2127275 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-977 2122509 2123377 2124288 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-976 2111340 2116894 2116988 "RSETCAT" 2121044 RSETCAT (NIL T T T T) -9 NIL 2122132 NIL) (-975 2109878 2110520 2111335 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-974 2103652 2105097 2106604 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-973 2101546 2102103 2102175 "RRCC" 2103248 RRCC (NIL T T) -9 NIL 2103589 NIL) (-972 2101071 2101270 2101541 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-971 2100541 2100851 2100949 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-970 2073184 2083832 2083896 "RPOLCAT" 2094370 RPOLCAT (NIL T T T) -9 NIL 2097515 NIL) (-969 2067283 2070106 2073179 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-968 2063514 2067031 2067169 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-967 2061842 2062581 2062837 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-966 2057573 2060323 2060351 "RNS" 2060613 RNS (NIL) -9 NIL 2060865 NIL) (-965 2056476 2056963 2057500 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-964 2055598 2055999 2056198 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-963 2054898 2055398 2055426 "RNG" 2055431 RNG (NIL) -9 NIL 2055452 NIL) (-962 2054203 2054677 2054717 "RMODULE" 2054722 RMODULE (NIL T) -9 NIL 2054748 NIL) (-961 2053142 2053248 2053578 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-960 2050020 2052732 2053025 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-959 2042712 2045173 2045285 "RMATCAT" 2048590 RMATCAT (NIL NIL NIL T T T) -9 NIL 2049567 NIL) (-958 2042229 2042408 2042707 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-957 2041809 2042020 2042061 "RLINSET" 2042122 RLINSET (NIL T) -9 NIL 2042166 NIL) (-956 2041454 2041535 2041661 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-955 2040389 2041058 2041086 "RING" 2041141 RING (NIL) -9 NIL 2041232 NIL) (-954 2040234 2040290 2040384 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-953 2039291 2039557 2039812 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-952 2030278 2038919 2039120 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-951 2029546 2030026 2030065 "RGBCSPC" 2030122 RGBCSPC (NIL T) -9 NIL 2030173 NIL) (-950 2028623 2029078 2029117 "RGBCMDL" 2029345 RGBCMDL (NIL T) -9 NIL 2029459 NIL) (-949 2028335 2028404 2028505 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-948 2028098 2028139 2028234 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-947 2026522 2026952 2027332 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-946 2024109 2024777 2025445 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-945 2023659 2023757 2023917 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-944 2023281 2023379 2023420 "RETRACT" 2023551 RETRACT (NIL T) -9 NIL 2023638 NIL) (-943 2023161 2023192 2023276 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-942 2022763 2023035 2023102 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-941 2021307 2022134 2022331 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-940 2020998 2021059 2021155 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-939 2020741 2020782 2020887 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-938 2020476 2020517 2020626 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-937 2015547 2016998 2018213 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-936 2012646 2013404 2014212 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-935 2010615 2011237 2011837 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-934 2003250 2009166 2009602 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-933 2002562 2002842 2002991 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-932 2002047 2002162 2002327 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-931 1997704 2001450 2001671 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-930 1996936 1997135 1997348 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-929 1994226 1995064 1995946 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-928 1990808 1991844 1992903 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-927 1990644 1990697 1990725 "REAL" 1990730 REAL (NIL) -9 NIL 1990765 NIL) (-926 1990134 1990438 1990529 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-925 1989614 1989692 1989897 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-924 1988847 1989039 1989250 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-923 1987735 1988032 1988399 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-922 1986002 1986472 1987005 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-921 1984924 1985201 1985588 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-920 1983751 1984060 1984479 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-919 1977190 1980637 1980665 "RCFIELD" 1981942 RCFIELD (NIL) -9 NIL 1982672 NIL) (-918 1975808 1976420 1977117 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-917 1972020 1973912 1973953 "RCAGG" 1975020 RCAGG (NIL T) -9 NIL 1975481 NIL) (-916 1971747 1971857 1972015 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-915 1971192 1971321 1971482 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-914 1970809 1970888 1971007 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-913 1970224 1970374 1970524 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-912 1970006 1970056 1970127 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-911 1962512 1969124 1969432 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-910 1952278 1962379 1962507 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-909 1951912 1952005 1952033 "RADCAT" 1952190 RADCAT (NIL) -9 NIL NIL NIL) (-908 1951750 1951810 1951907 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-907 1949850 1951581 1951670 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-906 1949531 1949580 1949707 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1941909 1945928 1945968 "QUATCAT" 1946746 QUATCAT (NIL T) -9 NIL 1947510 NIL) (-904 1939159 1940439 1941815 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-903 1935063 1939109 1939154 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-902 1932462 1934129 1934170 "QUAGG" 1934545 QUAGG (NIL T) -9 NIL 1934719 NIL) (-901 1932064 1932336 1932403 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-900 1931102 1931700 1931863 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-899 1930783 1930832 1930959 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-898 1920496 1926603 1926643 "QFCAT" 1927301 QFCAT (NIL T) -9 NIL 1928294 NIL) (-897 1917380 1918819 1920402 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-896 1916926 1917060 1917190 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-895 1911122 1912283 1913445 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-894 1910541 1910721 1910953 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-893 1908363 1908891 1909314 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-892 1907262 1907504 1907821 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-891 1905623 1905821 1906174 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-890 1901379 1902595 1902636 "PTRANFN" 1904520 PTRANFN (NIL T) -9 NIL NIL NIL) (-889 1900026 1900371 1900692 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-888 1899719 1899782 1899889 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-887 1893804 1898527 1898567 "PTCAT" 1898859 PTCAT (NIL T) -9 NIL 1899012 NIL) (-886 1893497 1893538 1893662 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-885 1892376 1892692 1893026 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-884 1881255 1883816 1886125 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-883 1874174 1877070 1877164 "PSETCAT" 1880138 PSETCAT (NIL T T T T) -9 NIL 1880945 NIL) (-882 1872624 1873358 1874169 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-881 1871952 1872144 1872172 "PSCURVE" 1872437 PSCURVE (NIL) -9 NIL 1872601 NIL) (-880 1867642 1869400 1869464 "PSCAT" 1870299 PSCAT (NIL T T T) -9 NIL 1870538 NIL) (-879 1866956 1867238 1867637 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-878 1865385 1866268 1866531 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-877 1864876 1865179 1865270 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-876 1855896 1858318 1860506 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-875 1853651 1855228 1855268 "PRQAGG" 1855451 PRQAGG (NIL T) -9 NIL 1855552 NIL) (-874 1852836 1853282 1853310 "PROPLOG" 1853449 PROPLOG (NIL) -9 NIL 1853563 NIL) (-873 1852511 1852574 1852697 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-872 1851947 1852086 1852258 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-871 1850195 1850958 1851255 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-870 1849747 1849879 1850007 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-869 1844403 1848687 1849507 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-868 1844232 1844270 1844329 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-867 1843671 1843811 1843962 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-866 1842139 1842558 1843024 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-865 1841859 1841919 1841947 "PRIMCAT" 1842070 PRIMCAT (NIL) -9 NIL NIL NIL) (-864 1841030 1841226 1841454 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-863 1836908 1840980 1841025 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-862 1836607 1836669 1836780 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-861 1833807 1836256 1836489 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-860 1833264 1833419 1833447 "PPCURVE" 1833650 PPCURVE (NIL) -9 NIL 1833784 NIL) (-859 1832877 1833122 1833205 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-858 1830633 1831054 1831646 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-857 1830076 1830140 1830373 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-856 1826796 1827282 1827893 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-855 1812478 1818542 1818606 "POLYCAT" 1822091 POLYCAT (NIL T T T) -9 NIL 1823968 NIL) (-854 1807988 1810135 1812473 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-853 1807645 1807719 1807838 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-852 1807338 1807401 1807508 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-851 1800765 1807071 1807230 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-850 1799652 1799915 1800191 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-849 1798256 1798569 1798899 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-848 1793418 1798206 1798251 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-847 1791906 1792317 1792692 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-846 1790663 1790972 1791368 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-845 1790334 1790418 1790535 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-844 1789913 1789988 1790162 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-843 1789399 1789495 1789655 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-842 1788871 1788991 1789145 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-841 1787766 1787984 1788361 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-840 1787377 1787462 1787614 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-839 1786928 1787010 1787191 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-838 1786620 1786701 1786814 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-837 1786133 1786208 1786416 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-836 1785481 1785609 1785811 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-835 1784843 1784977 1785140 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-834 1784147 1784329 1784510 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-833 1783873 1783946 1784039 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-832 1780484 1781654 1782554 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-831 1779577 1779775 1780007 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-830 1775200 1776561 1777682 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-829 1755121 1760008 1764855 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-828 1754861 1754914 1755017 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-827 1754302 1754436 1754616 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-826 1752399 1753558 1753586 "PID" 1753783 PID (NIL) -9 NIL 1753910 NIL) (-825 1752187 1752230 1752305 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-824 1751374 1752034 1752121 "PI" NIL PI (NIL) -8 NIL NIL 1752161) (-823 1750826 1750977 1751153 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-822 1747154 1748112 1749017 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-821 1745518 1745807 1746173 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-820 1744960 1745075 1745236 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-819 1741565 1743829 1744182 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-818 1740171 1740451 1740776 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-817 1738936 1739190 1739538 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-816 1737646 1737873 1738225 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-815 1734744 1736242 1736270 "PFECAT" 1736863 PFECAT (NIL) -9 NIL 1737240 NIL) (-814 1734367 1734532 1734739 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-813 1733191 1733473 1733774 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-812 1731373 1731760 1732190 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-811 1727407 1731299 1731368 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-810 1723310 1724457 1725324 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-809 1721254 1722343 1722384 "PERMCAT" 1722783 PERMCAT (NIL T) -9 NIL 1723080 NIL) (-808 1720950 1720997 1721120 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-807 1717399 1719080 1719725 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-806 1714864 1717154 1717275 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-805 1713745 1714008 1714049 "PDSPC" 1714582 PDSPC (NIL T) -9 NIL 1714827 NIL) (-804 1713112 1713378 1713740 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-803 1711835 1712766 1712807 "PDRING" 1712812 PDRING (NIL T) -9 NIL 1712839 NIL) (-802 1710588 1711346 1711399 "PDMOD" 1711404 PDMOD (NIL T T) -9 NIL 1711507 NIL) (-801 1709681 1709893 1710142 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-800 1709298 1709365 1709419 "PDDOM" 1709584 PDDOM (NIL T T) -9 NIL 1709664 NIL) (-799 1709150 1709186 1709293 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-798 1708936 1708975 1709064 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-797 1707253 1708007 1708306 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-796 1706942 1707005 1707114 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-795 1705080 1705510 1705961 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-794 1698700 1700529 1701821 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-793 1698331 1698404 1698536 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-792 1696033 1696713 1697194 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-791 1694237 1694665 1695068 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-790 1693695 1693943 1693984 "PATMAB" 1694091 PATMAB (NIL T) -9 NIL 1694174 NIL) (-789 1692342 1692746 1693003 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-788 1691880 1692011 1692052 "PATAB" 1692057 PATAB (NIL T) -9 NIL 1692229 NIL) (-787 1690423 1690860 1691283 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-786 1690101 1690176 1690278 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-785 1689790 1689853 1689962 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-784 1689595 1689641 1689708 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-783 1689273 1689348 1689450 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-782 1688962 1689025 1689134 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-781 1688653 1688723 1688820 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-780 1688342 1688405 1688514 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-779 1687503 1687882 1688061 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-778 1687110 1687208 1687327 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-777 1686078 1686503 1686722 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-776 1684743 1685397 1685757 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-775 1677897 1684147 1684341 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-774 1670382 1677395 1677579 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-773 1667195 1669048 1669088 "PADICCT" 1669669 PADICCT (NIL NIL) -9 NIL 1669951 NIL) (-772 1665249 1667145 1667190 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-771 1664411 1664621 1664887 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-770 1663753 1663896 1664100 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-769 1662198 1663161 1663439 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-768 1661722 1661981 1662078 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-767 1660781 1661459 1661631 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-766 1651203 1654072 1656271 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-765 1650597 1650909 1651035 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-764 1649880 1650073 1650101 "OUTBCON" 1650417 OUTBCON (NIL) -9 NIL 1650581 NIL) (-763 1649588 1649718 1649875 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-762 1648969 1649114 1649275 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-761 1648340 1648767 1648856 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-760 1647767 1648182 1648210 "OSGROUP" 1648215 OSGROUP (NIL) -9 NIL 1648237 NIL) (-759 1646731 1646992 1647277 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-758 1644064 1646606 1646726 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-757 1641269 1643815 1643941 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-756 1639287 1639815 1640375 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-755 1632717 1635195 1635235 "OREPCAT" 1637556 OREPCAT (NIL T) -9 NIL 1638658 NIL) (-754 1630743 1631677 1632712 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-753 1629952 1630223 1630251 "ORDTYPE" 1630556 ORDTYPE (NIL) -9 NIL 1630714 NIL) (-752 1629486 1629697 1629947 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-751 1628948 1629324 1629481 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-750 1628454 1628817 1628845 "ORDSET" 1628850 ORDSET (NIL) -9 NIL 1628872 NIL) (-749 1627120 1628080 1628108 "ORDRING" 1628113 ORDRING (NIL) -9 NIL 1628141 NIL) (-748 1626380 1626937 1626965 "ORDMON" 1626970 ORDMON (NIL) -9 NIL 1626991 NIL) (-747 1625684 1625846 1626038 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-746 1624907 1625415 1625443 "ORDFIN" 1625508 ORDFIN (NIL) -9 NIL 1625582 NIL) (-745 1624301 1624440 1624626 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1621075 1623269 1623675 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-743 1620482 1620837 1620942 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-742 1620290 1620335 1620401 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-741 1619603 1619879 1619920 "OPERCAT" 1620131 OPERCAT (NIL T) -9 NIL 1620227 NIL) (-740 1619415 1619482 1619598 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-739 1616845 1618217 1618713 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-738 1616266 1616393 1616567 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-737 1613266 1615405 1615771 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-736 1609909 1612708 1612748 "OMSAGG" 1612809 OMSAGG (NIL T) -9 NIL 1612873 NIL) (-735 1608385 1609580 1609748 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-734 1606682 1607861 1607889 "OINTDOM" 1607894 OINTDOM (NIL) -9 NIL 1607915 NIL) (-733 1604112 1605684 1606013 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-732 1603366 1604062 1604107 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-731 1600632 1603207 1603361 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-730 1592233 1600503 1600627 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-729 1585743 1592124 1592228 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-728 1584715 1584952 1585225 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-727 1582349 1583019 1583723 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-726 1578126 1579086 1580109 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-725 1577634 1577722 1577916 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-724 1575083 1575665 1576338 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-723 1572478 1572986 1573582 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-722 1569475 1570014 1570660 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-721 1568830 1568938 1569196 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-720 1567988 1568113 1568334 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-719 1564272 1565068 1565981 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-718 1563712 1563807 1564029 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-717 1563393 1563442 1563569 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-716 1560060 1563192 1563311 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-715 1559263 1559854 1559882 "OCAMON" 1559887 OCAMON (NIL) -9 NIL 1559908 NIL) (-714 1553566 1556315 1556355 "OC" 1557450 OC (NIL T) -9 NIL 1558306 NIL) (-713 1551566 1552492 1553472 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-712 1550994 1551412 1551440 "OASGP" 1551445 OASGP (NIL) -9 NIL 1551465 NIL) (-711 1550100 1550718 1550746 "OAMONS" 1550786 OAMONS (NIL) -9 NIL 1550829 NIL) (-710 1549288 1549838 1549866 "OAMON" 1549923 OAMON (NIL) -9 NIL 1549974 NIL) (-709 1549184 1549216 1549283 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-708 1547978 1548721 1548749 "OAGROUP" 1548895 OAGROUP (NIL) -9 NIL 1548987 NIL) (-707 1547769 1547856 1547973 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-706 1547509 1547565 1547653 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-705 1542571 1544134 1545661 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-704 1539266 1540300 1541335 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-703 1538376 1538609 1538827 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-702 1527237 1530265 1532713 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-701 1521136 1526690 1526784 "NTSCAT" 1526789 NTSCAT (NIL T T T T) -9 NIL 1526827 NIL) (-700 1520477 1520656 1520849 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-699 1520170 1520233 1520340 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-698 1507901 1517790 1518600 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-697 1496974 1507766 1507896 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-696 1495694 1496019 1496376 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-695 1494530 1494794 1495152 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-694 1493697 1493830 1494046 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-693 1492015 1492334 1492740 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-692 1491728 1491762 1491886 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-691 1491547 1491582 1491651 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-690 1491323 1491513 1491542 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-689 1490887 1490954 1491131 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-688 1489205 1490250 1490505 "NNI" NIL NNI (NIL) -8 NIL NIL 1490852) (-687 1487933 1488270 1488634 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-686 1486910 1487162 1487464 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-685 1486000 1486562 1486603 "NETCLT" 1486774 NETCLT (NIL T) -9 NIL 1486855 NIL) (-684 1484904 1485171 1485452 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-683 1484703 1484746 1484821 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-682 1483234 1483622 1484042 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-681 1481910 1482845 1482873 "NASRING" 1482983 NASRING (NIL) -9 NIL 1483063 NIL) (-680 1481755 1481811 1481905 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-679 1480727 1481374 1481402 "NARNG" 1481519 NARNG (NIL) -9 NIL 1481610 NIL) (-678 1480503 1480588 1480722 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-677 1479312 1480035 1480075 "NAALG" 1480154 NAALG (NIL T) -9 NIL 1480215 NIL) (-676 1479182 1479217 1479307 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-675 1474161 1475346 1476532 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-674 1473556 1473643 1473827 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-673 1465657 1470086 1470138 "MTSCAT" 1471198 MTSCAT (NIL T T) -9 NIL 1471712 NIL) (-672 1465423 1465483 1465575 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-671 1465249 1465288 1465348 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-670 1462123 1464812 1464853 "MSETAGG" 1464858 MSETAGG (NIL T) -9 NIL 1464892 NIL) (-669 1458260 1461169 1461487 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-668 1454598 1456357 1457097 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-667 1454235 1454308 1454437 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-666 1453888 1453929 1454073 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-665 1451753 1452090 1452521 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-664 1445215 1451652 1451748 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-663 1444740 1444781 1444989 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-662 1444299 1444348 1444531 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-661 1443573 1443666 1443885 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-660 1442190 1442551 1442941 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-659 1441344 1441723 1441751 "MONOID" 1441969 MONOID (NIL) -9 NIL 1442113 NIL) (-658 1441003 1441153 1441339 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-657 1430029 1436837 1436896 "MONOGEN" 1437570 MONOGEN (NIL T T) -9 NIL 1438026 NIL) (-656 1428041 1428927 1429910 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-655 1426767 1427311 1427339 "MONADWU" 1427730 MONADWU (NIL) -9 NIL 1427965 NIL) (-654 1426315 1426515 1426762 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-653 1425604 1425905 1425933 "MONAD" 1426140 MONAD (NIL) -9 NIL 1426252 NIL) (-652 1425371 1425467 1425599 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-651 1423761 1424531 1424810 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-650 1422938 1423434 1423474 "MODULE" 1423479 MODULE (NIL T) -9 NIL 1423517 NIL) (-649 1422617 1422743 1422933 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-648 1420392 1421214 1421528 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-647 1417635 1418988 1419501 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-646 1416269 1416843 1417119 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-645 1405552 1414934 1415347 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-644 1402572 1404552 1404821 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-643 1401656 1402023 1402213 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-642 1401225 1401274 1401453 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-641 1399138 1400072 1400112 "MLO" 1400529 MLO (NIL T) -9 NIL 1400769 NIL) (-640 1397019 1397546 1398141 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-639 1396487 1396583 1396737 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-638 1396157 1396233 1396356 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-637 1395369 1395555 1395783 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-636 1394862 1394978 1395134 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-635 1394234 1394348 1394533 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-634 1393261 1393534 1393811 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-633 1392694 1392782 1392953 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-632 1389875 1390745 1391615 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-631 1388542 1388890 1389243 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-630 1385211 1387678 1387719 "MDAGG" 1387976 MDAGG (NIL T) -9 NIL 1388121 NIL) (-629 1384485 1384649 1384849 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-628 1383563 1383849 1384079 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-627 1381660 1382237 1382798 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-626 1377431 1381250 1381497 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-625 1373780 1374549 1375283 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-624 1372533 1372702 1373031 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-623 1362058 1365647 1365723 "MATCAT" 1370711 MATCAT (NIL T T T) -9 NIL 1372179 NIL) (-622 1359339 1360645 1362053 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-621 1357740 1358100 1358484 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-620 1356873 1357070 1357292 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-619 1355624 1355950 1356277 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-618 1354786 1355188 1355364 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-617 1354455 1354519 1354642 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-616 1354103 1354176 1354290 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-615 1353638 1353753 1353895 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-614 1351847 1352615 1352916 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-613 1351341 1351643 1351733 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-612 1344862 1349668 1349709 "LZSTAGG" 1350486 LZSTAGG (NIL T) -9 NIL 1350776 NIL) (-611 1341981 1343415 1344857 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-610 1339368 1340334 1340817 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-609 1338949 1339228 1339302 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-608 1331177 1338810 1338944 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-607 1330540 1330685 1330913 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-606 1328024 1328722 1329434 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-605 1326136 1326459 1326907 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-604 1319317 1325235 1325276 "LSAGG" 1325338 LSAGG (NIL T) -9 NIL 1325416 NIL) (-603 1317011 1318110 1319312 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-602 1314523 1316360 1316609 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-601 1314190 1314281 1314404 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-600 1313873 1313952 1313980 "LOGIC" 1314091 LOGIC (NIL) -9 NIL 1314173 NIL) (-599 1313768 1313797 1313868 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-598 1313087 1313245 1313438 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-597 1311872 1312121 1312472 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-596 1307784 1310519 1310559 "LODOCAT" 1310991 LODOCAT (NIL T) -9 NIL 1311202 NIL) (-595 1307577 1307653 1307779 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-594 1304641 1307454 1307572 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-593 1301803 1304591 1304636 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-592 1298954 1301733 1301798 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-591 1298007 1298182 1298484 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-590 1296171 1297269 1297522 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-589 1291278 1294342 1294383 "LNAGG" 1295245 LNAGG (NIL T) -9 NIL 1295680 NIL) (-588 1290665 1290932 1291273 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-587 1287237 1288178 1288815 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-586 1286542 1287016 1287056 "LMODULE" 1287061 LMODULE (NIL T) -9 NIL 1287087 NIL) (-585 1283721 1286279 1286401 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-584 1283301 1283512 1283553 "LLINSET" 1283614 LLINSET (NIL T) -9 NIL 1283658 NIL) (-583 1282977 1283237 1283296 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-582 1282576 1282656 1282795 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-581 1281027 1281375 1281774 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-580 1280198 1280394 1280622 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-579 1273245 1279454 1279708 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-578 1272834 1273067 1273108 "LINSET" 1273113 LINSET (NIL T) -9 NIL 1273146 NIL) (-577 1271767 1272457 1272624 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-576 1270076 1270800 1270840 "LINEXP" 1271326 LINEXP (NIL T) -9 NIL 1271599 NIL) (-575 1268785 1269685 1269866 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-574 1267612 1267884 1268186 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-573 1266825 1267414 1267524 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-572 1264375 1265097 1265847 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-571 1263005 1263302 1263693 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-570 1261841 1262412 1262452 "LIECAT" 1262592 LIECAT (NIL T) -9 NIL 1262743 NIL) (-569 1261715 1261748 1261836 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-568 1256003 1261405 1261633 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-567 1248352 1255679 1255835 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-566 1244804 1245753 1246688 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-565 1243429 1244336 1244364 "LFCAT" 1244571 LFCAT (NIL) -9 NIL 1244710 NIL) (-564 1241671 1242000 1242344 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-563 1239188 1239853 1240534 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-562 1236200 1237178 1237681 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-561 1235691 1235994 1236085 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-560 1234398 1234722 1235122 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-559 1233664 1233749 1233975 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-558 1228731 1232232 1232768 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-557 1228356 1228406 1228566 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-556 1227215 1227926 1227966 "LALG" 1228027 LALG (NIL T) -9 NIL 1228085 NIL) (-555 1226998 1227075 1227210 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-554 1224915 1226266 1226517 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-553 1224744 1224774 1224815 "KVTFROM" 1224877 KVTFROM (NIL T) -9 NIL NIL NIL) (-552 1223560 1224275 1224464 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-551 1223389 1223419 1223460 "KRCFROM" 1223522 KRCFROM (NIL T) -9 NIL NIL NIL) (-550 1222491 1222688 1222983 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-549 1222320 1222350 1222391 "KONVERT" 1222453 KONVERT (NIL T) -9 NIL NIL NIL) (-548 1222149 1222179 1222220 "KOERCE" 1222282 KOERCE (NIL T) -9 NIL NIL NIL) (-547 1221719 1221812 1221944 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-546 1219772 1220666 1221038 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-545 1212961 1217976 1218030 "KDAGG" 1218406 KDAGG (NIL T T) -9 NIL 1218613 NIL) (-544 1212609 1212751 1212956 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-543 1205439 1212390 1212547 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-542 1205092 1205372 1205434 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-541 1204062 1204561 1204810 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-540 1203188 1203637 1203842 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-539 1202054 1202545 1202844 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-538 1201336 1201735 1201896 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-537 1201049 1201283 1201331 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-536 1195336 1200739 1200967 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-535 1194754 1195087 1195207 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-534 1190928 1192943 1192997 "IXAGG" 1193924 IXAGG (NIL T T) -9 NIL 1194381 NIL) (-533 1190134 1190505 1190923 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-532 1185388 1190070 1190129 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-531 1184355 1184630 1184893 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-530 1183017 1183224 1183517 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-529 1181968 1182190 1182473 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-528 1181643 1181706 1181829 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-527 1180905 1181277 1181451 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-526 1178945 1180181 1180455 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-525 1168557 1174262 1175419 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-524 1167805 1167956 1168191 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-523 1167296 1167599 1167690 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-522 1166589 1166680 1166893 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-521 1165721 1165946 1166186 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-520 1164134 1164515 1164943 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-519 1163919 1163963 1164039 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-518 1162769 1163066 1163361 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-517 1162042 1162393 1162544 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-516 1161245 1161376 1161589 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-515 1159400 1159897 1160441 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-514 1156513 1157749 1158438 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-513 1156338 1156378 1156438 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-512 1152400 1156264 1156333 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-511 1150467 1152339 1152395 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-510 1149841 1150139 1150268 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-509 1149294 1149582 1149714 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-508 1148378 1149000 1149126 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-507 1147791 1148282 1148310 "IOBCON" 1148315 IOBCON (NIL) -9 NIL 1148336 NIL) (-506 1147362 1147426 1147608 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-505 1139406 1141777 1144102 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-504 1136517 1137300 1138164 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-503 1136194 1136291 1136408 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-502 1133700 1136130 1136189 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-501 1131812 1132341 1132908 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-500 1131314 1131428 1131568 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-499 1129698 1130104 1130566 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-498 1127477 1128071 1128682 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-497 1124850 1125460 1126180 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-496 1124254 1124412 1124620 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-495 1123773 1123859 1124047 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-494 1121978 1122499 1122956 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-493 1115060 1116713 1118442 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-492 1114426 1114588 1114761 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-491 1112299 1112763 1113307 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-490 1110513 1111401 1111429 "INTDOM" 1111728 INTDOM (NIL) -9 NIL 1111933 NIL) (-489 1110066 1110268 1110508 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-488 1105964 1108371 1108425 "INTCAT" 1109221 INTCAT (NIL T) -9 NIL 1109537 NIL) (-487 1105529 1105649 1105776 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-486 1104369 1104541 1104847 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-485 1103942 1104038 1104195 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-484 1096982 1103797 1103937 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-483 1096280 1096835 1096900 "INT8" NIL INT8 (NIL) -8 NIL NIL 1096934) (-482 1095577 1096132 1096197 "INT64" NIL INT64 (NIL) -8 NIL NIL 1096231) (-481 1094874 1095429 1095494 "INT32" NIL INT32 (NIL) -8 NIL NIL 1095528) (-480 1094171 1094726 1094791 "INT16" NIL INT16 (NIL) -8 NIL NIL 1094825) (-479 1090698 1094090 1094166 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-478 1084846 1088264 1088292 "INS" 1089222 INS (NIL) -9 NIL 1089881 NIL) (-477 1082908 1083826 1084773 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-476 1081967 1082190 1082465 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-475 1081181 1081322 1081519 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-474 1080171 1080312 1080549 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-473 1079323 1079487 1079747 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-472 1078603 1078718 1078906 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-471 1077342 1077611 1077935 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-470 1076622 1076763 1076946 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-469 1076285 1076357 1076455 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-468 1073363 1074849 1075372 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-467 1072962 1073069 1073183 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-466 1072121 1072763 1072864 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-465 1070971 1071239 1071560 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-464 1070043 1070901 1070966 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-463 1069668 1069748 1069865 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-462 1068583 1069127 1069331 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-461 1064678 1065733 1066676 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-460 1063535 1063857 1063885 "INBCON" 1064397 INBCON (NIL) -9 NIL 1064662 NIL) (-459 1062989 1063254 1063530 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-458 1062483 1062785 1062875 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-457 1061940 1062249 1062354 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-456 1058040 1061832 1061935 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-455 1056880 1057019 1057334 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-454 1055304 1055571 1055908 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-453 1053120 1055186 1055299 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-452 1048027 1053051 1053115 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-451 1047407 1047741 1047856 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-450 1042214 1046845 1047031 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-449 1041276 1042136 1042209 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-448 1040848 1040925 1040979 "IEVALAB" 1041186 IEVALAB (NIL T T) -9 NIL NIL NIL) (-447 1040603 1040683 1040843 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-446 1039676 1040523 1040598 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-445 1038818 1039596 1039671 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-444 1038221 1038752 1038813 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-443 1036713 1037237 1037288 "IDPC" 1037794 IDPC (NIL T T) -9 NIL 1038074 NIL) (-442 1036079 1036635 1036708 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-441 1035328 1036001 1036074 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-440 1035021 1035234 1035294 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-439 1032092 1032973 1033865 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-438 1025718 1026995 1028034 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-437 1024980 1025110 1025309 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-436 1024153 1024652 1024790 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-435 1022542 1022873 1023264 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-434 1018311 1022498 1022537 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-433 1015569 1016193 1016888 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-432 1013795 1014275 1014808 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-431 1011559 1013687 1013790 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-430 1007428 1011497 1011554 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-429 1001071 1006392 1006860 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-428 1000639 1000702 1000875 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-427 1000131 1000280 1000308 "HYPCAT" 1000515 HYPCAT (NIL) -9 NIL NIL NIL) (-426 999787 999940 1000126 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-425 999400 999645 999728 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-424 999233 999282 999323 "HOMOTOP" 999328 HOMOTOP (NIL T) -9 NIL 999361 NIL) (-423 995813 997187 997228 "HOAGG" 998203 HOAGG (NIL T) -9 NIL 998924 NIL) (-422 994819 995289 995808 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-421 988083 994544 994692 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-420 987018 987276 987539 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-419 985985 986883 987013 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-418 984179 985818 985906 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-417 983494 983846 983979 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-416 977047 983427 983489 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-415 970250 976783 976934 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-414 969703 969860 970023 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-413 962786 969594 969698 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-412 962277 962580 962671 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-411 959891 962064 962243 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-410 955284 959774 959886 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-409 948370 955181 955279 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-408 940371 947739 947994 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-407 939407 939916 939944 "GROUP" 940147 GROUP (NIL) -9 NIL 940281 NIL) (-406 938950 939151 939402 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-405 937622 937961 938348 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-404 936456 936813 936864 "GRMOD" 937393 GRMOD (NIL T T) -9 NIL 937559 NIL) (-403 936275 936323 936451 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-402 932406 933614 934611 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-401 931128 931452 931767 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-400 930681 930809 930950 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-399 929766 930265 930316 "GRALG" 930469 GRALG (NIL T T) -9 NIL 930559 NIL) (-398 929485 929586 929761 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-397 926202 929167 929343 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-396 925615 925678 925935 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-395 921501 922365 922890 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-394 920676 920878 921116 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-393 915679 916606 917625 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-392 915427 915484 915573 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-391 914909 914998 915163 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-390 914418 914459 914672 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-389 913219 913502 913806 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-388 906558 912909 913070 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-387 896373 901348 902452 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-386 894513 895554 895582 "GCDDOM" 895837 GCDDOM (NIL) -9 NIL 895994 NIL) (-385 894136 894293 894508 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-384 884929 887399 889787 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-383 883064 883389 883807 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-382 882005 882194 882461 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-381 880876 881083 881387 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-380 880339 880481 880629 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-379 878951 879299 879612 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-378 877496 877817 878139 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-377 875122 875478 875883 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-376 868374 870035 871613 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-375 868026 868247 868315 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-374 867650 867871 867952 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-373 865747 866430 866890 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-372 864340 864647 865039 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-371 862995 863354 863678 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-370 862298 862422 862609 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-369 861272 861538 861885 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-368 858930 859460 859942 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-367 858513 858573 858742 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-366 856877 857727 858030 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-365 856025 856159 856382 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-364 855196 855357 855584 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-363 851191 854142 854183 "FSAGG" 854553 FSAGG (NIL T) -9 NIL 854812 NIL) (-362 849545 850304 851096 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-361 847501 847797 848341 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-360 846548 846730 847030 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-359 846229 846278 846405 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-358 826609 836011 836052 "FS" 839922 FS (NIL T) -9 NIL 842200 NIL) (-357 818840 822333 826312 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-356 818374 818501 818653 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-355 812940 816067 816107 "FRNAALG" 817427 FRNAALG (NIL T) -9 NIL 818025 NIL) (-354 809681 810932 812190 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-353 809362 809411 809538 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-352 807849 808406 808700 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-351 807135 807228 807515 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 804969 805735 806051 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-349 804078 804521 804562 "FRETRCT" 804567 FRETRCT (NIL T) -9 NIL 804738 NIL) (-348 803451 803729 804073 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-347 800283 801741 801800 "FRAMALG" 802682 FRAMALG (NIL T T) -9 NIL 802974 NIL) (-346 798879 799430 800060 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-345 798572 798635 798742 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-344 792277 798377 798567 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-343 791970 792033 792140 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-342 784342 788849 790177 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-341 778208 781649 781677 "FPS" 782796 FPS (NIL) -9 NIL 783352 NIL) (-340 777765 777898 778062 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-339 774664 776644 776672 "FPC" 776897 FPC (NIL) -9 NIL 777039 NIL) (-338 774510 774562 774659 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-337 773299 774008 774049 "FPATMAB" 774054 FPATMAB (NIL T) -9 NIL 774206 NIL) (-336 771729 772325 772672 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-335 771304 771362 771535 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-334 769839 770702 770876 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-333 768466 768971 768999 "FNCAT" 769456 FNCAT (NIL) -9 NIL 769713 NIL) (-332 767923 768433 768461 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-331 766510 767872 767918 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-330 763110 764468 764509 "FMONCAT" 765726 FMONCAT (NIL T) -9 NIL 766330 NIL) (-329 760011 761058 761111 "FMCAT" 762292 FMCAT (NIL T T) -9 NIL 762784 NIL) (-328 758743 759834 759933 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-327 757871 758591 758738 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-326 756058 756510 757004 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-325 753993 754529 755107 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-324 747443 752330 752944 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-323 745967 747037 747077 "FLINEXP" 747082 FLINEXP (NIL T) -9 NIL 747175 NIL) (-322 745376 745635 745962 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-321 744591 744750 744971 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-320 741517 742565 742617 "FLALG" 743844 FLALG (NIL T T) -9 NIL 744311 NIL) (-319 740688 740849 741076 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-318 734109 738119 738160 "FLAGG" 739415 FLAGG (NIL T) -9 NIL 740060 NIL) (-317 733217 733621 734104 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-316 729866 731068 731127 "FINRALG" 732255 FINRALG (NIL T T) -9 NIL 732763 NIL) (-315 729257 729522 729861 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-314 728567 728863 728891 "FINITE" 729087 FINITE (NIL) -9 NIL 729194 NIL) (-313 728475 728501 728562 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-312 720479 723039 723079 "FINAALG" 726731 FINAALG (NIL T) -9 NIL 728169 NIL) (-311 716746 717991 719114 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-310 715310 715729 715783 "FILECAT" 716467 FILECAT (NIL T T) -9 NIL 716683 NIL) (-309 714661 715135 715238 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-308 711997 713813 713841 "FIELD" 713881 FIELD (NIL) -9 NIL 713961 NIL) (-307 711022 711483 711992 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-306 709026 709972 710318 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-305 708269 708450 708669 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-304 703603 708207 708264 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-303 703265 703332 703467 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-302 702805 702847 703056 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-301 699485 700362 701139 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-300 694833 699417 699480 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-299 689576 694322 694512 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-298 684121 688857 689115 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-297 678392 683572 683783 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-296 677415 677625 677940 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-295 672944 675586 675614 "FFIELDC" 676233 FFIELDC (NIL) -9 NIL 676608 NIL) (-294 672013 672453 672939 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-293 671628 671686 671810 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-292 669772 670295 670812 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-291 664930 669571 669672 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-290 660094 664719 664826 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-289 654824 659885 659993 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-288 654278 654327 654562 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-287 632941 643913 643999 "FFCAT" 649149 FFCAT (NIL T T T) -9 NIL 650585 NIL) (-286 629181 630407 631713 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-285 624088 629112 629176 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-284 623016 623485 623526 "FEVALAB" 623610 FEVALAB (NIL T) -9 NIL 623871 NIL) (-283 622421 622673 623011 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-282 619291 620171 620286 "FDIVCAT" 621853 FDIVCAT (NIL T T T T) -9 NIL 622289 NIL) (-281 619085 619117 619286 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-280 618392 618485 618762 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-279 616910 617876 618079 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-278 616003 616387 616589 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-277 615125 615614 615754 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-276 606800 611381 611421 "FAXF" 613222 FAXF (NIL T) -9 NIL 613912 NIL) (-275 604716 605520 606335 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-274 599580 604238 604412 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-273 594129 596487 596539 "FAMR" 597550 FAMR (NIL T T) -9 NIL 598009 NIL) (-272 593328 593693 594124 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-271 592381 593270 593323 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-270 590018 590866 590919 "FAMONC" 591860 FAMONC (NIL T T) -9 NIL 592245 NIL) (-269 588606 589876 590013 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-268 586686 587047 587449 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-267 585963 586160 586382 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-266 577887 585410 585609 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-265 575918 576484 577066 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-264 572820 573462 574182 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-263 567977 568684 569489 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-262 567666 567729 567838 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-261 552619 566715 567141 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-260 543210 551939 552227 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-259 542704 543006 543096 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-258 542480 542670 542699 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-257 542169 542237 542350 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-256 541686 541828 541869 "EVALAB" 542039 EVALAB (NIL T) -9 NIL 542143 NIL) (-255 541314 541460 541681 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-254 538445 539978 540006 "EUCDOM" 540560 EUCDOM (NIL) -9 NIL 540909 NIL) (-253 537372 537865 538440 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-252 537097 537153 537253 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-251 536785 536849 536958 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-250 530568 532468 532496 "ES" 535238 ES (NIL) -9 NIL 536622 NIL) (-249 527083 528615 530407 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-248 526431 526584 526760 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-247 519520 526335 526426 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-246 519209 519272 519381 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-245 512935 515961 517394 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-244 509238 510334 511427 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-243 508067 508417 508722 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-242 507040 507709 507737 "ENTIRER" 507742 ENTIRER (NIL) -9 NIL 507786 NIL) (-241 503737 505470 505819 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-240 502841 503052 503106 "ELTAGG" 503486 ELTAGG (NIL T T) -9 NIL 503697 NIL) (-239 502621 502695 502836 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-238 502379 502414 502468 "ELTAB" 502552 ELTAB (NIL T T) -9 NIL 502604 NIL) (-237 501630 501800 501999 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-236 501354 501428 501456 "ELEMFUN" 501561 ELEMFUN (NIL) -9 NIL NIL NIL) (-235 501254 501281 501349 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-234 495812 499307 499348 "ELAGG" 500285 ELAGG (NIL T) -9 NIL 500745 NIL) (-233 494610 495148 495807 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-232 494028 494195 494351 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-231 492941 493260 493539 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-230 486334 488332 489159 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-229 480313 482309 483119 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-228 478127 478533 479004 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-227 469127 471040 472581 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-226 468240 468741 468890 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-225 466950 467624 467664 "DVARCAT" 467947 DVARCAT (NIL T) -9 NIL 468087 NIL) (-224 466369 466633 466945 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-223 458500 466237 466364 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-222 456850 457641 457682 "DSEXT" 458045 DSEXT (NIL T) -9 NIL 458339 NIL) (-221 455655 456179 456845 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-220 455379 455444 455542 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-219 451535 452749 453878 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-218 447193 448544 449604 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-217 445868 446229 446615 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-216 445560 445617 445733 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-215 444545 444839 445125 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-214 444130 444205 444355 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-213 436639 438715 440794 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-212 432220 433215 434270 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-211 428827 430896 430937 "DQAGG" 431566 DQAGG (NIL T) -9 NIL 431839 NIL) (-210 415461 423036 423118 "DPOLCAT" 424955 DPOLCAT (NIL T T T T) -9 NIL 425498 NIL) (-209 411869 413517 415456 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-208 404956 411767 411864 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-207 397952 404785 404951 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-206 397545 397805 397894 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-205 396959 397407 397487 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-204 396245 396570 396721 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-203 389448 395981 396132 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-202 387240 388526 388566 "DMEXT" 388571 DMEXT (NIL T) -9 NIL 388746 NIL) (-201 386896 386958 387102 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-200 380221 386381 386571 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-199 376899 379056 379097 "DLAGG" 379647 DLAGG (NIL T) -9 NIL 379876 NIL) (-198 375338 376147 376175 "DIVRING" 376267 DIVRING (NIL) -9 NIL 376350 NIL) (-197 374789 375033 375333 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-196 373217 373634 374040 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-195 372254 372475 372740 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-194 365827 372186 372249 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-193 354286 360647 360700 "DIRPCAT" 360956 DIRPCAT (NIL NIL T) -9 NIL 361829 NIL) (-192 352292 353062 353949 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-191 351739 351905 352091 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-190 348297 350637 350678 "DIOPS" 351110 DIOPS (NIL T) -9 NIL 351336 NIL) (-189 347957 348101 348292 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-188 346873 347640 347668 "DIFRING" 347673 DIFRING (NIL) -9 NIL 347694 NIL) (-187 346521 346619 346647 "DIFFSPC" 346766 DIFFSPC (NIL) -9 NIL 346841 NIL) (-186 346262 346364 346516 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-185 345208 345802 345842 "DIFFMOD" 345847 DIFFMOD (NIL T) -9 NIL 345944 NIL) (-184 344904 344961 345002 "DIFFDOM" 345123 DIFFDOM (NIL T) -9 NIL 345191 NIL) (-183 344785 344815 344899 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-182 342546 344005 344045 "DIFEXT" 344050 DIFEXT (NIL T) -9 NIL 344202 NIL) (-181 339719 342059 342100 "DIAGG" 342105 DIAGG (NIL T) -9 NIL 342125 NIL) (-180 339275 339465 339714 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-179 334487 338465 338742 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-178 330945 331998 333008 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-177 325559 330099 330426 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-176 324125 324417 324792 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-175 321309 322497 322893 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-174 319029 321140 321229 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-173 318412 318557 318739 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-172 315742 316462 317258 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-171 313857 314313 314873 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-170 313240 313573 313687 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-169 306504 312965 313113 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-168 304424 304934 305438 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-167 304063 304112 304263 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-166 303322 303884 303975 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-165 301346 301788 302148 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-164 300638 300927 301073 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-163 300089 300235 300387 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-162 297451 298244 298971 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-161 296890 297036 297207 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-160 294962 295273 295640 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-159 294519 294774 294875 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-158 293732 294115 294143 "CTORCAT" 294324 CTORCAT (NIL) -9 NIL 294436 NIL) (-157 293435 293569 293727 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-156 292928 293185 293293 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-155 292344 292775 292848 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-154 291803 291920 292073 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-153 288197 288953 289708 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-152 287688 287991 288082 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-151 286907 287116 287344 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-150 286411 286516 286720 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-149 286164 286198 286304 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-148 283103 283865 284583 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-147 282622 282764 282903 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-146 278579 281085 281577 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-145 278453 278480 278508 "CONDUIT" 278545 CONDUIT (NIL) -9 NIL NIL NIL) (-144 277420 278089 278117 "COMRING" 278122 COMRING (NIL) -9 NIL 278172 NIL) (-143 276585 276952 277130 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-142 276281 276322 276450 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-141 275974 276037 276144 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-140 264880 275924 275969 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-139 264341 264480 264640 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-138 264094 264135 264233 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-137 245613 257801 257841 "COMPCAT" 258842 COMPCAT (NIL T) -9 NIL 260184 NIL) (-136 238151 241664 245257 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-135 237910 237944 238046 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-134 237740 237779 237837 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-133 237321 237600 237674 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-132 236898 237139 237226 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-131 236099 236345 236373 "COMBOPC" 236709 COMBOPC (NIL) -9 NIL 236882 NIL) (-130 235163 235415 235657 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-129 232101 232783 233404 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-128 230981 231432 231667 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-127 230472 230775 230866 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-126 230159 230212 230337 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-125 229629 229939 230037 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-124 226191 227247 228313 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-123 224550 225471 225709 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-122 220674 222682 222723 "CLAGG" 223649 CLAGG (NIL T) -9 NIL 224182 NIL) (-121 219567 220094 220669 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-120 219196 219287 219427 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-119 217133 217640 218188 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-118 216182 216851 216879 "CHARZ" 216884 CHARZ (NIL) -9 NIL 216898 NIL) (-117 215976 216022 216100 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-116 214903 215604 215632 "CHARNZ" 215693 CHARNZ (NIL) -9 NIL 215741 NIL) (-115 212381 213478 214001 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-114 212089 212168 212196 "CFCAT" 212307 CFCAT (NIL) -9 NIL NIL NIL) (-113 211432 211561 211743 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-112 207421 210845 211125 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-111 206799 206986 207163 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-110 206327 206746 206794 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-109 205800 206109 206206 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-108 205291 205594 205685 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-107 204540 204700 204921 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-106 200640 201897 202605 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-105 199038 200037 200288 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-104 198619 198898 198972 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-103 198065 198318 198346 "CACHSET" 198478 CACHSET (NIL) -9 NIL 198556 NIL) (-102 197460 197844 197872 "CABMON" 197922 CABMON (NIL) -9 NIL 197978 NIL) (-101 196990 197254 197364 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-100 192323 196649 196819 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-99 191299 192003 192136 "BYTE" NIL BYTE (NIL) -8 NIL NIL 192295) (-98 188774 191070 191174 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-97 186205 188517 188636 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-96 183457 185661 185700 "BTCAT" 185767 BTCAT (NIL T) -9 NIL 185843 NIL) (-95 183208 183306 183452 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-94 178330 182451 182477 "BTAGG" 182588 BTAGG (NIL) -9 NIL 182696 NIL) (-93 177961 178122 178325 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-92 175023 177431 177643 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-91 174293 174445 174623 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-90 170838 173011 173050 "BRAGG" 173691 BRAGG (NIL T) -9 NIL 173948 NIL) (-89 169793 170288 170833 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-88 162391 169298 169479 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-87 160447 162343 162386 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-86 160180 160216 160327 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-85 158419 158852 159300 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-84 154385 155801 156691 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-83 153261 154152 154274 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-82 152859 153016 153042 "BOOLE" 153150 BOOLE (NIL) -9 NIL 153231 NIL) (-81 152652 152733 152854 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-80 151833 152329 152379 "BMODULE" 152384 BMODULE (NIL T T) -9 NIL 152448 NIL) (-79 147450 151690 151759 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-78 146971 147115 147253 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 140241 146701 146846 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 137987 139482 139521 "BGAGG" 139777 BGAGG (NIL T) -9 NIL 139914 NIL) (-75 137856 137894 137982 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 136707 136908 137193 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 133345 135865 136192 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 132942 133035 133061 "BASTYPE" 133232 BASTYPE (NIL) -9 NIL 133328 NIL) (-71 132712 132808 132937 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 132227 132315 132465 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 131126 131801 131986 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 130852 130857 130883 "ATTREG" 130888 ATTREG (NIL) -9 NIL NIL NIL) (-67 130457 130729 130794 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 129957 130106 130132 "ATRIG" 130333 ATRIG (NIL) -9 NIL NIL NIL) (-65 129812 129865 129952 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 129394 129625 129651 "ASTCAT" 129656 ASTCAT (NIL) -9 NIL 129686 NIL) (-63 129193 129270 129389 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 127352 129026 129114 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 126159 126472 126837 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 123959 126063 126154 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123150 123341 123562 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118737 122881 122995 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 112915 114947 115022 "ARR2CAT" 117652 ARR2CAT (NIL T T T) -9 NIL 118410 NIL) (-56 111292 112062 112910 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110660 111031 111153 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109592 109760 110056 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109293 109347 109465 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108676 108822 108978 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 108081 108371 108491 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105713 106810 107133 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105238 105498 105594 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 98997 104300 104742 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94619 96220 96270 "AMR" 97008 AMR (NIL T T) -9 NIL 97605 NIL) (-46 93973 94253 94614 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77153 93907 93968 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73588 76829 76998 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70598 71258 71865 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69977 70090 70274 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66389 67014 67606 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55942 66082 66232 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55259 55413 55591 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 54060 54793 54831 "ALGEBRA" 54836 ALGEBRA (NIL T) -9 NIL 54876 NIL) (-37 53846 53923 54055 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33855 51064 51116 "ALAGG" 51254 ALAGG (NIL T T) -9 NIL 51419 NIL) (-35 33355 33504 33530 "AHYP" 33731 AHYP (NIL) -9 NIL NIL NIL) (-34 32663 32844 32870 "AGG" 33151 AGG (NIL) -9 NIL 33338 NIL) (-33 32452 32539 32658 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30591 31051 31451 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30086 30389 30478 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29463 29754 29908 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17112 26326 26364 "ACFS" 26971 ACFS (NIL T) -9 NIL 27210 NIL) (-28 15735 16345 17107 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11378 13692 13718 "ACF" 14597 ACF (NIL) -9 NIL 15009 NIL) (-26 10474 10880 11373 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 9988 10228 10254 "ABELSG" 10346 ABELSG (NIL) -9 NIL 10411 NIL) (-24 9886 9917 9983 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9164 9507 9533 "ABELMON" 9702 ABELMON (NIL) -9 NIL 9811 NIL) (-22 8907 9016 9159 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8162 8614 8640 "ABELGRP" 8712 ABELGRP (NIL) -9 NIL 8787 NIL) (-20 7776 7941 8157 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 7046 7085 "A1AGG" 7090 A1AGG (NIL T) -9 NIL 7130 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 68f534ce..0378e7d3 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,793 +1,793 @@ -(629749 . 3537001166) +(630131 . 3537569212) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) - (-5 *2 (-1164 (-343 (-478)))) (-5 *1 (-1193 *4))))) + (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 (-479)))) + (-5 *2 (-1169 (-344 (-479)))) (-5 *1 (-1198 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) - (-5 *2 (-1164 (-478))) (-5 *1 (-1193 *4))))) + (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 (-479)))) + (-5 *2 (-1169 (-479))) (-5 *1 (-1198 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 (-478)))) (-5 *2 (-83)) - (-5 *1 (-1193 *4))))) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 (-479)))) (-5 *2 (-83)) + (-5 *1 (-1198 *4))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-548 *2) (-144))) (-5 *2 (-793 *4)) (-5 *1 (-142 *4 *5 *3)) - (-4 *4 (-1003)) (-4 *3 (-137 *5)))) + (-12 (-4 *5 (-13 (-549 *2) (-144))) (-5 *2 (-794 *4)) (-5 *1 (-142 *4 *5 *3)) + (-4 *4 (-1006)) (-4 *3 (-137 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *3)) (-4 *3 (-144)) (-4 *1 (-346 *3 *4)) - (-4 *4 (-1140 *3)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-144)) (-4 *1 (-347 *3 *4)) + (-4 *4 (-1145 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) - (-5 *2 (-1164 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-144)) (-4 *1 (-354 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1164 *3)))) + (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) + (-5 *2 (-1169 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-144)) (-4 *1 (-355 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-1169 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-341 *1)) (-4 *1 (-357 *3)) (-4 *3 (-489)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-342 *1)) (-4 *1 (-358 *3)) (-4 *3 (-490)) (-4 *3 (-1006)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-396 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1005)) (-5 *1 (-467)))) - ((*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-656 *3 *2)) (-4 *2 (-1140 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-397 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-4 *1 (-549 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *1 *2) - (-12 (-5 *2 (-850 *3)) (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) - (-4 *5 (-548 (-1075))) (-4 *4 (-710)) (-4 *5 (-749)))) + (-12 (-5 *2 (-851 *3)) (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) + (-4 *5 (-549 (-1080))) (-4 *4 (-711)) (-4 *5 (-750)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) - (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) - (-4 *5 (-548 (-1075)))) - (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) - (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) - (-4 *4 (-710)) (-4 *5 (-749))))) + (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) + (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-4 *3 (-38 (-479))) + (-4 *5 (-549 (-1080)))) + (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750))) + (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) + (-4 *4 (-711)) (-4 *5 (-750))))) ((*1 *1 *2) - (-12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075))) (-4 *3 (-954)) - (-4 *4 (-710)) (-4 *5 (-749)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1583 *8))) - (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1059)) - (-5 *1 (-973 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1583 *8))) - (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-1010 *4 *5 *6 *7)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1059)) - (-5 *1 (-1045 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1005)) (-5 *1 (-1080)))) - ((*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-1080)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-765)) (-5 *3 (-478)) (-5 *1 (-1094)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-765)) (-5 *3 (-478)) (-5 *1 (-1094)))) - ((*1 *2 *3) - (-12 (-5 *3 (-696 *4 (-766 *5))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-14 *5 (-578 (-1075))) (-5 *2 (-696 *4 (-766 *6))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *6 (-578 (-1075))))) - ((*1 *2 *3) - (-12 (-5 *3 (-850 *4)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-850 (-930 (-343 *4)))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075))))) - ((*1 *2 *3) - (-12 (-5 *3 (-696 *4 (-766 *6))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-14 *6 (-578 (-1075))) (-5 *2 (-850 (-930 (-343 *4)))) - (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-578 (-1075))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1070 *4)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-1070 (-930 (-343 *4)))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1046 *4 (-463 (-766 *6)) (-766 *6) (-696 *4 (-766 *6)))) - (-4 *4 (-13 (-748) (-254) (-118) (-926))) (-14 *6 (-578 (-1075))) - (-5 *2 (-578 (-696 *4 (-766 *6)))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-578 (-1075)))))) -(((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477)))) - ((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) - (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-854 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-4 *7 (-854 *6 *4 *5)) - (-5 *2 (-341 (-1070 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-385)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-341 *1)) (-4 *1 (-854 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-385)) (-5 *2 (-341 *3)) - (-5 *1 (-885 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-385)) (-4 *7 (-854 *6 *4 *5)) - (-5 *2 (-341 (-1070 (-343 *7)))) (-5 *1 (-1072 *4 *5 *6 *7)) - (-5 *3 (-1070 (-343 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-341 *1)) (-4 *1 (-1119)))) - ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-1144 *4 *3)) - (-4 *3 (-13 (-1140 *4) (-489) (-10 -8 (-15 -3125 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-14 *5 (-578 (-1075))) - (-5 *2 (-578 (-1046 *4 (-463 (-766 *6)) (-766 *6) (-696 *4 (-766 *6))))) - (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-578 (-1075)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-14 *5 (-578 (-1075))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) - (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-578 (-1075))))) + (-12 (-5 *2 (-851 (-344 (-479)))) (-4 *1 (-970 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080))) (-4 *3 (-955)) + (-4 *4 (-711)) (-4 *5 (-750)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-579 *7)) (|:| -1588 *8))) + (-4 *7 (-970 *4 *5 *6)) (-4 *8 (-976 *4 *5 *6 *7)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-1063)) + (-5 *1 (-974 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-579 *7)) (|:| -1588 *8))) + (-4 *7 (-970 *4 *5 *6)) (-4 *8 (-1013 *4 *5 *6 *7)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-1063)) + (-5 *1 (-1049 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-1085)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-766)) (-5 *3 (-479)) (-5 *1 (-1099)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-479)) (-5 *1 (-1099)))) + ((*1 *2 *3) + (-12 (-5 *3 (-697 *4 (-767 *5))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-14 *5 (-579 (-1080))) (-5 *2 (-697 *4 (-767 *6))) (-5 *1 (-1197 *4 *5 *6)) + (-14 *6 (-579 (-1080))))) + ((*1 *2 *3) + (-12 (-5 *3 (-851 *4)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-851 (-931 (-344 *4)))) (-5 *1 (-1197 *4 *5 *6)) + (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080))))) + ((*1 *2 *3) + (-12 (-5 *3 (-697 *4 (-767 *6))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-14 *6 (-579 (-1080))) (-5 *2 (-851 (-931 (-344 *4)))) + (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-579 (-1080))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1075 *4)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-1075 (-931 (-344 *4)))) (-5 *1 (-1197 *4 *5 *6)) + (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1050 *4 (-464 (-767 *6)) (-767 *6) (-697 *4 (-767 *6)))) + (-4 *4 (-13 (-749) (-254) (-118) (-927))) (-14 *6 (-579 (-1080))) + (-5 *2 (-579 (-697 *4 (-767 *6)))) (-5 *1 (-1197 *4 *5 *6)) + (-14 *5 (-579 (-1080)))))) +(((*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-492 *3)) (-4 *3 (-478)))) + ((*1 *2 *3) + (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) (-5 *2 (-342 *3)) + (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-855 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) (-4 *7 (-855 *6 *4 *5)) + (-5 *2 (-342 (-1075 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1075 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-386)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-342 *1)) (-4 *1 (-855 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-386)) (-5 *2 (-342 *3)) + (-5 *1 (-886 *4 *5 *6 *3)) (-4 *3 (-855 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-386)) (-4 *7 (-855 *6 *4 *5)) + (-5 *2 (-342 (-1075 (-344 *7)))) (-5 *1 (-1077 *4 *5 *6 *7)) + (-5 *3 (-1075 (-344 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-342 *1)) (-4 *1 (-1124)))) + ((*1 *2 *3) + (-12 (-4 *4 (-490)) (-5 *2 (-342 *3)) (-5 *1 (-1149 *4 *3)) + (-4 *3 (-13 (-1145 *4) (-490) (-10 -8 (-15 -3128 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-952 *4 *5)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-14 *5 (-579 (-1080))) + (-5 *2 (-579 (-1050 *4 (-464 (-767 *6)) (-767 *6) (-697 *4 (-767 *6))))) + (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-579 (-1080)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-952 *4 *5)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-14 *5 (-579 (-1080))) (-5 *2 (-579 (-579 (-931 (-344 *4))))) + (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-579 (-1080))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) - ((*1 *2 *3) - (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075)))))) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) + (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) + (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) + ((*1 *2 *3) + (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-579 (-931 (-344 *4))))) (-5 *1 (-1197 *4 *5 *6)) + (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 (-850 (-478)))) (-5 *4 (-578 (-1075))) - (-5 *2 (-578 (-578 (-323)))) (-5 *1 (-929)) (-5 *5 (-323)))) + (-12 (-5 *3 (-579 (-851 (-479)))) (-5 *4 (-579 (-1080))) + (-5 *2 (-579 (-579 (-324)))) (-5 *1 (-930)) (-5 *5 (-324)))) ((*1 *2 *3) - (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-14 *5 (-578 (-1075))) (-5 *2 (-578 (-578 (-930 (-343 *4))))) - (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-578 (-1075))))) + (-12 (-5 *3 (-952 *4 *5)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-14 *5 (-579 (-1080))) (-5 *2 (-579 (-579 (-931 (-344 *4))))) + (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-579 (-1080))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) + (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-578 (-930 (-343 *5))))) (-5 *1 (-1192 *5 *6 *7)) - (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) - ((*1 *2 *3) - (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-578 (-930 (-343 *4))))) (-5 *1 (-1192 *4 *5 *6)) - (-14 *5 (-578 (-1075))) (-14 *6 (-578 (-1075)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-951 *4 *5)) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-14 *5 (-578 (-1075))) - (-5 *2 (-578 (-2 (|:| -1730 (-1070 *4)) (|:| -3205 (-578 (-850 *4)))))) - (-5 *1 (-1192 *4 *5 *6)) (-14 *6 (-578 (-1075))))) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) + (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-579 (-931 (-344 *5))))) (-5 *1 (-1197 *5 *6 *7)) + (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) + ((*1 *2 *3) + (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-579 (-931 (-344 *4))))) (-5 *1 (-1197 *4 *5 *6)) + (-14 *5 (-579 (-1080))) (-14 *6 (-579 (-1080)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-952 *4 *5)) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-14 *5 (-579 (-1080))) + (-5 *2 (-579 (-2 (|:| -1735 (-1075 *4)) (|:| -3208 (-579 (-851 *4)))))) + (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-579 (-1080))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) - (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075))) - (-14 *7 (-578 (-1075))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) + (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080))) + (-14 *7 (-579 (-1080))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) - (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075))) - (-14 *7 (-578 (-1075))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) - (-5 *1 (-1192 *5 *6 *7)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075))) - (-14 *7 (-578 (-1075))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-2 (|:| -1730 (-1070 *4)) (|:| -3205 (-578 (-850 *4)))))) - (-5 *1 (-1192 *4 *5 *6)) (-5 *3 (-578 (-850 *4))) (-14 *5 (-578 (-1075))) - (-14 *6 (-578 (-1075)))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) + (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080))) + (-14 *7 (-579 (-1080))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) + (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080))) + (-14 *7 (-579 (-1080))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-2 (|:| -1735 (-1075 *4)) (|:| -3208 (-579 (-851 *4)))))) + (-5 *1 (-1197 *4 *5 *6)) (-5 *3 (-579 (-851 *4))) (-14 *5 (-579 (-1080))) + (-14 *6 (-579 (-1080)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *5 *6))) - (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-952 *5 *6))) + (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-83)) - (-4 *5 (-13 (-748) (-254) (-118) (-926))) (-5 *2 (-578 (-951 *5 *6))) - (-5 *1 (-1192 *5 *6 *7)) (-14 *6 (-578 (-1075))) (-14 *7 (-578 (-1075))))) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-83)) + (-4 *5 (-13 (-749) (-254) (-118) (-927))) (-5 *2 (-579 (-952 *5 *6))) + (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-579 (-1080))) (-14 *7 (-579 (-1080))))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-748) (-254) (-118) (-926))) - (-5 *2 (-578 (-951 *4 *5))) (-5 *1 (-1192 *4 *5 *6)) (-14 *5 (-578 (-1075))) - (-14 *6 (-578 (-1075)))))) + (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-13 (-749) (-254) (-118) (-927))) + (-5 *2 (-579 (-952 *4 *5))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-579 (-1080))) + (-14 *6 (-579 (-1080)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1055 *4) (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1191 *4)) - (-4 *4 (-1114)))) + (-12 (-5 *3 (-1 (-1059 *4) (-1059 *4))) (-5 *2 (-1059 *4)) (-5 *1 (-1196 *4)) + (-4 *4 (-1119)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-578 (-1055 *5)) (-578 (-1055 *5)))) (-5 *4 (-478)) - (-5 *2 (-578 (-1055 *5))) (-5 *1 (-1191 *5)) (-4 *5 (-1114))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1190))))) -(((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1190))))) + (-12 (-5 *3 (-1 (-579 (-1059 *5)) (-579 (-1059 *5)))) (-5 *4 (-479)) + (-5 *2 (-579 (-1059 *5))) (-5 *1 (-1196 *5)) (-4 *5 (-1119))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-1195))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-823)) (-4 *6 (-489)) (-5 *2 (-578 (-261 *6))) - (-5 *1 (-173 *5 *6)) (-5 *3 (-261 *6)) (-4 *5 (-954)))) - ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489)))) + (-12 (-5 *4 (-824)) (-4 *6 (-490)) (-5 *2 (-579 (-261 *6))) + (-5 *1 (-173 *5 *6)) (-5 *3 (-261 *6)) (-4 *5 (-955)))) + ((*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-490)))) ((*1 *2 *3) - (-12 (-5 *3 (-513 *5)) (-4 *5 (-13 (-29 *4) (-1100))) - (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-578 *5)) - (-5 *1 (-515 *4 *5)))) + (-12 (-5 *3 (-514 *5)) (-4 *5 (-13 (-29 *4) (-1105))) + (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-579 *5)) + (-5 *1 (-516 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-513 (-343 (-850 *4)))) - (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-578 (-261 *4))) - (-5 *1 (-519 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-998 *3 *2)) (-4 *3 (-748)) (-4 *2 (-1050 *3)))) + (-12 (-5 *3 (-514 (-344 (-851 *4)))) + (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-579 (-261 *4))) + (-5 *1 (-520 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-749)) (-4 *2 (-1054 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 *1)) (-4 *1 (-998 *4 *2)) (-4 *4 (-748)) - (-4 *2 (-1050 *4)))) + (-12 (-5 *3 (-579 *1)) (-4 *1 (-1000 *4 *2)) (-4 *4 (-749)) + (-4 *2 (-1054 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105))))) ((*1 *2 *1) - (-12 (-5 *2 (-1180 (-1075) *3)) (-5 *1 (-1186 *3)) (-4 *3 (-954)))) + (-12 (-5 *2 (-1185 (-1080) *3)) (-5 *1 (-1191 *3)) (-4 *3 (-955)))) ((*1 *2 *1) - (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) - (-4 *4 (-954))))) + (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-750)) + (-4 *4 (-955))))) (((*1 *1 *2) - (-12 (-5 *2 (-1180 (-1075) *3)) (-4 *3 (-954)) (-5 *1 (-1186 *3)))) + (-12 (-5 *2 (-1185 (-1080) *3)) (-4 *3 (-955)) (-5 *1 (-1191 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1180 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) - (-5 *1 (-1189 *3 *4))))) + (-12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) + (-5 *1 (-1194 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| |k| (-1075)) (|:| |c| (-1186 *3))))) - (-5 *1 (-1186 *3)) (-4 *3 (-954)))) + (-12 (-5 *2 (-579 (-2 (|:| |k| (-1080)) (|:| |c| (-1191 *3))))) + (-5 *1 (-1191 *3)) (-4 *3 (-955)))) ((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| |k| *3) (|:| |c| (-1189 *3 *4))))) - (-5 *1 (-1189 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-687)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-823)))) + (-12 (-5 *2 (-579 (-2 (|:| |k| *3) (|:| |c| (-1194 *3 *4))))) + (-5 *1 (-1194 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-688)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-824)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-128)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-128)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-128)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100))) (-5 *1 (-179 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1013)) (-4 *2 (-1114)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1013)) (-4 *2 (-1114)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-102)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1003)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1003)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-327 *3 *2)) (-4 *3 (-954)) (-4 *2 (-749)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1003)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) + (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105))) (-5 *1 (-179 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1016)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1016)) (-4 *2 (-1119)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-102)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1006)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-306 *2)) (-4 *2 (-1006)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-328 *3 *2)) (-4 *3 (-955)) (-4 *2 (-750)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-955)) (-4 *3 (-1006)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) (-4 *6 (-193 (-3933 *3) (-687))) + (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-4 *6 (-193 (-3939 *3) (-688))) (-14 *7 - (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *6)) - (-2 (|:| -2382 *5) (|:| -2383 *6)))) - (-5 *1 (-394 *3 *4 *5 *6 *7 *2)) (-4 *5 (-749)) - (-4 *2 (-854 *4 *6 (-766 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *6)) + (-2 (|:| -2387 *5) (|:| -2388 *6)))) + (-5 *1 (-395 *3 *4 *5 *6 *7 *2)) (-4 *5 (-750)) + (-4 *2 (-855 *4 *6 (-767 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) - (-4 *5 (-854 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-467))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-620 *5 *6 *7)))) + (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) + (-4 *5 (-855 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-295)) (-5 *1 (-461 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-468))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-526 *3)) (-4 *3 (-955)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-584 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-4 *7 (-1006)) (-5 *2 (-1 *7 *5)) (-5 *1 (-621 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-622 *3 *2 *4)) (-4 *3 (-954)) (-4 *2 (-317 *3)) - (-4 *4 (-317 *3)))) + (-12 (-4 *1 (-623 *3 *2 *4)) (-4 *3 (-955)) (-4 *2 (-318 *3)) + (-4 *4 (-318 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-622 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *2 (-317 *3)))) + (-12 (-4 *1 (-623 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *2 (-318 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-652))) ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-653))) ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-489)) - (-5 *1 (-875 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1013)))) - ((*1 *1 *1 *1) (-4 *1 (-1013))) + (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-490)) + (-5 *1 (-876 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-1016)))) + ((*1 *1 *1 *1) (-4 *1 (-1016))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1023 *3 *4 *2 *5)) (-4 *4 (-954)) (-4 *2 (-193 *3 *4)) + (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-955)) (-4 *2 (-193 *3 *4)) (-4 *5 (-193 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1023 *3 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) + (-12 (-4 *1 (-1027 *3 *4 *5 *2)) (-4 *4 (-955)) (-4 *5 (-193 *3 *4)) (-4 *2 (-193 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-749)) (-5 *1 (-1026 *3 *4 *2)) - (-4 *2 (-854 *3 (-463 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-847 (-177))) (-5 *3 (-177)) (-5 *1 (-1111)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-658)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-658)))) + (-12 (-4 *3 (-955)) (-4 *4 (-750)) (-5 *1 (-1030 *3 *4 *2)) + (-4 *2 (-855 *3 (-464 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-848 (-177))) (-5 *3 (-177)) (-5 *1 (-1116)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-659)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-659)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-478)) (-4 *1 (-1163 *3)) (-4 *3 (-1114)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1188 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-954)) (-14 *3 (-578 (-1075))))) + (-12 (-5 *2 (-479)) (-4 *1 (-1168 *3)) (-4 *3 (-1119)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-750)) (-4 *2 (-955)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-955)) (-4 *3 (-748))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-955)) (-14 *3 (-579 (-1080))))) ((*1 *1 *1) - (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) - (-14 *3 (-578 (-1075))))) - ((*1 *1 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1003)))) + (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-955) (-750))) + (-14 *3 (-579 (-1080))))) + ((*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-955)) (-4 *3 (-1006)))) ((*1 *1 *1) - (-12 (-14 *2 (-578 (-1075))) (-4 *3 (-144)) (-4 *5 (-193 (-3933 *2) (-687))) + (-12 (-14 *2 (-579 (-1080))) (-4 *3 (-144)) (-4 *5 (-193 (-3939 *2) (-688))) (-14 *6 - (-1 (-83) (-2 (|:| -2382 *4) (|:| -2383 *5)) - (-2 (|:| -2382 *4) (|:| -2383 *5)))) - (-5 *1 (-394 *2 *3 *4 *5 *6 *7)) (-4 *4 (-749)) - (-4 *7 (-854 *3 *5 (-766 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-72)) (-4 *3 (-752)))) - ((*1 *1 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1140 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-954)))) + (-1 (-83) (-2 (|:| -2387 *4) (|:| -2388 *5)) + (-2 (|:| -2387 *4) (|:| -2388 *5)))) + (-5 *1 (-395 *2 *3 *4 *5 *6 *7)) (-4 *4 (-750)) + (-4 *7 (-855 *3 *5 (-767 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-72)) (-4 *3 (-753)))) + ((*1 *1 *1) (-12 (-4 *2 (-490)) (-5 *1 (-558 *2 *3)) (-4 *3 (-1145 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-955)))) ((*1 *1 *1) - (-12 (-5 *1 (-667 *2 *3)) (-4 *3 (-749)) (-4 *2 (-954)) (-4 *3 (-658)))) - ((*1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) + (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-750)) (-4 *2 (-955)) (-4 *3 (-659)))) + ((*1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) - ((*1 *1 *1) (-12 (-5 *1 (-1188 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747))))) + (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) + ((*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-955)) (-4 *3 (-748))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-579 (-1080))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) - (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) + (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) - (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) + (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) - (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) + (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-478)) - (-14 *6 (-687)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-479)) + (-14 *6 (-688)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-140 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-5 *2 (-140 *6)) (-5 *1 (-141 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-261 *3) (-261 *3))) (-4 *3 (-13 (-954) (-749))) - (-5 *1 (-175 *3 *4)) (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-1 (-261 *3) (-261 *3))) (-4 *3 (-13 (-955) (-750))) + (-5 *1 (-175 *3 *4)) (-14 *4 (-579 (-1080))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-194 *5 *6)) (-14 *5 (-687)) (-4 *6 (-1114)) - (-4 *7 (-1114)) (-5 *2 (-194 *5 *7)) (-5 *1 (-195 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1114)) (-5 *1 (-245 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-194 *5 *6)) (-14 *5 (-688)) (-4 *6 (-1119)) + (-4 *7 (-1119)) (-5 *2 (-194 *5 *7)) (-5 *1 (-195 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-245 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-245 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-245 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-245 *6)) (-5 *1 (-246 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-545 *1)) (-4 *1 (-250)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-546 *1)) (-4 *1 (-250)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1059)) (-5 *5 (-545 *6)) (-4 *6 (-250)) - (-4 *2 (-1114)) (-5 *1 (-251 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1063)) (-5 *5 (-546 *6)) (-4 *6 (-250)) + (-4 *2 (-1119)) (-5 *1 (-251 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-545 *5)) (-4 *5 (-250)) (-4 *2 (-250)) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-546 *5)) (-4 *5 (-250)) (-4 *2 (-250)) (-5 *1 (-252 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-261 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-261 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-261 *6)) (-5 *1 (-262 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-279 *5 *6 *7 *8)) (-4 *5 (-308)) - (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) - (-4 *9 (-308)) (-4 *10 (-1140 *9)) (-4 *11 (-1140 (-343 *10))) + (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-4 *8 (-287 *5 *6 *7)) + (-4 *9 (-308)) (-4 *10 (-1145 *9)) (-4 *11 (-1145 (-344 *10))) (-5 *2 (-279 *9 *10 *11 *12)) (-5 *1 (-280 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-287 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1003)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-284 *3)) (-4 *3 (-1006)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1119)) (-4 *8 (-1119)) (-4 *6 (-1140 *5)) - (-4 *7 (-1140 (-343 *6))) (-4 *9 (-1140 *8)) (-4 *2 (-287 *8 *9 *10)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1124)) (-4 *8 (-1124)) (-4 *6 (-1145 *5)) + (-4 *7 (-1145 (-344 *6))) (-4 *9 (-1145 *8)) (-4 *2 (-287 *8 *9 *10)) (-5 *1 (-288 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-287 *5 *6 *7)) - (-4 *10 (-1140 (-343 *9))))) + (-4 *10 (-1145 (-344 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) (-4 *2 (-317 *6)) - (-5 *1 (-318 *5 *4 *6 *2)) (-4 *4 (-317 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-318 *6)) + (-5 *1 (-319 *5 *4 *6 *2)) (-4 *4 (-318 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-489)) (-5 *1 (-341 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-490)) (-5 *1 (-342 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-341 *5)) (-4 *5 (-489)) (-4 *6 (-489)) - (-5 *2 (-341 *6)) (-5 *1 (-342 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-342 *5)) (-4 *5 (-490)) (-4 *6 (-490)) + (-5 *2 (-342 *6)) (-5 *1 (-343 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-343 *5)) (-4 *5 (-489)) (-4 *6 (-489)) - (-5 *2 (-343 *6)) (-5 *1 (-344 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-344 *5)) (-4 *5 (-490)) (-4 *6 (-490)) + (-5 *2 (-344 *6)) (-5 *1 (-345 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-349 *5 *6 *7 *8)) (-4 *5 (-254)) - (-4 *6 (-897 *5)) (-4 *7 (-1140 *6)) (-4 *8 (-13 (-346 *6 *7) (-943 *6))) - (-4 *9 (-254)) (-4 *10 (-897 *9)) (-4 *11 (-1140 *10)) - (-5 *2 (-349 *9 *10 *11 *12)) (-5 *1 (-350 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-346 *10 *11) (-943 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-350 *5 *6 *7 *8)) (-4 *5 (-254)) + (-4 *6 (-898 *5)) (-4 *7 (-1145 *6)) (-4 *8 (-13 (-347 *6 *7) (-944 *6))) + (-4 *9 (-254)) (-4 *10 (-898 *9)) (-4 *11 (-1145 *10)) + (-5 *2 (-350 *9 *10 *11 *12)) (-5 *1 (-351 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-347 *10 *11) (-944 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-354 *6)) - (-5 *1 (-352 *4 *5 *2 *6)) (-4 *4 (-354 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-355 *6)) + (-5 *1 (-353 *4 *5 *2 *6)) (-4 *4 (-355 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-357 *6)) - (-5 *1 (-358 *5 *4 *6 *2)) (-4 *4 (-357 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-4 *2 (-358 *6)) + (-5 *1 (-359 *5 *4 *6 *2)) (-4 *4 (-358 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-362 *6)) - (-5 *1 (-363 *5 *4 *6 *2)) (-4 *4 (-362 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-422 *3)) (-4 *3 (-1114)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-363 *6)) + (-5 *1 (-364 *5 *4 *6 *2)) (-4 *4 (-363 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-423 *3)) (-4 *3 (-1119)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-442 *3 *4)) (-4 *3 (-72)) (-4 *4 (-752)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-443 *3 *4)) (-4 *3 (-72)) (-4 *4 (-753)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-513 *5)) (-4 *5 (-308)) (-4 *6 (-308)) - (-5 *2 (-513 *6)) (-5 *1 (-514 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-514 *5)) (-4 *5 (-308)) (-4 *6 (-308)) + (-5 *2 (-514 *6)) (-5 *1 (-515 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2118 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-308)) - (-4 *6 (-308)) (-5 *2 (-2 (|:| -2118 *6) (|:| |coeff| *6))) - (-5 *1 (-514 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2123 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-308)) + (-4 *6 (-308)) (-5 *2 (-2 (|:| -2123 *6) (|:| |coeff| *6))) + (-5 *1 (-515 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-308)) - (-4 *2 (-308)) (-5 *1 (-514 *5 *2)))) + (-4 *2 (-308)) (-5 *1 (-515 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-308)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-514 *5 *6)))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-515 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-530 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-530 *6)) (-5 *1 (-527 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-531 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-531 *6)) (-5 *1 (-528 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-530 *6)) (-5 *5 (-530 *7)) - (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-530 *8)) - (-5 *1 (-528 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-531 *6)) (-5 *5 (-531 *7)) + (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-531 *8)) + (-5 *1 (-529 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-530 *7)) - (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-1055 *8)) - (-5 *1 (-528 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1059 *6)) (-5 *5 (-531 *7)) + (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1059 *8)) + (-5 *1 (-529 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-530 *6)) (-5 *5 (-1055 *7)) - (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-1055 *8)) - (-5 *1 (-528 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-531 *6)) (-5 *5 (-1059 *7)) + (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1059 *8)) + (-5 *1 (-529 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-578 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-578 *6)) (-5 *1 (-579 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-579 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-579 *6)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-578 *6)) (-5 *5 (-578 *7)) - (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-578 *8)) - (-5 *1 (-581 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-579 *6)) (-5 *5 (-579 *7)) + (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-579 *8)) + (-5 *1 (-582 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-317 *5)) - (-4 *7 (-317 *5)) (-4 *2 (-622 *8 *9 *10)) - (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-622 *5 *6 *7)) - (-4 *9 (-317 *8)) (-4 *10 (-317 *8)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-955)) (-4 *8 (-955)) (-4 *6 (-318 *5)) + (-4 *7 (-318 *5)) (-4 *2 (-623 *8 *9 *10)) + (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-623 *5 *6 *7)) + (-4 *9 (-318 *8)) (-4 *10 (-318 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-954)) (-4 *8 (-954)) - (-4 *6 (-317 *5)) (-4 *7 (-317 *5)) (-4 *2 (-622 *8 *9 *10)) - (-5 *1 (-623 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-622 *5 *6 *7)) - (-4 *9 (-317 *8)) (-4 *10 (-317 *8)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-955)) (-4 *8 (-955)) + (-4 *6 (-318 *5)) (-4 *7 (-318 *5)) (-4 *2 (-623 *8 *9 *10)) + (-5 *1 (-624 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-623 *5 *6 *7)) + (-4 *9 (-318 *8)) (-4 *10 (-318 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-489)) (-4 *7 (-489)) (-4 *6 (-1140 *5)) - (-4 *2 (-1140 (-343 *8))) (-5 *1 (-641 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1140 (-343 *6))) (-4 *8 (-1140 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-490)) (-4 *7 (-490)) (-4 *6 (-1145 *5)) + (-4 *2 (-1145 (-344 *8))) (-5 *1 (-642 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1145 (-344 *6))) (-4 *8 (-1145 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-954)) (-4 *9 (-954)) (-4 *5 (-749)) - (-4 *6 (-710)) (-4 *2 (-854 *9 *7 *5)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-710)) (-4 *4 (-854 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-955)) (-4 *9 (-955)) (-4 *5 (-750)) + (-4 *6 (-711)) (-4 *2 (-855 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-711)) (-4 *4 (-855 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-749)) (-4 *6 (-749)) (-4 *7 (-710)) - (-4 *9 (-954)) (-4 *2 (-854 *9 *8 *6)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-710)) (-4 *4 (-854 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-750)) (-4 *6 (-750)) (-4 *7 (-711)) + (-4 *9 (-955)) (-4 *2 (-855 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-711)) (-4 *4 (-855 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5 *7)) (-4 *5 (-954)) (-4 *6 (-954)) - (-4 *7 (-658)) (-5 *2 (-667 *6 *7)) (-5 *1 (-666 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-955)) (-4 *6 (-955)) + (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-667 *3 *4)) (-4 *4 (-658)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-697 *5)) (-4 *5 (-954)) (-4 *6 (-954)) - (-5 *2 (-697 *6)) (-5 *1 (-698 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-698 *5)) (-4 *5 (-955)) (-4 *6 (-955)) + (-5 *2 (-698 *6)) (-5 *1 (-699 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-713 *6)) - (-5 *1 (-716 *4 *5 *2 *6)) (-4 *4 (-713 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-714 *6)) + (-5 *1 (-717 *4 *5 *2 *6)) (-4 *4 (-714 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-5 *2 (-736 *6)) (-5 *1 (-737 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-737 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-5 *2 (-737 *6)) (-5 *1 (-738 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-736 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5)) (-4 *5 (-1003)) - (-4 *6 (-1003)) (-5 *1 (-737 *5 *6)))) + (-12 (-5 *2 (-737 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-737 *5)) (-4 *5 (-1006)) + (-4 *6 (-1006)) (-5 *1 (-738 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1003)) - (-4 *6 (-1003)) (-5 *1 (-744 *5 *6)))) + (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1006)) + (-4 *6 (-1006)) (-5 *1 (-745 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-780 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-780 *6)) (-5 *1 (-779 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-781 *6)) (-5 *1 (-780 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-785 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-785 *6)) (-5 *1 (-784 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-786 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-786 *6)) (-5 *1 (-785 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-791 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-4 *7 (-1003)) (-5 *2 (-791 *5 *7)) (-5 *1 (-792 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-792 *5 *6)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-4 *7 (-1006)) (-5 *2 (-792 *5 *7)) (-5 *1 (-793 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-5 *2 (-793 *6)) (-5 *1 (-795 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-5 *2 (-794 *6)) (-5 *1 (-796 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-850 *5)) (-4 *5 (-954)) (-4 *6 (-954)) - (-5 *2 (-850 *6)) (-5 *1 (-851 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-955)) (-4 *6 (-955)) + (-5 *2 (-851 *6)) (-5 *1 (-852 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-749)) (-4 *8 (-954)) - (-4 *6 (-710)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-750)) (-4 *8 (-955)) + (-4 *6 (-711)) (-4 *2 - (-13 (-1003) - (-10 -8 (-15 -3815 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-687)))))) - (-5 *1 (-856 *6 *7 *8 *5 *2)) (-4 *5 (-854 *8 *6 *7)))) + (-13 (-1006) + (-10 -8 (-15 -3821 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-688)))))) + (-5 *1 (-857 *6 *7 *8 *5 *2)) (-4 *5 (-855 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-862 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-862 *6)) (-5 *1 (-863 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-863 *6)) (-5 *1 (-864 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-5 *2 (-870 *6)) (-5 *1 (-872 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-5 *2 (-871 *6)) (-5 *1 (-873 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-847 *5)) (-4 *5 (-954)) (-4 *6 (-954)) - (-5 *2 (-847 *6)) (-5 *1 (-887 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-955)) (-4 *6 (-955)) + (-5 *2 (-848 *6)) (-5 *1 (-888 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-850 *4))) (-4 *4 (-954)) (-4 *2 (-854 (-850 *4) *5 *6)) - (-4 *5 (-710)) + (-12 (-5 *3 (-1 *2 (-851 *4))) (-4 *4 (-955)) (-4 *2 (-855 (-851 *4) *5 *6)) + (-4 *5 (-711)) (-4 *6 - (-13 (-749) - (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ "failed") (-1075)))))) - (-5 *1 (-890 *4 *5 *6 *2)))) + (-13 (-750) + (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ "failed") (-1080)))))) + (-5 *1 (-891 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-489)) (-4 *6 (-489)) (-4 *2 (-897 *6)) - (-5 *1 (-898 *5 *6 *4 *2)) (-4 *4 (-897 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-490)) (-4 *6 (-490)) (-4 *2 (-898 *6)) + (-5 *1 (-899 *5 *6 *4 *2)) (-4 *4 (-898 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-904 *6)) - (-5 *1 (-905 *4 *5 *2 *6)) (-4 *4 (-904 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-144)) (-4 *6 (-144)) (-4 *2 (-905 *6)) + (-5 *1 (-906 *4 *5 *2 *6)) (-4 *4 (-905 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-954)) (-4 *10 (-954)) (-14 *5 (-687)) - (-14 *6 (-687)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) - (-4 *2 (-958 *5 *6 *10 *11 *12)) - (-5 *1 (-960 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-958 *5 *6 *7 *8 *9)) (-4 *11 (-193 *6 *10)) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-955)) (-4 *10 (-955)) (-14 *5 (-688)) + (-14 *6 (-688)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) + (-4 *2 (-959 *5 *6 *10 *11 *12)) + (-5 *1 (-961 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-959 *5 *6 *7 *8 *9)) (-4 *11 (-193 *6 *10)) (-4 *12 (-193 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-992 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-992 *6)) (-5 *1 (-993 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-994 *6)) (-5 *1 (-995 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-992 *5)) (-4 *5 (-748)) (-4 *5 (-1114)) - (-4 *6 (-1114)) (-5 *2 (-578 *6)) (-5 *1 (-993 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-994 *5)) (-4 *5 (-749)) (-4 *5 (-1119)) + (-4 *6 (-1119)) (-5 *2 (-579 *6)) (-5 *1 (-995 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-995 *6)) (-5 *1 (-996 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-997 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-997 *6)) (-5 *1 (-998 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-998 *4 *2)) (-4 *4 (-748)) - (-4 *2 (-1050 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1000 *4 *2)) (-4 *4 (-749)) + (-4 *2 (-1054 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1055 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-1055 *6)) (-5 *1 (-1057 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1059 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-1059 *6)) (-5 *1 (-1061 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1055 *6)) (-5 *5 (-1055 *7)) - (-4 *6 (-1114)) (-4 *7 (-1114)) (-4 *8 (-1114)) (-5 *2 (-1055 *8)) - (-5 *1 (-1058 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1059 *6)) (-5 *5 (-1059 *7)) + (-4 *6 (-1119)) (-4 *7 (-1119)) (-4 *8 (-1119)) (-5 *2 (-1059 *8)) + (-5 *1 (-1062 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-954)) (-4 *6 (-954)) - (-5 *2 (-1070 *6)) (-5 *1 (-1071 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1075 *5)) (-4 *5 (-955)) (-4 *6 (-955)) + (-5 *2 (-1075 *6)) (-5 *1 (-1076 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1092 *3 *4)) (-4 *3 (-1003)) - (-4 *4 (-1003)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1097 *3 *4)) (-4 *3 (-1006)) + (-4 *4 (-1006)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5 *7 *9)) (-4 *5 (-954)) - (-4 *6 (-954)) (-14 *7 (-1075)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1124 *6 *8 *10)) (-5 *1 (-1125 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1075)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5 *7 *9)) (-4 *5 (-955)) + (-4 *6 (-955)) (-14 *7 (-1080)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1129 *6 *8 *10)) (-5 *1 (-1130 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1080)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-1131 *6)) (-5 *1 (-1132 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-1136 *6)) (-5 *1 (-1137 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1131 *5)) (-4 *5 (-748)) (-4 *5 (-1114)) - (-4 *6 (-1114)) (-5 *2 (-1055 *6)) (-5 *1 (-1132 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5)) (-4 *5 (-749)) (-4 *5 (-1119)) + (-4 *6 (-1119)) (-5 *2 (-1059 *6)) (-5 *1 (-1137 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1133 *5 *6)) (-14 *5 (-1075)) (-4 *6 (-954)) - (-4 *8 (-954)) (-5 *2 (-1133 *7 *8)) (-5 *1 (-1134 *5 *6 *7 *8)) - (-14 *7 (-1075)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1138 *5 *6)) (-14 *5 (-1080)) (-4 *6 (-955)) + (-4 *8 (-955)) (-5 *2 (-1138 *7 *8)) (-5 *1 (-1139 *5 *6 *7 *8)) + (-14 *7 (-1080)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-1140 *6)) - (-5 *1 (-1141 *5 *4 *6 *2)) (-4 *4 (-1140 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-4 *2 (-1145 *6)) + (-5 *1 (-1146 *5 *4 *6 *2)) (-4 *4 (-1145 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5 *7 *9)) (-4 *5 (-954)) - (-4 *6 (-954)) (-14 *7 (-1075)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1145 *6 *8 *10)) (-5 *1 (-1146 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1075)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5 *7 *9)) (-4 *5 (-955)) + (-4 *6 (-955)) (-14 *7 (-1080)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1150 *6 *8 *10)) (-5 *1 (-1151 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1080)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-954)) (-4 *6 (-954)) (-4 *2 (-1157 *6)) - (-5 *1 (-1155 *5 *6 *4 *2)) (-4 *4 (-1157 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-955)) (-4 *6 (-955)) (-4 *2 (-1162 *6)) + (-5 *1 (-1160 *5 *6 *4 *2)) (-4 *4 (-1162 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-1114)) (-4 *6 (-1114)) - (-5 *2 (-1164 *6)) (-5 *1 (-1165 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-1169 *6)) (-5 *1 (-1170 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1164 *5)) - (-4 *5 (-1114)) (-4 *6 (-1114)) (-5 *2 (-1164 *6)) (-5 *1 (-1165 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1169 *5)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1169 *6)) (-5 *1 (-1170 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-1188 *3 *4)) (-4 *4 (-747))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-34)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-206)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-877)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-1193 *3 *4)) (-4 *4 (-748))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-34)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-206)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-878)))) ((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-478)))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-479)))) ((*1 *2 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747))))) + (-12 (-5 *2 (-688)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-955)) (-4 *4 (-748))))) (((*1 *2 *1) - (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-732 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-747)) (-5 *1 (-1188 *3 *2)) (-4 *3 (-954))))) + (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-733 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-748)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-955))))) (((*1 *2 *1) - (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-732 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-747)) (-5 *1 (-1188 *3 *2)) (-4 *3 (-954))))) + (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-733 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-748)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-955))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1189 *4 *2)) (-4 *1 (-319 *4 *2)) (-4 *4 (-749)) + (-12 (-5 *3 (-1194 *4 *2)) (-4 *1 (-320 *4 *2)) (-4 *4 (-750)) (-4 *2 (-144)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-750)) (-4 *2 (-955)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-732 *4)) (-4 *1 (-1184 *4 *2)) (-4 *4 (-749)) (-4 *2 (-954)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-954)) (-5 *1 (-1188 *2 *3)) (-4 *3 (-747))))) + (-12 (-5 *3 (-733 *4)) (-4 *1 (-1189 *4 *2)) (-4 *4 (-750)) (-4 *2 (-955)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-955)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-748))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *2 *1) - (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-955)) (-4 *4 (-748))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-619 *4 *5)) - (-4 *4 (-1003)))) - ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) - ((*1 *2 *2) (-12 (-4 *3 (-1003)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-749)) (-4 *2 (-954)))) - ((*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-1188 *2 *3)) (-4 *3 (-747))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4)) (-5 *1 (-620 *4 *5)) + (-4 *4 (-1006)))) + ((*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-261 (-479))) (-5 *1 (-834)))) + ((*1 *2 *2) (-12 (-4 *3 (-1006)) (-5 *1 (-835 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1189 *3 *2)) (-4 *3 (-750)) (-4 *2 (-955)))) + ((*1 *2 *1) (-12 (-4 *2 (-955)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-748))))) (((*1 *2 *1) - (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1188 *3 *4)) (-4 *3 (-954)) (-4 *4 (-747))))) -(((*1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) - ((*1 *1 *1) (-12 (-5 *1 (-1188 *2 *3)) (-4 *2 (-954)) (-4 *3 (-747))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-955)) (-4 *4 (-748))))) +(((*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) + ((*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-955)) (-4 *3 (-748))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-308)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-177)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)) (-4 *2 (-308)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-177)))) ((*1 *1 *1 *1) - (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1114))) - (-12 (-5 *1 (-245 *2)) (-4 *2 (-406)) (-4 *2 (-1114))))) + (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1119))) + (-12 (-5 *1 (-245 *2)) (-4 *2 (-407)) (-4 *2 (-1119))))) ((*1 *1 *1 *1) (-4 *1 (-308))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-324)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1025 *3 (-545 *1))) (-4 *3 (-489)) (-4 *3 (-1003)) - (-4 *1 (-357 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-406))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-467))) + (-12 (-5 *2 (-1029 *3 (-546 *1))) (-4 *3 (-490)) (-4 *3 (-1006)) + (-4 *1 (-358 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-407))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-295)) (-5 *1 (-461 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-468))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-144)) (-5 *1 (-553 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-658) *4)))) + (-12 (-4 *4 (-144)) (-5 *1 (-554 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-144)) (-5 *1 (-553 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-658) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-144)) (-4 *2 (-308)))) + (-12 (-4 *4 (-144)) (-5 *1 (-554 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-659) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-144)) (-4 *2 (-308)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-144)) (-5 *1 (-589 *2 *4 *3)) (-4 *2 (-649 *4)) - (-4 *3 (|SubsetCategory| (-658) *4)))) + (-12 (-4 *4 (-144)) (-5 *1 (-590 *2 *4 *3)) (-4 *2 (-650 *4)) + (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-144)) (-5 *1 (-589 *3 *4 *2)) (-4 *3 (-649 *4)) - (-4 *2 (|SubsetCategory| (-658) *4)))) + (-12 (-4 *4 (-144)) (-5 *1 (-590 *3 *4 *2)) (-4 *3 (-650 *4)) + (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)) (-4 *2 (-308)))) - ((*1 *1 *1 *1) (-5 *1 (-765))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)) (-4 *2 (-308)))) + ((*1 *1 *1 *1) (-5 *1 (-766))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-768 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *2 (-954)) - (-14 *3 (-578 (-1075))) (-14 *4 (-578 (-687))) (-14 *5 (-687)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)))) + (|partial| -12 (-5 *1 (-769 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *2 (-955)) + (-14 *3 (-579 (-1080))) (-14 *4 (-579 (-688))) (-14 *5 (-688)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-958 *3 *4 *2 *5 *6)) (-4 *2 (-954)) (-4 *5 (-193 *4 *2)) + (-12 (-4 *1 (-959 *3 *4 *2 *5 *6)) (-4 *2 (-955)) (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-308)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-308)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1177 *2)) (-4 *2 (-308)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-308)) (-4 *2 (-954)) (-4 *3 (-749)) (-4 *4 (-710)) - (-14 *6 (-578 *3)) (-5 *1 (-1177 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-854 *2 *4 *3)) (-14 *7 (-578 (-687))) (-14 *8 (-687)))) + (|partial| -12 (-4 *2 (-308)) (-4 *2 (-955)) (-4 *3 (-750)) (-4 *4 (-711)) + (-14 *6 (-579 *3)) (-5 *1 (-1182 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-855 *2 *4 *3)) (-14 *7 (-579 (-688))) (-14 *8 (-688)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1188 *2 *3)) (-4 *2 (-308)) (-4 *2 (-954)) (-4 *3 (-747))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) + (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-308)) (-4 *2 (-955)) (-4 *3 (-748))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) ((*1 *2 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) - (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-688)) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) + (-14 *4 (-579 (-1080))))) ((*1 *2 *1) - (-12 (-5 *2 (-478)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) - (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-479)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) + (-14 *4 (-579 (-1080))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) - (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-226)))) + (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-955)) (-4 *3 (-750)) + (-4 *5 (-225 *3)) (-4 *6 (-711)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-226)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1070 *8)) (-5 *4 (-578 *6)) (-4 *6 (-749)) - (-4 *8 (-854 *7 *5 *6)) (-4 *5 (-710)) (-4 *7 (-954)) (-5 *2 (-578 (-687))) + (-12 (-5 *3 (-1075 *8)) (-5 *4 (-579 *6)) (-4 *6 (-750)) + (-4 *8 (-855 *7 *5 *6)) (-4 *5 (-711)) (-4 *7 (-955)) (-5 *2 (-579 (-688))) (-5 *1 (-268 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-823)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-824)))) ((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-403 *3 *2)) (-4 *3 (-144)) (-4 *2 (-23)))) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-404 *3 *2)) (-4 *3 (-144)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *3 (-489)) (-5 *2 (-478)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1140 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) + (-12 (-4 *3 (-490)) (-5 *2 (-479)) (-5 *1 (-558 *3 *4)) (-4 *4 (-1145 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-755 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-578 (-687))))) + (-12 (-5 *3 (-579 *6)) (-4 *1 (-855 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-579 (-688))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) - (-5 *2 (-687)))) + (-12 (-4 *1 (-855 *4 *5 *3)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) + (-5 *2 (-688)))) ((*1 *2 *1) - (-12 (-4 *1 (-879 *3 *2 *4)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *2 (-709)))) + (-12 (-4 *1 (-880 *3 *2 *4)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *2 (-710)))) ((*1 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-687)))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-688)))) ((*1 *2 *1) - (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1157 *3)) (-5 *2 (-478)))) + (-12 (-4 *1 (-1133 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1162 *3)) (-5 *2 (-479)))) ((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1126 *3)) - (-5 *2 (-343 (-478))))) - ((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-736 (-823))))) + (-12 (-4 *1 (-1154 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1131 *3)) + (-5 *2 (-344 (-479))))) + ((*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-737 (-824))))) ((*1 *2 *1) - (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-687))))) + (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-688))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)))) + (-12 (-5 *2 (-688)) (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954))))) + (-12 (-5 *2 (-688)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955))))) (((*1 *1 *2) - (-12 (-5 *2 (-1164 *3)) (-4 *3 (-308)) (-14 *6 (-1164 (-625 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-308)) (-14 *6 (-1169 (-626 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1119)))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 (-625 *4))) (-4 *4 (-144)) - (-5 *2 (-1164 (-625 (-343 (-850 *4))))) (-5 *1 (-161 *4)))) + (-12 (-5 *3 (-1169 (-626 *4))) (-4 *4 (-144)) + (-5 *2 (-1169 (-626 (-344 (-851 *4))))) (-5 *1 (-161 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-995 (-261 *4))) (-4 *4 (-13 (-749) (-489) (-548 (-323)))) - (-5 *2 (-995 (-323))) (-5 *1 (-216 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-226)))) + (-12 (-5 *3 (-997 (-261 *4))) (-4 *4 (-13 (-750) (-490) (-549 (-324)))) + (-5 *2 (-997 (-324))) (-5 *1 (-216 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-226)))) ((*1 *2 *1) - (-12 (-4 *2 (-1140 *3)) (-5 *1 (-241 *3 *2 *4 *5 *6 *7)) (-4 *3 (-144)) + (-12 (-4 *2 (-1145 *3)) (-5 *1 (-241 *3 *2 *4 *5 *6 *7)) (-4 *3 (-144)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1145 *4 *5 *6)) (-4 *4 (-13 (-27) (-1100) (-357 *3))) - (-14 *5 (-1075)) (-14 *6 *4) - (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) + (-12 (-5 *2 (-1150 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-358 *3))) + (-14 *5 (-1080)) (-14 *6 *4) + (-4 *3 (-13 (-944 (-479)) (-576 (-479)) (-386))) (-5 *1 (-260 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *3 *4 *2)) @@ -796,11131 +796,11135 @@ (-12 (-4 *4 (-295)) (-4 *2 (-276 *4)) (-5 *1 (-293 *2 *4 *3)) (-4 *3 (-276 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) - (-5 *2 (-1189 *3 *4)))) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) + (-5 *2 (-1194 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) - (-5 *2 (-1180 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) + (-5 *2 (-1185 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-750)) (-4 *3 (-144)))) ((*1 *1 *2) - (-12 (-5 *2 (-343 (-850 (-343 *3)))) (-4 *3 (-489)) (-4 *3 (-1003)) - (-4 *1 (-357 *3)))) + (-12 (-5 *2 (-344 (-851 (-344 *3)))) (-4 *3 (-490)) (-4 *3 (-1006)) + (-4 *1 (-358 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-850 (-343 *3))) (-4 *3 (-489)) (-4 *3 (-1003)) - (-4 *1 (-357 *3)))) + (-12 (-5 *2 (-851 (-344 *3))) (-4 *3 (-490)) (-4 *3 (-1006)) + (-4 *1 (-358 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-343 *3)) (-4 *3 (-489)) (-4 *3 (-1003)) (-4 *1 (-357 *3)))) + (-12 (-5 *2 (-344 *3)) (-4 *3 (-490)) (-4 *3 (-1006)) (-4 *1 (-358 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1025 *3 (-545 *1))) (-4 *3 (-954)) (-4 *3 (-1003)) - (-4 *1 (-357 *3)))) + (-12 (-5 *2 (-1029 *3 (-546 *1))) (-4 *3 (-955)) (-4 *3 (-1006)) + (-4 *1 (-358 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-277 *4)) (-4 *4 (-13 (-749) (-21))) (-5 *1 (-365 *3 *4)) - (-4 *3 (-13 (-144) (-38 (-343 (-478))))))) + (-12 (-5 *2 (-277 *4)) (-4 *4 (-13 (-750) (-21))) (-5 *1 (-366 *3 *4)) + (-4 *3 (-13 (-144) (-38 (-344 (-479))))))) ((*1 *1 *2) - (-12 (-5 *1 (-365 *2 *3)) (-4 *2 (-13 (-144) (-38 (-343 (-478))))) - (-4 *3 (-13 (-749) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-370)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-370)))) - ((*1 *1 *2) (-12 (-5 *2 (-370)) (-5 *1 (-372)))) + (-12 (-5 *1 (-366 *2 *3)) (-4 *2 (-13 (-144) (-38 (-344 (-479))))) + (-4 *3 (-13 (-750) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-371)))) + ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-371)))) + ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-371)))) + ((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-371)))) + ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-373)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 (-343 (-850 *3)))) (-4 *3 (-144)) - (-14 *6 (-1164 (-625 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-14 *4 (-823)) - (-14 *5 (-578 (-1075))))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-401)))) + (-12 (-5 *2 (-1169 (-344 (-851 *3)))) (-4 *3 (-144)) + (-14 *6 (-1169 (-626 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-14 *4 (-824)) + (-14 *5 (-579 (-1080))))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *1 (-402)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-402)))) ((*1 *1 *2) - (-12 (-5 *2 (-1145 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1075)) (-14 *5 *3) - (-5 *1 (-407 *3 *4 *5)))) + (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3) + (-5 *1 (-408 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-407 *3 *4 *5)) - (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-408 *3 *4 *5)) + (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-456)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-534)))) - ((*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-535 *3 *2)) (-4 *2 (-676 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-547 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2) (-12 (-4 *1 (-550 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-954)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) - (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) - (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) - ((*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-567 *3 *2)) (-4 *2 (-676 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-613 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) - ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-617)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-457)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-535)))) + ((*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-536 *3 *2)) (-4 *2 (-677 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-548 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) (-12 (-4 *1 (-551 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-955)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) + (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) + (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) + ((*1 *1 *2) (-12 (-4 *3 (-144)) (-5 *1 (-568 *3 *2)) (-4 *2 (-677 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-733 *3)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-733 *3)) (-5 *1 (-614 *3)) (-4 *3 (-750)))) + ((*1 *1 *2) (-12 (-5 *2 (-1019)) (-5 *1 (-618)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-619 *3)) (-4 *3 (-1006)))) ((*1 *1 *2) - (-12 (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *2)) (-4 *4 (-317 *3)) - (-4 *2 (-317 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1059)) (-5 *1 (-642)))) + (-12 (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *2)) (-4 *4 (-318 *3)) + (-4 *2 (-318 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1063)) (-5 *1 (-643)))) ((*1 *2 *1) - (-12 (-4 *2 (-144)) (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-144)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-144)) (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-144)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 (-2 (|:| -3930 *3) (|:| -3914 *4)))) (-4 *3 (-954)) - (-4 *4 (-658)) (-5 *1 (-667 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-680)))) - ((*1 *2 *3) (-12 (-5 *2 (-689)) (-5 *1 (-690 *3)) (-4 *3 (-1114)))) - ((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-760)))) - ((*1 *2 *3) (-12 (-5 *3 (-850 (-48))) (-5 *2 (-261 (-478))) (-5 *1 (-777)))) - ((*1 *2 *3) - (-12 (-5 *3 (-343 (-850 (-48)))) (-5 *2 (-261 (-478))) (-5 *1 (-777)))) - ((*1 *1 *2) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-732 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-806 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-5 *1 (-806 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-806 *3))) (-4 *3 (-1003)) (-5 *1 (-809 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) - ((*1 *1 *2) (-12 (-5 *2 (-343 (-341 *3))) (-4 *3 (-254)) (-5 *1 (-818 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-343 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254)))) - ((*1 *2 *3) - (-12 (-5 *3 (-410)) (-5 *2 (-261 *4)) (-5 *1 (-824 *4)) (-4 *4 (-489)))) - ((*1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-939 *3)) (-4 *3 (-1114)))) - ((*1 *2 *3) (-12 (-5 *3 (-258)) (-5 *1 (-939 *2)) (-4 *2 (-1114)))) + (-12 (-5 *2 (-579 (-2 (|:| -3936 *3) (|:| -3920 *4)))) (-4 *3 (-955)) + (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-681)))) + ((*1 *2 *3) (-12 (-5 *2 (-690)) (-5 *1 (-691 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-761)))) + ((*1 *2 *3) (-12 (-5 *3 (-851 (-48))) (-5 *2 (-261 (-479))) (-5 *1 (-778)))) + ((*1 *2 *3) + (-12 (-5 *3 (-344 (-851 (-48)))) (-5 *2 (-261 (-479))) (-5 *1 (-778)))) + ((*1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-733 *3)) (-5 *1 (-797 *3)) (-4 *3 (-750)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-807 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-5 *1 (-807 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-807 *3))) (-4 *3 (-1006)) (-5 *1 (-810 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-807 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) + ((*1 *1 *2) (-12 (-5 *2 (-344 (-342 *3))) (-4 *3 (-254)) (-5 *1 (-819 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-344 *3)) (-5 *1 (-819 *3)) (-4 *3 (-254)))) + ((*1 *2 *3) + (-12 (-5 *3 (-411)) (-5 *2 (-261 *4)) (-5 *1 (-825 *4)) (-4 *4 (-490)))) + ((*1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-940 *3)) (-4 *3 (-1119)))) + ((*1 *2 *3) (-12 (-5 *3 (-258)) (-5 *1 (-940 *2)) (-4 *2 (-1119)))) ((*1 *1 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *2 (-854 *3 *4 *5)) (-14 *6 (-578 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-945 *3)) (-4 *3 (-489)))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *1 (-941 *3 *4 *5 *2 *6)) (-4 *2 (-855 *3 *4 *5)) (-14 *6 (-579 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-946 *3)) (-4 *3 (-490)))) ((*1 *1 *2) - (-12 (-4 *3 (-954)) (-4 *4 (-749)) (-5 *1 (-1026 *3 *4 *2)) - (-4 *2 (-854 *3 (-463 *4) *4)))) + (-12 (-4 *3 (-955)) (-4 *4 (-750)) (-5 *1 (-1030 *3 *4 *2)) + (-4 *2 (-855 *3 (-464 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-954)) (-4 *2 (-749)) (-5 *1 (-1026 *3 *2 *4)) - (-4 *4 (-854 *3 (-463 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-765)))) - ((*1 *1 *2) (-12 (-5 *2 (-115)) (-4 *1 (-1044)))) - ((*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-954)))) + (-12 (-4 *3 (-955)) (-4 *2 (-750)) (-5 *1 (-1030 *3 *2 *4)) + (-4 *4 (-855 *3 (-464 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-766)))) + ((*1 *1 *2) (-12 (-5 *2 (-115)) (-4 *1 (-1048)))) + ((*1 *2 *3) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-955)))) ((*1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1067 *3 *4 *5)) - (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1072 *3 *4 *5)) + (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1074 *3 *4 *5)) - (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1079 *3 *4 *5)) + (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1133 *4 *3)) (-4 *3 (-954)) (-14 *4 (-1075)) (-14 *5 *3) - (-5 *1 (-1074 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087 (-1075) (-372))) (-5 *1 (-1079)))) - ((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1080)))) - ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1080)))) - ((*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1080)))) - ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1080)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1088 *3)) (-4 *3 (-1003)))) - ((*1 *2 *3) (-12 (-5 *2 (-1094)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) - ((*1 *1 *2) (-12 (-5 *2 (-850 *3)) (-4 *3 (-954)) (-5 *1 (-1107 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1107 *3)) (-4 *3 (-954)))) + (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3) + (-5 *1 (-1079 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1092 (-1080) (-373))) (-5 *1 (-1084)))) + ((*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1093 *3)) (-4 *3 (-1006)))) + ((*1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *1 (-1100 *3)) (-4 *3 (-1006)))) + ((*1 *1 *2) (-12 (-5 *2 (-851 *3)) (-4 *3 (-955)) (-5 *1 (-1112 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1112 *3)) (-4 *3 (-955)))) ((*1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1124 *3 *4 *5)) - (-4 *3 (-954)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-992 *3)) (-4 *3 (-1114)) (-5 *1 (-1131 *3)))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1129 *3 *4 *5)) + (-4 *3 (-955)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-994 *3)) (-4 *3 (-1119)) (-5 *1 (-1136 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1154 *3 *4 *5)) - (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1159 *3 *4 *5)) + (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1133 *4 *3)) (-4 *3 (-954)) (-14 *4 (-1075)) (-14 *5 *3) - (-5 *1 (-1154 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-1161 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-401)) (-5 *2 (-1167)) (-5 *1 (-1166)))) - ((*1 *2 *1) (-12 (-5 *2 (-765)) (-5 *1 (-1167)))) - ((*1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1189 *3 *4)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-749)) + (-12 (-5 *2 (-1138 *4 *3)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3) + (-5 *1 (-1159 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1166 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1172)) (-5 *1 (-1171)))) + ((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-1172)))) + ((*1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) ((*1 *2 *1) - (-12 (-5 *2 (-1180 *3 *4)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-749)) + (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) ((*1 *1 *2) - (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) - (-5 *1 (-1185 *3 *4))))) + (-12 (-5 *2 (-602 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) + (-5 *1 (-1190 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1180 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) - (-5 *1 (-601 *3 *4)))) + (|partial| -12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) + (-5 *1 (-602 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-749)) + (|partial| -12 (-5 *2 (-602 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) + (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)) (-4 *2 (-358 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-995 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) + (-12 (-5 *3 (-997 *2)) (-4 *2 (-358 *4)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-995 *1)) (-4 *1 (-131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1075)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-398 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1080)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144))))) + (-12 (-5 *2 (-688)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 (-478))) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) - (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-579 (-479))) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) + (-14 *4 (-579 (-1080))))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *1 *1) (-4 *1 (-236))) ((*1 *1 *2) - (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-749)) - (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-5 *1 (-561 *3 *4 *5)) - (-14 *5 (-823)))) + (-12 (-5 *2 (-602 *3 *4)) (-4 *3 (-750)) + (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-5 *1 (-562 *3 *4 *5)) + (-14 *5 (-824)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) - (-5 *1 (-1181 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) + (-12 (-5 *3 (-688)) (-4 *4 (-13 (-955) (-650 (-344 (-479))))) (-4 *5 (-750)) + (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1192 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-1185 *3 *4)) (-4 *4 (-649 (-343 (-478)))) - (-4 *3 (-749)) (-4 *4 (-144))))) + (-12 (-5 *2 (-688)) (-5 *1 (-1190 *3 *4)) (-4 *4 (-650 (-344 (-479)))) + (-4 *3 (-750)) (-4 *4 (-144))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *1 *1) (-4 *1 (-236))) ((*1 *2 *3) - (-12 (-5 *3 (-341 *4)) (-4 *4 (-489)) - (-5 *2 (-578 (-2 (|:| -3930 (-687)) (|:| |logand| *4)))) (-5 *1 (-267 *4)))) + (-12 (-5 *3 (-342 *4)) (-4 *4 (-490)) + (-5 *2 (-579 (-2 (|:| -3936 (-688)) (|:| |logand| *4)))) (-5 *1 (-267 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) - (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) + (-12 (-5 *2 (-602 *3 *4)) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) + (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) - (-5 *1 (-1181 *4 *5 *2)) (-4 *2 (-1187 *5 *4)))) + (-12 (-5 *3 (-688)) (-4 *4 (-13 (-955) (-650 (-344 (-479))))) (-4 *5 (-750)) + (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1192 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-1185 *3 *4)) (-4 *4 (-649 (-343 (-478)))) - (-4 *3 (-749)) (-4 *4 (-144))))) + (-12 (-5 *2 (-688)) (-5 *1 (-1190 *3 *4)) (-4 *4 (-650 (-344 (-479)))) + (-4 *3 (-750)) (-4 *4 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) - (-5 *2 (-2 (|:| |k| (-732 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) + (-5 *2 (-2 (|:| |k| (-733 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1189 *3 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) + (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-732 *3)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954))))) + (-12 (-5 *2 (-733 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1189 *3 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) + (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-329 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-330 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-732 *3)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1003)))) + (-12 (-5 *2 (-733 *3)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1006)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-478)) (-5 *2 (-1055 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-954)))) + (-12 (-5 *4 (-479)) (-5 *2 (-1059 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-955)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-732 *4)) (-4 *4 (-749)) (-4 *1 (-1184 *4 *3)) (-4 *3 (-954))))) + (-12 (-5 *2 (-733 *4)) (-4 *4 (-750)) (-4 *1 (-1189 *4 *3)) (-4 *3 (-955))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-83)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-524 *3)) (-4 *3 (-954)))) + (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-525 *3)) (-4 *3 (-955)))) ((*1 *2 *1) - (-12 (-4 *3 (-489)) (-5 *2 (-83)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1140 *3)))) + (-12 (-4 *3 (-490)) (-5 *2 (-83)) (-5 *1 (-558 *3 *4)) (-4 *4 (-1145 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) + (-12 (-5 *2 (-83)) (-5 *1 (-668 *3 *4)) (-4 *3 (-955)) (-4 *4 (-659)))) ((*1 *2 *1) - (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-83))))) -(((*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) + (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-83))))) +(((*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-750)) (-4 *3 (-144)))) ((*1 *1 *1) - (-12 (-5 *1 (-561 *2 *3 *4)) (-4 *2 (-749)) - (-4 *3 (-13 (-144) (-649 (-343 (-478))))) (-14 *4 (-823)))) - ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) - ((*1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) - ((*1 *1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954))))) + (-12 (-5 *1 (-562 *2 *3 *4)) (-4 *2 (-750)) + (-4 *3 (-13 (-144) (-650 (-344 (-479))))) (-14 *4 (-824)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) + ((*1 *1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) + ((*1 *1 *1) (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) + (-12 (-5 *2 (-688)) (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-4 *4 (-144)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-749)) (-4 *3 (-954)) (-4 *3 (-144))))) + (-12 (-4 *1 (-1189 *2 *3)) (-4 *2 (-750)) (-4 *3 (-955)) (-4 *3 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-749)) (-4 *4 (-144)) (-5 *2 (-578 *3)))) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-750)) (-4 *4 (-144)) (-5 *2 (-579 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-578 *3)) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) - (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-732 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) + (-12 (-5 *2 (-579 *3)) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) + (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-614 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-733 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-797 *3)) (-4 *3 (-750)))) ((*1 *2 *1) - (-12 (-4 *1 (-1184 *3 *4)) (-4 *3 (-749)) (-4 *4 (-954)) (-5 *2 (-578 *3))))) + (-12 (-4 *1 (-1189 *3 *4)) (-4 *3 (-750)) (-4 *4 (-955)) (-5 *2 (-579 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1109 *4 *5 *3 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *3 (-749)) - (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1114 *4 *5 *3 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *3 (-750)) + (-4 *6 (-970 *4 *5 *3)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-308)) (-5 *2 (-823)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) + (-12 (-4 *4 (-308)) (-5 *2 (-824)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) ((*1 *2) - (-12 (-4 *4 (-308)) (-5 *2 (-736 (-823))) (-5 *1 (-275 *3 *4)) + (-12 (-4 *4 (-308)) (-5 *2 (-737 (-824))) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) - ((*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-823)))) - ((*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-736 (-823)))))) + ((*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-824)))) + ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-737 (-824)))))) (((*1 *2) - (-12 (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) - ((*1 *2) (-12 (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-5 *2 (-687))))) + (-12 (-4 *4 (-308)) (-5 *2 (-688)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) + ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-5 *2 (-688))))) (((*1 *2 *2) - (-12 (-4 *3 (-295)) (-4 *4 (-276 *3)) (-4 *5 (-1140 *4)) - (-5 *1 (-693 *3 *4 *5 *2 *6)) (-4 *2 (-1140 *5)) (-14 *6 (-823)))) + (-12 (-4 *3 (-295)) (-4 *4 (-276 *3)) (-4 *5 (-1145 *4)) + (-5 *1 (-694 *3 *4 *5 *2 *6)) (-4 *2 (-1145 *5)) (-14 *6 (-824)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-1183 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) - ((*1 *1 *1) (-12 (-4 *1 (-1183 *2)) (-4 *2 (-308)) (-4 *2 (-313))))) + (-12 (-5 *2 (-688)) (-4 *1 (-1188 *3)) (-4 *3 (-308)) (-4 *3 (-314)))) + ((*1 *1 *1) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-308)) (-4 *2 (-314))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-13 (-954) (-649 (-343 (-478))))) (-4 *5 (-749)) - (-5 *1 (-1181 *4 *5 *2)) (-4 *2 (-1187 *5 *4))))) + (-12 (-5 *3 (-688)) (-4 *4 (-13 (-955) (-650 (-344 (-479))))) (-4 *5 (-750)) + (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1192 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) - (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1178 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) + (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-1183 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) - (-4 *7 (-749)) (-5 *1 (-1178 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-579 *8)) (-5 *3 (-1 (-83) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) + (-4 *7 (-750)) (-5 *1 (-1183 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) - (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1178 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) + (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-1183 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) - (-4 *7 (-749)) (-5 *1 (-1178 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-579 *8)) (-5 *3 (-1 (-83) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) + (-4 *7 (-750)) (-5 *1 (-1183 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-578 (-1178 *4 *5 *6 *7))) - (-5 *1 (-1178 *4 *5 *6 *7)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-579 (-1183 *4 *5 *6 *7))) + (-5 *1 (-1183 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) - (-5 *2 (-578 (-1178 *6 *7 *8 *9))) (-5 *1 (-1178 *6 *7 *8 *9))))) + (-12 (-5 *3 (-579 *9)) (-5 *4 (-1 (-83) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-970 *6 *7 *8)) (-4 *6 (-490)) (-4 *7 (-711)) (-4 *8 (-750)) + (-5 *2 (-579 (-1183 *6 *7 *8 *9))) (-5 *1 (-1183 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-768 *4 *5 *6 *7)) (-4 *4 (-954)) - (-14 *5 (-578 (-1075))) (-14 *6 (-578 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-769 *4 *5 *6 *7)) (-4 *4 (-955)) + (-14 *5 (-579 (-1080))) (-14 *6 (-579 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) - (-14 *8 (-578 *5)) (-5 *2 (-1170)) (-5 *1 (-1177 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-854 *4 *6 *5)) (-14 *9 (-578 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-450)))) + (-12 (-5 *3 (-688)) (-4 *4 (-955)) (-4 *5 (-750)) (-4 *6 (-711)) + (-14 *8 (-579 *5)) (-5 *2 (-1175)) (-5 *1 (-1182 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-855 *4 *6 *5)) (-14 *9 (-579 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-451)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1003) (-34))) (-5 *1 (-1040 *3 *2)) - (-4 *3 (-13 (-1003) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1176))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1175))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1175))))) + (-12 (-4 *2 (-13 (-1006) (-34))) (-5 *1 (-1044 *3 *2)) + (-4 *3 (-13 (-1006) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1181))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1180))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1180))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) - (-4 *4 (-1140 *3)) + (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) + (-4 *4 (-1145 *3)) (-5 *2 - (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) - (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) + (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) + (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-347 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-478)) (-4 *4 (-1140 *3)) + (-12 (-5 *3 (-479)) (-4 *4 (-1145 *3)) (-5 *2 - (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) - (-5 *1 (-685 *4 *5)) (-4 *5 (-346 *3 *4)))) + (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) + (-5 *1 (-686 *4 *5)) (-4 *5 (-347 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-295)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 *3)) + (-12 (-4 *4 (-295)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 *3)) (-5 *2 - (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) - (-5 *1 (-891 *4 *3 *5 *6)) (-4 *6 (-656 *3 *5)))) + (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) + (-5 *1 (-892 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-295)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 *3)) + (-12 (-4 *4 (-295)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 *3)) (-5 *2 - (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) - (-5 *1 (-1174 *4 *3 *5 *6)) (-4 *6 (-346 *3 *5))))) + (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) + (-5 *1 (-1179 *4 *3 *5 *6)) (-4 *6 (-347 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) - (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5)))) + (-12 (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) + (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) - (-4 *4 (-1140 *3)) + (-12 (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) + (-4 *4 (-1145 *3)) (-5 *2 - (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) - (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) + (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) + (-5 *1 (-296 *3 *4 *5)) (-4 *5 (-347 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1140 (-478))) + (-12 (-4 *3 (-1145 (-479))) (-5 *2 - (-2 (|:| -1994 (-625 (-478))) (|:| |basisDen| (-478)) - (|:| |basisInv| (-625 (-478))))) - (-5 *1 (-685 *3 *4)) (-4 *4 (-346 (-478) *3)))) + (-2 (|:| -1999 (-626 (-479))) (|:| |basisDen| (-479)) + (|:| |basisInv| (-626 (-479))))) + (-5 *1 (-686 *3 *4)) (-4 *4 (-347 (-479) *3)))) ((*1 *2) - (-12 (-4 *3 (-295)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 *4)) + (-12 (-4 *3 (-295)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 *4)) (-5 *2 - (-2 (|:| -1994 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) - (-5 *1 (-891 *3 *4 *5 *6)) (-4 *6 (-656 *4 *5)))) + (-2 (|:| -1999 (-626 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-626 *4)))) + (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-295)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 *4)) + (-12 (-4 *3 (-295)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 *4)) (-5 *2 - (-2 (|:| -1994 (-625 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-625 *4)))) - (-5 *1 (-1174 *3 *4 *5 *6)) (-4 *6 (-346 *4 *5))))) + (-2 (|:| -1999 (-626 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-626 *4)))) + (-5 *1 (-1179 *3 *4 *5 *6)) (-4 *6 (-347 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-687)) (-4 *6 (-308)) (-5 *4 (-1107 *6)) - (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1173 *6)) (-5 *5 (-1055 *4))))) + (-12 (-5 *3 (-688)) (-4 *6 (-308)) (-5 *4 (-1112 *6)) + (-5 *2 (-1 (-1059 *4) (-1059 *4))) (-5 *1 (-1178 *6)) (-5 *5 (-1059 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1075)) (-4 *5 (-308)) (-5 *2 (-578 (-1107 *5))) - (-5 *1 (-1173 *5)) (-5 *4 (-1107 *5))))) + (-12 (-5 *3 (-1080)) (-4 *5 (-308)) (-5 *2 (-579 (-1112 *5))) + (-5 *1 (-1178 *5)) (-5 *4 (-1112 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-5 *2 (-1 (-1070 (-850 *4)) (-850 *4))) - (-5 *1 (-1173 *4)) (-4 *4 (-308))))) + (-12 (-5 *3 (-1080)) (-5 *2 (-1 (-1075 (-851 *4)) (-851 *4))) + (-5 *1 (-1178 *4)) (-4 *4 (-308))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1075)) (-4 *5 (-308)) (-5 *2 (-1055 (-1055 (-850 *5)))) - (-5 *1 (-1173 *5)) (-5 *4 (-1055 (-850 *5)))))) + (-12 (-5 *3 (-1080)) (-4 *5 (-308)) (-5 *2 (-1059 (-1059 (-851 *5)))) + (-5 *1 (-1178 *5)) (-5 *4 (-1059 (-851 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-1 (-1055 (-850 *4)) (-1055 (-850 *4)))) - (-5 *1 (-1173 *4)) (-4 *4 (-308))))) + (-12 (-5 *3 (-688)) (-5 *2 (-1 (-1059 (-851 *4)) (-1059 (-851 *4)))) + (-5 *1 (-1178 *4)) (-4 *4 (-308))))) (((*1 *2 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-1 (-1055 (-850 *4)) (-1055 (-850 *4)))) - (-5 *1 (-1173 *4)) (-4 *4 (-308))))) + (-12 (-5 *3 (-688)) (-5 *2 (-1 (-1059 (-851 *4)) (-1059 (-851 *4)))) + (-5 *1 (-1178 *4)) (-4 *4 (-308))))) (((*1 *2) - (-12 (-14 *4 (-687)) (-4 *5 (-1114)) (-5 *2 (-105)) (-5 *1 (-192 *3 *4 *5)) + (-12 (-14 *4 (-688)) (-4 *5 (-1119)) (-5 *2 (-105)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-308)) (-5 *2 (-105)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) ((*1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-688)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144)))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-478)) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-479)) + (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) - (-5 *2 (-478)) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-886 *3)) (-4 *3 (-954)) (-5 *2 (-823)))) - ((*1 *2) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-308)) (-5 *2 (-105))))) -(((*1 *1) (-5 *1 (-1170)))) -(((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *2 (-177)) (-5 *1 (-1169)))) - ((*1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1169))))) -(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) - ((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169)))) - ((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1169))))) -(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168))))) -(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168))))) -(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168))))) -(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168))))) -(((*1 *2 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168)))) - ((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-1168))))) -(((*1 *1) (-5 *1 (-1168)))) + (-12 (-5 *3 (-579 *6)) (-4 *6 (-750)) (-4 *4 (-308)) (-4 *5 (-711)) + (-5 *2 (-479)) (-5 *1 (-438 *4 *5 *6 *7)) (-4 *7 (-855 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-887 *3)) (-4 *3 (-955)) (-5 *2 (-824)))) + ((*1 *2) (-12 (-4 *1 (-1177 *3)) (-4 *3 (-308)) (-5 *2 (-105))))) +(((*1 *1) (-5 *1 (-1175)))) +(((*1 *2 *3) (-12 (-5 *3 (-324)) (-5 *2 (-177)) (-5 *1 (-1174)))) + ((*1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1174))))) +(((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) + ((*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-579 (-688))) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-579 (-688))) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174)))) + ((*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174))))) +(((*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) + ((*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173))))) +(((*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) + ((*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173))))) +(((*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) + ((*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173))))) +(((*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) + ((*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173))))) +(((*1 *2 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173)))) + ((*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-1173))))) +(((*1 *1) (-5 *1 (-1173)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1033 (-177))) (-5 *3 (-578 (-218))) (-5 *1 (-1168)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1033 (-177))) (-5 *3 (-1059)) (-5 *1 (-1168)))) - ((*1 *1 *1) (-5 *1 (-1168)))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-1065 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1033 (-177))) (-5 *1 (-1168)))) - ((*1 *2 *1) (-12 (-5 *2 (-1033 (-177))) (-5 *1 (-1168))))) + (-12 (-5 *2 (-1037 (-177))) (-5 *3 (-579 (-218))) (-5 *1 (-1173)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1037 (-177))) (-5 *3 (-1063)) (-5 *1 (-1173)))) + ((*1 *1 *1) (-5 *1 (-1173)))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-1069 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1037 (-177))) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1037 (-177))) (-5 *1 (-1173))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-687)) (-5 *3 (-847 *4)) (-4 *1 (-1034 *4)) (-4 *4 (-954)))) + (-12 (-5 *2 (-688)) (-5 *3 (-848 *4)) (-4 *1 (-1038 *4)) (-4 *4 (-955)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-687)) (-5 *4 (-847 (-177))) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1167)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1168)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-218))) (-5 *1 (-1168))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1170)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-218)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) + (-12 (-5 *3 (-688)) (-5 *4 (-848 (-177))) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-218))) (-5 *1 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-218))) (-5 *1 (-1172)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-218))) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-218))) (-5 *1 (-1173))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-1172)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1175)) (-5 *1 (-1172)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1063)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-687)) (-5 *4 (-823)) (-5 *2 (-1170)) (-5 *1 (-1167)))) + (-12 (-5 *3 (-688)) (-5 *4 (-824)) (-5 *2 (-1175)) (-5 *1 (-1172)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-687)) (-5 *4 (-823)) (-5 *2 (-1170)) (-5 *1 (-1168))))) + (-12 (-5 *3 (-688)) (-5 *4 (-824)) (-5 *2 (-1175)) (-5 *1 (-1173))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) + (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) (-5 *1 (-218)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) + (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) - (-5 *3 (-578 (-218))) (-5 *1 (-219)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) + (-5 *3 (-579 (-218))) (-5 *1 (-219)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-478)) (-5 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) + (-12 (-5 *3 (-479)) (-5 *4 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) + (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) - (-5 *2 (-1170)) (-5 *1 (-1168)))) + (-5 *2 (-1175)) (-5 *1 (-1173)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3823 (-177)) + (-2 (|:| |theta| (-177)) (|:| |phi| (-177)) (|:| -3829 (-177)) (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |scaleZ| (-177)) (|:| |deltaX| (-177)) (|:| |deltaY| (-177)))) - (-5 *1 (-1168)))) + (-5 *1 (-1173)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) + (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-776)) (-5 *2 (-1170)) (-5 *1 (-1167)))) + (-12 (-5 *3 (-824)) (-5 *4 (-777)) (-5 *2 (-1175)) (-5 *1 (-1172)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-1168)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-831)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100))))) + (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-832)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-1167)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-323)) (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-128)) (-5 *2 (-1170)) (-5 *1 (-1168))))) + (-12 (-5 *3 (-824)) (-5 *4 (-324)) (-5 *2 (-1175)) (-5 *1 (-1172)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-324)) (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-128)) (-5 *2 (-1175)) (-5 *1 (-1173))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-1059)) (-5 *1 (-1167)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1167)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1167)))) + (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-1063)) (-5 *1 (-1172)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1172)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1172)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-1059)) (-5 *1 (-1168)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1168)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1168))))) + (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-1063)) (-5 *1 (-1173)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1173)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1173))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-401)))) - ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-847 (-177)))) (-5 *1 (-1167))))) -(((*1 *1) (-5 *1 (-1167)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-401)) (-5 *3 (-578 (-218))) (-5 *1 (-1167)))) - ((*1 *1 *1) (-5 *1 (-1167)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-402)))) + ((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1172)))) + ((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-848 (-177)))) (-5 *1 (-1172))))) +(((*1 *1) (-5 *1 (-1172)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-402)) (-5 *3 (-579 (-218))) (-5 *1 (-1172)))) + ((*1 *1 *1) (-5 *1 (-1172)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-823)) (-5 *4 (-177)) (-5 *5 (-478)) (-5 *6 (-776)) - (-5 *2 (-1170)) (-5 *1 (-1167))))) + (-12 (-5 *3 (-824)) (-5 *4 (-177)) (-5 *5 (-479)) (-5 *6 (-777)) + (-5 *2 (-1175)) (-5 *1 (-1172))))) (((*1 *2 *1) (-12 (-5 *2 - (-1164 + (-1169 (-2 (|:| |scaleX| (-177)) (|:| |scaleY| (-177)) (|:| |deltaX| (-177)) - (|:| |deltaY| (-177)) (|:| -3826 (-478)) (|:| -3824 (-478)) - (|:| |spline| (-478)) (|:| -3855 (-478)) (|:| |axesColor| (-776)) - (|:| -3827 (-478)) (|:| |unitsColor| (-776)) (|:| |showing| (-478))))) - (-5 *1 (-1167))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1164 (-3 (-401) "undefined"))) (-5 *1 (-1167))))) + (|:| |deltaY| (-177)) (|:| -3832 (-479)) (|:| -3830 (-479)) + (|:| |spline| (-479)) (|:| -3861 (-479)) (|:| |axesColor| (-777)) + (|:| -3833 (-479)) (|:| |unitsColor| (-777)) (|:| |showing| (-479))))) + (-5 *1 (-1172))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1169 (-3 (-402) "undefined"))) (-5 *1 (-1172))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-401)) (-5 *4 (-823)) (-5 *2 (-1170)) (-5 *1 (-1167))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-401)) (-5 *1 (-1167))))) + (-12 (-5 *3 (-402)) (-5 *4 (-824)) (-5 *2 (-1175)) (-5 *1 (-1172))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-402)) (-5 *1 (-1172))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-578 (-323))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-401)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-401)))) + (-12 (-5 *2 (-579 (-324))) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-579 (-324))) (-5 *1 (-402)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-324))) (-5 *1 (-402)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-776)) (-5 *2 (-1170)) (-5 *1 (-1167)))) + (-12 (-5 *3 (-824)) (-5 *4 (-777)) (-5 *2 (-1175)) (-5 *1 (-1172)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167))))) + (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167))))) + (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167))))) + (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) - ((*1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) + (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) + ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-323)) (-5 *2 (-1170)) (-5 *1 (-1167))))) + (-12 (-5 *3 (-824)) (-5 *4 (-324)) (-5 *2 (-1175)) (-5 *1 (-1172))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1167))))) + (-12 (-5 *3 (-824)) (-5 *4 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1172))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-401)) (-5 *4 (-823)) (-5 *2 (-1170)) (-5 *1 (-1167))))) + (-12 (-5 *3 (-402)) (-5 *4 (-824)) (-5 *2 (-1175)) (-5 *1 (-1172))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-776)) (-5 *5 (-823)) - (-5 *6 (-578 (-218))) (-5 *2 (-1167)) (-5 *1 (-1166)))) + (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-777)) (-5 *5 (-824)) + (-5 *6 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-1171)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-578 (-218))) - (-5 *2 (-1167)) (-5 *1 (-1166))))) + (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-579 (-218))) + (-5 *2 (-1172)) (-5 *1 (-1171))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-776)) (-5 *5 (-823)) - (-5 *6 (-578 (-218))) (-5 *2 (-401)) (-5 *1 (-1166)))) + (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-777)) (-5 *5 (-824)) + (-5 *6 (-579 (-218))) (-5 *2 (-402)) (-5 *1 (-1171)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-401)) (-5 *1 (-1166)))) + (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *2 (-402)) (-5 *1 (-1171)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-578 (-218))) (-5 *2 (-401)) - (-5 *1 (-1166))))) + (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-579 (-218))) (-5 *2 (-402)) + (-5 *1 (-1171))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -3971)) - (-4 *1 (-122 *2)) (-4 *2 (-1114)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (|has| *1 (-6 -3977)) + (-4 *1 (-122 *2)) (-4 *2 (-1119)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3971)) (-4 *1 (-122 *2)) - (-4 *2 (-1114)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3977)) (-4 *1 (-122 *2)) + (-4 *2 (-1119)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3971)) (-4 *1 (-122 *2)) - (-4 *2 (-1114)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -3977)) (-4 *1 (-122 *2)) + (-4 *2 (-1119)))) ((*1 *2 *3) - (-12 (-4 *4 (-954)) (-5 *2 (-2 (|:| -1986 (-1070 *4)) (|:| |deg| (-823)))) - (-5 *1 (-173 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-489)))) + (-12 (-4 *4 (-955)) (-5 *2 (-2 (|:| -1991 (-1075 *4)) (|:| |deg| (-824)))) + (-5 *1 (-173 *4 *5)) (-5 *3 (-1075 *4)) (-4 *5 (-490)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-194 *5 *6)) (-14 *5 (-687)) - (-4 *6 (-1114)) (-4 *2 (-1114)) (-5 *1 (-195 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-194 *5 *6)) (-14 *5 (-688)) + (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-195 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-144)) (-5 *1 (-241 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1140 *4)) + (-12 (-4 *4 (-144)) (-5 *1 (-241 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1145 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-261 *2)) (-4 *2 (-489)) (-4 *2 (-1003)))) + ((*1 *1 *1) (-12 (-5 *1 (-261 *2)) (-4 *2 (-490)) (-4 *2 (-1006)))) ((*1 *1 *1) - (-12 (-4 *1 (-282 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *3 (-1140 *2)) - (-4 *4 (-1140 (-343 *3))) (-4 *5 (-287 *2 *3 *4)))) + (-12 (-4 *1 (-282 *2 *3 *4 *5)) (-4 *2 (-308)) (-4 *3 (-1145 *2)) + (-4 *4 (-1145 (-344 *3))) (-4 *5 (-287 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1114)) (-4 *2 (-1114)) - (-5 *1 (-318 *5 *4 *2 *6)) (-4 *4 (-317 *5)) (-4 *6 (-317 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119)) + (-5 *1 (-319 *5 *4 *2 *6)) (-4 *4 (-318 *5)) (-4 *6 (-318 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) - (-5 *1 (-363 *5 *4 *2 *6)) (-4 *4 (-362 *5)) (-4 *6 (-362 *2)))) - ((*1 *1 *1) (-5 *1 (-428))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1006)) (-4 *2 (-1006)) + (-5 *1 (-364 *5 *4 *2 *6)) (-4 *4 (-363 *5)) (-4 *6 (-363 *2)))) + ((*1 *1 *1) (-5 *1 (-429))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-578 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) - (-5 *1 (-579 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-579 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) + (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-954)) (-4 *2 (-954)) (-4 *6 (-317 *5)) - (-4 *7 (-317 *5)) (-4 *8 (-317 *2)) (-4 *9 (-317 *2)) - (-5 *1 (-623 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-622 *5 *6 *7)) - (-4 *10 (-622 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-955)) (-4 *2 (-955)) (-4 *6 (-318 *5)) + (-4 *7 (-318 *5)) (-4 *8 (-318 *2)) (-4 *9 (-318 *2)) + (-5 *1 (-624 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-623 *5 *6 *7)) + (-4 *10 (-623 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-954)) (-5 *1 (-644 *3 *2)) (-4 *2 (-1140 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-955)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-343 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-308)) - (-4 *3 (-144)) (-4 *1 (-656 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-656 *3 *2)) (-4 *2 (-1140 *3)))) + (|partial| -12 (-5 *2 (-344 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-308)) + (-4 *3 (-144)) (-4 *1 (-657 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-144)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-862 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) - (-5 *1 (-863 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-863 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) + (-5 *1 (-864 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *2 (-854 *3 *4 *5)) (-14 *6 (-578 *2)))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *1 (-941 *3 *4 *5 *2 *6)) (-4 *2 (-855 *3 *4 *5)) (-14 *6 (-579 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-954)) (-4 *2 (-954)) (-14 *5 (-687)) - (-14 *6 (-687)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-955)) (-4 *2 (-955)) (-14 *5 (-688)) + (-14 *6 (-688)) (-4 *8 (-193 *6 *7)) (-4 *9 (-193 *5 *7)) (-4 *10 (-193 *6 *2)) (-4 *11 (-193 *5 *2)) - (-5 *1 (-960 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-958 *5 *6 *7 *8 *9)) (-4 *12 (-958 *5 *6 *2 *10 *11)))) + (-5 *1 (-961 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-959 *5 *6 *7 *8 *9)) (-4 *12 (-959 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1055 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) - (-5 *1 (-1057 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1059 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) + (-5 *1 (-1061 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-83) *2 *2)) - (-4 *1 (-1109 *5 *6 *7 *2)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) - (-4 *2 (-969 *5 *6 *7)))) + (-4 *1 (-1114 *5 *6 *7 *2)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) + (-4 *2 (-970 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1164 *5)) (-4 *5 (-1114)) (-4 *2 (-1114)) - (-5 *1 (-1165 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1169 *5)) (-4 *5 (-1119)) (-4 *2 (-1119)) + (-5 *1 (-1170 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1114)) (-4 *5 (-1114)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-194 *6 *7)) (-14 *6 (-687)) - (-4 *7 (-1114)) (-4 *5 (-1114)) (-5 *2 (-194 *6 *5)) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-194 *6 *7)) (-14 *6 (-688)) + (-4 *7 (-1119)) (-4 *5 (-1119)) (-5 *2 (-194 *6 *5)) (-5 *1 (-195 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1114)) (-4 *5 (-1114)) (-4 *2 (-317 *5)) - (-5 *1 (-318 *6 *4 *5 *2)) (-4 *4 (-317 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-4 *2 (-318 *5)) + (-5 *1 (-319 *6 *4 *5 *2)) (-4 *4 (-318 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-362 *5)) - (-5 *1 (-363 *6 *4 *5 *2)) (-4 *4 (-362 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1006)) (-4 *5 (-1006)) (-4 *2 (-363 *5)) + (-5 *1 (-364 *6 *4 *5 *2)) (-4 *4 (-363 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-578 *6)) (-4 *6 (-1114)) (-4 *5 (-1114)) - (-5 *2 (-578 *5)) (-5 *1 (-579 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-579 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) + (-5 *2 (-579 *5)) (-5 *1 (-580 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-862 *6)) (-4 *6 (-1114)) (-4 *5 (-1114)) - (-5 *2 (-862 *5)) (-5 *1 (-863 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-863 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) + (-5 *2 (-863 *5)) (-5 *1 (-864 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1055 *6)) (-4 *6 (-1114)) (-4 *3 (-1114)) - (-5 *2 (-1055 *3)) (-5 *1 (-1057 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1059 *6)) (-4 *6 (-1119)) (-4 *3 (-1119)) + (-5 *2 (-1059 *3)) (-5 *1 (-1061 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1164 *6)) (-4 *6 (-1114)) (-4 *5 (-1114)) - (-5 *2 (-1164 *5)) (-5 *1 (-1165 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-1164 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1169 *6)) (-4 *6 (-1119)) (-4 *5 (-1119)) + (-5 *2 (-1169 *5)) (-5 *1 (-1170 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-1169 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-128))) ((*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 - (-13 (-749) - (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 ((-1170) $)) - (-15 -1947 ((-1170) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1114)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-102)))) + (-13 (-750) + (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 ((-1175) $)) + (-15 -1952 ((-1175) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-25)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-102)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *2)) (-4 *2 (-1140 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-308) (-118))) (-5 *1 (-336 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) - (-4 *5 (-854 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-467))) + (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) + (-4 *5 (-855 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-468))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-25))))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-687)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-688)) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-1163 *3)) (-4 *3 (-23)) (-4 *3 (-1114))))) + (-12 (-5 *2 (-688)) (-4 *1 (-1168 *3)) (-4 *3 (-23)) (-4 *3 (-1119))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-105))) ((*1 *1 *1 *1) (-12 (-5 *1 (-165 *2)) (-4 *2 - (-13 (-749) - (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 ((-1170) $)) - (-15 -1947 ((-1170) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1114)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1114)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + (-13 (-750) + (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 ((-1175) $)) + (-15 -1952 ((-1175) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)))) - ((*1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-193 *3 *2)) (-4 *2 (-1114)) (-4 *2 (-954)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) - ((*1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-177)) (-5 *1 (-1111)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-954))))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)))) + ((*1 *1 *1) (-5 *1 (-766))) ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-193 *3 *2)) (-4 *2 (-1119)) (-4 *2 (-955)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-766)))) + ((*1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-848 (-177))) (-5 *2 (-177)) (-5 *1 (-1116)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-955))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1163 *3)) (-4 *3 (-1114)) (-4 *3 (-954)) (-5 *2 (-625 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-954)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-954))))) -(((*1 *2 *3) - (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) - (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4)))) - ((*1 *1 *1) (-4 *1 (-477))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-732 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-901 *3)) (-4 *3 (-1114)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1112 *3)) (-4 *3 (-1114)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-908)) (-4 *2 (-954))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1163 *2)) (-4 *2 (-1114)) (-4 *2 (-908)) (-4 *2 (-954))))) -(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-749)))) + (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1119)) (-4 *3 (-955)) (-5 *2 (-626 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-887 *2)) (-4 *2 (-955)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-955))))) +(((*1 *2 *3) + (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) + (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4)))) + ((*1 *1 *1) (-4 *1 (-478))) + ((*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-614 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-733 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-797 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-4 *1 (-902 *3)) (-4 *3 (-1119)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-1117 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-909)) (-4 *2 (-955))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1119)) (-4 *2 (-909)) (-4 *2 (-955))))) +(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-750)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-766 *3)) (-14 *3 (-578 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-895)))) + (|partial| -12 (-5 *2 (-1080)) (-5 *1 (-767 *3)) (-14 *3 (-579 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-896)))) ((*1 *2 *1) - (-12 (-4 *4 (-1114)) (-5 *2 (-1075)) (-5 *1 (-963 *3 *4)) (-4 *3 (-997 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-995 *3)) (-4 *3 (-1114)))) + (-12 (-4 *4 (-1119)) (-5 *2 (-1080)) (-5 *1 (-964 *3 *4)) (-4 *3 (-999 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-997 *3)) (-4 *3 (-1119)))) ((*1 *2 *1) - (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-1075)))) - ((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1161 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-1080)))) + ((*1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1166 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-343 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-489)) (-4 *4 (-954)) - (-4 *2 (-1157 *4)) (-5 *1 (-1159 *4 *5 *6 *2)) (-4 *6 (-595 *5))))) + (-12 (-5 *3 (-344 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-490)) (-4 *4 (-955)) + (-4 *2 (-1162 *4)) (-5 *1 (-1164 *4 *5 *6 *2)) (-4 *6 (-596 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-954)) (-4 *5 (-1140 *4)) (-5 *2 (-1 *6 (-578 *6))) - (-5 *1 (-1159 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-1157 *4))))) + (-12 (-4 *4 (-955)) (-4 *5 (-1145 *4)) (-5 *2 (-1 *6 (-579 *6))) + (-5 *1 (-1164 *4 *5 *3 *6)) (-4 *3 (-596 *5)) (-4 *6 (-1162 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-687)) (-4 *5 (-954)) (-4 *2 (-1140 *5)) - (-5 *1 (-1159 *5 *2 *6 *3)) (-4 *6 (-595 *2)) (-4 *3 (-1157 *5))))) + (-12 (-5 *4 (-688)) (-4 *5 (-955)) (-4 *2 (-1145 *5)) + (-5 *1 (-1164 *5 *2 *6 *3)) (-4 *6 (-596 *2)) (-4 *3 (-1162 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-954)) (-4 *3 (-1140 *4)) (-4 *2 (-1157 *4)) - (-5 *1 (-1159 *4 *3 *5 *2)) (-4 *5 (-595 *3))))) + (-12 (-4 *4 (-955)) (-4 *3 (-1145 *4)) (-4 *2 (-1162 *4)) + (-5 *1 (-1164 *4 *3 *5 *2)) (-4 *5 (-596 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 (-1 *6 (-578 *6)))) - (-4 *5 (-38 (-343 (-478)))) (-4 *6 (-1157 *5)) (-5 *2 (-578 *6)) - (-5 *1 (-1158 *5 *6))))) + (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 (-1 *6 (-579 *6)))) + (-4 *5 (-38 (-344 (-479)))) (-4 *6 (-1162 *5)) (-5 *2 (-579 *6)) + (-5 *1 (-1163 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-578 *2))) (-5 *4 (-578 *5)) (-4 *5 (-38 (-343 (-478)))) - (-4 *2 (-1157 *5)) (-5 *1 (-1158 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-579 *2))) (-5 *4 (-579 *5)) (-4 *5 (-38 (-344 (-479)))) + (-4 *2 (-1162 *5)) (-5 *1 (-1163 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1158 *4 *2)) - (-4 *4 (-38 (-343 (-478))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1162 *4)) (-5 *1 (-1163 *4 *2)) + (-4 *4 (-38 (-344 (-479))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-1158 *4 *2)) - (-4 *4 (-38 (-343 (-478))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1162 *4)) (-5 *1 (-1163 *4 *2)) + (-4 *4 (-38 (-344 (-479))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1158 *3 *2)) (-4 *2 (-1157 *3))))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1163 *3 *2)) (-4 *2 (-1162 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-578 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-38 (-343 (-478)))) - (-5 *2 (-1 (-1055 *4) (-578 (-1055 *4)))) (-5 *1 (-1158 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-579 *5))) (-4 *5 (-1162 *4)) (-4 *4 (-38 (-344 (-479)))) + (-5 *2 (-1 (-1059 *4) (-579 (-1059 *4)))) (-5 *1 (-1163 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-38 (-343 (-478)))) - (-5 *2 (-1 (-1055 *4) (-1055 *4) (-1055 *4))) (-5 *1 (-1158 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1162 *4)) (-4 *4 (-38 (-344 (-479)))) + (-5 *2 (-1 (-1059 *4) (-1059 *4) (-1059 *4))) (-5 *1 (-1163 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-38 (-343 (-478)))) - (-5 *2 (-1 (-1055 *4) (-1055 *4))) (-5 *1 (-1158 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1162 *4)) (-4 *4 (-38 (-344 (-479)))) + (-5 *2 (-1 (-1059 *4) (-1059 *4))) (-5 *1 (-1163 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1100) (-357 *4))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-358 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) + (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-343 (-478))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) + (-12 (-5 *4 (-344 (-479))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) - (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) + (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-245 *3)) (-5 *5 (-343 (-478))) - (-4 *3 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-12 (-5 *4 (-245 *3)) (-5 *5 (-344 (-479))) + (-4 *3 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-478))) (-5 *4 (-245 *6)) - (-4 *6 (-13 (-27) (-1100) (-357 *5))) - (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *5 *6)))) + (-12 (-5 *3 (-1 *6 (-479))) (-5 *4 (-245 *6)) + (-4 *6 (-13 (-27) (-1105) (-358 *5))) + (-4 *5 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *6 *3)))) + (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1131 (-478))) - (-4 *7 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-479))) (-5 *4 (-245 *7)) (-5 *5 (-1136 (-479))) + (-4 *7 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-478))) - (-4 *3 (-13 (-27) (-1100) (-357 *7))) - (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *7 *3)))) + (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-479))) + (-4 *3 (-13 (-27) (-1105) (-358 *7))) + (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-343 (-478)))) (-5 *4 (-245 *8)) - (-5 *5 (-1131 (-343 (-478)))) (-5 *6 (-343 (-478))) - (-4 *8 (-13 (-27) (-1100) (-357 *7))) - (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-344 (-479)))) (-5 *4 (-245 *8)) + (-5 *5 (-1136 (-344 (-479)))) (-5 *6 (-344 (-479))) + (-4 *8 (-13 (-27) (-1105) (-358 *7))) + (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-343 (-478)))) - (-5 *7 (-343 (-478))) (-4 *3 (-13 (-27) (-1100) (-357 *8))) - (-4 *8 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *8 *3)))) + (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-344 (-479)))) + (-5 *7 (-344 (-479))) (-4 *3 (-13 (-27) (-1105) (-358 *8))) + (-4 *8 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-4 *3 (-954)) - (-5 *1 (-524 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-525 *3)))) + (-12 (-5 *2 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *3)))) (-4 *3 (-955)) + (-5 *1 (-525 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-526 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-4 *3 (-954)) - (-4 *1 (-1126 *3)))) + (-12 (-5 *2 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *3)))) (-4 *3 (-955)) + (-4 *1 (-1131 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-687)) (-5 *3 (-1055 (-2 (|:| |k| (-343 (-478))) (|:| |c| *4)))) - (-4 *4 (-954)) (-4 *1 (-1147 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-4 *1 (-1157 *3)))) + (-12 (-5 *2 (-688)) (-5 *3 (-1059 (-2 (|:| |k| (-344 (-479))) (|:| |c| *4)))) + (-4 *4 (-955)) (-4 *1 (-1152 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-4 *1 (-1162 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1055 (-2 (|:| |k| (-687)) (|:| |c| *3)))) (-4 *3 (-954)) - (-4 *1 (-1157 *3))))) + (-12 (-5 *2 (-1059 (-2 (|:| |k| (-688)) (|:| |c| *3)))) (-4 *3 (-955)) + (-4 *1 (-1162 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-578 *3)))) + (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-579 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-578 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) + (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-579 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-526 *3)) (-4 *3 (-955)))) ((*1 *2 *1) - (-12 (-5 *2 (-578 *3)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658)))) - ((*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-578 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-954)) (-5 *2 (-1055 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-954))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *3 (-954)) (-5 *1 (-524 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *1 (-1126 *3)) (-4 *3 (-954)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-478))) (-4 *1 (-1157 *3)) (-4 *3 (-954))))) + (-12 (-5 *2 (-579 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-955)) (-4 *4 (-659)))) + ((*1 *2 *1) (-12 (-4 *1 (-755 *3)) (-4 *3 (-955)) (-5 *2 (-579 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1162 *3)) (-4 *3 (-955)) (-5 *2 (-1059 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-955))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-479))) (-4 *3 (-955)) (-5 *1 (-525 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-479))) (-4 *1 (-1131 *3)) (-4 *3 (-955)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-479))) (-4 *1 (-1162 *3)) (-4 *3 (-955))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)) - (-5 *2 (-850 *4)))) + (-12 (-5 *3 (-688)) (-4 *1 (-673 *4 *5)) (-4 *4 (-955)) (-4 *5 (-750)) + (-5 *2 (-851 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *5)) (-4 *4 (-954)) (-4 *5 (-749)) - (-5 *2 (-850 *4)))) + (-12 (-5 *3 (-688)) (-4 *1 (-673 *4 *5)) (-4 *4 (-955)) (-4 *5 (-750)) + (-5 *2 (-851 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-1157 *4)) (-4 *4 (-954)) (-5 *2 (-850 *4)))) + (-12 (-5 *3 (-688)) (-4 *1 (-1162 *4)) (-4 *4 (-955)) (-5 *2 (-851 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-1157 *4)) (-4 *4 (-954)) (-5 *2 (-850 *4))))) + (-12 (-5 *3 (-688)) (-4 *1 (-1162 *4)) (-4 *4 (-955)) (-5 *2 (-851 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-343 (-478))) (-4 *4 (-943 (-478))) (-4 *4 (-489)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-357 *4)))) + (-12 (-5 *3 (-344 (-479))) (-4 *4 (-944 (-479))) (-4 *4 (-490)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-358 *4)))) ((*1 *1 *1 *1) (-5 *1 (-105))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) ((*1 *1 *1 *1) (-5 *1 (-177))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-198)) (-5 *2 (-478)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-198)) (-5 *2 (-479)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-343 (-478))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1157 *4)) - (-5 *1 (-229 *4 *5 *2)) (-4 *2 (-1128 *4 *5)))) + (-12 (-5 *3 (-344 (-479))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1162 *4)) + (-5 *1 (-229 *4 *5 *2)) (-4 *2 (-1133 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-343 (-478))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1126 *4)) - (-5 *1 (-230 *4 *5 *2 *6)) (-4 *2 (-1149 *4 *5)) (-4 *6 (-889 *5)))) + (-12 (-5 *3 (-344 (-479))) (-4 *4 (-308)) (-4 *4 (-38 *3)) (-4 *5 (-1131 *4)) + (-5 *1 (-230 *4 *5 *2 *6)) (-4 *2 (-1154 *4 *5)) (-4 *6 (-890 *5)))) ((*1 *1 *1 *1) (-4 *1 (-236))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-306 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1 *1) (-5 *1 (-323))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-329 *2)) (-4 *2 (-1003)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-306 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1 *1) (-5 *1 (-324))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-330 *2)) (-4 *2 (-1006)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-357 *3)) (-4 *3 (-1003)) (-4 *3 (-1013)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-478)))) + (-12 (-5 *2 (-688)) (-4 *1 (-358 *3)) (-4 *3 (-1006)) (-4 *3 (-1016)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-479)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) + (-12 (-5 *2 (-688)) (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 *4)) (-5 *3 (-478)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-467)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-467)))) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-479)) (-4 *4 (-295)) (-5 *1 (-461 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-468)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-468)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *4 (-1003)) (-5 *1 (-618 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-688)) (-4 *4 (-1006)) (-5 *1 (-619 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-4 *3 (-308)))) + (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-4 *3 (-308)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-688)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-625 *4)) (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-626 *4)))) + (-12 (-5 *2 (-626 *4)) (-5 *3 (-688)) (-4 *4 (-955)) (-5 *1 (-627 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-478)) (-4 *3 (-954)) (-5 *1 (-646 *3 *4)) (-4 *4 (-585 *3)))) + (-12 (-5 *2 (-479)) (-4 *3 (-955)) (-5 *1 (-647 *3 *4)) (-4 *4 (-586 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-646 *4 *5)) - (-4 *5 (-585 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-687)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-738 *3)) (-4 *3 (-954)))) + (-12 (-5 *2 (-84)) (-5 *3 (-479)) (-4 *4 (-955)) (-5 *1 (-647 *4 *5)) + (-4 *5 (-586 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-824)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-688)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-688)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-739 *3)) (-4 *3 (-955)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-478)) (-5 *1 (-738 *4)) (-4 *4 (-954)))) - ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-908)) (-5 *2 (-343 (-478))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-823)))) + (-12 (-5 *2 (-84)) (-5 *3 (-479)) (-5 *1 (-739 *4)) (-4 *4 (-955)))) + ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-909)) (-5 *2 (-344 (-479))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1016)) (-5 *2 (-824)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-478)) (-4 *1 (-1023 *3 *4 *5 *6)) (-4 *4 (-954)) + (-12 (-5 *2 (-479)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4)) (-4 *4 (-308)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-995 (-743 *3))) (-4 *3 (-13 (-1100) (-864) (-29 *5))) - (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-12 (-5 *4 (-997 (-744 *3))) (-4 *3 (-13 (-1105) (-865) (-29 *5))) + (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 - (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) + (-3 (|:| |f1| (-744 *3)) (|:| |f2| (-579 (-744 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-171 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-995 (-743 *3))) (-5 *5 (-1059)) - (-4 *3 (-13 (-1100) (-864) (-29 *6))) - (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-12 (-5 *4 (-997 (-744 *3))) (-5 *5 (-1063)) + (-4 *3 (-13 (-1105) (-865) (-29 *6))) + (-4 *6 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 - (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-744 *3)) (|:| |f2| (-579 (-744 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-171 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-995 (-743 (-261 *5)))) - (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-997 (-744 (-261 *5)))) + (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 - (-3 (|:| |f1| (-743 (-261 *5))) (|:| |f2| (-578 (-743 (-261 *5)))) + (-3 (|:| |f1| (-744 (-261 *5))) (|:| |f2| (-579 (-744 (-261 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) (-5 *1 (-172 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-343 (-850 *6))) (-5 *4 (-995 (-743 (-261 *6)))) (-5 *5 (-1059)) - (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-12 (-5 *3 (-344 (-851 *6))) (-5 *4 (-997 (-744 (-261 *6)))) (-5 *5 (-1063)) + (-4 *6 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 - (-3 (|:| |f1| (-743 (-261 *6))) (|:| |f2| (-578 (-743 (-261 *6)))) + (-3 (|:| |f1| (-744 (-261 *6))) (|:| |f2| (-579 (-744 (-261 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-172 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-995 (-743 (-343 (-850 *5))))) (-5 *3 (-343 (-850 *5))) - (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-12 (-5 *4 (-997 (-744 (-344 (-851 *5))))) (-5 *3 (-344 (-851 *5))) + (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 - (-3 (|:| |f1| (-743 (-261 *5))) (|:| |f2| (-578 (-743 (-261 *5)))) + (-3 (|:| |f1| (-744 (-261 *5))) (|:| |f2| (-579 (-744 (-261 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-172 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-995 (-743 (-343 (-850 *6))))) (-5 *5 (-1059)) - (-5 *3 (-343 (-850 *6))) - (-4 *6 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) + (-12 (-5 *4 (-997 (-744 (-344 (-851 *6))))) (-5 *5 (-1063)) + (-5 *3 (-344 (-851 *6))) + (-4 *6 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 - (-3 (|:| |f1| (-743 (-261 *6))) (|:| |f2| (-578 (-743 (-261 *6)))) + (-3 (|:| |f1| (-744 (-261 *6))) (|:| |f2| (-579 (-744 (-261 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-172 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-3 *3 (-578 *3))) (-5 *1 (-366 *5 *3)) - (-4 *3 (-13 (-1100) (-864) (-29 *5))))) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-3 *3 (-579 *3))) (-5 *1 (-367 *5 *3)) + (-4 *3 (-13 (-1105) (-865) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-407 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-408 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1140 *4)) - (-5 *2 (-513 (-343 *5))) (-5 *1 (-498 *4 *5)) (-5 *3 (-343 *5)))) + (-12 (-4 *4 (-13 (-308) (-118) (-944 (-479)))) (-4 *5 (-1145 *4)) + (-5 *2 (-514 (-344 *5))) (-5 *1 (-499 *4 *5)) (-5 *3 (-344 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-118)) - (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-3 (-261 *5) (-578 (-261 *5)))) (-5 *1 (-519 *5)))) + (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-118)) + (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-3 (-261 *5) (-579 (-261 *5)))) (-5 *1 (-520 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954)))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-672 *3 *2)) (-4 *3 (-954)) (-4 *2 (-749)) - (-4 *3 (-38 (-343 (-478)))))) + (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-955)) (-4 *2 (-750)) + (-4 *3 (-38 (-344 (-479)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1075)) (-5 *1 (-850 *3)) (-4 *3 (-38 (-343 (-478)))) - (-4 *3 (-954)))) + (-12 (-5 *2 (-1080)) (-5 *1 (-851 *3)) (-4 *3 (-38 (-344 (-479)))) + (-4 *3 (-955)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-4 *2 (-749)) - (-5 *1 (-1026 *3 *2 *4)) (-4 *4 (-854 *3 (-463 *2) *2)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-4 *2 (-750)) + (-5 *1 (-1030 *3 *2 *4)) (-4 *4 (-855 *3 (-464 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) - (-5 *1 (-1061 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) + (-5 *1 (-1065 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1067 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1072 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1073 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1078 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1074 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1079 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1075)) (-5 *1 (-1107 *3)) (-4 *3 (-38 (-343 (-478)))) - (-4 *3 (-954)))) + (-12 (-5 *2 (-1080)) (-5 *1 (-1112 *3)) (-4 *3 (-38 (-344 (-479)))) + (-4 *3 (-955)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1124 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1129 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1075)) (-4 *1 (-1126 *3)) (-4 *3 (-954)) - (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1100)) - (-4 *3 (-38 (-343 (-478)))))) - (-12 (-5 *2 (-1075)) (-4 *1 (-1126 *3)) (-4 *3 (-954)) - (-12 (|has| *3 (-15 -3063 ((-578 *2) *3))) - (|has| *3 (-15 -3788 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478)))))))) + (-12 (-5 *2 (-1080)) (-4 *1 (-1131 *3)) (-4 *3 (-955)) + (-12 (-4 *3 (-29 (-479))) (-4 *3 (-865)) (-4 *3 (-1105)) + (-4 *3 (-38 (-344 (-479)))))) + (-12 (-5 *2 (-1080)) (-4 *1 (-1131 *3)) (-4 *3 (-955)) + (-12 (|has| *3 (-15 -3066 ((-579 *2) *3))) + (|has| *3 (-15 -3794 (*3 *3 *2))) (-4 *3 (-38 (-344 (-479)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1126 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) + (-12 (-4 *1 (-1131 *2)) (-4 *2 (-955)) (-4 *2 (-38 (-344 (-479)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) + (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-38 (-344 (-479)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1145 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1150 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1075)) (-4 *1 (-1147 *3)) (-4 *3 (-954)) - (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1100)) - (-4 *3 (-38 (-343 (-478)))))) - (-12 (-5 *2 (-1075)) (-4 *1 (-1147 *3)) (-4 *3 (-954)) - (-12 (|has| *3 (-15 -3063 ((-578 *2) *3))) - (|has| *3 (-15 -3788 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478)))))))) + (-12 (-5 *2 (-1080)) (-4 *1 (-1152 *3)) (-4 *3 (-955)) + (-12 (-4 *3 (-29 (-479))) (-4 *3 (-865)) (-4 *3 (-1105)) + (-4 *3 (-38 (-344 (-479)))))) + (-12 (-5 *2 (-1080)) (-4 *1 (-1152 *3)) (-4 *3 (-955)) + (-12 (|has| *3 (-15 -3066 ((-579 *2) *3))) + (|has| *3 (-15 -3794 (*3 *3 *2))) (-4 *3 (-38 (-344 (-479)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1147 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478)))))) + (-12 (-4 *1 (-1152 *2)) (-4 *2 (-955)) (-4 *2 (-38 (-344 (-479)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1161 *4)) (-14 *4 (-1075)) (-5 *1 (-1154 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954)) (-14 *5 *3))) + (-12 (-5 *2 (-1166 *4)) (-14 *4 (-1080)) (-5 *1 (-1159 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955)) (-14 *5 *3))) ((*1 *1 *1 *2) (OR - (-12 (-5 *2 (-1075)) (-4 *1 (-1157 *3)) (-4 *3 (-954)) - (-12 (-4 *3 (-29 (-478))) (-4 *3 (-864)) (-4 *3 (-1100)) - (-4 *3 (-38 (-343 (-478)))))) - (-12 (-5 *2 (-1075)) (-4 *1 (-1157 *3)) (-4 *3 (-954)) - (-12 (|has| *3 (-15 -3063 ((-578 *2) *3))) - (|has| *3 (-15 -3788 (*3 *3 *2))) (-4 *3 (-38 (-343 (-478)))))))) + (-12 (-5 *2 (-1080)) (-4 *1 (-1162 *3)) (-4 *3 (-955)) + (-12 (-4 *3 (-29 (-479))) (-4 *3 (-865)) (-4 *3 (-1105)) + (-4 *3 (-38 (-344 (-479)))))) + (-12 (-5 *2 (-1080)) (-4 *1 (-1162 *3)) (-4 *3 (-955)) + (-12 (|has| *3 (-15 -3066 ((-579 *2) *3))) + (|has| *3 (-15 -3794 (*3 *3 *2))) (-4 *3 (-38 (-344 (-479)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1157 *2)) (-4 *2 (-954)) (-4 *2 (-38 (-343 (-478))))))) + (-12 (-4 *1 (-1162 *2)) (-4 *2 (-955)) (-4 *2 (-38 (-344 (-479))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-1133 *5 *4)) (-5 *1 (-1074 *4 *5 *6)) - (-4 *4 (-954)) (-14 *5 (-1075)) (-14 *6 *4))) + (-12 (-5 *3 (-688)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1079 *4 *5 *6)) + (-4 *4 (-955)) (-14 *5 (-1080)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-1133 *5 *4)) (-5 *1 (-1154 *4 *5 *6)) - (-4 *4 (-954)) (-14 *5 (-1075)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) + (-12 (-5 *3 (-688)) (-5 *2 (-1138 *5 *4)) (-5 *1 (-1159 *4 *5 *6)) + (-4 *4 (-955)) (-14 *5 (-1080)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) + (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) + (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) + (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2)))) + (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1055 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1061 *4)))) + (-12 (-5 *2 (-1059 *4)) (-5 *3 (-479)) (-4 *4 (-955)) (-5 *1 (-1065 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-478)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1075)) + (-12 (-5 *2 (-479)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1154 *2 *3 *4)) (-4 *2 (-954)) (-14 *3 (-1075)) (-14 *4 *2)))) + (-12 (-5 *1 (-1159 *2 *3 *4)) (-4 *2 (-955)) (-14 *3 (-1080)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1055 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1061 *4)))) + (-12 (-5 *2 (-1059 *4)) (-5 *3 (-479)) (-4 *4 (-955)) (-5 *1 (-1065 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-478)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1075)) + (-12 (-5 *2 (-479)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1055 *4)) (-5 *3 (-478)) (-4 *4 (-954)) (-5 *1 (-1061 *4)))) + (-12 (-5 *2 (-1059 *4)) (-5 *3 (-479)) (-4 *4 (-955)) (-5 *1 (-1065 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-478)) (-5 *1 (-1154 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-1075)) + (-12 (-5 *2 (-479)) (-5 *1 (-1159 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-1080)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1114)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1056 *4)) - (-4 *4 (-1114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) - (-12 (-4 *1 (-533 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-749)) (-4 *2 (-1114)))) - ((*1 *2 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *2 (-1114)) (-5 *1 (-775 *2 *3)) (-4 *3 (-1114)))) - ((*1 *2 *1) (-12 (-5 *2 (-609 *3)) (-5 *1 (-796 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) - (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1153 *3)) (-4 *3 (-1114)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1119)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1059 (-1059 *4))) (-5 *2 (-1059 *4)) (-5 *1 (-1060 *4)) + (-4 *4 (-1119)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) + (-12 (-4 *1 (-534 *3 *2)) (-4 *3 (-1006)) (-4 *3 (-750)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) + ((*1 *2 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) + ((*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-776 *2 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-610 *3)) (-5 *1 (-797 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) + (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1158 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1114)) (-4 *4 (-317 *2)) - (-4 *5 (-317 *2)))) + (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-318 *2)) + (-4 *5 (-318 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-317 *2)) - (-4 *5 (-317 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-90 *3)) (-4 *3 (-1114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-90 *3)) (-4 *3 (-1114)))) + (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-318 *2)) + (-4 *5 (-318 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-90 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-90 *3)) (-4 *3 (-1119)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-578 (-478))) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) - (-14 *4 (-478)) (-14 *5 (-687)))) + (-12 (-5 *3 (-579 (-479))) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) + (-14 *4 (-479)) (-14 *5 (-688)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-687)))) + (-12 (-5 *3 (-479)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-688)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-687)))) + (-12 (-5 *3 (-479)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-688)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-478)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-687)))) + (-12 (-5 *3 (-479)) (-4 *2 (-144)) (-5 *1 (-106 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-688)))) ((*1 *2 *1) - (-12 (-4 *2 (-144)) (-5 *1 (-106 *3 *4 *2)) (-14 *3 (-478)) (-14 *4 (-687)))) + (-12 (-4 *2 (-144)) (-5 *1 (-106 *3 *4 *2)) (-14 *3 (-479)) (-14 *4 (-688)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1075)) (-5 *2 (-200 (-1059))) (-5 *1 (-165 *4)) + (-12 (-5 *3 (-1080)) (-5 *2 (-200 (-1063))) (-5 *1 (-165 *4)) (-4 *4 - (-13 (-749) - (-10 -8 (-15 -3776 ((-1059) $ *3)) (-15 -3593 ((-1170) $)) - (-15 -1947 ((-1170) $))))))) + (-13 (-750) + (-10 -8 (-15 -3782 ((-1063) $ *3)) (-15 -3599 ((-1175) $)) + (-15 -1952 ((-1175) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-895)) (-5 *1 (-165 *3)) + (-12 (-5 *2 (-896)) (-5 *1 (-165 *3)) (-4 *3 - (-13 (-749) - (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 ((-1170) $)) - (-15 -1947 ((-1170) $))))))) + (-13 (-750) + (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 ((-1175) $)) + (-15 -1952 ((-1175) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-687)) (-5 *1 (-200 *4)) (-4 *4 (-749)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-200 *3)) (-4 *3 (-749)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-200 *3)) (-4 *3 (-749)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-238 *3 *2)) (-4 *3 (-1114)) (-4 *2 (-1114)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 *1)) (-4 *1 (-250)))) + (-12 (-5 *3 "count") (-5 *2 (-688)) (-5 *1 (-200 *4)) (-4 *4 (-750)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-200 *3)) (-4 *3 (-750)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-200 *3)) (-4 *3 (-750)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-238 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1119)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-579 *1)) (-4 *1 (-250)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-1140 *2)) - (-4 *4 (-1140 (-343 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1059)) (-5 *1 (-435)))) + (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1145 *2)) + (-4 *4 (-1145 (-344 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1063)) (-5 *1 (-436)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-578 (-478))) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) - (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) + (-12 (-5 *2 (-579 (-479))) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) + (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-578 (-793 *4))) (-5 *1 (-793 *4)) - (-4 *4 (-1003)))) + (-12 (-5 *2 (-84)) (-5 *3 (-579 (-794 *4))) (-5 *1 (-794 *4)) + (-4 *4 (-1006)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-806 *4)) (-5 *1 (-809 *4)) (-4 *4 (-1003)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-916 *2)) (-4 *2 (-1114)))) + (-12 (-5 *3 (-688)) (-5 *2 (-807 *4)) (-5 *1 (-810 *4)) (-4 *4 (-1006)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-917 *2)) (-4 *2 (-1119)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *2 (-954)) + (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *2 *6 *7)) (-4 *2 (-955)) (-4 *6 (-193 *5 *2)) (-4 *7 (-193 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) - (-4 *7 (-193 *4 *2)) (-4 *2 (-954)))) + (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) + (-4 *7 (-193 *4 *2)) (-4 *2 (-955)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-823)) (-4 *4 (-1003)) - (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-978 *4 *5 *2)) - (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) + (-12 (-5 *3 (-824)) (-4 *4 (-1006)) + (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-980 *4 *5 *2)) + (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-823)) (-4 *4 (-1003)) - (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-980 *4 *5 *2)) - (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1044))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1075)))) + (-12 (-5 *3 (-824)) (-4 *4 (-1006)) + (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-982 *4 *5 *2)) + (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1048))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-1080)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-343 *1)) (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) + (-12 (-5 *3 (-344 *1)) (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-343 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-954)) (-4 *3 (-489)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1153 *3)) (-4 *3 (-1114)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) - ((*1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-749)))) - ((*1 *1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749)))) + (-12 (-5 *2 (-344 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-955)) (-4 *3 (-490)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1158 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) + ((*1 *1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-750)))) + ((*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-750)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1109 *2 *3 *4 *5)) (-4 *2 (-489)) (-4 *3 (-710)) - (-4 *4 (-749)) (-4 *5 (-969 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1153 *3)) (-4 *3 (-1114)))) - ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) - (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1153 *3)) (-4 *3 (-1114)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114)))) + (|partial| -12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-490)) (-4 *3 (-711)) + (-4 *4 (-750)) (-4 *5 (-970 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1158 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1001)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) + (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1158 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119)))) ((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) - ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *2 (-1114)) (-5 *1 (-775 *3 *2)) (-4 *3 (-1114)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1114)) (-5 *2 (-687))))) -(((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-199 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) + ((*1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-776 *3 *2)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1119)) (-5 *2 (-688))))) +(((*1 *1 *1) (-12 (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-199 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1114)) (-4 *4 (-317 *2)) - (-4 *5 (-317 *2)))) + (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-318 *2)) + (-4 *5 (-318 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -3972)) (-4 *1 (-90 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -3978)) (-4 *1 (-90 *3)) (-4 *3 (-1119)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -3972)) (-4 *1 (-90 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -3978)) (-4 *1 (-90 *3)) (-4 *3 (-1119)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3972)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1003)) - (-4 *2 (-1114)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1075)) (-5 *1 (-566)))) + (-12 (|has| *1 (-6 -3978)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1006)) + (-4 *2 (-1119)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1080)) (-5 *1 (-567)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1131 (-478))) (|has| *1 (-6 -3972)) (-4 *1 (-588 *2)) - (-4 *2 (-1114)))) + (-12 (-5 *3 (-1136 (-479))) (|has| *1 (-6 -3978)) (-4 *1 (-589 *2)) + (-4 *2 (-1119)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-578 (-478))) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) - (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-579 (-479))) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) + (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -3972)) (-4 *1 (-916 *2)) - (-4 *2 (-1114)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1092 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -3978)) (-4 *1 (-917 *2)) + (-4 *2 (-1119)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1097 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) - (-4 *2 (-1114)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) + (-4 *2 (-1119)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -3972)) (-4 *1 (-1153 *3)) - (-4 *3 (-1114)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -3978)) (-4 *1 (-1158 *3)) + (-4 *3 (-1119)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) - (-4 *2 (-1114))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1055 *3)) (-4 *3 (-1114)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-1153 *2)) (-4 *2 (-1114))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) + (-4 *2 (-1119))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1059 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-1158 *2)) (-4 *2 (-1119))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-478)) (|has| *1 (-6 -3972)) (-4 *1 (-1153 *3)) - (-4 *3 (-1114))))) + (-12 (-5 *2 (-479)) (|has| *1 (-6 -3978)) (-4 *1 (-1158 *3)) + (-4 *3 (-1119))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) - (-5 *2 (-743 *4)) (-5 *1 (-260 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1100) (-357 *3))) (-14 *5 (-1075)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-944 (-479)) (-576 (-479)) (-386))) + (-5 *2 (-744 *4)) (-5 *1 (-260 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1105) (-358 *3))) (-14 *5 (-1080)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) - (-5 *2 (-743 *4)) (-5 *1 (-1151 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1100) (-357 *3))) (-14 *5 (-1075)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-944 (-479)) (-576 (-479)) (-386))) + (-5 *2 (-744 *4)) (-5 *1 (-1156 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1105) (-358 *3))) (-14 *5 (-1080)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-943 (-478)) (-575 (-478)) (-385))) + (|partial| -12 (-4 *3 (-13 (-944 (-479)) (-576 (-479)) (-386))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1145 *4 *5 *6)) (|:| |%expon| (-266 *4 *5 *6)) - (|:| |%expTerms| (-578 (-2 (|:| |k| (-343 (-478))) (|:| |c| *4)))))) - (|:| |%type| (-1059)))) - (-5 *1 (-1151 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1100) (-357 *3))) - (-14 *5 (-1075)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1150 *4 *5 *6)) (|:| |%expon| (-266 *4 *5 *6)) + (|:| |%expTerms| (-579 (-2 (|:| |k| (-344 (-479))) (|:| |c| *4)))))) + (|:| |%type| (-1063)))) + (-5 *1 (-1156 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1105) (-358 *3))) + (-14 *5 (-1080)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1100) (-357 *4))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-358 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) + (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-343 (-478))) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) + (-12 (-5 *4 (-344 (-479))) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) - (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) + (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-245 *3)) (-5 *5 (-343 (-478))) - (-4 *3 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-12 (-5 *4 (-245 *3)) (-5 *5 (-344 (-479))) + (-4 *3 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-343 (-478)))) (-5 *4 (-245 *8)) - (-5 *5 (-1131 (-343 (-478)))) (-5 *6 (-343 (-478))) - (-4 *8 (-13 (-27) (-1100) (-357 *7))) - (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-344 (-479)))) (-5 *4 (-245 *8)) + (-5 *5 (-1136 (-344 (-479)))) (-5 *6 (-344 (-479))) + (-4 *8 (-13 (-27) (-1105) (-358 *7))) + (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-343 (-478)))) - (-5 *7 (-343 (-478))) (-4 *3 (-13 (-27) (-1100) (-357 *8))) - (-4 *8 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *8 *3)))) + (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-344 (-479)))) + (-5 *7 (-344 (-479))) (-4 *3 (-13 (-27) (-1105) (-358 *8))) + (-4 *8 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-343 (-478))) (-4 *4 (-954)) (-4 *1 (-1149 *4 *3)) - (-4 *3 (-1126 *4))))) + (-12 (-5 *2 (-344 (-479))) (-4 *4 (-955)) (-4 *1 (-1154 *4 *3)) + (-4 *3 (-1131 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1149 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1126 *3)) - (-5 *2 (-343 (-478)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1126 *3))))) + (-12 (-4 *1 (-1154 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1131 *3)) + (-5 *2 (-344 (-479)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1131 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1100) (-357 *4))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-358 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) + (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-478)) (-4 *5 (-13 (-385) (-943 *4) (-575 *4))) (-5 *2 (-51)) - (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) + (-12 (-5 *4 (-479)) (-4 *5 (-13 (-386) (-944 *4) (-576 *4))) (-5 *2 (-51)) + (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) - (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) + (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-385) (-943 *5) (-575 *5))) (-5 *5 (-478)) (-5 *2 (-51)) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-386) (-944 *5) (-576 *5))) (-5 *5 (-479)) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1131 (-478))) - (-4 *7 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-479))) (-5 *4 (-245 *7)) (-5 *5 (-1136 (-479))) + (-4 *7 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-478))) - (-4 *3 (-13 (-27) (-1100) (-357 *7))) - (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *7 *3)))) + (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-479))) + (-4 *3 (-13 (-27) (-1105) (-358 *7))) + (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-478)) (-4 *4 (-954)) (-4 *1 (-1128 *4 *3)) (-4 *3 (-1157 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1126 *3))))) + (-12 (-5 *2 (-479)) (-4 *4 (-955)) (-4 *1 (-1133 *4 *3)) (-4 *3 (-1162 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1131 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1149 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1126 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1140 *3)) (-4 *3 (-954)))) + (|partial| -12 (-4 *1 (-1154 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1131 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1145 *3)) (-4 *3 (-955)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-823)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-1147 *3)) (-4 *3 (-954))))) + (-12 (-5 *2 (-824)) (-4 *1 (-1148 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-4 *1 (-1152 *3)) (-4 *3 (-955))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-478)))) - (-4 *4 (-13 (-1140 *3) (-489) (-10 -8 (-15 -3125 ($ $ $))))) (-4 *3 (-489)) - (-5 *1 (-1144 *3 *4))))) + (|:| |xpnt| (-479)))) + (-4 *4 (-13 (-1145 *3) (-490) (-10 -8 (-15 -3128 ($ $ $))))) (-4 *3 (-490)) + (-5 *1 (-1149 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-854 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-385)))) + (-12 (-4 *1 (-855 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-386)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) - (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *1)))) - (-4 *1 (-975 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1119))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) + (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *1)))) + (-4 *1 (-976 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1124))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-1144 *3 *2)) - (-4 *2 (-13 (-1140 *3) (-489) (-10 -8 (-15 -3125 ($ $ $)))))))) + (-12 (-4 *3 (-490)) (-5 *1 (-1149 *3 *2)) + (-4 *2 (-13 (-1145 *3) (-490) (-10 -8 (-15 -3128 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-102)) - (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 *4)))))) + (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-102)) + (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-442 *3 *4)) (-4 *3 (-72)) (-4 *4 (-752)) - (-5 *2 (-578 (-775 *4 *3))))) + (-12 (-4 *1 (-443 *3 *4)) (-4 *3 (-72)) (-4 *4 (-753)) + (-5 *2 (-579 (-776 *4 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| -3930 *3) (|:| -3914 *4)))) (-5 *1 (-667 *3 *4)) - (-4 *3 (-954)) (-4 *4 (-658)))) + (-12 (-5 *2 (-579 (-2 (|:| -3936 *3) (|:| -3920 *4)))) (-5 *1 (-668 *3 *4)) + (-4 *3 (-955)) (-4 *4 (-659)))) ((*1 *2 *1) - (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) - (-5 *2 (-1055 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-478)) (-5 *1 (-196)))) + (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) + (-5 *2 (-1059 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1063)) (-5 *3 (-479)) (-5 *1 (-196)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-578 (-1059))) (-5 *3 (-478)) (-5 *4 (-1059)) (-5 *1 (-196)))) - ((*1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) - ((*1 *2 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954))))) + (-12 (-5 *2 (-579 (-1063))) (-5 *3 (-479)) (-5 *4 (-1063)) (-5 *1 (-196)))) + ((*1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) + ((*1 *2 *1) (-12 (-4 *1 (-1148 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955))))) (((*1 *2 *1) - (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) - (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-687)))) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) + (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-688)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) - (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-749)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-823)))) - ((*1 *2 *3) - (-12 (-5 *3 (-279 *4 *5 *6 *7)) (-4 *4 (-13 (-313) (-308))) - (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) (-4 *7 (-287 *4 *5 *6)) - (-5 *2 (-687)) (-5 *1 (-334 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-736 (-823))))) - ((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) - ((*1 *2 *1) - (-12 (-4 *3 (-489)) (-5 *2 (-478)) (-5 *1 (-557 *3 *4)) (-4 *4 (-1140 *3)))) + (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-955)) (-4 *3 (-750)) + (-4 *5 (-225 *3)) (-4 *6 (-711)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-750)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-824)))) + ((*1 *2 *3) + (-12 (-5 *3 (-279 *4 *5 *6 *7)) (-4 *4 (-13 (-314) (-308))) + (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-4 *7 (-287 *4 *5 *6)) + (-5 *2 (-688)) (-5 *1 (-335 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-737 (-824))))) + ((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-479)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-526 *3)) (-4 *3 (-955)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-526 *3)) (-4 *3 (-955)))) + ((*1 *2 *1) + (-12 (-4 *3 (-490)) (-5 *2 (-479)) (-5 *1 (-558 *3 *4)) (-4 *4 (-1145 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-672 *4 *3)) (-4 *4 (-954)) (-4 *3 (-749)))) + (-12 (-5 *2 (-688)) (-4 *1 (-673 *4 *3)) (-4 *4 (-955)) (-4 *3 (-750)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-672 *4 *3)) (-4 *4 (-954)) (-4 *3 (-749)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) - (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) - (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-687)) - (-5 *1 (-815 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) - (-4 *4 (-1140 (-343 (-478)))) (-4 *5 (-1140 (-343 *4))) - (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-687)) (-5 *1 (-816 *4 *5 *6)))) + (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-955)) (-4 *3 (-750)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-358 *4)) + (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-4 *8 (-287 *5 *6 *7)) + (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-688)) + (-5 *1 (-816 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-279 (-344 (-479)) *4 *5 *6)) + (-4 *4 (-1145 (-344 (-479)))) (-4 *5 (-1145 (-344 *4))) + (-4 *6 (-287 (-344 (-479)) *4 *5)) (-5 *2 (-688)) (-5 *1 (-817 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-279 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-308)) - (-4 *7 (-1140 *6)) (-4 *4 (-1140 (-343 *7))) (-4 *8 (-287 *6 *7 *4)) - (-4 *9 (-13 (-313) (-308))) (-5 *2 (-687)) (-5 *1 (-924 *6 *7 *4 *8 *9)))) + (-4 *7 (-1145 *6)) (-4 *4 (-1145 (-344 *7))) (-4 *8 (-287 *6 *7 *4)) + (-4 *9 (-13 (-314) (-308))) (-5 *2 (-688)) (-5 *1 (-925 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1140 *3)) (-4 *3 (-954)) (-4 *3 (-489)) (-5 *2 (-687)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) - ((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709))))) -(((*1 *1 *1) (-4 *1 (-965))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709))))) + (-12 (-4 *1 (-1145 *3)) (-4 *3 (-955)) (-4 *3 (-490)) (-5 *2 (-688)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710))))) +(((*1 *1 *1) (-4 *1 (-966))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-343 (-478))) (-5 *1 (-88 *4)) (-14 *4 *3) (-5 *3 (-478)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) + (-12 (-5 *2 (-344 (-479))) (-5 *1 (-88 *4)) (-14 *4 *3) (-5 *3 (-479)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-343 (-478))) (-5 *1 (-773 *4)) (-14 *4 *3) (-5 *3 (-478)))) + (-12 (-5 *2 (-344 (-479))) (-5 *1 (-774 *4)) (-14 *4 *3) (-5 *3 (-479)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-343 (-478))) (-5 *1 (-774 *4 *5)) (-5 *3 (-478)) - (-4 *5 (-772 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-918)) (-5 *2 (-343 (-478))))) + (-12 (-14 *4 *3) (-5 *2 (-344 (-479))) (-5 *1 (-775 *4 *5)) (-5 *3 (-479)) + (-4 *5 (-773 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-919)) (-5 *2 (-344 (-479))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-972 *2 *3)) (-4 *2 (-13 (-748) (-308))) (-4 *3 (-1140 *2)))) + (-12 (-4 *1 (-973 *2 *3)) (-4 *2 (-13 (-749) (-308))) (-4 *3 (-1145 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1143 *2 *3)) (-4 *3 (-709)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -3922 (*2 (-1075)))) (-4 *2 (-954))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-611 *3)) (-4 *3 (-1114)))) + (-12 (-4 *1 (-1148 *2 *3)) (-4 *3 (-710)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -3928 (*2 (-1080)))) (-4 *2 (-955))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-146 *3)) (-4 *3 (-254)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-612 *3)) (-4 *3 (-1119)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-672 *3 *4)) (-4 *3 (-954)) (-4 *4 (-749)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-886 *3)) (-4 *3 (-954)))) + (-12 (-5 *2 (-688)) (-4 *1 (-673 *3 *4)) (-4 *3 (-955)) (-4 *4 (-750)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *1 (-887 *3)) (-4 *3 (-955)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) - (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) + (-12 (-5 *2 (-579 *1)) (-5 *3 (-579 *7)) (-4 *1 (-976 *4 *5 *6 *7)) + (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) + (-12 (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) - (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) + (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *2 (-969 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *2 (-970 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1148 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-343 *5)) (-4 *4 (-1119)) (-4 *5 (-1140 *4)) - (-5 *1 (-119 *4 *5 *2)) (-4 *2 (-1140 *3)))) + (-12 (-5 *3 (-344 *5)) (-4 *4 (-1124)) (-4 *5 (-1145 *4)) + (-5 *1 (-119 *4 *5 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1077 (-343 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-162)))) + (-12 (-5 *3 (-1082 (-344 (-479)))) (-5 *2 (-344 (-479))) (-5 *1 (-162)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-245 *3))) (-4 *3 (-256 *3)) (-4 *3 (-1003)) - (-4 *3 (-1114)) (-5 *1 (-245 *3)))) + (-12 (-5 *2 (-579 (-245 *3))) (-4 *3 (-256 *3)) (-4 *3 (-1006)) + (-4 *3 (-1119)) (-5 *1 (-245 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-256 *2)) (-4 *2 (-1003)) (-4 *2 (-1114)) (-5 *1 (-245 *2)))) + (-12 (-4 *2 (-256 *2)) (-4 *2 (-1006)) (-4 *2 (-1119)) (-5 *1 (-245 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-250)))) + (-12 (-5 *2 (-84)) (-5 *3 (-1 *1 (-579 *1))) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-250)))) + (-12 (-5 *2 (-579 (-84))) (-5 *3 (-579 (-1 *1 (-579 *1)))) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-250)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) + (-12 (-5 *2 (-579 (-84))) (-5 *3 (-579 (-1 *1 *1))) (-4 *1 (-250)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-1 *1 *1)) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1075)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-250)))) + (-12 (-5 *2 (-1080)) (-5 *3 (-1 *1 (-579 *1))) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-250)))) + (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-579 (-1 *1 (-579 *1)))) (-4 *1 (-250)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-250)))) + (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-579 (-1 *1 *1))) (-4 *1 (-250)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-245 *3))) (-4 *1 (-256 *3)) (-4 *3 (-1003)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-245 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-579 (-245 *3))) (-4 *1 (-256 *3)) (-4 *3 (-1006)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-245 *3)) (-4 *1 (-256 *3)) (-4 *3 (-1006)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-478))) (-5 *4 (-1077 (-343 (-478)))) (-5 *1 (-257 *2)) - (-4 *2 (-38 (-343 (-478)))))) + (-12 (-5 *3 (-1 *2 (-479))) (-5 *4 (-1082 (-344 (-479)))) (-5 *1 (-257 *2)) + (-4 *2 (-38 (-344 (-479)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *1)) (-4 *1 (-319 *4 *5)) (-4 *4 (-749)) + (-12 (-5 *2 (-579 *4)) (-5 *3 (-579 *1)) (-4 *1 (-320 *4 *5)) (-4 *4 (-750)) (-4 *5 (-144)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-749)) (-4 *3 (-144)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-750)) (-4 *3 (-144)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1075)) (-5 *3 (-687)) (-5 *4 (-1 *1 *1)) (-4 *1 (-357 *5)) - (-4 *5 (-1003)) (-4 *5 (-954)))) + (-12 (-5 *2 (-1080)) (-5 *3 (-688)) (-5 *4 (-1 *1 *1)) (-4 *1 (-358 *5)) + (-4 *5 (-1006)) (-4 *5 (-955)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1075)) (-5 *3 (-687)) (-5 *4 (-1 *1 (-578 *1))) - (-4 *1 (-357 *5)) (-4 *5 (-1003)) (-4 *5 (-954)))) + (-12 (-5 *2 (-1080)) (-5 *3 (-688)) (-5 *4 (-1 *1 (-579 *1))) + (-4 *1 (-358 *5)) (-4 *5 (-1006)) (-4 *5 (-955)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-578 (-687))) - (-5 *4 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-357 *5)) (-4 *5 (-1003)) - (-4 *5 (-954)))) + (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-579 (-688))) + (-5 *4 (-579 (-1 *1 (-579 *1)))) (-4 *1 (-358 *5)) (-4 *5 (-1006)) + (-4 *5 (-955)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-578 (-687))) (-5 *4 (-578 (-1 *1 *1))) - (-4 *1 (-357 *5)) (-4 *5 (-1003)) (-4 *5 (-954)))) + (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-579 (-688))) (-5 *4 (-579 (-1 *1 *1))) + (-4 *1 (-358 *5)) (-4 *5 (-1006)) (-4 *5 (-955)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-578 (-84))) (-5 *3 (-578 *1)) (-5 *4 (-1075)) (-4 *1 (-357 *5)) - (-4 *5 (-1003)) (-4 *5 (-548 (-467))))) + (-12 (-5 *2 (-579 (-84))) (-5 *3 (-579 *1)) (-5 *4 (-1080)) (-4 *1 (-358 *5)) + (-4 *5 (-1006)) (-4 *5 (-549 (-468))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1075)) (-4 *1 (-357 *4)) (-4 *4 (-1003)) - (-4 *4 (-548 (-467))))) - ((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1003)) (-4 *2 (-548 (-467))))) + (-12 (-5 *2 (-84)) (-5 *3 (-1080)) (-4 *1 (-358 *4)) (-4 *4 (-1006)) + (-4 *4 (-549 (-468))))) + ((*1 *1 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-1006)) (-4 *2 (-549 (-468))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-1075))) (-4 *1 (-357 *3)) (-4 *3 (-1003)) - (-4 *3 (-548 (-467))))) + (-12 (-5 *2 (-579 (-1080))) (-4 *1 (-358 *3)) (-4 *3 (-1006)) + (-4 *3 (-549 (-468))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003)) - (-4 *3 (-548 (-467))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006)) + (-4 *3 (-549 (-468))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-448 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1119)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *5)) (-4 *1 (-447 *4 *5)) (-4 *4 (-1003)) - (-4 *5 (-1114)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-736 *3)) (-4 *3 (-308)) (-5 *1 (-650 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) + (-12 (-5 *2 (-579 *4)) (-5 *3 (-579 *5)) (-4 *1 (-448 *4 *5)) (-4 *4 (-1006)) + (-4 *5 (-1119)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-737 *3)) (-4 *3 (-308)) (-5 *1 (-651 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-343 (-850 *4))) (-5 *3 (-1075)) (-4 *4 (-489)) - (-5 *1 (-945 *4)))) + (-12 (-5 *2 (-344 (-851 *4))) (-5 *3 (-1080)) (-4 *4 (-490)) + (-5 *1 (-946 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-578 (-1075))) (-5 *4 (-578 (-343 (-850 *5)))) - (-5 *2 (-343 (-850 *5))) (-4 *5 (-489)) (-5 *1 (-945 *5)))) + (-12 (-5 *3 (-579 (-1080))) (-5 *4 (-579 (-344 (-851 *5)))) + (-5 *2 (-344 (-851 *5))) (-4 *5 (-490)) (-5 *1 (-946 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-245 (-343 (-850 *4)))) (-5 *2 (-343 (-850 *4))) (-4 *4 (-489)) - (-5 *1 (-945 *4)))) + (-12 (-5 *3 (-245 (-344 (-851 *4)))) (-5 *2 (-344 (-851 *4))) (-4 *4 (-490)) + (-5 *1 (-946 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-578 (-245 (-343 (-850 *4))))) (-5 *2 (-343 (-850 *4))) - (-4 *4 (-489)) (-5 *1 (-945 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3)))) + (-12 (-5 *3 (-579 (-245 (-344 (-851 *4))))) (-5 *2 (-344 (-851 *4))) + (-4 *4 (-490)) (-5 *1 (-946 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1055 *3))))) + (-12 (-4 *1 (-1148 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1059 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-1140 *4)) (-4 *4 (-954)) (-5 *2 (-1164 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-954)) (-5 *2 (-1070 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-954)) (-4 *1 (-1140 *3))))) + (-12 (-5 *3 (-688)) (-4 *1 (-1145 *4)) (-4 *4 (-955)) (-5 *2 (-1169 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-955)) (-5 *2 (-1075 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1075 *3)) (-4 *3 (-955)) (-4 *1 (-1145 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-687)) (-4 *1 (-1140 *3)) (-4 *3 (-954))))) + (|partial| -12 (-5 *2 (-688)) (-4 *1 (-1145 *3)) (-4 *3 (-955))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) - (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-854 *4 *5 *3)))) + (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) + (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-855 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) - (-4 *1 (-1140 *3))))) + (-12 (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) + (-4 *1 (-1145 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) - (-4 *1 (-1140 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1140 *3)) (-4 *3 (-954))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1140 *3)) (-4 *3 (-954))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954))))) -(((*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-687)))) + (-12 (-5 *3 (-688)) (-4 *4 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) + (-4 *1 (-1145 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1145 *3)) (-4 *3 (-955))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1145 *3)) (-4 *3 (-955))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955))))) +(((*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-688)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *1 (-222 *4)) (-4 *4 (-1114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-688)) (-4 *1 (-222 *4)) (-4 *4 (-1119)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1119)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) - (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) + (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-308)) (-4 *2 (-802 *3)) (-5 *1 (-513 *2)) (-5 *3 (-1075)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-513 *2)) (-4 *2 (-308)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-799 *2 *3)) (-4 *3 (-1114)) (-4 *2 (-1114)))) + (-12 (-4 *2 (-308)) (-4 *2 (-803 *3)) (-5 *1 (-514 *2)) (-5 *3 (-1080)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-514 *2)) (-4 *2 (-308)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-766)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-800 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-687))) (-4 *1 (-804 *4)) - (-4 *4 (-1003)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-804 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-804 *3)) (-4 *3 (-1003)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1140 *3)) (-4 *3 (-954))))) + (-12 (-5 *2 (-579 *4)) (-5 *3 (-579 (-688))) (-4 *1 (-805 *4)) + (-4 *4 (-1006)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-805 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *1 (-805 *3)) (-4 *3 (-1006)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1145 *3)) (-4 *3 (-955))))) (((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-136 *3 *2)) (-4 *3 (-137 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *2 *4)) (-4 *4 (-1140 *2)) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *2 *4)) (-4 *4 (-1145 *2)) (-4 *2 (-144)))) ((*1 *2) - (-12 (-4 *4 (-1140 *2)) (-4 *2 (-144)) (-5 *1 (-345 *3 *2 *4)) - (-4 *3 (-346 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-346 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-144)))) + (-12 (-4 *4 (-1145 *2)) (-4 *2 (-144)) (-5 *1 (-346 *3 *2 *4)) + (-4 *3 (-347 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-347 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-144)))) ((*1 *2) - (-12 (-4 *3 (-1140 *2)) (-5 *2 (-478)) (-5 *1 (-685 *3 *4)) - (-4 *4 (-346 *2 *3)))) + (-12 (-4 *3 (-1145 *2)) (-5 *2 (-479)) (-5 *1 (-686 *3 *4)) + (-4 *4 (-347 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) + (-12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) (-4 *3 (-144)))) - ((*1 *2 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1140 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-144))))) + ((*1 *2 *3) (-12 (-4 *2 (-490)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1145 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-144))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) + (-12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) (-4 *3 (-144)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1140 *2)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-490)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1145 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-144))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3)))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-144))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-489))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-490))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-343 *1)) (-4 *1 (-1140 *3)) (-4 *3 (-954)) - (-4 *3 (-489)))) + (|partial| -12 (-5 *2 (-344 *1)) (-4 *1 (-1145 *3)) (-4 *3 (-955)) + (-4 *3 (-490)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-489))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-954)) (-4 *2 (-489))))) + (|partial| -12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-490))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-955)) (-4 *2 (-490))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -3930 *4) (|:| -1956 *3) (|:| -2883 *3))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4)))) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| -3936 *4) (|:| -1961 *3) (|:| -2887 *3))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-969 *3 *4 *5)))) + (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-970 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-489)) (-4 *3 (-954)) - (-5 *2 (-2 (|:| -3930 *3) (|:| -1956 *1) (|:| -2883 *1))) - (-4 *1 (-1140 *3))))) + (-12 (-4 *3 (-490)) (-4 *3 (-955)) + (-5 *2 (-2 (|:| -3936 *3) (|:| -1961 *1) (|:| -2887 *1))) + (-4 *1 (-1145 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *4 (-489)) (-4 *5 (-1140 *4)) - (-5 *2 (-2 (|:| -1745 (-557 *4 *5)) (|:| -1744 (-343 *5)))) - (-5 *1 (-557 *4 *5)) (-5 *3 (-343 *5)))) + (-12 (-4 *4 (-308)) (-4 *4 (-490)) (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| -1750 (-558 *4 *5)) (|:| -1749 (-344 *5)))) + (-5 *1 (-558 *4 *5)) (-5 *3 (-344 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-578 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) - (-4 *4 (-954)))) + (-12 (-5 *2 (-579 (-1069 *3 *4))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) + (-4 *4 (-955)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-385)) (-4 *3 (-954)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1140 *3))))) + (-12 (-4 *3 (-386)) (-4 *3 (-955)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1145 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-1138 *4 *2)) (-4 *2 (-1140 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1140 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-1138 *3 *2)) (-4 *2 (-1140 *3))))) + (-12 (-5 *3 (-688)) (-4 *4 (-955)) (-5 *1 (-1143 *4 *2)) (-4 *2 (-1145 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1145 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) - (-5 *1 (-1137 *4 *3)) (-4 *3 (-1140 *4))))) + (|partial| -12 (-4 *4 (-490)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) + (-5 *1 (-1142 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-489) (-118))) (-5 *2 (-578 *3)) (-5 *1 (-1136 *4 *3)) - (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-13 (-490) (-118))) (-5 *2 (-579 *3)) (-5 *1 (-1141 *4 *3)) + (-4 *3 (-1145 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-489) (-118))) - (-5 *2 (-2 (|:| -3119 *3) (|:| -3118 *3))) (-5 *1 (-1136 *4 *3)) - (-4 *3 (-1140 *4))))) + (|partial| -12 (-4 *4 (-13 (-490) (-118))) + (-5 *2 (-2 (|:| -3122 *3) (|:| -3121 *3))) (-5 *1 (-1141 *4 *3)) + (-4 *3 (-1145 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1136 *3 *2)) - (-4 *2 (-1140 *3))))) + (|partial| -12 (-4 *3 (-13 (-490) (-118))) (-5 *1 (-1141 *3 *2)) + (-4 *2 (-1145 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-687)) (-4 *4 (-13 (-489) (-118))) - (-5 *1 (-1136 *4 *2)) (-4 *2 (-1140 *4))))) + (|partial| -12 (-5 *3 (-688)) (-4 *4 (-13 (-490) (-118))) + (-5 *1 (-1141 *4 *2)) (-4 *2 (-1145 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-687)) (-4 *4 (-13 (-489) (-118))) - (-5 *1 (-1136 *4 *2)) (-4 *2 (-1140 *4))))) + (|partial| -12 (-5 *3 (-688)) (-4 *4 (-13 (-490) (-118))) + (-5 *1 (-1141 *4 *2)) (-4 *2 (-1145 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) + (-12 (-4 *4 (-490)) (-4 *5 (-898 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-113 *4 *5 *3)) - (-4 *3 (-317 *5)))) + (-4 *3 (-318 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-436 *4 *5 *6 *3)) - (-4 *6 (-317 *4)) (-4 *3 (-317 *5)))) + (-12 (-4 *4 (-490)) (-4 *5 (-898 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-437 *4 *5 *6 *3)) + (-4 *6 (-318 *4)) (-4 *3 (-318 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 *5)) (-4 *5 (-897 *4)) (-4 *4 (-489)) - (-5 *2 (-2 (|:| |num| (-625 *4)) (|:| |den| *4))) (-5 *1 (-628 *4 *5)))) + (-12 (-5 *3 (-626 *5)) (-4 *5 (-898 *4)) (-4 *4 (-490)) + (-5 *2 (-2 (|:| |num| (-626 *4)) (|:| |den| *4))) (-5 *1 (-629 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) - (-5 *2 (-2 (|:| -3246 *7) (|:| |rh| (-578 (-343 *6))))) - (-5 *1 (-721 *5 *6 *7 *3)) (-5 *4 (-578 (-343 *6))) (-4 *7 (-595 *6)) - (-4 *3 (-595 (-343 *6))))) + (-12 (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) + (-5 *2 (-2 (|:| -3250 *7) (|:| |rh| (-579 (-344 *6))))) + (-5 *1 (-722 *5 *6 *7 *3)) (-5 *4 (-579 (-344 *6))) (-4 *7 (-596 *6)) + (-4 *3 (-596 (-344 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1135 *4 *5 *3)) - (-4 *3 (-1140 *5))))) + (-12 (-4 *4 (-490)) (-4 *5 (-898 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1140 *4 *5 *3)) + (-4 *3 (-1145 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-4 *4 (-897 *3)) (-5 *1 (-113 *3 *4 *2)) - (-4 *2 (-317 *4)))) + (-12 (-4 *3 (-490)) (-4 *4 (-898 *3)) (-5 *1 (-113 *3 *4 *2)) + (-4 *2 (-318 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-897 *4)) (-4 *2 (-317 *4)) - (-5 *1 (-436 *4 *5 *2 *3)) (-4 *3 (-317 *5)))) + (-12 (-4 *4 (-490)) (-4 *5 (-898 *4)) (-4 *2 (-318 *4)) + (-5 *1 (-437 *4 *5 *2 *3)) (-4 *3 (-318 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 *5)) (-4 *5 (-897 *4)) (-4 *4 (-489)) (-5 *2 (-625 *4)) - (-5 *1 (-628 *4 *5)))) + (-12 (-5 *3 (-626 *5)) (-4 *5 (-898 *4)) (-4 *4 (-490)) (-5 *2 (-626 *4)) + (-5 *1 (-629 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-4 *4 (-897 *3)) (-5 *1 (-1135 *3 *4 *2)) - (-4 *2 (-1140 *4))))) + (-12 (-4 *3 (-490)) (-4 *4 (-898 *3)) (-5 *1 (-1140 *3 *4 *2)) + (-4 *2 (-1145 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-113 *2 *4 *3)) - (-4 *3 (-317 *4)))) + (-12 (-4 *4 (-898 *2)) (-4 *2 (-490)) (-5 *1 (-113 *2 *4 *3)) + (-4 *3 (-318 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-436 *2 *4 *5 *3)) - (-4 *5 (-317 *2)) (-4 *3 (-317 *4)))) + (-12 (-4 *4 (-898 *2)) (-4 *2 (-490)) (-5 *1 (-437 *2 *4 *5 *3)) + (-4 *5 (-318 *2)) (-4 *3 (-318 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-897 *2)) (-4 *2 (-489)) - (-5 *1 (-628 *2 *4)))) + (-12 (-5 *3 (-626 *4)) (-4 *4 (-898 *2)) (-4 *2 (-490)) + (-5 *1 (-629 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-897 *2)) (-4 *2 (-489)) (-5 *1 (-1135 *2 *4 *3)) - (-4 *3 (-1140 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-697 *3)) (-4 *3 (-954)))) + (-12 (-4 *4 (-898 *2)) (-4 *2 (-490)) (-5 *1 (-1140 *2 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-688)) (-5 *1 (-698 *3)) (-4 *3 (-955)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-860 *3 *2)) (-4 *2 (-102)) (-4 *3 (-489)) (-4 *3 (-954)) - (-4 *2 (-709)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-687)) (-5 *1 (-1070 *3)) (-4 *3 (-954)))) + (-12 (-5 *1 (-861 *3 *2)) (-4 *2 (-102)) (-4 *3 (-490)) (-4 *3 (-955)) + (-4 *2 (-710)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-688)) (-5 *1 (-1075 *3)) (-4 *3 (-955)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-877)) (-4 *2 (-102)) (-5 *1 (-1077 *3)) (-4 *3 (-489)) - (-4 *3 (-954)))) + (-12 (-5 *2 (-878)) (-4 *2 (-102)) (-5 *1 (-1082 *3)) (-4 *3 (-490)) + (-4 *3 (-955)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-1133 *4 *3)) (-14 *4 (-1075)) (-4 *3 (-954))))) -(((*1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *2 (-997 *3)) (-5 *1 (-963 *2 *3)) (-4 *3 (-1114)))) - ((*1 *2 *1) (-12 (-5 *2 (-992 *3)) (-5 *1 (-995 *3)) (-4 *3 (-1114)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1131 *3)) (-4 *3 (-1114))))) + (-12 (-5 *2 (-688)) (-5 *1 (-1138 *4 *3)) (-14 *4 (-1080)) (-4 *3 (-955))))) +(((*1 *1 *1) (-5 *1 (-766))) ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) (-12 (-5 *1 (-1136 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *2 (-999 *3)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-994 *3)) (-5 *1 (-997 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) (-12 (-5 *1 (-1136 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1136 *3)) (-4 *3 (-1119))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 - (-2 (|:| |contp| (-478)) - (|:| -1762 (-578 (-2 (|:| |irr| *3) (|:| -2377 (-478))))))) - (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) + (-2 (|:| |contp| (-479)) + (|:| -1767 (-579 (-2 (|:| |irr| *3) (|:| -2382 (-479))))))) + (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-5 *2 - (-2 (|:| |contp| (-478)) - (|:| -1762 (-578 (-2 (|:| |irr| *3) (|:| -2377 (-478))))))) - (-5 *1 (-1130 *3)) (-4 *3 (-1140 (-478)))))) + (-2 (|:| |contp| (-479)) + (|:| -1767 (-579 (-2 (|:| |irr| *3) (|:| -2382 (-479))))))) + (-5 *1 (-1135 *3)) (-4 *3 (-1145 (-479)))))) (((*1 *2 *3) - (-12 (-4 *4 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1140 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) + (-12 (-4 *4 (-295)) (-5 *2 (-342 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1145 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) - (-4 *3 (-1140 (-478))))) + (-12 (-5 *4 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) + (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-687))) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) - (-4 *3 (-1140 (-478))))) + (-12 (-5 *4 (-579 (-688))) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) + (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) - (-4 *3 (-1140 (-478))))) + (-12 (-5 *4 (-579 (-688))) (-5 *5 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) + (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) - (-4 *3 (-1140 (-478))))) + (-12 (-5 *4 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) + (-4 *3 (-1145 (-479))))) ((*1 *2 *3) - (-12 (-5 *2 (-341 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1140 (-343 (-478)))))) - ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1140 (-478)))))) + (-12 (-5 *2 (-342 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1145 (-344 (-479)))))) + ((*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-1135 *3)) (-4 *3 (-1145 (-479)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-48))) (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1140 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1140 (-48))))) + (-12 (-5 *4 (-579 (-48))) (-5 *2 (-342 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1145 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1145 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-48))) (-4 *5 (-749)) (-4 *6 (-710)) (-5 *2 (-341 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-854 (-48) *6 *5)))) + (-12 (-5 *4 (-579 (-48))) (-4 *5 (-750)) (-4 *6 (-711)) (-5 *2 (-342 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-855 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-48))) (-4 *5 (-749)) (-4 *6 (-710)) - (-4 *7 (-854 (-48) *6 *5)) (-5 *2 (-341 (-1070 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1070 *7)))) + (-12 (-5 *4 (-579 (-48))) (-4 *5 (-750)) (-4 *6 (-711)) + (-4 *7 (-855 (-48) *6 *5)) (-5 *2 (-342 (-1075 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1075 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-138 *4 *3)) - (-4 *3 (-1140 (-140 *4))))) + (-12 (-4 *4 (-254)) (-5 *2 (-342 *3)) (-5 *1 (-138 *4 *3)) + (-4 *3 (-1145 (-140 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) + (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) - (-4 *3 (-1140 (-140 *4))))) + (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) (-5 *1 (-153 *4 *3)) + (-4 *3 (-1145 (-140 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) - (-4 *3 (-1140 (-140 *4))))) + (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) (-5 *1 (-153 *4 *3)) + (-4 *3 (-1145 (-140 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-295)) (-5 *2 (-341 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1140 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) + (-12 (-4 *4 (-295)) (-5 *2 (-342 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1145 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) - (-4 *3 (-1140 (-478))))) + (-12 (-5 *4 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) + (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-687))) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) - (-4 *3 (-1140 (-478))))) + (-12 (-5 *4 (-579 (-688))) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) + (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-578 (-687))) (-5 *5 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) - (-4 *3 (-1140 (-478))))) + (-12 (-5 *4 (-579 (-688))) (-5 *5 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) + (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-687)) (-5 *2 (-341 *3)) (-5 *1 (-375 *3)) - (-4 *3 (-1140 (-478))))) + (-12 (-5 *4 (-688)) (-5 *2 (-342 *3)) (-5 *1 (-376 *3)) + (-4 *3 (-1145 (-479))))) ((*1 *2 *3) - (-12 (-5 *2 (-341 (-140 (-478)))) (-5 *1 (-379)) (-5 *3 (-140 (-478))))) + (-12 (-5 *2 (-342 (-140 (-479)))) (-5 *1 (-380)) (-5 *3 (-140 (-479))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-749) - (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ "failed") (-1075)))))) - (-4 *5 (-710)) (-4 *7 (-489)) (-5 *2 (-341 *3)) - (-5 *1 (-389 *4 *5 *6 *7 *3)) (-4 *6 (-489)) (-4 *3 (-854 *7 *5 *4)))) + (-13 (-750) + (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ "failed") (-1080)))))) + (-4 *5 (-711)) (-4 *7 (-490)) (-5 *2 (-342 *3)) + (-5 *1 (-390 *4 *5 *6 *7 *3)) (-4 *6 (-490)) (-4 *3 (-855 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-254)) (-5 *2 (-341 (-1070 *4))) (-5 *1 (-391 *4)) - (-5 *3 (-1070 *4)))) + (-12 (-4 *4 (-254)) (-5 *2 (-342 (-1075 *4))) (-5 *1 (-392 *4)) + (-5 *3 (-1075 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) - (-4 *7 (-13 (-308) (-118) (-656 *5 *6))) (-5 *2 (-341 *3)) - (-5 *1 (-427 *5 *6 *7 *3)) (-4 *3 (-1140 *7)))) + (-12 (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) + (-4 *7 (-13 (-308) (-118) (-657 *5 *6))) (-5 *2 (-342 *3)) + (-5 *1 (-428 *5 *6 *7 *3)) (-4 *3 (-1145 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-341 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-254) (-118))) - (-4 *5 (-749)) (-4 *6 (-710)) (-5 *2 (-341 *3)) (-5 *1 (-472 *5 *6 *7 *3)) - (-4 *3 (-854 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-342 (-1075 *7)) (-1075 *7))) (-4 *7 (-13 (-254) (-118))) + (-4 *5 (-750)) (-4 *6 (-711)) (-5 *2 (-342 *3)) (-5 *1 (-473 *5 *6 *7 *3)) + (-4 *3 (-855 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-341 (-1070 *7)) (-1070 *7))) (-4 *7 (-13 (-254) (-118))) - (-4 *5 (-749)) (-4 *6 (-710)) (-4 *8 (-854 *7 *6 *5)) - (-5 *2 (-341 (-1070 *8))) (-5 *1 (-472 *5 *6 *7 *8)) (-5 *3 (-1070 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477)))) + (-12 (-5 *4 (-1 (-342 (-1075 *7)) (-1075 *7))) (-4 *7 (-13 (-254) (-118))) + (-4 *5 (-750)) (-4 *6 (-711)) (-4 *8 (-855 *7 *6 *5)) + (-5 *2 (-342 (-1075 *8))) (-5 *1 (-473 *5 *6 *7 *8)) (-5 *3 (-1075 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-492 *3)) (-4 *3 (-478)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-578 *5) *6)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *6 (-1140 *5)) (-5 *2 (-578 (-592 (-343 *6)))) (-5 *1 (-596 *5 *6)) - (-5 *3 (-592 (-343 *6))))) + (-12 (-5 *4 (-1 (-579 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *6 (-1145 *5)) (-5 *2 (-579 (-593 (-344 *6)))) (-5 *1 (-597 *5 *6)) + (-5 *3 (-593 (-344 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *5 (-1140 *4)) (-5 *2 (-578 (-592 (-343 *5)))) (-5 *1 (-596 *4 *5)) - (-5 *3 (-592 (-343 *5))))) + (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *5 (-1145 *4)) (-5 *2 (-579 (-593 (-344 *5)))) (-5 *1 (-597 *4 *5)) + (-5 *3 (-593 (-344 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-732 *4)) (-4 *4 (-749)) (-5 *2 (-578 (-609 *4))) - (-5 *1 (-609 *4)))) + (-12 (-5 *3 (-733 *4)) (-4 *4 (-750)) (-5 *2 (-579 (-610 *4))) + (-5 *1 (-610 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-478)) (-5 *2 (-578 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1140 *4)))) + (-12 (-5 *4 (-479)) (-5 *2 (-579 *3)) (-5 *1 (-631 *3)) (-4 *3 (-1145 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-295)) (-5 *2 (-341 *3)) - (-5 *1 (-632 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) + (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-295)) (-5 *2 (-342 *3)) + (-5 *1 (-633 *4 *5 *6 *3)) (-4 *3 (-855 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-295)) (-4 *7 (-854 *6 *5 *4)) - (-5 *2 (-341 (-1070 *7))) (-5 *1 (-632 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) + (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-295)) (-4 *7 (-855 *6 *5 *4)) + (-5 *2 (-342 (-1075 *7))) (-5 *1 (-633 *4 *5 *6 *7)) (-5 *3 (-1075 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-710)) + (-12 (-4 *4 (-711)) (-4 *5 - (-13 (-749) - (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ "failed") (-1075)))))) - (-4 *6 (-254)) (-5 *2 (-341 *3)) (-5 *1 (-662 *4 *5 *6 *3)) - (-4 *3 (-854 (-850 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) - (-4 *6 (-489)) (-5 *2 (-341 *3)) (-5 *1 (-664 *4 *5 *6 *3)) - (-4 *3 (-854 (-343 (-850 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-13 (-254) (-118))) - (-5 *2 (-341 *3)) (-5 *1 (-665 *4 *5 *6 *3)) - (-4 *3 (-854 (-343 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-13 (-254) (-118))) - (-5 *2 (-341 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-854 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-749)) (-4 *5 (-710)) (-4 *6 (-13 (-254) (-118))) - (-4 *7 (-854 *6 *5 *4)) (-5 *2 (-341 (-1070 *7))) (-5 *1 (-673 *4 *5 *6 *7)) - (-5 *3 (-1070 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-341 *3)) (-5 *1 (-913 *3)) (-4 *3 (-1140 (-343 (-478)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-341 *3)) (-5 *1 (-947 *3)) - (-4 *3 (-1140 (-343 (-850 (-478))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1140 (-343 (-478)))) - (-4 *5 (-13 (-308) (-118) (-656 (-343 (-478)) *4))) (-5 *2 (-341 *3)) - (-5 *1 (-983 *4 *5 *3)) (-4 *3 (-1140 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1140 (-343 (-850 (-478))))) - (-4 *5 (-13 (-308) (-118) (-656 (-343 (-850 (-478))) *4))) (-5 *2 (-341 *3)) - (-5 *1 (-984 *4 *5 *3)) (-4 *3 (-1140 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-385)) (-4 *7 (-854 *6 *4 *5)) - (-5 *2 (-341 (-1070 (-343 *7)))) (-5 *1 (-1072 *4 *5 *6 *7)) - (-5 *3 (-1070 (-343 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-341 *1)) (-4 *1 (-1119)))) - ((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-1130 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1157 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-88 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-88 *2)) (-14 *2 (-478)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-773 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-773 *2)) (-14 *2 (-478)))) + (-13 (-750) + (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ "failed") (-1080)))))) + (-4 *6 (-254)) (-5 *2 (-342 *3)) (-5 *1 (-663 *4 *5 *6 *3)) + (-4 *3 (-855 (-851 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-711)) (-4 *5 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) + (-4 *6 (-490)) (-5 *2 (-342 *3)) (-5 *1 (-665 *4 *5 *6 *3)) + (-4 *3 (-855 (-344 (-851 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-13 (-254) (-118))) + (-5 *2 (-342 *3)) (-5 *1 (-666 *4 *5 *6 *3)) + (-4 *3 (-855 (-344 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-13 (-254) (-118))) + (-5 *2 (-342 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-855 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-750)) (-4 *5 (-711)) (-4 *6 (-13 (-254) (-118))) + (-4 *7 (-855 *6 *5 *4)) (-5 *2 (-342 (-1075 *7))) (-5 *1 (-674 *4 *5 *6 *7)) + (-5 *3 (-1075 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-342 *3)) (-5 *1 (-914 *3)) (-4 *3 (-1145 (-344 (-479)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-342 *3)) (-5 *1 (-948 *3)) + (-4 *3 (-1145 (-344 (-851 (-479))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1145 (-344 (-479)))) + (-4 *5 (-13 (-308) (-118) (-657 (-344 (-479)) *4))) (-5 *2 (-342 *3)) + (-5 *1 (-985 *4 *5 *3)) (-4 *3 (-1145 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1145 (-344 (-851 (-479))))) + (-4 *5 (-13 (-308) (-118) (-657 (-344 (-851 (-479))) *4))) (-5 *2 (-342 *3)) + (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1145 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-386)) (-4 *7 (-855 *6 *4 *5)) + (-5 *2 (-342 (-1075 (-344 *7)))) (-5 *1 (-1077 *4 *5 *6 *7)) + (-5 *3 (-1075 (-344 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-342 *1)) (-4 *1 (-1124)))) + ((*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-1135 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1162 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-88 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-88 *2)) (-14 *2 (-479)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-774 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-774 *2)) (-14 *2 (-479)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-478)) (-14 *3 *2) (-5 *1 (-774 *3 *4)) (-4 *4 (-772 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-478)) (-5 *1 (-774 *2 *3)) (-4 *3 (-772 *2)))) + (-12 (-5 *2 (-479)) (-14 *3 *2) (-5 *1 (-775 *3 *4)) (-4 *4 (-773 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-479)) (-5 *1 (-775 *2 *3)) (-4 *3 (-773 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-478)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1157 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1128 *2 *3)) (-4 *2 (-954)) (-4 *3 (-1157 *2))))) + (-12 (-5 *2 (-479)) (-4 *1 (-1133 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1162 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1133 *2 *3)) (-4 *2 (-955)) (-4 *3 (-1162 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1100) (-357 *4))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-51)) (-5 *1 (-263 *4 *5)) (-4 *5 (-13 (-27) (-1105) (-358 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) + (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-263 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-687)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) + (-12 (-5 *4 (-688)) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-51)) (-5 *1 (-263 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) - (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-12 (-5 *4 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) + (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-245 *3)) (-5 *5 (-687)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) + (-12 (-5 *4 (-245 *3)) (-5 *5 (-688)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) (-5 *1 (-263 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-478))) (-5 *4 (-245 *6)) - (-4 *6 (-13 (-27) (-1100) (-357 *5))) - (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *5 *6)))) + (-12 (-5 *3 (-1 *6 (-479))) (-5 *4 (-245 *6)) + (-4 *6 (-13 (-27) (-1105) (-358 *5))) + (-4 *5 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *6 *3)))) + (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-478))) (-5 *4 (-245 *7)) (-5 *5 (-1131 (-687))) - (-4 *7 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-479))) (-5 *4 (-245 *7)) (-5 *5 (-1136 (-688))) + (-4 *7 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1075)) (-5 *5 (-245 *3)) (-5 *6 (-1131 (-687))) - (-4 *3 (-13 (-27) (-1100) (-357 *7))) - (-4 *7 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *2 (-51)) - (-5 *1 (-392 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1157 *3))))) + (-12 (-5 *4 (-1080)) (-5 *5 (-245 *3)) (-5 *6 (-1136 (-688))) + (-4 *3 (-13 (-27) (-1105) (-358 *7))) + (-4 *7 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 (-51)) + (-5 *1 (-393 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1162 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1157 *3))))) + (|partial| -12 (-4 *1 (-1133 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1162 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-1126 *4)) (-4 *4 (-954)) (-4 *4 (-489)) - (-5 *2 (-343 (-850 *4))))) + (-12 (-5 *3 (-479)) (-4 *1 (-1131 *4)) (-4 *4 (-955)) (-4 *4 (-490)) + (-5 *2 (-344 (-851 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-1126 *4)) (-4 *4 (-954)) (-4 *4 (-489)) - (-5 *2 (-343 (-850 *4)))))) + (-12 (-5 *3 (-479)) (-4 *1 (-1131 *4)) (-4 *4 (-955)) (-4 *4 (-490)) + (-5 *2 (-344 (-851 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-99))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1082 *2)) (-14 *2 (-823)))) - ((*1 *1 *1 *1) (-5 *1 (-1120))) ((*1 *1 *1 *1) (-5 *1 (-1121))) - ((*1 *1 *1 *1) (-5 *1 (-1122))) ((*1 *1 *1 *1) (-5 *1 (-1123)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1087 *2)) (-14 *2 (-824)))) + ((*1 *1 *1 *1) (-5 *1 (-1125))) ((*1 *1 *1 *1) (-5 *1 (-1126))) + ((*1 *1 *1 *1) (-5 *1 (-1127))) ((*1 *1 *1 *1) (-5 *1 (-1128)))) (((*1 *1 *1 *1) (-5 *1 (-99))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1082 *2)) (-14 *2 (-823)))) - ((*1 *1 *1 *1) (-5 *1 (-1120))) ((*1 *1 *1 *1) (-5 *1 (-1121))) - ((*1 *1 *1 *1) (-5 *1 (-1122))) ((*1 *1 *1 *1) (-5 *1 (-1123)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1087 *2)) (-14 *2 (-824)))) + ((*1 *1 *1 *1) (-5 *1 (-1125))) ((*1 *1 *1 *1) (-5 *1 (-1126))) + ((*1 *1 *1 *1) (-5 *1 (-1127))) ((*1 *1 *1 *1) (-5 *1 (-1128)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-99))) ((*1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) - ((*1 *1) (-5 *1 (-479))) ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-5 *1 (-481))) - ((*1 *1) (-5 *1 (-482))) ((*1 *1) (-4 *1 (-658))) ((*1 *1) (-5 *1 (-1075))) - ((*1 *1) (-12 (-5 *1 (-1081 *2)) (-14 *2 (-823)))) - ((*1 *1) (-12 (-5 *1 (-1082 *2)) (-14 *2 (-823)))) ((*1 *1) (-5 *1 (-1120))) - ((*1 *1) (-5 *1 (-1121))) ((*1 *1) (-5 *1 (-1122))) ((*1 *1) (-5 *1 (-1123)))) -(((*1 *2 *3) (-12 (-5 *3 (-140 (-478))) (-5 *2 (-83)) (-5 *1 (-379)))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144)))) + ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-5 *1 (-481))) ((*1 *1) (-5 *1 (-482))) + ((*1 *1) (-5 *1 (-483))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1080))) + ((*1 *1) (-12 (-5 *1 (-1086 *2)) (-14 *2 (-824)))) + ((*1 *1) (-12 (-5 *1 (-1087 *2)) (-14 *2 (-824)))) ((*1 *1) (-5 *1 (-1125))) + ((*1 *1) (-5 *1 (-1126))) ((*1 *1) (-5 *1 (-1127))) ((*1 *1) (-5 *1 (-1128)))) +(((*1 *2 *3) (-12 (-5 *3 (-140 (-479))) (-5 *2 (-83)) (-5 *1 (-380)))) ((*1 *2 *3) (-12 (-5 *3 - (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) - (-14 *4 (-578 (-1075))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-866 *3)) (-4 *3 (-477)))) - ((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-83))))) -(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1117))))) + (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479))))) + (-14 *4 (-579 (-1080))) (-14 *5 (-688)) (-5 *2 (-83)) (-5 *1 (-439 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-867 *3)) (-4 *3 (-478)))) + ((*1 *2 *1) (-12 (-4 *1 (-1124)) (-5 *2 (-83))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1122))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3209 (-578 (-1075))) (|:| -3210 (-578 (-1075))))) - (-5 *1 (-1117))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-1075))) (-5 *2 (-1170)) (-5 *1 (-1117)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-1075))) (-5 *2 (-1170)) (-5 *1 (-1117))))) + (-12 (-5 *2 (-2 (|:| -3212 (-579 (-1080))) (|:| -3213 (-579 (-1080))))) + (-5 *1 (-1122))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-1080))) (-5 *2 (-1175)) (-5 *1 (-1122)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-579 (-1080))) (-5 *2 (-1175)) (-5 *1 (-1122))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-1050 *4)) (-4 *4 (-1114)) (-5 *2 (-83)))) + (-12 (-5 *3 (-688)) (-4 *1 (-1054 *4)) (-4 *4 (-1119)) (-5 *2 (-83)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-749)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1121 *3)) (-4 *3 (-750)) (-4 *3 (-1006))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-83) *2 *2)) (-5 *1 (-1116 *2)) - (-4 *2 (-1003)))) + (-12 (-5 *3 (-579 *2)) (-5 *4 (-1 (-83) *2 *2)) (-5 *1 (-1121 *2)) + (-4 *2 (-1006)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-1003)) (-4 *2 (-749)) (-5 *1 (-1116 *2))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-1003))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-1006)) (-4 *2 (-750)) (-5 *1 (-1121 *2))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1121 *3)) (-4 *3 (-1006))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-1050 *4)) (-4 *4 (-1114)) (-5 *2 (-83)))) + (-12 (-5 *3 (-688)) (-4 *1 (-1054 *4)) (-4 *4 (-1119)) (-5 *2 (-83)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-83)) (-5 *1 (-1116 *3)) (-4 *3 (-1003)))) + (|partial| -12 (-5 *2 (-83)) (-5 *1 (-1121 *3)) (-4 *3 (-1006)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-83)) - (-5 *1 (-1116 *3))))) + (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *3 (-1006)) (-5 *2 (-83)) + (-5 *1 (-1121 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3210 (-578 *3)) (|:| -3209 (-578 *3)))) - (-5 *1 (-1116 *3)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-2 (|:| -3213 (-579 *3)) (|:| -3212 (-579 *3)))) + (-5 *1 (-1121 *3)) (-4 *3 (-1006))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *4)) (-4 *4 (-1003)) (-5 *2 (-1170)) (-5 *1 (-1116 *4)))) + (-12 (-5 *3 (-579 *4)) (-4 *4 (-1006)) (-5 *2 (-1175)) (-5 *1 (-1121 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *4)) (-4 *4 (-1003)) (-5 *2 (-1170)) (-5 *1 (-1116 *4))))) + (-12 (-5 *3 (-579 *4)) (-4 *4 (-1006)) (-5 *2 (-1175)) (-5 *1 (-1121 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-478)) (-4 *5 (-295)) (-5 *2 (-341 (-1070 (-1070 *5)))) - (-5 *1 (-1113 *5)) (-5 *3 (-1070 (-1070 *5)))))) + (-12 (-5 *4 (-479)) (-4 *5 (-295)) (-5 *2 (-342 (-1075 (-1075 *5)))) + (-5 *1 (-1118 *5)) (-5 *3 (-1075 (-1075 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-295)) (-5 *2 (-341 (-1070 (-1070 *4)))) (-5 *1 (-1113 *4)) - (-5 *3 (-1070 (-1070 *4)))))) + (-12 (-4 *4 (-295)) (-5 *2 (-342 (-1075 (-1075 *4)))) (-5 *1 (-1118 *4)) + (-5 *3 (-1075 (-1075 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-295)) (-5 *2 (-341 (-1070 (-1070 *4)))) (-5 *1 (-1113 *4)) - (-5 *3 (-1070 (-1070 *4)))))) + (-12 (-4 *4 (-295)) (-5 *2 (-342 (-1075 (-1075 *4)))) (-5 *1 (-1118 *4)) + (-5 *3 (-1075 (-1075 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3971)) (-4 *1 (-122 *3)) - (-4 *3 (-1114)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-611 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3977)) (-4 *1 (-122 *3)) + (-4 *3 (-1119)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-612 *3)) (-4 *3 (-1119)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1109 *4 *5 *3 *2)) (-4 *4 (-489)) (-4 *5 (-710)) - (-4 *3 (-749)) (-4 *2 (-969 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-1112 *2)) (-4 *2 (-1114))))) + (|partial| -12 (-4 *1 (-1114 *4 *5 *3 *2)) (-4 *4 (-490)) (-4 *5 (-711)) + (-4 *3 (-750)) (-4 *2 (-970 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *1 (-1117 *2)) (-4 *2 (-1119))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-578 (-578 (-177)))) (-5 *4 (-177)) (-5 *2 (-578 (-847 *4))) - (-5 *1 (-1111)) (-5 *3 (-847 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-578 (-578 (-177)))) (-5 *1 (-1111))))) + (-12 (-5 *5 (-579 (-579 (-177)))) (-5 *4 (-177)) (-5 *2 (-579 (-848 *4))) + (-5 *1 (-1116)) (-5 *3 (-848 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-579 (-579 (-177)))) (-5 *1 (-1116))))) (((*1 *1 *2) - (-12 (-5 *2 (-823)) (-4 *1 (-193 *3 *4)) (-4 *4 (-954)) (-4 *4 (-1114)))) + (-12 (-5 *2 (-824)) (-4 *1 (-193 *3 *4)) (-4 *4 (-955)) (-4 *4 (-1119)))) ((*1 *1 *2) - (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) (-4 *5 (-193 (-3933 *3) (-687))) + (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-4 *5 (-193 (-3939 *3) (-688))) (-14 *6 - (-1 (-83) (-2 (|:| -2382 *2) (|:| -2383 *5)) - (-2 (|:| -2382 *2) (|:| -2383 *5)))) - (-5 *1 (-394 *3 *4 *2 *5 *6 *7)) (-4 *2 (-749)) - (-4 *7 (-854 *4 *5 (-766 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111))))) + (-1 (-83) (-2 (|:| -2387 *2) (|:| -2388 *5)) + (-2 (|:| -2387 *2) (|:| -2388 *5)))) + (-5 *1 (-395 *3 *4 *2 *5 *6 *7)) (-4 *2 (-750)) + (-4 *7 (-855 *4 *5 (-767 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-847 (-177))) (-5 *4 (-776)) (-5 *2 (-1170)) (-5 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-954)) (-4 *1 (-886 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-847 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-847 *3)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) + (-12 (-5 *3 (-848 (-177))) (-5 *4 (-777)) (-5 *2 (-1175)) (-5 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-955)) (-4 *1 (-887 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-848 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-848 *3)) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-848 *3)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-847 (-177))) (-5 *1 (-1111)) (-5 *3 (-177))))) + (-12 (-5 *2 (-848 (-177))) (-5 *1 (-1116)) (-5 *3 (-177))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-177)) (-5 *5 (-478)) (-5 *2 (-1110 *3)) (-5 *1 (-705 *3)) - (-4 *3 (-880)))) + (-12 (-5 *4 (-177)) (-5 *5 (-479)) (-5 *2 (-1115 *3)) (-5 *1 (-706 *3)) + (-4 *3 (-881)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *4 (-83)) (-5 *1 (-1110 *2)) - (-4 *2 (-880))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1110 *3)) (-4 *3 (-880))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1110 *3)) (-4 *3 (-880))))) + (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *4 (-83)) (-5 *1 (-1115 *2)) + (-4 *2 (-881))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-1115 *3)) (-4 *3 (-881))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1115 *3)) (-4 *3 (-881))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1110 *3)) (-4 *3 (-880))))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1115 *3)) (-4 *3 (-881))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-1110 *3)) (-4 *3 (-880))))) -(((*1 *2 *1) (-12 (-5 *1 (-1110 *2)) (-4 *2 (-880))))) + (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *1 (-1115 *3)) (-4 *3 (-881))))) +(((*1 *2 *1) (-12 (-5 *1 (-1115 *2)) (-4 *2 (-881))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-83) *9)) (-5 *5 (-1 (-83) *9 *9)) - (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) (-4 *8 (-749)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3301 (-578 *9)))) (-5 *3 (-578 *9)) - (-4 *1 (-1109 *6 *7 *8 *9)))) + (-4 *9 (-970 *6 *7 *8)) (-4 *6 (-490)) (-4 *7 (-711)) (-4 *8 (-750)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3306 (-579 *9)))) (-5 *3 (-579 *9)) + (-4 *1 (-1114 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-83) *8 *8)) (-4 *8 (-969 *5 *6 *7)) - (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3301 (-578 *8)))) (-5 *3 (-578 *8)) - (-4 *1 (-1109 *5 *6 *7 *8))))) + (|partial| -12 (-5 *4 (-1 (-83) *8 *8)) (-4 *8 (-970 *5 *6 *7)) + (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3306 (-579 *8)))) (-5 *3 (-579 *8)) + (-4 *1 (-1114 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *6))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-579 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) - (-5 *2 (-2 (|:| -3837 (-578 *6)) (|:| -1685 (-578 *6))))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) + (-5 *2 (-2 (|:| -3843 (-579 *6)) (|:| -1690 (-579 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)))) + (-12 (-5 *3 (-579 *1)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1109 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)))) + (-12 (-5 *3 (-579 *1)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *1 (-1109 *5 *6 *7 *3)) (-4 *5 (-489)) - (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) (-5 *2 (-83))))) + (-12 (-5 *4 (-1 (-83) *3 *3)) (-4 *1 (-1114 *5 *6 *7 *3)) (-4 *5 (-490)) + (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1109 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)))) + (-12 (-5 *3 (-579 *1)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1109 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *1)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)))) + (-12 (-5 *3 (-579 *1)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1109 *4 *5 *6 *3)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1114 *4 *5 *6 *3)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-83) *7 (-578 *7))) (-4 *1 (-1109 *4 *5 *6 *7)) - (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) + (-12 (-5 *3 (-1 (-83) *7 (-579 *7))) (-4 *1 (-1114 *4 *5 *6 *7)) + (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-83) *8 *8)) - (-4 *1 (-1109 *5 *6 *7 *8)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) - (-4 *8 (-969 *5 *6 *7))))) + (-12 (-5 *2 (-579 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-83) *8 *8)) + (-4 *1 (-1114 *5 *6 *7 *8)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) + (-4 *8 (-970 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *2 (-969 *3 *4 *5))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *2 (-970 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *2 (-969 *3 *4 *5))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *2 (-970 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *2 (-969 *3 *4 *5))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *2 (-970 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *2 (-969 *3 *4 *5))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *2 (-970 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1109 *2 *3 *4 *5)) (-4 *2 (-489)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *5 (-969 *2 *3 *4))))) + (-12 (-4 *1 (-1114 *2 *3 *4 *5)) (-4 *2 (-490)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *5 (-970 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *2 (-969 *3 *4 *5))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *2 (-970 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 *10)) - (-5 *1 (-558 *5 *6 *7 *8 *9 *10)) (-4 *9 (-975 *5 *6 *7 *8)) - (-4 *10 (-1010 *5 *6 *7 *8)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 *10)) + (-5 *1 (-559 *5 *6 *7 *8 *9 *10)) (-4 *9 (-976 *5 *6 *7 *8)) + (-4 *10 (-1013 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) - (-14 *6 (-578 (-1075))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-562 *5 *6)))) + (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) + (-14 *6 (-579 (-1080))) (-5 *2 (-579 (-952 *5 *6))) (-5 *1 (-563 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) - (-14 *6 (-578 (-1075))) - (-5 *2 (-578 (-1046 *5 (-463 (-766 *6)) (-766 *6) (-696 *5 (-766 *6))))) - (-5 *1 (-562 *5 *6)))) + (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) + (-14 *6 (-579 (-1080))) + (-5 *2 (-579 (-1050 *5 (-464 (-767 *6)) (-767 *6) (-697 *5 (-767 *6))))) + (-5 *1 (-563 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) - (-5 *1 (-933 *5 *6 *7 *8)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-934 *5 *6 *7 *8))) + (-5 *1 (-934 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) - (-5 *1 (-933 *5 *6 *7 *8)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-934 *5 *6 *7 *8))) + (-5 *1 (-934 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) - (-14 *6 (-578 (-1075))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-951 *5 *6)))) + (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) + (-14 *6 (-579 (-1080))) (-5 *2 (-579 (-952 *5 *6))) (-5 *1 (-952 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *5 *6 *7 *8)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-976 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1046 *5 *6 *7 *8))) - (-5 *1 (-1046 *5 *6 *7 *8)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-1050 *5 *6 *7 *8))) + (-5 *1 (-1050 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1046 *5 *6 *7 *8))) - (-5 *1 (-1046 *5 *6 *7 *8)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-1050 *5 *6 *7 *8))) + (-5 *1 (-1050 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-1109 *4 *5 *6 *7))))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-1114 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-578 (-2 (|:| -3837 *1) (|:| -1685 (-578 *7))))) (-5 *3 (-578 *7)) - (-4 *1 (-1109 *4 *5 *6 *7))))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-579 (-2 (|:| -3843 *1) (|:| -1690 (-579 *7))))) (-5 *3 (-579 *7)) + (-4 *1 (-1114 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5))))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-579 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1109 *3 *4 *5 *2)) (-4 *3 (-489)) (-4 *4 (-710)) - (-4 *5 (-749)) (-4 *2 (-969 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1114 *3 *4 *5 *2)) (-4 *3 (-490)) (-4 *4 (-711)) + (-4 *5 (-750)) (-4 *2 (-970 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1109 *3 *4 *5 *6)) (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-4 *5 (-313)) (-5 *2 (-687))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) + (-12 (-4 *1 (-1114 *3 *4 *5 *6)) (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-4 *5 (-314)) (-5 *2 (-688))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-954)) (-5 *1 (-50 *2 *3)) (-14 *3 (-578 (-1075))))) + (-12 (-4 *2 (-955)) (-5 *1 (-50 *2 *3)) (-14 *3 (-579 (-1080))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-578 (-823))) (-4 *2 (-308)) (-5 *1 (-123 *4 *2 *5)) - (-14 *4 (-823)) (-14 *5 (-899 *4 *2)))) + (-12 (-5 *3 (-579 (-824))) (-4 *2 (-308)) (-5 *1 (-123 *4 *2 *5)) + (-14 *4 (-824)) (-14 *5 (-900 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) - (-14 *4 (-578 (-1075))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-102)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-954)))) + (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) + (-14 *4 (-579 (-1080))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-102)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-955)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *2 (-489)) (-5 *1 (-557 *2 *4)) (-4 *4 (-1140 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-640 *2)) (-4 *2 (-954)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-954)) (-5 *1 (-667 *2 *3)) (-4 *3 (-658)))) + (-12 (-5 *3 (-479)) (-4 *2 (-490)) (-5 *1 (-558 *2 *4)) (-4 *4 (-1145 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-641 *2)) (-4 *2 (-955)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-955)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-687))) (-4 *1 (-672 *4 *5)) - (-4 *4 (-954)) (-4 *5 (-749)))) + (-12 (-5 *2 (-579 *5)) (-5 *3 (-579 (-688))) (-4 *1 (-673 *4 *5)) + (-4 *4 (-955)) (-4 *5 (-750)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *2)) (-4 *4 (-954)) (-4 *2 (-749)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-754 *2)) (-4 *2 (-954)))) + (-12 (-5 *3 (-688)) (-4 *1 (-673 *4 *2)) (-4 *4 (-955)) (-4 *2 (-750)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-755 *2)) (-4 *2 (-955)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-687))) (-4 *1 (-854 *4 *5 *6)) - (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)))) + (-12 (-5 *2 (-579 *6)) (-5 *3 (-579 (-688))) (-4 *1 (-855 *4 *5 *6)) + (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-854 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *2 (-749)))) + (-12 (-5 *3 (-688)) (-4 *1 (-855 *4 *5 *2)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *2 (-750)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-4 *2 (-854 *4 (-463 *5) *5)) (-5 *1 (-1026 *4 *5 *2)) - (-4 *4 (-954)) (-4 *5 (-749)))) + (-12 (-5 *3 (-688)) (-4 *2 (-855 *4 (-464 *5) *5)) (-5 *1 (-1030 *4 *5 *2)) + (-4 *4 (-955)) (-4 *5 (-750)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-850 *4)) (-5 *1 (-1107 *4)) (-4 *4 (-954))))) + (-12 (-5 *3 (-688)) (-5 *2 (-851 *4)) (-5 *1 (-1112 *4)) (-4 *4 (-955))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1026 *4 *3 *5))) (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954)) - (-4 *3 (-749)) (-5 *1 (-1026 *4 *3 *5)) (-4 *5 (-854 *4 (-463 *3) *3)))) + (-12 (-5 *2 (-1 (-1030 *4 *3 *5))) (-4 *4 (-38 (-344 (-479)))) (-4 *4 (-955)) + (-4 *3 (-750)) (-5 *1 (-1030 *4 *3 *5)) (-4 *5 (-855 *4 (-464 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1107 *4))) (-5 *3 (-1075)) (-5 *1 (-1107 *4)) - (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954))))) + (-12 (-5 *2 (-1 (-1112 *4))) (-5 *3 (-1080)) (-5 *1 (-1112 *4)) + (-4 *4 (-38 (-344 (-479)))) (-4 *4 (-955))))) (((*1 *2 *2) - (-12 (-4 *3 (-548 (-793 *3))) (-4 *3 (-789 *3)) (-4 *3 (-385)) - (-5 *1 (-1106 *3 *2)) (-4 *2 (-548 (-793 *3))) (-4 *2 (-789 *3)) - (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-549 (-794 *3))) (-4 *3 (-790 *3)) (-4 *3 (-386)) + (-5 *1 (-1111 *3 *2)) (-4 *2 (-549 (-794 *3))) (-4 *2 (-790 *3)) + (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) -(((*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-1003)) (-5 *1 (-871 *3)))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) +(((*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-1006)) (-5 *1 (-872 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-118)) (-4 *2 (-254)) (-4 *2 (-385)) (-4 *3 (-749)) - (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) (-4 *5 (-854 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-261 (-478))) (-5 *1 (-1019)))) + (-12 (-4 *2 (-118)) (-4 *2 (-254)) (-4 *2 (-386)) (-4 *3 (-750)) + (-4 *4 (-711)) (-5 *1 (-893 *2 *3 *4 *5)) (-4 *5 (-855 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-261 (-479))) (-5 *1 (-1023)))) ((*1 *2 *2) - (-12 (-4 *3 (-385)) (-5 *1 (-1106 *3 *2)) (-4 *2 (-13 (-357 *3) (-1100)))))) + (-12 (-4 *3 (-386)) (-5 *1 (-1111 *3 *2)) (-4 *2 (-13 (-358 *3) (-1105)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-489)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *1 (-1105 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) + (-12 (-4 *3 (-490)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-489)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *1 (-1105 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) + (-12 (-4 *3 (-490)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *1 (-1110 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-140 (-261 *4))) - (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 (-140 *4)))))) + (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-140 (-261 *4))) + (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 (-140 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-140 *3)) - (-5 *1 (-1104 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4)))))) + (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-140 *3)) + (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-83)) (-5 *1 (-160 *4 *3)) - (-4 *3 (-13 (-27) (-1100) (-357 (-140 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) + (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-83)) (-5 *1 (-160 *4 *3)) + (-4 *3 (-13 (-27) (-1105) (-358 (-140 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-83)) - (-5 *1 (-1104 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4)))))) + (-12 (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-83)) + (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4)))))) (((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-261 *4)) - (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 (-140 *4)))))) + (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-261 *4)) + (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 (-140 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 *3)))))) + (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 *3)))))) (((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-261 *4)) - (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 (-140 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) + (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-261 *4)) + (-5 *1 (-160 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 (-140 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 *3)))))) + (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 (-140 *3)))))) + (-12 (-4 *3 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 (-140 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 *3)))))) + (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 (-140 *3)))))) + (-12 (-4 *3 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 (-140 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *4 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 (-140 *4)))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *4 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 (-140 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 *3))))) + (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *1 (-1104 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4)))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 (-140 *3)))))) + (-12 (-4 *3 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 (-140 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *1 (-160 *4 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 (-140 *4)))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *1 (-160 *4 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 (-140 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1104 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 *3))))) + (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1109 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *1 (-1104 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4)))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *1 (-1109 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) - ((*1 *1 *1) (-4 *1 (-1103)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) (-4 *1 (-1108)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-750)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) - ((*1 *1 *1) (-4 *1 (-1103)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) (-4 *1 (-1108)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) - ((*1 *1 *1) (-4 *1 (-1103)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) (-4 *1 (-1108)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) - ((*1 *1 *1) (-4 *1 (-1103)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) (-4 *1 (-1108)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) - ((*1 *1 *1) (-4 *1 (-1103)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) (-4 *1 (-1108)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-277 *2)) (-4 *2 (-750)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3)))) - ((*1 *1 *1) (-4 *1 (-1103)))) -(((*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1101 *3)) (-4 *3 (-1003))))) -(((*1 *1 *2) (-12 (-5 *1 (-1101 *2)) (-4 *2 (-1003)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-1101 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3)))) + ((*1 *1 *1) (-4 *1 (-1108)))) +(((*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1106 *3)) (-4 *3 (-1006))))) +(((*1 *1 *2) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1006)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-1106 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-578 (-1101 *2))) (-5 *1 (-1101 *2)) (-4 *2 (-1003))))) -(((*1 *1 *1) (-12 (-5 *1 (-1101 *2)) (-4 *2 (-1003))))) + (-12 (-5 *3 (-579 (-1106 *2))) (-5 *1 (-1106 *2)) (-4 *2 (-1006))))) +(((*1 *1 *1) (-12 (-5 *1 (-1106 *2)) (-4 *2 (-1006))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-1101 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1101 *3)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-579 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1106 *3)) (-4 *3 (-1006))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-1101 *3))) (-5 *1 (-1101 *3)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-579 (-1106 *3))) (-5 *1 (-1106 *3)) (-4 *3 (-1006))))) (((*1 *2) - (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489)))) - ((*1 *1) (-5 *1 (-410))) ((*1 *1) (-4 *1 (-1100)))) -(((*1 *2) (-12 (-5 *2 (-1033 (-177))) (-5 *1 (-1098))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1059)) (-5 *2 (-478)) (-5 *1 (-1097 *4)) (-4 *4 (-954))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-1097 *3)) (-4 *3 (-954))))) -(((*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) + (-12 (-4 *2 (-13 (-358 *3) (-909))) (-5 *1 (-227 *3 *2)) (-4 *3 (-490)))) + ((*1 *1) (-5 *1 (-411))) ((*1 *1) (-4 *1 (-1105)))) +(((*1 *2) (-12 (-5 *2 (-1037 (-177))) (-5 *1 (-1103))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1063)) (-5 *2 (-479)) (-5 *1 (-1102 *4)) (-4 *4 (-955))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-479)) (-5 *1 (-1102 *3)) (-4 *3 (-955))))) +(((*1 *2 *1) (-12 (-4 *1 (-708)) (-5 *2 (-479)))) + ((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) - (-5 *2 (-478)))) + (-12 (-4 *1 (-973 *4 *3)) (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) + (-5 *2 (-479)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) - (-5 *1 (-1017 *4 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *4))))) + (|partial| -12 (-4 *4 (-13 (-490) (-944 *2) (-576 *2) (-386))) (-5 *2 (-479)) + (-5 *1 (-1021 *4 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-743 *3)) - (-4 *3 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) - (-5 *1 (-1017 *6 *3)))) + (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-744 *3)) + (-4 *3 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-490) (-944 *2) (-576 *2) (-386))) (-5 *2 (-479)) + (-5 *1 (-1021 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-1059)) - (-4 *6 (-13 (-489) (-943 *2) (-575 *2) (-385))) (-5 *2 (-478)) - (-5 *1 (-1017 *6 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *6))))) + (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-1063)) + (-4 *6 (-13 (-490) (-944 *2) (-576 *2) (-386))) (-5 *2 (-479)) + (-5 *1 (-1021 *6 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-385)) (-5 *2 (-478)) - (-5 *1 (-1018 *4)))) + (|partial| -12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-386)) (-5 *2 (-479)) + (-5 *1 (-1022 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-743 (-343 (-850 *6)))) - (-5 *3 (-343 (-850 *6))) (-4 *6 (-385)) (-5 *2 (-478)) (-5 *1 (-1018 *6)))) + (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-744 (-344 (-851 *6)))) + (-5 *3 (-344 (-851 *6))) (-4 *6 (-386)) (-5 *2 (-479)) (-5 *1 (-1022 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-343 (-850 *6))) (-5 *4 (-1075)) (-5 *5 (-1059)) - (-4 *6 (-385)) (-5 *2 (-478)) (-5 *1 (-1018 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-478)) (-5 *1 (-1097 *3)) (-4 *3 (-954))))) -(((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1096)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1096))))) -(((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1096))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1059)) (-5 *1 (-1096))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-309 *2)) (-4 *2 (-1003)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1059)) (-5 *1 (-1096))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1096))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-765) (-765))) (-5 *1 (-84)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-765) (-578 (-765)))) (-5 *1 (-84)))) - ((*1 *2 *1) (-12 (-5 *2 (-627 (-1 (-765) (-578 (-765))))) (-5 *1 (-84)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1170)) (-5 *1 (-165 *3)) + (|partial| -12 (-5 *3 (-344 (-851 *6))) (-5 *4 (-1080)) (-5 *5 (-1063)) + (-4 *6 (-386)) (-5 *2 (-479)) (-5 *1 (-1022 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-479)) (-5 *1 (-1102 *3)) (-4 *3 (-955))))) +(((*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1101)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1101))))) +(((*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1101))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1063)) (-5 *1 (-1101))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-309 *2)) (-4 *2 (-1006)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1063)) (-5 *1 (-1101))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1101))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-766) (-766))) (-5 *1 (-84)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-766) (-579 (-766)))) (-5 *1 (-84)))) + ((*1 *2 *1) (-12 (-5 *2 (-628 (-1 (-766) (-579 (-766))))) (-5 *1 (-84)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1175)) (-5 *1 (-165 *3)) (-4 *3 - (-13 (-749) - (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 (*2 $)) - (-15 -1947 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-435)))) - ((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-642)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1094)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094))))) + (-13 (-750) + (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 (*2 $)) + (-15 -1952 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) + ((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-643)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1099)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-687)) (-4 *3 (-1114)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-688)) (-4 *3 (-1119)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)))) ((*1 *1) (-5 *1 (-143))) - ((*1 *1) (-12 (-5 *1 (-164 *2 *3)) (-14 *2 (-823)) (-4 *3 (-1003)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-332)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) + ((*1 *1) (-12 (-5 *1 (-164 *2 *3)) (-14 *2 (-824)) (-4 *3 (-1006)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1063)) (-4 *1 (-333)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) ((*1 *1) - (-12 (-4 *3 (-1003)) (-5 *1 (-788 *2 *3 *4)) (-4 *2 (-1003)) - (-4 *4 (-603 *3)))) - ((*1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) - ((*1 *1 *2) (-12 (-5 *1 (-1042 *3 *2)) (-14 *3 (-687)) (-4 *2 (-954)))) - ((*1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954)))) - ((*1 *1 *1) (-5 *1 (-1075))) ((*1 *1) (-5 *1 (-1075))) - ((*1 *1) (-5 *1 (-1094)))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-1094))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-749)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-97 *2)) (-4 *2 (-749)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-234 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-687)) (-4 *1 (-629 *2)) (-4 *2 (-1003)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1170)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1093 *3 *2)) (-4 *3 (-1003))))) + (-12 (-4 *3 (-1006)) (-5 *1 (-789 *2 *3 *4)) (-4 *2 (-1006)) + (-4 *4 (-604 *3)))) + ((*1 *1) (-12 (-5 *1 (-792 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) + ((*1 *1 *2) (-12 (-5 *1 (-1046 *3 *2)) (-14 *3 (-688)) (-4 *2 (-955)))) + ((*1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955)))) + ((*1 *1 *1) (-5 *1 (-1080))) ((*1 *1) (-5 *1 (-1080))) + ((*1 *1) (-5 *1 (-1099)))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-1099))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-750)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-97 *2)) (-4 *2 (-750)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-234 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-688)) (-4 *1 (-630 *2)) (-4 *2 (-1006)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1175)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1006)) (-5 *1 (-1098 *3 *2)) (-4 *3 (-1006))))) (((*1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) (((*1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) (((*1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) (((*1 *2) - (-12 (-5 *2 (-1170)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-1175)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) (((*1 *2) - (-12 (-5 *2 (-1170)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-1175)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) (((*1 *2 *3) - (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1093 *4 *5)) (-4 *4 (-1003)) - (-4 *5 (-1003))))) + (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1098 *4 *5)) (-4 *4 (-1006)) + (-4 *5 (-1006))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1093 *4 *5)) (-4 *4 (-1003)) - (-4 *5 (-1003))))) + (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1098 *4 *5)) (-4 *4 (-1006)) + (-4 *5 (-1006))))) (((*1 *2) - (-12 (-5 *2 (-1170)) (-5 *1 (-1093 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-1175)) (-5 *1 (-1098 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 (-2 (|:| -3836 *3) (|:| |entry| *4)))) (-4 *3 (-1003)) - (-4 *4 (-1003)) (-4 *1 (-1092 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1092 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-1090 *2)) (-4 *2 (-308))))) + (-12 (-5 *2 (-579 (-2 (|:| -3842 *3) (|:| |entry| *4)))) (-4 *3 (-1006)) + (-4 *4 (-1006)) (-4 *1 (-1097 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1097 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-1095 *2)) (-4 *2 (-308))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-823)) (-5 *2 (-1070 *3)) (-5 *1 (-1090 *3)) (-4 *3 (-308))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-1090 *2)) (-4 *2 (-308))))) + (-12 (-5 *4 (-824)) (-5 *2 (-1075 *3)) (-5 *1 (-1095 *3)) (-4 *3 (-308))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-5 *1 (-1095 *2)) (-4 *2 (-308))))) (((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-32 *3 *4)) (-4 *4 (-357 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-55)) (-5 *1 (-84)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-687)) (-5 *1 (-84)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-84)))) + (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-32 *3 *4)) (-4 *4 (-358 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-55)) (-5 *1 (-84)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-688)) (-5 *1 (-84)))) + ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-84)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-129 *3 *4)) (-4 *4 (-357 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-84)) (-5 *1 (-134)))) + (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-129 *3 *4)) (-4 *4 (-358 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-84)) (-5 *1 (-134)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-227 *3 *4)) - (-4 *4 (-13 (-357 *3) (-908))))) + (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-227 *3 *4)) + (-4 *4 (-13 (-358 *3) (-909))))) ((*1 *2 *2) (-12 (-5 *2 (-84)) (-5 *1 (-249 *3)) (-4 *3 (-250)))) ((*1 *2 *2) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *4 (-1003)) (-5 *1 (-356 *3 *4)) (-4 *3 (-357 *4)))) + (-12 (-5 *2 (-84)) (-4 *4 (-1006)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-367 *3 *4)) (-4 *4 (-357 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-84)) (-5 *1 (-545 *3)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-368 *3 *4)) (-4 *4 (-358 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-84)) (-5 *1 (-546 *3)) (-4 *3 (-1006)))) ((*1 *2 *2) - (-12 (-5 *2 (-84)) (-4 *3 (-489)) (-5 *1 (-563 *3 *4)) - (-4 *4 (-13 (-357 *3) (-908) (-1100))))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-925)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1089 *2)) (-4 *2 (-1003))))) + (-12 (-5 *2 (-84)) (-4 *3 (-490)) (-5 *1 (-564 *3 *4)) + (-4 *4 (-13 (-358 *3) (-909) (-1105))))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-926)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1094 *2)) (-4 *2 (-1006))))) (((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-578 (-578 *3))))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-579 (-579 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-5 *2 (-578 (-578 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-578 *3))) (-5 *1 (-1088 *3)) (-4 *3 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-5 *1 (-1088 *3))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-579 (-579 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-579 *3))) (-5 *1 (-1093 *3)) (-4 *3 (-1006))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-5 *1 (-1093 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-749)) + (-12 (-4 *4 (-750)) (-5 *2 - (-2 (|:| |f1| (-578 *4)) (|:| |f2| (-578 (-578 (-578 *4)))) - (|:| |f3| (-578 (-578 *4))) (|:| |f4| (-578 (-578 (-578 *4)))))) - (-5 *1 (-1086 *4)) (-5 *3 (-578 (-578 (-578 *4))))))) + (-2 (|:| |f1| (-579 *4)) (|:| |f2| (-579 (-579 (-579 *4)))) + (|:| |f3| (-579 (-579 *4))) (|:| |f4| (-579 (-579 (-579 *4)))))) + (-5 *1 (-1091 *4)) (-5 *3 (-579 (-579 (-579 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-749)) (-5 *3 (-578 *6)) (-5 *5 (-578 *3)) + (-12 (-4 *6 (-750)) (-5 *3 (-579 *6)) (-5 *5 (-579 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-578 *5)) (|:| |f3| *5) (|:| |f4| (-578 *5)))) - (-5 *1 (-1086 *6)) (-5 *4 (-578 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-579 *5)) (|:| |f3| *5) (|:| |f4| (-579 *5)))) + (-5 *1 (-1091 *6)) (-5 *4 (-579 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-308)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) - (-4 *7 (-897 *4)) (-4 *2 (-622 *7 *8 *9)) - (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-622 *4 *5 *6)) - (-4 *8 (-317 *7)) (-4 *9 (-317 *7)))) + (|partial| -12 (-4 *4 (-490)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) + (-4 *7 (-898 *4)) (-4 *2 (-623 *7 *8 *9)) + (-5 *1 (-455 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-623 *4 *5 *6)) + (-4 *8 (-318 *7)) (-4 *9 (-318 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)) (-4 *2 (-308)))) + (|partial| -12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)) (-4 *2 (-308)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-308)) (-4 *3 (-144)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-625 *2)) (-4 *2 (-308)) (-4 *2 (-954)))) + (|partial| -12 (-4 *3 (-308)) (-4 *3 (-144)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-626 *2)) (-4 *2 (-308)) (-4 *2 (-955)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1023 *2 *3 *4 *5)) (-4 *3 (-954)) + (|partial| -12 (-4 *1 (-1027 *2 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-193 *2 *3)) (-4 *5 (-193 *2 *3)) (-4 *3 (-308)))) - ((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-1086 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-1091 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-749)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1086 *4)) - (-5 *3 (-578 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-749)) (-5 *1 (-1086 *3))))) + (-12 (-4 *4 (-750)) (-5 *2 (-579 (-579 *4))) (-5 *1 (-1091 *4)) + (-5 *3 (-579 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-750)) (-5 *1 (-1091 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-749)) (-5 *2 (-1088 (-578 *4))) (-5 *1 (-1086 *4)) - (-5 *3 (-578 *4))))) + (-12 (-4 *4 (-750)) (-5 *2 (-1093 (-579 *4))) (-5 *1 (-1091 *4)) + (-5 *3 (-579 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-749)) (-5 *2 (-578 (-578 (-578 *4)))) (-5 *1 (-1086 *4)) - (-5 *3 (-578 (-578 *4)))))) + (-12 (-4 *4 (-750)) (-5 *2 (-579 (-579 (-579 *4)))) (-5 *1 (-1091 *4)) + (-5 *3 (-579 (-579 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1088 (-578 *4))) (-4 *4 (-749)) (-5 *2 (-578 (-578 *4))) - (-5 *1 (-1086 *4))))) + (-12 (-5 *3 (-1093 (-579 *4))) (-4 *4 (-750)) (-5 *2 (-579 (-579 *4))) + (-5 *1 (-1091 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) - (-5 *1 (-1086 *4)) (-4 *4 (-749))))) + (-12 (-5 *3 (-579 (-579 (-579 *4)))) (-5 *2 (-579 (-579 *4))) + (-5 *1 (-1091 *4)) (-4 *4 (-750))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-4 *4 (-749)) - (-5 *1 (-1086 *4))))) + (-12 (-5 *3 (-579 (-579 (-579 *4)))) (-5 *2 (-579 (-579 *4))) (-4 *4 (-750)) + (-5 *1 (-1091 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-578 *4)) (-4 *4 (-749)) - (-5 *1 (-1086 *4))))) + (-12 (-5 *2 (-579 (-579 (-579 *4)))) (-5 *3 (-579 *4)) (-4 *4 (-750)) + (-5 *1 (-1091 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-1 (-83) *5 *5)) - (-5 *4 (-578 *5)) (-4 *5 (-749)) (-5 *1 (-1086 *5))))) + (-12 (-5 *2 (-579 (-579 (-579 *5)))) (-5 *3 (-1 (-83) *5 *5)) + (-5 *4 (-579 *5)) (-4 *5 (-750)) (-5 *1 (-1091 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-83) *6 *6)) (-4 *6 (-749)) (-5 *4 (-578 *6)) - (-5 *2 (-2 (|:| |fs| (-83)) (|:| |sd| *4) (|:| |td| (-578 *4)))) - (-5 *1 (-1086 *6)) (-5 *5 (-578 *4))))) -(((*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1085))))) -(((*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1085))))) -(((*1 *2) (-12 (-5 *2 (-101)) (-5 *1 (-1085))))) -(((*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-1085))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-1085))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1075))) (-4 *5 (-489)) - (-5 *2 (-578 (-578 (-850 *5)))) (-5 *1 (-1084 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-343 (-850 (-478))))) - (-5 *2 (-578 (-578 (-245 (-850 *4))))) (-5 *1 (-325 *4)) - (-4 *4 (-13 (-748) (-308))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-245 (-343 (-850 (-478)))))) - (-5 *2 (-578 (-578 (-245 (-850 *4))))) (-5 *1 (-325 *4)) - (-4 *4 (-13 (-748) (-308))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 (-478)))) (-5 *2 (-578 (-245 (-850 *4)))) - (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-245 (-343 (-850 (-478))))) (-5 *2 (-578 (-245 (-850 *4)))) - (-5 *1 (-325 *4)) (-4 *4 (-13 (-748) (-308))))) + (-12 (-5 *3 (-1 (-83) *6 *6)) (-4 *6 (-750)) (-5 *4 (-579 *6)) + (-5 *2 (-2 (|:| |fs| (-83)) (|:| |sd| *4) (|:| |td| (-579 *4)))) + (-5 *1 (-1091 *6)) (-5 *5 (-579 *4))))) +(((*1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1090))))) +(((*1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1090))))) +(((*1 *2) (-12 (-5 *2 (-101)) (-5 *1 (-1090))))) +(((*1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-1090))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-1090))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-344 (-851 *5)))) (-5 *4 (-579 (-1080))) (-4 *5 (-490)) + (-5 *2 (-579 (-579 (-851 *5)))) (-5 *1 (-1089 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-344 (-851 (-479))))) + (-5 *2 (-579 (-579 (-245 (-851 *4))))) (-5 *1 (-326 *4)) + (-4 *4 (-13 (-749) (-308))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-245 (-344 (-851 (-479)))))) + (-5 *2 (-579 (-579 (-245 (-851 *4))))) (-5 *1 (-326 *4)) + (-4 *4 (-13 (-749) (-308))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-344 (-851 (-479)))) (-5 *2 (-579 (-245 (-851 *4)))) + (-5 *1 (-326 *4)) (-4 *4 (-13 (-749) (-308))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-245 (-344 (-851 (-479))))) (-5 *2 (-579 (-245 (-851 *4)))) + (-5 *1 (-326 *4)) (-4 *4 (-13 (-749) (-308))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1075)) - (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-4 *4 (-13 (-29 *6) (-1100) (-864))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1994 (-578 *4)))) - (-5 *1 (-590 *6 *4 *3)) (-4 *3 (-595 *4)))) + (|partial| -12 (-5 *5 (-1080)) + (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-4 *4 (-13 (-29 *6) (-1105) (-865))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -1999 (-579 *4)))) + (-5 *1 (-591 *6 *4 *3)) (-4 *3 (-596 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-578 *2)) - (-4 *2 (-13 (-29 *6) (-1100) (-864))) - (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *1 (-590 *6 *2 *3)) (-4 *3 (-595 *2)))) + (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-579 *2)) + (-4 *2 (-13 (-29 *6) (-1105) (-865))) + (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *1 (-591 *6 *2 *3)) (-4 *3 (-596 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3972)))) - (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3972)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1994 (-578 *4)))) - (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) + (-12 (-4 *5 (-308)) (-4 *6 (-13 (-318 *5) (-10 -7 (-6 -3978)))) + (-4 *4 (-13 (-318 *5) (-10 -7 (-6 -3978)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1999 (-579 *4)))) + (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3972)))) - (-4 *7 (-13 (-317 *5) (-10 -7 (-6 -3972)))) - (-5 *2 (-578 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -1994 (-578 *7))))) - (-5 *1 (-604 *5 *6 *7 *3)) (-5 *4 (-578 *7)) (-4 *3 (-622 *5 *6 *7)))) + (-12 (-4 *5 (-308)) (-4 *6 (-13 (-318 *5) (-10 -7 (-6 -3978)))) + (-4 *7 (-13 (-318 *5) (-10 -7 (-6 -3978)))) + (-5 *2 (-579 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -1999 (-579 *7))))) + (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-579 *7)) (-4 *3 (-623 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *5)) (-4 *5 (-308)) + (-12 (-5 *3 (-626 *5)) (-4 *5 (-308)) (-5 *2 - (-2 (|:| |particular| (-3 (-1164 *5) #2="failed")) - (|:| -1994 (-578 (-1164 *5))))) - (-5 *1 (-605 *5)) (-5 *4 (-1164 *5)))) + (-2 (|:| |particular| (-3 (-1169 *5) #2="failed")) + (|:| -1999 (-579 (-1169 *5))))) + (-5 *1 (-606 *5)) (-5 *4 (-1169 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-308)) + (-12 (-5 *3 (-579 (-579 *5))) (-4 *5 (-308)) (-5 *2 - (-2 (|:| |particular| (-3 (-1164 *5) #2#)) (|:| -1994 (-578 (-1164 *5))))) - (-5 *1 (-605 *5)) (-5 *4 (-1164 *5)))) + (-2 (|:| |particular| (-3 (-1169 *5) #2#)) (|:| -1999 (-579 (-1169 *5))))) + (-5 *1 (-606 *5)) (-5 *4 (-1169 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *5)) (-4 *5 (-308)) + (-12 (-5 *3 (-626 *5)) (-4 *5 (-308)) (-5 *2 - (-578 - (-2 (|:| |particular| (-3 (-1164 *5) #2#)) - (|:| -1994 (-578 (-1164 *5)))))) - (-5 *1 (-605 *5)) (-5 *4 (-578 (-1164 *5))))) + (-579 + (-2 (|:| |particular| (-3 (-1169 *5) #2#)) + (|:| -1999 (-579 (-1169 *5)))))) + (-5 *1 (-606 *5)) (-5 *4 (-579 (-1169 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-308)) + (-12 (-5 *3 (-579 (-579 *5))) (-4 *5 (-308)) (-5 *2 - (-578 - (-2 (|:| |particular| (-3 (-1164 *5) #2#)) - (|:| -1994 (-578 (-1164 *5)))))) - (-5 *1 (-605 *5)) (-5 *4 (-578 (-1164 *5))))) + (-579 + (-2 (|:| |particular| (-3 (-1169 *5) #2#)) + (|:| -1999 (-579 (-1169 *5)))))) + (-5 *1 (-606 *5)) (-5 *4 (-579 (-1169 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1075))) (-4 *5 (-489)) - (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-686 *5)))) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-579 (-1080))) (-4 *5 (-490)) + (-5 *2 (-579 (-579 (-245 (-344 (-851 *5)))))) (-5 *1 (-687 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-489)) - (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-686 *4)))) + (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-490)) + (-5 *2 (-579 (-579 (-245 (-344 (-851 *4)))))) (-5 *1 (-687 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-84)) (-5 *4 (-1075)) - (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) (-5 *1 (-688 *5 *2)) - (-4 *2 (-13 (-29 *5) (-1100) (-864))))) + (|partial| -12 (-5 *3 (-84)) (-5 *4 (-1080)) + (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) (-5 *1 (-689 *5 *2)) + (-4 *2 (-13 (-29 *5) (-1105) (-865))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-625 *7)) (-5 *5 (-1075)) - (-4 *7 (-13 (-29 *6) (-1100) (-864))) - (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-2 (|:| |particular| (-1164 *7)) (|:| -1994 (-578 (-1164 *7))))) - (-5 *1 (-718 *6 *7)) (-5 *4 (-1164 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-625 *6)) (-5 *4 (-1075)) - (-4 *6 (-13 (-29 *5) (-1100) (-864))) - (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-578 (-1164 *6))) (-5 *1 (-718 *5 *6)))) + (|partial| -12 (-5 *3 (-626 *7)) (-5 *5 (-1080)) + (-4 *7 (-13 (-29 *6) (-1105) (-865))) + (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-2 (|:| |particular| (-1169 *7)) (|:| -1999 (-579 (-1169 *7))))) + (-5 *1 (-719 *6 *7)) (-5 *4 (-1169 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-626 *6)) (-5 *4 (-1080)) + (-4 *6 (-13 (-29 *5) (-1105) (-865))) + (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-579 (-1169 *6))) (-5 *1 (-719 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-578 (-245 *7))) (-5 *4 (-578 (-84))) (-5 *5 (-1075)) - (-4 *7 (-13 (-29 *6) (-1100) (-864))) - (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-2 (|:| |particular| (-1164 *7)) (|:| -1994 (-578 (-1164 *7))))) - (-5 *1 (-718 *6 *7)))) + (|partial| -12 (-5 *3 (-579 (-245 *7))) (-5 *4 (-579 (-84))) (-5 *5 (-1080)) + (-4 *7 (-13 (-29 *6) (-1105) (-865))) + (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-2 (|:| |particular| (-1169 *7)) (|:| -1999 (-579 (-1169 *7))))) + (-5 *1 (-719 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-84))) (-5 *5 (-1075)) - (-4 *7 (-13 (-29 *6) (-1100) (-864))) - (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-2 (|:| |particular| (-1164 *7)) (|:| -1994 (-578 (-1164 *7))))) - (-5 *1 (-718 *6 *7)))) + (|partial| -12 (-5 *3 (-579 *7)) (-5 *4 (-579 (-84))) (-5 *5 (-1080)) + (-4 *7 (-13 (-29 *6) (-1105) (-865))) + (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-2 (|:| |particular| (-1169 *7)) (|:| -1999 (-579 (-1169 *7))))) + (-5 *1 (-719 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-1075)) - (-4 *7 (-13 (-29 *6) (-1100) (-864))) - (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1994 (-578 *7))) *7 #3="failed")) - (-5 *1 (-718 *6 *7)))) + (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-1080)) + (-4 *7 (-13 (-29 *6) (-1105) (-865))) + (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1999 (-579 *7))) *7 #3="failed")) + (-5 *1 (-719 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-84)) (-5 *5 (-1075)) - (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1994 (-578 *3))) *3 #3#)) - (-5 *1 (-718 *6 *3)) (-4 *3 (-13 (-29 *6) (-1100) (-864))))) + (-12 (-5 *4 (-84)) (-5 *5 (-1080)) + (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1999 (-579 *3))) *3 #3#)) + (-5 *1 (-719 *6 *3)) (-4 *3 (-13 (-29 *6) (-1105) (-865))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-245 *2)) (-5 *4 (-84)) (-5 *5 (-578 *2)) - (-4 *2 (-13 (-29 *6) (-1100) (-864))) (-5 *1 (-718 *6 *2)) - (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))))) + (|partial| -12 (-5 *3 (-245 *2)) (-5 *4 (-84)) (-5 *5 (-579 *2)) + (-4 *2 (-13 (-29 *6) (-1105) (-865))) (-5 *1 (-719 *6 *2)) + (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-84)) (-5 *4 (-245 *2)) (-5 *5 (-578 *2)) - (-4 *2 (-13 (-29 *6) (-1100) (-864))) - (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *1 (-718 *6 *2)))) + (|partial| -12 (-5 *3 (-84)) (-5 *4 (-245 *2)) (-5 *5 (-579 *2)) + (-4 *2 (-13 (-29 *6) (-1105) (-865))) + (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *1 (-719 *6 *2)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -1994 (-578 *6))) "failed") *7 *6)) - (-4 *6 (-308)) (-4 *7 (-595 *6)) - (-5 *2 (-2 (|:| |particular| (-1164 *6)) (|:| -1994 (-625 *6)))) - (-5 *1 (-726 *6 *7)) (-5 *3 (-625 *6)) (-5 *4 (-1164 *6)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -1999 (-579 *6))) "failed") *7 *6)) + (-4 *6 (-308)) (-4 *7 (-596 *6)) + (-5 *2 (-2 (|:| |particular| (-1169 *6)) (|:| -1999 (-626 *6)))) + (-5 *1 (-727 *6 *7)) (-5 *3 (-626 *6)) (-5 *4 (-1169 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 (-343 (-478)))) (-5 *2 (-578 (-323))) (-5 *1 (-929)) - (-5 *4 (-323)))) + (-12 (-5 *3 (-851 (-344 (-479)))) (-5 *2 (-579 (-324))) (-5 *1 (-930)) + (-5 *4 (-324)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 (-478))) (-5 *2 (-578 (-323))) (-5 *1 (-929)) - (-5 *4 (-323)))) + (-12 (-5 *3 (-851 (-479))) (-5 *2 (-579 (-324))) (-5 *1 (-930)) + (-5 *4 (-324)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4)))) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1031 *4)) (-5 *3 (-261 *4)))) + (-12 (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-579 (-245 (-261 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-261 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1031 *4)) + (-12 (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-579 (-245 (-261 *4)))) (-5 *1 (-1035 *4)) (-5 *3 (-245 (-261 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1031 *5)) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-579 (-245 (-261 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-245 (-261 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1031 *5)) (-5 *3 (-261 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-1075))) - (-4 *5 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-578 (-578 (-245 (-261 *5))))) (-5 *1 (-1031 *5)) - (-5 *3 (-578 (-245 (-261 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1075))) (-4 *5 (-489)) - (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-1084 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-1075))) (-4 *5 (-489)) - (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-1084 *5)) - (-5 *3 (-578 (-245 (-343 (-850 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-578 (-343 (-850 *4)))) (-4 *4 (-489)) - (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-1084 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) - (-5 *1 (-1084 *4)) (-5 *3 (-578 (-245 (-343 (-850 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *5))))) - (-5 *1 (-1084 *5)) (-5 *3 (-343 (-850 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *5))))) - (-5 *1 (-1084 *5)) (-5 *3 (-245 (-343 (-850 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *4))))) (-5 *1 (-1084 *4)) - (-5 *3 (-343 (-850 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-578 (-245 (-343 (-850 *4))))) (-5 *1 (-1084 *4)) - (-5 *3 (-245 (-343 (-850 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765))))) - ((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-778)))) - ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-778)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-478)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-1059)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-439)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-522)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-411)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-108)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-127)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (|SuchThatAst|)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-560)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (|SequenceAst|)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-994)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (|RestrictAst|)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-876)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-152)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-941)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-259)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-608)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-125)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-1053)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-457)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-1176)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-970)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-450)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-617)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-67)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (|SignatureAst|)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-104)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-534)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-1175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-612)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-456)))) - ((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1080)))) - ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1080)))) - ((*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1080)))) - ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-1080))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1080))) (-5 *1 (-1080)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-1080))) (-5 *1 (-1080))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1080))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-439)) (-5 *1 (-231)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-478) (-177) (-439) (-1059) (-1080))) (-5 *1 (-1080))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-231))) (-5 *1 (-231)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-1080))) (-5 *1 (-1080))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1080))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2836)) (-5 *2 (-83)) (-5 *1 (-551)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2222)) (-5 *2 (-83)) (-5 *1 (-551)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2835)) (-5 *2 (-83)) (-5 *1 (-551)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2347)) (-5 *2 (-83)) (-5 *1 (-627 *4)) - (-4 *4 (-547 (-765))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-547 (-765))) (-5 *2 (-83)) - (-5 *1 (-627 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-83)) (-5 *1 (-778)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)) (-5 *1 (-778)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-411))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (|SuchThatAst|))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-83)))) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-579 (-245 (-261 *5)))) (-5 *1 (-1035 *5)) (-5 *3 (-261 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-579 (-1080))) + (-4 *5 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-579 (-579 (-245 (-261 *5))))) (-5 *1 (-1035 *5)) + (-5 *3 (-579 (-245 (-261 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-344 (-851 *5)))) (-5 *4 (-579 (-1080))) (-4 *5 (-490)) + (-5 *2 (-579 (-579 (-245 (-344 (-851 *5)))))) (-5 *1 (-1089 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-579 (-1080))) (-4 *5 (-490)) + (-5 *2 (-579 (-579 (-245 (-344 (-851 *5)))))) (-5 *1 (-1089 *5)) + (-5 *3 (-579 (-245 (-344 (-851 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-579 (-344 (-851 *4)))) (-4 *4 (-490)) + (-5 *2 (-579 (-579 (-245 (-344 (-851 *4)))))) (-5 *1 (-1089 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-490)) (-5 *2 (-579 (-579 (-245 (-344 (-851 *4)))))) + (-5 *1 (-1089 *4)) (-5 *3 (-579 (-245 (-344 (-851 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1080)) (-4 *5 (-490)) (-5 *2 (-579 (-245 (-344 (-851 *5))))) + (-5 *1 (-1089 *5)) (-5 *3 (-344 (-851 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1080)) (-4 *5 (-490)) (-5 *2 (-579 (-245 (-344 (-851 *5))))) + (-5 *1 (-1089 *5)) (-5 *3 (-245 (-344 (-851 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-490)) (-5 *2 (-579 (-245 (-344 (-851 *4))))) (-5 *1 (-1089 *4)) + (-5 *3 (-344 (-851 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-490)) (-5 *2 (-579 (-245 (-344 (-851 *4))))) (-5 *1 (-1089 *4)) + (-5 *3 (-245 (-344 (-851 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-548 (-766))))) + ((*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-779)))) + ((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-779)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-479)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1063)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-440)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-523)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-412)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-108)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-127)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1071)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-561)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1001)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-996)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-978)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-877)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-152)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-942)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-259)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-609)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-125)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1057)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-458)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1181)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-971)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-451)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-618)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-67)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1020)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-104)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-535)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-1180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-613)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-1041)) (-5 *2 (-457)))) + ((*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-177)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-1085))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-1085))) (-5 *1 (-1085)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-579 (-1085))) (-5 *1 (-1085))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1085))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-440)) (-5 *1 (-231)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-479) (-177) (-440) (-1063) (-1085))) (-5 *1 (-1085))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-579 (-231))) (-5 *1 (-231)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-1085))) (-5 *1 (-1085))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1085))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2840)) (-5 *2 (-83)) (-5 *1 (-552)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2227)) (-5 *2 (-83)) (-5 *1 (-552)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2839)) (-5 *2 (-83)) (-5 *1 (-552)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (|SequenceAst|))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-994))) (-5 *2 (-83)))) + (-12 (-5 *3 (|[\|\|]| -2352)) (-5 *2 (-83)) (-5 *1 (-628 *4)) + (-4 *4 (-548 (-766))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (|RestrictAst|))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-876))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-941))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-259))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-125))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-1053))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-450))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (|SignatureAst|))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-104))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-534))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-109))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-170))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1037)) (-5 *3 (|[\|\|]| (-456))) (-5 *2 (-83)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1059))) (-5 *2 (-83)) (-5 *1 (-1080)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-439))) (-5 *2 (-83)) (-5 *1 (-1080)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-83)) (-5 *1 (-1080)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-83)) (-5 *1 (-1080))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-243))) ((*1 *1) (-5 *1 (-765))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-548 (-766))) (-5 *2 (-83)) + (-5 *1 (-628 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-83)) (-5 *1 (-779)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-440))) (-5 *2 (-83)) (-5 *1 (-779)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-479))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-440))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-412))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-108))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1071))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-561))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1001))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-996))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-877))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-942))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-259))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-609))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-125))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1181))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-971))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-451))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1020))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-104))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-535))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-109))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-170))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1041)) (-5 *3 (|[\|\|]| (-457))) (-5 *2 (-83)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-83)) (-5 *1 (-1085)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-440))) (-5 *2 (-83)) (-5 *1 (-1085)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-83)) (-5 *1 (-1085)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-479))) (-5 *2 (-83)) (-5 *1 (-1085))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-243))) ((*1 *1) (-5 *1 (-766))) ((*1 *1) - (-12 (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) - (-4 *5 (-854 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-988))) + (-12 (-4 *2 (-386)) (-4 *3 (-750)) (-4 *4 (-711)) (-5 *1 (-893 *2 *3 *4 *5)) + (-4 *5 (-855 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-990))) ((*1 *1) - (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) - (-4 *3 (-13 (-1003) (-34))))) - ((*1 *1) (-5 *1 (-1078))) ((*1 *1) (-5 *1 (-1079)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-372)) (-5 *3 (-1075)) (-5 *1 (-1078)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-372)) (-5 *3 (-1075)) (-5 *1 (-1078)))) + (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) + (-4 *3 (-13 (-1006) (-34))))) + ((*1 *1) (-5 *1 (-1083))) ((*1 *1) (-5 *1 (-1084)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-373)) (-5 *3 (-1080)) (-5 *1 (-1083)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1080)) (-5 *1 (-1083)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-372)) (-5 *3 (-578 (-1075))) (-5 *4 (-1075)) (-5 *1 (-1078)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-372)) (-5 *3 (-1075)) (-5 *1 (-1078)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-372)) (-5 *3 (-1075)) (-5 *1 (-1079)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-372)) (-5 *3 (-578 (-1075))) (-5 *1 (-1079))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-372)) (-5 *1 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-1079))))) + (-12 (-5 *2 (-373)) (-5 *3 (-579 (-1080))) (-5 *4 (-1080)) (-5 *1 (-1083)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-373)) (-5 *3 (-1080)) (-5 *1 (-1083)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-373)) (-5 *3 (-1080)) (-5 *1 (-1084)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-373)) (-5 *3 (-579 (-1080))) (-5 *1 (-1084))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1080)) (-5 *2 (-373)) (-5 *1 (-1084))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-1084))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-370)) + (-12 (-5 *3 (-371)) (-5 *2 - (-578 - (-3 (|:| -3518 (-1075)) - (|:| -3206 (-578 (-3 (|:| S (-1075)) (|:| P (-850 (-478))))))))) - (-5 *1 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-1079))))) + (-579 + (-3 (|:| -3524 (-1080)) + (|:| -3209 (-579 (-3 (|:| S (-1080)) (|:| P (-851 (-479))))))))) + (-5 *1 (-1084))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-1084))))) (((*1 *2 *1) (-12 (-5 *2 - (-578 - (-578 - (-3 (|:| -3518 (-1075)) - (|:| -3206 (-578 (-3 (|:| S (-1075)) (|:| P (-850 (-478)))))))))) - (-5 *1 (-1079))))) -(((*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-1079))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1079))))) + (-579 + (-579 + (-3 (|:| -3524 (-1080)) + (|:| -3209 (-579 (-3 (|:| S (-1080)) (|:| P (-851 (-479)))))))))) + (-5 *1 (-1084))))) +(((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-1084))))) +(((*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1084))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| (-372))))) - (-5 *1 (-1079))))) -(((*1 *1) (-5 *1 (-1078)))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) - ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1078))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078))))) -(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1078))))) -(((*1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-1078))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-1075))) (-5 *2 (-1170)) (-5 *1 (-1078)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) + (-12 (-5 *2 (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| (-373))))) + (-5 *1 (-1084))))) +(((*1 *1) (-5 *1 (-1083)))) +(((*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) + ((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1083))))) +(((*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083))))) +(((*1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1083))))) +(((*1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1083))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-1080))) (-5 *2 (-1175)) (-5 *1 (-1083)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-579 (-1080))) (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-578 (-1075))) (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078))))) + (-12 (-5 *4 (-579 (-1080))) (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-370)) (|:| -3886 #1="void"))) (-5 *2 (-1170)) - (-5 *1 (-1078)))) + (-12 (-5 *3 (-3 (|:| |fst| (-371)) (|:| -3892 #1="void"))) (-5 *2 (-1175)) + (-5 *1 (-1083)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1075)) (-5 *4 (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) - (-5 *2 (-1170)) (-5 *1 (-1078)))) + (-12 (-5 *3 (-1080)) (-5 *4 (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) + (-5 *2 (-1175)) (-5 *1 (-1083)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1075)) (-5 *4 (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) - (-5 *2 (-1170)) (-5 *1 (-1078))))) -(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1078)))) - ((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-1170)) (-5 *1 (-1078))))) + (-12 (-5 *3 (-1080)) (-5 *4 (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) + (-5 *2 (-1175)) (-5 *1 (-1083))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1083)))) + ((*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1080)) (-5 *2 (-1175)) (-5 *1 (-1083))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1075)) (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3886 "void"))) - (-5 *1 (-1078))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-1078)) (-5 *3 (-1075))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1075)) (-5 *2 (-1079)) (-5 *1 (-1078))))) -(((*1 *2 *3) - (-12 (-5 *3 (-578 *4)) (-4 *4 (-954)) (-5 *2 (-1164 *4)) (-5 *1 (-1076 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-823)) (-5 *2 (-1164 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-954))))) -(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1075))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-67)))) - ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) - ((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1059)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-373 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-416)))) - ((*1 *2 *1) (-12 (-4 *1 (-740 *2)) (-4 *2 (-1003)))) - ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-767)))) - ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-869)))) - ((*1 *2 *1) (-12 (-5 *2 (-1075)) (-5 *1 (-979 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-5 *1 (-1075)))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1075))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) + (-12 (-5 *3 (-1080)) (-5 *2 (-3 (|:| |fst| (-371)) (|:| -3892 "void"))) + (-5 *1 (-1083))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-1083)) (-5 *3 (-1080))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1080)) (-5 *2 (-1084)) (-5 *1 (-1083))))) +(((*1 *2 *3) + (-12 (-5 *3 (-579 *4)) (-4 *4 (-955)) (-5 *2 (-1169 *4)) (-5 *1 (-1081 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-824)) (-5 *2 (-1169 *3)) (-5 *1 (-1081 *3)) (-4 *3 (-955))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1080))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-67)))) + ((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-1006)))) + ((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-374 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-417)))) + ((*1 *2 *1) (-12 (-4 *1 (-741 *2)) (-4 *2 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-768)))) + ((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-981 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-1020)))) ((*1 *1 *1) (-5 *1 (-1080)))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-1080))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2564 (-578 (-765))) (|:| -2463 (-578 (-765))) - (|:| |presup| (-578 (-765))) (|:| -2562 (-578 (-765))) - (|:| |args| (-578 (-765))))) - (-5 *1 (-1075))))) + (-2 (|:| -2569 (-579 (-766))) (|:| -2468 (-579 (-766))) + (|:| |presup| (-579 (-766))) (|:| -2567 (-579 (-766))) + (|:| |args| (-579 (-766))))) + (-5 *1 (-1080))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2564 (-578 (-765))) (|:| -2463 (-578 (-765))) - (|:| |presup| (-578 (-765))) (|:| -2562 (-578 (-765))) - (|:| |args| (-578 (-765))))) - (-5 *1 (-1075)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 (-765)))) (-5 *1 (-1075))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1075))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1075))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-1075))))) -(((*1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *1) - (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) - ((*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-1059)))) - ((*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1059)))) - ((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1059)))) - ((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-1075))))) -(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1114)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-1075))))) + (-2 (|:| -2569 (-579 (-766))) (|:| -2468 (-579 (-766))) + (|:| |presup| (-579 (-766))) (|:| -2567 (-579 (-766))) + (|:| |args| (-579 (-766))))) + (-5 *1 (-1080)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-579 (-766)))) (-5 *1 (-1080))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-1080))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-1080))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-1080))))) +(((*1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *1) + (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006)))) + ((*1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-1063)))) + ((*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-1063)))) + ((*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-1080))))) +(((*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-1080))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-765) (-765) (-765))) (-5 *4 (-478)) (-5 *2 (-765)) - (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-766) (-766) (-766))) (-5 *4 (-479)) (-5 *2 (-766)) + (-5 *1 (-587 *5 *6 *7)) (-4 *5 (-1006)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-765)) (-5 *1 (-756 *3 *4 *5)) (-4 *3 (-954)) (-14 *4 (-69 *3)) + (-12 (-5 *2 (-766)) (-5 *1 (-757 *3 *4 *5)) (-4 *3 (-955)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-765)))) - ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-765)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-765)))) - ((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-765)) (-5 *1 (-1070 *3)) (-4 *3 (-954))))) + ((*1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-766)))) + ((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-766)))) + ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-766)))) + ((*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-766)) (-5 *1 (-1075 *3)) (-4 *3 (-955))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-992 *3)) (-4 *3 (-854 *7 *6 *4)) (-4 *6 (-710)) (-4 *4 (-749)) - (-4 *7 (-489)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-478)))) - (-5 *1 (-523 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-489)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-478)))) (-5 *1 (-523 *5 *4 *6 *3)) - (-4 *3 (-854 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1) (-5 *1 (-765))) + (-12 (-5 *5 (-994 *3)) (-4 *3 (-855 *7 *6 *4)) (-4 *6 (-711)) (-4 *4 (-750)) + (-4 *7 (-490)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-479)))) + (-5 *1 (-524 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-490)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-479)))) (-5 *1 (-524 *5 *4 *6 *3)) + (-4 *3 (-855 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-766))) ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1) (-5 *1 (-766))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) - (-5 *1 (-1068 *4 *2)) (-4 *2 (-13 (-357 *4) (-131) (-27) (-1100))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) + (-5 *1 (-1073 *4 *2)) (-4 *2 (-13 (-358 *4) (-131) (-27) (-1105))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-995 *2)) (-4 *2 (-13 (-357 *4) (-131) (-27) (-1100))) - (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-1068 *4 *2)))) + (-12 (-5 *3 (-997 *2)) (-4 *2 (-13 (-358 *4) (-131) (-27) (-1105))) + (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-1073 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)))) - (-5 *2 (-343 (-850 *5))) (-5 *1 (-1069 *5)) (-5 *3 (-850 *5)))) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)))) + (-5 *2 (-344 (-851 *5))) (-5 *1 (-1074 *5)) (-5 *3 (-851 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)))) - (-5 *2 (-3 (-343 (-850 *5)) (-261 *5))) (-5 *1 (-1069 *5)) - (-5 *3 (-343 (-850 *5))))) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)))) + (-5 *2 (-3 (-344 (-851 *5)) (-261 *5))) (-5 *1 (-1074 *5)) + (-5 *3 (-344 (-851 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-995 (-850 *5))) (-5 *3 (-850 *5)) - (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 *3)) (-5 *1 (-1069 *5)))) + (-12 (-5 *4 (-997 (-851 *5))) (-5 *3 (-851 *5)) + (-4 *5 (-13 (-490) (-944 (-479)))) (-5 *2 (-344 *3)) (-5 *1 (-1074 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-995 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) - (-4 *5 (-13 (-489) (-943 (-478)))) (-5 *2 (-3 *3 (-261 *5))) - (-5 *1 (-1069 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-4 *1 (-122 *3)))) + (-12 (-5 *4 (-997 (-344 (-851 *5)))) (-5 *3 (-344 (-851 *5))) + (-4 *5 (-13 (-490) (-944 (-479)))) (-5 *2 (-3 *3 (-261 *5))) + (-5 *1 (-1074 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-794 *4)) (-4 *4 (-1006)) (-5 *2 (-1 (-83) *5)) + (-5 *1 (-795 *4 *5)) (-4 *5 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1071))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-4 *1 (-122 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 (-2 (|:| -2383 (-687)) (|:| -3749 *4) (|:| |num| *4)))) - (-4 *4 (-1140 *3)) (-4 *3 (-13 (-308) (-118))) (-5 *1 (-335 *3 *4)))) + (-12 (-5 *2 (-579 (-2 (|:| -2388 (-688)) (|:| -3755 *4) (|:| |num| *4)))) + (-4 *4 (-1145 *3)) (-4 *3 (-13 (-308) (-118))) (-5 *1 (-336 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3886 #1="void"))) - (-5 *3 (-578 (-850 (-478)))) (-5 *4 (-83)) (-5 *1 (-372)))) + (-12 (-5 *2 (-3 (|:| |fst| (-371)) (|:| -3892 #1="void"))) + (-5 *3 (-579 (-851 (-479)))) (-5 *4 (-83)) (-5 *1 (-373)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3886 #1#))) (-5 *3 (-578 (-1075))) - (-5 *4 (-83)) (-5 *1 (-372)))) - ((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-530 *3)) (-4 *3 (-1114)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-144)))) + (-12 (-5 *2 (-3 (|:| |fst| (-371)) (|:| -3892 #1#))) (-5 *3 (-579 (-1080))) + (-5 *4 (-83)) (-5 *1 (-373)))) + ((*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-531 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-570 *2)) (-4 *2 (-144)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) + (-12 (-5 *2 (-610 *3)) (-4 *3 (-750)) (-5 *1 (-602 *3 *4)) (-4 *4 (-144)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) + (-12 (-5 *2 (-610 *3)) (-4 *3 (-750)) (-5 *1 (-602 *3 *4)) (-4 *4 (-144)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-5 *1 (-601 *3 *4)) (-4 *4 (-144)))) + (-12 (-5 *2 (-610 *3)) (-4 *3 (-750)) (-5 *1 (-602 *3 *4)) (-4 *4 (-144)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-749)) (-4 *3 (-1003)) + (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-750)) (-4 *3 (-1006)) (-14 *4 - (-1 (-83) (-2 (|:| -2382 *2) (|:| -2383 *3)) - (-2 (|:| -2382 *2) (|:| -2383 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1016)) (-5 *1 (-742)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-775 *2 *3)) (-4 *2 (-1114)) (-4 *3 (-1114)))) + (-1 (-83) (-2 (|:| -2387 *2) (|:| -2388 *3)) + (-2 (|:| -2387 *2) (|:| -2388 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1019)) (-5 *1 (-743)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-776 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| *4)))) (-4 *4 (-1003)) - (-5 *1 (-791 *3 *4)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| *4)))) (-4 *4 (-1006)) + (-5 *1 (-792 *3 *4)) (-4 *3 (-1006)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *5)) (-4 *5 (-13 (-1003) (-34))) - (-5 *2 (-578 (-1040 *3 *5))) (-5 *1 (-1040 *3 *5)) - (-4 *3 (-13 (-1003) (-34))))) + (-12 (-5 *4 (-579 *5)) (-4 *5 (-13 (-1006) (-34))) + (-5 *2 (-579 (-1044 *3 *5))) (-5 *1 (-1044 *3 *5)) + (-4 *3 (-13 (-1006) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-2 (|:| |val| *4) (|:| -1583 *5)))) - (-4 *4 (-13 (-1003) (-34))) (-4 *5 (-13 (-1003) (-34))) - (-5 *2 (-578 (-1040 *4 *5))) (-5 *1 (-1040 *4 *5)))) + (-12 (-5 *3 (-579 (-2 (|:| |val| *4) (|:| -1588 *5)))) + (-4 *4 (-13 (-1006) (-34))) (-4 *5 (-13 (-1006) (-34))) + (-5 *2 (-579 (-1044 *4 *5))) (-5 *1 (-1044 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1583 *4))) (-4 *3 (-13 (-1003) (-34))) - (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1040 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1588 *4))) (-4 *3 (-13 (-1006) (-34))) + (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1044 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) - (-4 *3 (-13 (-1003) (-34))))) + (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) + (-4 *3 (-13 (-1006) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) - (-4 *3 (-13 (-1003) (-34))))) + (-12 (-5 *4 (-83)) (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) + (-4 *3 (-13 (-1006) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-1003) (-34))) (-5 *1 (-1041 *2 *3)) - (-4 *2 (-13 (-1003) (-34))))) + (-12 (-5 *4 (-579 *3)) (-4 *3 (-13 (-1006) (-34))) (-5 *1 (-1045 *2 *3)) + (-4 *2 (-13 (-1006) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-578 (-1040 *2 *3))) (-4 *2 (-13 (-1003) (-34))) - (-4 *3 (-13 (-1003) (-34))) (-5 *1 (-1041 *2 *3)))) + (-12 (-5 *4 (-579 (-1044 *2 *3))) (-4 *2 (-13 (-1006) (-34))) + (-4 *3 (-13 (-1006) (-34))) (-5 *1 (-1045 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-578 (-1041 *2 *3))) (-5 *1 (-1041 *2 *3)) - (-4 *2 (-13 (-1003) (-34))) (-4 *3 (-13 (-1003) (-34))))) + (-12 (-5 *4 (-579 (-1045 *2 *3))) (-5 *1 (-1045 *2 *3)) + (-4 *2 (-13 (-1006) (-34))) (-4 *3 (-13 (-1006) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) - (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1041 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1066 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-411)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-522)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-560)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) - (-5 *1 (-978 *3 *4 *2)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1066 *2 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-127)))) - ((*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-411)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-522)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-560)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) - (-5 *1 (-978 *3 *4 *2)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1066 *3 *2)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-5 *2 (-83)))) - ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) -(((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) -(((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) -(((*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) + (-12 (-5 *2 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) + (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1045 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1070 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-412)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-561)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1006)) (-4 *2 (-13 (-358 *4) (-790 *3) (-549 (-794 *3)))) + (-5 *1 (-980 *3 *4 *2)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-127)))) + ((*1 *2 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-412)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-523)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-561)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1006)) (-4 *2 (-13 (-358 *4) (-790 *3) (-549 (-794 *3)))) + (-5 *1 (-980 *3 *4 *2)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-1070 *3 *2)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-5 *2 (-83)))) + ((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) +(((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) +(((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) +(((*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) -(((*1 *2 *1) (-12 (-4 *3 (-1114)) (-5 *2 (-578 *1)) (-4 *1 (-916 *3)))) + (-12 (-5 *2 (-688)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) +(((*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-579 *1)) (-4 *1 (-917 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-578 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) - (-4 *4 (-954))))) + (-12 (-5 *2 (-579 (-1069 *3 *4))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) + (-4 *4 (-955))))) (((*1 *2 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) -(((*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) -(((*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1114)) (-4 *2 (-749)))) + (-12 (-5 *2 (-688)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) +(((*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955))))) +(((*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-1119)) (-4 *2 (-750)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1114)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-954)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) + (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-750)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-955)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 (-1065 *3 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) - (-4 *4 (-954)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) + (-12 (-5 *2 (-579 (-1069 *3 *4))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) + (-4 *4 (-955)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *2 (-687)) (-5 *1 (-1065 *4 *5)) - (-14 *4 (-823)))) + (-12 (-5 *3 (-848 *5)) (-4 *5 (-955)) (-5 *2 (-688)) (-5 *1 (-1069 *4 *5)) + (-14 *4 (-824)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-687))) (-5 *3 (-687)) (-5 *1 (-1065 *4 *5)) - (-14 *4 (-823)) (-4 *5 (-954)))) + (-12 (-5 *2 (-579 (-688))) (-5 *3 (-688)) (-5 *1 (-1069 *4 *5)) + (-14 *4 (-824)) (-4 *5 (-955)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-687))) (-5 *3 (-847 *5)) (-4 *5 (-954)) - (-5 *1 (-1065 *4 *5)) (-14 *4 (-823))))) + (-12 (-5 *2 (-579 (-688))) (-5 *3 (-848 *5)) (-4 *5 (-955)) + (-5 *1 (-1069 *4 *5)) (-14 *4 (-824))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-847 *4)) (-4 *4 (-954)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823))))) + (-12 (-5 *2 (-848 *4)) (-4 *4 (-955)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-847 *5)) (-5 *3 (-687)) (-4 *5 (-954)) (-5 *1 (-1065 *4 *5)) - (-14 *4 (-823))))) + (-12 (-5 *2 (-848 *5)) (-5 *3 (-688)) (-4 *5 (-955)) (-5 *1 (-1069 *4 *5)) + (-14 *4 (-824))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-687)) (-5 *3 (-847 *5)) (-4 *5 (-954)) (-5 *1 (-1065 *4 *5)) - (-14 *4 (-823)))) + (-12 (-5 *2 (-688)) (-5 *3 (-848 *5)) (-4 *5 (-955)) (-5 *1 (-1069 *4 *5)) + (-14 *4 (-824)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-687))) (-5 *3 (-687)) (-5 *1 (-1065 *4 *5)) - (-14 *4 (-823)) (-4 *5 (-954)))) + (-12 (-5 *2 (-579 (-688))) (-5 *3 (-688)) (-5 *1 (-1069 *4 *5)) + (-14 *4 (-824)) (-4 *5 (-955)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-687))) (-5 *3 (-847 *5)) (-4 *5 (-954)) - (-5 *1 (-1065 *4 *5)) (-14 *4 (-823))))) + (-12 (-5 *2 (-579 (-688))) (-5 *3 (-848 *5)) (-4 *5 (-955)) + (-5 *1 (-1069 *4 *5)) (-14 *4 (-824))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-687))) (-5 *3 (-83)) (-5 *1 (-1065 *4 *5)) - (-14 *4 (-823)) (-4 *5 (-954))))) + (-12 (-5 *2 (-579 (-688))) (-5 *3 (-83)) (-5 *1 (-1069 *4 *5)) + (-14 *4 (-824)) (-4 *5 (-955))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-687))) (-5 *3 (-143)) (-5 *1 (-1065 *4 *5)) - (-14 *4 (-823)) (-4 *5 (-954))))) + (-12 (-5 *2 (-579 (-688))) (-5 *3 (-143)) (-5 *1 (-1069 *4 *5)) + (-14 *4 (-824)) (-4 *5 (-955))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-687))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) - (-4 *4 (-954))))) + (-12 (-5 *2 (-579 (-688))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) + (-4 *4 (-955))))) (((*1 *2 *1) - (-12 (-5 *2 (-847 *4)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) + (-12 (-5 *2 (-848 *4)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) (((*1 *2 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) + (-12 (-5 *2 (-688)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) (((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) (((*1 *2 *1) - (-12 (-5 *2 (-143)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) -(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-259)))) + (-12 (-5 *2 (-143)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) +(((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-259)))) ((*1 *2 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) (-4 *4 (-954))))) -(((*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-14 *2 (-823)) (-4 *3 (-954))))) + (-12 (-5 *2 (-688)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) (-4 *4 (-955))))) +(((*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-824)) (-4 *3 (-955))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-847 *4))) (-5 *1 (-1065 *3 *4)) (-14 *3 (-823)) - (-4 *4 (-954))))) + (-12 (-5 *2 (-579 (-848 *4))) (-5 *1 (-1069 *3 *4)) (-14 *3 (-824)) + (-4 *4 (-955))))) (((*1 *1 *1) - (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *2 (-385)))) + (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)) (-4 *2 (-386)))) ((*1 *1 *1) - (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-1140 *2)) - (-4 *4 (-1140 (-343 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-385)))) + (-12 (-4 *1 (-287 *2 *3 *4)) (-4 *2 (-1124)) (-4 *3 (-1145 *2)) + (-4 *4 (-1145 (-344 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-386)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) - (-4 *3 (-385)))) + (-12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) + (-4 *3 (-386)))) ((*1 *1 *1) - (-12 (-4 *1 (-854 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-385)))) + (-12 (-4 *1 (-855 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-386)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-254)) (-4 *3 (-489)) (-5 *1 (-1064 *3 *2)) (-4 *2 (-1140 *3))))) + (-12 (-4 *3 (-254)) (-4 *3 (-490)) (-5 *1 (-1068 *3 *2)) (-4 *2 (-1145 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-862 *3)) (-5 *1 (-1064 *4 *3)) - (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-863 *3)) (-5 *1 (-1068 *4 *3)) + (-4 *3 (-1145 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) - ((*1 *1 *1) (-4 *1 (-426))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) + ((*1 *1 *1) (-4 *1 (-427))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) - ((*1 *1 *1) (-4 *1 (-426))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) + ((*1 *1 *1) (-4 *1 (-427))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) - ((*1 *1 *1) (-4 *1 (-426))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) + ((*1 *1 *1) (-4 *1 (-427))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) - ((*1 *1 *1) (-4 *1 (-426))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) + ((*1 *1 *1) (-4 *1 (-427))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) - ((*1 *1 *1) (-4 *1 (-426))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) + ((*1 *1 *1) (-4 *1 (-427))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) - ((*1 *1 *1) (-4 *1 (-426))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) + ((*1 *1 *1) (-4 *1 (-427))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-177))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-323))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-324))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *1 *1) (-4 *1 (-66))) ((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1157 *3)) (-5 *1 (-229 *3 *4 *2)) - (-4 *2 (-1128 *3 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1162 *3)) (-5 *1 (-229 *3 *4 *2)) + (-4 *2 (-1133 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *4 (-1126 *3)) - (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1149 *3 *4)) (-4 *5 (-889 *4)))) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *4 (-1131 *3)) + (-5 *1 (-230 *3 *4 *2 *5)) (-4 *2 (-1154 *3 *4)) (-4 *5 (-890 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1062 *3)))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1066 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-38 (-343 (-478)))) (-5 *1 (-1063 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-38 (-344 (-479)))) (-5 *1 (-1067 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-343 (-478)))) - (-5 *2 (-2 (|:| -3467 (-1055 *4)) (|:| -3468 (-1055 *4)))) - (-5 *1 (-1062 *4)) (-5 *3 (-1055 *4))))) + (-12 (-4 *4 (-38 (-344 (-479)))) + (-5 *2 (-2 (|:| -3472 (-1059 *4)) (|:| -3473 (-1059 *4)))) + (-5 *1 (-1066 *4)) (-5 *3 (-1059 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-343 (-478)))) - (-5 *2 (-2 (|:| -3614 (-1055 *4)) (|:| -3610 (-1055 *4)))) - (-5 *1 (-1062 *4)) (-5 *3 (-1055 *4))))) + (-12 (-4 *4 (-38 (-344 (-479)))) + (-5 *2 (-2 (|:| -3620 (-1059 *4)) (|:| -3616 (-1059 *4)))) + (-5 *1 (-1066 *4)) (-5 *3 (-1059 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-308)) (-4 *3 (-954)) (-5 *1 (-1061 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-308)) (-4 *3 (-955)) (-5 *1 (-1065 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-478))) (-5 *5 (-1 (-1055 *4))) (-4 *4 (-308)) - (-4 *4 (-954)) (-5 *2 (-1055 *4)) (-5 *1 (-1061 *4))))) + (-12 (-5 *3 (-1 *4 (-479))) (-5 *5 (-1 (-1059 *4))) (-4 *4 (-308)) + (-4 *4 (-955)) (-5 *2 (-1059 *4)) (-5 *1 (-1065 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-308)) (-4 *3 (-954)) (-5 *1 (-1061 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-308)) (-4 *3 (-955)) (-5 *1 (-1065 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1055 *4)) (-4 *4 (-38 *3)) (-4 *4 (-954)) (-5 *3 (-343 (-478))) - (-5 *1 (-1061 *4))))) + (-12 (-5 *2 (-1059 *4)) (-4 *4 (-38 *3)) (-4 *4 (-955)) (-5 *3 (-344 (-479))) + (-5 *1 (-1065 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1061 *4)) - (-4 *4 (-38 (-343 (-478)))) (-4 *4 (-954))))) + (-12 (-5 *3 (-1059 (-1059 *4))) (-5 *2 (-1059 *4)) (-5 *1 (-1065 *4)) + (-4 *4 (-38 (-344 (-479)))) (-4 *4 (-955))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1055 *3))) (-5 *2 (-1055 *3)) (-5 *1 (-1061 *3)) - (-4 *3 (-38 (-343 (-478)))) (-4 *3 (-954))))) + (-12 (-5 *4 (-1 (-1059 *3))) (-5 *2 (-1059 *3)) (-5 *1 (-1065 *3)) + (-4 *3 (-38 (-344 (-479)))) (-4 *3 (-955))))) (((*1 *2 *3) - (-12 (-5 *3 (-1055 (-1055 *4))) (-5 *2 (-1055 *4)) (-5 *1 (-1061 *4)) - (-4 *4 (-954))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-797 *2 *3)) (-4 *2 (-1140 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3))))) + (-12 (-5 *3 (-1059 (-1059 *4))) (-5 *2 (-1059 *4)) (-5 *1 (-1065 *4)) + (-4 *4 (-955))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-798 *2 *3)) (-4 *2 (-1145 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1055 *4)) (-5 *3 (-1 *4 (-478))) (-4 *4 (-954)) - (-5 *1 (-1061 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3))))) + (-12 (-5 *2 (-1059 *4)) (-5 *3 (-1 *4 (-479))) (-4 *4 (-955)) + (-5 *1 (-1065 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *1 (-719 *4 *2)) (-4 *2 (-13 (-29 *4) (-1100) (-864))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *3) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-1061 *3)) (-4 *3 (-954))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *1 (-720 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-865))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-766))) ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *3) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-955))))) (((*1 *2 *3) - (-12 (-5 *2 (-1055 (-478))) (-5 *1 (-1061 *4)) (-4 *4 (-954)) - (-5 *3 (-478))))) + (-12 (-5 *2 (-1059 (-479))) (-5 *1 (-1065 *4)) (-4 *4 (-955)) + (-5 *3 (-479))))) (((*1 *2 *3) - (-12 (-5 *2 (-1055 (-478))) (-5 *1 (-1061 *4)) (-4 *4 (-954)) - (-5 *3 (-478))))) + (-12 (-5 *2 (-1059 (-479))) (-5 *1 (-1065 *4)) (-4 *4 (-955)) + (-5 *3 (-479))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-123 *2 *3 *4)) (-14 *2 (-823)) (-4 *3 (-308)) - (-14 *4 (-899 *2 *3)))) + (|partial| -12 (-5 *1 (-123 *2 *3 *4)) (-14 *2 (-824)) (-4 *3 (-308)) + (-14 *4 (-900 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-490)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) - ((*1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) - ((*1 *1 *1) (|partial| -4 *1 (-654))) ((*1 *1 *1) (|partial| -4 *1 (-658))) + ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) + ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) + ((*1 *1 *1) (|partial| -4 *1 (-655))) ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-692 *5 *6 *7 *3 *4)) - (-4 *4 (-975 *5 *6 *7 *3)))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-693 *5 *6 *7 *3 *4)) + (-4 *4 (-976 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-972 *3 *2)) (-4 *3 (-13 (-748) (-308))) - (-4 *2 (-1140 *3)))) + (|partial| -12 (-4 *1 (-973 *3 *2)) (-4 *3 (-13 (-749) (-308))) + (-4 *2 (-1145 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3))))) + (|partial| -12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) + (|partial| -12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-490)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)) - (-4 *2 (-489)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-489))) + (|partial| -12 (-4 *1 (-273 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)) + (-4 *2 (-490)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-490))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)) (-4 *2 (-489)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-687))) + (|partial| -12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)) (-4 *2 (-490)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-688))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-489)))) - ((*1 *1 *1 *1) (-5 *1 (-765))) + (|partial| -12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-490)))) + ((*1 *1 *1 *1) (-5 *1 (-766))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-489)) - (-5 *1 (-875 *3 *4)))) + (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-490)) + (-5 *1 (-876 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-958 *3 *4 *2 *5 *6)) (-4 *2 (-954)) - (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-489)))) + (|partial| -12 (-4 *1 (-959 *3 *4 *2 *5 *6)) (-4 *2 (-955)) + (-4 *5 (-193 *4 *2)) (-4 *6 (-193 *3 *2)) (-4 *2 (-490)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1055 *3)) (-4 *3 (-954)) (-5 *1 (-1061 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3))))) + (|partial| -12 (-5 *2 (-1059 *3)) (-4 *3 (-955)) (-5 *1 (-1065 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-578 *4)) (-4 *4 (-1003)) (-4 *4 (-1114)) (-5 *2 (-83)) - (-5 *1 (-1055 *4))))) + (-12 (-5 *3 (-579 *4)) (-4 *4 (-1006)) (-4 *4 (-1119)) (-5 *2 (-83)) + (-5 *1 (-1059 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-83)) (|:| -2575 (-687)) (|:| |period| (-687)))) - (-5 *1 (-1055 *4)) (-4 *4 (-1114)) (-5 *3 (-687))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1055 *3))) (-5 *1 (-1055 *3)) (-4 *3 (-1114))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1055 *2)) (-4 *2 (-1114))))) -(((*1 *1) (-5 *1 (-508))) - ((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-761)))) - ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-761)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1059)) (-5 *4 (-765)) (-5 *2 (-1170)) (-5 *1 (-761)))) + (-5 *2 (-2 (|:| |cycle?| (-83)) (|:| -2580 (-688)) (|:| |period| (-688)))) + (-5 *1 (-1059 *4)) (-4 *4 (-1119)) (-5 *3 (-688))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1059 *3))) (-5 *1 (-1059 *3)) (-4 *3 (-1119))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1059 *2)) (-4 *2 (-1119))))) +(((*1 *1) (-5 *1 (-509))) + ((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-762)))) + ((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-762)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1063)) (-5 *4 (-766)) (-5 *2 (-1175)) (-5 *1 (-762)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-1055 *4)) (-4 *4 (-1003)) - (-4 *4 (-1114))))) + (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-1059 *4)) (-4 *4 (-1006)) + (-4 *4 (-1119))))) (((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1114))))) + (-12 (-5 *2 (-766)) (-5 *1 (-1059 *3)) (-4 *3 (-1006)) (-4 *3 (-1119))))) (((*1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1055 *3)) (-4 *3 (-1003)) (-4 *3 (-1114))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1059 *3)) (-4 *3 (-1006)) (-4 *3 (-1119))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-1164 (-578 (-478)))) (-5 *1 (-413)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-530 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1114)) (-5 *1 (-1055 *3))))) + (-12 (-5 *3 (-688)) (-5 *2 (-1169 (-579 (-479)))) (-5 *1 (-414)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-531 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *3 (-1119)) (-5 *1 (-1059 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-478)) (-4 *4 (-13 (-489) (-118))) (-5 *1 (-469 *4 *2)) - (-4 *2 (-1157 *4)))) + (-12 (-5 *3 (-479)) (-4 *4 (-13 (-490) (-118))) (-5 *1 (-470 *4 *2)) + (-4 *2 (-1162 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-478)) (-4 *4 (-13 (-308) (-313) (-548 *3))) (-4 *5 (-1140 *4)) - (-4 *6 (-656 *4 *5)) (-5 *1 (-473 *4 *5 *6 *2)) (-4 *2 (-1157 *6)))) + (-12 (-5 *3 (-479)) (-4 *4 (-13 (-308) (-314) (-549 *3))) (-4 *5 (-1145 *4)) + (-4 *6 (-657 *4 *5)) (-5 *1 (-474 *4 *5 *6 *2)) (-4 *2 (-1162 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-478)) (-4 *4 (-13 (-308) (-313) (-548 *3))) - (-5 *1 (-474 *4 *2)) (-4 *2 (-1157 *4)))) + (-12 (-5 *3 (-479)) (-4 *4 (-13 (-308) (-314) (-549 *3))) + (-5 *1 (-475 *4 *2)) (-4 *2 (-1162 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1055 *4)) (-5 *3 (-478)) (-4 *4 (-13 (-489) (-118))) - (-5 *1 (-1054 *4))))) + (-12 (-5 *2 (-1059 *4)) (-5 *3 (-479)) (-4 *4 (-13 (-490) (-118))) + (-5 *1 (-1058 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1157 *3)))) + (-12 (-4 *3 (-13 (-490) (-118))) (-5 *1 (-470 *3 *2)) (-4 *2 (-1162 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1140 *3)) - (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) + (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-4 *4 (-1145 *3)) + (-4 *5 (-657 *3 *4)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) - (-4 *2 (-1157 *3)))) + (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-5 *1 (-475 *3 *2)) + (-4 *2 (-1162 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1054 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-13 (-490) (-118))) (-5 *1 (-1058 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1157 *3)))) + (-12 (-4 *3 (-13 (-490) (-118))) (-5 *1 (-470 *3 *2)) (-4 *2 (-1162 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1140 *3)) - (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) + (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-4 *4 (-1145 *3)) + (-4 *5 (-657 *3 *4)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) - (-4 *2 (-1157 *3)))) + (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-5 *1 (-475 *3 *2)) + (-4 *2 (-1162 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1054 *3))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-13 (-490) (-118))) (-5 *1 (-1058 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-489) (-118))) (-5 *1 (-469 *3 *2)) (-4 *2 (-1157 *3)))) + (-12 (-4 *3 (-13 (-490) (-118))) (-5 *1 (-470 *3 *2)) (-4 *2 (-1162 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-4 *4 (-1140 *3)) - (-4 *5 (-656 *3 *4)) (-5 *1 (-473 *3 *4 *5 *2)) (-4 *2 (-1157 *5)))) + (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-4 *4 (-1145 *3)) + (-4 *5 (-657 *3 *4)) (-5 *1 (-474 *3 *4 *5 *2)) (-4 *2 (-1162 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-313) (-548 (-478)))) (-5 *1 (-474 *3 *2)) - (-4 *2 (-1157 *3)))) + (-12 (-4 *3 (-13 (-308) (-314) (-549 (-479)))) (-5 *1 (-475 *3 *2)) + (-4 *2 (-1162 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1055 *3)) (-4 *3 (-13 (-489) (-118))) (-5 *1 (-1054 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-457)))) - ((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-1053))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1053))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1035))) (-5 *1 (-1053))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-1053))))) + (-12 (-5 *2 (-1059 *3)) (-4 *3 (-13 (-490) (-118))) (-5 *1 (-1058 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-458)))) + ((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-1057))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1057))))) +(((*1 *2 *1) (-12 (-5 *2 (-628 (-1039))) (-5 *1 (-1057))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-1057))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)))) - ((*1 *1) (-4 *1 (-1052)))) -(((*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1052))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1114)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1114)) (-5 *2 (-83))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)))) + ((*1 *1) (-4 *1 (-1056)))) +(((*1 *2 *1) (-12 (-5 *2 (-628 *1)) (-4 *1 (-1056))))) +(((*1 *2 *1) (-12 (-4 *1 (-1054 *3)) (-4 *3 (-1119)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1054 *3)) (-4 *3 (-1119)) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-1050 *4)) (-4 *4 (-1114)) (-5 *2 (-83))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-1048 *3))))) + (-12 (-5 *3 (-688)) (-4 *1 (-1054 *4)) (-4 *4 (-1119)) (-5 *2 (-83))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-1052 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-578 (-933 *5 *6 *7 *3))) (-5 *1 (-933 *5 *6 *7 *3)) - (-4 *3 (-969 *5 *6 *7)))) + (-12 (-5 *4 (-83)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-579 (-934 *5 *6 *7 *3))) (-5 *1 (-934 *5 *6 *7 *3)) + (-4 *3 (-970 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-578 *6)) (-4 *1 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)))) + (-12 (-5 *2 (-579 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-975 *3 *4 *5 *2)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *2 (-969 *3 *4 *5)))) + (-12 (-4 *1 (-976 *3 *4 *5 *2)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *2 (-970 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-578 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) - (-4 *3 (-969 *5 *6 *7))))) + (-12 (-5 *4 (-83)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-579 (-1050 *5 *6 *7 *3))) (-5 *1 (-1050 *5 *6 *7 *3)) + (-4 *3 (-970 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-933 *5 *6 *7 *8))) - (-5 *1 (-933 *5 *6 *7 *8)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-934 *5 *6 *7 *8))) + (-5 *1 (-934 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-83)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-578 (-1046 *5 *6 *7 *8))) - (-5 *1 (-1046 *5 *6 *7 *8))))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-83)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-579 (-1050 *5 *6 *7 *8))) + (-5 *1 (-1050 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) - (-4 *8 (-969 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-933 *5 *6 *7 *8))))) - (-5 *1 (-933 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) + (-12 (-5 *4 (-83)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) + (-4 *8 (-970 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-579 *8)) (|:| |towers| (-579 (-934 *5 *6 *7 *8))))) + (-5 *1 (-934 *5 *6 *7 *8)) (-5 *3 (-579 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) - (-4 *8 (-969 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-1046 *5 *6 *7 *8))))) - (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-578 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1583 *9)))) (-5 *4 (-687)) - (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-1170)) - (-5 *1 (-973 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1583 *9)))) (-5 *4 (-687)) - (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-1170)) - (-5 *1 (-1045 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-83)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) + (-4 *8 (-970 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-579 *8)) (|:| |towers| (-579 (-1050 *5 *6 *7 *8))))) + (-5 *1 (-1050 *5 *6 *7 *8)) (-5 *3 (-579 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-2 (|:| |val| (-579 *8)) (|:| -1588 *9)))) (-5 *4 (-688)) + (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-1175)) + (-5 *1 (-974 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-2 (|:| |val| (-579 *8)) (|:| -1588 *9)))) (-5 *4 (-688)) + (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-1175)) + (-5 *1 (-1049 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-578 *11)) - (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -1583 *11)))))) - (-5 *6 (-687)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -1583 *11)))) - (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-969 *7 *8 *9)) - (-4 *11 (-975 *7 *8 *9 *10)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) - (-5 *1 (-973 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-579 *11)) + (|:| |todo| (-579 (-2 (|:| |val| *3) (|:| -1588 *11)))))) + (-5 *6 (-688)) (-5 *2 (-579 (-2 (|:| |val| (-579 *10)) (|:| -1588 *11)))) + (-5 *3 (-579 *10)) (-5 *4 (-579 *11)) (-4 *10 (-970 *7 *8 *9)) + (-4 *11 (-976 *7 *8 *9 *10)) (-4 *7 (-386)) (-4 *8 (-711)) (-4 *9 (-750)) + (-5 *1 (-974 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-578 *11)) - (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -1583 *11)))))) - (-5 *6 (-687)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -1583 *11)))) - (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-969 *7 *8 *9)) - (-4 *11 (-1010 *7 *8 *9 *10)) (-4 *7 (-385)) (-4 *8 (-710)) (-4 *9 (-749)) - (-5 *1 (-1045 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-579 *11)) + (|:| |todo| (-579 (-2 (|:| |val| *3) (|:| -1588 *11)))))) + (-5 *6 (-688)) (-5 *2 (-579 (-2 (|:| |val| (-579 *10)) (|:| -1588 *11)))) + (-5 *3 (-579 *10)) (-5 *4 (-579 *11)) (-4 *10 (-970 *7 *8 *9)) + (-4 *11 (-1013 *7 *8 *9 *10)) (-4 *7 (-386)) (-4 *8 (-711)) (-4 *9 (-750)) + (-5 *1 (-1049 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) + (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 - (-2 (|:| -2318 (-349 *4 (-343 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2323 (-350 *4 (-344 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3071 (-343 *6)) (|:| |special| (-343 *6)))) - (-5 *1 (-659 *5 *6)) (-5 *3 (-343 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3074 (-344 *6)) (|:| |special| (-344 *6)))) + (-5 *1 (-660 *5 *6)) (-5 *3 (-344 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-800 *3 *4)) - (-4 *3 (-1140 *4)))) + (-12 (-4 *4 (-308)) (-5 *2 (-579 *3)) (-5 *1 (-801 *3 *4)) + (-4 *3 (-1145 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-687)) (-4 *5 (-308)) - (-5 *2 (-2 (|:| -3119 *3) (|:| -3118 *3))) (-5 *1 (-800 *3 *5)) - (-4 *3 (-1140 *5)))) + (|partial| -12 (-5 *4 (-688)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| -3122 *3) (|:| -3121 *3))) (-5 *1 (-801 *3 *5)) + (-4 *3 (-1145 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) - (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-579 *9)) (-5 *3 (-579 *8)) (-5 *4 (-83)) + (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-974 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) - (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-579 *9)) (-5 *3 (-579 *8)) (-5 *4 (-83)) + (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-974 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) - (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1045 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-579 *9)) (-5 *3 (-579 *8)) (-5 *4 (-83)) + (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-1049 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-83)) - (-4 *8 (-969 *5 *6 *7)) (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-5 *1 (-1045 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-579 *9)) (-5 *3 (-579 *8)) (-5 *4 (-83)) + (-4 *8 (-970 *5 *6 *7)) (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-5 *1 (-1049 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-687)) (-5 *6 (-83)) (-4 *7 (-385)) (-4 *8 (-710)) - (-4 *9 (-749)) (-4 *3 (-969 *7 *8 *9)) + (-12 (-5 *5 (-688)) (-5 *6 (-83)) (-4 *7 (-386)) (-4 *8 (-711)) + (-4 *9 (-750)) (-4 *3 (-970 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-973 *7 *8 *9 *3 *4)) (-4 *4 (-975 *7 *8 *9 *3)))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-974 *7 *8 *9 *3 *4)) (-4 *4 (-976 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *3 (-969 *6 *7 *8)) + (-12 (-5 *5 (-688)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *3 (-970 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-974 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-973 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-974 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-687)) (-5 *6 (-83)) (-4 *7 (-385)) (-4 *8 (-710)) - (-4 *9 (-749)) (-4 *3 (-969 *7 *8 *9)) + (-12 (-5 *5 (-688)) (-5 *6 (-83)) (-4 *7 (-386)) (-4 *8 (-711)) + (-4 *9 (-750)) (-4 *3 (-970 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-1045 *7 *8 *9 *3 *4)) (-4 *4 (-1010 *7 *8 *9 *3)))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-1049 *7 *8 *9 *3 *4)) (-4 *4 (-1013 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *3 (-969 *6 *7 *8)) + (-12 (-5 *5 (-688)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *3 (-970 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-1045 *6 *7 *8 *3 *4)) (-4 *4 (-1010 *6 *7 *8 *3)))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1013 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1010 *5 *6 *7 *3))))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *3 (-969 *6 *7 *8)) + (-12 (-5 *5 (-688)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *3 (-970 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-974 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-973 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-974 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-687)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *3 (-969 *6 *7 *8)) + (-12 (-5 *5 (-688)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *3 (-970 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-1045 *6 *7 *8 *3 *4)) (-4 *4 (-1010 *6 *7 *8 *3)))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1013 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1010 *5 *6 *7 *3))))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *3 (-969 *6 *7 *8)) + (-12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *3 (-970 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-973 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-974 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-578 *4)) - (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))))) - (-5 *1 (-1045 *5 *6 *7 *3 *4)) (-4 *4 (-1010 *5 *6 *7 *3))))) + (-2 (|:| |done| (-579 *4)) + (|:| |todo| (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))))) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1013 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) - (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-687)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *9)) (-4 *8 (-970 *5 *6 *7)) + (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-688)) (-5 *1 (-974 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) - (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-687)) (-5 *1 (-1045 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *9)) (-4 *8 (-970 *5 *6 *7)) + (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-688)) (-5 *1 (-1049 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) - (-4 *9 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-687)) (-5 *1 (-973 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *9)) (-4 *8 (-970 *5 *6 *7)) + (-4 *9 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-688)) (-5 *1 (-974 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-969 *5 *6 *7)) - (-4 *9 (-1010 *5 *6 *7 *8)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-687)) (-5 *1 (-1045 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *9)) (-4 *8 (-970 *5 *6 *7)) + (-4 *9 (-1013 *5 *6 *7 *8)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-688)) (-5 *1 (-1049 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-112))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-4 *1 (-1044)))) -(((*1 *1 *1) (-4 *1 (-1044)))) + ((*1 *1 *1) (-4 *1 (-1048)))) +(((*1 *1 *1) (-4 *1 (-1048)))) (((*1 *1) (-5 *1 (-112))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-4 *1 (-1044)))) -(((*1 *1 *1) (-4 *1 (-1044)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-83))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-83))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-478)) (-5 *2 (-83))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1003)) (-4 *6 (-1114)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) + ((*1 *1 *1) (-4 *1 (-1048)))) +(((*1 *1 *1) (-4 *1 (-1048)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-83))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-83))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1048)) (-5 *3 (-479)) (-5 *2 (-83))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 *6)) (-4 *5 (-1006)) (-4 *6 (-1119)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-581 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1003)) (-4 *2 (-1114)) - (-5 *1 (-580 *5 *2)))) + (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 *2)) (-4 *5 (-1006)) (-4 *2 (-1119)) + (-5 *1 (-581 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 *5)) (-4 *6 (-1003)) (-4 *5 (-1114)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) + (-12 (-5 *3 (-579 *6)) (-5 *4 (-579 *5)) (-4 *6 (-1006)) (-4 *5 (-1119)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-581 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1003)) (-4 *2 (-1114)) - (-5 *1 (-580 *5 *2)))) + (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 *2)) (-4 *5 (-1006)) (-4 *2 (-1119)) + (-5 *1 (-581 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1003)) - (-4 *6 (-1114)) (-5 *1 (-580 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-579 *5)) (-5 *4 (-579 *6)) (-4 *5 (-1006)) + (-4 *6 (-1119)) (-5 *1 (-581 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) - (-4 *2 (-1114)) (-5 *1 (-580 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-115)) (-5 *2 (-687))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1044)) (-5 *3 (-115)) (-5 *2 (-83))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1044)) (-5 *2 (-1131 (-478)))))) -(((*1 *2 *1) (-12 (-4 *1 (-103)) (-5 *2 (-687)))) + (-12 (-5 *3 (-579 *5)) (-5 *4 (-579 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1006)) + (-4 *2 (-1119)) (-5 *1 (-581 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1048)) (-5 *3 (-115)) (-5 *2 (-688))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1048)) (-5 *3 (-115)) (-5 *2 (-83))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1048)) (-5 *2 (-1136 (-479)))))) +(((*1 *2 *1) (-12 (-4 *1 (-103)) (-5 *2 (-688)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-478)) (-4 *1 (-317 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-479)) (-4 *1 (-318 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-317 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-478)))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-479)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4)) (-4 *1 (-317 *4)) (-4 *4 (-1114)) (-5 *2 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-461)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-478)) (-5 *3 (-112)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-478))))) -(((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1140 (-48))))) + (-12 (-5 *3 (-1 (-83) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1119)) (-5 *2 (-479)))) + ((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-462)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-479)) (-5 *3 (-112)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-479))))) +(((*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1145 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-92 *3)) (|:| |greater| (-92 *3)))) - (-5 *1 (-92 *3)) (-4 *3 (-749)))) - ((*1 *2 *2) - (-12 (-5 *2 (-513 *4)) (-4 *4 (-13 (-29 *3) (-1100))) - (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-515 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-513 (-343 (-850 *3)))) - (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-519 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-308)) - (-5 *2 (-2 (|:| -3071 *3) (|:| |special| *3))) (-5 *1 (-659 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1164 *5)) (-4 *5 (-308)) (-4 *5 (-954)) - (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1164 (-1164 *5))) (-4 *5 (-308)) (-4 *5 (-954)) - (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-578 *1)) (-4 *1 (-1044)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-578 *1)) (-4 *1 (-1044))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-115))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-115))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-112)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1044)) (-5 *2 (-115))))) + (-5 *1 (-92 *3)) (-4 *3 (-750)))) + ((*1 *2 *2) + (-12 (-5 *2 (-514 *4)) (-4 *4 (-13 (-29 *3) (-1105))) + (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-516 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-514 (-344 (-851 *3)))) + (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-520 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| -3074 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169 *5)) (-4 *5 (-308)) (-4 *5 (-955)) + (-5 *2 (-579 (-579 (-626 *5)))) (-5 *1 (-937 *5)) (-5 *3 (-579 (-626 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1169 (-1169 *5))) (-4 *5 (-308)) (-4 *5 (-955)) + (-5 *2 (-579 (-579 (-626 *5)))) (-5 *1 (-937 *5)) (-5 *3 (-579 (-626 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-579 *1)) (-4 *1 (-1048)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-579 *1)) (-4 *1 (-1048))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-115))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-115))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-112)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1048)) (-5 *2 (-115))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) + (-12 (-5 *2 (-479)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-688)) (-4 *5 (-144)))) ((*1 *1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144)))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144)))) ((*1 *1 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-954)) (-4 *1 (-622 *3 *2 *4)) (-4 *2 (-317 *3)) - (-4 *4 (-317 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1042 *2 *3)) (-14 *2 (-687)) (-4 *3 (-954))))) + (-12 (-4 *3 (-955)) (-4 *1 (-623 *3 *2 *4)) (-4 *2 (-318 *3)) + (-4 *4 (-318 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1046 *2 *3)) (-14 *2 (-688)) (-4 *3 (-955))))) (((*1 *1 *2) - (-12 (-5 *2 (-625 *4)) (-4 *4 (-954)) (-5 *1 (-1042 *3 *4)) (-14 *3 (-687))))) + (-12 (-5 *2 (-626 *4)) (-4 *4 (-955)) (-5 *1 (-1046 *3 *4)) (-14 *3 (-688))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1003) (-34))) - (-4 *3 (-13 (-1003) (-34)))))) + (|partial| -12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1006) (-34))) + (-4 *3 (-13 (-1006) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1041 *2 *3)) (-4 *2 (-13 (-1003) (-34))) - (-4 *3 (-13 (-1003) (-34)))))) + (-12 (-5 *1 (-1045 *2 *3)) (-4 *2 (-13 (-1006) (-34))) + (-4 *3 (-13 (-1006) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 *4)) (-5 *1 (-1041 *3 *4)) (-4 *3 (-13 (-1003) (-34))) - (-4 *4 (-13 (-1003) (-34)))))) + (-12 (-5 *2 (-579 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-13 (-1006) (-34))) + (-4 *4 (-13 (-1006) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) (-5 *1 (-1041 *3 *4)) - (-4 *3 (-13 (-1003) (-34))) (-4 *4 (-13 (-1003) (-34)))))) + (-12 (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) (-5 *1 (-1045 *3 *4)) + (-4 *3 (-13 (-1006) (-34))) (-4 *4 (-13 (-1006) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1040 *4 *5)) (-4 *4 (-13 (-1003) (-34))) - (-4 *5 (-13 (-1003) (-34))) (-5 *2 (-83)) (-5 *1 (-1041 *4 *5))))) + (-12 (-5 *3 (-1044 *4 *5)) (-4 *4 (-13 (-1006) (-34))) + (-4 *5 (-13 (-1006) (-34))) (-5 *2 (-83)) (-5 *1 (-1045 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1040 *5 *6)) (-5 *4 (-1 (-83) *6 *6)) - (-4 *5 (-13 (-1003) (-34))) (-4 *6 (-13 (-1003) (-34))) (-5 *2 (-83)) - (-5 *1 (-1041 *5 *6))))) + (-12 (-5 *3 (-1044 *5 *6)) (-5 *4 (-1 (-83) *6 *6)) + (-4 *5 (-13 (-1006) (-34))) (-4 *6 (-13 (-1006) (-34))) (-5 *2 (-83)) + (-5 *1 (-1045 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -3971)) (-4 *1 (-122 *2)) (-4 *2 (-1114)) - (-4 *2 (-1003)))) + (-12 (|has| *1 (-6 -3977)) (-4 *1 (-122 *2)) (-4 *2 (-1119)) + (-4 *2 (-1006)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3971)) (-4 *1 (-122 *3)) - (-4 *3 (-1114)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-611 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3977)) (-4 *1 (-122 *3)) + (-4 *3 (-1119)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-612 *3)) (-4 *3 (-1119)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-478)) (-4 *4 (-1003)) (-5 *1 (-668 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-668 *2)) (-4 *2 (-1003)))) + (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-479)) (-4 *4 (-1006)) (-5 *1 (-669 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *1 (-669 *2)) (-4 *2 (-1006)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) - (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1041 *3 *4))))) + (-12 (-5 *2 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) + (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1045 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3971)) (-4 *1 (-190 *3)) - (-4 *3 (-1003)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3971)) (-4 *1 (-190 *2)) (-4 *2 (-1003)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)) (-4 *2 (-1003)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3977)) (-4 *1 (-190 *3)) + (-4 *3 (-1006)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -3977)) (-4 *1 (-190 *2)) (-4 *2 (-1006)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)) (-4 *2 (-1006)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-544 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) + (|partial| -12 (-4 *1 (-545 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-478)) (-4 *4 (-1003)) (-5 *1 (-668 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-668 *2)) (-4 *2 (-1003)))) + (-12 (-5 *2 (-1 (-83) *4)) (-5 *3 (-479)) (-4 *4 (-1006)) (-5 *1 (-669 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *1 (-669 *2)) (-4 *2 (-1006)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) - (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1041 *3 *4))))) + (-12 (-5 *2 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) + (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1045 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-1040 *4 *5))) (-5 *3 (-1 (-83) *5 *5)) - (-4 *4 (-13 (-1003) (-34))) (-4 *5 (-13 (-1003) (-34))) - (-5 *1 (-1041 *4 *5)))) + (-12 (-5 *2 (-579 (-1044 *4 *5))) (-5 *3 (-1 (-83) *5 *5)) + (-4 *4 (-13 (-1006) (-34))) (-4 *5 (-13 (-1006) (-34))) + (-5 *1 (-1045 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-578 (-1040 *3 *4))) (-4 *3 (-13 (-1003) (-34))) - (-4 *4 (-13 (-1003) (-34))) (-5 *1 (-1041 *3 *4))))) + (-12 (-5 *2 (-579 (-1044 *3 *4))) (-4 *3 (-13 (-1006) (-34))) + (-4 *4 (-13 (-1006) (-34))) (-5 *1 (-1045 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-83)) - (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) + (-12 (-4 *3 (-386)) (-4 *4 (-750)) (-4 *5 (-711)) (-5 *2 (-83)) + (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-855 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) - (-4 *4 (-13 (-1003) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-760)))) - ((*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-869)))) - ((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-895)))) - ((*1 *2 *1) (-12 (-4 *1 (-916 *2)) (-4 *2 (-1114)))) + (-12 (-5 *2 (-83)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) + (-4 *4 (-13 (-1006) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-761)))) + ((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-896)))) + ((*1 *2 *1) (-12 (-4 *1 (-917 *2)) (-4 *2 (-1119)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1003) (-34))) (-5 *1 (-1040 *2 *3)) - (-4 *3 (-13 (-1003) (-34)))))) + (-12 (-4 *2 (-13 (-1006) (-34))) (-5 *1 (-1044 *2 *3)) + (-4 *3 (-13 (-1006) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-83)) - (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-386)) (-4 *4 (-750)) (-4 *5 (-711)) (-5 *2 (-83)) + (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-855 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) - (-4 *4 (-13 (-1003) (-34)))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) + (-4 *4 (-13 (-1006) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-84))) - ((*1 *1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-4 *1 (-477))) - ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-954)))) + ((*1 *1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-4 *1 (-478))) + ((*1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-955)))) ((*1 *1 *1) - (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) - (-4 *3 (-13 (-1003) (-34)))))) + (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) + (-4 *3 (-13 (-1006) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) - (-4 *3 (-13 (-1003) (-34)))))) + (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) + (-4 *3 (-13 (-1006) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1040 *3 *2)) (-4 *3 (-13 (-1003) (-34))) - (-4 *2 (-13 (-1003) (-34)))))) + (-12 (-5 *1 (-1044 *3 *2)) (-4 *3 (-13 (-1006) (-34))) + (-4 *2 (-13 (-1006) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-1040 *3 *4)) (-4 *3 (-13 (-1003) (-34))) - (-4 *4 (-13 (-1003) (-34)))))) + (-12 (-5 *2 (-83)) (-5 *1 (-1044 *3 *4)) (-4 *3 (-13 (-1006) (-34))) + (-4 *4 (-13 (-1006) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1040 *2 *3)) (-4 *2 (-13 (-1003) (-34))) - (-4 *3 (-13 (-1003) (-34)))))) + (-12 (-5 *1 (-1044 *2 *3)) (-4 *2 (-13 (-1006) (-34))) + (-4 *3 (-13 (-1006) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-83) *5 *5)) (-5 *4 (-1 (-83) *6 *6)) - (-4 *5 (-13 (-1003) (-34))) (-4 *6 (-13 (-1003) (-34))) (-5 *2 (-83)) - (-5 *1 (-1040 *5 *6))))) + (-4 *5 (-13 (-1006) (-34))) (-4 *6 (-13 (-1006) (-34))) (-5 *2 (-83)) + (-5 *1 (-1044 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-83) *5 *5)) (-4 *5 (-13 (-1003) (-34))) (-5 *2 (-83)) - (-5 *1 (-1040 *4 *5)) (-4 *4 (-13 (-1003) (-34)))))) + (-12 (-5 *3 (-1 (-83) *5 *5)) (-4 *5 (-13 (-1006) (-34))) (-5 *2 (-83)) + (-5 *1 (-1044 *4 *5)) (-4 *4 (-13 (-1006) (-34)))))) (((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1) (-4 *1 (-1039)))) + ((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1) (-4 *1 (-1043)))) (((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) ((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1) (-4 *1 (-1039)))) + ((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1) (-4 *1 (-1043)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1039)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1043)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1039)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1043)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1039)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1043)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1039)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1043)))) (((*1 *1 *1) (-5 *1 (-177))) ((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1) (-4 *1 (-1039))) ((*1 *1 *1 *1) (-4 *1 (-1039)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-177)) (-5 *3 (-687)) (-5 *1 (-178)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-140 (-177))) (-5 *3 (-687)) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1039)))) + ((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1) (-4 *1 (-1043))) ((*1 *1 *1 *1) (-4 *1 (-1043)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-177)) (-5 *3 (-688)) (-5 *1 (-178)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-140 (-177))) (-5 *3 (-688)) (-5 *1 (-178)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1043)))) (((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1) (-4 *1 (-1039)))) + ((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1) (-4 *1 (-1043)))) (((*1 *1 *1 *1) (-5 *1 (-177))) ((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946)))) - ((*1 *1 *1 *1) (-4 *1 (-1039)))) -(((*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) - ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *1 *1) (-4 *1 (-707))) - ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) - ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)) (-4 *2 (-965)))) - ((*1 *1 *1) (-4 *1 (-1039)))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-1038)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1170)) (-5 *1 (-1038))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-1038)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1170)) (-5 *1 (-1038))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1059)) (-5 *4 (-765)) (-5 *2 (-1170)) (-5 *1 (-1038)))) - ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-1038)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-765))) (-5 *2 (-1170)) (-5 *1 (-1038))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-578 (-1080))) (-5 *1 (-1036))))) -(((*1 *1 *2) (-12 (-5 *2 (-1065 3 *3)) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) - ((*1 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-954))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-324))) (-5 *1 (-947)))) + ((*1 *1 *1 *1) (-4 *1 (-1043)))) +(((*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-966)))) + ((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *1 *1) (-4 *1 (-708))) + ((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)) (-4 *2 (-966)))) + ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)) (-4 *2 (-966)))) + ((*1 *1 *1) (-4 *1 (-1043)))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-1042)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-766))) (-5 *2 (-1175)) (-5 *1 (-1042))))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-1042)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-766))) (-5 *2 (-1175)) (-5 *1 (-1042))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1063)) (-5 *4 (-766)) (-5 *2 (-1175)) (-5 *1 (-1042)))) + ((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-1042)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-766))) (-5 *2 (-1175)) (-5 *1 (-1042))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-579 (-1085))) (-5 *1 (-1040))))) +(((*1 *1 *2) (-12 (-5 *2 (-1069 3 *3)) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) + ((*1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-955))))) (((*1 *2) - (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) - (-5 *2 (-687)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) + (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) + (-5 *2 (-688)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-687))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-687))))) -(((*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-578 *1)) (-4 *1 (-1034 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-954)) (-5 *2 (-578 *1)) (-4 *1 (-1034 *3))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-688))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-688))))) +(((*1 *2 *1) (-12 (-4 *3 (-955)) (-5 *2 (-579 *1)) (-4 *1 (-1038 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-955)) (-5 *2 (-579 *1)) (-4 *1 (-1038 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-578 (-847 *4))) (-4 *1 (-1034 *4)) (-4 *4 (-954)) - (-5 *2 (-687))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-780 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1114)))) - ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) + (-12 (-5 *3 (-579 (-848 *4))) (-4 *1 (-1038 *4)) (-4 *4 (-955)) + (-5 *2 (-688))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-848 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-848 *3))) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) + (-12 (-5 *2 (-579 (-579 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) + (-12 (-5 *2 (-579 (-848 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-848 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-848 *3))) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) + (-12 (-5 *2 (-579 (-579 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-847 *3))) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) + (-12 (-5 *2 (-579 (-848 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-848 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-848 *3))) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954)))) + (-12 (-5 *2 (-579 (-579 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-847 *3))) (-4 *1 (-1034 *3)) (-4 *3 (-954))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) + (-12 (-5 *2 (-579 (-848 *3))) (-4 *1 (-1038 *3)) (-4 *3 (-955))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-847 *3)))))) + (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-579 (-848 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-578 (-578 (-847 *4)))) (-5 *3 (-83)) (-4 *4 (-954)) - (-4 *1 (-1034 *4)))) + (-12 (-5 *2 (-579 (-579 (-848 *4)))) (-5 *3 (-83)) (-4 *4 (-955)) + (-4 *1 (-1038 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 (-578 (-847 *3)))) (-4 *3 (-954)) (-4 *1 (-1034 *3)))) + (-12 (-5 *2 (-579 (-579 (-848 *3)))) (-4 *3 (-955)) (-4 *1 (-1038 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-83)) (-4 *1 (-1034 *4)) - (-4 *4 (-954)))) + (-12 (-5 *2 (-579 (-579 (-579 *4)))) (-5 *3 (-83)) (-4 *1 (-1038 *4)) + (-4 *4 (-955)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-578 (-578 (-847 *4)))) (-5 *3 (-83)) (-4 *1 (-1034 *4)) - (-4 *4 (-954)))) + (-12 (-5 *2 (-579 (-579 (-848 *4)))) (-5 *3 (-83)) (-4 *1 (-1038 *4)) + (-4 *4 (-955)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-578 (-143))) (-5 *4 (-143)) - (-4 *1 (-1034 *5)) (-4 *5 (-954)))) + (-12 (-5 *2 (-579 (-579 (-579 *5)))) (-5 *3 (-579 (-143))) (-5 *4 (-143)) + (-4 *1 (-1038 *5)) (-4 *5 (-955)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-578 (-578 (-847 *5)))) (-5 *3 (-578 (-143))) (-5 *4 (-143)) - (-4 *1 (-1034 *5)) (-4 *5 (-954))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-847 *3)))))) + (-12 (-5 *2 (-579 (-579 (-848 *5)))) (-5 *3 (-579 (-143))) (-5 *4 (-143)) + (-4 *1 (-1038 *5)) (-4 *5 (-955))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-848 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-578 (-687)))))))) + (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-579 (-579 (-688)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) - (-5 *2 (-578 (-578 (-578 (-847 *3)))))))) + (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) + (-5 *2 (-579 (-579 (-579 (-848 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-578 (-143))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) (-5 *2 (-578 (-143)))))) + (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-579 (-143))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 (-579 (-143)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1034 *3)) (-4 *3 (-954)) + (-12 (-4 *1 (-1038 *3)) (-4 *3 (-955)) (-5 *2 - (-2 (|:| -3826 (-687)) (|:| |curves| (-687)) (|:| |polygons| (-687)) - (|:| |constructs| (-687))))))) + (-2 (|:| -3832 (-688)) (|:| |curves| (-688)) (|:| |polygons| (-688)) + (|:| |constructs| (-688))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-578 (-2 (|:| -3708 (-1070 *6)) (|:| -2383 (-478))))) - (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) - (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-954))))) + (-12 (-5 *3 (-579 (-2 (|:| -3714 (-1075 *6)) (|:| -2388 (-479))))) + (-4 *6 (-254)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) + (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-955))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-1032 *4 *2)) - (-4 *2 (-13 (-533 (-478) *4) (-10 -7 (-6 -3971) (-6 -3972)))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1036 *4 *2)) + (-4 *2 (-13 (-534 (-479) *4) (-10 -7 (-6 -3977) (-6 -3978)))))) ((*1 *2 *2) - (-12 (-4 *3 (-749)) (-4 *3 (-1114)) (-5 *1 (-1032 *3 *2)) - (-4 *2 (-13 (-533 (-478) *3) (-10 -7 (-6 -3971) (-6 -3972))))))) + (-12 (-4 *3 (-750)) (-4 *3 (-1119)) (-5 *1 (-1036 *3 *2)) + (-4 *2 (-13 (-534 (-479) *3) (-10 -7 (-6 -3977) (-6 -3978))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-1032 *4 *2)) - (-4 *2 (-13 (-533 (-478) *4) (-10 -7 (-6 -3971) (-6 -3972)))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-1036 *4 *2)) + (-4 *2 (-13 (-534 (-479) *4) (-10 -7 (-6 -3977) (-6 -3978)))))) ((*1 *2 *2) - (-12 (-4 *3 (-749)) (-4 *3 (-1114)) (-5 *1 (-1032 *3 *2)) - (-4 *2 (-13 (-533 (-478) *3) (-10 -7 (-6 -3971) (-6 -3972))))))) + (-12 (-4 *3 (-750)) (-4 *3 (-1119)) (-5 *1 (-1036 *3 *2)) + (-4 *2 (-13 (-534 (-479) *3) (-10 -7 (-6 -3977) (-6 -3978))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-954)) (-4 *2 (-1140 *4)) - (-5 *1 (-377 *4 *2)))) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-955)) (-4 *2 (-1145 *4)) + (-5 *1 (-378 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-343 (-1070 (-261 *5)))) (-5 *3 (-1164 (-261 *5))) - (-5 *4 (-478)) (-4 *5 (-489)) (-5 *1 (-1030 *5))))) + (-12 (-5 *2 (-344 (-1075 (-261 *5)))) (-5 *3 (-1169 (-261 *5))) + (-5 *4 (-479)) (-4 *5 (-490)) (-5 *1 (-1034 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-343 (-1070 (-261 *3)))) (-4 *3 (-489)) (-5 *1 (-1030 *3))))) + (-12 (-5 *2 (-344 (-1075 (-261 *3)))) (-4 *3 (-490)) (-5 *1 (-1034 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-245 (-343 (-850 *5)))) (-5 *4 (-1075)) + (-12 (-5 *3 (-245 (-344 (-851 *5)))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) - (-5 *2 (-1066 (-578 (-261 *5)) (-578 (-245 (-261 *5))))) - (-5 *1 (-1029 *5)))) + (-5 *2 (-1070 (-579 (-261 *5)) (-579 (-245 (-261 *5))))) + (-5 *1 (-1033 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) - (-5 *2 (-1066 (-578 (-261 *5)) (-578 (-245 (-261 *5))))) - (-5 *1 (-1029 *5))))) + (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-1070 (-579 (-261 *5)) (-579 (-245 (-261 *5))))) + (-5 *1 (-1033 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) - (-5 *2 (-578 (-261 *5))) (-5 *1 (-1029 *5)))) + (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-579 (-261 *5))) (-5 *1 (-1033 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1075))) - (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-261 *5)))) - (-5 *1 (-1029 *5))))) + (-12 (-5 *3 (-579 (-344 (-851 *5)))) (-5 *4 (-579 (-1080))) + (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-579 (-261 *5)))) + (-5 *1 (-1033 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) - (-5 *2 (-578 (-245 (-261 *5)))) (-5 *1 (-1029 *5)))) + (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-579 (-245 (-261 *5)))) (-5 *1 (-1033 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-13 (-254) (-118))) - (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1029 *4)))) + (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-13 (-254) (-118))) + (-5 *2 (-579 (-245 (-261 *4)))) (-5 *1 (-1033 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-245 (-343 (-850 *5)))) (-5 *4 (-1075)) - (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-245 (-261 *5)))) - (-5 *1 (-1029 *5)))) + (-12 (-5 *3 (-245 (-344 (-851 *5)))) (-5 *4 (-1080)) + (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-245 (-261 *5)))) + (-5 *1 (-1033 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-245 (-343 (-850 *4)))) (-4 *4 (-13 (-254) (-118))) - (-5 *2 (-578 (-245 (-261 *4)))) (-5 *1 (-1029 *4)))) + (-12 (-5 *3 (-245 (-344 (-851 *4)))) (-4 *4 (-13 (-254) (-118))) + (-5 *2 (-579 (-245 (-261 *4)))) (-5 *1 (-1033 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-343 (-850 *5)))) (-5 *4 (-578 (-1075))) - (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) - (-5 *1 (-1029 *5)))) + (-12 (-5 *3 (-579 (-344 (-851 *5)))) (-5 *4 (-579 (-1080))) + (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-579 (-245 (-261 *5))))) + (-5 *1 (-1033 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-343 (-850 *4)))) (-4 *4 (-13 (-254) (-118))) - (-5 *2 (-578 (-578 (-245 (-261 *4))))) (-5 *1 (-1029 *4)))) + (-12 (-5 *3 (-579 (-344 (-851 *4)))) (-4 *4 (-13 (-254) (-118))) + (-5 *2 (-579 (-579 (-245 (-261 *4))))) (-5 *1 (-1033 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-245 (-343 (-850 *5))))) (-5 *4 (-578 (-1075))) - (-4 *5 (-13 (-254) (-118))) (-5 *2 (-578 (-578 (-245 (-261 *5))))) - (-5 *1 (-1029 *5)))) + (-12 (-5 *3 (-579 (-245 (-344 (-851 *5))))) (-5 *4 (-579 (-1080))) + (-4 *5 (-13 (-254) (-118))) (-5 *2 (-579 (-579 (-245 (-261 *5))))) + (-5 *1 (-1033 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-245 (-343 (-850 *4))))) (-4 *4 (-13 (-254) (-118))) - (-5 *2 (-578 (-578 (-245 (-261 *4))))) (-5 *1 (-1029 *4))))) + (-12 (-5 *3 (-579 (-245 (-344 (-851 *4))))) (-4 *4 (-13 (-254) (-118))) + (-5 *2 (-579 (-579 (-245 (-261 *4))))) (-5 *1 (-1033 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4)))) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *2 (-578 *3)) (-5 *1 (-1028 *4 *3)) (-4 *4 (-1140 *3))))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *2 (-579 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1145 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4)))) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *2 (-578 *3)) (-5 *1 (-1028 *4 *3)) (-4 *4 (-1140 *3))))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *2 (-579 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1145 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4)))) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *2 (-578 *3)) (-5 *1 (-1028 *4 *3)) (-4 *4 (-1140 *3))))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *2 (-579 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1145 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *2 (-578 *4)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1140 *4)))) + (-12 (-4 *4 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *2 (-579 *4)) (-5 *1 (-1032 *3 *4)) (-4 *3 (-1145 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *2 (-578 *3)) (-5 *1 (-1028 *4 *3)) (-4 *4 (-1140 *3))))) + (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *2 (-579 *3)) (-5 *1 (-1032 *4 *3)) (-4 *4 (-1145 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) + (-4 *5 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) (-5 *2 - (-2 (|:| |solns| (-578 *5)) - (|:| |maps| (-578 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1028 *3 *5)) (-4 *3 (-1140 *5))))) + (-2 (|:| |solns| (-579 *5)) + (|:| |maps| (-579 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1032 *3 *5)) (-4 *3 (-1145 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-308)) (-4 *5 (-13 (-317 *4) (-10 -7 (-6 -3972)))) - (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3972)))) (-5 *1 (-604 *4 *5 *2 *3)) - (-4 *3 (-622 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-308)) (-4 *5 (-13 (-318 *4) (-10 -7 (-6 -3978)))) + (-4 *2 (-13 (-318 *4) (-10 -7 (-6 -3978)))) (-5 *1 (-605 *4 *5 *2 *3)) + (-4 *3 (-623 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1164 *4)) (-5 *3 (-625 *4)) (-4 *4 (-308)) - (-5 *1 (-605 *4)))) + (|partial| -12 (-5 *2 (-1169 *4)) (-5 *3 (-626 *4)) (-4 *4 (-308)) + (-5 *1 (-606 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-578 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-308)) - (-5 *1 (-727 *2 *3)) (-4 *3 (-595 *2)))) + (|partial| -12 (-5 *4 (-579 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-308)) + (-5 *1 (-728 *2 *3)) (-4 *3 (-596 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-343 (-478))))))) - (-5 *1 (-1028 *3 *2)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-13 (-308) (-10 -8 (-15 ** ($ $ (-344 (-479))))))) + (-5 *1 (-1032 *3 *2)) (-4 *3 (-1145 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1055 *7))) (-4 *6 (-749)) - (-4 *7 (-854 *5 (-463 *6) *6)) (-4 *5 (-954)) (-5 *2 (-1 (-1055 *7) *7)) - (-5 *1 (-1026 *5 *6 *7))))) + (-12 (-5 *3 (-579 *6)) (-5 *4 (-579 (-1059 *7))) (-4 *6 (-750)) + (-4 *7 (-855 *5 (-464 *6) *6)) (-4 *5 (-955)) (-5 *2 (-1 (-1059 *7) *7)) + (-5 *1 (-1030 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-254)) (-4 *6 (-317 *5)) (-4 *4 (-317 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1994 (-578 *4)))) - (-5 *1 (-1024 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4))))) + (-12 (-4 *5 (-254)) (-4 *6 (-318 *5)) (-4 *4 (-318 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-579 *4)))) + (-5 *1 (-1028 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-254)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) + (-12 (-4 *4 (-254)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1024 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6))))) + (-5 *1 (-1028 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-254)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *1 (-1024 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) + (-12 (-4 *3 (-254)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-254)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1024 *4 *5 *6 *3)) - (-4 *3 (-622 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478)))) + (-12 (-4 *4 (-254)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1028 *4 *5 *6 *3)) + (-4 *3 (-623 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479)))) ((*1 *2 *2) - (-12 (-4 *3 (-254)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *1 (-1024 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) + (-12 (-4 *3 (-254)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *1 (-1028 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-687)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-688)) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-954)) (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) + (-12 (-4 *2 (-955)) (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 *1)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) - (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-579 *1)) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) + (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 *3)) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) - (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-954)) (-5 *1 (-625 *3)))) + (-12 (-5 *2 (-579 *3)) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) + (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-955)) (-5 *1 (-626 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 *4)) (-4 *4 (-954)) (-4 *1 (-1023 *3 *4 *5 *6)) + (-12 (-5 *2 (-579 *4)) (-4 *4 (-955)) (-4 *1 (-1027 *3 *4 *5 *6)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1023 *3 *4 *2 *5)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) + (-12 (-4 *1 (-1027 *3 *4 *2 *5)) (-4 *4 (-955)) (-4 *5 (-193 *3 *4)) (-4 *2 (-193 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-823)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) + (-12 (-5 *2 (-824)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)))) ((*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-144)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 *4)) (-5 *3 (-823)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-824)) (-4 *4 (-295)) (-5 *1 (-461 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) - (-4 *2 (-954))))) + (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) + (-4 *2 (-955))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *4 (-1140 *2)) - (-4 *2 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) - (-5 *1 (-432 *2 *4 *5)) (-4 *5 (-346 *2 *4)))) + (-12 (-5 *3 (-626 *2)) (-4 *4 (-1145 *2)) + (-4 *2 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) + (-5 *1 (-433 *2 *4 *5)) (-4 *5 (-347 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) - (-4 *2 (-954))))) + (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) + (-4 *2 (-955))))) (((*1 *2 *3) - (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-308)) - (-5 *1 (-453 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) + (-12 (-4 *4 (-318 *2)) (-4 *5 (-318 *2)) (-4 *2 (-308)) + (-5 *1 (-454 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) - (|has| *2 (-6 (-3973 "*"))) (-4 *2 (-954)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)) + (|has| *2 (-6 (-3979 "*"))) (-4 *2 (-955)))) ((*1 *2 *3) - (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-144)) - (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) + (-12 (-4 *4 (-318 *2)) (-4 *5 (-318 *2)) (-4 *2 (-144)) + (-5 *1 (-625 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) - (|has| *2 (-6 (-3973 "*"))) (-4 *2 (-954))))) + (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) + (|has| *2 (-6 (-3979 "*"))) (-4 *2 (-955))))) (((*1 *2 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *3 (-317 *2)) (-4 *4 (-317 *2)) - (|has| *2 (-6 (-3973 "*"))) (-4 *2 (-954)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *3 (-318 *2)) (-4 *4 (-318 *2)) + (|has| *2 (-6 (-3979 "*"))) (-4 *2 (-955)))) ((*1 *2 *3) - (-12 (-4 *4 (-317 *2)) (-4 *5 (-317 *2)) (-4 *2 (-144)) - (-5 *1 (-624 *2 *4 *5 *3)) (-4 *3 (-622 *2 *4 *5)))) + (-12 (-4 *4 (-318 *2)) (-4 *5 (-318 *2)) (-4 *2 (-144)) + (-5 *1 (-625 *2 *4 *5 *3)) (-4 *3 (-623 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1023 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) - (|has| *2 (-6 (-3973 "*"))) (-4 *2 (-954))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) - ((*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1114)) (-5 *2 (-687))))) + (-12 (-4 *1 (-1027 *3 *2 *4 *5)) (-4 *4 (-193 *3 *2)) (-4 *5 (-193 *3 *2)) + (|has| *2 (-6 (-3979 "*"))) (-4 *2 (-955))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) + ((*1 *2 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1119)) (-5 *2 (-688))))) (((*1 *1 *1 *1) (-5 *1 (-83))) ((*1 *1 *1 *1) (-4 *1 (-94))) - ((*1 *1 *1 *1) (-5 *1 (-1020)))) -(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-374)))) - ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-742)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1080))) (-5 *3 (-1080)) (-5 *1 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-617)))) - ((*1 *2 *1) (-12 (-5 *2 (-1115)) (-5 *1 (-876)))) - ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1016))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-617)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-1080))) (-5 *1 (-1016))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-385)) (-4 *4 (-733)) (-14 *5 (-1075)) - (-5 *2 (-478)) (-5 *1 (-1015 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1024)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1019)) (-5 *1 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-375)))) + ((*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-743)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-579 (-1085))) (-5 *3 (-1085)) (-5 *1 (-1019)))) + ((*1 *2 *1) (-12 (-5 *2 (-1019)) (-5 *1 (-1020))))) +(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-618)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-978)))) + ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1019))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-618)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-1085))) (-5 *1 (-1019))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-386)) (-4 *4 (-734)) (-14 *5 (-1080)) + (-5 *2 (-479)) (-5 *1 (-1018 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-385)) (-4 *4 (-733)) (-14 *5 (-1075)) - (-5 *2 (-478)) (-5 *1 (-1015 *4 *5))))) + (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-386)) (-4 *4 (-734)) (-14 *5 (-1080)) + (-5 *2 (-479)) (-5 *1 (-1018 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-478)) - (-5 *1 (-1015 *4 *5))))) + (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-479)) + (-5 *1 (-1018 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-478)) - (-5 *1 (-1015 *4 *5))))) + (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-479)) + (-5 *1 (-1018 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1133 *5 *4)) (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-578 *4)) - (-5 *1 (-1015 *4 *5))))) + (-12 (-5 *3 (-1138 *5 *4)) (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-579 *4)) + (-5 *1 (-1018 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-578 (-1133 *5 *4))) - (-5 *1 (-1015 *4 *5)) (-5 *3 (-1133 *5 *4))))) + (-12 (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-579 (-1138 *5 *4))) + (-5 *1 (-1018 *4 *5)) (-5 *3 (-1138 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-733)) (-14 *5 (-1075)) (-5 *2 (-578 (-1133 *5 *4))) - (-5 *1 (-1015 *4 *5)) (-5 *3 (-1133 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1011)) (-5 *3 (-478))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1011)) (-5 *3 (-478))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-1011)) (-5 *3 (-478))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-1011))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1164 (-478))) (-5 *3 (-478)) (-5 *1 (-1011)))) + (-12 (-4 *4 (-734)) (-14 *5 (-1080)) (-5 *2 (-579 (-1138 *5 *4))) + (-5 *1 (-1018 *4 *5)) (-5 *3 (-1138 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-1014)) (-5 *3 (-479))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-1014)) (-5 *3 (-479))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-1014)) (-5 *3 (-479))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-1014))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1169 (-479))) (-5 *3 (-479)) (-5 *1 (-1014)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1164 (-478))) (-5 *3 (-578 (-478))) (-5 *4 (-478)) - (-5 *1 (-1011))))) + (-12 (-5 *2 (-1169 (-479))) (-5 *3 (-579 (-479))) (-5 *4 (-479)) + (-5 *1 (-1014))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-578 (-478))) (-5 *3 (-578 (-823))) (-5 *4 (-83)) - (-5 *1 (-1011))))) + (-12 (-5 *2 (-579 (-479))) (-5 *3 (-579 (-824))) (-5 *4 (-83)) + (-5 *1 (-1014))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-625 (-478))) (-5 *3 (-578 (-478))) (-5 *1 (-1011))))) + (-12 (-5 *2 (-626 (-479))) (-5 *3 (-579 (-479))) (-5 *1 (-1014))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-823))) (-5 *4 (-578 (-478))) (-5 *2 (-625 (-478))) - (-5 *1 (-1011))))) + (-12 (-5 *3 (-579 (-824))) (-5 *4 (-579 (-479))) (-5 *2 (-626 (-479))) + (-5 *1 (-1014))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-823))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-1011))))) + (-12 (-5 *3 (-579 (-824))) (-5 *2 (-579 (-626 (-479)))) (-5 *1 (-1014))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-578 (-478))) (-5 *3 (-625 (-478))) (-5 *1 (-1011))))) + (-12 (-5 *2 (-579 (-479))) (-5 *3 (-626 (-479))) (-5 *1 (-1014))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-1011))))) + (-12 (-5 *3 (-579 (-479))) (-5 *2 (-626 (-479))) (-5 *1 (-1014))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) - (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 *4)) (-5 *1 (-1009 *5 *6 *7 *3 *4)) - (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) + (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-83)) (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-83)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) - (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 *4)) (-5 *1 (-1009 *5 *6 *7 *3 *4)) - (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) + (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) - (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 *4)) (-5 *1 (-1009 *5 *6 *7 *3 *4)) - (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 *4)) (-5 *1 (-1012 *5 *6 *7 *3 *4)) + (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) - (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) - (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) - (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) - (-5 *1 (-1009 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) + (-12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *3 (-970 *6 *7 *8)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) + (-5 *1 (-1012 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1583 *9)))) (-5 *5 (-83)) - (-4 *8 (-969 *6 *7 *4)) (-4 *9 (-975 *6 *7 *4 *8)) (-4 *6 (-385)) - (-4 *7 (-710)) (-4 *4 (-749)) - (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -1583 *9)))) - (-5 *1 (-1009 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-579 (-2 (|:| |val| (-579 *8)) (|:| -1588 *9)))) (-5 *5 (-83)) + (-4 *8 (-970 *6 *7 *4)) (-4 *9 (-976 *6 *7 *4 *8)) (-4 *6 (-386)) + (-4 *7 (-711)) (-4 *4 (-750)) + (-5 *2 (-579 (-2 (|:| |val| *8) (|:| -1588 *9)))) + (-5 *1 (-1012 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))) - (-5 *1 (-1009 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))) + (-5 *1 (-1012 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *2 (-1170)) (-5 *1 (-976 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) + (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *2 (-1175)) (-5 *1 (-977 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *2 (-1170)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6))))) + (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *2 (-1175)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-976 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-977 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *2 (-1170)) (-5 *1 (-976 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) + (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *2 (-1175)) (-5 *1 (-977 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *2 (-1170)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6))))) + (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *2 (-1175)) (-5 *1 (-1012 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-976 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-977 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-1012 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *9 (-969 *6 *7 *8)) - (-5 *2 (-2 (|:| -3246 (-578 *9)) (|:| -1583 *4) (|:| |ineq| (-578 *9)))) - (-5 *1 (-894 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-975 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *9 (-970 *6 *7 *8)) + (-5 *2 (-2 (|:| -3250 (-579 *9)) (|:| -1588 *4) (|:| |ineq| (-579 *9)))) + (-5 *1 (-895 *6 *7 *8 *9 *4)) (-5 *3 (-579 *9)) (-4 *4 (-976 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *9 (-969 *6 *7 *8)) - (-5 *2 (-2 (|:| -3246 (-578 *9)) (|:| -1583 *4) (|:| |ineq| (-578 *9)))) - (-5 *1 (-1008 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) - (-4 *4 (-975 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *9 (-970 *6 *7 *8)) + (-5 *2 (-2 (|:| -3250 (-579 *9)) (|:| -1588 *4) (|:| |ineq| (-579 *9)))) + (-5 *1 (-1011 *6 *7 *8 *9 *4)) (-5 *3 (-579 *9)) + (-4 *4 (-976 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-578 *10)) (-5 *5 (-83)) (-4 *10 (-975 *6 *7 *8 *9)) - (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) + (-12 (-5 *4 (-579 *10)) (-5 *5 (-83)) (-4 *10 (-976 *6 *7 *8 *9)) + (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *9 (-970 *6 *7 *8)) (-5 *2 - (-578 (-2 (|:| -3246 (-578 *9)) (|:| -1583 *10) (|:| |ineq| (-578 *9))))) - (-5 *1 (-894 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) + (-579 (-2 (|:| -3250 (-579 *9)) (|:| -1588 *10) (|:| |ineq| (-579 *9))))) + (-5 *1 (-895 *6 *7 *8 *9 *10)) (-5 *3 (-579 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-578 *10)) (-5 *5 (-83)) (-4 *10 (-975 *6 *7 *8 *9)) - (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-969 *6 *7 *8)) + (-12 (-5 *4 (-579 *10)) (-5 *5 (-83)) (-4 *10 (-976 *6 *7 *8 *9)) + (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *9 (-970 *6 *7 *8)) (-5 *2 - (-578 (-2 (|:| -3246 (-578 *9)) (|:| -1583 *10) (|:| |ineq| (-578 *9))))) - (-5 *1 (-1008 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9))))) + (-579 (-2 (|:| -3250 (-579 *9)) (|:| -1588 *10) (|:| |ineq| (-579 *9))))) + (-5 *1 (-1011 *6 *7 *8 *9 *10)) (-5 *3 (-579 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -1583 *7)))) - (-4 *6 (-969 *3 *4 *5)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) - (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-894 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-579 (-2 (|:| |val| (-579 *6)) (|:| -1588 *7)))) + (-4 *6 (-970 *3 *4 *5)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) + (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-895 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -1583 *7)))) - (-4 *6 (-969 *3 *4 *5)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) - (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-1008 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-579 (-2 (|:| |val| (-579 *6)) (|:| -1588 *7)))) + (-4 *6 (-970 *3 *4 *5)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) + (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-1011 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1583 *8))) - (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-579 *7)) (|:| -1588 *8))) + (-4 *7 (-970 *4 *5 *6)) (-4 *8 (-976 *4 *5 *6 *7)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -1583 *8))) - (-4 *7 (-969 *4 *5 *6)) (-4 *8 (-975 *4 *5 *6 *7)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8))))) + (-12 (-5 *3 (-2 (|:| |val| (-579 *7)) (|:| -1588 *8))) + (-4 *7 (-970 *4 *5 *6)) (-4 *8 (-976 *4 *5 *6 *7)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *1 (-894 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-579 *7)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *1 (-895 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *1 (-1008 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-579 *7)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *1 (-1011 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) - (-5 *1 (-894 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-579 *3)) (-4 *3 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-83)) + (-5 *1 (-895 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-975 *5 *6 *7 *8)) (-4 *5 (-385)) - (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) - (-5 *1 (-1008 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-579 *3)) (-4 *3 (-976 *5 *6 *7 *8)) (-4 *5 (-386)) + (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-83)) + (-5 *1 (-1011 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) - (-4 *3 (-975 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) + (-4 *3 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) - (-4 *3 (-975 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) + (-4 *3 (-976 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7))))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7))))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7))))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *1 (-894 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-579 *7)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *1 (-895 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-578 *7)) (-4 *7 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *1 (-1008 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-579 *7)) (-4 *7 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *1 (-1011 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-894 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7)))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-895 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-83)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-975 *4 *5 *6 *7))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-83)) (-5 *1 (-1011 *4 *5 *6 *7 *3)) (-4 *3 (-976 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *2 (-1170)) (-5 *1 (-894 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6)))) + (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *2 (-1175)) (-5 *1 (-895 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *2 (-1170)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-975 *3 *4 *5 *6))))) + (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *2 (-1175)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-976 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-894 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-895 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1059)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-1170)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) - (-4 *8 (-975 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-977)))) + (-12 (-5 *3 (-1063)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-970 *4 *5 *6)) (-5 *2 (-1175)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) + (-4 *8 (-976 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-979)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) - ((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-499 *3)) (-4 *3 (-943 (-478))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) + ((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-500 *3)) (-4 *3 (-944 (-479))))) ((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *7 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| -3836 (-1075)) (|:| |entry| *4)))) - (-5 *1 (-791 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) + (-12 (-5 *2 (-579 (-2 (|:| -3842 (-1080)) (|:| |entry| *4)))) + (-5 *1 (-792 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)))) ((*1 *2 *1) - (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-4 *7 (-1003)) (-5 *2 (-578 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1006)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-4 *7 (-1006)) (-5 *2 (-579 *1)) (-4 *1 (-1009 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003))))) -(((*1 *2 *3) (-12 (-5 *2 (-478)) (-5 *1 (-499 *3)) (-4 *3 (-943 *2)))) + (-12 (-4 *1 (-1009 *3 *2 *4 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))) +(((*1 *2 *3) (-12 (-5 *2 (-479)) (-5 *1 (-500 *3)) (-4 *3 (-944 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-823)) (-4 *1 (-340)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-478)) (-4 *1 (-340)))) + (-12 (-4 *1 (-1009 *3 *4 *2 *5 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-479)) (-5 *3 (-824)) (-4 *1 (-341)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-479)) (-4 *1 (-341)))) ((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *2 *6)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))) (((*1 *2 *1) - (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003))))) + (-12 (-4 *1 (-1009 *3 *4 *5 *6 *2)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-1006)) (-4 *2 (-1006))))) (((*1 *1 *1) - (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) - (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003))))) + (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) + (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006))))) (((*1 *1 *1) - (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) - (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003))))) + (-12 (-4 *1 (-1009 *2 *3 *4 *5 *6)) (-4 *2 (-1006)) (-4 *3 (-1006)) + (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-823)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-824)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-823)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-608)))) + (|partial| -12 (-5 *2 (-824)) (-5 *1 (-1007 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-609)))) ((*1 *2 *1) - (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-823)) - (-14 *4 (-823))))) + (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-824)) + (-14 *4 (-824))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 (-823))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-823)) - (-14 *4 (-823))))) + (-12 (-5 *2 (-579 (-824))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-824)) + (-14 *4 (-824))))) (((*1 *2) - (-12 (-5 *2 (-1164 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-823)) - (-14 *4 (-823))))) + (-12 (-5 *2 (-1169 (-1007 *3 *4))) (-5 *1 (-1007 *3 *4)) (-14 *3 (-824)) + (-14 *4 (-824))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3971)) (-4 *1 (-422 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) + (-12 (|has| *1 (-6 -3977)) (-4 *1 (-423 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-806 *4)) (-4 *4 (-1003)) (-5 *2 (-83)) (-5 *1 (-809 *4)))) + (-12 (-5 *3 (-807 *4)) (-4 *4 (-1006)) (-5 *2 (-83)) (-5 *1 (-810 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-823)) (-5 *2 (-83)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-824)) (-5 *2 (-83)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-687)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-824)) (-5 *2 (-688)) (-5 *1 (-1007 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1020))))) -(((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1059))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-83))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) - ((*1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) - ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) - ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1024))))) +(((*1 *2 *1) (-12 (-4 *1 (-1006)) (-5 *2 (-1063))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-83))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) + ((*1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) + ((*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-4 *1 (-1004 *3)))) + ((*1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 (-437 *3 *4 *5 *6))) (-4 *3 (-308)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) + (-12 (-5 *2 (-579 (-438 *3 *4 *5 *6))) (-4 *3 (-308)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) - (-4 *5 (-854 *2 *3 *4)))) + (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) + (-4 *5 (-855 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) + (-12 (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) - (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) + (-12 (-5 *2 (-579 *1)) (-5 *3 (-579 *7)) (-4 *1 (-976 *4 *5 *6 *7)) + (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) - (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) + (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1006)) (-5 *2 (-83))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-578 (-545 *4))) (-4 *4 (-357 *3)) (-4 *3 (-1003)) - (-5 *1 (-503 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-997 *3)) (-4 *3 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1114)) (-5 *2 (-478))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-1059)) (-5 *1 (-895)))) + (-12 (-5 *2 (-579 (-546 *4))) (-4 *4 (-358 *3)) (-4 *3 (-1006)) + (-5 *1 (-504 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-792 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-104)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-125)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-170)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-613)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-926)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-971)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-1001))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-999 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1119)) (-5 *2 (-479))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-1063)) (-5 *1 (-896)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1075)) (-4 *4 (-1114)) (-5 *1 (-963 *3 *4)) (-4 *3 (-997 *4)))) + (-12 (-5 *2 (-1080)) (-4 *4 (-1119)) (-5 *1 (-964 *3 *4)) (-4 *3 (-999 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1075)) (-5 *3 (-992 *4)) (-4 *4 (-1114)) (-5 *1 (-995 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-994))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *1 (-218)))) + (-12 (-5 *2 (-1080)) (-5 *3 (-994 *4)) (-4 *4 (-1119)) (-5 *1 (-997 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-996))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-848 (-177)) (-848 (-177)))) (-5 *1 (-218)))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-276 *4)) (-4 *4 (-308)) (-5 *2 (-625 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1164 *3)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-276 *4)) (-4 *4 (-308)) (-5 *2 (-626 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1169 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-1164 *4)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-1169 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1140 *4)) (-5 *2 (-1164 *4)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1145 *4)) (-5 *2 (-1169 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-346 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-347 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) - (-5 *2 (-1164 *3)))) + (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) + (-5 *2 (-1169 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-354 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1164 *3)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-355 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-1169 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1164 *3)) (-5 *1 (-574 *3 *4)) (-4 *3 (-308)) - (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-1169 *3)) (-5 *1 (-575 *3 *4)) (-4 *3 (-308)) + (-14 *4 (-579 (-1080))))) ((*1 *2 *1) - (-12 (-5 *2 (-1164 *3)) (-5 *1 (-576 *3 *4)) (-4 *3 (-308)) - (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-1169 *3)) (-5 *1 (-577 *3 *4)) (-4 *3 (-308)) + (-14 *4 (-579 (-1080))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-625 *5))) (-5 *3 (-625 *5)) (-4 *5 (-308)) - (-5 *2 (-1164 *5)) (-5 *1 (-989 *5))))) + (-12 (-5 *4 (-579 (-626 *5))) (-5 *3 (-626 *5)) (-4 *5 (-308)) + (-5 *2 (-1169 *5)) (-5 *1 (-991 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) - (-5 *2 (-1164 (-625 *4))))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) + (-5 *2 (-1169 (-626 *4))))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-1164 (-625 *4))) (-5 *1 (-353 *3 *4)) - (-4 *3 (-354 *4)))) - ((*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-1164 (-625 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-1075))) (-4 *5 (-308)) - (-5 *2 (-1164 (-625 (-343 (-850 *5))))) (-5 *1 (-989 *5)) - (-5 *4 (-625 (-343 (-850 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-1075))) (-4 *5 (-308)) (-5 *2 (-1164 (-625 (-850 *5)))) - (-5 *1 (-989 *5)) (-5 *4 (-625 (-850 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-578 (-625 *4))) (-4 *4 (-308)) (-5 *2 (-1164 (-625 *4))) - (-5 *1 (-989 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-147))) (-5 *1 (-988))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-78))) (-5 *1 (-147)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-78))) (-5 *1 (-988))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-988))))) -(((*1 *1) (-5 *1 (-988)))) -(((*1 *1) (-5 *1 (-988)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *2)) (-4 *2 (-103)) (-5 *1 (-987 *2)))) + (-12 (-4 *4 (-144)) (-5 *2 (-1169 (-626 *4))) (-5 *1 (-354 *3 *4)) + (-4 *3 (-355 *4)))) + ((*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-1169 (-626 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-1080))) (-4 *5 (-308)) + (-5 *2 (-1169 (-626 (-344 (-851 *5))))) (-5 *1 (-991 *5)) + (-5 *4 (-626 (-344 (-851 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-1080))) (-4 *5 (-308)) (-5 *2 (-1169 (-626 (-851 *5)))) + (-5 *1 (-991 *5)) (-5 *4 (-626 (-851 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-579 (-626 *4))) (-4 *4 (-308)) (-5 *2 (-1169 (-626 *4))) + (-5 *1 (-991 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-147))) (-5 *1 (-990))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-78))) (-5 *1 (-147)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-78))) (-5 *1 (-990))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-990))))) +(((*1 *1) (-5 *1 (-990)))) +(((*1 *1) (-5 *1 (-990)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-83) *2)) (-4 *2 (-103)) (-5 *1 (-989 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-478) *2 *2)) (-4 *2 (-103)) (-5 *1 (-987 *2))))) -(((*1 *2) (-12 (-5 *2 (-578 *3)) (-5 *1 (-987 *3)) (-4 *3 (-103))))) -(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-987 *3)) (-4 *3 (-103))))) -(((*1 *1) (-5 *1 (-985)))) + (-12 (-5 *3 (-1 (-479) *2 *2)) (-4 *2 (-103)) (-5 *1 (-989 *2))))) +(((*1 *2) (-12 (-5 *2 (-579 *3)) (-5 *1 (-989 *3)) (-4 *3 (-103))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-989 *3)) (-4 *3 (-103))))) +(((*1 *1) (-5 *1 (-987)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) - (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-578 *3)) (-5 *1 (-521 *5 *6 *7 *8 *3)) - (-4 *3 (-1010 *5 *6 *7 *8)))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) + (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-579 *3)) (-5 *1 (-522 *5 *6 *7 *8 *3)) + (-4 *3 (-1013 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) - (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) - (-5 *1 (-981 *5 *6)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075))))) + (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) + (-5 *1 (-983 *5 *6)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-254) (-118))) - (-5 *2 (-578 (-2 (|:| -1730 (-1070 *4)) (|:| -3205 (-578 (-850 *4)))))) - (-5 *1 (-981 *4 *5)) (-5 *3 (-578 (-850 *4))) (-14 *5 (-578 (-1075))))) + (-5 *2 (-579 (-2 (|:| -1735 (-1075 *4)) (|:| -3208 (-579 (-851 *4)))))) + (-5 *1 (-983 *4 *5)) (-5 *3 (-579 (-851 *4))) (-14 *5 (-579 (-1080))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) - (-5 *2 (-578 (-2 (|:| -1730 (-1070 *5)) (|:| -3205 (-578 (-850 *5)))))) - (-5 *1 (-981 *5 *6)) (-5 *3 (-578 (-850 *5))) (-14 *6 (-578 (-1075)))))) + (-5 *2 (-579 (-2 (|:| -1735 (-1075 *5)) (|:| -3208 (-579 (-851 *5)))))) + (-5 *1 (-983 *5 *6)) (-5 *3 (-579 (-851 *5))) (-14 *6 (-579 (-1080)))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 (-978 *3 *4 *5))) (-4 *3 (-1003)) - (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) - (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3)))) (-5 *1 (-980 *3 *4 *5))))) + (-12 (-5 *2 (-579 (-980 *3 *4 *5))) (-4 *3 (-1006)) + (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))) + (-4 *5 (-13 (-358 *4) (-790 *3) (-549 (-794 *3)))) (-5 *1 (-982 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) - (-5 *2 (-578 (-978 *3 *4 *5))) (-5 *1 (-980 *3 *4 *5)) - (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3))))))) + (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))) + (-5 *2 (-579 (-980 *3 *4 *5))) (-5 *1 (-982 *3 *4 *5)) + (-4 *5 (-13 (-358 *4) (-790 *3) (-549 (-794 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-578 (-1075))) (-4 *4 (-1003)) - (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-978 *4 *5 *2)) - (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))))) + (-12 (-5 *3 (-579 (-1080))) (-4 *4 (-1006)) + (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-980 *4 *5 *2)) + (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) - (-5 *1 (-978 *3 *4 *2)) (-4 *2 (-13 (-357 *4) (-789 *3) (-548 (-793 *3))))))) + (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))) + (-5 *1 (-980 *3 *4 *2)) (-4 *2 (-13 (-358 *4) (-790 *3) (-549 (-794 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-793 *4)) (-5 *3 (-1 (-83) *5)) (-4 *4 (-1003)) (-4 *5 (-1114)) - (-5 *1 (-794 *4 *5)))) + (-12 (-5 *2 (-794 *4)) (-5 *3 (-1 (-83) *5)) (-4 *4 (-1006)) (-4 *5 (-1119)) + (-5 *1 (-795 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-793 *4)) (-5 *3 (-578 (-1 (-83) *5))) (-4 *4 (-1003)) - (-4 *5 (-1114)) (-5 *1 (-794 *4 *5)))) + (-12 (-5 *2 (-794 *4)) (-5 *3 (-579 (-1 (-83) *5))) (-4 *4 (-1006)) + (-4 *5 (-1119)) (-5 *1 (-795 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-793 *5)) (-5 *3 (-578 (-1075))) (-5 *4 (-1 (-83) (-578 *6))) - (-4 *5 (-1003)) (-4 *6 (-1114)) (-5 *1 (-794 *5 *6)))) + (-12 (-5 *2 (-794 *5)) (-5 *3 (-579 (-1080))) (-5 *4 (-1 (-83) (-579 *6))) + (-4 *5 (-1006)) (-4 *6 (-1119)) (-5 *1 (-795 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1075)) (-5 *4 (-1 (-83) *5)) (-4 *5 (-1114)) - (-5 *2 (-261 (-478))) (-5 *1 (-841 *5)))) + (-12 (-5 *3 (-1080)) (-5 *4 (-1 (-83) *5)) (-4 *5 (-1119)) + (-5 *2 (-261 (-479))) (-5 *1 (-842 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1075)) (-5 *4 (-578 (-1 (-83) *5))) (-4 *5 (-1114)) - (-5 *2 (-261 (-478))) (-5 *1 (-841 *5)))) + (-12 (-5 *3 (-1080)) (-5 *4 (-579 (-1 (-83) *5))) (-4 *5 (-1119)) + (-5 *2 (-261 (-479))) (-5 *1 (-842 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-83) *5)) (-4 *5 (-1114)) (-4 *4 (-1003)) - (-5 *1 (-842 *4 *2 *5)) (-4 *2 (-357 *4)))) + (-12 (-5 *3 (-1 (-83) *5)) (-4 *5 (-1119)) (-4 *4 (-1006)) + (-5 *1 (-843 *4 *2 *5)) (-4 *2 (-358 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-578 (-1 (-83) *5))) (-4 *5 (-1114)) (-4 *4 (-1003)) - (-5 *1 (-842 *4 *2 *5)) (-4 *2 (-357 *4)))) + (-12 (-5 *3 (-579 (-1 (-83) *5))) (-4 *5 (-1119)) (-4 *4 (-1006)) + (-5 *1 (-843 *4 *2 *5)) (-4 *2 (-358 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-1 (-83) (-578 *6))) - (-4 *6 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))) (-4 *4 (-1003)) - (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-978 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-954) (-789 *3) (-548 *2))) - (-5 *2 (-793 *3)) (-5 *1 (-978 *3 *4 *5)) - (-4 *5 (-13 (-357 *4) (-789 *3) (-548 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-954) (-789 *3) (-548 (-793 *3)))) - (-5 *2 (-578 (-1075))) (-5 *1 (-978 *3 *4 *5)) - (-4 *5 (-13 (-357 *4) (-789 *3) (-548 (-793 *3))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) - (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 *4)) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-83)) (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) - (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-1 (-83) (-579 *6))) + (-4 *6 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))) (-4 *4 (-1006)) + (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-980 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-955) (-790 *3) (-549 *2))) + (-5 *2 (-794 *3)) (-5 *1 (-980 *3 *4 *5)) + (-4 *5 (-13 (-358 *4) (-790 *3) (-549 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1006)) (-4 *4 (-13 (-955) (-790 *3) (-549 (-794 *3)))) + (-5 *2 (-579 (-1080))) (-5 *1 (-980 *3 *4 *5)) + (-4 *5 (-13 (-358 *4) (-790 *3) (-549 (-794 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-259)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-901)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-942)))) + ((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-978))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) + (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 *4)) (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-83)) (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) + (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) - (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) + (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) - (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) + (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-83)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *3 (-969 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) - (-5 *1 (-976 *6 *7 *8 *3 *4)) (-4 *4 (-975 *6 *7 *8 *3)))) + (-12 (-5 *5 (-83)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *3 (-970 *6 *7 *8)) (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) + (-5 *1 (-977 *6 *7 *8 *3 *4)) (-4 *4 (-976 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -1583 *9)))) (-5 *5 (-83)) - (-4 *8 (-969 *6 *7 *4)) (-4 *9 (-975 *6 *7 *4 *8)) (-4 *6 (-385)) - (-4 *7 (-710)) (-4 *4 (-749)) - (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -1583 *9)))) - (-5 *1 (-976 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-579 (-2 (|:| |val| (-579 *8)) (|:| -1588 *9)))) (-5 *5 (-83)) + (-4 *8 (-970 *6 *7 *4)) (-4 *9 (-976 *6 *7 *4 *8)) (-4 *6 (-386)) + (-4 *7 (-711)) (-4 *4 (-750)) + (-5 *2 (-579 (-2 (|:| |val| *8) (|:| -1588 *9)))) + (-5 *1 (-977 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -1583 *4)))) - (-5 *1 (-976 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| (-579 *3)) (|:| -1588 *4)))) + (-5 *1 (-977 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-975 *3 *4 *5 *6)) (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83)))) + (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83))))) + (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) - (-5 *2 (-3 (-83) (-578 *1))) (-4 *1 (-975 *4 *5 *6 *3))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) + (-5 *2 (-3 (-83) (-579 *1))) (-4 *1 (-976 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-5 *2 (-83)))) + (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) - (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *1)))) - (-4 *1 (-975 *4 *5 *6 *3))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) + (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *1)))) + (-4 *1 (-976 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) - (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) + (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) - (-5 *2 (-3 *3 (-578 *1))) (-4 *1 (-975 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-489)) (-4 *2 (-954)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3)))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) + (-5 *2 (-3 *3 (-579 *1))) (-4 *1 (-976 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-490)) (-4 *2 (-955)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489)))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) - (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *1)))) - (-4 *1 (-975 *4 *5 *6 *3))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) + (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *1)))) + (-4 *1 (-976 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-975 *4 *5 *6 *7)) - (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)))) + (-12 (-5 *2 (-579 *1)) (-5 *3 (-579 *7)) (-4 *1 (-976 *4 *5 *6 *7)) + (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *7)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)))) + (-12 (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-969 *4 *5 *6)) - (-5 *2 (-578 *1)) (-4 *1 (-975 *4 *5 *6 *3))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-970 *4 *5 *6)) + (-5 *2 (-579 *1)) (-4 *1 (-976 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-83)))) ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) + (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) + (-12 (-4 *1 (-973 *4 *3)) (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1100))) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-83)))) + (-12 (-4 *1 (-488 *3)) (-4 *3 (-13 (-341) (-1105))) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-708)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) + (-12 (-4 *1 (-973 *4 *3)) (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1100))) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-83)))) + (-12 (-4 *1 (-488 *3)) (-4 *3 (-13 (-341) (-1105))) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-710)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-972 *4 *3)) (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) + (-12 (-4 *1 (-973 *4 *3)) (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) (-5 *2 (-83))))) (((*1 *2 *2) - (-12 (-4 *3 (-943 (-478))) (-4 *3 (-489)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-357 *3)))) + (-12 (-4 *3 (-944 (-479))) (-4 *3 (-490)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-358 *3)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-1070 *4)) (-5 *1 (-136 *3 *4)) + (-12 (-4 *4 (-144)) (-5 *2 (-1075 *4)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-954)) (-4 *1 (-250)))) - ((*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1070 *3)))) - ((*1 *2) (-12 (-4 *1 (-656 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1140 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *2)) (-4 *3 (-13 (-748) (-308))) (-4 *2 (-1140 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-850 (-478))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) - ((*1 *2 *3) - (-12 (-5 *3 (-850 (-343 (-478)))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) - ((*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-918)) (-5 *2 (-578 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1070 (-478))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1070 (-343 (-478)))) (-5 *2 (-578 *1)) (-4 *1 (-918)))) - ((*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-918)) (-5 *2 (-578 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-748) (-308))) (-4 *3 (-1140 *4)) (-5 *2 (-578 *1)) - (-4 *1 (-972 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1075)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-850 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-29 *3)) (-4 *3 (-489)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-489)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1070 *2)) (-5 *4 (-1075)) (-4 *2 (-357 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-489)))) + ((*1 *1 *1) (-12 (-4 *1 (-955)) (-4 *1 (-250)))) + ((*1 *2) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1075 *3)))) + ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1145 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-973 *3 *2)) (-4 *3 (-13 (-749) (-308))) (-4 *2 (-1145 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-851 (-479))) (-5 *2 (-579 *1)) (-4 *1 (-919)))) + ((*1 *2 *3) + (-12 (-5 *3 (-851 (-344 (-479)))) (-5 *2 (-579 *1)) (-4 *1 (-919)))) + ((*1 *2 *3) (-12 (-5 *3 (-851 *1)) (-4 *1 (-919)) (-5 *2 (-579 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1075 (-479))) (-5 *2 (-579 *1)) (-4 *1 (-919)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1075 (-344 (-479)))) (-5 *2 (-579 *1)) (-4 *1 (-919)))) + ((*1 *2 *3) (-12 (-5 *3 (-1075 *1)) (-4 *1 (-919)) (-5 *2 (-579 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-749) (-308))) (-4 *3 (-1145 *4)) (-5 *2 (-579 *1)) + (-4 *1 (-973 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1075 *1)) (-5 *3 (-1080)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1075 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-851 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1080)) (-4 *1 (-29 *3)) (-4 *3 (-490)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-490)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1075 *2)) (-5 *4 (-1080)) (-4 *2 (-358 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-490)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-823)) (-4 *1 (-918)))) + (|partial| -12 (-5 *2 (-1075 *1)) (-5 *3 (-824)) (-4 *1 (-919)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1070 *1)) (-5 *3 (-823)) (-5 *4 (-765)) - (-4 *1 (-918)))) + (|partial| -12 (-5 *2 (-1075 *1)) (-5 *3 (-824)) (-5 *4 (-766)) + (-4 *1 (-919)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-823)) (-4 *4 (-13 (-748) (-308))) - (-4 *1 (-972 *4 *2)) (-4 *2 (-1140 *4))))) + (|partial| -12 (-5 *3 (-824)) (-4 *4 (-13 (-749) (-308))) + (-4 *1 (-973 *4 *2)) (-4 *2 (-1145 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-343 (-478))) (-5 *1 (-930 *3)) - (-4 *3 (-13 (-748) (-308) (-926))))) + (-12 (-5 *2 (-344 (-479))) (-5 *1 (-931 *3)) + (-4 *3 (-13 (-749) (-308) (-927))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2)))) + (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-972 *2 *3)) (-4 *2 (-13 (-748) (-308))) (-4 *3 (-1140 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-125)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-970))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-104)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-125)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-1035))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-170)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-612)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-925)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-970))))) -(((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) - (-4 *5 (-969 *3 *4 *2)) (-4 *2 (-749)))) - ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749))))) -(((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-687))))) -(((*1 *2 *1) (-12 (-5 *2 (-416)) (-5 *1 (-170)))) - ((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114)))) - ((*1 *2 *1) (-12 (-5 *2 (-416)) (-5 *1 (-612)))) + (-12 (-4 *1 (-973 *2 *3)) (-4 *2 (-13 (-749) (-308))) (-4 *3 (-1145 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-125)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-1039))) (-5 *1 (-971))))) +(((*1 *2 *1) + (-12 (-4 *1 (-883 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-711)) + (-4 *5 (-970 *3 *4 *2)) (-4 *2 (-750)))) + ((*1 *2 *1) + (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750))))) +(((*1 *2 *1) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-688))))) +(((*1 *2 *1) (-12 (-5 *2 (-417)) (-5 *1 (-170)))) + ((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-417)) (-5 *1 (-613)))) ((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) (((*1 *2 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) - (-4 *1 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) + (-4 *1 (-970 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) - ((*1 *2 *1) (-12 (-4 *2 (-954)) (-5 *1 (-50 *2 *3)) (-14 *3 (-578 (-1075))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955)))) + ((*1 *2 *1) (-12 (-4 *2 (-955)) (-5 *1 (-50 *2 *3)) (-14 *3 (-579 (-1080))))) ((*1 *2 *1) - (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) - (-14 *4 (-578 (-1075))))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-954)))) + (-12 (-5 *2 (-261 *3)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) + (-14 *4 (-579 (-1080))))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-1006)) (-4 *2 (-955)))) ((*1 *2 *1) - (-12 (-14 *3 (-578 (-1075))) (-4 *5 (-193 (-3933 *3) (-687))) + (-12 (-14 *3 (-579 (-1080))) (-4 *5 (-193 (-3939 *3) (-688))) (-14 *6 - (-1 (-83) (-2 (|:| -2382 *4) (|:| -2383 *5)) - (-2 (|:| -2382 *4) (|:| -2383 *5)))) - (-4 *2 (-144)) (-5 *1 (-394 *3 *2 *4 *5 *6 *7)) (-4 *4 (-749)) - (-4 *7 (-854 *2 *5 (-766 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *3 (-752)) (-4 *2 (-72)))) - ((*1 *2 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1140 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-954)))) - ((*1 *2 *1) - (-12 (-4 *2 (-954)) (-5 *1 (-667 *2 *3)) (-4 *3 (-749)) (-4 *3 (-658)))) - ((*1 *2 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) - ((*1 *2 *1) - (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *3 (-709)) (-4 *4 (-749)) (-4 *2 (-954)))) + (-1 (-83) (-2 (|:| -2387 *4) (|:| -2388 *5)) + (-2 (|:| -2387 *4) (|:| -2388 *5)))) + (-4 *2 (-144)) (-5 *1 (-395 *3 *2 *4 *5 *6 *7)) (-4 *4 (-750)) + (-4 *7 (-855 *2 *5 (-767 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-443 *2 *3)) (-4 *3 (-753)) (-4 *2 (-72)))) + ((*1 *2 *1) (-12 (-4 *2 (-490)) (-5 *1 (-558 *2 *3)) (-4 *3 (-1145 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-641 *2)) (-4 *2 (-955)))) + ((*1 *2 *1) + (-12 (-4 *2 (-955)) (-5 *1 (-668 *2 *3)) (-4 *3 (-750)) (-4 *3 (-659)))) + ((*1 *2 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)))) + ((*1 *2 *1) + (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *3 (-710)) (-4 *4 (-750)) (-4 *2 (-955)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749))))) + (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750))))) (((*1 *2 *3) - (-12 (-4 *4 (-954)) (-5 *2 (-83)) (-5 *1 (-377 *4 *3)) (-4 *3 (-1140 *4)))) + (-12 (-4 *4 (-955)) (-5 *2 (-83)) (-5 *1 (-378 *4 *3)) (-4 *3 (-1145 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) (((*1 *2 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) - (-4 *1 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) + (-4 *1 (-970 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) - (-4 *1 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) + (-4 *1 (-970 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *2 (-83))))) + (|partial| -12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *2 (-83))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) + (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) + (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) + (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)))) + (-12 (-4 *1 (-970 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) - (-5 *2 (-2 (|:| -3930 *1) (|:| |gap| (-687)) (|:| -2883 *1))) - (-4 *1 (-969 *4 *5 *3)))) + (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) + (-5 *2 (-2 (|:| -3936 *1) (|:| |gap| (-688)) (|:| -2887 *1))) + (-4 *1 (-970 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-2 (|:| -3930 *1) (|:| |gap| (-687)) (|:| -2883 *1))) - (-4 *1 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-2 (|:| -3936 *1) (|:| |gap| (-688)) (|:| -2887 *1))) + (-4 *1 (-970 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3930 *3) (|:| |gap| (-687)) (|:| -1956 (-697 *3)) - (|:| -2883 (-697 *3)))) - (-5 *1 (-697 *3)) (-4 *3 (-954)))) + (-2 (|:| -3936 *3) (|:| |gap| (-688)) (|:| -1961 (-698 *3)) + (|:| -2887 (-698 *3)))) + (-5 *1 (-698 *3)) (-4 *3 (-955)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) - (-5 *2 (-2 (|:| -3930 *1) (|:| |gap| (-687)) (|:| -1956 *1) (|:| -2883 *1))) - (-4 *1 (-969 *4 *5 *3)))) + (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) + (-5 *2 (-2 (|:| -3936 *1) (|:| |gap| (-688)) (|:| -1961 *1) (|:| -2887 *1))) + (-4 *1 (-970 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-2 (|:| -3930 *1) (|:| |gap| (-687)) (|:| -1956 *1) (|:| -2883 *1))) - (-4 *1 (-969 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954)))) + (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-2 (|:| -3936 *1) (|:| |gap| (-688)) (|:| -1961 *1) (|:| -2887 *1))) + (-4 *1 (-970 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-955)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-697 *3)) (|:| |polden| *3) (|:| -3458 (-687)))) - (-5 *1 (-697 *3)) (-4 *3 (-954)))) + (-5 *2 (-2 (|:| |polnum| (-698 *3)) (|:| |polden| *3) (|:| -3463 (-688)))) + (-5 *1 (-698 *3)) (-4 *3 (-955)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3458 (-687)))) - (-4 *1 (-969 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1114)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1140 *5)) - (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-693 *4 *5 *6 *3 *7)) (-4 *3 (-1140 *6)) - (-14 *7 (-823)))) + (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3463 (-688)))) + (-4 *1 (-970 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1119)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1145 *5)) + (-5 *2 (-1075 (-1075 *4))) (-5 *1 (-694 *4 *5 *6 *3 *7)) (-4 *3 (-1145 *6)) + (-14 *7 (-824)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *1 (-882 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-943 *2)) (-4 *2 (-1114)))) + (|partial| -12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-955)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *1 (-883 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-944 *2)) (-4 *2 (-1119)))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-850 *3)) - (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-2540 (-4 *3 (-38 (-478)))) - (-4 *5 (-548 (-1075)))) - (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) - (-12 (-5 *2 (-850 *3)) - (-12 (-2540 (-4 *3 (-477))) (-2540 (-4 *3 (-38 (-343 (-478))))) - (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1075)))) - (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) - (-12 (-5 *2 (-850 *3)) - (-12 (-2540 (-4 *3 (-897 (-478)))) (-4 *3 (-38 (-343 (-478)))) - (-4 *5 (-548 (-1075)))) - (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))))) + (-12 (-5 *2 (-851 *3)) + (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-2545 (-4 *3 (-38 (-479)))) + (-4 *5 (-549 (-1080)))) + (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))) + (-12 (-5 *2 (-851 *3)) + (-12 (-2545 (-4 *3 (-478))) (-2545 (-4 *3 (-38 (-344 (-479))))) + (-4 *3 (-38 (-479))) (-4 *5 (-549 (-1080)))) + (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))) + (-12 (-5 *2 (-851 *3)) + (-12 (-2545 (-4 *3 (-898 (-479)))) (-4 *3 (-38 (-344 (-479)))) + (-4 *5 (-549 (-1080)))) + (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))))) ((*1 *1 *2) (|partial| OR - (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) - (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) - (-4 *5 (-548 (-1075)))) - (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) - (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) - (-4 *4 (-710)) (-4 *5 (-749))))) + (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) + (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-4 *3 (-38 (-479))) + (-4 *5 (-549 (-1080)))) + (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750))) + (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) + (-4 *4 (-711)) (-4 *5 (-750))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075))) (-4 *3 (-954)) - (-4 *4 (-710)) (-4 *5 (-749))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1114)))) + (|partial| -12 (-5 *2 (-851 (-344 (-479)))) (-4 *1 (-970 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080))) (-4 *3 (-955)) + (-4 *4 (-711)) (-4 *5 (-750))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1119)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) - (-4 *5 (-749)) (-4 *1 (-882 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-943 *2)) (-4 *2 (-1114)))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) + (-4 *5 (-750)) (-4 *1 (-883 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-1119)))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-850 *3)) - (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-2540 (-4 *3 (-38 (-478)))) - (-4 *5 (-548 (-1075)))) - (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) - (-12 (-5 *2 (-850 *3)) - (-12 (-2540 (-4 *3 (-477))) (-2540 (-4 *3 (-38 (-343 (-478))))) - (-4 *3 (-38 (-478))) (-4 *5 (-548 (-1075)))) - (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))) - (-12 (-5 *2 (-850 *3)) - (-12 (-2540 (-4 *3 (-897 (-478)))) (-4 *3 (-38 (-343 (-478)))) - (-4 *5 (-548 (-1075)))) - (-4 *3 (-954)) (-4 *1 (-969 *3 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749))))) + (-12 (-5 *2 (-851 *3)) + (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-2545 (-4 *3 (-38 (-479)))) + (-4 *5 (-549 (-1080)))) + (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))) + (-12 (-5 *2 (-851 *3)) + (-12 (-2545 (-4 *3 (-478))) (-2545 (-4 *3 (-38 (-344 (-479))))) + (-4 *3 (-38 (-479))) (-4 *5 (-549 (-1080)))) + (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))) + (-12 (-5 *2 (-851 *3)) + (-12 (-2545 (-4 *3 (-898 (-479)))) (-4 *3 (-38 (-344 (-479)))) + (-4 *5 (-549 (-1080)))) + (-4 *3 (-955)) (-4 *1 (-970 *3 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750))))) ((*1 *1 *2) (OR - (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) - (-12 (-2540 (-4 *3 (-38 (-343 (-478))))) (-4 *3 (-38 (-478))) - (-4 *5 (-548 (-1075)))) - (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749))) - (-12 (-5 *2 (-850 (-478))) (-4 *1 (-969 *3 *4 *5)) - (-12 (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075)))) (-4 *3 (-954)) - (-4 *4 (-710)) (-4 *5 (-749))))) + (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) + (-12 (-2545 (-4 *3 (-38 (-344 (-479))))) (-4 *3 (-38 (-479))) + (-4 *5 (-549 (-1080)))) + (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750))) + (-12 (-5 *2 (-851 (-479))) (-4 *1 (-970 *3 *4 *5)) + (-12 (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080)))) (-4 *3 (-955)) + (-4 *4 (-711)) (-4 *5 (-750))))) ((*1 *1 *2) - (-12 (-5 *2 (-850 (-343 (-478)))) (-4 *1 (-969 *3 *4 *5)) - (-4 *3 (-38 (-343 (-478)))) (-4 *5 (-548 (-1075))) (-4 *3 (-954)) - (-4 *4 (-710)) (-4 *5 (-749))))) + (-12 (-5 *2 (-851 (-344 (-479)))) (-4 *1 (-970 *3 *4 *5)) + (-4 *3 (-38 (-344 (-479)))) (-4 *5 (-549 (-1080))) (-4 *3 (-955)) + (-4 *4 (-711)) (-4 *5 (-750))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489)))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489)))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3125 (-697 *3)) (|:| |coef1| (-697 *3)) (|:| |coef2| (-697 *3)))) - (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) + (-2 (|:| -3128 (-698 *3)) (|:| |coef1| (-698 *3)) (|:| |coef2| (-698 *3)))) + (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-2 (|:| -3125 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-2 (|:| -3128 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-970 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3125 (-697 *3)) (|:| |coef1| (-697 *3)))) - (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) + (-12 (-5 *2 (-2 (|:| -3128 (-698 *3)) (|:| |coef1| (-698 *3)))) + (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-2 (|:| -3125 *1) (|:| |coef1| *1))) (-4 *1 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-2 (|:| -3128 *1) (|:| |coef1| *1))) (-4 *1 (-970 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3125 (-697 *3)) (|:| |coef2| (-697 *3)))) - (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954)))) + (-12 (-5 *2 (-2 (|:| -3128 (-698 *3)) (|:| |coef2| (-698 *3)))) + (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-2 (|:| -3125 *1) (|:| |coef2| *1))) (-4 *1 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-2 (|:| -3128 *1) (|:| |coef2| *1))) (-4 *1 (-970 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-578 *1)) (-4 *1 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-579 *1)) (-4 *1 (-970 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) - (-4 *5 (-749)) (-4 *3 (-489))))) + (-12 (-5 *2 (-688)) (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) + (-4 *5 (-750)) (-4 *3 (-490))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) - (-4 *5 (-749)) (-4 *3 (-489))))) + (-12 (-5 *2 (-688)) (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) + (-4 *5 (-750)) (-4 *3 (-490))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-489))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-385)))) - ((*1 *1 *1 *1) (-4 *1 (-385))) - ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-419 *2)) (-4 *2 (-1140 (-478))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1140 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-687))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-490))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-386)))) + ((*1 *1 *1 *1) (-4 *1 (-386))) + ((*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-5 *1 (-420 *2)) (-4 *2 (-1145 (-479))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-631 *2)) (-4 *2 (-1145 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-688))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *2)) - (-4 *2 (-854 *5 *3 *4)))) + (-12 (-4 *3 (-711)) (-4 *4 (-750)) (-4 *5 (-254)) (-5 *1 (-821 *3 *4 *5 *2)) + (-4 *2 (-855 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *6 *4 *5)) (-5 *1 (-820 *4 *5 *6 *2)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *6 *4 *5)) (-5 *1 (-821 *4 *5 *6 *2)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1075 *6)) (-4 *6 (-855 *5 *3 *4)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *5 (-254)) (-5 *1 (-821 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-1070 *7))) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) - (-5 *2 (-1070 *7)) (-5 *1 (-820 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-823))) + (-12 (-5 *3 (-579 (-1075 *7))) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) + (-5 *2 (-1075 *7)) (-5 *1 (-821 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-824))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-385)) (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3)))) + (-12 (-4 *3 (-386)) (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-385))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-386))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-385))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-386))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-385))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-386))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-385))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-386))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *2 (-385))))) -(((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-967)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-967))))) -(((*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-749)))) - ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) - ((*1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-749)))) - ((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-749)))) - ((*1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2))))) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *2 (-386))))) +(((*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-968)))) + ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-968))))) +(((*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-750)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) + ((*1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-90 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-750)))) + ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-750)))) + ((*1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1114)) (-5 *2 (-687)) (-5 *1 (-192 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-688)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-102)) (-5 *2 (-687)))) + (-12 (-4 *1 (-270 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-102)) (-5 *2 (-688)))) ((*1 *2) - (-12 (-4 *4 (-308)) (-5 *2 (-687)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-306 *3)) (-4 *3 (-1003)))) - ((*1 *2) (-12 (-4 *1 (-313)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-1003)) (-5 *2 (-687)))) + (-12 (-4 *4 (-308)) (-5 *2 (-688)) (-5 *1 (-275 *3 *4)) (-4 *3 (-276 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-306 *3)) (-4 *3 (-1006)))) + ((*1 *2) (-12 (-4 *1 (-314)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-1006)) (-5 *2 (-688)))) ((*1 *2) - (-12 (-4 *4 (-1003)) (-5 *2 (-687)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + (-12 (-4 *4 (-1006)) (-5 *2 (-688)) (-5 *1 (-362 *3 *4)) (-4 *3 (-363 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) + (-12 (-5 *2 (-688)) (-5 *1 (-587 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-144)) (-4 *5 (-1140 *4)) (-5 *2 (-687)) (-5 *1 (-655 *3 *4 *5)) - (-4 *3 (-656 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) + (-12 (-4 *4 (-144)) (-4 *5 (-1145 *4)) (-5 *2 (-688)) (-5 *1 (-656 *3 *4 *5)) + (-4 *3 (-657 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-913)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-177)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-341 *4) *4)) (-4 *4 (-489)) (-5 *2 (-341 *4)) - (-5 *1 (-355 *4)))) - ((*1 *1 *1) (-5 *1 (-829))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) - ((*1 *1 *1) (-5 *1 (-831))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-831)))) + (-12 (-5 *3 (-1 (-342 *4) *4)) (-4 *4 (-490)) (-5 *2 (-342 *4)) + (-5 *1 (-356 *4)))) + ((*1 *1 *1) (-5 *1 (-830))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) + ((*1 *1 *1) (-5 *1 (-832))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-832)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) - (-5 *4 (-343 (-478))) (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))))) + (-12 (-5 *2 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) + (-5 *4 (-344 (-479))) (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) - (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))))) + (-5 *2 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) + (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) - (-5 *4 (-343 (-478))) (-5 *1 (-928 *3)) (-4 *3 (-1140 *4)))) + (-12 (-5 *2 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) + (-5 *4 (-344 (-479))) (-5 *1 (-929 *3)) (-4 *3 (-1145 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) - (-5 *1 (-928 *3)) (-4 *3 (-1140 (-343 (-478)))))) + (-5 *2 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) + (-5 *1 (-929 *3)) (-4 *3 (-1145 (-344 (-479)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-748) (-308))) (-5 *1 (-966 *2 *3)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-13 (-749) (-308))) (-5 *1 (-967 *2 *3)) (-4 *3 (-1145 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-748) (-308))) (-5 *2 (-83)) (-5 *1 (-966 *4 *3)) - (-4 *3 (-1140 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-545 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-545 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-749) (-308))) (-5 *2 (-83)) (-5 *1 (-967 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-546 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-546 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1070 (-48))) (-5 *3 (-578 (-545 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 (-48))) (-5 *3 (-545 (-48))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1075 (-48))) (-5 *3 (-579 (-546 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1075 (-48))) (-5 *3 (-546 (-48))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) - (-4 *3 (-1140 (-140 *2))))) + (-12 (-4 *2 (-13 (-308) (-749))) (-5 *1 (-153 *2 *3)) + (-4 *3 (-1145 (-140 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-823)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)))) + (-12 (-5 *2 (-824)) (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)))) ((*1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-308)))) - ((*1 *2 *1) (-12 (-4 *1 (-315 *2 *3)) (-4 *3 (-1140 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *3 (-1145 *2)) (-4 *2 (-144)))) ((*1 *2 *1) - (-12 (-4 *4 (-1140 *2)) (-4 *2 (-897 *3)) (-5 *1 (-349 *3 *2 *4 *5)) - (-4 *3 (-254)) (-4 *5 (-13 (-346 *2 *4) (-943 *2))))) + (-12 (-4 *4 (-1145 *2)) (-4 *2 (-898 *3)) (-5 *1 (-350 *3 *2 *4 *5)) + (-4 *3 (-254)) (-4 *5 (-13 (-347 *2 *4) (-944 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1140 *2)) (-4 *2 (-897 *3)) (-5 *1 (-351 *3 *2 *4 *5 *6)) - (-4 *3 (-254)) (-4 *5 (-346 *2 *4)) (-14 *6 (-1164 *5)))) + (-12 (-4 *4 (-1145 *2)) (-4 *2 (-898 *3)) (-5 *1 (-352 *3 *2 *4 *5 *6)) + (-4 *3 (-254)) (-4 *5 (-347 *2 *4)) (-14 *6 (-1169 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-823)) (-4 *5 (-954)) - (-4 *2 (-13 (-340) (-943 *5) (-308) (-1100) (-236))) (-5 *1 (-376 *5 *3 *2)) - (-4 *3 (-1140 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-545 (-428)))) (-5 *1 (-428)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-545 (-428))) (-5 *1 (-428)))) + (-12 (-5 *4 (-824)) (-4 *5 (-955)) + (-4 *2 (-13 (-341) (-944 *5) (-308) (-1105) (-236))) (-5 *1 (-377 *5 *3 *2)) + (-4 *3 (-1145 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-546 (-429)))) (-5 *1 (-429)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-546 (-429))) (-5 *1 (-429)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1070 (-428))) (-5 *3 (-578 (-545 (-428)))) (-5 *1 (-428)))) + (-12 (-5 *2 (-1075 (-429))) (-5 *3 (-579 (-546 (-429)))) (-5 *1 (-429)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1070 (-428))) (-5 *3 (-545 (-428))) (-5 *1 (-428)))) + (-12 (-5 *2 (-1075 (-429))) (-5 *3 (-546 (-429))) (-5 *1 (-429)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 *4)) (-5 *3 (-823)) (-4 *4 (-295)) (-5 *1 (-460 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-656 *4 *2)) (-4 *2 (-1140 *4)) - (-5 *1 (-691 *4 *2 *5 *3)) (-4 *3 (-1140 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144)))) - ((*1 *1 *1) (-4 *1 (-965)))) -(((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-477)))) - ((*1 *1 *1) (-4 *1 (-965)))) -(((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-477)))) - ((*1 *1 *1) (-4 *1 (-965)))) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-824)) (-4 *4 (-295)) (-5 *1 (-461 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-386)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1145 *4)) + (-5 *1 (-692 *4 *2 *5 *3)) (-4 *3 (-1145 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144)))) + ((*1 *1 *1) (-4 *1 (-966)))) +(((*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)) (-4 *2 (-478)))) + ((*1 *1 *1) (-4 *1 (-966)))) +(((*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)) (-4 *2 (-478)))) + ((*1 *1 *1) (-4 *1 (-966)))) (((*1 *2 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) - ((*1 *2 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254)))) - ((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-254)))) - ((*1 *2 *1) (-12 (-4 *1 (-965)) (-5 *2 (-478))))) -(((*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-77)))) - ((*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-420)))) - ((*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489)) (-4 *2 (-254)))) - ((*1 *2 *1) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478)))) - ((*1 *1 *1) (-4 *1 (-965)))) -(((*1 *1 *1) (-4 *1 (-965)))) + ((*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-254)))) + ((*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)) (-4 *2 (-254)))) + ((*1 *2 *1) (-12 (-4 *1 (-966)) (-5 *2 (-479))))) +(((*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-77)))) + ((*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-169)))) + ((*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-421)))) + ((*1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490)) (-4 *2 (-254)))) + ((*1 *2 *1) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479)))) + ((*1 *1 *1) (-4 *1 (-966)))) +(((*1 *1 *1) (-4 *1 (-966)))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) + (-12 (-4 *4 (-144)) (-5 *2 (-688)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1114)) (-5 *2 (-687)) (-5 *1 (-192 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1119)) (-5 *2 (-688)) (-5 *1 (-192 *3 *4 *5)) (-4 *3 (-193 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1003)) (-5 *2 (-687)) (-5 *1 (-356 *3 *4)) (-4 *3 (-357 *4)))) - ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-476 *3)) (-4 *3 (-477)))) - ((*1 *2) (-12 (-4 *1 (-680)) (-5 *2 (-687)))) + (-12 (-4 *4 (-1006)) (-5 *2 (-688)) (-5 *1 (-357 *3 *4)) (-4 *3 (-358 *4)))) + ((*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-477 *3)) (-4 *3 (-478)))) + ((*1 *2) (-12 (-4 *1 (-681)) (-5 *2 (-688)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-712 *3 *4)) (-4 *3 (-713 *4)))) + (-12 (-4 *4 (-144)) (-5 *2 (-688)) (-5 *1 (-713 *3 *4)) (-4 *3 (-714 *4)))) ((*1 *2) - (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-896 *3 *4)) (-4 *3 (-897 *4)))) + (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-897 *3 *4)) (-4 *3 (-898 *4)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-687)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4)))) - ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-917 *3)) (-4 *3 (-918)))) - ((*1 *2) (-12 (-4 *1 (-954)) (-5 *2 (-687)))) - ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-964 *3)) (-4 *3 (-965))))) + (-12 (-4 *4 (-144)) (-5 *2 (-688)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4)))) + ((*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-918 *3)) (-4 *3 (-919)))) + ((*1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-688)))) + ((*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-965 *3)) (-4 *3 (-966))))) (((*1 *1 *2) - (-12 (-5 *2 (-625 *5)) (-4 *5 (-954)) (-5 *1 (-959 *3 *4 *5)) (-14 *3 (-687)) - (-14 *4 (-687))))) + (-12 (-5 *2 (-626 *5)) (-4 *5 (-955)) (-5 *1 (-960 *3 *4 *5)) (-14 *3 (-688)) + (-14 *4 (-688))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-687)) (-5 *3 (-1 *4 (-478) (-478))) (-4 *4 (-954)) - (-4 *1 (-622 *4 *5 *6)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)))) + (-12 (-5 *2 (-688)) (-5 *3 (-1 *4 (-479) (-479))) (-4 *4 (-955)) + (-4 *1 (-623 *4 *5 *6)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-954)) (-4 *1 (-622 *3 *4 *5)) - (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-765)))) (-5 *1 (-765)))) + (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-955)) (-4 *1 (-623 *3 *4 *5)) + (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-579 (-766)))) (-5 *1 (-766)))) ((*1 *2 *1) - (-12 (-5 *2 (-1042 *3 *4)) (-5 *1 (-899 *3 *4)) (-14 *3 (-823)) + (-12 (-5 *2 (-1046 *3 *4)) (-5 *1 (-900 *3 *4)) (-14 *3 (-824)) (-4 *4 (-308)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 (-578 *5))) (-4 *5 (-954)) (-4 *1 (-958 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-579 (-579 *5))) (-4 *5 (-955)) (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-83)))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-83)))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-83)))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-83)))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) (-4 *7 (-193 *3 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-478)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-479)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-5 *2 (-478))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-479))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-478)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-479)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-5 *2 (-478))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-479))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-478)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-479)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-5 *2 (-478))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-479))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-478)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-479)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-5 *2 (-478))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-479))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-687)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-688)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-5 *2 (-687))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-688))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-687)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-688)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-5 *2 (-687))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-5 *2 (-688))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-317 *2)) - (-4 *5 (-317 *2)) (-4 *2 (-1114)))) + (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-318 *2)) + (-4 *5 (-318 *2)) (-4 *2 (-1119)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-687)) (-4 *2 (-1003)) (-5 *1 (-164 *4 *2)) (-14 *4 (-823)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1114)))) + (-12 (-5 *3 (-688)) (-4 *2 (-1006)) (-5 *1 (-164 *4 *2)) (-14 *4 (-824)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-240 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1119)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) - (-4 *7 (-193 *4 *2)) (-4 *2 (-954))))) + (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *2 *6 *7)) (-4 *6 (-193 *5 *2)) + (-4 *7 (-193 *4 *2)) (-4 *2 (-955))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1114)) (-4 *5 (-317 *4)) - (-4 *2 (-317 *4)))) + (-12 (-5 *3 (-479)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1119)) (-4 *5 (-318 *4)) + (-4 *2 (-318 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *6 *2 *7)) (-4 *6 (-954)) + (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *6 *2 *7)) (-4 *6 (-955)) (-4 *7 (-193 *4 *6)) (-4 *2 (-193 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1114)) (-4 *5 (-317 *4)) - (-4 *2 (-317 *4)))) + (-12 (-5 *3 (-479)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1119)) (-4 *5 (-318 *4)) + (-4 *2 (-318 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-958 *4 *5 *6 *7 *2)) (-4 *6 (-954)) + (-12 (-5 *3 (-479)) (-4 *1 (-959 *4 *5 *6 *7 *2)) (-4 *6 (-955)) (-4 *7 (-193 *5 *6)) (-4 *2 (-193 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-4 *7 (-897 *4)) - (-4 *2 (-622 *7 *8 *9)) (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-622 *4 *5 *6)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7)))) + (-12 (-4 *4 (-490)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-4 *7 (-898 *4)) + (-4 *2 (-623 *7 *8 *9)) (-5 *1 (-455 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-623 *4 *5 *6)) (-4 *8 (-318 *7)) (-4 *9 (-318 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)) (-4 *2 (-254)))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)) (-4 *2 (-254)))) ((*1 *2 *2) - (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3)))) + (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-254)) (-5 *1 (-634 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-958 *2 *3 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-193 *3 *4)) + (-12 (-4 *1 (-959 *2 *3 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-193 *3 *4)) (-4 *6 (-193 *2 *4)) (-4 *4 (-254))))) (((*1 *2 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) (-14 *4 *2) + (-12 (-5 *2 (-688)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-479)) (-14 *4 *2) (-4 *5 (-144)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-823)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) - ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-823)))) + (-12 (-4 *4 (-144)) (-5 *2 (-824)) (-5 *1 (-136 *3 *4)) (-4 *3 (-137 *4)))) + ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-824)))) ((*1 *2) - (-12 (-4 *1 (-315 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) (-5 *2 (-823)))) + (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) (-5 *2 (-824)))) ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) - (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) + (-12 (-4 *4 (-308)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-688)) + (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3972)))) - (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-5 *2 (-687)) - (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) + (-12 (-4 *5 (-308)) (-4 *6 (-13 (-318 *5) (-10 -7 (-6 -3978)))) + (-4 *4 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-5 *2 (-688)) + (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-308)) (-5 *2 (-687)) - (-5 *1 (-605 *5)))) + (-12 (-5 *3 (-626 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-308)) (-5 *2 (-688)) + (-5 *1 (-606 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-687)))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-4 *3 (-490)) (-5 *2 (-688)))) ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) - (-5 *2 (-687)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) + (-12 (-4 *4 (-490)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) + (-5 *2 (-688)) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-687))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-4 *5 (-490)) (-5 *2 (-688))))) (((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) (-5 *2 (-687)) - (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) + (-12 (-4 *4 (-308)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) (-5 *2 (-688)) + (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-687)))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-4 *3 (-490)) (-5 *2 (-688)))) ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) - (-5 *2 (-687)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) + (-12 (-4 *4 (-490)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) + (-5 *2 (-688)) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-687))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-4 *5 (-490)) (-5 *2 (-688))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -3972)) (-4 *4 (-308)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) - (-5 *2 (-578 *6)) (-5 *1 (-453 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) + (-12 (|has| *6 (-6 -3978)) (-4 *4 (-308)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) + (-5 *2 (-579 *6)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -3972)) (-4 *4 (-489)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) - (-4 *7 (-897 *4)) (-4 *8 (-317 *7)) (-4 *9 (-317 *7)) (-5 *2 (-578 *6)) - (-5 *1 (-454 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-622 *4 *5 *6)) - (-4 *10 (-622 *7 *8 *9)))) + (-12 (|has| *9 (-6 -3978)) (-4 *4 (-490)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) + (-4 *7 (-898 *4)) (-4 *8 (-318 *7)) (-4 *9 (-318 *7)) (-5 *2 (-579 *6)) + (-5 *1 (-455 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-623 *4 *5 *6)) + (-4 *10 (-623 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-4 *3 (-489)) (-5 *2 (-578 *5)))) + (-12 (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-4 *3 (-490)) (-5 *2 (-579 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) - (-5 *2 (-578 *6)) (-5 *1 (-624 *4 *5 *6 *3)) (-4 *3 (-622 *4 *5 *6)))) + (-12 (-4 *4 (-490)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) + (-5 *2 (-579 *6)) (-5 *1 (-625 *4 *5 *6 *3)) (-4 *3 (-623 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-958 *3 *4 *5 *6 *7)) (-4 *5 (-954)) (-4 *6 (-193 *4 *5)) - (-4 *7 (-193 *3 *5)) (-4 *5 (-489)) (-5 *2 (-578 *7))))) + (-12 (-4 *1 (-959 *3 *4 *5 *6 *7)) (-4 *5 (-955)) (-4 *6 (-193 *4 *5)) + (-4 *7 (-193 *3 *5)) (-4 *5 (-490)) (-5 *2 (-579 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1133 *4 *5)) (-5 *3 (-578 *5)) (-14 *4 (-1075)) (-4 *5 (-308)) - (-5 *1 (-826 *4 *5)))) + (-12 (-5 *2 (-1138 *4 *5)) (-5 *3 (-579 *5)) (-14 *4 (-1080)) (-4 *5 (-308)) + (-5 *1 (-827 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *5)) (-4 *5 (-308)) (-5 *2 (-1070 *5)) (-5 *1 (-826 *4 *5)) - (-14 *4 (-1075)))) + (-12 (-5 *3 (-579 *5)) (-4 *5 (-308)) (-5 *2 (-1075 *5)) (-5 *1 (-827 *4 *5)) + (-14 *4 (-1080)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-578 *6)) (-5 *4 (-687)) (-4 *6 (-308)) (-5 *2 (-343 (-850 *6))) - (-5 *1 (-955 *5 *6)) (-14 *5 (-1075))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-952))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952))))) -(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952))))) + (-12 (-5 *3 (-579 *6)) (-5 *4 (-688)) (-4 *6 (-308)) (-5 *2 (-344 (-851 *6))) + (-5 *1 (-956 *5 *6)) (-14 *5 (-1080))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-953))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-479))) (-5 *1 (-953))))) +(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-479))) (-5 *1 (-953))))) (((*1 *1 *1 *1) (-4 *1 (-114))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) - ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-478))) (-5 *1 (-952)) - (-5 *3 (-478))))) -(((*1 *2 *3) - (-12 (-5 *3 (-999 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-923 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323)))) - ((*1 *2 *3) (-12 (-5 *3 (-992 (-478))) (-5 *2 (-1 (-478))) (-5 *1 (-952))))) -(((*1 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-949 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-254)) (-5 *2 (-343 (-341 (-850 *4)))) - (-5 *1 (-948 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946))))) -(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1 (-323))) (-5 *1 (-946))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478)))) + ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-479))) (-5 *1 (-953)) + (-5 *3 (-479))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1002 *4)) (-4 *4 (-1006)) (-5 *2 (-1 *4)) (-5 *1 (-924 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-324))) (-5 *1 (-947)) (-5 *3 (-324)))) + ((*1 *2 *3) (-12 (-5 *3 (-994 (-479))) (-5 *2 (-1 (-479))) (-5 *1 (-953))))) +(((*1 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-128))) ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-254)) (-5 *2 (-344 (-342 (-851 *4)))) + (-5 *1 (-949 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-324))) (-5 *1 (-947))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-324))) (-5 *1 (-947))))) +(((*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1 (-324))) (-5 *1 (-947))))) (((*1 *1 *2) - (-12 (-5 *2 (-1145 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1075)) (-14 *5 *3) + (-12 (-5 *2 (-1150 *3 *4 *5)) (-4 *3 (-308)) (-14 *4 (-1080)) (-14 *5 *3) (-5 *1 (-266 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-323))) (-5 *1 (-946)) (-5 *3 (-323))))) -(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-323)) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-946))))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-324))) (-5 *1 (-947)) (-5 *3 (-324))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-324))) (-5 *1 (-947)) (-5 *3 (-324))))) +(((*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-324)) (-5 *1 (-947))))) +(((*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-947))))) +(((*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-947))))) +(((*1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-947))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1070 (-343 (-1070 *2)))) (-5 *4 (-545 *2)) - (-4 *2 (-13 (-357 *5) (-27) (-1100))) - (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *1 (-492 *5 *2 *6)) (-4 *6 (-1003)))) + (-12 (-5 *3 (-1075 (-344 (-1075 *2)))) (-5 *4 (-546 *2)) + (-4 *2 (-13 (-358 *5) (-27) (-1105))) + (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *1 (-493 *5 *2 *6)) (-4 *6 (-1006)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1070 *1)) (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *3 (-749)))) + (-12 (-5 *2 (-1075 *1)) (-4 *1 (-855 *4 *5 *3)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *3 (-750)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1070 *4)) (-4 *4 (-954)) (-4 *1 (-854 *4 *5 *3)) (-4 *5 (-710)) - (-4 *3 (-749)))) + (-12 (-5 *2 (-1075 *4)) (-4 *4 (-955)) (-4 *1 (-855 *4 *5 *3)) (-4 *5 (-711)) + (-4 *3 (-750)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-1070 *2))) (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) + (-12 (-5 *3 (-344 (-1075 *2))) (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-955)) (-4 *2 (-13 (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))) - (-5 *1 (-855 *5 *4 *6 *7 *2)) (-4 *7 (-854 *6 *5 *4)))) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))) + (-5 *1 (-856 *5 *4 *6 *7 *2)) (-4 *7 (-855 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-1070 (-343 (-850 *5))))) (-5 *4 (-1075)) - (-5 *2 (-343 (-850 *5))) (-5 *1 (-945 *5)) (-4 *5 (-489))))) + (-12 (-5 *3 (-344 (-1075 (-344 (-851 *5))))) (-5 *4 (-1080)) + (-5 *2 (-344 (-851 *5))) (-5 *1 (-946 *5)) (-4 *5 (-490))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-545 *1)) (-4 *1 (-357 *4)) (-4 *4 (-1003)) (-4 *4 (-489)) - (-5 *2 (-343 (-1070 *1))))) + (-12 (-5 *3 (-546 *1)) (-4 *1 (-358 *4)) (-4 *4 (-1006)) (-4 *4 (-490)) + (-5 *2 (-344 (-1075 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *6) (-27) (-1100))) - (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *2 (-1070 (-343 (-1070 *3)))) (-5 *1 (-492 *6 *3 *7)) (-5 *5 (-1070 *3)) - (-4 *7 (-1003)))) + (-12 (-5 *4 (-546 *3)) (-4 *3 (-13 (-358 *6) (-27) (-1105))) + (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *2 (-1075 (-344 (-1075 *3)))) (-5 *1 (-493 *6 *3 *7)) (-5 *5 (-1075 *3)) + (-4 *7 (-1006)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1161 *5)) (-14 *5 (-1075)) (-4 *6 (-954)) - (-5 *2 (-1133 *5 (-850 *6))) (-5 *1 (-852 *5 *6)) (-5 *3 (-850 *6)))) + (-12 (-5 *4 (-1166 *5)) (-14 *5 (-1080)) (-4 *6 (-955)) + (-5 *2 (-1138 *5 (-851 *6))) (-5 *1 (-853 *5 *6)) (-5 *3 (-851 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-1070 *3)))) + (-12 (-4 *1 (-855 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-1075 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-5 *2 (-1070 *1)) - (-4 *1 (-854 *4 *5 *3)))) + (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-5 *2 (-1075 *1)) + (-4 *1 (-855 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *5 *4)) - (-5 *2 (-343 (-1070 *3))) (-5 *1 (-855 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-955)) (-4 *7 (-855 *6 *5 *4)) + (-5 *2 (-344 (-1075 *3))) (-5 *1 (-856 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))))) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1070 *3)) + (-12 (-5 *2 (-1075 *3)) (-4 *3 (-13 (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))) - (-4 *7 (-854 *6 *5 *4)) (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-954)) - (-5 *1 (-855 *5 *4 *6 *7 *3)))) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))) + (-4 *7 (-855 *6 *5 *4)) (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-955)) + (-5 *1 (-856 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-489)) (-5 *2 (-343 (-1070 (-343 (-850 *5))))) - (-5 *1 (-945 *5)) (-5 *3 (-343 (-850 *5)))))) + (-12 (-5 *4 (-1080)) (-4 *5 (-490)) (-5 *2 (-344 (-1075 (-344 (-851 *5))))) + (-5 *1 (-946 *5)) (-5 *3 (-344 (-851 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) - (-4 *2 (-749)))) + (|partial| -12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) + (-4 *2 (-750)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-710)) (-4 *5 (-954)) (-4 *6 (-854 *5 *4 *2)) - (-4 *2 (-749)) (-5 *1 (-855 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-711)) (-4 *5 (-955)) (-4 *6 (-855 *5 *4 *2)) + (-4 *2 (-750)) (-5 *1 (-856 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-308) - (-10 -8 (-15 -3922 ($ *6)) (-15 -2979 (*6 $)) (-15 -2978 (*6 $))))))) + (-10 -8 (-15 -3928 ($ *6)) (-15 -2983 (*6 $)) (-15 -2982 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-1075)) - (-5 *1 (-945 *4))))) + (|partial| -12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-5 *2 (-1080)) + (-5 *1 (-946 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 *7)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-954)) (-5 *2 (-578 *5)) (-5 *1 (-268 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1003)) (-5 *2 (-578 (-1075))))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + (-12 (-5 *3 (-1075 *7)) (-4 *7 (-855 *6 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-955)) (-5 *2 (-579 *5)) (-5 *1 (-268 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-1006)) (-5 *2 (-579 (-1080))))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *2 *1) - (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-578 *5)))) + (-12 (-4 *1 (-855 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-579 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) (-4 *7 (-854 *6 *4 *5)) - (-5 *2 (-578 *5)) (-5 *1 (-855 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) (-4 *7 (-855 *6 *4 *5)) + (-5 *2 (-579 *5)) (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-879 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *5 (-749)) - (-5 *2 (-578 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-5 *2 (-578 (-1075))) - (-5 *1 (-945 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1075))) - (-4 *6 (-13 (-489) (-943 *5))) (-4 *5 (-489)) - (-5 *2 (-578 (-578 (-245 (-343 (-850 *6)))))) (-5 *1 (-944 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-259)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-876)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-900)))) - ((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-941))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-545 *6)) (-4 *6 (-13 (-357 *5) (-27) (-1100))) - (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *2 (-1070 (-343 (-1070 *6)))) (-5 *1 (-492 *5 *6 *7)) (-5 *3 (-1070 *6)) - (-4 *7 (-1003)))) - ((*1 *2 *1) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-644 *3 *2)) (-4 *3 (-954)))) - ((*1 *2 *1) (-12 (-4 *1 (-656 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1140 *3)))) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $))))))) + ((*1 *2 *1) + (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-710)) (-4 *5 (-750)) + (-5 *2 (-579 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-579 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-5 *2 (-579 (-1080))) + (-5 *1 (-946 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-851 *6))) (-5 *4 (-579 (-1080))) + (-4 *6 (-13 (-490) (-944 *5))) (-4 *5 (-490)) + (-5 *2 (-579 (-579 (-245 (-344 (-851 *6)))))) (-5 *1 (-945 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-546 *6)) (-4 *6 (-13 (-358 *5) (-27) (-1105))) + (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *2 (-1075 (-344 (-1075 *6)))) (-5 *1 (-493 *5 *6 *7)) (-5 *3 (-1075 *6)) + (-4 *7 (-1006)))) + ((*1 *2 *1) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-955)))) + ((*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1145 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1070 *11)) (-5 *6 (-578 *10)) (-5 *7 (-578 (-687))) - (-5 *8 (-578 *11)) (-4 *10 (-749)) (-4 *11 (-254)) (-4 *9 (-710)) - (-4 *5 (-854 *11 *9 *10)) (-5 *2 (-578 (-1070 *5))) - (-5 *1 (-674 *9 *10 *11 *5)) (-5 *3 (-1070 *5)))) + (|partial| -12 (-5 *4 (-1075 *11)) (-5 *6 (-579 *10)) (-5 *7 (-579 (-688))) + (-5 *8 (-579 *11)) (-4 *10 (-750)) (-4 *11 (-254)) (-4 *9 (-711)) + (-4 *5 (-855 *11 *9 *10)) (-5 *2 (-579 (-1075 *5))) + (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1075 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-854 *3 *4 *5)) (-5 *1 (-940 *3 *4 *5 *2 *6)) (-4 *3 (-308)) - (-4 *4 (-710)) (-4 *5 (-749)) (-14 *6 (-578 *2))))) + (-12 (-4 *2 (-855 *3 *4 *5)) (-5 *1 (-941 *3 *4 *5 *2 *6)) (-4 *3 (-308)) + (-4 *4 (-711)) (-4 *5 (-750)) (-14 *6 (-579 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-823)) (-5 *1 (-938 *2)) - (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-824)) (-5 *1 (-939 *2)) + (-4 *2 (-13 (-1006) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-823)) (-5 *1 (-937 *2)) - (-4 *2 (-13 (-1003) (-10 -8 (-15 -3815 ($ $ $)))))))) + (-12 (-5 *3 (-824)) (-5 *1 (-938 *2)) + (-4 *2 (-13 (-1006) (-10 -8 (-15 -3821 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-1164 *5))) (-5 *4 (-478)) (-5 *2 (-1164 *5)) - (-5 *1 (-936 *5)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954))))) + (-12 (-5 *3 (-579 (-1169 *5))) (-5 *4 (-479)) (-5 *2 (-1169 *5)) + (-5 *1 (-937 *5)) (-4 *5 (-308)) (-4 *5 (-314)) (-4 *5 (-955))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-83)) (-5 *5 (-478)) (-4 *6 (-308)) (-4 *6 (-313)) - (-4 *6 (-954)) (-5 *2 (-578 (-578 (-625 *6)))) (-5 *1 (-936 *6)) - (-5 *3 (-578 (-625 *6))))) + (-12 (-5 *4 (-83)) (-5 *5 (-479)) (-4 *6 (-308)) (-4 *6 (-314)) + (-4 *6 (-955)) (-5 *2 (-579 (-579 (-626 *6)))) (-5 *1 (-937 *6)) + (-5 *3 (-579 (-626 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-308)) (-4 *4 (-313)) (-4 *4 (-954)) - (-5 *2 (-578 (-578 (-625 *4)))) (-5 *1 (-936 *4)) (-5 *3 (-578 (-625 *4))))) + (-12 (-4 *4 (-308)) (-4 *4 (-314)) (-4 *4 (-955)) + (-5 *2 (-579 (-579 (-626 *4)))) (-5 *1 (-937 *4)) (-5 *3 (-579 (-626 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)) - (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5))))) + (-12 (-5 *4 (-83)) (-4 *5 (-308)) (-4 *5 (-314)) (-4 *5 (-955)) + (-5 *2 (-579 (-579 (-626 *5)))) (-5 *1 (-937 *5)) (-5 *3 (-579 (-626 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-823)) (-4 *5 (-308)) (-4 *5 (-313)) (-4 *5 (-954)) - (-5 *2 (-578 (-578 (-625 *5)))) (-5 *1 (-936 *5)) (-5 *3 (-578 (-625 *5)))))) + (-12 (-5 *4 (-824)) (-4 *5 (-308)) (-4 *5 (-314)) (-4 *5 (-955)) + (-5 *2 (-579 (-579 (-626 *5)))) (-5 *1 (-937 *5)) (-5 *3 (-579 (-626 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-478)) (-4 *5 (-308)) (-4 *5 (-954)) - (-5 *2 (-83)) (-5 *1 (-936 *5)))) + (-12 (-5 *3 (-579 (-626 *5))) (-5 *4 (-479)) (-4 *5 (-308)) (-4 *5 (-955)) + (-5 *2 (-83)) (-5 *1 (-937 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-625 *4))) (-4 *4 (-308)) (-4 *4 (-954)) (-5 *2 (-83)) - (-5 *1 (-936 *4))))) + (-12 (-5 *3 (-579 (-626 *4))) (-4 *4 (-308)) (-4 *4 (-955)) (-5 *2 (-83)) + (-5 *1 (-937 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-578 (-625 *6))) (-5 *4 (-83)) (-5 *5 (-478)) (-5 *2 (-625 *6)) - (-5 *1 (-936 *6)) (-4 *6 (-308)) (-4 *6 (-954)))) + (-12 (-5 *3 (-579 (-626 *6))) (-5 *4 (-83)) (-5 *5 (-479)) (-5 *2 (-626 *6)) + (-5 *1 (-937 *6)) (-4 *6 (-308)) (-4 *6 (-955)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-578 (-625 *4))) (-5 *2 (-625 *4)) (-5 *1 (-936 *4)) - (-4 *4 (-308)) (-4 *4 (-954)))) + (-12 (-5 *3 (-579 (-626 *4))) (-5 *2 (-626 *4)) (-5 *1 (-937 *4)) + (-4 *4 (-308)) (-4 *4 (-955)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-478)) (-5 *2 (-625 *5)) - (-5 *1 (-936 *5)) (-4 *5 (-308)) (-4 *5 (-954))))) + (-12 (-5 *3 (-579 (-626 *5))) (-5 *4 (-479)) (-5 *2 (-626 *5)) + (-5 *1 (-937 *5)) (-4 *5 (-308)) (-4 *5 (-955))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-625 *5))) (-5 *4 (-1164 *5)) (-4 *5 (-254)) - (-4 *5 (-954)) (-5 *2 (-625 *5)) (-5 *1 (-936 *5))))) + (-12 (-5 *3 (-579 (-626 *5))) (-5 *4 (-1169 *5)) (-4 *5 (-254)) + (-4 *5 (-955)) (-5 *2 (-626 *5)) (-5 *1 (-937 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-625 *5))) (-4 *5 (-254)) (-4 *5 (-954)) - (-5 *2 (-1164 (-1164 *5))) (-5 *1 (-936 *5)) (-5 *4 (-1164 *5))))) + (-12 (-5 *3 (-579 (-626 *5))) (-4 *5 (-254)) (-4 *5 (-955)) + (-5 *2 (-1169 (-1169 *5))) (-5 *1 (-937 *5)) (-5 *4 (-1169 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-578 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-954)) - (-5 *1 (-936 *4))))) + (-12 (-5 *3 (-579 (-626 *4))) (-5 *2 (-626 *4)) (-4 *4 (-955)) + (-5 *1 (-937 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 (-1164 *4))) (-4 *4 (-954)) (-5 *2 (-625 *4)) - (-5 *1 (-936 *4))))) + (-12 (-5 *3 (-1169 (-1169 *4))) (-4 *4 (-955)) (-5 *2 (-626 *4)) + (-5 *1 (-937 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-806 (-478))) (-5 *4 (-478)) (-5 *2 (-625 *4)) (-5 *1 (-935 *5)) - (-4 *5 (-954)))) + (-12 (-5 *3 (-807 (-479))) (-5 *4 (-479)) (-5 *2 (-626 *4)) (-5 *1 (-936 *5)) + (-4 *5 (-955)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-478))) (-5 *2 (-625 (-478))) (-5 *1 (-935 *4)) - (-4 *4 (-954)))) + (-12 (-5 *3 (-579 (-479))) (-5 *2 (-626 (-479))) (-5 *1 (-936 *4)) + (-4 *4 (-955)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-806 (-478)))) (-5 *4 (-478)) (-5 *2 (-578 (-625 *4))) - (-5 *1 (-935 *5)) (-4 *5 (-954)))) + (-12 (-5 *3 (-579 (-807 (-479)))) (-5 *4 (-479)) (-5 *2 (-579 (-626 *4))) + (-5 *1 (-936 *5)) (-4 *5 (-955)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-578 (-478)))) (-5 *2 (-578 (-625 (-478)))) - (-5 *1 (-935 *4)) (-4 *4 (-954))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-935 *3)))) + (-12 (-5 *3 (-579 (-579 (-479)))) (-5 *2 (-579 (-626 (-479)))) + (-5 *1 (-936 *4)) (-4 *4 (-955))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-936 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-578 (-625 *3))) (-4 *3 (-954)) (-5 *1 (-935 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-935 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-578 (-625 *3))) (-4 *3 (-954)) (-5 *1 (-935 *3))))) + (-12 (-5 *2 (-579 (-626 *3))) (-4 *3 (-955)) (-5 *1 (-936 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-936 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-579 (-626 *3))) (-4 *3 (-955)) (-5 *1 (-936 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-625 *4)) (-5 *3 (-823)) (-4 *4 (-954)) (-5 *1 (-935 *4)))) + (-12 (-5 *2 (-626 *4)) (-5 *3 (-824)) (-4 *4 (-955)) (-5 *1 (-936 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-578 (-625 *4))) (-5 *3 (-823)) (-4 *4 (-954)) - (-5 *1 (-935 *4))))) + (-12 (-5 *2 (-579 (-626 *4))) (-5 *3 (-824)) (-4 *4 (-955)) + (-5 *1 (-936 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-625 (-850 *4))) (-5 *1 (-935 *4)) - (-4 *4 (-954))))) + (-12 (-5 *3 (-688)) (-5 *2 (-626 (-851 *4))) (-5 *1 (-936 *4)) + (-4 *4 (-955))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-625 *4)) (-5 *3 (-823)) (|has| *4 (-6 (-3973 "*"))) - (-4 *4 (-954)) (-5 *1 (-935 *4)))) + (-12 (-5 *2 (-626 *4)) (-5 *3 (-824)) (|has| *4 (-6 (-3979 "*"))) + (-4 *4 (-955)) (-5 *1 (-936 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-578 (-625 *4))) (-5 *3 (-823)) (|has| *4 (-6 (-3973 "*"))) - (-4 *4 (-954)) (-5 *1 (-935 *4))))) + (-12 (-5 *2 (-579 (-626 *4))) (-5 *3 (-824)) (|has| *4 (-6 (-3979 "*"))) + (-4 *4 (-955)) (-5 *1 (-936 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-625 (-261 (-478))))) - (-5 *1 (-934))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 (-625 (-261 (-478))))) (-5 *1 (-934))))) -(((*1 *2 *2) (-12 (-5 *2 (-625 (-261 (-478)))) (-5 *1 (-934))))) + (-12 (-5 *3 (-626 (-344 (-851 (-479))))) (-5 *2 (-579 (-626 (-261 (-479))))) + (-5 *1 (-935))))) +(((*1 *2 *2) (-12 (-5 *2 (-579 (-626 (-261 (-479))))) (-5 *1 (-935))))) +(((*1 *2 *2) (-12 (-5 *2 (-626 (-261 (-479)))) (-5 *1 (-935))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-625 (-343 (-850 (-478))))) - (-5 *2 (-625 (-261 (-478)))) (-5 *1 (-934))))) + (|partial| -12 (-5 *3 (-626 (-344 (-851 (-479))))) + (-5 *2 (-626 (-261 (-479)))) (-5 *1 (-935))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-261 (-478)))) - (-5 *1 (-934))))) + (-12 (-5 *3 (-626 (-344 (-851 (-479))))) (-5 *2 (-579 (-261 (-479)))) + (-5 *1 (-935))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-343 (-850 (-478))))) (-5 *2 (-578 (-625 (-261 (-478))))) - (-5 *1 (-934)) (-5 *3 (-261 (-478)))))) + (-12 (-5 *4 (-626 (-344 (-851 (-479))))) (-5 *2 (-579 (-626 (-261 (-479))))) + (-5 *1 (-935)) (-5 *3 (-261 (-479)))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-343 (-850 (-478))))) + (-12 (-5 *3 (-626 (-344 (-851 (-479))))) (-5 *2 - (-578 - (-2 (|:| |radval| (-261 (-478))) (|:| |radmult| (-478)) - (|:| |radvect| (-578 (-625 (-261 (-478)))))))) - (-5 *1 (-934))))) + (-579 + (-2 (|:| |radval| (-261 (-479))) (|:| |radmult| (-479)) + (|:| |radvect| (-579 (-626 (-261 (-479)))))))) + (-5 *1 (-935))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370)))) - ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-932 *3)) (-4 *3 (-1114))))) -(((*1 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-932 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-931 *3 *2)) (-4 *2 (-595 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-5 *2 (-2 (|:| -3246 *3) (|:| -2493 (-578 *5)))) - (-5 *1 (-931 *5 *3)) (-5 *4 (-578 *5)) (-4 *3 (-595 *5))))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371)))) + ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-933 *3)) (-4 *3 (-1119))))) +(((*1 *1 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-933 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-932 *3 *2)) (-4 *2 (-596 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-5 *2 (-2 (|:| -3250 *3) (|:| -2498 (-579 *5)))) + (-5 *1 (-932 *5 *3)) (-5 *4 (-579 *5)) (-4 *3 (-596 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-966 (-930 *4) (-1070 (-930 *4)))) (-5 *3 (-765)) - (-5 *1 (-930 *4)) (-4 *4 (-13 (-748) (-308) (-926)))))) + (-12 (-5 *2 (-967 (-931 *4) (-1075 (-931 *4)))) (-5 *3 (-766)) + (-5 *1 (-931 *4)) (-4 *4 (-13 (-749) (-308) (-927)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-966 (-930 *3) (-1070 (-930 *3)))) (-5 *1 (-930 *3)) - (-4 *3 (-13 (-748) (-308) (-926)))))) + (|partial| -12 (-5 *2 (-967 (-931 *3) (-1075 (-931 *3)))) (-5 *1 (-931 *3)) + (-4 *3 (-13 (-749) (-308) (-927)))))) (((*1 *2 *3) - (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) - (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))))) + (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) + (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) - (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))) - (-5 *4 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))))) + (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) + (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))) + (-5 *4 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) - (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))) (-5 *4 (-343 (-478))))) + (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) + (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))) (-5 *4 (-344 (-479))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3119 *5) (|:| -3118 *5)))) - (-5 *1 (-927 *3)) (-4 *3 (-1140 (-478))) - (-5 *4 (-2 (|:| -3119 *5) (|:| -3118 *5))))) + (-12 (-5 *5 (-344 (-479))) (-5 *2 (-579 (-2 (|:| -3122 *5) (|:| -3121 *5)))) + (-5 *1 (-928 *3)) (-4 *3 (-1145 (-479))) + (-5 *4 (-2 (|:| -3122 *5) (|:| -3121 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) - (-5 *1 (-928 *3)) (-4 *3 (-1140 (-343 (-478)))))) + (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) + (-5 *1 (-929 *3)) (-4 *3 (-1145 (-344 (-479)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) - (-5 *1 (-928 *3)) (-4 *3 (-1140 (-343 (-478)))) - (-5 *4 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))))) + (-12 (-5 *2 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) + (-5 *1 (-929 *3)) (-4 *3 (-1145 (-344 (-479)))) + (-5 *4 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3119 *4) (|:| -3118 *4)))) - (-5 *1 (-928 *3)) (-4 *3 (-1140 *4)))) + (-12 (-5 *4 (-344 (-479))) (-5 *2 (-579 (-2 (|:| -3122 *4) (|:| -3121 *4)))) + (-5 *1 (-929 *3)) (-4 *3 (-1145 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-343 (-478))) (-5 *2 (-578 (-2 (|:| -3119 *5) (|:| -3118 *5)))) - (-5 *1 (-928 *3)) (-4 *3 (-1140 *5)) - (-5 *4 (-2 (|:| -3119 *5) (|:| -3118 *5)))))) + (-12 (-5 *5 (-344 (-479))) (-5 *2 (-579 (-2 (|:| -3122 *5) (|:| -3121 *5)))) + (-5 *1 (-929 *3)) (-4 *3 (-1145 *5)) + (-5 *4 (-2 (|:| -3122 *5) (|:| -3121 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478)))))) - (-5 *2 (-578 (-343 (-478)))) (-5 *1 (-927 *4)) (-4 *4 (-1140 (-478)))))) + (-12 (-5 *3 (-579 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479)))))) + (-5 *2 (-579 (-344 (-479)))) (-5 *1 (-928 *4)) (-4 *4 (-1145 (-479)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3119 (-343 (-478))) (|:| -3118 (-343 (-478))))) - (-5 *2 (-343 (-478))) (-5 *1 (-927 *4)) (-4 *4 (-1140 (-478)))))) + (-12 (-5 *3 (-2 (|:| -3122 (-344 (-479))) (|:| -3121 (-344 (-479))))) + (-5 *2 (-344 (-479))) (-5 *1 (-928 *4)) (-4 *4 (-1145 (-479)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1164 *6)) (-5 *4 (-1164 (-478))) (-5 *5 (-478)) (-4 *6 (-1003)) - (-5 *2 (-1 *6)) (-5 *1 (-923 *6))))) + (-12 (-5 *3 (-1169 *6)) (-5 *4 (-1169 (-479))) (-5 *5 (-479)) (-4 *6 (-1006)) + (-5 *2 (-1 *6)) (-5 *1 (-924 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-2 (|:| -3379 *4) (|:| -1505 (-478))))) (-4 *4 (-1003)) - (-5 *2 (-1 *4)) (-5 *1 (-923 *4))))) + (-12 (-5 *3 (-579 (-2 (|:| -3384 *4) (|:| -1510 (-479))))) (-4 *4 (-1006)) + (-5 *2 (-1 *4)) (-5 *1 (-924 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1140 *4)) - (-5 *2 (-578 (-343 *5))) (-5 *1 (-922 *4 *5)) (-5 *3 (-343 *5))))) + (|partial| -12 (-4 *4 (-13 (-308) (-118) (-944 (-479)))) (-4 *5 (-1145 *4)) + (-5 *2 (-579 (-344 *5))) (-5 *1 (-923 *4 *5)) (-5 *3 (-344 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-343 *6)) (|:| |h| *6) (|:| |c1| (-343 *6)) - (|:| |c2| (-343 *6)) (|:| -3075 *6))) - (-5 *1 (-922 *5 *6)) (-5 *3 (-343 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-344 *6)) (|:| |h| *6) (|:| |c1| (-344 *6)) + (|:| |c2| (-344 *6)) (|:| -3078 *6))) + (-5 *1 (-923 *5 *6)) (-5 *3 (-344 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1140 *6)) - (-4 *6 (-13 (-308) (-118) (-943 *4))) (-5 *4 (-478)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1145 *6)) + (-4 *6 (-13 (-308) (-118) (-944 *4))) (-5 *4 (-479)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-83)))) - (|:| -3246 + (|:| -3250 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-921 *6 *3))))) + (-5 *1 (-922 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1140 *4)) - (-5 *2 (-2 (|:| |ans| (-343 *5)) (|:| |nosol| (-83)))) (-5 *1 (-921 *4 *5)) - (-5 *3 (-343 *5))))) + (-12 (-4 *4 (-13 (-308) (-118) (-944 (-479)))) (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| |ans| (-344 *5)) (|:| |nosol| (-83)))) (-5 *1 (-922 *4 *5)) + (-5 *3 (-344 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-343 *6)) (|:| |c| (-343 *6)) (|:| -3075 *6))) - (-5 *1 (-921 *5 *6)) (-5 *3 (-343 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-344 *6)) (|:| |c| (-344 *6)) (|:| -3078 *6))) + (-5 *1 (-922 *5 *6)) (-5 *3 (-344 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1075)) + (|partial| -12 (-5 *5 (-1080)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-578 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1100) (-27) (-357 *8))) - (-4 *8 (-13 (-385) (-118) (-943 *3) (-575 *3))) (-5 *3 (-478)) - (-5 *2 (-578 *4)) (-5 *1 (-920 *8 *4))))) + *4 (-579 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2123 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1105) (-27) (-358 *8))) + (-4 *8 (-13 (-386) (-118) (-944 *3) (-576 *3))) (-5 *3 (-479)) + (-5 *2 (-579 *4)) (-5 *1 (-921 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1075)) + (-12 (-5 *5 (-1080)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-578 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1100) (-27) (-357 *8))) - (-4 *8 (-13 (-385) (-118) (-943 *3) (-575 *3))) (-5 *3 (-478)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3118 *4) (|:| |sol?| (-83)))) - (-5 *1 (-919 *8 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478)))) - ((*1 *1 *1) (-4 *1 (-908))) ((*1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-918)))) - ((*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-4 *1 (-918)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-823)))) - ((*1 *1 *1) (-4 *1 (-918)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-918)) (-5 *2 (-765))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-918))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070 *1)) (-4 *1 (-918))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-765))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-765))))) -(((*1 *2 *1) (-12 (-4 *3 (-1114)) (-5 *2 (-578 *1)) (-4 *1 (-916 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-5 *2 (-578 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-5 *2 (-478))))) + *4 (-579 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2123 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1105) (-27) (-358 *8))) + (-4 *8 (-13 (-386) (-118) (-944 *3) (-576 *3))) (-5 *3 (-479)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3121 *4) (|:| |sol?| (-83)))) + (-5 *1 (-920 *8 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479)))) + ((*1 *1 *1) (-4 *1 (-909))) ((*1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-919)))) + ((*1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-4 *1 (-919)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-824)))) + ((*1 *1 *1) (-4 *1 (-919)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-919)) (-5 *2 (-766))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1075 *1)) (-4 *1 (-919))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1075 *1)) (-4 *1 (-919))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-766))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-919)) (-5 *2 (-766))))) +(((*1 *2 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-579 *1)) (-4 *1 (-917 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-5 *2 (-579 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-5 *2 (-479))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-916 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-917 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-83))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-578 *1)) (|has| *1 (-6 -3972)) (-4 *1 (-916 *3)) - (-4 *3 (-1114))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-916 *2)) (-4 *2 (-1114))))) + (-12 (-5 *2 (-579 *1)) (|has| *1 (-6 -3978)) (-4 *1 (-917 *3)) + (-4 *3 (-1119))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-917 *2)) (-4 *2 (-1119))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) - (-5 *2 (-343 (-478))))) + (|partial| -12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-478)) + (-5 *2 (-344 (-479))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-341 *3)) (-4 *3 (-477)) - (-4 *3 (-489)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-477)) (-5 *2 (-343 (-478))))) + (|partial| -12 (-5 *2 (-344 (-479))) (-5 *1 (-342 *3)) (-4 *3 (-478)) + (-4 *3 (-490)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-478)) (-5 *2 (-344 (-479))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) - (-5 *2 (-343 (-478))))) + (|partial| -12 (-4 *1 (-714 *3)) (-4 *3 (-144)) (-4 *3 (-478)) + (-5 *2 (-344 (-479))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-736 *3)) (-4 *3 (-477)) - (-4 *3 (-1003)))) + (|partial| -12 (-5 *2 (-344 (-479))) (-5 *1 (-737 *3)) (-4 *3 (-478)) + (-4 *3 (-1006)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-743 *3)) (-4 *3 (-477)) - (-4 *3 (-1003)))) + (|partial| -12 (-5 *2 (-344 (-479))) (-5 *1 (-744 *3)) (-4 *3 (-478)) + (-4 *3 (-1006)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) - (-5 *2 (-343 (-478))))) + (|partial| -12 (-4 *1 (-905 *3)) (-4 *3 (-144)) (-4 *3 (-478)) + (-5 *2 (-344 (-479))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-343 (-478))) (-5 *1 (-914 *3)) (-4 *3 (-943 *2))))) + (|partial| -12 (-5 *2 (-344 (-479))) (-5 *1 (-915 *3)) (-4 *3 (-944 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) + (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489)))) - ((*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) + (-12 (-5 *2 (-83)) (-5 *1 (-342 *3)) (-4 *3 (-478)) (-4 *3 (-490)))) + ((*1 *2 *1) (-12 (-4 *1 (-478)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) + (-12 (-4 *1 (-714 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-83)) (-5 *1 (-737 *3)) (-4 *3 (-478)) (-4 *3 (-1006)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-83)) (-5 *1 (-744 *3)) (-4 *3 (-478)) (-4 *3 (-1006)))) ((*1 *2 *1) - (-12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-83)))) + (-12 (-4 *1 (-905 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-5 *2 (-83)) (-5 *1 (-914 *3)) (-4 *3 (-943 (-343 (-478))))))) + (-12 (-5 *2 (-83)) (-5 *1 (-915 *3)) (-4 *3 (-944 (-344 (-479))))))) (((*1 *2 *1) - (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) + (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-344 (-479))))) ((*1 *2 *1) - (-12 (-5 *2 (-343 (-478))) (-5 *1 (-341 *3)) (-4 *3 (-477)) (-4 *3 (-489)))) - ((*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-343 (-478))))) + (-12 (-5 *2 (-344 (-479))) (-5 *1 (-342 *3)) (-4 *3 (-478)) (-4 *3 (-490)))) + ((*1 *2 *1) (-12 (-4 *1 (-478)) (-5 *2 (-344 (-479))))) ((*1 *2 *1) - (-12 (-4 *1 (-713 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) + (-12 (-4 *1 (-714 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-344 (-479))))) ((*1 *2 *1) - (-12 (-5 *2 (-343 (-478))) (-5 *1 (-736 *3)) (-4 *3 (-477)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-344 (-479))) (-5 *1 (-737 *3)) (-4 *3 (-478)) (-4 *3 (-1006)))) ((*1 *2 *1) - (-12 (-5 *2 (-343 (-478))) (-5 *1 (-743 *3)) (-4 *3 (-477)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-344 (-479))) (-5 *1 (-744 *3)) (-4 *3 (-478)) (-4 *3 (-1006)))) ((*1 *2 *1) - (-12 (-4 *1 (-904 *3)) (-4 *3 (-144)) (-4 *3 (-477)) (-5 *2 (-343 (-478))))) - ((*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-914 *3)) (-4 *3 (-943 *2))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912))))) -(((*1 *2 *3) (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-912))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912)))) - ((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-912))))) + (-12 (-4 *1 (-905 *3)) (-4 *3 (-144)) (-4 *3 (-478)) (-5 *2 (-344 (-479))))) + ((*1 *2 *3) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-915 *3)) (-4 *3 (-944 *2))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-913))))) +(((*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-913))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-913)))) + ((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-913))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-478))) (-5 *4 (-478)) (-5 *2 (-51)) (-5 *1 (-911))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-910 *3)) (-14 *3 (-478))))) + (-12 (-5 *3 (-344 (-479))) (-5 *4 (-479)) (-5 *2 (-51)) (-5 *1 (-912))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479))))) +(((*1 *2 *1) (-12 (-5 *2 (-1059 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-911 *3)) (-14 *3 (-479))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-341 *5)) (-4 *5 (-489)) - (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *5) (|:| |radicand| (-578 *5)))) - (-5 *1 (-267 *5)) (-5 *4 (-687)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-908)) (-5 *2 (-478))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-906 *3))))) + (-12 (-5 *3 (-342 *5)) (-4 *5 (-490)) + (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *5) (|:| |radicand| (-579 *5)))) + (-5 *1 (-267 *5)) (-5 *4 (-688)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-909)) (-5 *2 (-479))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-907 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)))) - ((*1 *1 *1 *1) (-4 *1 (-406))) - ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) - ((*1 *2 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-786)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-144))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1114))))) + ((*1 *1 *1 *1) (-4 *1 (-407))) + ((*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) + ((*1 *2 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-787)))) + ((*1 *1 *1) (-5 *1 (-878))) + ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-144))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-1119))))) (((*1 *1 *2) - (-12 (-5 *2 (-1042 *3 *4)) (-14 *3 (-823)) (-4 *4 (-308)) - (-5 *1 (-899 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1025 (-478) (-545 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1046 *3 *4)) (-14 *3 (-824)) (-4 *4 (-308)) + (-5 *1 (-900 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1029 (-479) (-546 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *6)) - (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))))) + (-12 (-4 *3 (-254)) (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *6)) + (-5 *1 (-350 *3 *4 *5 *6)) (-4 *6 (-13 (-347 *4 *5) (-944 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-954)) (-4 *3 (-1003)) (-5 *2 (-1025 *3 (-545 *1))) - (-4 *1 (-357 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1025 (-478) (-545 (-428)))) (-5 *1 (-428)))) + (-12 (-4 *3 (-955)) (-4 *3 (-1006)) (-5 *2 (-1029 *3 (-546 *1))) + (-4 *1 (-358 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1029 (-479) (-546 (-429)))) (-5 *1 (-429)))) ((*1 *2 *1) - (-12 (-4 *3 (-144)) (-4 *2 (-38 *3)) (-5 *1 (-553 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-658) *3)))) + (-12 (-4 *3 (-144)) (-4 *2 (-38 *3)) (-5 *1 (-554 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-144)) (-4 *2 (-649 *3)) (-5 *1 (-589 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-658) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489))))) -(((*1 *2 *1) (-12 (-5 *2 (-1025 (-478) (-545 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-144)) (-4 *2 (-650 *3)) (-5 *1 (-590 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-659) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490))))) +(((*1 *2 *1) (-12 (-5 *2 (-1029 (-479) (-546 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-897 *2)) (-4 *4 (-1140 *3)) (-4 *2 (-254)) - (-5 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-13 (-346 *3 *4) (-943 *3))))) + (-12 (-4 *3 (-898 *2)) (-4 *4 (-1145 *3)) (-4 *2 (-254)) + (-5 *1 (-350 *2 *3 *4 *5)) (-4 *5 (-13 (-347 *3 *4) (-944 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-489)) (-4 *3 (-1003)) (-5 *2 (-1025 *3 (-545 *1))) - (-4 *1 (-357 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1025 (-478) (-545 (-428)))) (-5 *1 (-428)))) + (-12 (-4 *3 (-490)) (-4 *3 (-1006)) (-5 *2 (-1029 *3 (-546 *1))) + (-4 *1 (-358 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1029 (-479) (-546 (-429)))) (-5 *1 (-429)))) ((*1 *2 *1) - (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-658) *4)) - (-5 *1 (-553 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-659) *4)) + (-5 *1 (-554 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-658) *4)) - (-5 *1 (-589 *3 *4 *2)) (-4 *3 (-649 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489))))) -(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1003)) (-4 *2 (-954)))) - ((*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489))))) -(((*1 *1 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1003)) (-4 *2 (-489)))) - ((*1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-489))))) + (-12 (-4 *4 (-144)) (-4 *2 (|SubsetCategory| (-659) *4)) + (-5 *1 (-590 *3 *4 *2)) (-4 *3 (-650 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490))))) +(((*1 *1 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-1006)) (-4 *2 (-955)))) + ((*1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490))))) +(((*1 *1 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-1006)) (-4 *2 (-490)))) + ((*1 *1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-490))))) (((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) + (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) - ((*1 *1) (-4 *1 (-313))) + (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295)))) + ((*1 *1) (-4 *1 (-314))) ((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1164 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) - ((*1 *1 *1) (-4 *1 (-477))) ((*1 *1) (-4 *1 (-477))) - ((*1 *1 *1) (-5 *1 (-687))) - ((*1 *2 *1) (-12 (-5 *2 (-806 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1003)))) + (-12 (-5 *3 (-824)) (-5 *2 (-1169 *4)) (-5 *1 (-461 *4)) (-4 *4 (-295)))) + ((*1 *1 *1) (-4 *1 (-478))) ((*1 *1) (-4 *1 (-478))) + ((*1 *1 *1) (-5 *1 (-688))) + ((*1 *2 *1) (-12 (-5 *2 (-807 *3)) (-5 *1 (-810 *3)) (-4 *3 (-1006)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-5 *2 (-806 *4)) (-5 *1 (-809 *4)) (-4 *4 (-1003)))) - ((*1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-477)) (-4 *2 (-489))))) + (-12 (-5 *3 (-479)) (-5 *2 (-807 *4)) (-5 *1 (-810 *4)) (-4 *4 (-1006)))) + ((*1 *1) (-12 (-4 *1 (-898 *2)) (-4 *2 (-478)) (-4 *2 (-490))))) (((*1 *2 *2) (-12 (-5 *2 - (-892 (-343 (-478)) (-766 *3) (-194 *4 (-687)) (-203 *3 (-343 (-478))))) - (-14 *3 (-578 (-1075))) (-14 *4 (-687)) (-5 *1 (-893 *3 *4))))) + (-893 (-344 (-479)) (-767 *3) (-194 *4 (-688)) (-203 *3 (-344 (-479))))) + (-14 *3 (-579 (-1080))) (-14 *4 (-688)) (-5 *1 (-894 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-578 *3)) (-4 *3 (-854 *4 *6 *5)) (-4 *4 (-385)) (-4 *5 (-749)) - (-4 *6 (-710)) (-5 *1 (-892 *4 *5 *6 *3))))) + (-12 (-5 *2 (-579 *3)) (-4 *3 (-855 *4 *6 *5)) (-4 *4 (-386)) (-4 *5 (-750)) + (-4 *6 (-711)) (-5 *1 (-893 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-83) "failed")) (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) - (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-83) "failed")) (-4 *3 (-386)) (-4 *4 (-750)) (-4 *5 (-711)) + (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-855 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-385)) (-4 *4 (-749)) (-4 *5 (-710)) (-5 *2 (-578 *6)) - (-5 *1 (-892 *3 *4 *5 *6)) (-4 *6 (-854 *3 *5 *4))))) + (-12 (-4 *3 (-386)) (-4 *4 (-750)) (-4 *5 (-711)) (-5 *2 (-579 *6)) + (-5 *1 (-893 *3 *4 *5 *6)) (-4 *6 (-855 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-854 *3 *5 *4)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *3 (-385)) - (-4 *4 (-749)) (-4 *5 (-710))))) + (-12 (-4 *2 (-855 *3 *5 *4)) (-5 *1 (-893 *3 *4 *5 *2)) (-4 *3 (-386)) + (-4 *4 (-750)) (-4 *5 (-711))))) (((*1 *1 *1) - (-12 (-4 *2 (-385)) (-4 *3 (-749)) (-4 *4 (-710)) (-5 *1 (-892 *2 *3 *4 *5)) - (-4 *5 (-854 *2 *4 *3))))) + (-12 (-4 *2 (-386)) (-4 *3 (-750)) (-4 *4 (-711)) (-5 *1 (-893 *2 *3 *4 *5)) + (-4 *5 (-855 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1140 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-891 *4 *2 *3 *5)) - (-4 *4 (-295)) (-4 *5 (-656 *2 *3))))) + (-12 (-4 *3 (-1145 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-892 *4 *2 *3 *5)) + (-4 *4 (-295)) (-4 *5 (-657 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) - (-4 *5 (-489)) (-5 *1 (-664 *4 *3 *5 *2)) - (-4 *2 (-854 (-343 (-850 *5)) *4 *3)))) + (-12 (-4 *4 (-711)) (-4 *3 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) + (-4 *5 (-490)) (-5 *1 (-665 *4 *3 *5 *2)) + (-4 *2 (-855 (-344 (-851 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-954)) (-4 *5 (-710)) + (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 - (-13 (-749) - (-10 -8 (-15 -3948 ((-1075) $)) - (-15 -3807 ((-3 $ #1="failed") (-1075)))))) - (-5 *1 (-890 *4 *5 *3 *2)) (-4 *2 (-854 (-850 *4) *5 *3)))) + (-13 (-750) + (-10 -8 (-15 -3954 ((-1080) $)) + (-15 -3813 ((-3 $ #1="failed") (-1080)))))) + (-5 *1 (-891 *4 *5 *3 *2)) (-4 *2 (-855 (-851 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-578 *6)) + (-12 (-5 *3 (-579 *6)) (-4 *6 - (-13 (-749) - (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ #1#) (-1075)))))) - (-4 *4 (-954)) (-4 *5 (-710)) (-5 *1 (-890 *4 *5 *6 *2)) - (-4 *2 (-854 (-850 *4) *5 *6))))) + (-13 (-750) + (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ #1#) (-1080)))))) + (-4 *4 (-955)) (-4 *5 (-711)) (-5 *1 (-891 *4 *5 *6 *2)) + (-4 *2 (-855 (-851 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-710)) (-4 *3 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) - (-4 *5 (-489)) (-5 *1 (-664 *4 *3 *5 *2)) - (-4 *2 (-854 (-343 (-850 *5)) *4 *3)))) + (-12 (-4 *4 (-711)) (-4 *3 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) + (-4 *5 (-490)) (-5 *1 (-665 *4 *3 *5 *2)) + (-4 *2 (-855 (-344 (-851 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-954)) (-4 *5 (-710)) + (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 - (-13 (-749) - (-10 -8 (-15 -3948 ((-1075) $)) - (-15 -3807 ((-3 $ #1="failed") (-1075)))))) - (-5 *1 (-890 *4 *5 *3 *2)) (-4 *2 (-854 (-850 *4) *5 *3)))) + (-13 (-750) + (-10 -8 (-15 -3954 ((-1080) $)) + (-15 -3813 ((-3 $ #1="failed") (-1080)))))) + (-5 *1 (-891 *4 *5 *3 *2)) (-4 *2 (-855 (-851 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-578 *6)) + (-12 (-5 *3 (-579 *6)) (-4 *6 - (-13 (-749) - (-10 -8 (-15 -3948 ((-1075) $)) (-15 -3807 ((-3 $ #1#) (-1075)))))) - (-4 *4 (-954)) (-4 *5 (-710)) (-5 *1 (-890 *4 *5 *6 *2)) - (-4 *2 (-854 (-850 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-889 *2)) (-4 *2 (-1100))))) + (-13 (-750) + (-10 -8 (-15 -3954 ((-1080) $)) (-15 -3813 ((-3 $ #1#) (-1080)))))) + (-4 *4 (-955)) (-4 *5 (-711)) (-5 *1 (-891 *4 *5 *6 *2)) + (-4 *2 (-855 (-851 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-890 *2)) (-4 *2 (-1105))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-687)) (-4 *1 (-889 *2)) (-4 *2 (-1100))))) -(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-776)))) - ((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) -(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-128)))) - ((*1 *2 *1) (-12 (-5 *2 (-128)) (-5 *1 (-776)))) - ((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) -(((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-128)))) - ((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) -(((*1 *2 *3) (-12 (-5 *3 (-847 *2)) (-5 *1 (-888 *2)) (-4 *2 (-954))))) + (|partial| -12 (-5 *3 (-688)) (-4 *1 (-890 *2)) (-4 *2 (-1105))))) +(((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-777)))) + ((*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) +(((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-128)))) + ((*1 *2 *1) (-12 (-5 *2 (-128)) (-5 *1 (-777)))) + ((*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) +(((*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-128)))) + ((*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) +(((*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) +(((*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) +(((*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) +(((*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) +(((*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) +(((*1 *2 *3) (-12 (-5 *3 (-848 *2)) (-5 *1 (-889 *2)) (-4 *2 (-955))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-308)) - (-5 *2 (-578 (-2 (|:| C (-625 *5)) (|:| |g| (-1164 *5))))) (-5 *1 (-884 *5)) - (-5 *3 (-625 *5)) (-5 *4 (-1164 *5))))) + (-5 *2 (-579 (-2 (|:| C (-626 *5)) (|:| |g| (-1169 *5))))) (-5 *1 (-885 *5)) + (-5 *3 (-626 *5)) (-5 *4 (-1169 *5))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-625 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) - (-5 *1 (-884 *5))))) + (-12 (-5 *2 (-626 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) + (-5 *1 (-885 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-308)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *2)))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *4 *5 *6)) (-4 *4 (-308)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-381 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-308)) - (-5 *2 (-2 (|:| R (-625 *6)) (|:| A (-625 *6)) (|:| |Ainv| (-625 *6)))) - (-5 *1 (-884 *6)) (-5 *3 (-625 *6))))) + (-5 *2 (-2 (|:| R (-626 *6)) (|:| A (-626 *6)) (|:| |Ainv| (-626 *6)))) + (-5 *1 (-885 *6)) (-5 *3 (-626 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) - (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) + (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) - (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) + (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) - (-4 *3 (-489)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-118)) (-4 *3 (-254)) + (-4 *3 (-490)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) - (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-386)) (-4 *3 (-490)) + (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) - (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-386)) (-4 *3 (-490)) + (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) - (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-386)) (-4 *3 (-490)) + (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-385)) (-4 *3 (-489)) - (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-386)) (-4 *3 (-490)) + (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-578 *7)) (-5 *3 (-83)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-385)) - (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7))))) + (-12 (-5 *2 (-579 *7)) (-5 *3 (-83)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-386)) + (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-884 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-385)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) - (-5 *2 (-578 *3)) (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-386)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) + (-5 *2 (-579 *3)) (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *1 (-883 *5 *6 *7 *8))))) + (-12 (-5 *2 (-579 *8)) (-5 *3 (-1 (-83) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *1 (-884 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-578 *9)) (-5 *3 (-1 (-83) *9)) (-5 *4 (-1 (-83) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-969 *6 *7 *8)) (-4 *6 (-489)) (-4 *7 (-710)) - (-4 *8 (-749)) (-5 *1 (-883 *6 *7 *8 *9))))) + (-12 (-5 *2 (-579 *9)) (-5 *3 (-1 (-83) *9)) (-5 *4 (-1 (-83) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-970 *6 *7 *8)) (-4 *6 (-490)) (-4 *7 (-711)) + (-4 *8 (-750)) (-5 *1 (-884 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-409 *4 *5 *6 *7)) (|:| -3301 (-578 *7)))) - (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) + (|partial| -12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-410 *4 *5 *6 *7)) (|:| -3306 (-579 *7)))) + (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *2))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *1 (-884 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-578 *7)) (-5 *3 (-83)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *7))))) + (-12 (-5 *2 (-579 *7)) (-5 *3 (-83)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-884 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) - (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-579 *7)) (|:| |badPols| (-579 *7)))) + (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) - (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) + (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) - (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-579 *7)) (|:| |badPols| (-579 *7)))) + (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) - (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) + (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) - (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-579 *7)) (|:| |badPols| (-579 *7)))) + (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) - (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) + (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) - (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-970 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-579 *7)) (|:| |badPols| (-579 *7)))) + (-5 *1 (-884 *4 *5 *6 *7)) (-5 *3 (-579 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-1 (-83) *8))) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) - (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) - (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) + (-12 (-5 *3 (-579 (-1 (-83) *8))) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) + (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-2 (|:| |goodPols| (-579 *8)) (|:| |badPols| (-579 *8)))) + (-5 *1 (-884 *5 *6 *7 *8)) (-5 *4 (-579 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-1 (-83) *8))) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) - (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) - (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) + (-12 (-5 *3 (-579 (-1 (-83) *8))) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) + (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-2 (|:| |goodPols| (-579 *8)) (|:| |badPols| (-579 *8)))) + (-5 *1 (-884 *5 *6 *7 *8)) (-5 *4 (-579 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-83) *8)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-489)) - (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) - (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-578 *8))))) + (-12 (-5 *3 (-1 (-83) *8)) (-4 *8 (-970 *5 *6 *7)) (-4 *5 (-490)) + (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *2 (-2 (|:| |goodPols| (-579 *8)) (|:| |badPols| (-579 *8)))) + (-5 *1 (-884 *5 *6 *7 *8)) (-5 *4 (-579 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *7))))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-884 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-969 *5 *6 *7)) - (-4 *5 (-489)) (-4 *6 (-710)) (-4 *7 (-749)) (-5 *2 (-83)) - (-5 *1 (-883 *5 *6 *7 *8))))) + (-12 (-5 *4 (-579 (-579 *8))) (-5 *3 (-579 *8)) (-4 *8 (-970 *5 *6 *7)) + (-4 *5 (-490)) (-4 *6 (-711)) (-4 *7 (-750)) (-5 *2 (-83)) + (-5 *1 (-884 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-83)) (-5 *1 (-883 *4 *5 *6 *7))))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-83)) (-5 *1 (-884 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) - (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 *3)) + (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-578 *3)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *1 (-883 *4 *5 *6 *3)))) + (-12 (-5 *2 (-579 *3)) (-4 *3 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *1 (-884 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6)))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-578 *7) (-578 *7))) (-5 *2 (-578 *7)) - (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) - (-5 *1 (-883 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-579 *7) (-579 *7))) (-5 *2 (-579 *7)) + (-4 *7 (-970 *4 *5 *6)) (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) + (-5 *1 (-884 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-578 *3)) - (-5 *1 (-883 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-490)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-579 *3)) + (-5 *1 (-884 *4 *5 *6 *3)) (-4 *3 (-970 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-883 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-884 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-578 *5))))) + (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-579 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-882 *4 *5 *3 *6)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) - (-4 *6 (-969 *4 *5 *3)) (-5 *2 (-83))))) + (-12 (-4 *1 (-883 *4 *5 *3 *6)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) + (-4 *6 (-970 *4 *5 *3)) (-5 *2 (-83))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) - (-4 *5 (-969 *3 *4 *2))))) + (-12 (-4 *1 (-883 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) + (-4 *5 (-970 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) - (-4 *5 (-969 *3 *4 *2))))) + (-12 (-4 *1 (-883 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) + (-4 *5 (-970 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-882 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) - (-4 *5 (-969 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1114)) (-4 *2 (-749)))) + (-12 (-4 *1 (-883 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) + (-4 *5 (-970 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-1119)) (-4 *2 (-750)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-317 *3)) (-4 *3 (-1114)))) - ((*1 *2 *2) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-806 *3)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-318 *3)) (-4 *3 (-1119)))) + ((*1 *2 *2) (-12 (-5 *2 (-579 (-807 *3))) (-5 *1 (-807 *3)) (-4 *3 (-1006)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) (-4 *6 (-969 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3111 *1) (|:| |upper| *1))) - (-4 *1 (-882 *4 *5 *3 *6))))) + (-12 (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) (-4 *6 (-970 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3114 *1) (|:| |upper| *1))) + (-4 *1 (-883 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-5 *2 (-83))))) + (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) + (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) + (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) + (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) + (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-882 *4 *5 *6 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) + (-12 (-4 *1 (-883 *4 *5 *6 *3)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-4 *4 (-490)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-882 *4 *5 *6 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-489)) + (-12 (-4 *1 (-883 *4 *5 *6 *3)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *3 (-970 *4 *5 *6)) (-4 *4 (-490)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-578 *6)) (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489))))) + (-12 (-5 *2 (-579 *6)) (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-578 *6)) (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489))))) -(((*1 *2 *1) - (-12 (-4 *1 (-882 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-489)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-578 (-578 (-847 (-177))))))) - ((*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-578 (-578 (-847 (-177)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-992 (-177))))) - ((*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-992 (-177)))))) -(((*1 *2 *1) (-12 (-4 *1 (-859)) (-5 *2 (-992 (-177))))) - ((*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-992 (-177)))))) -(((*1 *2 *1) (-12 (-4 *1 (-880)) (-5 *2 (-992 (-177)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) - ((*1 *2 *1) (-12 (-4 *1 (-328 *3 *2)) (-4 *3 (-954)) (-4 *2 (-1003)))) - ((*1 *2 *1) - (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) (-4 *6 (-193 (-3933 *3) (-687))) + (-12 (-5 *2 (-579 *6)) (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490))))) +(((*1 *2 *1) + (-12 (-4 *1 (-883 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-970 *3 *4 *5)) (-4 *3 (-490)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-579 (-579 (-848 (-177))))))) + ((*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-579 (-579 (-848 (-177)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-994 (-177))))) + ((*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-994 (-177)))))) +(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-994 (-177))))) + ((*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-994 (-177)))))) +(((*1 *2 *1) (-12 (-4 *1 (-881)) (-5 *2 (-994 (-177)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-955)) (-4 *2 (-1006)))) + ((*1 *2 *1) + (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-4 *6 (-193 (-3939 *3) (-688))) (-14 *7 - (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *6)) - (-2 (|:| -2382 *5) (|:| -2383 *6)))) - (-5 *2 (-645 *5 *6 *7)) (-5 *1 (-394 *3 *4 *5 *6 *7 *8)) (-4 *5 (-749)) - (-4 *8 (-854 *4 *6 (-766 *3))))) + (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *6)) + (-2 (|:| -2387 *5) (|:| -2388 *6)))) + (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-395 *3 *4 *5 *6 *7 *8)) (-4 *5 (-750)) + (-4 *8 (-855 *4 *6 (-767 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-658)) (-4 *2 (-749)) (-5 *1 (-667 *3 *2)) (-4 *3 (-954)))) + (-12 (-4 *2 (-659)) (-4 *2 (-750)) (-5 *1 (-668 *3 *2)) (-4 *3 (-955)))) ((*1 *1 *1) - (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *4 (-749))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709)))) + (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-710)) (-4 *4 (-750))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-578 (-823))) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-823)) - (-4 *2 (-308)) (-14 *5 (-899 *4 *2)))) + (-12 (-5 *3 (-579 (-824))) (-5 *1 (-123 *4 *2 *5)) (-14 *4 (-824)) + (-4 *2 (-308)) (-14 *5 (-900 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-645 *5 *6 *7)) (-4 *5 (-749)) (-4 *6 (-193 (-3933 *4) (-687))) + (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-750)) (-4 *6 (-193 (-3939 *4) (-688))) (-14 *7 - (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *6)) - (-2 (|:| -2382 *5) (|:| -2383 *6)))) - (-14 *4 (-578 (-1075))) (-4 *2 (-144)) (-5 *1 (-394 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-854 *2 *6 (-766 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-72)) (-4 *3 (-752)))) + (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *6)) + (-2 (|:| -2387 *5) (|:| -2388 *6)))) + (-14 *4 (-579 (-1080))) (-4 *2 (-144)) (-5 *1 (-395 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-855 *2 *6 (-767 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-443 *2 *3)) (-4 *2 (-72)) (-4 *3 (-753)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-478)) (-4 *2 (-489)) (-5 *1 (-557 *2 *4)) (-4 *4 (-1140 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-640 *2)) (-4 *2 (-954)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-667 *2 *3)) (-4 *2 (-954)) (-4 *3 (-658)))) + (-12 (-5 *3 (-479)) (-4 *2 (-490)) (-5 *1 (-558 *2 *4)) (-4 *4 (-1145 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-641 *2)) (-4 *2 (-955)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-955)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-687))) (-4 *1 (-672 *4 *5)) - (-4 *4 (-954)) (-4 *5 (-749)))) + (-12 (-5 *2 (-579 *5)) (-5 *3 (-579 (-688))) (-4 *1 (-673 *4 *5)) + (-4 *4 (-955)) (-4 *5 (-750)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-672 *4 *2)) (-4 *4 (-954)) (-4 *2 (-749)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-754 *2)) (-4 *2 (-954)))) + (-12 (-5 *3 (-688)) (-4 *1 (-673 *4 *2)) (-4 *4 (-955)) (-4 *2 (-750)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-755 *2)) (-4 *2 (-955)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-687))) (-4 *1 (-854 *4 *5 *6)) - (-4 *4 (-954)) (-4 *5 (-710)) (-4 *6 (-749)))) + (-12 (-5 *2 (-579 *6)) (-5 *3 (-579 (-688))) (-4 *1 (-855 *4 *5 *6)) + (-4 *4 (-955)) (-4 *5 (-711)) (-4 *6 (-750)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-687)) (-4 *1 (-854 *4 *5 *2)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *2 (-749)))) + (-12 (-5 *3 (-688)) (-4 *1 (-855 *4 *5 *2)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *2 (-750)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 *5)) (-4 *1 (-879 *4 *5 *6)) - (-4 *4 (-954)) (-4 *5 (-709)) (-4 *6 (-749)))) + (-12 (-5 *2 (-579 *6)) (-5 *3 (-579 *5)) (-4 *1 (-880 *4 *5 *6)) + (-4 *4 (-955)) (-4 *5 (-710)) (-4 *6 (-750)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-879 *4 *3 *2)) (-4 *4 (-954)) (-4 *3 (-709)) (-4 *2 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-525 *3)) (-4 *3 (-954)))) + (-12 (-4 *1 (-880 *4 *3 *2)) (-4 *4 (-955)) (-4 *3 (-710)) (-4 *2 (-750))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-526 *3)) (-4 *3 (-955)))) ((*1 *2 *1) - (-12 (-4 *1 (-879 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-709)) (-4 *5 (-749)) + (-12 (-4 *1 (-880 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-710)) (-4 *5 (-750)) (-5 *2 (-83))))) (((*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254)))) - ((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162)))) - ((*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1) (-4 *1 (-772 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162)))) + ((*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1) (-4 *1 (-773 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-879 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-709)) (-4 *4 (-749))))) -(((*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-877))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *2 (-578 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -3971)) (-4 *1 (-422 *3)) (-4 *3 (-1114)) - (-5 *2 (-578 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-823))) (-5 *1 (-877))))) -(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1055 (-877))) (-5 *1 (-877))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-775 (-823) (-823)))) (-5 *1 (-877))))) -(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-877))))) + (-12 (-4 *1 (-880 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-710)) (-4 *4 (-750))))) +(((*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-878))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *2 (-579 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -3977)) (-4 *1 (-423 *3)) (-4 *3 (-1119)) + (-5 *2 (-579 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-824))) (-5 *1 (-878))))) +(((*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1059 (-878))) (-5 *1 (-878))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-776 (-824) (-824)))) (-5 *1 (-878))))) +(((*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-878))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3732 *4))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3738 *4))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3732 *4))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-489)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1140 *2))))) + (-12 (-4 *4 (-490)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3738 *4))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-490)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1145 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3))))) + (-12 (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-687)) (-4 *3 (-489)) (-5 *1 (-875 *3 *2)) (-4 *2 (-1140 *3))))) + (-12 (-5 *4 (-688)) (-4 *3 (-490)) (-5 *1 (-876 *3 *2)) (-4 *2 (-1145 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-687)) (-4 *2 (-489)) (-5 *1 (-875 *2 *4)) (-4 *4 (-1140 *2))))) + (-12 (-5 *3 (-688)) (-4 *2 (-490)) (-5 *1 (-876 *2 *4)) (-4 *4 (-1145 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) (-4 *1 (-254)))) + (-12 (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) (-4 *1 (-254)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1003)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) - (-4 *1 (-329 *3)))) + (|partial| -12 (-4 *3 (-1006)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (-4 *1 (-330 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1956 (-687)) (|:| -2883 (-687)))) (-5 *1 (-687)))) + (-12 (-5 *2 (-2 (|:| -1961 (-688)) (|:| -2887 (-688)))) (-5 *1 (-688)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *4 (-489)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2857 *4))) (-5 *1 (-875 *4 *3)) - (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-386)) (-4 *4 (-490)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2861 *4))) (-5 *1 (-876 *4 *3)) + (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *4 (-489)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2857 *4))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-386)) (-4 *4 (-490)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2861 *4))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-489)) (-4 *2 (-385)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-490)) (-4 *2 (-386)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1145 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-578 (-687))) (-5 *1 (-875 *4 *3)) - (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-579 (-688))) (-5 *1 (-876 *4 *3)) + (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-875 *4 *3)) - (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-579 *3)) (-5 *1 (-876 *4 *3)) + (-4 *3 (-1145 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3733 *4))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3739 *4))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3733 *4))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3739 *4))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3125 *3))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3128 *3))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3125 *3))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3128 *3))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3125 *3))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3128 *3))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-687)) (-4 *5 (-489)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) - (-4 *3 (-1140 *5))))) + (-12 (-5 *4 (-688)) (-4 *5 (-490)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-1145 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-687)) (-4 *5 (-489)) + (-12 (-5 *4 (-688)) (-4 *5 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-875 *5 *3)) (-4 *3 (-1140 *5))))) + (-5 *1 (-876 *5 *3)) (-4 *3 (-1145 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-489)) (-5 *1 (-875 *4 *2)) (-4 *2 (-1140 *4))))) + (-12 (-5 *3 (-688)) (-4 *4 (-490)) (-5 *1 (-876 *4 *2)) (-4 *2 (-1145 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-687)) (-4 *5 (-489)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-875 *5 *3)) - (-4 *3 (-1140 *5))))) + (-12 (-5 *4 (-688)) (-4 *5 (-490)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-876 *5 *3)) + (-4 *3 (-1145 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-687)) (-4 *5 (-489)) + (-12 (-5 *4 (-688)) (-4 *5 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-875 *5 *3)) (-4 *3 (-1140 *5))))) + (-5 *1 (-876 *5 *3)) (-4 *3 (-1145 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-489)) (-5 *1 (-875 *4 *2)) (-4 *2 (-1140 *4))))) + (-12 (-5 *3 (-688)) (-4 *4 (-490)) (-5 *1 (-876 *4 *2)) (-4 *2 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3732 *4))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3738 *4))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3732 *4))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3738 *4))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-489)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3732 *4))) - (-5 *1 (-875 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-490)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3738 *4))) + (-5 *1 (-876 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *1) - (-12 (-4 *1 (-340)) (-2540 (|has| *1 (-6 -3962))) - (-2540 (|has| *1 (-6 -3954))))) - ((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1003)) (-4 *2 (-749)))) - ((*1 *1) (-4 *1 (-745))) ((*1 *1 *1 *1) (-4 *1 (-752))) - ((*1 *2 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)) (-4 *2 (-749)))) + (-12 (-4 *1 (-341)) (-2545 (|has| *1 (-6 -3968))) + (-2545 (|has| *1 (-6 -3960))))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1006)) (-4 *2 (-750)))) + ((*1 *1) (-4 *1 (-746))) ((*1 *1 *1 *1) (-4 *1 (-753))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-750))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)) (-4 *2 (-750)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-874 *2)) (-4 *2 (-749))))) -(((*1 *1) (-4 *1 (-873)))) -(((*1 *1) (-4 *1 (-873)))) -(((*1 *1 *1 *1) (-4 *1 (-873)))) -(((*1 *1 *1 *1) (-4 *1 (-873)))) -(((*1 *1 *2) (-12 (-5 *2 (-572 *3)) (-14 *3 (-578 (-1075))) (-5 *1 (-166 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 *3)) (-14 *3 (-578 (-1075))) (-5 *1 (-572 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-870 *3)) (-4 *3 (-1003)) (-5 *1 (-871 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1003)) (-5 *2 (-791 *3 *4)) (-5 *1 (-788 *3 *4 *5)) - (-4 *3 (-1003)) (-4 *5 (-603 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-870 *4)) (-4 *4 (-1003)) (-5 *2 (-999 *4)) (-5 *1 (-871 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-870 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-870 *3))) (-5 *1 (-870 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) - (-4 *3 (-1003))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) - (-4 *3 (-1003))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) - (-4 *3 (-1003))))) -(((*1 *2 *1) - (-12 (-5 *2 (-627 (-775 (-870 *3) (-870 *3)))) (-5 *1 (-870 *3)) - (-4 *3 (-1003))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1003))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-870 *2)) (-4 *2 (-1003))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-689))) (-5 *1 (-84)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1059)) (-5 *2 (-689)) (-5 *1 (-84)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1005)) (-5 *1 (-869))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-868 *2 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-868 *3 *2)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-765)))) - ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1170)) (-5 *1 (-867))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-578 *3)) (-5 *1 (-866 *3)) (-4 *3 (-477))))) -(((*1 *2 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-477))))) -(((*1 *2 *2) (-12 (-5 *1 (-866 *2)) (-4 *2 (-477))))) + (-12 (-5 *2 (-1 (-83) *3 *3)) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-875 *2)) (-4 *2 (-750))))) +(((*1 *1) (-4 *1 (-874)))) +(((*1 *1) (-4 *1 (-874)))) +(((*1 *1 *1 *1) (-4 *1 (-874)))) +(((*1 *1 *1 *1) (-4 *1 (-874)))) +(((*1 *1 *2) (-12 (-5 *2 (-573 *3)) (-14 *3 (-579 (-1080))) (-5 *1 (-166 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 *3)) (-14 *3 (-579 (-1080))) (-5 *1 (-573 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-871 *3)) (-4 *3 (-1006)) (-5 *1 (-872 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1006)) (-5 *2 (-792 *3 *4)) (-5 *1 (-789 *3 *4 *5)) + (-4 *3 (-1006)) (-4 *5 (-604 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-871 *4)) (-4 *4 (-1006)) (-5 *2 (-1002 *4)) (-5 *1 (-872 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-628 *3)) (-5 *1 (-871 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-628 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) + (-12 (-5 *2 (-628 (-776 (-871 *3) (-871 *3)))) (-5 *1 (-871 *3)) + (-4 *3 (-1006))))) +(((*1 *2 *1) + (-12 (-5 *2 (-628 (-776 (-871 *3) (-871 *3)))) (-5 *1 (-871 *3)) + (-4 *3 (-1006))))) +(((*1 *2 *1) + (-12 (-5 *2 (-628 (-776 (-871 *3) (-871 *3)))) (-5 *1 (-871 *3)) + (-4 *3 (-1006))))) +(((*1 *2 *1) + (-12 (-5 *2 (-628 (-776 (-871 *3) (-871 *3)))) (-5 *1 (-871 *3)) + (-4 *3 (-1006))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1006))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1006))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-690))) (-5 *1 (-84)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1063)) (-5 *2 (-690)) (-5 *1 (-84)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1008)) (-5 *1 (-870))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-4 *2 (-1006)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-766)))) + ((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1175)) (-5 *1 (-868))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-579 *3)) (-5 *1 (-867 *3)) (-4 *3 (-478))))) +(((*1 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-478))))) +(((*1 *2 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-478))))) (((*1 *1) (-4 *1 (-295))) ((*1 *2 *3) - (-12 (-5 *3 (-578 *5)) (-4 *5 (-357 *4)) (-4 *4 (-13 (-489) (-118))) + (-12 (-5 *3 (-579 *5)) (-4 *5 (-358 *4)) (-4 *4 (-13 (-490) (-118))) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-578 (-1070 *5))) - (|:| |prim| (-1070 *5)))) - (-5 *1 (-368 *4 *5)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-579 (-1075 *5))) + (|:| |prim| (-1075 *5)))) + (-5 *1 (-369 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-489) (-118))) + (-12 (-4 *4 (-13 (-490) (-118))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1070 *3)) (|:| |pol2| (-1070 *3)) - (|:| |prim| (-1070 *3)))) - (-5 *1 (-368 *4 *3)) (-4 *3 (-27)) (-4 *3 (-357 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1075 *3)) (|:| |pol2| (-1075 *3)) + (|:| |prim| (-1075 *3)))) + (-5 *1 (-369 *4 *3)) (-4 *3 (-27)) (-4 *3 (-358 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-850 *5)) (-5 *4 (-1075)) (-4 *5 (-13 (-308) (-118))) + (-12 (-5 *3 (-851 *5)) (-5 *4 (-1080)) (-4 *5 (-13 (-308) (-118))) (-5 *2 - (-2 (|:| |coef1| (-478)) (|:| |coef2| (-478)) (|:| |prim| (-1070 *5)))) - (-5 *1 (-865 *5)))) + (-2 (|:| |coef1| (-479)) (|:| |coef2| (-479)) (|:| |prim| (-1075 *5)))) + (-5 *1 (-866 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1075))) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-579 (-1080))) (-4 *5 (-13 (-308) (-118))) (-5 *2 - (-2 (|:| -3930 (-578 (-478))) (|:| |poly| (-578 (-1070 *5))) - (|:| |prim| (-1070 *5)))) - (-5 *1 (-865 *5)))) + (-2 (|:| -3936 (-579 (-479))) (|:| |poly| (-579 (-1075 *5))) + (|:| |prim| (-1075 *5)))) + (-5 *1 (-866 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1075))) (-5 *5 (-1075)) + (-12 (-5 *3 (-579 (-851 *6))) (-5 *4 (-579 (-1080))) (-5 *5 (-1080)) (-4 *6 (-13 (-308) (-118))) (-5 *2 - (-2 (|:| -3930 (-578 (-478))) (|:| |poly| (-578 (-1070 *6))) - (|:| |prim| (-1070 *6)))) - (-5 *1 (-865 *6))))) + (-2 (|:| -3936 (-579 (-479))) (|:| |poly| (-579 (-1075 *6))) + (|:| |prim| (-1075 *6)))) + (-5 *1 (-866 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1075)) (-5 *1 (-513 *2)) (-4 *2 (-943 *3)) (-4 *2 (-308)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-513 *2)) (-4 *2 (-308)))) + (-12 (-5 *3 (-1080)) (-5 *1 (-514 *2)) (-4 *2 (-944 *3)) (-4 *2 (-308)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-514 *2)) (-4 *2 (-308)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *1 (-563 *4 *2)) - (-4 *2 (-13 (-357 *4) (-908) (-1100))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *1 (-564 *4 *2)) + (-4 *2 (-13 (-358 *4) (-909) (-1105))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-995 *2)) (-4 *2 (-13 (-357 *4) (-908) (-1100))) (-4 *4 (-489)) - (-5 *1 (-563 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-864)) (-5 *2 (-1075)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-995 *1)) (-4 *1 (-864))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-823)) (-4 *5 (-489)) (-5 *2 (-625 *5)) - (-5 *1 (-861 *5 *3)) (-4 *3 (-595 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-858))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) (-4 *3 (-854 *7 *5 *6)) - (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *3) (|:| |radicand| (-578 *3)))) - (-5 *1 (-857 *5 *6 *7 *3 *8)) (-5 *4 (-687)) + (-12 (-5 *3 (-997 *2)) (-4 *2 (-13 (-358 *4) (-909) (-1105))) (-4 *4 (-490)) + (-5 *1 (-564 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-865)) (-5 *2 (-1080)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-865))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-824)) (-4 *5 (-490)) (-5 *2 (-626 *5)) + (-5 *1 (-862 *5 *3)) (-4 *3 (-596 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-859))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-490)) (-4 *3 (-855 *7 *5 *6)) + (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *3) (|:| |radicand| (-579 *3)))) + (-5 *1 (-858 *5 *6 *7 *3 *8)) (-5 *4 (-688)) (-4 *8 (-13 (-308) - (-10 -8 (-15 -3922 ($ *3)) (-15 -2979 (*3 $)) (-15 -2978 (*3 $)))))))) + (-10 -8 (-15 -3928 ($ *3)) (-15 -2983 (*3 $)) (-15 -2982 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) - (-4 *8 (-854 *7 *5 *6)) - (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *3) (|:| |radicand| *3))) - (-5 *1 (-857 *5 *6 *7 *8 *3)) (-5 *4 (-687)) + (-12 (-4 *7 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-490)) + (-4 *8 (-855 *7 *5 *6)) + (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *3) (|:| |radicand| *3))) + (-5 *1 (-858 *5 *6 *7 *8 *3)) (-5 *4 (-688)) (-4 *3 (-13 (-308) - (-10 -8 (-15 -3922 ($ *8)) (-15 -2979 (*8 $)) (-15 -2978 (*8 $)))))))) + (-10 -8 (-15 -3928 ($ *8)) (-15 -2983 (*8 $)) (-15 -2982 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-478))) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-489)) - (-4 *8 (-854 *7 *5 *6)) - (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *9) (|:| |radicand| *9))) - (-5 *1 (-857 *5 *6 *7 *8 *9)) (-5 *4 (-687)) + (-12 (-5 *3 (-344 (-479))) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-490)) + (-4 *8 (-855 *7 *5 *6)) + (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *9) (|:| |radicand| *9))) + (-5 *1 (-858 *5 *6 *7 *8 *9)) (-5 *4 (-688)) (-4 *9 (-13 (-308) - (-10 -8 (-15 -3922 ($ *8)) (-15 -2979 (*8 $)) (-15 -2978 (*8 $)))))))) + (-10 -8 (-15 -3928 ($ *8)) (-15 -2983 (*8 $)) (-15 -2982 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-710)) (-4 *6 (-749)) (-4 *3 (-489)) (-4 *7 (-854 *3 *5 *6)) - (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *8) (|:| |radicand| *8))) - (-5 *1 (-857 *5 *6 *3 *7 *8)) (-5 *4 (-687)) + (-12 (-4 *5 (-711)) (-4 *6 (-750)) (-4 *3 (-490)) (-4 *7 (-855 *3 *5 *6)) + (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *8) (|:| |radicand| *8))) + (-5 *1 (-858 *5 *6 *3 *7 *8)) (-5 *4 (-688)) (-4 *8 (-13 (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $)))))))) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-954)) (-4 *3 (-1003)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2383 (-478)))) (-4 *1 (-357 *3)))) + (|partial| -12 (-4 *3 (-955)) (-4 *3 (-1006)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2388 (-479)))) (-4 *1 (-358 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-793 *3)) (|:| -2383 (-793 *3)))) - (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-794 *3)) (|:| -2388 (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) - (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2383 (-478)))) - (-5 *1 (-855 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) + (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2388 (-479)))) + (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $)))))))) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1075)) (-4 *4 (-954)) (-4 *4 (-1003)) - (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2383 (-478)))) (-4 *1 (-357 *4)))) + (|partial| -12 (-5 *3 (-1080)) (-4 *4 (-955)) (-4 *4 (-1006)) + (-5 *2 (-2 (|:| |var| (-546 *1)) (|:| -2388 (-479)))) (-4 *1 (-358 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-84)) (-4 *4 (-954)) (-4 *4 (-1003)) - (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2383 (-478)))) (-4 *1 (-357 *4)))) + (|partial| -12 (-5 *3 (-84)) (-4 *4 (-955)) (-4 *4 (-1006)) + (-5 *2 (-2 (|:| |var| (-546 *1)) (|:| -2388 (-479)))) (-4 *1 (-358 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1013)) (-4 *3 (-1003)) - (-5 *2 (-2 (|:| |var| (-545 *1)) (|:| -2383 (-478)))) (-4 *1 (-357 *3)))) + (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-1006)) + (-5 *2 (-2 (|:| |var| (-546 *1)) (|:| -2388 (-479)))) (-4 *1 (-358 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-793 *3)) (|:| -2383 (-687)))) - (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-794 *3)) (|:| -2388 (-688)))) + (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *2 (-2 (|:| |var| *5) (|:| -2383 (-687)))))) + (|partial| -12 (-4 *1 (-855 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *2 (-2 (|:| |var| *5) (|:| -2388 (-688)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) - (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2383 (-478)))) - (-5 *1 (-855 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) + (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2388 (-479)))) + (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $)))))))) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1013)) (-4 *3 (-1003)) (-5 *2 (-578 *1)) - (-4 *1 (-357 *3)))) + (|partial| -12 (-4 *3 (-1016)) (-4 *3 (-1006)) (-5 *2 (-579 *1)) + (-4 *1 (-358 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + (|partial| -12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) - (-4 *1 (-854 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) + (-4 *1 (-855 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) - (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-855 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) + (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-579 *3)) (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $)))))))) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1003)) (-5 *2 (-578 *1)) - (-4 *1 (-357 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1006)) (-5 *2 (-579 *1)) + (-4 *1 (-358 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + (|partial| -12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) - (-4 *1 (-854 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) + (-4 *1 (-855 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-954)) - (-4 *7 (-854 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-855 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-955)) + (-4 *7 (-855 *6 *4 *5)) (-5 *2 (-579 *3)) (-5 *1 (-856 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $)))))))) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-578 *1)) (-4 *1 (-328 *3 *4)))) + (-12 (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-579 *1)) (-4 *1 (-329 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-578 (-667 *3 *4))) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) - (-4 *4 (-658)))) + (-12 (-5 *2 (-579 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-955)) + (-4 *4 (-659)))) ((*1 *2 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) - (-4 *1 (-854 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-954)) (-4 *2 (-709)))) - ((*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-754 *3)) (-4 *3 (-954)) (-5 *2 (-687)))) + (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) + (-4 *1 (-855 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-273 *3 *2)) (-4 *3 (-955)) (-4 *2 (-710)))) + ((*1 *2 *1) (-12 (-4 *1 (-641 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-755 *3)) (-4 *3 (-955)) (-5 *2 (-688)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-578 (-687))))) + (-12 (-5 *3 (-579 *6)) (-4 *1 (-855 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-579 (-688))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-854 *4 *5 *3)) (-4 *4 (-954)) (-4 *5 (-710)) (-4 *3 (-749)) - (-5 *2 (-687))))) + (-12 (-4 *1 (-855 *4 *5 *3)) (-4 *4 (-955)) (-4 *5 (-711)) (-4 *3 (-750)) + (-5 *2 (-688))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *6)) (-4 *1 (-854 *4 *5 *6)) (-4 *4 (-954)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-687)))) + (-12 (-5 *3 (-579 *6)) (-4 *1 (-855 *4 *5 *6)) (-4 *4 (-955)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-688)))) ((*1 *2 *1) - (-12 (-4 *1 (-854 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-687))))) + (-12 (-4 *1 (-855 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-688))))) (((*1 *2 *1) - (-12 (-4 *3 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *1)) - (-4 *1 (-854 *3 *4 *5))))) + (-12 (-4 *3 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *1)) + (-4 *1 (-855 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)) (-4 *2 (-385)))) + (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955)) (-4 *2 (-386)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 *4)) (-4 *4 (-1140 (-478))) (-5 *2 (-578 (-478))) - (-5 *1 (-419 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-385)))) + (-12 (-5 *3 (-579 *4)) (-4 *4 (-1145 (-479))) (-5 *2 (-579 (-479))) + (-5 *1 (-420 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-386)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-854 *3 *4 *2)) (-4 *3 (-954)) (-4 *4 (-710)) (-4 *2 (-749)) - (-4 *3 (-385))))) + (-12 (-4 *1 (-855 *3 *4 *2)) (-4 *3 (-955)) (-4 *4 (-711)) (-4 *2 (-750)) + (-4 *3 (-386))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-578 *5)) (-5 *4 (-478)) (-4 *5 (-748)) (-4 *5 (-308)) - (-5 *2 (-687)) (-5 *1 (-849 *5 *6)) (-4 *6 (-1140 *5))))) + (-12 (-5 *3 (-579 *5)) (-5 *4 (-479)) (-4 *5 (-749)) (-4 *5 (-308)) + (-5 *2 (-688)) (-5 *1 (-850 *5 *6)) (-4 *6 (-1145 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *4)) (-4 *4 (-748)) (-4 *4 (-308)) (-5 *2 (-687)) - (-5 *1 (-849 *4 *5)) (-4 *5 (-1140 *4))))) + (-12 (-5 *3 (-579 *4)) (-4 *4 (-749)) (-4 *4 (-308)) (-5 *2 (-688)) + (-5 *1 (-850 *4 *5)) (-4 *5 (-1145 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-308)) (-4 *2 (-748)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1140 *2))))) + (-12 (-4 *2 (-308)) (-4 *2 (-749)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1145 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-849 *4 *3)) - (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-308)) (-5 *2 (-579 *3)) (-5 *1 (-850 *4 *3)) + (-4 *3 (-1145 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-578 *3)) (-5 *1 (-849 *4 *3)) - (-4 *3 (-1140 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-850 *5)) (-4 *5 (-954)) (-5 *2 (-203 *4 *5)) - (-5 *1 (-848 *4 *5)) (-14 *4 (-578 (-1075)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-954)) - (-5 *2 (-850 *5)) (-5 *1 (-848 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-414 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-954)) - (-5 *2 (-850 *5)) (-5 *1 (-848 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-850 *5)) (-4 *5 (-954)) (-5 *2 (-414 *4 *5)) - (-5 *1 (-848 *4 *5)) (-14 *4 (-578 (-1075)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-414 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-954)) - (-5 *2 (-203 *4 *5)) (-5 *1 (-848 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-954)) - (-5 *2 (-414 *4 *5)) (-5 *1 (-848 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) - ((*1 *2 *3) (-12 (-5 *2 (-1070 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478))))) -(((*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478))))) -(((*1 *2 *3) (-12 (-5 *3 (-1070 (-478))) (-5 *2 (-478)) (-5 *1 (-846))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493)))) - ((*1 *2 *3) (-12 (-5 *2 (-1070 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478))))) -(((*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-163)) (-5 *3 (-478)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-144)))) - ((*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) - ((*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) - ((*1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *1 (-846)) (-5 *3 (-478))))) -(((*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-493)) (-5 *3 (-478)))) - ((*1 *2 *3) (-12 (-5 *2 (-1070 (-343 (-478)))) (-5 *1 (-846)) (-5 *3 (-478))))) + (-12 (-4 *4 (-308)) (-5 *2 (-579 *3)) (-5 *1 (-850 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-851 *5)) (-4 *5 (-955)) (-5 *2 (-203 *4 *5)) + (-5 *1 (-849 *4 *5)) (-14 *4 (-579 (-1080)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-955)) + (-5 *2 (-851 *5)) (-5 *1 (-849 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-415 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-955)) + (-5 *2 (-851 *5)) (-5 *1 (-849 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-851 *5)) (-4 *5 (-955)) (-5 *2 (-415 *4 *5)) + (-5 *1 (-849 *4 *5)) (-14 *4 (-579 (-1080)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-415 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-955)) + (-5 *2 (-203 *4 *5)) (-5 *1 (-849 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-955)) + (-5 *2 (-415 *4 *5)) (-5 *1 (-849 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) + ((*1 *2 *3) (-12 (-5 *2 (-1075 (-344 (-479)))) (-5 *1 (-847)) (-5 *3 (-479))))) +(((*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479))))) +(((*1 *2 *3) (-12 (-5 *3 (-1075 (-479))) (-5 *2 (-479)) (-5 *1 (-847))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494)))) + ((*1 *2 *3) (-12 (-5 *2 (-1075 (-344 (-479)))) (-5 *1 (-847)) (-5 *3 (-479))))) +(((*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-163)) (-5 *3 (-479)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-700 *2)) (-4 *2 (-144)))) + ((*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144)))) + ((*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144)))) + ((*1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *1 (-847)) (-5 *3 (-479))))) +(((*1 *2 *3) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-494)) (-5 *3 (-479)))) + ((*1 *2 *3) (-12 (-5 *2 (-1075 (-344 (-479)))) (-5 *1 (-847)) (-5 *3 (-479))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-793 *6))) - (-5 *5 (-1 (-791 *6 *8) *8 (-793 *6) (-791 *6 *8))) (-4 *6 (-1003)) - (-4 *8 (-13 (-954) (-548 (-793 *6)) (-943 *7))) (-5 *2 (-791 *6 *8)) - (-4 *7 (-954)) (-5 *1 (-845 *6 *7 *8))))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 (-794 *6))) + (-5 *5 (-1 (-792 *6 *8) *8 (-794 *6) (-792 *6 *8))) (-4 *6 (-1006)) + (-4 *8 (-13 (-955) (-549 (-794 *6)) (-944 *7))) (-5 *2 (-792 *6 *8)) + (-4 *7 (-955)) (-5 *1 (-846 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-791 *5 *3)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-4 *3 (-137 *6)) - (-4 (-850 *6) (-789 *5)) (-4 *6 (-13 (-789 *5) (-144))) + (-12 (-5 *2 (-792 *5 *3)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-4 *3 (-137 *6)) + (-4 (-851 *6) (-790 *5)) (-4 *6 (-13 (-790 *5) (-144))) (-5 *1 (-150 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-791 *4 *1)) (-5 *3 (-793 *4)) (-4 *1 (-789 *4)) - (-4 *4 (-1003)))) + (-12 (-5 *2 (-792 *4 *1)) (-5 *3 (-794 *4)) (-4 *1 (-790 *4)) + (-4 *4 (-1006)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-791 *5 *6)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) - (-4 *6 (-13 (-1003) (-943 *3))) (-4 *3 (-789 *5)) (-5 *1 (-835 *5 *3 *6)))) + (-12 (-5 *2 (-792 *5 *6)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) + (-4 *6 (-13 (-1006) (-944 *3))) (-4 *3 (-790 *5)) (-5 *1 (-836 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1003)) - (-4 *3 (-13 (-357 *6) (-548 *4) (-789 *5) (-943 (-545 $)))) - (-5 *4 (-793 *5)) (-4 *6 (-13 (-489) (-789 *5))) (-5 *1 (-836 *5 *6 *3)))) + (-12 (-5 *2 (-792 *5 *3)) (-4 *5 (-1006)) + (-4 *3 (-13 (-358 *6) (-549 *4) (-790 *5) (-944 (-546 $)))) + (-5 *4 (-794 *5)) (-4 *6 (-13 (-490) (-790 *5))) (-5 *1 (-837 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-791 (-478) *3)) (-5 *4 (-793 (-478))) (-4 *3 (-477)) - (-5 *1 (-837 *3)))) + (-12 (-5 *2 (-792 (-479) *3)) (-5 *4 (-794 (-479))) (-4 *3 (-478)) + (-5 *1 (-838 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-791 *5 *6)) (-5 *3 (-545 *6)) (-4 *5 (-1003)) - (-4 *6 (-13 (-1003) (-943 (-545 $)) (-548 *4) (-789 *5))) (-5 *4 (-793 *5)) - (-5 *1 (-838 *5 *6)))) + (-12 (-5 *2 (-792 *5 *6)) (-5 *3 (-546 *6)) (-4 *5 (-1006)) + (-4 *6 (-13 (-1006) (-944 (-546 $)) (-549 *4) (-790 *5))) (-5 *4 (-794 *5)) + (-5 *1 (-839 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-788 *5 *6 *3)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) - (-4 *6 (-789 *5)) (-4 *3 (-603 *6)) (-5 *1 (-839 *5 *6 *3)))) + (-12 (-5 *2 (-789 *5 *6 *3)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) + (-4 *6 (-790 *5)) (-4 *3 (-604 *6)) (-5 *1 (-840 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-791 *6 *3) *8 (-793 *6) (-791 *6 *3))) (-4 *8 (-749)) - (-5 *2 (-791 *6 *3)) (-5 *4 (-793 *6)) (-4 *6 (-1003)) - (-4 *3 (-13 (-854 *9 *7 *8) (-548 *4))) (-4 *7 (-710)) - (-4 *9 (-13 (-954) (-789 *6))) (-5 *1 (-840 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-792 *6 *3) *8 (-794 *6) (-792 *6 *3))) (-4 *8 (-750)) + (-5 *2 (-792 *6 *3)) (-5 *4 (-794 *6)) (-4 *6 (-1006)) + (-4 *3 (-13 (-855 *9 *7 *8) (-549 *4))) (-4 *7 (-711)) + (-4 *9 (-13 (-955) (-790 *6))) (-5 *1 (-841 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1003)) - (-4 *3 (-13 (-854 *8 *6 *7) (-548 *4))) (-5 *4 (-793 *5)) (-4 *7 (-789 *5)) - (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-13 (-954) (-789 *5))) - (-5 *1 (-840 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-792 *5 *3)) (-4 *5 (-1006)) + (-4 *3 (-13 (-855 *8 *6 *7) (-549 *4))) (-5 *4 (-794 *5)) (-4 *7 (-790 *5)) + (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-13 (-955) (-790 *5))) + (-5 *1 (-841 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-791 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-897 *6)) - (-4 *6 (-13 (-489) (-789 *5) (-548 *4))) (-5 *4 (-793 *5)) - (-5 *1 (-843 *5 *6 *3)))) + (-12 (-5 *2 (-792 *5 *3)) (-4 *5 (-1006)) (-4 *3 (-898 *6)) + (-4 *6 (-13 (-490) (-790 *5) (-549 *4))) (-5 *4 (-794 *5)) + (-5 *1 (-844 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-791 *5 (-1075))) (-5 *3 (-1075)) (-5 *4 (-793 *5)) - (-4 *5 (-1003)) (-5 *1 (-844 *5)))) + (-12 (-5 *2 (-792 *5 (-1080))) (-5 *3 (-1080)) (-5 *4 (-794 *5)) + (-4 *5 (-1006)) (-5 *1 (-845 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-578 (-793 *7))) (-5 *5 (-1 *9 (-578 *9))) - (-5 *6 (-1 (-791 *7 *9) *9 (-793 *7) (-791 *7 *9))) (-4 *7 (-1003)) - (-4 *9 (-13 (-954) (-548 (-793 *7)) (-943 *8))) (-5 *2 (-791 *7 *9)) - (-5 *3 (-578 *9)) (-4 *8 (-954)) (-5 *1 (-845 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-83) *6)) (-4 *6 (-13 (-1003) (-943 *5))) (-4 *5 (-789 *4)) - (-4 *4 (-1003)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-835 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) - ((*1 *2 *2) (-12 (-4 *3 (-1003)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1075)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) - ((*1 *2 *2) (-12 (-4 *3 (-1003)) (-5 *1 (-834 *3 *2)) (-4 *2 (-357 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-84)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1075)) (-5 *4 (-439)) (-5 *2 (-261 (-478))) (-5 *1 (-833)))) + (-12 (-5 *4 (-579 (-794 *7))) (-5 *5 (-1 *9 (-579 *9))) + (-5 *6 (-1 (-792 *7 *9) *9 (-794 *7) (-792 *7 *9))) (-4 *7 (-1006)) + (-4 *9 (-13 (-955) (-549 (-794 *7)) (-944 *8))) (-5 *2 (-792 *7 *9)) + (-5 *3 (-579 *9)) (-4 *8 (-955)) (-5 *1 (-846 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-83) *6)) (-4 *6 (-13 (-1006) (-944 *5))) (-4 *5 (-790 *4)) + (-4 *4 (-1006)) (-5 *2 (-1 (-83) *5)) (-5 *1 (-836 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-261 (-479))) (-5 *1 (-834)))) + ((*1 *2 *2) (-12 (-4 *3 (-1006)) (-5 *1 (-835 *3 *2)) (-4 *2 (-358 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1080)) (-5 *2 (-261 (-479))) (-5 *1 (-834)))) + ((*1 *2 *2) (-12 (-4 *3 (-1006)) (-5 *1 (-835 *3 *2)) (-4 *2 (-358 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-84)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1080)) (-5 *4 (-440)) (-5 *2 (-261 (-479))) (-5 *1 (-834)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-439)) (-4 *4 (-1003)) (-5 *1 (-834 *4 *2)) (-4 *2 (-357 *4))))) + (-12 (-5 *3 (-440)) (-4 *4 (-1006)) (-5 *1 (-835 *4 *2)) (-4 *2 (-358 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-578 (-992 (-177)))) - (-5 *1 (-832))))) + (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *2 (-579 (-994 (-177)))) + (-5 *1 (-833))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-1 (-848 (-177)) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-1 (-848 (-177)) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-848 (-177)) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-832)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-847 (-177)) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-831))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-1 (-848 (-177)) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-832))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-578 (-1 (-177) (-177)))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-579 (-1 (-177) (-177)))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-578 (-1 (-177) (-177)))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-579 (-1 (-177) (-177)))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1075)) (-5 *5 (-992 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) - (-4 *3 (-548 (-467))))) + (-12 (-5 *4 (-1080)) (-5 *5 (-994 (-177))) (-5 *2 (-830)) (-5 *1 (-831 *3)) + (-4 *3 (-549 (-468))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1075)) (-5 *5 (-992 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) - (-4 *3 (-548 (-467))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-831)))) + (-12 (-5 *4 (-1080)) (-5 *5 (-994 (-177))) (-5 *2 (-830)) (-5 *1 (-831 *3)) + (-4 *3 (-549 (-468))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-832)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-831)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-832)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-831))))) -(((*1 *2 *1) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-829)))) - ((*1 *2 *1) (-12 (-5 *2 (-992 (-177))) (-5 *1 (-831))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-177)))) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-831))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-831))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-994 (-177))) (-5 *1 (-832))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-579 (-177)))) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-832))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-832))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-832))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-832))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-830)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-992 (-177))) (-5 *1 (-829)))) + (-12 (-5 *2 (-1 (-177) (-177))) (-5 *3 (-994 (-177))) (-5 *1 (-830)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1075)) (-5 *5 (-992 (-177))) (-5 *2 (-829)) (-5 *1 (-830 *3)) - (-4 *3 (-548 (-467))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-5 *2 (-829)) (-5 *1 (-830 *3)) (-4 *3 (-548 (-467)))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) - ((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) - ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) - ((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) - ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) - ((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-400)))) - ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) -(((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-829))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-829))))) -(((*1 *2 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-83)) - (-5 *1 (-828 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-13 (-254) (-118))) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-83)) - (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-749) (-548 (-1075)))) - (-4 *5 (-710)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-854 *3 *5 *4))))) + (-12 (-5 *4 (-1080)) (-5 *5 (-994 (-177))) (-5 *2 (-830)) (-5 *1 (-831 *3)) + (-4 *3 (-549 (-468))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1080)) (-5 *2 (-830)) (-5 *1 (-831 *3)) (-4 *3 (-549 (-468)))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-830))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) + ((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) + ((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) + ((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) + ((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) + ((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-401)))) + ((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-830))))) +(((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-830))))) +(((*1 *2 *3) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-83)) + (-5 *1 (-829 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-83)) + (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-855 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-750) (-549 (-1080)))) + (-4 *5 (-711)) (-5 *1 (-829 *3 *4 *5 *2)) (-4 *2 (-855 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) - (-5 *4 (-625 *12)) (-5 *5 (-578 (-343 (-850 *9)))) (-5 *6 (-578 (-578 *12))) - (-5 *7 (-687)) (-5 *8 (-478)) (-4 *9 (-13 (-254) (-118))) - (-4 *12 (-854 *9 *11 *10)) (-4 *10 (-13 (-749) (-548 (-1075)))) - (-4 *11 (-710)) - (-5 *2 - (-2 (|:| |eqzro| (-578 *12)) (|:| |neqzro| (-578 *12)) - (|:| |wcond| (-578 (-850 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479))))) + (-5 *4 (-626 *12)) (-5 *5 (-579 (-344 (-851 *9)))) (-5 *6 (-579 (-579 *12))) + (-5 *7 (-688)) (-5 *8 (-479)) (-4 *9 (-13 (-254) (-118))) + (-4 *12 (-855 *9 *11 *10)) (-4 *10 (-13 (-750) (-549 (-1080)))) + (-4 *11 (-711)) + (-5 *2 + (-2 (|:| |eqzro| (-579 *12)) (|:| |neqzro| (-579 *12)) + (|:| |wcond| (-579 (-851 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *9)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *9))))))))) - (-5 *1 (-828 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *9)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *9))))))))) + (-5 *1 (-829 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-625 *7)) (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) - (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) - (-4 *6 (-710)) (-5 *1 (-828 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-687)) (-4 *8 (-854 *5 *7 *6)) - (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) - (-4 *7 (-710)) - (-5 *2 - (-578 - (-2 (|:| |det| *8) (|:| |rows| (-578 (-478))) - (|:| |cols| (-578 (-478)))))) - (-5 *1 (-828 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-854 *5 *7 *6)) - (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) - (-4 *7 (-710)) (-5 *2 (-83)) (-5 *1 (-828 *5 *6 *7 *8))))) + (-12 (-5 *2 (-626 *7)) (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *6 *5)) + (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) + (-4 *6 (-711)) (-5 *1 (-829 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-626 *8)) (-5 *4 (-688)) (-4 *8 (-855 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) + (-4 *7 (-711)) + (-5 *2 + (-579 + (-2 (|:| |det| *8) (|:| |rows| (-579 (-479))) + (|:| |cols| (-579 (-479)))))) + (-5 *1 (-829 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-579 (-579 *8))) (-5 *3 (-579 *8)) (-4 *8 (-855 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) + (-4 *7 (-711)) (-5 *2 (-83)) (-5 *1 (-829 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) - (-4 *6 (-710)) (-5 *2 (-578 (-578 (-478)))) (-5 *1 (-828 *4 *5 *6 *7)) - (-5 *3 (-478)) (-4 *7 (-854 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) + (-4 *6 (-711)) (-5 *2 (-579 (-579 (-479)))) (-5 *1 (-829 *4 *5 *6 *7)) + (-5 *3 (-479)) (-4 *7 (-855 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 (-578 *6))) (-4 *6 (-854 *3 *5 *4)) - (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-749) (-548 (-1075)))) - (-4 *5 (-710)) (-5 *1 (-828 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 (-579 *6))) (-4 *6 (-855 *3 *5 *4)) + (-4 *3 (-13 (-254) (-118))) (-4 *4 (-13 (-750) (-549 (-1080)))) + (-4 *5 (-711)) (-5 *1 (-829 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-578 - (-2 (|:| -3090 (-687)) + (-579 + (-2 (|:| -3093 (-688)) (|:| |eqns| - (-578 - (-2 (|:| |det| *7) (|:| |rows| (-578 (-478))) - (|:| |cols| (-578 (-478)))))) - (|:| |fgb| (-578 *7))))) - (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-687)) - (-5 *1 (-828 *4 *5 *6 *7))))) + (-579 + (-2 (|:| |det| *7) (|:| |rows| (-579 (-479))) + (|:| |cols| (-579 (-479)))))) + (|:| |fgb| (-579 *7))))) + (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-688)) + (-5 *1 (-829 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-578 - (-2 (|:| -3090 (-687)) + (-579 + (-2 (|:| -3093 (-688)) (|:| |eqns| - (-578 - (-2 (|:| |det| *7) (|:| |rows| (-578 (-478))) - (|:| |cols| (-578 (-478)))))) - (|:| |fgb| (-578 *7))))) - (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) (-5 *2 (-687)) - (-5 *1 (-828 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) - (-4 *6 (-710)) (-5 *2 (-578 *3)) (-5 *1 (-828 *4 *5 *6 *3)) - (-4 *3 (-854 *4 *6 *5))))) + (-579 + (-2 (|:| |det| *7) (|:| |rows| (-579 (-479))) + (|:| |cols| (-579 (-479)))))) + (|:| |fgb| (-579 *7))))) + (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 (-688)) + (-5 *1 (-829 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) + (-4 *6 (-711)) (-5 *2 (-579 *3)) (-5 *1 (-829 *4 *5 *6 *3)) + (-4 *3 (-855 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |mat| (-625 (-343 (-850 *4)))) (|:| |vec| (-578 (-343 (-850 *4)))) - (|:| -3090 (-687)) (|:| |rows| (-578 (-478))) (|:| |cols| (-578 (-478))))) - (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) - (-4 *6 (-710)) - (-5 *2 - (-2 (|:| |partsol| (-1164 (-343 (-850 *4)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *4))))))) - (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5))))) + (-2 (|:| |mat| (-626 (-344 (-851 *4)))) (|:| |vec| (-579 (-344 (-851 *4)))) + (|:| -3093 (-688)) (|:| |rows| (-579 (-479))) (|:| |cols| (-579 (-479))))) + (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) + (-4 *6 (-711)) + (-5 *2 + (-2 (|:| |partsol| (-1169 (-344 (-851 *4)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *4))))))) + (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-855 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1164 (-343 (-850 *4)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *4))))))) - (-5 *3 (-578 *7)) (-4 *4 (-13 (-254) (-118))) (-4 *7 (-854 *4 *6 *5)) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) - (-5 *1 (-828 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *4)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *4))))))) + (-5 *3 (-579 *7)) (-4 *4 (-13 (-254) (-118))) (-4 *7 (-855 *4 *6 *5)) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) + (-5 *1 (-829 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) - (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) + (-12 (-5 *3 (-626 *8)) (-4 *8 (-855 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) + (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 - (-578 - (-2 (|:| -3090 (-687)) + (-579 + (-2 (|:| -3093 (-688)) (|:| |eqns| - (-578 - (-2 (|:| |det| *8) (|:| |rows| (-578 (-478))) - (|:| |cols| (-578 (-478)))))) - (|:| |fgb| (-578 *8))))) - (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-687))))) + (-579 + (-2 (|:| |det| *8) (|:| |rows| (-579 (-479))) + (|:| |cols| (-579 (-479)))))) + (|:| |fgb| (-579 *8))))) + (-5 *1 (-829 *5 *6 *7 *8)) (-5 *4 (-688))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) - (-4 *6 (-710)) (-4 *7 (-854 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-83)) (|:| |z0| (-578 *7)) (|:| |n0| (-578 *7)))) - (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-578 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-850 *4)) (-4 *4 (-13 (-254) (-118))) (-4 *2 (-854 *4 *6 *5)) - (-5 *1 (-828 *4 *5 *6 *2)) (-4 *5 (-13 (-749) (-548 (-1075)))) - (-4 *6 (-710))))) -(((*1 *2 *3) - (-12 (-5 *3 (-578 (-1075))) (-4 *4 (-13 (-254) (-118))) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) - (-5 *2 (-578 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)) - (-4 *7 (-854 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-749) (-548 (-1075)))) - (-4 *6 (-710)) (-5 *2 (-343 (-850 *4))) (-5 *1 (-828 *4 *5 *6 *3)) - (-4 *3 (-854 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) - (-5 *2 (-625 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) - (-5 *2 (-578 (-343 (-850 *4)))) (-5 *1 (-828 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) + (-4 *6 (-711)) (-4 *7 (-855 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-83)) (|:| |z0| (-579 *7)) (|:| |n0| (-579 *7)))) + (-5 *1 (-829 *4 *5 *6 *7)) (-5 *3 (-579 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-851 *4)) (-4 *4 (-13 (-254) (-118))) (-4 *2 (-855 *4 *6 *5)) + (-5 *1 (-829 *4 *5 *6 *2)) (-4 *5 (-13 (-750) (-549 (-1080)))) + (-4 *6 (-711))))) +(((*1 *2 *3) + (-12 (-5 *3 (-579 (-1080))) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) + (-5 *2 (-579 (-344 (-851 *4)))) (-5 *1 (-829 *4 *5 *6 *7)) + (-4 *7 (-855 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-13 (-750) (-549 (-1080)))) + (-4 *6 (-711)) (-5 *2 (-344 (-851 *4))) (-5 *1 (-829 *4 *5 *6 *3)) + (-4 *3 (-855 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-626 *7)) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) + (-5 *2 (-626 (-344 (-851 *4)))) (-5 *1 (-829 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) + (-5 *2 (-579 (-344 (-851 *4)))) (-5 *1 (-829 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-625 *11)) (-5 *4 (-578 (-343 (-850 *8)))) (-5 *5 (-687)) - (-5 *6 (-1059)) (-4 *8 (-13 (-254) (-118))) (-4 *11 (-854 *8 *10 *9)) - (-4 *9 (-13 (-749) (-548 (-1075)))) (-4 *10 (-710)) + (-12 (-5 *3 (-626 *11)) (-5 *4 (-579 (-344 (-851 *8)))) (-5 *5 (-688)) + (-5 *6 (-1063)) (-4 *8 (-13 (-254) (-118))) (-4 *11 (-855 *8 *10 *9)) + (-4 *9 (-13 (-750) (-549 (-1080)))) (-4 *10 (-711)) (-5 *2 (-2 (|:| |rgl| - (-578 - (-2 (|:| |eqzro| (-578 *11)) (|:| |neqzro| (-578 *11)) - (|:| |wcond| (-578 (-850 *8))) + (-579 + (-2 (|:| |eqzro| (-579 *11)) (|:| |neqzro| (-579 *11)) + (|:| |wcond| (-579 (-851 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *8)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *8)))))))))) - (|:| |rgsz| (-478)))) - (-5 *1 (-828 *8 *9 *10 *11)) (-5 *7 (-478))))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *8)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *8)))))))))) + (|:| |rgsz| (-479)))) + (-5 *1 (-829 *8 *9 *10 *11)) (-5 *7 (-479))))) (((*1 *2 *3) - (-12 (-5 *3 (-1059)) (-4 *4 (-13 (-254) (-118))) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) + (-12 (-5 *3 (-1063)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 - (-578 - (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) - (|:| |wcond| (-578 (-850 *4))) + (-579 + (-2 (|:| |eqzro| (-579 *7)) (|:| |neqzro| (-579 *7)) + (|:| |wcond| (-579 (-851 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *4)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *4)))))))))) - (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-854 *4 *6 *5))))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *4)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *4)))))))))) + (-5 *1 (-829 *4 *5 *6 *7)) (-4 *7 (-855 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-578 - (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) - (|:| |wcond| (-578 (-850 *5))) + (-579 + (-2 (|:| |eqzro| (-579 *8)) (|:| |neqzro| (-579 *8)) + (|:| |wcond| (-579 (-851 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *5)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *5)))))))))) - (-5 *4 (-1059)) (-4 *5 (-13 (-254) (-118))) (-4 *8 (-854 *5 *7 *6)) - (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) (-5 *2 (-478)) - (-5 *1 (-828 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-4 *8 (-854 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) - (-4 *6 (-13 (-749) (-548 (-1075)))) (-4 *7 (-710)) - (-5 *2 - (-578 - (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) - (|:| |wcond| (-578 (-850 *5))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *5)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *5)))))))))) + (-5 *4 (-1063)) (-4 *5 (-13 (-254) (-118))) (-4 *8 (-855 *5 *7 *6)) + (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) (-5 *2 (-479)) + (-5 *1 (-829 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-626 *8)) (-4 *8 (-855 *5 *7 *6)) (-4 *5 (-13 (-254) (-118))) + (-4 *6 (-13 (-750) (-549 (-1080)))) (-4 *7 (-711)) + (-5 *2 + (-579 + (-2 (|:| |eqzro| (-579 *8)) (|:| |neqzro| (-579 *8)) + (|:| |wcond| (-579 (-851 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *5)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *5)))))))))) - (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *5)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *5)))))))))) + (-5 *1 (-829 *5 *6 *7 *8)) (-5 *4 (-579 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-578 (-1075))) (-4 *8 (-854 *5 *7 *6)) - (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) - (-4 *7 (-710)) + (-12 (-5 *3 (-626 *8)) (-5 *4 (-579 (-1080))) (-4 *8 (-855 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) + (-4 *7 (-711)) (-5 *2 - (-578 - (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) - (|:| |wcond| (-578 (-850 *5))) + (-579 + (-2 (|:| |eqzro| (-579 *8)) (|:| |neqzro| (-579 *8)) + (|:| |wcond| (-579 (-851 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *5)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *5)))))))))) - (-5 *1 (-828 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *5)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *5)))))))))) + (-5 *1 (-829 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-854 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) - (-4 *5 (-13 (-749) (-548 (-1075)))) (-4 *6 (-710)) + (-12 (-5 *3 (-626 *7)) (-4 *7 (-855 *4 *6 *5)) (-4 *4 (-13 (-254) (-118))) + (-4 *5 (-13 (-750) (-549 (-1080)))) (-4 *6 (-711)) (-5 *2 - (-578 - (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) - (|:| |wcond| (-578 (-850 *4))) + (-579 + (-2 (|:| |eqzro| (-579 *7)) (|:| |neqzro| (-579 *7)) + (|:| |wcond| (-579 (-851 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *4)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *4)))))))))) - (-5 *1 (-828 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *4)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *4)))))))))) + (-5 *1 (-829 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *9)) (-5 *5 (-823)) (-4 *9 (-854 *6 *8 *7)) - (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1075)))) - (-4 *8 (-710)) + (-12 (-5 *3 (-626 *9)) (-5 *5 (-824)) (-4 *9 (-855 *6 *8 *7)) + (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-750) (-549 (-1080)))) + (-4 *8 (-711)) (-5 *2 - (-578 - (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) - (|:| |wcond| (-578 (-850 *6))) + (-579 + (-2 (|:| |eqzro| (-579 *9)) (|:| |neqzro| (-579 *9)) + (|:| |wcond| (-579 (-851 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *6)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *6)))))))))) - (-5 *1 (-828 *6 *7 *8 *9)) (-5 *4 (-578 *9)))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *6)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *6)))))))))) + (-5 *1 (-829 *6 *7 *8 *9)) (-5 *4 (-579 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 (-1075))) (-5 *5 (-823)) - (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) - (-4 *7 (-13 (-749) (-548 (-1075)))) (-4 *8 (-710)) + (-12 (-5 *3 (-626 *9)) (-5 *4 (-579 (-1080))) (-5 *5 (-824)) + (-4 *9 (-855 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) + (-4 *7 (-13 (-750) (-549 (-1080)))) (-4 *8 (-711)) (-5 *2 - (-578 - (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) - (|:| |wcond| (-578 (-850 *6))) + (-579 + (-2 (|:| |eqzro| (-579 *9)) (|:| |neqzro| (-579 *9)) + (|:| |wcond| (-579 (-851 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *6)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *6)))))))))) - (-5 *1 (-828 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *6)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *6)))))))))) + (-5 *1 (-829 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-823)) (-4 *8 (-854 *5 *7 *6)) - (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) - (-4 *7 (-710)) + (-12 (-5 *3 (-626 *8)) (-5 *4 (-824)) (-4 *8 (-855 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) + (-4 *7 (-711)) (-5 *2 - (-578 - (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) - (|:| |wcond| (-578 (-850 *5))) + (-579 + (-2 (|:| |eqzro| (-579 *8)) (|:| |neqzro| (-579 *8)) + (|:| |wcond| (-579 (-851 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1164 (-343 (-850 *5)))) - (|:| -1994 (-578 (-1164 (-343 (-850 *5)))))))))) - (-5 *1 (-828 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1169 (-344 (-851 *5)))) + (|:| -1999 (-579 (-1169 (-344 (-851 *5)))))))))) + (-5 *1 (-829 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 *9)) (-5 *5 (-1059)) - (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) - (-4 *7 (-13 (-749) (-548 (-1075)))) (-4 *8 (-710)) (-5 *2 (-478)) - (-5 *1 (-828 *6 *7 *8 *9)))) + (-12 (-5 *3 (-626 *9)) (-5 *4 (-579 *9)) (-5 *5 (-1063)) + (-4 *9 (-855 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) + (-4 *7 (-13 (-750) (-549 (-1080)))) (-4 *8 (-711)) (-5 *2 (-479)) + (-5 *1 (-829 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *9)) (-5 *4 (-578 (-1075))) (-5 *5 (-1059)) - (-4 *9 (-854 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) - (-4 *7 (-13 (-749) (-548 (-1075)))) (-4 *8 (-710)) (-5 *2 (-478)) - (-5 *1 (-828 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-1059)) (-4 *8 (-854 *5 *7 *6)) - (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-749) (-548 (-1075)))) - (-4 *7 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *5 *6 *7 *8)))) + (-12 (-5 *3 (-626 *9)) (-5 *4 (-579 (-1080))) (-5 *5 (-1063)) + (-4 *9 (-855 *6 *8 *7)) (-4 *6 (-13 (-254) (-118))) + (-4 *7 (-13 (-750) (-549 (-1080)))) (-4 *8 (-711)) (-5 *2 (-479)) + (-5 *1 (-829 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-626 *8)) (-5 *4 (-1063)) (-4 *8 (-855 *5 *7 *6)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-13 (-750) (-549 (-1080)))) + (-4 *7 (-711)) (-5 *2 (-479)) (-5 *1 (-829 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-625 *10)) (-5 *4 (-578 *10)) (-5 *5 (-823)) (-5 *6 (-1059)) - (-4 *10 (-854 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) - (-4 *8 (-13 (-749) (-548 (-1075)))) (-4 *9 (-710)) (-5 *2 (-478)) - (-5 *1 (-828 *7 *8 *9 *10)))) + (-12 (-5 *3 (-626 *10)) (-5 *4 (-579 *10)) (-5 *5 (-824)) (-5 *6 (-1063)) + (-4 *10 (-855 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) + (-4 *8 (-13 (-750) (-549 (-1080)))) (-4 *9 (-711)) (-5 *2 (-479)) + (-5 *1 (-829 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-625 *10)) (-5 *4 (-578 (-1075))) (-5 *5 (-823)) (-5 *6 (-1059)) - (-4 *10 (-854 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) - (-4 *8 (-13 (-749) (-548 (-1075)))) (-4 *9 (-710)) (-5 *2 (-478)) - (-5 *1 (-828 *7 *8 *9 *10)))) + (-12 (-5 *3 (-626 *10)) (-5 *4 (-579 (-1080))) (-5 *5 (-824)) (-5 *6 (-1063)) + (-4 *10 (-855 *7 *9 *8)) (-4 *7 (-13 (-254) (-118))) + (-4 *8 (-13 (-750) (-549 (-1080)))) (-4 *9 (-711)) (-5 *2 (-479)) + (-5 *1 (-829 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *9)) (-5 *4 (-823)) (-5 *5 (-1059)) (-4 *9 (-854 *6 *8 *7)) - (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-749) (-548 (-1075)))) - (-4 *8 (-710)) (-5 *2 (-478)) (-5 *1 (-828 *6 *7 *8 *9))))) + (-12 (-5 *3 (-626 *9)) (-5 *4 (-824)) (-5 *5 (-1063)) (-4 *9 (-855 *6 *8 *7)) + (-4 *6 (-13 (-254) (-118))) (-4 *7 (-13 (-750) (-549 (-1080)))) + (-4 *8 (-711)) (-5 *2 (-479)) (-5 *1 (-829 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-578 *4)) (-4 *4 (-308)) (-4 *2 (-1140 *4)) - (-5 *1 (-827 *4 *2))))) + (-12 (-5 *3 (-579 *4)) (-4 *4 (-308)) (-4 *2 (-1145 *4)) + (-5 *1 (-828 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-825)) (-5 *2 (-2 (|:| -3930 (-578 *1)) (|:| -2391 *1))) - (-5 *3 (-578 *1))))) + (-12 (-4 *1 (-826)) (-5 *2 (-2 (|:| -3936 (-579 *1)) (|:| -2396 *1))) + (-5 *3 (-579 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-825)) (-5 *2 (-627 (-578 *1))) (-5 *3 (-578 *1))))) + (-12 (-4 *1 (-826)) (-5 *2 (-628 (-579 *1))) (-5 *3 (-579 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-578 (-850 *4))) (-5 *3 (-578 (-1075))) (-4 *4 (-385)) - (-5 *1 (-822 *4))))) + (-12 (-5 *2 (-579 (-851 *4))) (-5 *3 (-579 (-1080))) (-4 *4 (-386)) + (-5 *1 (-823 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-578 (-850 *4))) (-5 *3 (-578 (-1075))) (-4 *4 (-385)) - (-5 *1 (-822 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2) (-12 (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-809 (-478))) (-5 *1 (-821)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-478))) (-5 *2 (-809 (-478))) (-5 *1 (-821))))) + (-12 (-5 *2 (-579 (-851 *4))) (-5 *3 (-579 (-1080))) (-4 *4 (-386)) + (-5 *1 (-823 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2 *3) (-12 (-5 *3 (-878)) (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2) (-12 (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-824))) (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-810 (-479))) (-5 *1 (-822)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-479))) (-5 *2 (-810 (-479))) (-5 *1 (-822))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *2)) - (-4 *2 (-854 *5 *3 *4)))) + (-12 (-4 *3 (-711)) (-4 *4 (-750)) (-4 *5 (-254)) (-5 *1 (-821 *3 *4 *5 *2)) + (-4 *2 (-855 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *5 (-254)) (-5 *1 (-820 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1075 *6)) (-4 *6 (-855 *5 *3 *4)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *5 (-254)) (-5 *1 (-821 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *6 *4 *5)) (-5 *1 (-820 *4 *5 *6 *2)) - (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-341 *2)) (-4 *2 (-254)) (-5 *1 (-818 *2)))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *6 *4 *5)) (-5 *1 (-821 *4 *5 *6 *2)) + (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-342 *2)) (-4 *2 (-254)) (-5 *1 (-819 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118))) - (-5 *2 (-51)) (-5 *1 (-819 *5)))) + (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118))) + (-5 *2 (-51)) (-5 *1 (-820 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-341 (-850 *6))) (-5 *5 (-1075)) (-5 *3 (-850 *6)) - (-4 *6 (-13 (-254) (-118))) (-5 *2 (-51)) (-5 *1 (-819 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-341 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254))))) -(((*1 *2 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-818 *3)) (-4 *3 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-818 *3)) (-4 *3 (-254))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-818 *3)) (-4 *3 (-254))))) -(((*1 *1 *1) (-12 (-5 *1 (-818 *2)) (-4 *2 (-254))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1140 (-343 (-478)))) (-5 *1 (-817 *3 *2)) - (-4 *2 (-1140 (-343 *3)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1140 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *3)) - (-4 *3 (-1140 (-343 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-578 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478))))) - (-4 *4 (-1140 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *5)) - (-4 *5 (-1140 (-343 *4)))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1140 (-343 (-478)))) - (-5 *2 (-2 (|:| |den| (-478)) (|:| |gcdnum| (-478)))) (-5 *1 (-817 *3 *4)) - (-4 *4 (-1140 (-343 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1140 (-343 *2))) (-5 *2 (-478)) (-5 *1 (-817 *4 *3)) - (-4 *3 (-1140 (-343 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-478)) (-4 *4 (-1140 (-343 *3))) (-5 *2 (-823)) - (-5 *1 (-817 *4 *5)) (-4 *5 (-1140 (-343 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) - (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) - (-4 *4 (-13 (-489) (-943 (-478)))) - (-5 *2 (-2 (|:| -3748 (-687)) (|:| -2365 *8))) - (-5 *1 (-815 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) - (-4 *4 (-1140 (-343 (-478)))) (-4 *5 (-1140 (-343 *4))) - (-4 *6 (-287 (-343 (-478)) *4 *5)) - (-5 *2 (-2 (|:| -3748 (-687)) (|:| -2365 *6))) (-5 *1 (-816 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-357 *4)) (-4 *6 (-1140 *5)) - (-4 *7 (-1140 (-343 *6))) (-4 *8 (-287 *5 *6 *7)) - (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-83)) - (-5 *1 (-815 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-279 (-343 (-478)) *4 *5 *6)) (-4 *4 (-1140 (-343 (-478)))) - (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 (-343 (-478)) *4 *5)) (-5 *2 (-83)) - (-5 *1 (-816 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-385)))) + (-12 (-5 *4 (-342 (-851 *6))) (-5 *5 (-1080)) (-5 *3 (-851 *6)) + (-4 *6 (-13 (-254) (-118))) (-5 *2 (-51)) (-5 *1 (-820 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-342 *3)) (-5 *1 (-819 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-254))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-819 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-819 *3)) (-4 *3 (-254))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-819 *3)) (-4 *3 (-254))))) +(((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-254))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1145 (-344 (-479)))) (-5 *1 (-818 *3 *2)) + (-4 *2 (-1145 (-344 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1145 (-344 *2))) (-5 *2 (-479)) (-5 *1 (-818 *4 *3)) + (-4 *3 (-1145 (-344 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-579 (-2 (|:| |den| (-479)) (|:| |gcdnum| (-479))))) + (-4 *4 (-1145 (-344 *2))) (-5 *2 (-479)) (-5 *1 (-818 *4 *5)) + (-4 *5 (-1145 (-344 *4)))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1145 (-344 (-479)))) + (-5 *2 (-2 (|:| |den| (-479)) (|:| |gcdnum| (-479)))) (-5 *1 (-818 *3 *4)) + (-4 *4 (-1145 (-344 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1145 (-344 *2))) (-5 *2 (-479)) (-5 *1 (-818 *4 *3)) + (-4 *3 (-1145 (-344 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-479)) (-4 *4 (-1145 (-344 *3))) (-5 *2 (-824)) + (-5 *1 (-818 *4 *5)) (-4 *5 (-1145 (-344 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-358 *4)) + (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) (-4 *8 (-287 *5 *6 *7)) + (-4 *4 (-13 (-490) (-944 (-479)))) + (-5 *2 (-2 (|:| -3754 (-688)) (|:| -2370 *8))) + (-5 *1 (-816 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-279 (-344 (-479)) *4 *5 *6)) + (-4 *4 (-1145 (-344 (-479)))) (-4 *5 (-1145 (-344 *4))) + (-4 *6 (-287 (-344 (-479)) *4 *5)) + (-5 *2 (-2 (|:| -3754 (-688)) (|:| -2370 *6))) (-5 *1 (-817 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-279 *5 *6 *7 *8)) (-4 *5 (-358 *4)) (-4 *6 (-1145 *5)) + (-4 *7 (-1145 (-344 *6))) (-4 *8 (-287 *5 *6 *7)) + (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-83)) + (-5 *1 (-816 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-279 (-344 (-479)) *4 *5 *6)) (-4 *4 (-1145 (-344 (-479)))) + (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 (-344 (-479)) *4 *5)) (-5 *2 (-83)) + (-5 *1 (-817 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1075 *1)) (-4 *1 (-386)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1070 *6)) (-4 *6 (-854 *5 *3 *4)) (-4 *3 (-710)) (-4 *4 (-749)) - (-4 *5 (-814)) (-5 *1 (-390 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-814))))) -(((*1 *2 *3) - (-12 (-5 *2 (-341 (-1070 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1070 *1)) - (-4 *4 (-385)) (-4 *4 (-489)) (-4 *4 (-1003)))) - ((*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1070 *1))) (-5 *3 (-1070 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-341 (-1070 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1070 *1)) - (-4 *4 (-385)) (-4 *4 (-489)) (-4 *4 (-1003)))) - ((*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1070 *1))) (-5 *3 (-1070 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *2 (-341 (-1070 *1))) (-5 *3 (-1070 *1))))) + (-12 (-5 *2 (-1075 *6)) (-4 *6 (-855 *5 *3 *4)) (-4 *3 (-711)) (-4 *4 (-750)) + (-4 *5 (-815)) (-5 *1 (-391 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1075 *1)) (-4 *1 (-815))))) +(((*1 *2 *3) + (-12 (-5 *2 (-342 (-1075 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1075 *1)) + (-4 *4 (-386)) (-4 *4 (-490)) (-4 *4 (-1006)))) + ((*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *2 (-342 (-1075 *1))) (-5 *3 (-1075 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-342 (-1075 *1))) (-5 *1 (-261 *4)) (-5 *3 (-1075 *1)) + (-4 *4 (-386)) (-4 *4 (-490)) (-4 *4 (-1006)))) + ((*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *2 (-342 (-1075 *1))) (-5 *3 (-1075 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *2 (-342 (-1075 *1))) (-5 *3 (-1075 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-578 (-1070 *5))) (-5 *3 (-1070 *5)) (-4 *5 (-137 *4)) - (-4 *4 (-477)) (-5 *1 (-120 *4 *5)))) + (|partial| -12 (-5 *2 (-579 (-1075 *5))) (-5 *3 (-1075 *5)) (-4 *5 (-137 *4)) + (-4 *4 (-478)) (-5 *1 (-120 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-578 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-1140 *4)) + (|partial| -12 (-5 *2 (-579 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-295)) (-5 *1 (-303 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-578 (-1070 (-478)))) (-5 *3 (-1070 (-478))) - (-5 *1 (-502)))) + (|partial| -12 (-5 *2 (-579 (-1075 (-479)))) (-5 *3 (-1075 (-479))) + (-5 *1 (-503)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-578 (-1070 *1))) (-5 *3 (-1070 *1)) (-4 *1 (-814))))) + (|partial| -12 (-5 *2 (-579 (-1075 *1))) (-5 *3 (-1075 *1)) (-4 *1 (-815))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-295)) (-5 *2 (-1164 *1)))) + (|partial| -12 (-5 *3 (-626 *1)) (-4 *1 (-295)) (-5 *2 (-1169 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-625 *1)) (-4 *1 (-116)) (-4 *1 (-814)) - (-5 *2 (-1164 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-116)))) + (|partial| -12 (-5 *3 (-626 *1)) (-4 *1 (-116)) (-4 *1 (-815)) + (-5 *2 (-1169 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-628 *1)) (-4 *1 (-116)))) ((*1 *1 *1) (-4 *1 (-295))) - ((*1 *2 *1) (-12 (-5 *2 (-627 *1)) (-4 *1 (-116)) (-4 *1 (-814))))) + ((*1 *2 *1) (-12 (-5 *2 (-628 *1)) (-4 *1 (-116)) (-4 *1 (-815))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-749)) (-4 *5 (-814)) (-4 *6 (-710)) - (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-341 (-1070 *8))) (-5 *1 (-811 *5 *6 *7 *8)) - (-5 *4 (-1070 *8)))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-750)) (-4 *5 (-815)) (-4 *6 (-711)) + (-4 *8 (-855 *5 *6 *7)) (-5 *2 (-342 (-1075 *8))) (-5 *1 (-812 *5 *6 *7 *8)) + (-5 *4 (-1075 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-1140 *4)) (-5 *2 (-341 (-1070 *5))) - (-5 *1 (-812 *4 *5)) (-5 *3 (-1070 *5))))) + (-12 (-4 *4 (-815)) (-4 *5 (-1145 *4)) (-5 *2 (-342 (-1075 *5))) + (-5 *1 (-813 *4 *5)) (-5 *3 (-1075 *5))))) (((*1 *2) - (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-814)) (-5 *1 (-390 *3 *4 *2 *5)) - (-4 *5 (-854 *2 *3 *4)))) + (-12 (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-815)) (-5 *1 (-391 *3 *4 *2 *5)) + (-4 *5 (-855 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-710)) (-4 *4 (-749)) (-4 *2 (-814)) (-5 *1 (-811 *2 *3 *4 *5)) - (-4 *5 (-854 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-814)) (-5 *1 (-812 *2 *3)) (-4 *3 (-1140 *2))))) + (-12 (-4 *3 (-711)) (-4 *4 (-750)) (-4 *2 (-815)) (-5 *1 (-812 *2 *3 *4 *5)) + (-4 *5 (-855 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-815)) (-5 *1 (-813 *2 *3)) (-4 *3 (-1145 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) - (-5 *2 (-341 (-1070 *7))) (-5 *1 (-811 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) + (-12 (-4 *4 (-815)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-855 *4 *5 *6)) + (-5 *2 (-342 (-1075 *7))) (-5 *1 (-812 *4 *5 *6 *7)) (-5 *3 (-1075 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-1140 *4)) (-5 *2 (-341 (-1070 *5))) - (-5 *1 (-812 *4 *5)) (-5 *3 (-1070 *5))))) + (-12 (-4 *4 (-815)) (-4 *5 (-1145 *4)) (-5 *2 (-342 (-1075 *5))) + (-5 *1 (-813 *4 *5)) (-5 *3 (-1075 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-854 *4 *5 *6)) - (-5 *2 (-341 (-1070 *7))) (-5 *1 (-811 *4 *5 *6 *7)) (-5 *3 (-1070 *7)))) + (-12 (-4 *4 (-815)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-855 *4 *5 *6)) + (-5 *2 (-342 (-1075 *7))) (-5 *1 (-812 *4 *5 *6 *7)) (-5 *3 (-1075 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-814)) (-4 *5 (-1140 *4)) (-5 *2 (-341 (-1070 *5))) - (-5 *1 (-812 *4 *5)) (-5 *3 (-1070 *5))))) + (-12 (-4 *4 (-815)) (-4 *5 (-1145 *4)) (-5 *2 (-342 (-1075 *5))) + (-5 *1 (-813 *4 *5)) (-5 *3 (-1075 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-578 (-1070 *7))) (-5 *3 (-1070 *7)) - (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-814)) (-4 *5 (-710)) (-4 *6 (-749)) - (-5 *1 (-811 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-579 (-1075 *7))) (-5 *3 (-1075 *7)) + (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-815)) (-4 *5 (-711)) (-4 *6 (-750)) + (-5 *1 (-812 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-578 (-1070 *5))) (-5 *3 (-1070 *5)) - (-4 *5 (-1140 *4)) (-4 *4 (-814)) (-5 *1 (-812 *4 *5))))) + (|partial| -12 (-5 *2 (-579 (-1075 *5))) (-5 *3 (-1075 *5)) + (-4 *5 (-1145 *4)) (-4 *4 (-815)) (-5 *1 (-813 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-578 (-1070 *7))) (-5 *3 (-1070 *7)) - (-4 *7 (-854 *5 *6 *4)) (-4 *5 (-814)) (-4 *6 (-710)) (-4 *4 (-749)) - (-5 *1 (-811 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-578 *6)) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) ((*1 *1) (-4 *1 (-477))) - ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-806 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) - (-12 (-5 *2 (-578 (-578 (-687)))) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-806 *3))) (-4 *3 (-1003)) (-5 *1 (-809 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1003)) (-5 *2 (-999 *3)))) + (|partial| -12 (-5 *2 (-579 (-1075 *7))) (-5 *3 (-1075 *7)) + (-4 *7 (-855 *5 *6 *4)) (-4 *5 (-815)) (-4 *6 (-711)) (-4 *4 (-750)) + (-5 *1 (-812 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-579 *6)) + (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-807 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-824)))) ((*1 *1) (-4 *1 (-478))) + ((*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-807 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) + (-12 (-5 *2 (-579 (-579 (-688)))) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-807 *3))) (-4 *3 (-1006)) (-5 *1 (-810 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-809 *3)) (-4 *3 (-1006)) (-5 *2 (-1002 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1003)) (-5 *2 (-999 (-578 *4))) (-5 *1 (-809 *4)) - (-5 *3 (-578 *4)))) + (-12 (-4 *4 (-1006)) (-5 *2 (-1002 (-579 *4))) (-5 *1 (-810 *4)) + (-5 *3 (-579 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1003)) (-5 *2 (-999 (-999 *4))) (-5 *1 (-809 *4)) - (-5 *3 (-999 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-999 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-999 (-999 *3))) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) + (-12 (-4 *4 (-1006)) (-5 *2 (-1002 (-1002 *4))) (-5 *1 (-810 *4)) + (-5 *3 (-1002 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1002 (-1002 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-806 *4)) (-4 *4 (-1003)) (-5 *2 (-578 (-687))) - (-5 *1 (-809 *4))))) + (-12 (-5 *3 (-807 *4)) (-4 *4 (-1006)) (-5 *2 (-579 (-688))) + (-5 *1 (-810 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-806 *4)) (-4 *4 (-1003)) (-5 *2 (-578 (-687))) - (-5 *1 (-809 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1003)) (-5 *2 (-999 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-999 *3)) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-808 *3)) (-4 *3 (-1003)) (-5 *2 (-83)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) + (-12 (-5 *3 (-807 *4)) (-4 *4 (-1006)) (-5 *2 (-579 (-688))) + (-5 *1 (-810 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-1006)) (-5 *2 (-1002 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-753)) (-5 *2 (-83)))) + ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-1006)) (-5 *2 (-83)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-753)) (-5 *2 (-83)))) + ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-478)) (-5 *2 (-1170)) (-5 *1 (-809 *4)) (-4 *4 (-1003)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-809 *3)) (-4 *3 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-4 *1 (-808 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-4 *1 (-808 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1042 *4 *2)) (-14 *4 (-823)) - (-4 *2 (-13 (-954) (-10 -7 (-6 (-3973 "*"))))) (-5 *1 (-807 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-578 *3)) (|:| |image| (-578 *3)))) - (-5 *1 (-806 *3)) (-4 *3 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-5 *1 (-806 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1003)) (-5 *1 (-806 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-806 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-806 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-4 *1 (-943 (-478))) (-4 *1 (-250)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-806 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-4 *1 (-943 (-478))) (-4 *1 (-250)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-806 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) - (-12 (-5 *2 (-999 *3)) (-5 *1 (-806 *3)) (-4 *3 (-313)) (-4 *3 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-806 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1003)))) - ((*1 *1 *2) (-12 (-5 *1 (-805 *2)) (-4 *2 (-1003))))) -(((*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-687)))) + (-12 (-5 *3 (-479)) (-5 *2 (-1175)) (-5 *1 (-810 *4)) (-4 *4 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-810 *3)) (-4 *3 (-1006))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-4 *1 (-809 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-4 *1 (-809 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1046 *4 *2)) (-14 *4 (-824)) + (-4 *2 (-13 (-955) (-10 -7 (-6 (-3979 "*"))))) (-5 *1 (-808 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-579 *3)) (|:| |image| (-579 *3)))) + (-5 *1 (-807 *3)) (-4 *3 (-1006))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-5 *1 (-807 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-579 *3))) (-4 *3 (-1006)) (-5 *1 (-807 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-878)) (-5 *1 (-807 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-807 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-4 *1 (-944 (-479))) (-4 *1 (-250)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-478)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-807 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-4 *1 (-944 (-479))) (-4 *1 (-250)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-478)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-807 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1002 *3)) (-5 *1 (-807 *3)) (-4 *3 (-314)) (-4 *3 (-1006))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-807 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1006)))) + ((*1 *1 *2) (-12 (-5 *1 (-806 *2)) (-4 *2 (-1006))))) +(((*1 *2 *1) (-12 (-4 *1 (-184 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-187)) (-5 *2 (-688)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-687)) (-4 *1 (-222 *4)) (-4 *4 (-1114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1114)))) - ((*1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-799 *2 *3)) (-4 *3 (-1114)) (-4 *2 (-1114)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-688)) (-4 *1 (-222 *4)) (-4 *4 (-1119)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-222 *3)) (-4 *3 (-1119)))) + ((*1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-800 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-687))) (-4 *1 (-804 *4)) - (-4 *4 (-1003)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-804 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-804 *3)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-579 *4)) (-5 *3 (-579 (-688))) (-4 *1 (-805 *4)) + (-4 *4 (-1006)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-805 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *1 (-805 *3)) (-4 *3 (-1006))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-308)) (-5 *1 (-800 *2 *4)) (-4 *2 (-1140 *4))))) + (-12 (-5 *3 (-688)) (-4 *4 (-308)) (-5 *1 (-801 *2 *4)) (-4 *2 (-1145 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-308)) (-5 *1 (-800 *2 *3)) (-4 *2 (-1140 *3))))) -(((*1 *1) (-12 (-4 *1 (-398 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-467))) ((*1 *1) (-4 *1 (-654))) ((*1 *1) (-4 *1 (-658))) - ((*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003)))) - ((*1 *1) (-12 (-5 *1 (-796 *2)) (-4 *2 (-749))))) -(((*1 *2 *1) - (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) - (-5 *2 (-578 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| |k| (-796 *3)) (|:| |c| *4)))) - (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) - (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-609 *3))) (-5 *1 (-796 *3)) (-4 *3 (-749))))) -(((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) - (-14 *4 (-578 (-1075))))) - ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-83)) (-5 *1 (-52 *4)) (-4 *4 (-1114)))) - ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) - (-14 *4 (-578 (-1075))))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-796 *3)) (-4 *3 (-749))))) -(((*1 *2 *3) - (-12 (-5 *3 (-793 *4)) (-4 *4 (-1003)) (-5 *2 (-578 *5)) (-5 *1 (-794 *4 *5)) - (-4 *5 (-1114))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + (|partial| -12 (-4 *3 (-308)) (-5 *1 (-801 *2 *3)) (-4 *2 (-1145 *3))))) +(((*1 *1) (-12 (-4 *1 (-399 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-468))) ((*1 *1) (-4 *1 (-655))) ((*1 *1) (-4 *1 (-659))) + ((*1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006)))) + ((*1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-750))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) + (-5 *2 (-579 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-579 (-2 (|:| |k| (-797 *3)) (|:| |c| *4)))) + (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) + (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-610 *3))) (-5 *1 (-797 *3)) (-4 *3 (-750))))) +(((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) + (-14 *4 (-579 (-1080))))) + ((*1 *2 *3) + (-12 (-5 *3 (-51)) (-5 *2 (-83)) (-5 *1 (-52 *4)) (-4 *4 (-1119)))) + ((*1 *2 *1) + (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) + (-14 *4 (-579 (-1080))))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-614 *3)) (-4 *3 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-797 *3)) (-4 *3 (-750))))) +(((*1 *2 *3) + (-12 (-5 *3 (-794 *4)) (-4 *4 (-1006)) (-5 *2 (-579 *5)) (-5 *1 (-795 *4 *5)) + (-4 *5 (-1119))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-793 *4)) (-4 *4 (-1003)) (-5 *1 (-794 *4 *3)) (-4 *3 (-1114))))) + (-12 (-5 *2 (-794 *4)) (-4 *4 (-1006)) (-5 *1 (-795 *4 *3)) (-4 *3 (-1119))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-793 *4)) (-4 *4 (-1003)) (-5 *2 (-83)) - (-5 *1 (-791 *4 *5)) (-4 *5 (-1003)))) + (|partial| -12 (-5 *3 (-794 *4)) (-4 *4 (-1006)) (-5 *2 (-83)) + (-5 *1 (-792 *4 *5)) (-4 *5 (-1006)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-5 *2 (-83)) (-5 *1 (-794 *5 *3)) - (-4 *3 (-1114)))) + (-12 (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-5 *2 (-83)) (-5 *1 (-795 *5 *3)) + (-4 *3 (-1119)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *6)) (-5 *4 (-793 *5)) (-4 *5 (-1003)) (-4 *6 (-1114)) - (-5 *2 (-83)) (-5 *1 (-794 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-793 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-83) *5)) - (-5 *1 (-794 *4 *5)) (-4 *5 (-1114))))) + (-12 (-5 *3 (-579 *6)) (-5 *4 (-794 *5)) (-4 *5 (-1006)) (-4 *6 (-1119)) + (-5 *2 (-83)) (-5 *1 (-795 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-403 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-467))) ((*1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003))))) + ((*1 *1) (-12 (-4 *1 (-404 *2 *3)) (-4 *2 (-144)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-468))) ((*1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2493 (-84)) (|:| |arg| (-578 (-793 *3))))) - (-5 *1 (-793 *3)) (-4 *3 (-1003)))) + (|partial| -12 (-5 *2 (-2 (|:| -2498 (-84)) (|:| |arg| (-579 (-794 *3))))) + (-5 *1 (-794 *3)) (-4 *3 (-1006)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-84)) (-5 *2 (-578 (-793 *4))) (-5 *1 (-793 *4)) - (-4 *4 (-1003))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-793 *3)) (|:| |den| (-793 *3)))) - (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) + (|partial| -12 (-5 *3 (-84)) (-5 *2 (-579 (-794 *4))) (-5 *1 (-794 *4)) + (-4 *4 (-1006))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-794 *3)) (|:| |den| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-51))) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-51))) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-51))) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1075)) (-5 *3 (-83)) (-5 *1 (-793 *4)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-1080)) (-5 *3 (-83)) (-5 *1 (-794 *4)) (-4 *4 (-1006))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-51)) (-5 *1 (-793 *4)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-51)) (-5 *1 (-794 *4)) (-4 *4 (-1006))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-578 (-1075))) (|:| |pred| (-51)))) - (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) -(((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-51))) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-2 (|:| |var| (-579 (-1080))) (|:| |pred| (-51)))) + (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) +(((*1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-51))) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-578 (-793 *3))) (-5 *1 (-793 *3)) (-4 *3 (-1003))))) + (|partial| -12 (-5 *2 (-579 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-1006))))) (((*1 *2 *1) - (-12 (-4 *4 (-1003)) (-5 *2 (-83)) (-5 *1 (-788 *3 *4 *5)) (-4 *3 (-1003)) - (-4 *5 (-603 *4)))) + (-12 (-4 *4 (-1006)) (-5 *2 (-83)) (-5 *1 (-789 *3 *4 *5)) (-4 *3 (-1006)) + (-4 *5 (-604 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-791 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-83)) (-5 *1 (-792 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) (((*1 *1) - (-12 (-4 *3 (-1003)) (-5 *1 (-788 *2 *3 *4)) (-4 *2 (-1003)) - (-4 *4 (-603 *3)))) - ((*1 *1) (-12 (-5 *1 (-791 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) + (-12 (-4 *3 (-1006)) (-5 *1 (-789 *2 *3 *4)) (-4 *2 (-1006)) + (-4 *4 (-604 *3)))) + ((*1 *1) (-12 (-5 *1 (-792 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-793 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) - (-5 *1 (-791 *4 *2))))) + (|partial| -12 (-5 *3 (-794 *4)) (-4 *4 (-1006)) (-4 *2 (-1006)) + (-5 *1 (-792 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-793 *4)) (-4 *4 (-1003)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-794 *4)) (-4 *4 (-1006)) (-5 *1 (-792 *4 *3)) (-4 *3 (-1006))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-793 *4)) (-4 *4 (-1003)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-794 *4)) (-4 *4 (-1006)) (-5 *1 (-792 *4 *3)) (-4 *3 (-1006))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-793 *4)) (-4 *4 (-1003)) (-5 *1 (-791 *4 *3)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-794 *4)) (-4 *4 (-1006)) (-5 *1 (-792 *4 *3)) (-4 *3 (-1006))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1003)) (-4 *6 (-789 *5)) (-5 *2 (-788 *5 *6 (-578 *6))) - (-5 *1 (-790 *5 *6 *4)) (-5 *3 (-578 *6)) (-4 *4 (-548 (-793 *5))))) + (-12 (-4 *5 (-1006)) (-4 *6 (-790 *5)) (-5 *2 (-789 *5 *6 (-579 *6))) + (-5 *1 (-791 *5 *6 *4)) (-5 *3 (-579 *6)) (-4 *4 (-549 (-794 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1003)) (-5 *2 (-578 (-245 *3))) (-5 *1 (-790 *5 *3 *4)) - (-4 *3 (-943 (-1075))) (-4 *3 (-789 *5)) (-4 *4 (-548 (-793 *5))))) + (-12 (-4 *5 (-1006)) (-5 *2 (-579 (-245 *3))) (-5 *1 (-791 *5 *3 *4)) + (-4 *3 (-944 (-1080))) (-4 *3 (-790 *5)) (-4 *4 (-549 (-794 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1003)) (-5 *2 (-578 (-245 (-850 *3)))) (-5 *1 (-790 *5 *3 *4)) - (-4 *3 (-954)) (-2540 (-4 *3 (-943 (-1075)))) (-4 *3 (-789 *5)) - (-4 *4 (-548 (-793 *5))))) + (-12 (-4 *5 (-1006)) (-5 *2 (-579 (-245 (-851 *3)))) (-5 *1 (-791 *5 *3 *4)) + (-4 *3 (-955)) (-2545 (-4 *3 (-944 (-1080)))) (-4 *3 (-790 *5)) + (-4 *4 (-549 (-794 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1003)) (-5 *2 (-791 *5 *3)) (-5 *1 (-790 *5 *3 *4)) - (-2540 (-4 *3 (-943 (-1075)))) (-2540 (-4 *3 (-954))) (-4 *3 (-789 *5)) - (-4 *4 (-548 (-793 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1075)) (-5 *2 (-83)))) + (-12 (-4 *5 (-1006)) (-5 *2 (-792 *5 *3)) (-5 *1 (-791 *5 *3 *4)) + (-2545 (-4 *3 (-944 (-1080)))) (-2545 (-4 *3 (-955))) (-4 *3 (-790 *5)) + (-4 *4 (-549 (-794 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1080)) (-5 *2 (-83)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1075)) (-5 *2 (-83)) (-5 *1 (-545 *4)) (-4 *4 (-1003)))) + (-12 (-5 *3 (-1080)) (-5 *2 (-83)) (-5 *1 (-546 *4)) (-4 *4 (-1006)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-545 *4)) (-4 *4 (-1003)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-740 *3)) (-4 *3 (-1003)) (-5 *2 (-83)))) + (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-546 *4)) (-4 *4 (-1006)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-741 *3)) (-4 *3 (-1006)) (-5 *2 (-83)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1003)) (-5 *2 (-83)) (-5 *1 (-790 *5 *3 *4)) (-4 *3 (-789 *5)) - (-4 *4 (-548 (-793 *5))))) + (-12 (-4 *5 (-1006)) (-5 *2 (-83)) (-5 *1 (-791 *5 *3 *4)) (-4 *3 (-790 *5)) + (-4 *4 (-549 (-794 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *6)) (-4 *6 (-789 *5)) (-4 *5 (-1003)) (-5 *2 (-83)) - (-5 *1 (-790 *5 *6 *4)) (-4 *4 (-548 (-793 *5)))))) + (-12 (-5 *3 (-579 *6)) (-4 *6 (-790 *5)) (-4 *5 (-1006)) (-5 *2 (-83)) + (-5 *1 (-791 *5 *6 *4)) (-4 *4 (-549 (-794 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-791 *4 *5)) (-5 *3 (-791 *4 *6)) (-4 *4 (-1003)) - (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-788 *4 *5 *6))))) + (-12 (-5 *2 (-792 *4 *5)) (-5 *3 (-792 *4 *6)) (-4 *4 (-1006)) + (-4 *5 (-1006)) (-4 *6 (-604 *5)) (-5 *1 (-789 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1003)) (-5 *2 (-791 *3 *5)) (-5 *1 (-788 *3 *4 *5)) - (-4 *3 (-1003)) (-4 *5 (-603 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-478))))) + (-12 (-4 *4 (-1006)) (-5 *2 (-792 *3 *5)) (-5 *1 (-789 *3 *4 *5)) + (-4 *3 (-1006)) (-4 *5 (-604 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *1 (-787)) (-5 *3 (-479))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478))))) + (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *1 (-787)) (-5 *3 (-579 (-479))))) ((*1 *2 *3) - (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478)))))) + (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *1 (-787)) (-5 *3 (-579 (-479)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *3 (-578 (-478))) (-5 *1 (-786))))) + (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *3 (-579 (-479))) (-5 *1 (-787))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1055 (-578 (-478)))) (-5 *1 (-786)) (-5 *3 (-578 (-478)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1055 (-578 (-823)))) (-5 *1 (-786))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-780 *2)) (-4 *2 (-1114)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-782 *2)) (-4 *2 (-1114)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *1 (-785 *2)) (-4 *2 (-1114))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-785 *2)) (-4 *2 (-1114))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-578 (-1080))) (-5 *1 (-783))))) -(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) -(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-196)) (-5 *3 (-1059)))) - ((*1 *2 *2) (-12 (-5 *2 (-578 (-1059))) (-5 *1 (-196)))) - ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) -(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) -(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-776))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-775 *2 *3)) (-4 *2 (-1114)) (-4 *3 (-1114))))) -(((*1 *2 *1) - (-12 (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-88 *3)) (-14 *3 (-478)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-343 *3)) (-4 *3 (-254)) (-5 *1 (-146 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-146 (-478))) (-5 *1 (-682 *3)) (-4 *3 (-340)))) - ((*1 *2 *1) - (-12 (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-773 *3)) (-14 *3 (-478)))) - ((*1 *2 *1) - (-12 (-14 *3 (-478)) (-5 *2 (-146 (-343 (-478)))) (-5 *1 (-774 *3 *4)) - (-4 *4 (-772 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-339 *3)) (-4 *3 (-340)))) - ((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-339 *3)) (-4 *3 (-340)))) - ((*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3962)) (-4 *1 (-340)))) - ((*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823)))) - ((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-1055 (-478)))))) + (-12 (-5 *2 (-1059 (-579 (-479)))) (-5 *1 (-787)) (-5 *3 (-579 (-479)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1059 (-579 (-824)))) (-5 *1 (-787))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *1 (-781 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *1 (-783 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *1 (-786 *2)) (-4 *2 (-1119))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-786 *2)) (-4 *2 (-1119))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-579 (-1085))) (-5 *1 (-784))))) +(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777))))) +(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777))))) +(((*1 *2 *3) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-196)) (-5 *3 (-1063)))) + ((*1 *2 *2) (-12 (-5 *2 (-579 (-1063))) (-5 *1 (-196)))) + ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777))))) +(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777))))) +(((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-777))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-776 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) +(((*1 *2 *1) + (-12 (-5 *2 (-146 (-344 (-479)))) (-5 *1 (-88 *3)) (-14 *3 (-479)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1059 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-344 *3)) (-4 *3 (-254)) (-5 *1 (-146 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-146 (-479))) (-5 *1 (-683 *3)) (-4 *3 (-341)))) + ((*1 *2 *1) + (-12 (-5 *2 (-146 (-344 (-479)))) (-5 *1 (-774 *3)) (-14 *3 (-479)))) + ((*1 *2 *1) + (-12 (-14 *3 (-479)) (-5 *2 (-146 (-344 (-479)))) (-5 *1 (-775 *3 *4)) + (-4 *4 (-773 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-340 *3)) (-4 *3 (-341)))) + ((*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-340 *3)) (-4 *3 (-341)))) + ((*1 *2 *2) (-12 (-5 *2 (-824)) (|has| *1 (-6 -3968)) (-4 *1 (-341)))) + ((*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-824)))) + ((*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-5 *2 (-1059 (-479)))))) (((*1 *2 *1) (-12 (-4 *3 (-144)) (-4 *2 (-23)) (-5 *1 (-241 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1140 *3)) (-14 *5 (-1 *4 *4 *2)) + (-4 *4 (-1145 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-643 *3 *2 *4 *5 *6)) (-4 *3 (-144)) + (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1140 *3)) (-5 *1 (-644 *3 *2)) (-4 *3 (-954)))) + ((*1 *2) (-12 (-4 *2 (-1145 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-955)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-647 *3 *2 *4 *5 *6)) (-4 *3 (-144)) + (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478))))) -(((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-5 *2 (-478))))) -(((*1 *1 *1) (-4 *1 (-772 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1070 (-478))) (-5 *3 (-478)) (-4 *1 (-772 *4))))) + ((*1 *2) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479))))) +(((*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-5 *2 (-479))))) +(((*1 *1 *1) (-4 *1 (-773 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-766))) ((*1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1075 (-479))) (-5 *3 (-479)) (-4 *1 (-773 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-687)) (-4 *5 (-308)) (-5 *2 (-343 *6)) - (-5 *1 (-769 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1140 *5)))) + (|partial| -12 (-5 *3 (-688)) (-4 *5 (-308)) (-5 *2 (-344 *6)) + (-5 *1 (-770 *5 *4 *6)) (-4 *4 (-1162 *5)) (-4 *6 (-1145 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-687)) (-5 *4 (-1154 *5 *6 *7)) (-4 *5 (-308)) - (-14 *6 (-1075)) (-14 *7 *5) (-5 *2 (-343 (-1133 *6 *5))) - (-5 *1 (-770 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-688)) (-5 *4 (-1159 *5 *6 *7)) (-4 *5 (-308)) + (-14 *6 (-1080)) (-14 *7 *5) (-5 *2 (-344 (-1138 *6 *5))) + (-5 *1 (-771 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-687)) (-5 *4 (-1154 *5 *6 *7)) (-4 *5 (-308)) - (-14 *6 (-1075)) (-14 *7 *5) (-5 *2 (-343 (-1133 *6 *5))) - (-5 *1 (-770 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-688)) (-5 *4 (-1159 *5 *6 *7)) (-4 *5 (-308)) + (-14 *6 (-1080)) (-14 *7 *5) (-5 *2 (-344 (-1138 *6 *5))) + (-5 *1 (-771 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-687)) (-4 *5 (-308)) (-5 *2 (-146 *6)) - (-5 *1 (-769 *5 *4 *6)) (-4 *4 (-1157 *5)) (-4 *6 (-1140 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -3971)) (-4 *1 (-422 *3)) (-4 *3 (-1114)) - (-5 *2 (-578 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-668 *3)) (-4 *3 (-1003)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-374))) (-5 *1 (-767))))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-765))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-765))))) -(((*1 *2 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100))))) - ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) - ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-4 *1 (-211 *3)) (-4 *3 (-1114)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-687)))) - ((*1 *2 *3) - (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) - (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-545 *3)) (-4 *3 (-1003)))) - ((*1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765)))) - ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) - ((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) - ((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-765))))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-250)))) - ((*1 *1 *1) (-4 *1 (-250))) ((*1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) -(((*1 *1) (-5 *1 (-115))) ((*1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-765)))) - ((*1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-765))) ((*1 *1 *1 *1) (-5 *1 (-765))) - ((*1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) - ((*1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-250)))) + (|partial| -12 (-5 *3 (-688)) (-4 *5 (-308)) (-5 *2 (-146 *6)) + (-5 *1 (-770 *5 *4 *6)) (-4 *4 (-1162 *5)) (-4 *6 (-1145 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -3977)) (-4 *1 (-423 *3)) (-4 *3 (-1119)) + (-5 *2 (-579 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-669 *3)) (-4 *3 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-375))) (-5 *1 (-768))))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-766))))) +(((*1 *2 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-766))))) +(((*1 *2 *1) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105))))) + ((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) + ((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-766))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *3)) (-4 *3 (-1119)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-688)))) + ((*1 *2 *3) + (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) + (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-546 *3)) (-4 *3 (-1006)))) + ((*1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766)))) + ((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-766))))) +(((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-766))))) +(((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-766))))) +(((*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766))))) +(((*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-766))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) + ((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) + ((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766))))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-766))))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-250)))) + ((*1 *1 *1) (-4 *1 (-250))) ((*1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766))))) +(((*1 *1) (-5 *1 (-115))) ((*1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-766)))) + ((*1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-766))) ((*1 *1 *1 *1) (-5 *1 (-766))) + ((*1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) + ((*1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-250)))) ((*1 *1 *1) (-4 *1 (-250))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765)))) - ((*1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-765))) (-5 *1 (-765))))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766)))) + ((*1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-766))) (-5 *1 (-766))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-752)) (-5 *2 (-83)))) - ((*1 *1 *1 *1) (-5 *1 (-765)))) + ((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-753)) (-5 *2 (-83)))) + ((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-753)) (-5 *2 (-83)))) + ((*1 *1 *1 *1) (-5 *1 (-766)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-732 *3)) (|:| |rm| (-732 *3)))) - (-5 *1 (-732 *3)) (-4 *3 (-749)))) - ((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1 *1) (-5 *1 (-687))) - ((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1 *1) (-5 *1 (-687))) - ((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1) (-5 *1 (-765)))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-764)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-461)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-507)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-764))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-99))) (-5 *3 (-99))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-482))) (-5 *3 (-482))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *2 (-627 (-1123))) (-5 *3 (-1123))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-763)) (-5 *3 (-100)) (-5 *2 (-687))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-51))) (-5 *2 (-1170)) (-5 *1 (-761))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-733 *3)) (|:| |rm| (-733 *3)))) + (-5 *1 (-733 *3)) (-4 *3 (-750)))) + ((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1 *1) (-5 *1 (-688))) + ((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1 *1) (-5 *1 (-688))) + ((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *1) (-4 *1 (-82))) ((*1 *1 *1) (-5 *1 (-766)))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-765)))) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-508)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-765))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *2 (-628 (-99))) (-5 *3 (-99))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *2 (-628 (-483))) (-5 *3 (-483))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *2 (-628 (-1128))) (-5 *3 (-1128))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-764)) (-5 *3 (-100)) (-5 *2 (-688))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-51))) (-5 *2 (-1175)) (-5 *1 (-762))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-38 (-343 (-478)))) + (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-144))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-687)) (-5 *1 (-758 *2)) (-4 *2 (-144))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-688)) (-5 *1 (-759 *2)) (-4 *2 (-144))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) - (-4 *1 (-754 *3)))) + (-12 (-4 *3 (-308)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) + (-4 *1 (-755 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-954)) - (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-755 *5 *3)) - (-4 *3 (-754 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-955)) + (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-756 *5 *3)) + (-4 *3 (-755 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-308)) (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) - (-5 *1 (-683 *3 *4)) (-4 *3 (-640 *4)))) + (-12 (-4 *4 (-308)) (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) + (-5 *1 (-684 *3 *4)) (-4 *3 (-641 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-308)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) - (-4 *1 (-754 *3)))) + (-12 (-4 *3 (-308)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) + (-4 *1 (-755 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-954)) - (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-755 *5 *3)) - (-4 *3 (-754 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-308)) (-4 *5 (-955)) + (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-756 *5 *3)) + (-4 *3 (-755 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) - (-4 *1 (-754 *3)))) + (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) + (-4 *1 (-755 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-489)) (-4 *5 (-954)) - (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-755 *5 *3)) - (-4 *3 (-754 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-490)) (-4 *5 (-955)) + (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-756 *5 *3)) + (-4 *3 (-755 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-489)) (-4 *3 (-954)) (-5 *2 (-2 (|:| -1956 *1) (|:| -2883 *1))) - (-4 *1 (-754 *3)))) + (-12 (-4 *3 (-490)) (-4 *3 (-955)) (-5 *2 (-2 (|:| -1961 *1) (|:| -2887 *1))) + (-4 *1 (-755 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-69 *5)) (-4 *5 (-489)) (-4 *5 (-954)) - (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-755 *5 *3)) - (-4 *3 (-754 *5))))) + (-12 (-5 *4 (-69 *5)) (-4 *5 (-490)) (-4 *5 (-955)) + (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-756 *5 *3)) + (-4 *3 (-755 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-954)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-754 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-625 *3)) (-4 *1 (-354 *3)) (-4 *3 (-144)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-586 *5)) (-4 *5 (-955)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-755 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-626 *3)) (-4 *1 (-355 *3)) (-4 *3 (-144)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-954)) (-5 *1 (-755 *2 *3)) - (-4 *3 (-754 *2))))) + (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-955)) (-5 *1 (-756 *2 *3)) + (-4 *3 (-755 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-954)) (-5 *1 (-755 *5 *2)) - (-4 *2 (-754 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) + (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-955)) (-5 *1 (-756 *5 *2)) + (-4 *2 (-755 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) + (|partial| -12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) + (|partial| -12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-308)) (-4 *3 (-954)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2391 *1))) - (-4 *1 (-754 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) + (-12 (-4 *3 (-308)) (-4 *3 (-955)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2396 *1))) + (-4 *1 (-755 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) + (|partial| -12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-308)) (-4 *3 (-954)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2391 *1))) - (-4 *1 (-754 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-683 *2 *3)) (-4 *2 (-640 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-754 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) + (-12 (-4 *3 (-308)) (-4 *3 (-955)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2396 *1))) + (-4 *1 (-755 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-308)) (-5 *1 (-684 *2 *3)) (-4 *2 (-641 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-755 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) (((*1 *1) - (-12 (-4 *1 (-340)) (-2540 (|has| *1 (-6 -3962))) - (-2540 (|has| *1 (-6 -3954))))) - ((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1003)) (-4 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-735 *2)) (-4 *2 (-749)))) ((*1 *1) (-4 *1 (-745))) - ((*1 *1 *1 *1) (-4 *1 (-752)))) + (-12 (-4 *1 (-341)) (-2545 (|has| *1 (-6 -3968))) + (-2545 (|has| *1 (-6 -3960))))) + ((*1 *2 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1006)) (-4 *2 (-750)))) + ((*1 *2 *1) (-12 (-4 *1 (-736 *2)) (-4 *2 (-750)))) ((*1 *1) (-4 *1 (-746))) + ((*1 *1 *1 *1) (-4 *1 (-753)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1164 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) - (-14 *4 (-687))))) + (-12 (-5 *3 (-1169 *5)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-747 *4 *5)) + (-14 *4 (-688))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1164 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) - (-14 *4 (-687))))) + (-12 (-5 *3 (-1169 *5)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-747 *4 *5)) + (-14 *4 (-688))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1164 *5)) (-4 *5 (-709)) (-5 *2 (-83)) (-5 *1 (-746 *4 *5)) - (-14 *4 (-687))))) -(((*1 *2) (-12 (-5 *2 (-743 (-478))) (-5 *1 (-466)))) - ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1003))))) -(((*1 *2) (-12 (-5 *2 (-743 (-478))) (-5 *1 (-466)))) - ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1003))))) + (-12 (-5 *3 (-1169 *5)) (-4 *5 (-710)) (-5 *2 (-83)) (-5 *1 (-747 *4 *5)) + (-14 *4 (-688))))) +(((*1 *2) (-12 (-5 *2 (-744 (-479))) (-5 *1 (-467)))) + ((*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1006))))) +(((*1 *2) (-12 (-5 *2 (-744 (-479))) (-5 *1 (-467)))) + ((*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1006))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-1003)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-736 *3)) (-4 *3 (-1003)))) - ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-743 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-1020)) (-5 *1 (-743 *3)) (-4 *3 (-1003))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-165 (-435))) (-5 *1 (-741))))) -(((*1 *2 *1) (-12 (-4 *1 (-740 *3)) (-4 *3 (-1003)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)))) - ((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-624 *4 *5 *6 *3)) - (-4 *3 (-622 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-737 *3)) (-4 *3 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-744 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-737 *3)) (-4 *3 (-1006)))) + ((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-744 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-744 *3)) (-4 *3 (-1006))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-165 (-436))) (-5 *1 (-742))))) +(((*1 *2 *1) (-12 (-4 *1 (-741 *3)) (-4 *3 (-1006)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)))) + ((*1 *2 *3) + (-12 (-4 *4 (-490)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-625 *4 *5 *6 *3)) + (-4 *3 (-623 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) + (-12 (-4 *2 (-144)) (-4 *2 (-955)) (-5 *1 (-647 *2 *3)) (-4 *3 (-586 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954)))) - ((*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954))))) + (-12 (-4 *2 (-144)) (-4 *2 (-955)) (-5 *1 (-647 *2 *3)) (-4 *3 (-586 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-144)) (-4 *2 (-955)))) + ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-144)) (-4 *2 (-955))))) (((*1 *2 *2) - (-12 (-4 *2 (-144)) (-4 *2 (-954)) (-5 *1 (-646 *2 *3)) (-4 *3 (-585 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-144)) (-4 *2 (-954))))) + (-12 (-4 *2 (-144)) (-4 *2 (-955)) (-5 *1 (-647 *2 *3)) (-4 *3 (-586 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-739 *2)) (-4 *2 (-144)) (-4 *2 (-955))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-84)) (-5 *4 (-578 *2)) (-5 *1 (-85 *2)) - (-4 *2 (-1003)))) + (|partial| -12 (-5 *3 (-84)) (-5 *4 (-579 *2)) (-5 *1 (-85 *2)) + (-4 *2 (-1006)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 (-578 *4))) (-4 *4 (-1003)) + (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 (-579 *4))) (-4 *4 (-1006)) (-5 *1 (-85 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-85 *4)))) + (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) (-5 *1 (-85 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-84)) (-5 *2 (-1 *4 (-578 *4))) (-5 *1 (-85 *4)) - (-4 *4 (-1003)))) + (|partial| -12 (-5 *3 (-84)) (-5 *2 (-1 *4 (-579 *4))) (-5 *1 (-85 *4)) + (-4 *4 (-1006)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-954)) - (-5 *1 (-646 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-738 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-586 *3)) (-4 *3 (-955)) + (-5 *1 (-647 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-739 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-954)) - (-5 *1 (-646 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-738 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-586 *3)) (-4 *3 (-955)) + (-5 *1 (-647 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-739 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-84)) (-4 *4 (-954)) (-5 *1 (-646 *4 *2)) (-4 *2 (-585 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-5 *1 (-738 *2)) (-4 *2 (-954))))) + (-12 (-5 *3 (-84)) (-4 *4 (-955)) (-5 *1 (-647 *4 *2)) (-4 *2 (-586 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-84)) (-5 *1 (-739 *2)) (-4 *2 (-955))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-306 (-84))) (-4 *2 (-954)) (-5 *1 (-646 *2 *4)) - (-4 *4 (-585 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-306 (-84))) (-5 *1 (-738 *2)) (-4 *2 (-954))))) -(((*1 *2) (-12 (-5 *2 (-736 (-478))) (-5 *1 (-466)))) - ((*1 *1) (-12 (-5 *1 (-736 *2)) (-4 *2 (-1003))))) -(((*1 *1 *2) (-12 (-4 *3 (-954)) (-5 *1 (-734 *2 *3)) (-4 *2 (-640 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-640 *3)) (-5 *1 (-734 *2 *3)) (-4 *3 (-954))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-609 *3)) (-4 *3 (-749)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-613 *3)) (-4 *3 (-749)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-732 *3)) (-4 *3 (-749))))) + (-12 (-5 *3 (-306 (-84))) (-4 *2 (-955)) (-5 *1 (-647 *2 *4)) + (-4 *4 (-586 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-306 (-84))) (-5 *1 (-739 *2)) (-4 *2 (-955))))) +(((*1 *2) (-12 (-5 *2 (-737 (-479))) (-5 *1 (-467)))) + ((*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1006))))) +(((*1 *1 *2) (-12 (-4 *3 (-955)) (-5 *1 (-735 *2 *3)) (-4 *2 (-641 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-641 *3)) (-5 *1 (-735 *2 *3)) (-4 *3 (-955))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-610 *3)) (-4 *3 (-750)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-614 *3)) (-4 *3 (-750)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-733 *3)) (-4 *3 (-750))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-578 *4)) (-4 *4 (-308)) (-5 *2 (-1164 *4)) - (-5 *1 (-727 *4 *3)) (-4 *3 (-595 *4))))) + (|partial| -12 (-5 *5 (-579 *4)) (-4 *4 (-308)) (-5 *2 (-1169 *4)) + (-5 *1 (-728 *4 *3)) (-4 *3 (-596 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *4)) (-4 *4 (-308)) (-5 *2 (-625 *4)) (-5 *1 (-727 *4 *5)) - (-4 *5 (-595 *4)))) + (-12 (-5 *3 (-579 *4)) (-4 *4 (-308)) (-5 *2 (-626 *4)) (-5 *1 (-728 *4 *5)) + (-4 *5 (-596 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *5)) (-5 *4 (-687)) (-4 *5 (-308)) (-5 *2 (-625 *5)) - (-5 *1 (-727 *5 *6)) (-4 *6 (-595 *5))))) + (-12 (-5 *3 (-579 *5)) (-5 *4 (-688)) (-4 *5 (-308)) (-5 *2 (-626 *5)) + (-5 *1 (-728 *5 *6)) (-4 *6 (-596 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-850 *5))) (-5 *4 (-578 (-1075))) (-4 *5 (-489)) - (-5 *2 (-578 (-578 (-245 (-343 (-850 *5)))))) (-5 *1 (-686 *5)))) + (-12 (-5 *3 (-579 (-851 *5))) (-5 *4 (-579 (-1080))) (-4 *5 (-490)) + (-5 *2 (-579 (-579 (-245 (-344 (-851 *5)))))) (-5 *1 (-687 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-489)) - (-5 *2 (-578 (-578 (-245 (-343 (-850 *4)))))) (-5 *1 (-686 *4)))) + (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-490)) + (-5 *2 (-579 (-579 (-245 (-344 (-851 *4)))))) (-5 *1 (-687 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *7)) + (-12 (-5 *3 (-626 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1994 (-578 *6))) *7 *6)) - (-4 *6 (-308)) (-4 *7 (-595 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1999 (-579 *6))) *7 *6)) + (-4 *6 (-308)) (-4 *7 (-596 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1164 *6) "failed")) - (|:| -1994 (-578 (-1164 *6))))) - (-5 *1 (-726 *6 *7)) (-5 *4 (-1164 *6))))) + (-2 (|:| |particular| (-3 (-1169 *6) "failed")) + (|:| -1999 (-579 (-1169 *6))))) + (-5 *1 (-727 *6 *7)) (-5 *4 (-1169 *6))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-5 *2 - (-2 (|:| A (-625 *5)) + (-2 (|:| A (-626 *5)) (|:| |eqs| - (-578 - (-2 (|:| C (-625 *5)) (|:| |g| (-1164 *5)) (|:| -3246 *6) + (-579 + (-2 (|:| C (-626 *5)) (|:| |g| (-1169 *5)) (|:| -3250 *6) (|:| |rh| *5)))))) - (-5 *1 (-726 *5 *6)) (-5 *3 (-625 *5)) (-5 *4 (-1164 *5)) - (-4 *6 (-595 *5)))) + (-5 *1 (-727 *5 *6)) (-5 *3 (-626 *5)) (-5 *4 (-1169 *5)) + (-4 *6 (-596 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *6 (-595 *5)) - (-5 *2 (-2 (|:| |mat| (-625 *6)) (|:| |vec| (-1164 *5)))) - (-5 *1 (-726 *5 *6)) (-5 *3 (-625 *6)) (-5 *4 (-1164 *5))))) + (-12 (-4 *5 (-308)) (-4 *6 (-596 *5)) + (-5 *2 (-2 (|:| |mat| (-626 *6)) (|:| |vec| (-1169 *5)))) + (-5 *1 (-727 *5 *6)) (-5 *3 (-626 *6)) (-5 *4 (-1169 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-1 (-578 *5) *6)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *6 (-1140 *5)) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) + (-12 (-5 *3 (-593 (-344 *6))) (-5 *4 (-1 (-579 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *6 (-1145 *5)) (-5 *2 (-579 (-344 *6))) (-5 *1 (-726 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-592 (-343 *7))) (-5 *4 (-1 (-578 *6) *7)) - (-5 *5 (-1 (-341 *7) *7)) - (-4 *6 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *7 (-1140 *6)) (-5 *2 (-578 (-343 *7))) (-5 *1 (-725 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-1 (-578 *5) *6)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *6 (-1140 *5)) (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) + (-12 (-5 *3 (-593 (-344 *7))) (-5 *4 (-1 (-579 *6) *7)) + (-5 *5 (-1 (-342 *7) *7)) + (-4 *6 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *7 (-1145 *6)) (-5 *2 (-579 (-344 *7))) (-5 *1 (-726 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-594 *6 (-344 *6))) (-5 *4 (-1 (-579 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *6 (-1145 *5)) (-5 *2 (-579 (-344 *6))) (-5 *1 (-726 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-593 *7 (-343 *7))) (-5 *4 (-1 (-578 *6) *7)) - (-5 *5 (-1 (-341 *7) *7)) - (-4 *6 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *7 (-1140 *6)) (-5 *2 (-578 (-343 *7))) (-5 *1 (-725 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-592 (-343 *5))) (-4 *5 (-1140 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-578 (-343 *5))) (-5 *1 (-725 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-593 *5 (-343 *5))) (-4 *5 (-1140 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-578 (-343 *5))) (-5 *1 (-725 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-578 (-343 *6))) (-5 *1 (-725 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-578 *5) *6)) - (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) - (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -3246 *3)))) - (-5 *1 (-722 *5 *6 *3 *7)) (-4 *3 (-595 *6)) (-4 *7 (-595 (-343 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-578 *5) *6)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *6 (-1140 *5)) - (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -3246 (-593 *6 (-343 *6)))))) - (-5 *1 (-725 *5 *6)) (-5 *3 (-593 *6 (-343 *6)))))) + (-12 (-5 *3 (-594 *7 (-344 *7))) (-5 *4 (-1 (-579 *6) *7)) + (-5 *5 (-1 (-342 *7) *7)) + (-4 *6 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *7 (-1145 *6)) (-5 *2 (-579 (-344 *7))) (-5 *1 (-726 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-593 (-344 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-579 (-344 *5))) (-5 *1 (-726 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 (-344 *6))) (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-579 (-344 *6))) (-5 *1 (-726 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-594 *5 (-344 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-579 (-344 *5))) (-5 *1 (-726 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-594 *6 (-344 *6))) (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-27)) (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-579 (-344 *6))) (-5 *1 (-726 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-579 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) + (-5 *2 (-579 (-2 (|:| |poly| *6) (|:| -3250 *3)))) + (-5 *1 (-723 *5 *6 *3 *7)) (-4 *3 (-596 *6)) (-4 *7 (-596 (-344 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-579 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *6 (-1145 *5)) + (-5 *2 (-579 (-2 (|:| |poly| *6) (|:| -3250 (-594 *6 (-344 *6)))))) + (-5 *1 (-726 *5 *6)) (-5 *3 (-594 *6 (-344 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-578 *7) *7 (-1070 *7))) (-5 *5 (-1 (-341 *7) *7)) - (-4 *7 (-1140 *6)) (-4 *6 (-13 (-308) (-118) (-943 (-343 (-478))))) - (-5 *2 (-578 (-2 (|:| |frac| (-343 *7)) (|:| -3246 *3)))) - (-5 *1 (-722 *6 *7 *3 *8)) (-4 *3 (-595 *7)) (-4 *8 (-595 (-343 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-578 (-2 (|:| |frac| (-343 *6)) (|:| -3246 (-593 *6 (-343 *6)))))) - (-5 *1 (-725 *5 *6)) (-5 *3 (-593 *6 (-343 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *7 (-1140 *5)) (-4 *4 (-656 *5 *7)) - (-5 *2 (-2 (|:| |mat| (-625 *6)) (|:| |vec| (-1164 *5)))) - (-5 *1 (-724 *5 *6 *7 *4 *3)) (-4 *6 (-595 *5)) (-4 *3 (-595 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-592 (-343 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-723 *4 *2)) - (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-593 *2 (-343 *2))) (-4 *2 (-1140 *4)) (-5 *1 (-723 *4 *2)) - (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-592 (-343 *6))) (-5 *4 (-343 *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1994 (-578 *4)))) - (-5 *1 (-723 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-592 (-343 *6))) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-2 (|:| -1994 (-578 (-343 *6))) (|:| |mat| (-625 *5)))) - (-5 *1 (-723 *5 *6)) (-5 *4 (-578 (-343 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-593 *6 (-343 *6))) (-5 *4 (-343 *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1994 (-578 *4)))) - (-5 *1 (-723 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-593 *6 (-343 *6))) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-2 (|:| -1994 (-578 (-343 *6))) (|:| |mat| (-625 *5)))) - (-5 *1 (-723 *5 *6)) (-5 *4 (-578 (-343 *6)))))) + (-12 (-5 *4 (-1 (-579 *7) *7 (-1075 *7))) (-5 *5 (-1 (-342 *7) *7)) + (-4 *7 (-1145 *6)) (-4 *6 (-13 (-308) (-118) (-944 (-344 (-479))))) + (-5 *2 (-579 (-2 (|:| |frac| (-344 *7)) (|:| -3250 *3)))) + (-5 *1 (-723 *6 *7 *3 *8)) (-4 *3 (-596 *7)) (-4 *8 (-596 (-344 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-579 (-2 (|:| |frac| (-344 *6)) (|:| -3250 (-594 *6 (-344 *6)))))) + (-5 *1 (-726 *5 *6)) (-5 *3 (-594 *6 (-344 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-4 *7 (-1145 *5)) (-4 *4 (-657 *5 *7)) + (-5 *2 (-2 (|:| |mat| (-626 *6)) (|:| |vec| (-1169 *5)))) + (-5 *1 (-725 *5 *6 *7 *4 *3)) (-4 *6 (-596 *5)) (-4 *3 (-596 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-593 (-344 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-724 *4 *2)) + (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-594 *2 (-344 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-724 *4 *2)) + (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-593 (-344 *6))) (-5 *4 (-344 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1999 (-579 *4)))) + (-5 *1 (-724 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-593 (-344 *6))) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-2 (|:| -1999 (-579 (-344 *6))) (|:| |mat| (-626 *5)))) + (-5 *1 (-724 *5 *6)) (-5 *4 (-579 (-344 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-594 *6 (-344 *6))) (-5 *4 (-344 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1999 (-579 *4)))) + (-5 *1 (-724 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-594 *6 (-344 *6))) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-2 (|:| -1999 (-579 (-344 *6))) (|:| |mat| (-626 *5)))) + (-5 *1 (-724 *5 *6)) (-5 *4 (-579 (-344 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-1140 *4)) - (-5 *1 (-722 *4 *3 *2 *5)) (-4 *2 (-595 *3)) (-4 *5 (-595 (-343 *3))))) + (-12 (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *3 (-1145 *4)) + (-5 *1 (-723 *4 *3 *2 *5)) (-4 *2 (-596 *3)) (-4 *5 (-596 (-344 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-343 *5)) (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) - (-4 *5 (-1140 *4)) (-5 *1 (-722 *4 *5 *2 *6)) (-4 *2 (-595 *5)) - (-4 *6 (-595 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-578 *5) *6)) - (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *6 (-1140 *5)) - (-5 *2 (-578 (-2 (|:| -3928 *5) (|:| -3246 *3)))) (-5 *1 (-722 *5 *6 *3 *7)) - (-4 *3 (-595 *6)) (-4 *7 (-595 (-343 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) - (-5 *2 (-578 (-2 (|:| |deg| (-687)) (|:| -3246 *5)))) - (-5 *1 (-722 *4 *5 *3 *6)) (-4 *3 (-595 *5)) (-4 *6 (-595 (-343 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1140 *4)) (-5 *1 (-722 *4 *2 *3 *5)) - (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) - (-4 *5 (-595 (-343 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1140 *4)) (-5 *1 (-721 *4 *2 *3 *5)) - (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) - (-4 *5 (-595 (-343 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1140 *4)) (-5 *1 (-721 *4 *2 *5 *3)) - (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-595 *2)) - (-4 *3 (-595 (-343 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) - (-5 *2 (-578 (-2 (|:| -3749 *5) (|:| -3207 *5)))) (-5 *1 (-721 *4 *5 *3 *6)) - (-4 *3 (-595 *5)) (-4 *6 (-595 (-343 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *4 (-1140 *5)) - (-5 *2 (-578 (-2 (|:| -3749 *4) (|:| -3207 *4)))) (-5 *1 (-721 *5 *4 *3 *6)) - (-4 *3 (-595 *4)) (-4 *6 (-595 (-343 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *5 (-1140 *4)) - (-5 *2 (-578 (-2 (|:| -3749 *5) (|:| -3207 *5)))) (-5 *1 (-721 *4 *5 *6 *3)) - (-4 *6 (-595 *5)) (-4 *3 (-595 (-343 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *4 (-1140 *5)) - (-5 *2 (-578 (-2 (|:| -3749 *4) (|:| -3207 *4)))) (-5 *1 (-721 *5 *4 *6 *3)) - (-4 *6 (-595 *4)) (-4 *3 (-595 (-343 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-343 *2)) (-4 *2 (-1140 *5)) - (-5 *1 (-721 *5 *2 *3 *6)) (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) - (-4 *3 (-595 *2)) (-4 *6 (-595 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-343 *2))) (-4 *2 (-1140 *5)) (-5 *1 (-721 *5 *2 *3 *6)) - (-4 *5 (-13 (-308) (-118) (-943 (-343 (-478))))) (-4 *3 (-595 *2)) - (-4 *6 (-595 (-343 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-592 *4)) (-4 *4 (-287 *5 *6 *7)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *6 (-1140 *5)) (-4 *7 (-1140 (-343 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1994 (-578 *4)))) - (-5 *1 (-720 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-719 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1100) (-864)))))) + (-12 (-5 *3 (-344 *5)) (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) + (-4 *5 (-1145 *4)) (-5 *1 (-723 *4 *5 *2 *6)) (-4 *2 (-596 *5)) + (-4 *6 (-596 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-579 *5) *6)) + (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *6 (-1145 *5)) + (-5 *2 (-579 (-2 (|:| -3934 *5) (|:| -3250 *3)))) (-5 *1 (-723 *5 *6 *3 *7)) + (-4 *3 (-596 *6)) (-4 *7 (-596 (-344 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) + (-5 *2 (-579 (-2 (|:| |deg| (-688)) (|:| -3250 *5)))) + (-5 *1 (-723 *4 *5 *3 *6)) (-4 *3 (-596 *5)) (-4 *6 (-596 (-344 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1145 *4)) (-5 *1 (-723 *4 *2 *3 *5)) + (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *3 (-596 *2)) + (-4 *5 (-596 (-344 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1145 *4)) (-5 *1 (-722 *4 *2 *3 *5)) + (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *3 (-596 *2)) + (-4 *5 (-596 (-344 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1145 *4)) (-5 *1 (-722 *4 *2 *5 *3)) + (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *5 (-596 *2)) + (-4 *3 (-596 (-344 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) + (-5 *2 (-579 (-2 (|:| -3755 *5) (|:| -3210 *5)))) (-5 *1 (-722 *4 *5 *3 *6)) + (-4 *3 (-596 *5)) (-4 *6 (-596 (-344 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *4 (-1145 *5)) + (-5 *2 (-579 (-2 (|:| -3755 *4) (|:| -3210 *4)))) (-5 *1 (-722 *5 *4 *3 *6)) + (-4 *3 (-596 *4)) (-4 *6 (-596 (-344 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *5 (-1145 *4)) + (-5 *2 (-579 (-2 (|:| -3755 *5) (|:| -3210 *5)))) (-5 *1 (-722 *4 *5 *6 *3)) + (-4 *6 (-596 *5)) (-4 *3 (-596 (-344 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *4 (-1145 *5)) + (-5 *2 (-579 (-2 (|:| -3755 *4) (|:| -3210 *4)))) (-5 *1 (-722 *5 *4 *6 *3)) + (-4 *6 (-596 *4)) (-4 *3 (-596 (-344 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-344 *2)) (-4 *2 (-1145 *5)) + (-5 *1 (-722 *5 *2 *3 *6)) (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) + (-4 *3 (-596 *2)) (-4 *6 (-596 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-579 (-344 *2))) (-4 *2 (-1145 *5)) (-5 *1 (-722 *5 *2 *3 *6)) + (-4 *5 (-13 (-308) (-118) (-944 (-344 (-479))))) (-4 *3 (-596 *2)) + (-4 *6 (-596 (-344 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-593 *4)) (-4 *4 (-287 *5 *6 *7)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *6 (-1145 *5)) (-4 *7 (-1145 (-344 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-579 *4)))) + (-5 *1 (-721 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-720 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1105) (-865)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-5 *1 (-719 *4 *2)) (-4 *2 (-13 (-29 *4) (-1100) (-864)))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-5 *1 (-720 *4 *2)) (-4 *2 (-13 (-29 *4) (-1105) (-865)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1075)) (-4 *6 (-13 (-254) (-943 (-478)) (-575 (-478)) (-118))) - (-4 *4 (-13 (-29 *6) (-1100) (-864))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1994 (-578 *4)))) - (-5 *1 (-717 *6 *4 *3)) (-4 *3 (-595 *4))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-902 *3)) (-4 *3 (-144)) (-5 *1 (-715 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144))))) + (-12 (-5 *5 (-1080)) (-4 *6 (-13 (-254) (-944 (-479)) (-576 (-479)) (-118))) + (-4 *4 (-13 (-29 *6) (-1105) (-865))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -1999 (-579 *4)))) + (-5 *1 (-718 *6 *4 *3)) (-4 *3 (-596 *4))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-903 *3)) (-4 *3 (-144)) (-5 *1 (-716 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144))))) +(((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144))))) (((*1 *1 *1) (-4 *1 (-198))) ((*1 *1 *1) - (-12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *2)) + (-12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1114))) - (-12 (-5 *1 (-245 *2)) (-4 *2 (-406)) (-4 *2 (-1114))))) - ((*1 *1 *1) (-4 *1 (-406))) - ((*1 *2 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-295)) (-5 *1 (-460 *3)))) + (OR (-12 (-5 *1 (-245 *2)) (-4 *2 (-308)) (-4 *2 (-1119))) + (-12 (-5 *1 (-245 *2)) (-4 *2 (-407)) (-4 *2 (-1119))))) + ((*1 *1 *1) (-4 *1 (-407))) + ((*1 *2 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-295)) (-5 *1 (-461 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-144)) (-4 *2 (-308))))) -(((*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100))))) - ((*1 *1 *1 *1) (-4 *1 (-710)))) + ((*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-144)) (-4 *2 (-308))))) +(((*1 *2 *1) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105))))) + ((*1 *1 *1 *1) (-4 *1 (-711)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) + (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 - (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) + (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) - (-5 *1 (-704)) (-5 *5 (-478))))) + (-5 *1 (-705)) (-5 *5 (-479))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) + (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 - (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) + (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) - (-5 *1 (-704)) (-5 *5 (-478))))) + (-5 *1 (-705)) (-5 *5 (-479))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) + (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 - (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) + (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) - (-5 *1 (-704)) (-5 *5 (-478))))) + (-5 *1 (-705)) (-5 *5 (-479))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) + (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 - (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) + (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) - (-5 *1 (-704)) (-5 *5 (-478))))) + (-5 *1 (-705)) (-5 *5 (-479))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) + (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 - (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) + (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) - (-5 *1 (-704)) (-5 *5 (-478))))) + (-5 *1 (-705)) (-5 *5 (-479))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) + (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 - (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) + (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) - (-5 *1 (-704)) (-5 *5 (-478))))) + (-5 *1 (-705)) (-5 *5 (-479))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) + (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 - (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) + (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) - (-5 *1 (-704)) (-5 *5 (-478))))) + (-5 *1 (-705)) (-5 *5 (-479))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) + (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 - (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) + (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) - (-5 *1 (-704)) (-5 *5 (-478))))) + (-5 *1 (-705)) (-5 *5 (-479))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-323) (-323))) (-5 *4 (-323)) + (-12 (-5 *3 (-1 (-324) (-324))) (-5 *4 (-324)) (-5 *2 - (-2 (|:| -3379 *4) (|:| -1579 *4) (|:| |totalpts| (-478)) + (-2 (|:| -3384 *4) (|:| -1584 *4) (|:| |totalpts| (-479)) (|:| |success| (-83)))) - (-5 *1 (-704)) (-5 *5 (-478))))) + (-5 *1 (-705)) (-5 *5 (-479))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) - (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703))))) + (-12 (-5 *4 (-479)) (-5 *6 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) + (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-478)) - (-5 *6 (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1458 (-323)))) - (-5 *7 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) (-5 *3 (-1164 (-323))) - (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703)))) + (-12 (-5 *4 (-479)) + (-5 *6 (-2 (|:| |tryValue| (-324)) (|:| |did| (-324)) (|:| -1463 (-324)))) + (-5 *7 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) (-5 *3 (-1169 (-324))) + (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-478)) - (-5 *6 (-2 (|:| |tryValue| (-323)) (|:| |did| (-323)) (|:| -1458 (-323)))) - (-5 *7 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) (-5 *3 (-1164 (-323))) - (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703))))) + (-12 (-5 *4 (-479)) + (-5 *6 (-2 (|:| |tryValue| (-324)) (|:| |did| (-324)) (|:| -1463 (-324)))) + (-5 *7 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) (-5 *3 (-1169 (-324))) + (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) - (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703))))) + (-12 (-5 *4 (-479)) (-5 *6 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) + (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) - (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703)))) + (-12 (-5 *4 (-479)) (-5 *6 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) + (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-478)) (-5 *6 (-1 (-1170) (-1164 *5) (-1164 *5) (-323))) - (-5 *3 (-1164 (-323))) (-5 *5 (-323)) (-5 *2 (-1170)) (-5 *1 (-703))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1059)) (-5 *2 (-323)) (-5 *1 (-702))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-323)) (-5 *1 (-702))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-823)) (-5 *1 (-702))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1059)) (-5 *1 (-702))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-823)) (-5 *1 (-702))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1059)) (-5 *1 (-702))))) + (-12 (-5 *4 (-479)) (-5 *6 (-1 (-1175) (-1169 *5) (-1169 *5) (-324))) + (-5 *3 (-1169 (-324))) (-5 *5 (-324)) (-5 *2 (-1175)) (-5 *1 (-704))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1063)) (-5 *2 (-324)) (-5 *1 (-703))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-324)) (-5 *1 (-703))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-824)) (-5 *1 (-703))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1063)) (-5 *1 (-703))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-824)) (-5 *1 (-703))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1063)) (-5 *1 (-703))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-850 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (|partial| -12 (-5 *3 (-851 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-850 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-144)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (|partial| -12 (-5 *3 (-851 (-140 *5))) (-5 *4 (-824)) (-4 *5 (-144)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (|partial| -12 (-5 *3 (-851 *4)) (-4 *4 (-955)) (-4 *4 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (|partial| -12 (-5 *3 (-851 *5)) (-5 *4 (-824)) (-4 *5 (-955)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (|partial| -12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-4 *4 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (|partial| -12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-824)) (-4 *5 (-490)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-343 (-850 (-140 *4)))) (-4 *4 (-489)) - (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (|partial| -12 (-5 *3 (-344 (-851 (-140 *4)))) (-4 *4 (-490)) + (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-343 (-850 (-140 *5)))) (-5 *4 (-823)) (-4 *5 (-489)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (|partial| -12 (-5 *3 (-344 (-851 (-140 *5)))) (-5 *4 (-824)) (-4 *5 (-490)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) - (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-490)) (-4 *4 (-750)) + (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-489)) (-4 *4 (-749)) - (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (|partial| -12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-490)) (-4 *4 (-750)) + (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-489)) - (-4 *5 (-749)) (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) - (-5 *1 (-701 *5))))) + (|partial| -12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-824)) (-4 *5 (-490)) + (-4 *5 (-750)) (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) + (-5 *1 (-702 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 *2)) - (-5 *2 (-323)) (-5 *1 (-701 *4)))) + (|partial| -12 (-5 *3 (-851 *4)) (-4 *4 (-955)) (-4 *4 (-549 *2)) + (-5 *2 (-324)) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) - (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) + (|partial| -12 (-5 *3 (-851 *5)) (-5 *4 (-824)) (-4 *5 (-955)) + (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 *2)) - (-5 *2 (-323)) (-5 *1 (-701 *4)))) + (|partial| -12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-4 *4 (-549 *2)) + (-5 *2 (-324)) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) - (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5)))) + (|partial| -12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-824)) (-4 *5 (-490)) + (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) - (-4 *4 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *4)))) + (|partial| -12 (-5 *3 (-261 *4)) (-4 *4 (-490)) (-4 *4 (-750)) + (-4 *4 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) - (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5))))) + (|partial| -12 (-5 *3 (-261 *5)) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) + (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-140 (-323))) (-5 *1 (-701 *3)) (-4 *3 (-548 (-323))))) + (-12 (-5 *2 (-140 (-324))) (-5 *1 (-702 *3)) (-4 *3 (-549 (-324))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-823)) (-5 *2 (-140 (-323))) (-5 *1 (-701 *3)) - (-4 *3 (-548 (-323))))) + (-12 (-5 *4 (-824)) (-5 *2 (-140 (-324))) (-5 *1 (-702 *3)) + (-4 *3 (-549 (-324))))) ((*1 *2 *3) - (-12 (-5 *3 (-140 *4)) (-4 *4 (-144)) (-4 *4 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-140 *4)) (-4 *4 (-144)) (-4 *4 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-140 *5)) (-5 *4 (-823)) (-4 *5 (-144)) (-4 *5 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (-12 (-5 *3 (-140 *5)) (-5 *4 (-824)) (-4 *5 (-144)) (-4 *5 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-850 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-851 (-140 *4))) (-4 *4 (-144)) (-4 *4 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-144)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (-12 (-5 *3 (-851 (-140 *5))) (-5 *4 (-824)) (-4 *5 (-144)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-851 *4)) (-4 *4 (-955)) (-4 *4 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (-12 (-5 *3 (-851 *5)) (-5 *4 (-824)) (-4 *5 (-955)) (-4 *5 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-4 *4 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-824)) (-4 *5 (-490)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-343 (-850 (-140 *4)))) (-4 *4 (-489)) (-4 *4 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-344 (-851 (-140 *4)))) (-4 *4 (-490)) (-4 *4 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 (-140 *5)))) (-5 *4 (-823)) (-4 *5 (-489)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (-12 (-5 *3 (-344 (-851 (-140 *5)))) (-5 *4 (-824)) (-4 *5 (-490)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 (-323))) - (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-261 *4)) (-4 *4 (-490)) (-4 *4 (-750)) (-4 *4 (-549 (-324))) + (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5)))) + (-12 (-5 *3 (-261 *5)) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-489)) (-4 *4 (-749)) - (-4 *4 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-261 (-140 *4))) (-4 *4 (-490)) (-4 *4 (-750)) + (-4 *4 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) - (-4 *5 (-548 (-323))) (-5 *2 (-140 (-323))) (-5 *1 (-701 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-323)) (-5 *1 (-701 *3)) (-4 *3 (-548 *2)))) + (-12 (-5 *3 (-261 (-140 *5))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) + (-4 *5 (-549 (-324))) (-5 *2 (-140 (-324))) (-5 *1 (-702 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-324)) (-5 *1 (-702 *3)) (-4 *3 (-549 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-823)) (-5 *2 (-323)) (-5 *1 (-701 *3)) (-4 *3 (-548 *2)))) + (-12 (-5 *4 (-824)) (-5 *2 (-324)) (-5 *1 (-702 *3)) (-4 *3 (-549 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-850 *4)) (-4 *4 (-954)) (-4 *4 (-548 *2)) (-5 *2 (-323)) - (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-851 *4)) (-4 *4 (-955)) (-4 *4 (-549 *2)) (-5 *2 (-324)) + (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 *5)) (-5 *4 (-823)) (-4 *5 (-954)) (-4 *5 (-548 *2)) - (-5 *2 (-323)) (-5 *1 (-701 *5)))) + (-12 (-5 *3 (-851 *5)) (-5 *4 (-824)) (-4 *5 (-955)) (-4 *5 (-549 *2)) + (-5 *2 (-324)) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-343 (-850 *4))) (-4 *4 (-489)) (-4 *4 (-548 *2)) (-5 *2 (-323)) - (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-344 (-851 *4))) (-4 *4 (-490)) (-4 *4 (-549 *2)) (-5 *2 (-324)) + (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-548 *2)) - (-5 *2 (-323)) (-5 *1 (-701 *5)))) + (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-549 *2)) + (-5 *2 (-324)) (-5 *1 (-702 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-261 *4)) (-4 *4 (-489)) (-4 *4 (-749)) (-4 *4 (-548 *2)) - (-5 *2 (-323)) (-5 *1 (-701 *4)))) + (-12 (-5 *3 (-261 *4)) (-4 *4 (-490)) (-4 *4 (-750)) (-4 *4 (-549 *2)) + (-5 *2 (-324)) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-261 *5)) (-5 *4 (-823)) (-4 *5 (-489)) (-4 *5 (-749)) - (-4 *5 (-548 *2)) (-5 *2 (-323)) (-5 *1 (-701 *5))))) + (-12 (-5 *3 (-261 *5)) (-5 *4 (-824)) (-4 *5 (-490)) (-4 *5 (-750)) + (-4 *5 (-549 *2)) (-5 *2 (-324)) (-5 *1 (-702 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-38 (-343 (-478)))) + (-12 (-5 *3 (-688)) (-5 *1 (-700 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-144))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-687)) (-5 *1 (-699 *2)) (-4 *2 (-38 (-343 (-478)))) + (-12 (-5 *3 (-688)) (-5 *1 (-700 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-144))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-954))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-955))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-698 *2)) (-4 *2 (-955))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-578 (-697 *3))) (-5 *1 (-697 *3)) (-4 *3 (-489)) - (-4 *3 (-954))))) + (-12 (-5 *2 (-579 (-698 *3))) (-5 *1 (-698 *3)) (-4 *3 (-490)) + (-4 *3 (-955))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -3732 *3) (|:| |coef1| (-697 *3)) (|:| |coef2| (-697 *3)))) - (-5 *1 (-697 *3)) (-4 *3 (-489)) (-4 *3 (-954))))) + (-5 *2 (-2 (|:| -3738 *3) (|:| |coef1| (-698 *3)) (|:| |coef2| (-698 *3)))) + (-5 *1 (-698 *3)) (-4 *3 (-490)) (-4 *3 (-955))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3732 *3) (|:| |coef1| (-697 *3)))) (-5 *1 (-697 *3)) - (-4 *3 (-489)) (-4 *3 (-954))))) + (-12 (-5 *2 (-2 (|:| -3738 *3) (|:| |coef1| (-698 *3)))) (-5 *1 (-698 *3)) + (-4 *3 (-490)) (-4 *3 (-955))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3732 *3) (|:| |coef2| (-697 *3)))) (-5 *1 (-697 *3)) - (-4 *3 (-489)) (-4 *3 (-954))))) + (-12 (-5 *2 (-2 (|:| -3738 *3) (|:| |coef2| (-698 *3)))) (-5 *1 (-698 *3)) + (-4 *3 (-490)) (-4 *3 (-955))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-343 (-478)))) + (-12 (-5 *3 (-626 (-344 (-479)))) (-5 *2 - (-578 - (-2 (|:| |outval| *4) (|:| |outmult| (-478)) - (|:| |outvect| (-578 (-625 *4)))))) - (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748)))))) + (-579 + (-2 (|:| |outval| *4) (|:| |outmult| (-479)) + (|:| |outvect| (-579 (-626 *4)))))) + (-5 *1 (-696 *4)) (-4 *4 (-13 (-308) (-749)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-578 *4)) (-5 *1 (-695 *4)) - (-4 *4 (-13 (-308) (-748)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-625 *2)) (-4 *2 (-144)) (-5 *1 (-117 *2)))) + (-12 (-5 *3 (-626 (-344 (-479)))) (-5 *2 (-579 *4)) (-5 *1 (-696 *4)) + (-4 *4 (-13 (-308) (-749)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-626 *2)) (-4 *2 (-144)) (-5 *1 (-117 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-144)) (-4 *2 (-1140 *4)) (-5 *1 (-149 *4 *2 *3)) - (-4 *3 (-656 *4 *2)))) + (-12 (-4 *4 (-144)) (-4 *2 (-1145 *4)) (-5 *1 (-149 *4 *2 *3)) + (-4 *3 (-657 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-343 (-850 *5)))) (-5 *4 (-1075)) (-5 *2 (-850 *5)) - (-5 *1 (-244 *5)) (-4 *5 (-385)))) + (-12 (-5 *3 (-626 (-344 (-851 *5)))) (-5 *4 (-1080)) (-5 *2 (-851 *5)) + (-5 *1 (-244 *5)) (-4 *5 (-386)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-343 (-850 *4)))) (-5 *2 (-850 *4)) (-5 *1 (-244 *4)) - (-4 *4 (-385)))) - ((*1 *2 *1) (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1140 *3)))) + (-12 (-5 *3 (-626 (-344 (-851 *4)))) (-5 *2 (-851 *4)) (-5 *1 (-244 *4)) + (-4 *4 (-386)))) + ((*1 *2 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-144)) (-4 *2 (-1145 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-850 (-140 (-343 (-478))))) - (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748))))) + (-12 (-5 *3 (-626 (-140 (-344 (-479))))) (-5 *2 (-851 (-140 (-344 (-479))))) + (-5 *1 (-682 *4)) (-4 *4 (-13 (-308) (-749))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *4 (-1075)) - (-5 *2 (-850 (-140 (-343 (-478))))) (-5 *1 (-681 *5)) - (-4 *5 (-13 (-308) (-748))))) + (-12 (-5 *3 (-626 (-140 (-344 (-479))))) (-5 *4 (-1080)) + (-5 *2 (-851 (-140 (-344 (-479))))) (-5 *1 (-682 *5)) + (-4 *5 (-13 (-308) (-749))))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *2 (-850 (-343 (-478)))) - (-5 *1 (-695 *4)) (-4 *4 (-13 (-308) (-748))))) + (-12 (-5 *3 (-626 (-344 (-479)))) (-5 *2 (-851 (-344 (-479)))) + (-5 *1 (-696 *4)) (-4 *4 (-13 (-308) (-749))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-343 (-478)))) (-5 *4 (-1075)) - (-5 *2 (-850 (-343 (-478)))) (-5 *1 (-695 *5)) (-4 *5 (-13 (-308) (-748)))))) + (-12 (-5 *3 (-626 (-344 (-479)))) (-5 *4 (-1080)) + (-5 *2 (-851 (-344 (-479)))) (-5 *1 (-696 *5)) (-4 *5 (-13 (-308) (-749)))))) (((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-578 (-687))) - (-5 *1 (-694 *3 *4 *5 *6 *7)) (-4 *3 (-1140 *6)) (-4 *7 (-854 *6 *4 *5))))) + (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) (-5 *2 (-579 (-688))) + (-5 *1 (-695 *3 *4 *5 *6 *7)) (-4 *3 (-1145 *6)) (-4 *7 (-855 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1140 *9)) (-4 *7 (-710)) (-4 *8 (-749)) (-4 *9 (-254)) - (-4 *10 (-854 *9 *7 *8)) + (-12 (-4 *6 (-1145 *9)) (-4 *7 (-711)) (-4 *8 (-750)) (-4 *9 (-254)) + (-4 *10 (-855 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-578 (-1070 *10))) - (|:| |dterm| (-578 (-578 (-2 (|:| -3059 (-687)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-578 *6)) (|:| |nlead| (-578 *10)))) - (-5 *1 (-694 *6 *7 *8 *9 *10)) (-5 *3 (-1070 *10)) (-5 *4 (-578 *6)) - (-5 *5 (-578 *10))))) + (-2 (|:| |deter| (-579 (-1075 *10))) + (|:| |dterm| (-579 (-579 (-2 (|:| -3063 (-688)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-579 *6)) (|:| |nlead| (-579 *10)))) + (-5 *1 (-695 *6 *7 *8 *9 *10)) (-5 *3 (-1075 *10)) (-5 *4 (-579 *6)) + (-5 *5 (-579 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1140 *5)) (-5 *2 (-578 *3)) - (-5 *1 (-693 *4 *5 *6 *3 *7)) (-4 *3 (-1140 *6)) (-14 *7 (-823))))) + (-12 (-4 *4 (-295)) (-4 *5 (-276 *4)) (-4 *6 (-1145 *5)) (-5 *2 (-579 *3)) + (-5 *1 (-694 *4 *5 *6 *3 *7)) (-4 *3 (-1145 *6)) (-14 *7 (-824))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| (-83)) (|:| -1583 *4)))) - (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| (-83)) (|:| -1588 *4)))) + (-5 *1 (-693 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1059)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) - (-4 *4 (-969 *6 *7 *8)) (-5 *2 (-1170)) (-5 *1 (-692 *6 *7 *8 *4 *5)) - (-4 *5 (-975 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1063)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) + (-4 *4 (-970 *6 *7 *8)) (-5 *2 (-1175)) (-5 *1 (-693 *6 *7 *8 *4 *5)) + (-4 *5 (-976 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 *3))))) + (-12 (-4 *3 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) - (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4))))) - ((*1 *1 *1) (-5 *1 (-323))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) + (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4))))) + ((*1 *1 *1) (-5 *1 (-324))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *3 (-969 *5 *6 *7)) - (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -1583 *4)))) - (-5 *1 (-692 *5 *6 *7 *3 *4)) (-4 *4 (-975 *5 *6 *7 *3))))) + (-12 (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *3 (-970 *5 *6 *7)) + (-5 *2 (-579 (-2 (|:| |val| *3) (|:| -1588 *4)))) + (-5 *1 (-693 *5 *6 *7 *3 *4)) (-4 *4 (-976 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *2 (-969 *4 *5 *6)) - (-5 *1 (-692 *4 *5 *6 *2 *3)) (-4 *3 (-975 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-323)))) - ((*1 *1 *1 *1) (-4 *1 (-477))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) - ((*1 *1 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-687))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-424)) (-5 *4 (-858)) (-5 *2 (-627 (-465))) (-5 *1 (-465)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-858)) (-4 *3 (-1003)) (-5 *2 (-627 *1)) (-4 *1 (-684 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-684 *3)) (-4 *3 (-1003)) (-5 *2 (-83))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-140 (-343 (-478))))) - (-5 *2 - (-578 - (-2 (|:| |outval| (-140 *4)) (|:| |outmult| (-478)) - (|:| |outvect| (-578 (-625 (-140 *4))))))) - (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-140 (-343 (-478))))) (-5 *2 (-578 (-140 *4))) - (-5 *1 (-681 *4)) (-4 *4 (-13 (-308) (-748)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-678)))) -(((*1 *1 *1 *1) (-4 *1 (-406))) ((*1 *1 *1 *1) (-4 *1 (-678)))) -(((*1 *1 *1 *1) (-4 *1 (-678)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-676 *3)) (-4 *3 (-144))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *2 (-970 *4 *5 *6)) + (-5 *1 (-693 *4 *5 *6 *2 *3)) (-4 *3 (-976 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-324)))) + ((*1 *1 *1 *1) (-4 *1 (-478))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) + ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-688))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-425)) (-5 *4 (-859)) (-5 *2 (-628 (-466))) (-5 *1 (-466)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-859)) (-4 *3 (-1006)) (-5 *2 (-628 *1)) (-4 *1 (-685 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-685 *3)) (-4 *3 (-1006)) (-5 *2 (-83))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-626 (-140 (-344 (-479))))) + (-5 *2 + (-579 + (-2 (|:| |outval| (-140 *4)) (|:| |outmult| (-479)) + (|:| |outvect| (-579 (-626 (-140 *4))))))) + (-5 *1 (-682 *4)) (-4 *4 (-13 (-308) (-749)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-626 (-140 (-344 (-479))))) (-5 *2 (-579 (-140 *4))) + (-5 *1 (-682 *4)) (-4 *4 (-13 (-308) (-749)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-679)))) +(((*1 *1 *1 *1) (-4 *1 (-407))) ((*1 *1 *1 *1) (-4 *1 (-679)))) +(((*1 *1 *1 *1) (-4 *1 (-679)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-824)) (-4 *1 (-677 *3)) (-4 *3 (-144))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1070 *6)) (-5 *3 (-478)) (-4 *6 (-254)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5))))) + (-12 (-5 *2 (-1075 *6)) (-5 *3 (-479)) (-4 *6 (-254)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1070 *9)) (-5 *4 (-578 *7)) (-4 *7 (-749)) - (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-4 *8 (-254)) (-5 *2 (-578 (-687))) - (-5 *1 (-674 *6 *7 *8 *9)) (-5 *5 (-687))))) + (-12 (-5 *3 (-1075 *9)) (-5 *4 (-579 *7)) (-4 *7 (-750)) + (-4 *9 (-855 *8 *6 *7)) (-4 *6 (-711)) (-4 *8 (-254)) (-5 *2 (-579 (-688))) + (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-688))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-478)) (-5 *4 (-341 *2)) (-4 *2 (-854 *7 *5 *6)) - (-5 *1 (-674 *5 *6 *7 *2)) (-4 *5 (-710)) (-4 *6 (-749)) (-4 *7 (-254))))) + (-12 (-5 *3 (-479)) (-5 *4 (-342 *2)) (-4 *2 (-855 *7 *5 *6)) + (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-711)) (-4 *6 (-750)) (-4 *7 (-254))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1070 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) - (-4 *7 (-749)) (-4 *8 (-254)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) + (-12 (-5 *3 (-1075 *9)) (-5 *4 (-579 *7)) (-5 *5 (-579 (-579 *8))) + (-4 *7 (-750)) (-4 *8 (-254)) (-4 *9 (-855 *8 *6 *7)) (-4 *6 (-711)) (-5 *2 - (-2 (|:| |upol| (-1070 *8)) (|:| |Lval| (-578 *8)) - (|:| |Lfact| (-578 (-2 (|:| -3708 (-1070 *8)) (|:| -2383 (-478))))) + (-2 (|:| |upol| (-1075 *8)) (|:| |Lval| (-579 *8)) + (|:| |Lfact| (-579 (-2 (|:| -3714 (-1075 *8)) (|:| -2388 (-479))))) (|:| |ctpol| *8))) - (-5 *1 (-674 *6 *7 *8 *9))))) + (-5 *1 (-675 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-749)) (-4 *8 (-254)) - (-4 *6 (-710)) (-4 *9 (-854 *8 *6 *7)) + (-12 (-5 *4 (-579 *7)) (-5 *5 (-579 (-579 *8))) (-4 *7 (-750)) (-4 *8 (-254)) + (-4 *6 (-711)) (-4 *9 (-855 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-578 (-2 (|:| -3708 (-1070 *9)) (|:| -2383 (-478))))))) - (-5 *1 (-674 *6 *7 *8 *9)) (-5 *3 (-1070 *9))))) + (|:| |suPart| (-579 (-2 (|:| -3714 (-1075 *9)) (|:| -2388 (-479))))))) + (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1075 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-478)) (-4 *6 (-710)) (-4 *7 (-749)) (-4 *8 (-254)) - (-4 *9 (-854 *8 *6 *7)) - (-5 *2 (-2 (|:| -1986 (-1070 *9)) (|:| |polval| (-1070 *8)))) - (-5 *1 (-674 *6 *7 *8 *9)) (-5 *3 (-1070 *9)) (-5 *4 (-1070 *8))))) + (-12 (-5 *5 (-479)) (-4 *6 (-711)) (-4 *7 (-750)) (-4 *8 (-254)) + (-4 *9 (-855 *8 *6 *7)) + (-5 *2 (-2 (|:| -1991 (-1075 *9)) (|:| |polval| (-1075 *8)))) + (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1075 *9)) (-5 *4 (-1075 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-710)) (-4 *4 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) - (-5 *1 (-674 *5 *4 *6 *3)) (-4 *3 (-854 *6 *5 *4))))) + (-12 (-4 *5 (-711)) (-4 *4 (-750)) (-4 *6 (-254)) (-5 *2 (-342 *3)) + (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-855 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-2 (|:| -3708 (-1070 *6)) (|:| -2383 (-478))))) - (-4 *6 (-254)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-478)) - (-5 *1 (-674 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5))))) + (-12 (-5 *3 (-579 (-2 (|:| -3714 (-1075 *6)) (|:| -2388 (-479))))) + (-4 *6 (-254)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-479)) + (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-254)) (-5 *2 (-341 *3)) - (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-854 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-671 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-670))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-668 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1003)))) - ((*1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-1003))))) + (-12 (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-254)) (-5 *2 (-342 *3)) + (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-855 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-672 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-671))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-669 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1006)))) + ((*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1006))))) (((*1 *2 *1) - (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-687)))) + (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-688)))) ((*1 *2 *1) - (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) (-5 *2 (-687)))) + (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-688)))) ((*1 *2 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-667 *3 *4)) (-4 *3 (-954)) (-4 *4 (-658))))) + (-12 (-5 *2 (-688)) (-5 *1 (-668 *3 *4)) (-4 *3 (-955)) (-4 *4 (-659))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-489)) (-4 *2 (-854 *3 *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) - (-5 *3 (-343 (-850 *6))) (-4 *5 (-710)) - (-4 *4 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)))))))) + (-12 (-4 *6 (-490)) (-4 *2 (-855 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) + (-5 *3 (-344 (-851 *6))) (-4 *5 (-711)) + (-4 *4 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1070 (-850 *6))) (-4 *6 (-489)) - (-4 *2 (-854 (-343 (-850 *6)) *5 *4)) (-5 *1 (-664 *5 *4 *6 *2)) - (-4 *5 (-710)) (-4 *4 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $)))))))) + (-12 (-5 *3 (-1075 (-851 *6))) (-4 *6 (-490)) + (-4 *2 (-855 (-344 (-851 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) + (-4 *5 (-711)) (-4 *4 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1070 *2)) (-4 *2 (-854 (-343 (-850 *6)) *5 *4)) - (-5 *1 (-664 *5 *4 *6 *2)) (-4 *5 (-710)) - (-4 *4 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) (-4 *6 (-489))))) + (-12 (-5 *3 (-1075 *2)) (-4 *2 (-855 (-344 (-851 *6)) *5 *4)) + (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-711)) + (-4 *4 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) (-4 *6 (-490))))) (((*1 *2 *3) - (-12 (-4 *4 (-710)) (-4 *5 (-13 (-749) (-10 -8 (-15 -3948 ((-1075) $))))) - (-4 *6 (-489)) (-5 *2 (-2 (|:| -2463 (-850 *6)) (|:| -2040 (-850 *6)))) - (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-854 (-343 (-850 *6)) *4 *5))))) + (-12 (-4 *4 (-711)) (-4 *5 (-13 (-750) (-10 -8 (-15 -3954 ((-1080) $))))) + (-4 *6 (-490)) (-5 *2 (-2 (|:| -2468 (-851 *6)) (|:| -2045 (-851 *6)))) + (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-855 (-344 (-851 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-478)) - (-14 *6 (-687)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-106 *5 *6 *7)) (-14 *5 (-479)) + (-14 *6 (-688)) (-4 *7 (-144)) (-4 *8 (-144)) (-5 *2 (-106 *5 *6 *8)) (-5 *1 (-107 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *9)) (-4 *9 (-954)) (-4 *5 (-749)) (-4 *6 (-710)) - (-4 *8 (-954)) (-4 *2 (-854 *9 *7 *5)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-710)) (-4 *4 (-854 *8 *6 *5))))) + (-12 (-5 *3 (-579 *9)) (-4 *9 (-955)) (-4 *5 (-750)) (-4 *6 (-711)) + (-4 *8 (-955)) (-4 *2 (-855 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-711)) (-4 *4 (-855 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-343 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1140 *5)) - (-5 *1 (-659 *5 *2)) (-4 *5 (-308))))) + (-12 (-5 *3 (-344 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1145 *5)) + (-5 *1 (-660 *5 *2)) (-4 *5 (-308))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-308)) - (-5 *2 (-2 (|:| -3071 (-341 *3)) (|:| |special| (-341 *3)))) - (-5 *1 (-659 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| -3074 (-342 *3)) (|:| |special| (-342 *3)))) + (-5 *1 (-660 *5 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-654)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-658)) (-5 *2 (-83))))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) + (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-83))))) (((*1 *1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) - (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-688)) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) + (-14 *4 (-579 (-1080))))) ((*1 *1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) - (-14 *4 (-578 (-1075))))) - ((*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) + (-12 (-5 *2 (-688)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) + (-14 *4 (-579 (-1080))))) + ((*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-314)) (-4 *2 (-308)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-282 *3 *4 *5 *2)) (-4 *3 (-308)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-4 *2 (-287 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-282 *3 *4 *5 *2)) (-4 *3 (-308)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-4 *2 (-287 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-688)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-144)))) - ((*1 *1) (-12 (-4 *2 (-144)) (-4 *1 (-656 *2 *3)) (-4 *3 (-1140 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) - (-4 *1 (-656 *5 *6)) (-4 *5 (-144)) (-4 *6 (-1140 *5)) (-5 *2 (-625 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-652)) (-5 *2 (-823)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-654)) (-5 *2 (-687))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) - ((*1 *1 *1) (|partial| -4 *1 (-654)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-489)))) - ((*1 *1 *1) (|partial| -4 *1 (-654)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-650 *2)) (-4 *2 (-308))))) + ((*1 *1) (-12 (-4 *2 (-144)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1145 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1169 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) + (-4 *1 (-657 *5 *6)) (-4 *5 (-144)) (-4 *6 (-1145 *5)) (-5 *2 (-626 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-824)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-688))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-824)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-688))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-490)))) + ((*1 *1 *1) (|partial| -4 *1 (-655)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-144)) (-4 *2 (-490)))) + ((*1 *1 *1) (|partial| -4 *1 (-655)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-308))))) (((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-144)) (-5 *1 (-241 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1140 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1145 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-643 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-647 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-144)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1145 *3 *4 *5)) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) - (-14 *4 (-1075)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-478)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) + (-12 (-5 *2 (-1150 *3 *4 *5)) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) + (-14 *4 (-1080)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-479)))) + ((*1 *2 *1) (-12 (-5 *2 (-479)) (-5 *1 (-342 *3)) (-4 *3 (-490)))) ((*1 *2 *1) - (-12 (-4 *2 (-1003)) (-5 *1 (-645 *3 *2 *4)) (-4 *3 (-749)) + (-12 (-4 *2 (-1006)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-750)) (-14 *4 - (-1 (-83) (-2 (|:| -2382 *3) (|:| -2383 *2)) - (-2 (|:| -2382 *3) (|:| -2383 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-823)) (-4 *1 (-313)))) + (-1 (-83) (-2 (|:| -2387 *3) (|:| -2388 *2)) + (-2 (|:| -2387 *3) (|:| -2388 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-824)) (-4 *1 (-314)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1164 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295)))) + (-12 (-5 *3 (-824)) (-5 *2 (-1169 *4)) (-5 *1 (-461 *4)) (-4 *4 (-295)))) ((*1 *2 *1) - (-12 (-4 *2 (-749)) (-5 *1 (-645 *2 *3 *4)) (-4 *3 (-1003)) + (-12 (-4 *2 (-750)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1006)) (-14 *4 - (-1 (-83) (-2 (|:| -2382 *2) (|:| -2383 *3)) - (-2 (|:| -2382 *2) (|:| -2383 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-644 *3 *2)) (-4 *2 (-1140 *3))))) + (-1 (-83) (-2 (|:| -2387 *2) (|:| -2388 *3)) + (-2 (|:| -2387 *2) (|:| -2388 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1145 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-954)) (-5 *2 (-1164 *3)) (-5 *1 (-644 *3 *4)) - (-4 *4 (-1140 *3))))) + (-12 (-4 *3 (-955)) (-5 *2 (-1169 *3)) (-5 *1 (-645 *3 *4)) + (-4 *4 (-1145 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1164 *3)) (-4 *3 (-954)) (-5 *1 (-644 *3 *4)) - (-4 *4 (-1140 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-955)) (-5 *1 (-645 *3 *4)) + (-4 *4 (-1145 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-954)) (-5 *2 (-1164 *3)) (-5 *1 (-644 *3 *4)) - (-4 *4 (-1140 *3))))) + (-12 (-4 *3 (-955)) (-5 *2 (-1169 *3)) (-5 *1 (-645 *3 *4)) + (-4 *4 (-1145 *3))))) (((*1 *2) - (-12 (-4 *3 (-954)) (-5 *2 (-862 (-644 *3 *4))) (-5 *1 (-644 *3 *4)) - (-4 *4 (-1140 *3))))) + (-12 (-4 *3 (-955)) (-5 *2 (-863 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) + (-4 *4 (-1145 *3))))) (((*1 *2) - (-12 (-4 *3 (-954)) (-5 *2 (-862 (-644 *3 *4))) (-5 *1 (-644 *3 *4)) - (-4 *4 (-1140 *3))))) + (-12 (-4 *3 (-955)) (-5 *2 (-863 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) + (-4 *4 (-1145 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-295)) (-4 *2 (-954)) (-5 *1 (-644 *2 *3)) (-4 *3 (-1140 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1059)) (-5 *1 (-642))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1059)) (-5 *1 (-642))))) -(((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1059)) (-5 *1 (-642))))) + (-12 (-4 *2 (-295)) (-4 *2 (-955)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1145 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1063)) (-5 *1 (-643))))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1063)) (-5 *1 (-643))))) +(((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1063)) (-5 *1 (-643))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-578 (-1070 *13))) (-5 *3 (-1070 *13)) - (-5 *4 (-578 *12)) (-5 *5 (-578 *10)) (-5 *6 (-578 *13)) - (-5 *7 (-578 (-578 (-2 (|:| -3059 (-687)) (|:| |pcoef| *13))))) - (-5 *8 (-578 (-687))) (-5 *9 (-1164 (-578 (-1070 *10)))) (-4 *12 (-749)) - (-4 *10 (-254)) (-4 *13 (-854 *10 *11 *12)) (-4 *11 (-710)) - (-5 *1 (-639 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-579 (-1075 *13))) (-5 *3 (-1075 *13)) + (-5 *4 (-579 *12)) (-5 *5 (-579 *10)) (-5 *6 (-579 *13)) + (-5 *7 (-579 (-579 (-2 (|:| -3063 (-688)) (|:| |pcoef| *13))))) + (-5 *8 (-579 (-688))) (-5 *9 (-1169 (-579 (-1075 *10)))) (-4 *12 (-750)) + (-4 *10 (-254)) (-4 *13 (-855 *10 *11 *12)) (-4 *11 (-711)) + (-5 *1 (-640 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-578 *11)) (-5 *5 (-578 (-1070 *9))) (-5 *6 (-578 *9)) - (-5 *7 (-578 *12)) (-5 *8 (-578 (-687))) (-4 *11 (-749)) (-4 *9 (-254)) - (-4 *12 (-854 *9 *10 *11)) (-4 *10 (-710)) (-5 *2 (-578 (-1070 *12))) - (-5 *1 (-639 *10 *11 *9 *12)) (-5 *3 (-1070 *12))))) + (|partial| -12 (-5 *4 (-579 *11)) (-5 *5 (-579 (-1075 *9))) (-5 *6 (-579 *9)) + (-5 *7 (-579 *12)) (-5 *8 (-579 (-688))) (-4 *11 (-750)) (-4 *9 (-254)) + (-4 *12 (-855 *9 *10 *11)) (-4 *10 (-711)) (-5 *2 (-579 (-1075 *12))) + (-5 *1 (-640 *10 *11 *9 *12)) (-5 *3 (-1075 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-578 (-1070 *11))) (-5 *3 (-1070 *11)) - (-5 *4 (-578 *10)) (-5 *5 (-578 *8)) (-5 *6 (-578 (-687))) - (-5 *7 (-1164 (-578 (-1070 *8)))) (-4 *10 (-749)) (-4 *8 (-254)) - (-4 *11 (-854 *8 *9 *10)) (-4 *9 (-710)) (-5 *1 (-639 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-579 (-1075 *11))) (-5 *3 (-1075 *11)) + (-5 *4 (-579 *10)) (-5 *5 (-579 *8)) (-5 *6 (-579 (-688))) + (-5 *7 (-1169 (-579 (-1075 *8)))) (-4 *10 (-750)) (-4 *8 (-254)) + (-4 *11 (-855 *8 *9 *10)) (-4 *9 (-711)) (-5 *1 (-640 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1075)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-634 *3 *5 *6 *7)) - (-4 *3 (-548 (-467))) (-4 *5 (-1114)) (-4 *6 (-1114)) (-4 *7 (-1114)))) + (-12 (-5 *4 (-1080)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) + (-4 *3 (-549 (-468))) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *3 *5 *6)) - (-4 *3 (-548 (-467))) (-4 *5 (-1114)) (-4 *6 (-1114))))) + (-12 (-5 *4 (-1080)) (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *3 *5 *6)) + (-4 *3 (-549 (-468))) (-4 *5 (-1119)) (-4 *6 (-1119))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *4 *5 *6)) - (-4 *4 (-548 (-467))) (-4 *5 (-1114)) (-4 *6 (-1114))))) + (-12 (-5 *3 (-1080)) (-5 *2 (-1 *6 *5)) (-5 *1 (-639 *4 *5 *6)) + (-4 *4 (-549 (-468))) (-4 *5 (-1119)) (-4 *6 (-1119))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-637 *3 *4)) - (-4 *3 (-1114)) (-4 *4 (-1114))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1075))) (-5 *3 (-1075)) (-5 *1 (-467)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-638 *3 *4)) + (-4 *3 (-1119)) (-4 *4 (-1119))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-579 (-1080))) (-5 *3 (-1080)) (-5 *1 (-468)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-637 *3)) (-4 *3 (-549 (-468))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1075)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) + (-12 (-5 *2 (-1080)) (-5 *1 (-637 *3)) (-4 *3 (-549 (-468))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1075)) (-5 *1 (-636 *3)) (-4 *3 (-548 (-467))))) + (-12 (-5 *2 (-1080)) (-5 *1 (-637 *3)) (-4 *3 (-549 (-468))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-578 (-1075))) (-5 *2 (-1075)) (-5 *1 (-636 *3)) - (-4 *3 (-548 (-467)))))) + (-12 (-5 *4 (-579 (-1080))) (-5 *2 (-1080)) (-5 *1 (-637 *3)) + (-4 *3 (-549 (-468)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-5 *2 (-1 (-177) (-177))) (-5 *1 (-635 *3)) - (-4 *3 (-548 (-467))))) + (-12 (-5 *4 (-1080)) (-5 *2 (-1 (-177) (-177))) (-5 *1 (-636 *3)) + (-4 *3 (-549 (-468))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1075)) (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-635 *3)) - (-4 *3 (-548 (-467)))))) + (-12 (-5 *4 (-1080)) (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-636 *3)) + (-4 *3 (-549 (-468)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-634 *4 *5 *6 *7)) - (-4 *4 (-548 (-467))) (-4 *5 (-1114)) (-4 *6 (-1114)) (-4 *7 (-1114))))) + (-12 (-5 *3 (-1080)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) + (-4 *4 (-549 (-468))) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-624 *3 *4 *5 *6)) - (-4 *6 (-622 *3 *4 *5)))) + (-12 (-4 *3 (-254)) (-4 *3 (-144)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-625 *3 *4 *5 *6)) + (-4 *6 (-623 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1956 *3) (|:| -2883 *3))) (-5 *1 (-633 *3)) + (-12 (-5 *2 (-2 (|:| -1961 *3) (|:| -2887 *3))) (-5 *1 (-634 *3)) (-4 *3 (-254))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-254)) (-5 *1 (-633 *3))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-254)) (-5 *1 (-634 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-254)) (-5 *1 (-634 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-254)) (-5 *1 (-634 *3))))) (((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-1 (-177) (-177) (-177) (-177))) - (-5 *2 (-1 (-847 (-177)) (-177) (-177))) (-5 *1 (-631))))) + (-5 *2 (-1 (-848 (-177)) (-177) (-177))) (-5 *1 (-632))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) - (-5 *6 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-631))))) + (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) + (-5 *6 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-632))))) (((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) "undefined")) - (-5 *5 (-992 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1033 (-177))) - (-5 *1 (-631))))) + (-5 *5 (-994 (-177))) (-5 *6 (-579 (-218))) (-5 *2 (-1037 (-177))) + (-5 *1 (-632))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-3 (-1 (-177) (-177) (-177) (-177)) "undefined")) - (-5 *5 (-992 (-177))) (-5 *6 (-578 (-218))) (-5 *2 (-1033 (-177))) - (-5 *1 (-631)))) + (-5 *5 (-994 (-177))) (-5 *6 (-579 (-218))) (-5 *2 (-1037 (-177))) + (-5 *1 (-632)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-177))) - (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-631)))) + (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-177))) + (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-632)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1033 (-177))) (-5 *3 (-1 (-847 (-177)) (-177) (-177))) - (-5 *4 (-992 (-177))) (-5 *5 (-578 (-218))) (-5 *1 (-631))))) + (-12 (-5 *2 (-1037 (-177))) (-5 *3 (-1 (-848 (-177)) (-177) (-177))) + (-5 *4 (-994 (-177))) (-5 *5 (-579 (-218))) (-5 *1 (-632))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1140 *4)))) + (-12 (-5 *3 (-688)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1145 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1140 *3))))) + (-12 (-5 *3 (-479)) (-5 *1 (-631 *2)) (-4 *2 (-1145 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-2 (|:| |deg| (-687)) (|:| -2555 *5)))) (-4 *5 (-1140 *4)) - (-4 *4 (-295)) (-5 *2 (-578 *5)) (-5 *1 (-168 *4 *5)))) + (-12 (-5 *3 (-579 (-2 (|:| |deg| (-688)) (|:| -2560 *5)))) (-4 *5 (-1145 *4)) + (-4 *4 (-295)) (-5 *2 (-579 *5)) (-5 *1 (-168 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-2 (|:| -3708 *5) (|:| -3924 (-478))))) (-5 *4 (-478)) - (-4 *5 (-1140 *4)) (-5 *2 (-578 *5)) (-5 *1 (-630 *5))))) + (-12 (-5 *3 (-579 (-2 (|:| -3714 *5) (|:| -3930 (-479))))) (-5 *4 (-479)) + (-4 *5 (-1145 *4)) (-5 *2 (-579 *5)) (-5 *1 (-631 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-478)) (-5 *2 (-578 (-2 (|:| -3708 *3) (|:| -3924 *4)))) - (-5 *1 (-630 *3)) (-4 *3 (-1140 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-630 *2)) (-4 *2 (-1140 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1114)) (-4 *2 (-1003)))) - ((*1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1003))))) + (-12 (-5 *4 (-479)) (-5 *2 (-579 (-2 (|:| -3714 *3) (|:| -3930 *4)))) + (-5 *1 (-631 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-631 *2)) (-4 *2 (-1145 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1119)) (-4 *2 (-1006)))) + ((*1 *1 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1006))))) (((*1 *2 *1) - (-12 (-4 *1 (-629 *3)) (-4 *3 (-1003)) - (-5 *2 (-578 (-2 (|:| |entry| *3) (|:| -1929 (-687)))))))) -(((*1 *1 *2) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765)))))) -(((*1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-547 (-765)))))) + (-12 (-4 *1 (-630 *3)) (-4 *3 (-1006)) + (-5 *2 (-579 (-2 (|:| |entry| *3) (|:| -1934 (-688)))))))) +(((*1 *1 *2) (-12 (-5 *1 (-628 *2)) (-4 *2 (-548 (-766)))))) +(((*1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-548 (-766)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-625 *4)) (-5 *3 (-687)) (-4 *4 (-954)) (-5 *1 (-626 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-954)) (-5 *1 (-626 *3))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3)) (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-489)) (-4 *3 (-144)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *1 (-624 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) + (-12 (-5 *2 (-626 *4)) (-5 *3 (-688)) (-4 *4 (-955)) (-5 *1 (-627 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-626 *3)) (-4 *3 (-955)) (-5 *1 (-627 *3))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-490)) (-4 *3 (-144)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3)) (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-490)) (-4 *3 (-144)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *1 (-625 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-478)) (-4 *3 (-144)) (-4 *5 (-317 *3)) (-4 *6 (-317 *3)) - (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-622 *3 *5 *6))))) + (-12 (-5 *4 (-479)) (-4 *3 (-144)) (-4 *5 (-318 *3)) (-4 *6 (-318 *3)) + (-5 *1 (-625 *3 *5 *6 *2)) (-4 *2 (-623 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-478)) (-4 *3 (-144)) (-4 *5 (-317 *3)) (-4 *6 (-317 *3)) - (-5 *1 (-624 *3 *5 *6 *2)) (-4 *2 (-622 *3 *5 *6))))) + (-12 (-5 *4 (-479)) (-4 *3 (-144)) (-4 *5 (-318 *3)) (-4 *6 (-318 *3)) + (-5 *1 (-625 *3 *5 *6 *2)) (-4 *2 (-623 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-478)) (-4 *4 (-144)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4)) - (-5 *1 (-624 *4 *5 *6 *2)) (-4 *2 (-622 *4 *5 *6))))) + (-12 (-5 *3 (-479)) (-4 *4 (-144)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4)) + (-5 *1 (-625 *4 *5 *6 *2)) (-4 *2 (-623 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2))))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2))))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-622 *2 *3 *4)) (-4 *2 (-954)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2))))) + (-12 (-4 *1 (-623 *2 *3 *4)) (-4 *2 (-955)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3))))) + (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3))))) + (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3))))) + (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-478)) (-4 *1 (-622 *3 *4 *5)) (-4 *3 (-954)) (-4 *4 (-317 *3)) - (-4 *5 (-317 *3))))) + (-12 (-5 *2 (-479)) (-4 *1 (-623 *3 *4 *5)) (-4 *3 (-955)) (-4 *4 (-318 *3)) + (-4 *5 (-318 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-620 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-621 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-620 *4 *5 *6)) (-4 *4 (-1003))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-621 *4 *5 *6)) (-4 *4 (-1006))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-620 *4 *5 *6)) (-4 *5 (-1003))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1006)) (-4 *6 (-1006)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-621 *4 *5 *6)) (-4 *5 (-1006))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-621 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-620 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1006)) (-4 *4 (-1006)) (-4 *6 (-1006)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-621 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-619 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-620 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) - (-5 *1 (-619 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1006)) (-4 *5 (-1006)) (-5 *2 (-1 *5)) + (-5 *1 (-620 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-619 *4 *3)) (-4 *4 (-1003)) - (-4 *3 (-1003))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-620 *4 *3)) (-4 *4 (-1006)) + (-4 *3 (-1006))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-687) *2)) (-5 *4 (-687)) (-4 *2 (-1003)) - (-5 *1 (-614 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-687) *3)) (-4 *3 (-1003)) (-5 *1 (-618 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-618 *2)) (-4 *2 (-1003))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-618 *2)) (-4 *2 (-1003)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-578 *5) (-578 *5))) (-5 *4 (-478)) (-5 *2 (-578 *5)) - (-5 *1 (-618 *5)) (-4 *5 (-1003))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1003))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1115))) (-5 *3 (-1115)) (-5 *1 (-617))))) + (-12 (-5 *3 (-1 *2 (-688) *2)) (-5 *4 (-688)) (-4 *2 (-1006)) + (-5 *1 (-615 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-688) *3)) (-4 *3 (-1006)) (-5 *1 (-619 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-619 *2)) (-4 *2 (-1006))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-619 *2)) (-4 *2 (-1006)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-579 *5) (-579 *5))) (-5 *4 (-479)) (-5 *2 (-579 *5)) + (-5 *1 (-619 *5)) (-4 *5 (-1006))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-619 *3)) (-4 *3 (-1006))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-579 (-1120))) (-5 *3 (-1120)) (-5 *1 (-618))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) - (-4 *2 (-1003)) (-5 *1 (-616 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-615 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-615 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1006)) (-4 *6 (-1006)) + (-4 *2 (-1006)) (-5 *1 (-617 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-616 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-616 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-687)) (-4 *2 (-1003)) (-5 *1 (-614 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1114)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1114)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1114)) (-5 *2 (-83))))) -(((*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-611 *3)) (-4 *3 (-1114)) (-5 *2 (-687))))) -(((*1 *2 *3) - (-12 (-5 *3 (-732 *4)) (-4 *4 (-749)) (-5 *2 (-83)) (-5 *1 (-609 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-732 *3)) (-4 *3 (-749)) (-5 *1 (-609 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-688)) (-4 *2 (-1006)) (-5 *1 (-615 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1119)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1119)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1119)) (-5 *2 (-83))))) +(((*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-612 *3)) (-4 *3 (-1119)) (-5 *2 (-688))))) +(((*1 *2 *3) + (-12 (-5 *3 (-733 *4)) (-4 *4 (-750)) (-5 *2 (-83)) (-5 *1 (-610 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-733 *3)) (-4 *3 (-750)) (-5 *1 (-610 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-732 *3)) (-4 *3 (-749)) (-5 *1 (-609 *3))))) + (|partial| -12 (-5 *2 (-733 *3)) (-4 *3 (-750)) (-5 *1 (-610 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *5)) (-5 *4 (-823)) (-4 *5 (-749)) - (-5 *2 (-58 (-578 (-609 *5)))) (-5 *1 (-609 *5))))) + (-12 (-5 *3 (-579 *5)) (-5 *4 (-824)) (-4 *5 (-750)) + (-5 *2 (-58 (-579 (-610 *5)))) (-5 *1 (-610 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *5)) (-5 *4 (-823)) (-4 *5 (-749)) (-5 *2 (-578 (-609 *5))) - (-5 *1 (-609 *5))))) + (-12 (-5 *3 (-579 *5)) (-5 *4 (-824)) (-4 *5 (-750)) (-5 *2 (-579 (-610 *5))) + (-5 *1 (-610 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *7)) (-4 *7 (-749)) - (-4 *8 (-854 *5 *6 *7)) (-4 *5 (-489)) (-4 *6 (-710)) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 *7)) (-4 *7 (-750)) + (-4 *8 (-855 *5 *6 *7)) (-4 *5 (-490)) (-4 *6 (-711)) (-5 *2 - (-2 (|:| |particular| (-3 (-1164 (-343 *8)) "failed")) - (|:| -1994 (-578 (-1164 (-343 *8)))))) - (-5 *1 (-606 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1169 (-344 *8)) "failed")) + (|:| -1999 (-579 (-1169 (-344 *8)))))) + (-5 *1 (-607 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *6 (-13 (-317 *5) (-10 -7 (-6 -3972)))) - (-4 *4 (-13 (-317 *5) (-10 -7 (-6 -3972)))) (-5 *2 (-83)) - (-5 *1 (-604 *5 *6 *4 *3)) (-4 *3 (-622 *5 *6 *4)))) + (-12 (-4 *5 (-308)) (-4 *6 (-13 (-318 *5) (-10 -7 (-6 -3978)))) + (-4 *4 (-13 (-318 *5) (-10 -7 (-6 -3978)))) (-5 *2 (-83)) + (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-623 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-1164 *5)) (-4 *5 (-308)) (-5 *2 (-83)) - (-5 *1 (-605 *5))))) + (-12 (-5 *3 (-626 *5)) (-5 *4 (-1169 *5)) (-4 *5 (-308)) (-5 *2 (-83)) + (-5 *1 (-606 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-578 (-1070 *4))) (-5 *3 (-1070 *4)) (-4 *4 (-814)) - (-5 *1 (-600 *4))))) -(((*1 *1 *1) (-4 *1 (-599)))) -(((*1 *1 *1 *1) (-4 *1 (-599)))) -(((*1 *1 *1 *1) (-4 *1 (-599)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) + (|partial| -12 (-5 *2 (-579 (-1075 *4))) (-5 *3 (-1075 *4)) (-4 *4 (-815)) + (-5 *1 (-601 *4))))) +(((*1 *1 *1) (-4 *1 (-600)))) +(((*1 *1 *1 *1) (-4 *1 (-600)))) +(((*1 *1 *1 *1) (-4 *1 (-600)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-597 *4 *2)) - (-4 *2 (-595 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-598 *4 *2)) + (-4 *2 (-596 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-595 *3)) (-4 *3 (-954)) (-4 *3 (-308)))) + (-12 (-5 *2 (-688)) (-4 *1 (-596 *3)) (-4 *3 (-955)) (-4 *3 (-308)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-687)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-5 *1 (-597 *5 *2)) - (-4 *2 (-595 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308)))) + (-12 (-5 *3 (-688)) (-5 *4 (-1 *5 *5)) (-4 *5 (-308)) (-5 *1 (-598 *5 *2)) + (-4 *2 (-596 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)) (-4 *2 (-308)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-597 *4 *2)) - (-4 *2 (-595 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-308)) (-5 *1 (-598 *4 *2)) + (-4 *2 (-596 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-308) (-118) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *5 (-1140 *4)) (-5 *2 (-578 (-592 (-343 *5)))) (-5 *1 (-596 *4 *5)) - (-5 *3 (-592 (-343 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-954)) (-4 *2 (-308))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1131 (-478))) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-588 *3)) (-4 *3 (-1114))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-588 *3)) (-4 *3 (-1114)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-588 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 *4)))) - (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-308) (-118) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *5 (-1145 *4)) (-5 *2 (-579 (-593 (-344 *5)))) (-5 *1 (-597 *4 *5)) + (-5 *3 (-593 (-344 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-955)) (-4 *2 (-308))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-479))) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-589 *3)) (-4 *3 (-1119))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-589 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-589 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) + (-12 (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 *4)))) + (-5 *1 (-587 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 *4)))) (-4 *3 (-1003)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-306 *3)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 *4)))) (-4 *3 (-1006)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-587 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-306 *3)) (-4 *3 (-1006)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-329 *4)) (-4 *4 (-1003)) (-5 *2 (-687)))) + (-12 (-5 *3 (-479)) (-4 *1 (-330 *4)) (-4 *4 (-1006)) (-5 *2 (-688)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) + (-12 (-5 *3 (-479)) (-4 *2 (-23)) (-5 *1 (-587 *4 *2 *5)) (-4 *4 (-1006)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-270 *2 *4)) (-4 *4 (-102)) (-4 *2 (-1003)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-306 *2)) (-4 *2 (-1003)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-4 *1 (-329 *2)) (-4 *2 (-1003)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489)))) + (-12 (-5 *3 (-479)) (-4 *1 (-270 *2 *4)) (-4 *4 (-102)) (-4 *2 (-1006)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *1 (-306 *2)) (-4 *2 (-1006)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-4 *1 (-330 *2)) (-4 *2 (-1006)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-479)) (-4 *2 (-1006)) (-5 *1 (-587 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-317 *2)) (-4 *2 (-1114)))) - ((*1 *2 *2) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1140 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *2 (-1119)))) + ((*1 *2 *2) (-12 (-4 *3 (-955)) (-5 *1 (-378 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-317 *2)) (-4 *2 (-1114)))) + (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-318 *2)) (-4 *2 (-1119)))) ((*1 *1 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-587 *2 *3 *4)) (-4 *2 (-1006)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) + (-12 (-5 *2 (-83)) (-5 *1 (-587 *3 *4 *5)) (-4 *3 (-1006)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-478) (-478))) (-5 *1 (-306 *3)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-1 (-479) (-479))) (-5 *1 (-306 *3)) (-4 *3 (-1006)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-687) (-687))) (-4 *1 (-329 *3)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-1 (-688) (-688))) (-4 *1 (-330 *3)) (-4 *3 (-1006)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) - (-4 *3 (-1003))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-587 *3 *4 *5)) + (-4 *3 (-1006))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-102)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-306 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-329 *3)) (-4 *3 (-1003)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-102)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-306 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-330 *3)) (-4 *3 (-1006)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-587 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-584 *3)) (-4 *3 (-1003))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003))))) -(((*1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-578 *3)) (-4 *3 (-1114))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1003)) (-4 *2 (-1114))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1003)) (-4 *2 (-1114))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1003)) (-4 *2 (-1114))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-585 *3)) (-4 *3 (-1006))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-1006))))) +(((*1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-579 *3)) (-4 *3 (-1119))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1006)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1006)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1006)) (-4 *2 (-1119))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 *3)) (-4 *3 (-308)) (-5 *1 (-576 *3 *4)) - (-14 *4 (-578 (-1075)))))) + (-12 (-5 *2 (-579 *3)) (-4 *3 (-308)) (-5 *1 (-577 *3 *4)) + (-14 *4 (-579 (-1080)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) - (-5 *2 (-2 (|:| |mat| (-625 *4)) (|:| |vec| (-1164 *4)))))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-576 *4)) (-4 *4 (-955)) + (-5 *2 (-2 (|:| |mat| (-626 *4)) (|:| |vec| (-1169 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-625 *4))))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-576 *4)) (-4 *4 (-955)) (-5 *2 (-626 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *1)) (-5 *4 (-1164 *1)) (-4 *1 (-575 *5)) (-4 *5 (-954)) - (-5 *2 (-2 (|:| |mat| (-625 *5)) (|:| |vec| (-1164 *5)))))) + (-12 (-5 *3 (-626 *1)) (-5 *4 (-1169 *1)) (-4 *1 (-576 *5)) (-4 *5 (-955)) + (-5 *2 (-2 (|:| |mat| (-626 *5)) (|:| |vec| (-1169 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-625 *1)) (-4 *1 (-575 *4)) (-4 *4 (-954)) (-5 *2 (-625 *4))))) + (-12 (-5 *3 (-626 *1)) (-4 *1 (-576 *4)) (-4 *4 (-955)) (-5 *2 (-626 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 *3)) (-4 *3 (-308)) (-5 *1 (-574 *3 *4)) - (-14 *4 (-578 (-1075)))))) + (-12 (-5 *2 (-579 *3)) (-4 *3 (-308)) (-5 *1 (-575 *3 *4)) + (-14 *4 (-579 (-1080)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 *5))) - (-4 *5 (-308)) (-4 *5 (-489)) (-5 *2 (-1164 *5)) (-5 *1 (-573 *5 *4)))) + (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 *5))) + (-4 *5 (-308)) (-4 *5 (-490)) (-5 *2 (-1169 *5)) (-5 *1 (-574 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1164 *4)) (-4 *4 (-13 (-954) (-575 *5))) - (-2540 (-4 *5 (-308))) (-4 *5 (-489)) (-5 *2 (-1164 (-343 *5))) - (-5 *1 (-573 *5 *4))))) + (|partial| -12 (-5 *3 (-1169 *4)) (-4 *4 (-13 (-955) (-576 *5))) + (-2545 (-4 *5 (-308))) (-4 *5 (-490)) (-5 *2 (-1169 (-344 *5))) + (-5 *1 (-574 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1164 *5)) (-4 *5 (-13 (-954) (-575 *4))) - (-4 *4 (-489)) (-5 *2 (-1164 *4)) (-5 *1 (-573 *4 *5))))) + (|partial| -12 (-5 *3 (-1169 *5)) (-4 *5 (-13 (-955) (-576 *4))) + (-4 *4 (-490)) (-5 *2 (-1169 *4)) (-5 *1 (-574 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 *5)) (-4 *5 (-13 (-954) (-575 *4))) (-4 *4 (-489)) - (-5 *2 (-83)) (-5 *1 (-573 *4 *5))))) + (-12 (-5 *3 (-1169 *5)) (-4 *5 (-13 (-955) (-576 *4))) (-4 *4 (-490)) + (-5 *2 (-83)) (-5 *1 (-574 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-245 (-743 *3))) (-4 *3 (-13 (-27) (-1100) (-357 *5))) - (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-12 (-5 *4 (-245 (-744 *3))) (-4 *3 (-13 (-27) (-1105) (-358 *5))) + (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 - (-3 (-743 *3) - (-2 (|:| |leftHandLimit| (-3 (-743 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-743 *3) #1#))) + (-3 (-744 *3) + (-2 (|:| |leftHandLimit| (-3 (-744 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-744 *3) #1#))) "failed")) - (-5 *1 (-570 *5 *3)))) + (-5 *1 (-571 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-245 *3)) (-5 *5 (-1059)) - (-4 *3 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-743 *3)) - (-5 *1 (-570 *6 *3)))) + (|partial| -12 (-5 *4 (-245 *3)) (-5 *5 (-1063)) + (-4 *3 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-744 *3)) + (-5 *1 (-571 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-245 (-743 (-850 *5)))) (-4 *5 (-385)) + (-12 (-5 *4 (-245 (-744 (-851 *5)))) (-4 *5 (-386)) (-5 *2 - (-3 (-743 (-343 (-850 *5))) - (-2 (|:| |leftHandLimit| (-3 (-743 (-343 (-850 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-743 (-343 (-850 *5))) #2#))) + (-3 (-744 (-344 (-851 *5))) + (-2 (|:| |leftHandLimit| (-3 (-744 (-344 (-851 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-744 (-344 (-851 *5))) #2#))) #3="failed")) - (-5 *1 (-571 *5)) (-5 *3 (-343 (-850 *5))))) + (-5 *1 (-572 *5)) (-5 *3 (-344 (-851 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-245 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-385)) + (-12 (-5 *4 (-245 (-344 (-851 *5)))) (-5 *3 (-344 (-851 *5))) (-4 *5 (-386)) (-5 *2 - (-3 (-743 *3) - (-2 (|:| |leftHandLimit| (-3 (-743 *3) #2#)) - (|:| |rightHandLimit| (-3 (-743 *3) #2#))) + (-3 (-744 *3) + (-2 (|:| |leftHandLimit| (-3 (-744 *3) #2#)) + (|:| |rightHandLimit| (-3 (-744 *3) #2#))) #3#)) - (-5 *1 (-571 *5)))) + (-5 *1 (-572 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-245 (-343 (-850 *6)))) (-5 *5 (-1059)) - (-5 *3 (-343 (-850 *6))) (-4 *6 (-385)) (-5 *2 (-743 *3)) - (-5 *1 (-571 *6))))) + (|partial| -12 (-5 *4 (-245 (-344 (-851 *6)))) (-5 *5 (-1063)) + (-5 *3 (-344 (-851 *6))) (-4 *6 (-386)) (-5 *2 (-744 *3)) + (-5 *1 (-572 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-245 (-736 *3))) - (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-736 *3)) - (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) + (|partial| -12 (-5 *4 (-245 (-737 *3))) + (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-737 *3)) + (-5 *1 (-571 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-245 (-736 (-850 *5)))) (-4 *5 (-385)) - (-5 *2 (-736 (-343 (-850 *5)))) (-5 *1 (-571 *5)) (-5 *3 (-343 (-850 *5))))) + (-12 (-5 *4 (-245 (-737 (-851 *5)))) (-4 *5 (-386)) + (-5 *2 (-737 (-344 (-851 *5)))) (-5 *1 (-572 *5)) (-5 *3 (-344 (-851 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-245 (-343 (-850 *5)))) (-5 *3 (-343 (-850 *5))) (-4 *5 (-385)) - (-5 *2 (-736 *3)) (-5 *1 (-571 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-566))))) -(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-1003)))) - ((*1 *1 *1) (-5 *1 (-566)))) + (-12 (-5 *4 (-245 (-344 (-851 *5)))) (-5 *3 (-344 (-851 *5))) (-4 *5 (-386)) + (-5 *2 (-737 *3)) (-5 *1 (-572 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-567))))) +(((*1 *1 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-1006)))) + ((*1 *1 *1) (-5 *1 (-567)))) (((*1 *2 *3) - (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-578 (-1075))) (-4 *5 (-385)) - (-5 *2 (-414 *4 *5)) (-5 *1 (-565 *4 *5))))) + (-12 (-5 *3 (-203 *4 *5)) (-14 *4 (-579 (-1080))) (-4 *5 (-386)) + (-5 *2 (-415 *4 *5)) (-5 *1 (-566 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-578 (-203 *4 *5))) (-5 *2 (-203 *4 *5)) (-14 *4 (-578 (-1075))) - (-4 *5 (-385)) (-5 *1 (-565 *4 *5))))) + (-12 (-5 *3 (-579 (-203 *4 *5))) (-5 *2 (-203 *4 *5)) (-14 *4 (-579 (-1080))) + (-4 *5 (-386)) (-5 *1 (-566 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-578 (-414 *4 *5))) (-5 *3 (-766 *4)) (-14 *4 (-578 (-1075))) - (-4 *5 (-385)) (-5 *1 (-565 *4 *5))))) + (-12 (-5 *2 (-579 (-415 *4 *5))) (-5 *3 (-767 *4)) (-14 *4 (-579 (-1080))) + (-4 *5 (-386)) (-5 *1 (-566 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-203 *5 *6))) (-4 *6 (-385)) - (-5 *2 (-203 *5 *6)) (-14 *5 (-578 (-1075))) (-5 *1 (-565 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *1 (-218)))) + (-12 (-5 *3 (-579 *6)) (-5 *4 (-579 (-203 *5 *6))) (-4 *6 (-386)) + (-5 *2 (-203 *5 *6)) (-14 *5 (-579 (-1080))) (-5 *1 (-566 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-848 (-177)) (-848 (-177)))) (-5 *1 (-218)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-847 (-177)) (-847 (-177)))) (-5 *3 (-578 (-218))) + (-12 (-5 *2 (-1 (-848 (-177)) (-848 (-177)))) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-414 *5 *6))) (-5 *3 (-414 *5 *6)) (-14 *5 (-578 (-1075))) - (-4 *6 (-385)) (-5 *2 (-1164 *6)) (-5 *1 (-565 *5 *6))))) + (-12 (-5 *4 (-579 (-415 *5 *6))) (-5 *3 (-415 *5 *6)) (-14 *5 (-579 (-1080))) + (-4 *6 (-386)) (-5 *2 (-1169 *6)) (-5 *1 (-566 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 (-414 *3 *4))) (-14 *3 (-578 (-1075))) (-4 *4 (-385)) - (-5 *1 (-565 *3 *4))))) + (-12 (-5 *2 (-579 (-415 *3 *4))) (-14 *3 (-579 (-1080))) (-4 *4 (-386)) + (-5 *1 (-566 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-578 (-414 *5 *6))) (-5 *4 (-766 *5)) (-14 *5 (-578 (-1075))) - (-5 *2 (-414 *5 *6)) (-5 *1 (-565 *5 *6)) (-4 *6 (-385)))) + (-12 (-5 *3 (-579 (-415 *5 *6))) (-5 *4 (-767 *5)) (-14 *5 (-579 (-1080))) + (-5 *2 (-415 *5 *6)) (-5 *1 (-566 *5 *6)) (-4 *6 (-386)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-414 *5 *6))) (-5 *4 (-766 *5)) (-14 *5 (-578 (-1075))) - (-5 *2 (-414 *5 *6)) (-5 *1 (-565 *5 *6)) (-4 *6 (-385))))) + (-12 (-5 *3 (-579 (-415 *5 *6))) (-5 *4 (-767 *5)) (-14 *5 (-579 (-1080))) + (-5 *2 (-415 *5 *6)) (-5 *1 (-566 *5 *6)) (-4 *6 (-386))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-414 *4 *5))) (-14 *4 (-578 (-1075))) (-4 *5 (-385)) - (-5 *2 (-578 (-203 *4 *5))) (-5 *1 (-565 *4 *5))))) + (-12 (-5 *3 (-579 (-415 *4 *5))) (-14 *4 (-579 (-1080))) (-4 *5 (-386)) + (-5 *2 (-579 (-203 *4 *5))) (-5 *1 (-566 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-578 (-1075))) (-4 *5 (-385)) - (-5 *2 (-2 (|:| |glbase| (-578 (-203 *4 *5))) (|:| |glval| (-578 (-478))))) - (-5 *1 (-565 *4 *5)) (-5 *3 (-578 (-203 *4 *5)))))) + (-12 (-14 *4 (-579 (-1080))) (-4 *5 (-386)) + (-5 *2 (-2 (|:| |glbase| (-579 (-203 *4 *5))) (|:| |glval| (-579 (-479))))) + (-5 *1 (-566 *4 *5)) (-5 *3 (-579 (-203 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-414 *4 *5))) (-14 *4 (-578 (-1075))) (-4 *5 (-385)) - (-5 *2 (-2 (|:| |gblist| (-578 (-203 *4 *5))) (|:| |gvlist| (-578 (-478))))) - (-5 *1 (-565 *4 *5))))) + (-12 (-5 *3 (-579 (-415 *4 *5))) (-14 *4 (-579 (-1080))) (-4 *5 (-386)) + (-5 *2 (-2 (|:| |gblist| (-579 (-203 *4 *5))) (|:| |gvlist| (-579 (-479))))) + (-5 *1 (-566 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) - (-4 *2 (-13 (-357 *3) (-908) (-1100))))) - ((*1 *1 *1) (-4 *1 (-564)))) + (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) + (-4 *2 (-13 (-358 *3) (-909) (-1105))))) + ((*1 *1 *1) (-4 *1 (-565)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) - (-4 *2 (-13 (-357 *3) (-908) (-1100))))) - ((*1 *1 *1) (-4 *1 (-564)))) + (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) + (-4 *2 (-13 (-358 *3) (-909) (-1105))))) + ((*1 *1 *1) (-4 *1 (-565)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) - (-4 *2 (-13 (-357 *3) (-908) (-1100))))) - ((*1 *1 *1) (-4 *1 (-564)))) + (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) + (-4 *2 (-13 (-358 *3) (-909) (-1105))))) + ((*1 *1 *1) (-4 *1 (-565)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) - (-4 *2 (-13 (-357 *3) (-908) (-1100))))) - ((*1 *1 *1) (-4 *1 (-564)))) + (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) + (-4 *2 (-13 (-358 *3) (-909) (-1105))))) + ((*1 *1 *1) (-4 *1 (-565)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) - (-4 *2 (-13 (-357 *3) (-908) (-1100))))) - ((*1 *1 *1) (-4 *1 (-564)))) + (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) + (-4 *2 (-13 (-358 *3) (-909) (-1105))))) + ((*1 *1 *1) (-4 *1 (-565)))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-563 *3 *2)) - (-4 *2 (-13 (-357 *3) (-908) (-1100))))) - ((*1 *1 *1) (-4 *1 (-564)))) + (-12 (-4 *3 (-490)) (-5 *1 (-564 *3 *2)) + (-4 *2 (-13 (-358 *3) (-909) (-1105))))) + ((*1 *1 *1) (-4 *1 (-565)))) (((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-357 *4)))) + (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-358 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-129 *4 *5)) - (-4 *5 (-357 *4)))) + (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-129 *4 *5)) + (-4 *5 (-358 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-227 *4 *5)) - (-4 *5 (-13 (-357 *4) (-908))))) + (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-227 *4 *5)) + (-4 *5 (-13 (-358 *4) (-909))))) ((*1 *2 *3) (-12 (-5 *3 (-84)) (-5 *2 (-83)) (-5 *1 (-249 *4)) (-4 *4 (-250)))) ((*1 *2 *3) (-12 (-4 *1 (-250)) (-5 *3 (-84)) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *5 (-1003)) (-5 *2 (-83)) (-5 *1 (-356 *4 *5)) - (-4 *4 (-357 *5)))) + (-12 (-5 *3 (-84)) (-4 *5 (-1006)) (-5 *2 (-83)) (-5 *1 (-357 *4 *5)) + (-4 *4 (-358 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-367 *4 *5)) - (-4 *5 (-357 *4)))) + (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-368 *4 *5)) + (-4 *5 (-358 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-84)) (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-563 *4 *5)) - (-4 *5 (-13 (-357 *4) (-908) (-1100)))))) + (-12 (-5 *3 (-84)) (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-564 *4 *5)) + (-4 *5 (-13 (-358 *4) (-909) (-1105)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) - (-14 *6 (-578 (-1075))) - (-5 *2 (-578 (-1046 *5 (-463 (-766 *6)) (-766 *6) (-696 *5 (-766 *6))))) - (-5 *1 (-562 *5 *6))))) + (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) + (-14 *6 (-579 (-1080))) + (-5 *2 (-579 (-1050 *5 (-464 (-767 *6)) (-767 *6) (-697 *5 (-767 *6))))) + (-5 *1 (-563 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-696 *5 (-766 *6)))) (-5 *4 (-83)) (-4 *5 (-385)) - (-14 *6 (-578 (-1075))) (-5 *2 (-578 (-951 *5 *6))) (-5 *1 (-562 *5 *6))))) + (-12 (-5 *3 (-579 (-697 *5 (-767 *6)))) (-5 *4 (-83)) (-4 *5 (-386)) + (-14 *6 (-579 (-1080))) (-5 *2 (-579 (-952 *5 *6))) (-5 *1 (-563 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 (-850 *3))) (-4 *3 (-385)) (-5 *1 (-305 *3 *4)) - (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-579 (-851 *3))) (-4 *3 (-386)) (-5 *1 (-305 *3 *4)) + (-14 *4 (-579 (-1080))))) ((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-380 *3 *4 *5 *6)))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-386)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-381 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-578 *7)) (-5 *3 (-1059)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *7)))) + (-12 (-5 *2 (-579 *7)) (-5 *3 (-1063)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-381 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-578 *7)) (-5 *3 (-1059)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-380 *4 *5 *6 *7)))) + (-12 (-5 *2 (-579 *7)) (-5 *3 (-1063)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-381 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) - (-4 *5 (-854 *2 *3 *4)))) + (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) + (-4 *5 (-855 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-578 (-696 *3 (-766 *4)))) (-4 *3 (-385)) - (-14 *4 (-578 (-1075))) (-5 *1 (-562 *3 *4))))) + (-12 (-5 *2 (-579 (-697 *3 (-767 *4)))) (-4 *3 (-386)) + (-14 *4 (-579 (-1080))) (-5 *1 (-563 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-578 (-850 *3))) (-4 *3 (-385)) (-5 *1 (-305 *3 *4)) - (-14 *4 (-578 (-1075))))) + (|partial| -12 (-5 *2 (-579 (-851 *3))) (-4 *3 (-386)) (-5 *1 (-305 *3 *4)) + (-14 *4 (-579 (-1080))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-578 (-696 *3 (-766 *4)))) (-4 *3 (-385)) - (-14 *4 (-578 (-1075))) (-5 *1 (-562 *3 *4))))) + (|partial| -12 (-5 *2 (-579 (-697 *3 (-767 *4)))) (-4 *3 (-386)) + (-14 *4 (-579 (-1080))) (-5 *1 (-563 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-850 *4))) (-4 *4 (-385)) (-5 *2 (-83)) - (-5 *1 (-305 *4 *5)) (-14 *5 (-578 (-1075))))) + (-12 (-5 *3 (-579 (-851 *4))) (-4 *4 (-386)) (-5 *2 (-83)) + (-5 *1 (-305 *4 *5)) (-14 *5 (-579 (-1080))))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-696 *4 (-766 *5)))) (-4 *4 (-385)) - (-14 *5 (-578 (-1075))) (-5 *2 (-83)) (-5 *1 (-562 *4 *5))))) + (-12 (-5 *3 (-579 (-697 *4 (-767 *5)))) (-4 *4 (-386)) + (-14 *5 (-579 (-1080))) (-5 *2 (-83)) (-5 *1 (-563 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *4)) (-4 *4 (-749)) (-5 *2 (-578 (-601 *4 *5))) - (-5 *1 (-561 *4 *5 *6)) (-4 *5 (-13 (-144) (-649 (-343 (-478))))) - (-14 *6 (-823))))) + (-12 (-5 *3 (-579 *4)) (-4 *4 (-750)) (-5 *2 (-579 (-602 *4 *5))) + (-5 *1 (-562 *4 *5 *6)) (-4 *5 (-13 (-144) (-650 (-344 (-479))))) + (-14 *6 (-824))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| |k| (-609 *3)) (|:| |c| *4)))) - (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) - (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823))))) + (-12 (-5 *2 (-579 (-2 (|:| |k| (-610 *3)) (|:| |c| *4)))) + (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) + (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-578 (-245 *4))) (-5 *1 (-561 *3 *4 *5)) (-4 *3 (-749)) - (-4 *4 (-13 (-144) (-649 (-343 (-478))))) (-14 *5 (-823))))) + (-12 (-5 *2 (-579 (-245 *4))) (-5 *1 (-562 *3 *4 *5)) (-4 *3 (-750)) + (-4 *4 (-13 (-144) (-650 (-344 (-479))))) (-14 *5 (-824))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1762 (-578 (-2 (|:| |irr| *10) (|:| -2377 (-478))))))) - (-5 *6 (-578 *3)) (-5 *7 (-578 *8)) (-4 *8 (-749)) (-4 *3 (-254)) - (-4 *10 (-854 *3 *9 *8)) (-4 *9 (-710)) + (|:| -1767 (-579 (-2 (|:| |irr| *10) (|:| -2382 (-479))))))) + (-5 *6 (-579 *3)) (-5 *7 (-579 *8)) (-4 *8 (-750)) (-4 *3 (-254)) + (-4 *10 (-855 *3 *9 *8)) (-4 *9 (-711)) (-5 *2 - (-2 (|:| |polfac| (-578 *10)) (|:| |correct| *3) - (|:| |corrfact| (-578 (-1070 *3))))) - (-5 *1 (-559 *8 *9 *3 *10)) (-5 *4 (-578 (-1070 *3)))))) + (-2 (|:| |polfac| (-579 *10)) (|:| |correct| *3) + (|:| |corrfact| (-579 (-1075 *3))))) + (-5 *1 (-560 *8 *9 *3 *10)) (-5 *4 (-579 (-1075 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-687)) (-5 *5 (-578 *3)) (-4 *3 (-254)) (-4 *6 (-749)) - (-4 *7 (-710)) (-5 *2 (-83)) (-5 *1 (-559 *6 *7 *3 *8)) - (-4 *8 (-854 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *6 (-969 *3 *4 *5)) - (-5 *1 (-558 *3 *4 *5 *6 *7 *2)) (-4 *7 (-975 *3 *4 *5 *6)) - (-4 *2 (-1010 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-489)) (-5 *1 (-557 *2 *3)) (-4 *3 (-1140 *2))))) + (-12 (-5 *4 (-688)) (-5 *5 (-579 *3)) (-4 *3 (-254)) (-4 *6 (-750)) + (-4 *7 (-711)) (-5 *2 (-83)) (-5 *1 (-560 *6 *7 *3 *8)) + (-4 *8 (-855 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *6 (-970 *3 *4 *5)) + (-5 *1 (-559 *3 *4 *5 *6 *7 *2)) (-4 *7 (-976 *3 *4 *5 *6)) + (-4 *2 (-1013 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-490)) (-5 *1 (-558 *2 *3)) (-4 *3 (-1145 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) - (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-1100) (-864) (-29 *4)))))) -(((*1 *1) (-5 *1 (-551)))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) + (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-1105) (-865) (-29 *4)))))) +(((*1 *1) (-5 *1 (-552)))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478))))) - (-4 *5 (-1140 *4)) (-5 *2 (-1070 (-343 *5))) (-5 *1 (-549 *4 *5)) - (-5 *3 (-343 *5)))) + (|partial| -12 (-4 *4 (-13 (-118) (-27) (-944 (-479)) (-944 (-344 (-479))))) + (-4 *5 (-1145 *4)) (-5 *2 (-1075 (-344 *5))) (-5 *1 (-550 *4 *5)) + (-5 *3 (-344 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-341 *6) *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-118) (-27) (-943 (-478)) (-943 (-343 (-478))))) - (-5 *2 (-1070 (-343 *6))) (-5 *1 (-549 *5 *6)) (-5 *3 (-343 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-545 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) - (-5 *1 (-546 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-545 *4)) (-5 *1 (-546 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) -(((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-1100)))) - ((*1 *2 *1) (-12 (-5 *1 (-277 *2)) (-4 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-545 *3)) (-4 *3 (-1003))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-578 *1)) (-4 *1 (-250)))) + (|partial| -12 (-5 *4 (-1 (-342 *6) *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-118) (-27) (-944 (-479)) (-944 (-344 (-479))))) + (-5 *2 (-1075 (-344 *6))) (-5 *1 (-550 *5 *6)) (-5 *3 (-344 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-546 *4)) (-4 *4 (-1006)) (-4 *2 (-1006)) + (-5 *1 (-547 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-546 *4)) (-5 *1 (-547 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) +(((*1 *2 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144)) (-4 *2 (-1105)))) + ((*1 *2 *1) (-12 (-5 *1 (-277 *2)) (-4 *2 (-750)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 *3)) (-5 *1 (-546 *3)) (-4 *3 (-1006))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-84)) (-5 *3 (-579 *1)) (-4 *1 (-250)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-84)))) - ((*1 *1 *2) (-12 (-5 *2 (-1075)) (-5 *1 (-545 *3)) (-4 *3 (-1003)))) + ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-546 *3)) (-4 *3 (-1006)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-84)) (-5 *3 (-578 *5)) (-5 *4 (-687)) (-4 *5 (-1003)) - (-5 *1 (-545 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1075)) (-5 *1 (-545 *3)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-84)) (-5 *3 (-579 *5)) (-5 *4 (-688)) (-4 *5 (-1006)) + (-5 *1 (-546 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1080)) (-5 *1 (-546 *3)) (-4 *3 (-1006))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-544 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-83))))) + (-12 (-4 *1 (-545 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-544 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-578 *3))))) + (-12 (-4 *1 (-545 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-579 *3))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-544 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) -(((*1 *1) (-5 *1 (-537))) ((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-537))) ((*1 *1) (-5 *1 (-539))) ((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-540)))) + (|partial| -12 (-4 *1 (-545 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) +(((*1 *1) (-5 *1 (-538))) ((*1 *1) (-5 *1 (-540))) ((*1 *1) (-5 *1 (-541)))) +(((*1 *1) (-5 *1 (-540))) ((*1 *1) (-5 *1 (-541)))) +(((*1 *1) (-5 *1 (-540))) ((*1 *1) (-5 *1 (-541)))) +(((*1 *1) (-5 *1 (-540))) ((*1 *1) (-5 *1 (-541)))) +(((*1 *1) (-5 *1 (-538))) ((*1 *1) (-5 *1 (-540))) ((*1 *1) (-5 *1 (-541)))) +(((*1 *1) (-5 *1 (-541)))) +(((*1 *1) (-5 *1 (-541)))) +(((*1 *1) (-5 *1 (-538))) ((*1 *1) (-5 *1 (-541)))) +(((*1 *1) (-5 *1 (-541)))) (((*1 *1) (-5 *1 (-540)))) -(((*1 *1) (-5 *1 (-537))) ((*1 *1) (-5 *1 (-540)))) (((*1 *1) (-5 *1 (-540)))) (((*1 *1) (-5 *1 (-539)))) (((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) +(((*1 *1) (-5 *1 (-539)))) (((*1 *1) (-5 *1 (-538)))) (((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-538)))) -(((*1 *1) (-5 *1 (-537)))) -(((*1 *1) (-5 *1 (-537)))) -(((*1 *2 *1) (-12 (-5 *2 (-862 (-156 (-110)))) (-5 *1 (-278)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-534))))) +(((*1 *2 *1) (-12 (-5 *2 (-863 (-156 (-110)))) (-5 *1 (-278)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-535))))) (((*1 *2 *1) - (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1114)) (-5 *2 (-578 *4))))) + (-12 (-4 *1 (-534 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1119)) (-5 *2 (-579 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1114)) (-5 *2 (-83))))) + (-12 (-4 *1 (-534 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1119)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-533 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1114)) (-5 *2 (-578 *3))))) + (-12 (-4 *1 (-534 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1119)) (-5 *2 (-579 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3971)) (-4 *1 (-533 *4 *3)) (-4 *4 (-1003)) - (-4 *3 (-1114)) (-4 *3 (-1003)) (-5 *2 (-83))))) + (-12 (|has| *1 (-6 -3977)) (-4 *1 (-534 *4 *3)) (-4 *4 (-1006)) + (-4 *3 (-1119)) (-4 *3 (-1006)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-533 *2 *3)) (-4 *3 (-1114)) (-4 *2 (-1003)) (-4 *2 (-749))))) + (-12 (-4 *1 (-534 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1006)) (-4 *2 (-750))))) (((*1 *2 *1) - (-12 (-4 *1 (-533 *2 *3)) (-4 *3 (-1114)) (-4 *2 (-1003)) (-4 *2 (-749))))) + (-12 (-4 *1 (-534 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1006)) (-4 *2 (-750))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1114)) (-4 *3 (-317 *2)) - (-4 *4 (-317 *2)))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-318 *2)) + (-4 *4 (-318 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -3972)) (-4 *1 (-533 *3 *2)) (-4 *3 (-1003)) - (-4 *2 (-1114))))) + (-12 (|has| *1 (-6 -3978)) (-4 *1 (-534 *3 *2)) (-4 *3 (-1006)) + (-4 *2 (-1119))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -3972)) (-4 *1 (-533 *3 *4)) (-4 *3 (-1003)) - (-4 *4 (-1114)) (-5 *2 (-1170))))) + (-12 (|has| *1 (-6 -3978)) (-4 *1 (-534 *3 *4)) (-4 *3 (-1006)) + (-4 *4 (-1119)) (-5 *2 (-1175))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-578 (-545 *2))) (-5 *4 (-578 (-1075))) - (-4 *2 (-13 (-357 (-140 *5)) (-908) (-1100))) (-4 *5 (-489)) - (-5 *1 (-529 *5 *6 *2)) (-4 *6 (-13 (-357 *5) (-908) (-1100)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-140 *5)) (-5 *1 (-529 *4 *5 *3)) - (-4 *5 (-13 (-357 *4) (-908) (-1100))) - (-4 *3 (-13 (-357 (-140 *4)) (-908) (-1100)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *2 (-13 (-357 (-140 *4)) (-908) (-1100))) - (-5 *1 (-529 *4 *3 *2)) (-4 *3 (-13 (-357 *4) (-908) (-1100)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-489)) (-4 *2 (-13 (-357 *4) (-908) (-1100))) - (-5 *1 (-529 *4 *2 *3)) (-4 *3 (-13 (-357 (-140 *4)) (-908) (-1100)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-140 *5)) (-4 *5 (-13 (-357 *4) (-908) (-1100))) (-4 *4 (-489)) - (-4 *2 (-13 (-357 (-140 *4)) (-908) (-1100))) (-5 *1 (-529 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-526)))) -(((*1 *1) (-5 *1 (-526)))) -(((*1 *1) (-5 *1 (-526)))) -(((*1 *1) (-5 *1 (-526)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-526))) (-5 *1 (-526))))) + (-12 (-5 *3 (-579 (-546 *2))) (-5 *4 (-579 (-1080))) + (-4 *2 (-13 (-358 (-140 *5)) (-909) (-1105))) (-4 *5 (-490)) + (-5 *1 (-530 *5 *6 *2)) (-4 *6 (-13 (-358 *5) (-909) (-1105)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-490)) (-5 *2 (-140 *5)) (-5 *1 (-530 *4 *5 *3)) + (-4 *5 (-13 (-358 *4) (-909) (-1105))) + (-4 *3 (-13 (-358 (-140 *4)) (-909) (-1105)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-490)) (-4 *2 (-13 (-358 (-140 *4)) (-909) (-1105))) + (-5 *1 (-530 *4 *3 *2)) (-4 *3 (-13 (-358 *4) (-909) (-1105)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-490)) (-4 *2 (-13 (-358 *4) (-909) (-1105))) + (-5 *1 (-530 *4 *2 *3)) (-4 *3 (-13 (-358 (-140 *4)) (-909) (-1105)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-140 *5)) (-4 *5 (-13 (-358 *4) (-909) (-1105))) (-4 *4 (-490)) + (-4 *2 (-13 (-358 (-140 *4)) (-909) (-1105))) (-5 *1 (-530 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-527)))) +(((*1 *1) (-5 *1 (-527)))) +(((*1 *1) (-5 *1 (-527)))) +(((*1 *1) (-5 *1 (-527)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-527))) (-5 *1 (-527))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-932 (-743 (-478)))) - (-5 *3 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *4)))) (-4 *4 (-954)) - (-5 *1 (-524 *4))))) + (-12 (-5 *2 (-933 (-744 (-479)))) + (-5 *3 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *4)))) (-4 *4 (-955)) + (-5 *1 (-525 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-932 (-743 (-478)))) (-5 *1 (-524 *3)) (-4 *3 (-954))))) + (-12 (-5 *2 (-933 (-744 (-479)))) (-5 *1 (-525 *3)) (-4 *3 (-955))))) (((*1 *2 *1) - (-12 (-5 *2 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *3)))) (-5 *1 (-524 *3)) - (-4 *3 (-954))))) + (-12 (-5 *2 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *3)))) (-5 *1 (-525 *3)) + (-4 *3 (-955))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-83)) (-5 *1 (-524 *3)) (-4 *3 (-954))))) -(((*1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-954))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-524 *2)) (-4 *2 (-954))))) + (|partial| -12 (-5 *2 (-83)) (-5 *1 (-525 *3)) (-4 *3 (-955))))) +(((*1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-955))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-525 *2)) (-4 *2 (-955))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1055 (-2 (|:| |k| (-478)) (|:| |c| *6)))) - (-5 *4 (-932 (-743 (-478)))) (-5 *5 (-1075)) (-5 *7 (-343 (-478))) - (-4 *6 (-954)) (-5 *2 (-765)) (-5 *1 (-524 *6))))) + (-12 (-5 *3 (-1059 (-2 (|:| |k| (-479)) (|:| |c| *6)))) + (-5 *4 (-933 (-744 (-479)))) (-5 *5 (-1080)) (-5 *7 (-344 (-479))) + (-4 *6 (-955)) (-5 *2 (-766)) (-5 *1 (-525 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-343 (-478))) (-5 *1 (-524 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-954))))) + (-12 (-5 *2 (-344 (-479))) (-5 *1 (-525 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *1 *1) - (-12 (-5 *1 (-524 *2)) (-4 *2 (-38 (-343 (-478)))) (-4 *2 (-954))))) + (-12 (-5 *1 (-525 *2)) (-4 *2 (-38 (-344 (-479)))) (-4 *2 (-955))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-1010 *5 *6 *7 *8)) - (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) - (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-521 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-579 *3)) (-4 *3 (-1013 *5 *6 *7 *8)) + (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) + (-4 *8 (-970 *5 *6 *7)) (-5 *2 (-83)) (-5 *1 (-522 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-823))) (-5 *4 (-806 (-478))) (-5 *2 (-625 (-478))) - (-5 *1 (-520)))) + (-12 (-5 *3 (-579 (-824))) (-5 *4 (-807 (-479))) (-5 *2 (-626 (-479))) + (-5 *1 (-521)))) ((*1 *2 *3) - (-12 (-5 *3 (-578 (-823))) (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-520)))) + (-12 (-5 *3 (-579 (-824))) (-5 *2 (-579 (-626 (-479)))) (-5 *1 (-521)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-823))) (-5 *4 (-578 (-806 (-478)))) - (-5 *2 (-578 (-625 (-478)))) (-5 *1 (-520))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-823))) (-5 *2 (-687)) (-5 *1 (-520))))) + (-12 (-5 *3 (-579 (-824))) (-5 *4 (-579 (-807 (-479)))) + (-5 *2 (-579 (-626 (-479)))) (-5 *1 (-521))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-824))) (-5 *2 (-688)) (-5 *1 (-521))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) - (-5 *1 (-364 *4 *2)) (-4 *2 (-13 (-1100) (-29 *4))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) + (-5 *1 (-365 *4 *2)) (-4 *2 (-13 (-1105) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 *5))) (-5 *4 (-1075)) (-4 *5 (-118)) - (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-261 *5)) - (-5 *1 (-519 *5))))) + (-12 (-5 *3 (-344 (-851 *5))) (-5 *4 (-1080)) (-4 *5 (-118)) + (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-261 *5)) + (-5 *1 (-520 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-513 *2)) (-4 *2 (-13 (-29 *4) (-1100))) (-5 *1 (-515 *4 *2)) - (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))))) + (-12 (-5 *3 (-514 *2)) (-4 *2 (-13 (-29 *4) (-1105))) (-5 *1 (-516 *4 *2)) + (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))))) ((*1 *2 *3) - (-12 (-5 *3 (-513 (-343 (-850 *4)))) - (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *2 (-261 *4)) - (-5 *1 (-519 *4))))) + (-12 (-5 *3 (-514 (-344 (-851 *4)))) + (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-261 *4)) + (-5 *1 (-520 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-518 *4)) (-4 *4 (-295))))) -(((*1 *2 *2) (-12 (-5 *1 (-517 *2)) (-4 *2 (-477))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-517 *2)) (-4 *2 (-477))))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-517 *3)) (-4 *3 (-477))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-687)) (-5 *1 (-517 *2)) (-4 *2 (-477))))) + (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-519 *4)) (-4 *4 (-295))))) +(((*1 *2 *2) (-12 (-5 *1 (-518 *2)) (-4 *2 (-478))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-518 *2)) (-4 *2 (-478))))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-518 *3)) (-4 *3 (-478))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-688)) (-5 *1 (-518 *2)) (-4 *2 (-478))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-687)) (-5 *1 (-517 *2)) (-4 *2 (-477)))) + (|partial| -12 (-5 *3 (-688)) (-5 *1 (-518 *2)) (-4 *2 (-478)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2675 *3) (|:| -2383 (-687)))) (-5 *1 (-517 *3)) - (-4 *3 (-477))))) + (-12 (-5 *2 (-2 (|:| -2679 *3) (|:| -2388 (-688)))) (-5 *1 (-518 *3)) + (-4 *3 (-478))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-687)) (-5 *2 (-83)) (-5 *1 (-517 *3)) (-4 *3 (-477))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-526)) (-5 *1 (-516))))) + (-12 (-5 *4 (-688)) (-5 *2 (-83)) (-5 *1 (-518 *3)) (-4 *3 (-478))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-527)) (-5 *1 (-517))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-527)) (-5 *1 (-517))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-527)) (-5 *1 (-517))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-578 - (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1070 *2)) - (|:| |logand| (-1070 *2))))) - (-5 *4 (-578 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-308)) - (-5 *1 (-513 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-513 *2)) (-4 *2 (-308))))) + (-579 + (-2 (|:| |scalar| (-344 (-479))) (|:| |coeff| (-1075 *2)) + (|:| |logand| (-1075 *2))))) + (-5 *4 (-579 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-308)) + (-5 *1 (-514 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-514 *2)) (-4 *2 (-308))))) (((*1 *2 *1) (-12 (-5 *2 - (-578 - (-2 (|:| |scalar| (-343 (-478))) (|:| |coeff| (-1070 *3)) - (|:| |logand| (-1070 *3))))) - (-5 *1 (-513 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-513 *3)) (-4 *3 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-513 *3)) (-4 *3 (-308))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-512))))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-509))))) -(((*1 *2 *1) (-12 (-5 *2 (-164 4 (-99))) (-5 *1 (-509))))) -(((*1 *2 *3) (-12 (-5 *3 (-424)) (-5 *2 (-627 (-509))) (-5 *1 (-509))))) -(((*1 *2 *1) (-12 (-5 *2 (-627 (-1 (-467) (-578 (-467))))) (-5 *1 (-84)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-467) (-578 (-467)))) (-5 *1 (-84)))) - ((*1 *1) (-5 *1 (-508)))) -(((*1 *1) (-5 *1 (-508)))) -(((*1 *1) (-5 *1 (-508)))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-507)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-507))))) + (-579 + (-2 (|:| |scalar| (-344 (-479))) (|:| |coeff| (-1075 *3)) + (|:| |logand| (-1075 *3))))) + (-5 *1 (-514 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) + (-12 (-5 *2 (-579 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-514 *3)) (-4 *3 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-514 *3)) (-4 *3 (-308))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-513))))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-510))))) +(((*1 *2 *1) (-12 (-5 *2 (-164 4 (-99))) (-5 *1 (-510))))) +(((*1 *2 *3) (-12 (-5 *3 (-425)) (-5 *2 (-628 (-510))) (-5 *1 (-510))))) +(((*1 *2 *1) (-12 (-5 *2 (-628 (-1 (-468) (-579 (-468))))) (-5 *1 (-84)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-468) (-579 (-468)))) (-5 *1 (-84)))) + ((*1 *1) (-5 *1 (-509)))) +(((*1 *1) (-5 *1 (-509)))) +(((*1 *1) (-5 *1 (-509)))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-508)))) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-508))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1075)) - (-4 *4 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-505 *4 *2)) - (-4 *2 (-13 (-1100) (-864) (-1039) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1080)) + (-4 *4 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) (-5 *1 (-506 *4 *2)) + (-4 *2 (-13 (-1105) (-865) (-1043) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-308)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-504 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-505 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) (-5 *2 - (-2 (|:| |ir| (-513 (-343 *6))) (|:| |specpart| (-343 *6)) + (-2 (|:| |ir| (-514 (-344 *6))) (|:| |specpart| (-344 *6)) (|:| |polypart| *6))) - (-5 *1 (-504 *5 *6)) (-5 *3 (-343 *6))))) + (-5 *1 (-505 *5 *6)) (-5 *3 (-344 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-557 *4 *5)) - (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3118 *4) (|:| |sol?| (-83))) (-478) *4)) - (-4 *4 (-308)) (-4 *5 (-1140 *4)) (-5 *1 (-504 *4 *5))))) + (|partial| -12 (-5 *2 (-558 *4 *5)) + (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3121 *4) (|:| |sol?| (-83))) (-479) *4)) + (-4 *4 (-308)) (-4 *5 (-1145 *4)) (-5 *1 (-505 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-308)) (-5 *1 (-504 *4 *2)) (-4 *2 (-1140 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2123 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-308)) (-5 *1 (-505 *4 *2)) (-4 *2 (-1145 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-578 (-343 *7))) (-4 *7 (-1140 *6)) - (-5 *3 (-343 *7)) (-4 *6 (-308)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-579 (-344 *7))) (-4 *7 (-1145 *6)) + (-5 *3 (-344 *7)) (-4 *6 (-308)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-504 *6 *7))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-505 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) - (-5 *2 (-2 (|:| -2118 (-343 *6)) (|:| |coeff| (-343 *6)))) - (-5 *1 (-504 *5 *6)) (-5 *3 (-343 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) + (-5 *2 (-2 (|:| -2123 (-344 *6)) (|:| |coeff| (-344 *6)))) + (-5 *1 (-505 *5 *6)) (-5 *3 (-344 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3118 *7) (|:| |sol?| (-83))) (-478) *7)) - (-5 *6 (-578 (-343 *8))) (-4 *7 (-308)) (-4 *8 (-1140 *7)) (-5 *3 (-343 *8)) + (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3121 *7) (|:| |sol?| (-83))) (-479) *7)) + (-5 *6 (-579 (-344 *8))) (-4 *7 (-308)) (-4 *8 (-1145 *7)) (-5 *3 (-344 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-504 *7 *8))))) + (-5 *1 (-505 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2118 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-578 (-343 *8))) (-4 *7 (-308)) (-4 *8 (-1140 *7)) (-5 *3 (-343 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2123 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-579 (-344 *8))) (-4 *7 (-308)) (-4 *8 (-1145 *7)) (-5 *3 (-344 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-504 *7 *8))))) + (-5 *1 (-505 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3118 *6) (|:| |sol?| (-83))) (-478) *6)) - (-4 *6 (-308)) (-4 *7 (-1140 *6)) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3121 *6) (|:| |sol?| (-83))) (-479) *6)) + (-4 *6 (-308)) (-4 *7 (-1145 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-343 *7)) (|:| |a0| *6)) - (-2 (|:| -2118 (-343 *7)) (|:| |coeff| (-343 *7))) "failed")) - (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) + (-3 (-2 (|:| |answer| (-344 *7)) (|:| |a0| *6)) + (-2 (|:| -2123 (-344 *7)) (|:| |coeff| (-344 *7))) "failed")) + (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2118 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-308)) (-4 *7 (-1140 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2123 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-308)) (-4 *7 (-1145 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-343 *7)) (|:| |a0| *6)) - (-2 (|:| -2118 (-343 *7)) (|:| |coeff| (-343 *7))) "failed")) - (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) + (-3 (-2 (|:| |answer| (-344 *7)) (|:| |a0| *6)) + (-2 (|:| -2123 (-344 *7)) (|:| |coeff| (-344 *7))) "failed")) + (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-578 *6) "failed") (-478) *6 *6)) - (-4 *6 (-308)) (-4 *7 (-1140 *6)) - (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) - (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-579 *6) "failed") (-479) *6 *6)) + (-4 *6 (-308)) (-4 *7 (-1145 *6)) + (-5 *2 (-2 (|:| |answer| (-514 (-344 *7))) (|:| |a0| *6))) + (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3118 *6) (|:| |sol?| (-83))) (-478) *6)) - (-4 *6 (-308)) (-4 *7 (-1140 *6)) - (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) - (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) + (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3121 *6) (|:| |sol?| (-83))) (-479) *6)) + (-4 *6 (-308)) (-4 *7 (-1145 *6)) + (-5 *2 (-2 (|:| |answer| (-514 (-344 *7))) (|:| |a0| *6))) + (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2118 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-308)) (-4 *7 (-1140 *6)) - (-5 *2 (-2 (|:| |answer| (-513 (-343 *7))) (|:| |a0| *6))) - (-5 *1 (-504 *6 *7)) (-5 *3 (-343 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2123 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-308)) (-4 *7 (-1145 *6)) + (-5 *2 (-2 (|:| |answer| (-514 (-344 *7))) (|:| |a0| *6))) + (-5 *1 (-505 *6 *7)) (-5 *3 (-344 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-513 *3) *3 (-1075))) + (-12 (-5 *5 (-1 (-514 *3) *3 (-1080))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1075))) - (-4 *3 (-236)) (-4 *3 (-564)) (-4 *3 (-943 *4)) (-4 *3 (-357 *7)) - (-5 *4 (-1075)) (-4 *7 (-548 (-793 (-478)))) (-4 *7 (-385)) - (-4 *7 (-789 (-478))) (-4 *7 (-1003)) (-5 *2 (-513 *3)) - (-5 *1 (-503 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1080))) + (-4 *3 (-236)) (-4 *3 (-565)) (-4 *3 (-944 *4)) (-4 *3 (-358 *7)) + (-5 *4 (-1080)) (-4 *7 (-549 (-794 (-479)))) (-4 *7 (-386)) + (-4 *7 (-790 (-479))) (-4 *7 (-1006)) (-5 *2 (-514 *3)) + (-5 *1 (-504 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-385)) (-4 *4 (-1003)) (-5 *1 (-503 *4 *2)) - (-4 *2 (-236)) (-4 *2 (-357 *4))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-386)) (-4 *4 (-1006)) (-5 *1 (-504 *4 *2)) + (-4 *2 (-236)) (-4 *2 (-358 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-4 *4 (-1003)) (-5 *1 (-503 *4 *2)) - (-4 *2 (-357 *4))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-4 *4 (-1006)) (-5 *1 (-504 *4 *2)) + (-4 *2 (-358 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *6)) (-5 *4 (-1075)) (-4 *6 (-357 *5)) (-4 *5 (-1003)) - (-5 *2 (-578 (-545 *6))) (-5 *1 (-503 *5 *6))))) + (-12 (-5 *3 (-579 *6)) (-5 *4 (-1080)) (-4 *6 (-358 *5)) (-4 *5 (-1006)) + (-5 *2 (-579 (-546 *6))) (-5 *1 (-504 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-578 (-545 *6))) (-5 *4 (-1075)) (-5 *2 (-545 *6)) - (-4 *6 (-357 *5)) (-4 *5 (-1003)) (-5 *1 (-503 *5 *6))))) + (-12 (-5 *3 (-579 (-546 *6))) (-5 *4 (-1080)) (-5 *2 (-546 *6)) + (-4 *6 (-358 *5)) (-4 *5 (-1006)) (-5 *1 (-504 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-545 *5))) (-4 *4 (-1003)) (-5 *2 (-545 *5)) - (-5 *1 (-503 *4 *5)) (-4 *5 (-357 *4))))) + (-12 (-5 *3 (-579 (-546 *5))) (-4 *4 (-1006)) (-5 *2 (-546 *5)) + (-5 *1 (-504 *4 *5)) (-4 *5 (-358 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-578 (-545 *5))) (-5 *3 (-1075)) (-4 *5 (-357 *4)) - (-4 *4 (-1003)) (-5 *1 (-503 *4 *5))))) + (-12 (-5 *2 (-579 (-546 *5))) (-5 *3 (-1080)) (-4 *5 (-358 *4)) + (-4 *4 (-1006)) (-5 *1 (-504 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)) (-118))) - (-5 *2 (-2 (|:| -2118 (-343 (-850 *5))) (|:| |coeff| (-343 (-850 *5))))) - (-5 *1 (-500 *5)) (-5 *3 (-343 (-850 *5)))))) + (|partial| -12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)) (-118))) + (-5 *2 (-2 (|:| -2123 (-344 (-851 *5))) (|:| |coeff| (-344 (-851 *5))))) + (-5 *1 (-501 *5)) (-5 *3 (-344 (-851 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-578 (-343 (-850 *6)))) - (-5 *3 (-343 (-850 *6))) (-4 *6 (-13 (-489) (-943 (-478)) (-118))) + (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-579 (-344 (-851 *6)))) + (-5 *3 (-344 (-851 *6))) (-4 *6 (-13 (-490) (-944 (-479)) (-118))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-500 *6))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-501 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-343 (-850 *4))) (-5 *3 (-1075)) - (-4 *4 (-13 (-489) (-943 (-478)) (-118))) (-5 *1 (-500 *4))))) + (|partial| -12 (-5 *2 (-344 (-851 *4))) (-5 *3 (-1080)) + (-4 *4 (-13 (-490) (-944 (-479)) (-118))) (-5 *1 (-501 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-513 *3)) (-5 *1 (-364 *5 *3)) (-4 *3 (-13 (-1100) (-29 *5))))) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-514 *3)) (-5 *1 (-365 *5 *3)) (-4 *3 (-13 (-1105) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)) (-118))) - (-5 *2 (-513 (-343 (-850 *5)))) (-5 *1 (-500 *5)) (-5 *3 (-343 (-850 *5)))))) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)) (-118))) + (-5 *2 (-514 (-344 (-851 *5)))) (-5 *1 (-501 *5)) (-5 *3 (-344 (-851 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-478)) (-5 *1 (-499 *3)) (-4 *3 (-943 *2))))) + (|partial| -12 (-5 *2 (-479)) (-5 *1 (-500 *3)) (-4 *3 (-944 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-578 (-343 *6))) (-5 *3 (-343 *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-308) (-118) (-943 (-478)))) + (|partial| -12 (-5 *4 (-579 (-344 *6))) (-5 *3 (-344 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-308) (-118) (-944 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-498 *5 *6))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-499 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-308) (-118) (-943 (-478)))) (-4 *5 (-1140 *4)) - (-5 *2 (-2 (|:| -2118 (-343 *5)) (|:| |coeff| (-343 *5)))) - (-5 *1 (-498 *4 *5)) (-5 *3 (-343 *5))))) + (|partial| -12 (-4 *4 (-13 (-308) (-118) (-944 (-479)))) (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| -2123 (-344 *5)) (|:| |coeff| (-344 *5)))) + (-5 *1 (-499 *4 *5)) (-5 *3 (-344 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-343 *4)) (-4 *4 (-1140 *3)) - (-4 *3 (-13 (-308) (-118) (-943 (-478)))) (-5 *1 (-498 *3 *4))))) + (|partial| -12 (-5 *2 (-344 *4)) (-4 *4 (-1145 *3)) + (-4 *3 (-13 (-308) (-118) (-944 (-479)))) (-5 *1 (-499 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-548 (-793 (-478)))) - (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-497 *5 *3)) - (-4 *3 (-564)) (-4 *3 (-13 (-27) (-1100) (-357 *5))))) + (|partial| -12 (-5 *4 (-1080)) (-4 *5 (-549 (-794 (-479)))) + (-4 *5 (-790 (-479))) (-4 *5 (-13 (-944 (-479)) (-386) (-576 (-479)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-498 *5 *3)) + (-4 *3 (-565)) (-4 *3 (-13 (-27) (-1105) (-358 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1075)) (-5 *4 (-743 *2)) (-4 *2 (-1039)) - (-4 *2 (-13 (-27) (-1100) (-357 *5))) (-4 *5 (-548 (-793 (-478)))) - (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) - (-5 *1 (-497 *5 *2))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1075)) (-4 *5 (-548 (-793 (-478)))) - (-4 *5 (-789 (-478))) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-497 *5 *3)) - (-4 *3 (-564)) (-4 *3 (-13 (-27) (-1100) (-357 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-943 (-478)) (-385) (-575 (-478)))) - (-5 *2 (-2 (|:| -2320 *3) (|:| |nconst| *3))) (-5 *1 (-497 *5 *3)) - (-4 *3 (-13 (-27) (-1100) (-357 *5)))))) + (|partial| -12 (-5 *3 (-1080)) (-5 *4 (-744 *2)) (-4 *2 (-1043)) + (-4 *2 (-13 (-27) (-1105) (-358 *5))) (-4 *5 (-549 (-794 (-479)))) + (-4 *5 (-790 (-479))) (-4 *5 (-13 (-944 (-479)) (-386) (-576 (-479)))) + (-5 *1 (-498 *5 *2))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1080)) (-4 *5 (-549 (-794 (-479)))) + (-4 *5 (-790 (-479))) (-4 *5 (-13 (-944 (-479)) (-386) (-576 (-479)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-498 *5 *3)) + (-4 *3 (-565)) (-4 *3 (-13 (-27) (-1105) (-358 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-944 (-479)) (-386) (-576 (-479)))) + (-5 *2 (-2 (|:| -2325 *3) (|:| |nconst| *3))) (-5 *1 (-498 *5 *3)) + (-4 *3 (-13 (-27) (-1105) (-358 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-545 *4)) (-5 *6 (-1075)) (-4 *4 (-13 (-357 *7) (-27) (-1100))) - (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1994 (-578 *4)))) - (-5 *1 (-496 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1003))))) + (-12 (-5 *5 (-546 *4)) (-5 *6 (-1080)) (-4 *4 (-13 (-358 *7) (-27) (-1105))) + (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-579 *4)))) + (-5 *1 (-497 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1006))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1075))) - (-4 *2 (-13 (-357 *5) (-27) (-1100))) - (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *1 (-496 *5 *2 *6)) (-4 *6 (-1003))))) + (|partial| -12 (-5 *3 (-546 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1080))) + (-4 *2 (-13 (-358 *5) (-27) (-1105))) + (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *1 (-497 *5 *2 *6)) (-4 *6 (-1006))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) - (-4 *3 (-13 (-357 *6) (-27) (-1100))) - (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-579 *3)) + (-4 *3 (-13 (-358 *6) (-27) (-1105))) + (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-496 *6 *3 *7)) (-4 *7 (-1003))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-497 *6 *3 *7)) (-4 *7 (-1006))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *5) (-27) (-1100))) - (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3 *6)) - (-4 *6 (-1003))))) + (|partial| -12 (-5 *4 (-546 *3)) (-4 *3 (-13 (-358 *5) (-27) (-1105))) + (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3 *6)) + (-4 *6 (-1006))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-545 *3)) (-4 *3 (-13 (-357 *5) (-27) (-1100))) - (-4 *5 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) - (-5 *1 (-496 *5 *3 *6)) (-4 *6 (-1003))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) - (-4 *7 (-1140 (-343 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2117 *3))) - (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-287 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-308)) - (-5 *2 - (-2 (|:| |answer| (-343 *6)) (|:| -2117 (-343 *6)) - (|:| |specpart| (-343 *6)) (|:| |polypart| *6))) - (-5 *1 (-495 *5 *6)) (-5 *3 (-343 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-478)) (-5 *3 (-687)) (-5 *1 (-493))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) -(((*1 *2 *3) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-493)) (-5 *3 (-478))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-493)) (-5 *3 (-478))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-151 *2)) (-4 *2 (-254)))) + (-12 (-5 *4 (-546 *3)) (-4 *3 (-13 (-358 *5) (-27) (-1105))) + (-4 *5 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-514 *3)) + (-5 *1 (-497 *5 *3 *6)) (-4 *6 (-1006))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) + (-4 *7 (-1145 (-344 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2122 *3))) + (-5 *1 (-495 *5 *6 *7 *3)) (-4 *3 (-287 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-308)) + (-5 *2 + (-2 (|:| |answer| (-344 *6)) (|:| -2122 (-344 *6)) + (|:| |specpart| (-344 *6)) (|:| |polypart| *6))) + (-5 *1 (-496 *5 *6)) (-5 *3 (-344 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-479)) (-5 *3 (-688)) (-5 *1 (-494))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494))))) +(((*1 *2 *3) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-494)) (-5 *3 (-479))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494))))) +(((*1 *2 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-494)) (-5 *3 (-479))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-579 *2)) (-5 *1 (-151 *2)) (-4 *2 (-254)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-578 (-578 *4))) (-5 *2 (-578 *4)) (-4 *4 (-254)) + (-12 (-5 *3 (-579 (-579 *4))) (-5 *2 (-579 *4)) (-4 *4 (-254)) (-5 *1 (-151 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 *8)) + (-12 (-5 *3 (-579 *8)) (-5 *4 - (-578 - (-2 (|:| -1994 (-625 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-625 *7))))) - (-5 *5 (-687)) (-4 *8 (-1140 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-295)) - (-5 *2 - (-2 (|:| -1994 (-625 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-625 *7)))) - (-5 *1 (-431 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-493))))) + (-579 + (-2 (|:| -1999 (-626 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-626 *7))))) + (-5 *5 (-688)) (-4 *8 (-1145 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-295)) + (-5 *2 + (-2 (|:| -1999 (-626 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-626 *7)))) + (-5 *1 (-432 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-494))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-545 *4)) (-5 *6 (-1070 *4)) - (-4 *4 (-13 (-357 *7) (-27) (-1100))) - (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1994 (-578 *4)))) - (-5 *1 (-492 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1003)))) + (-12 (-5 *5 (-546 *4)) (-5 *6 (-1075 *4)) + (-4 *4 (-13 (-358 *7) (-27) (-1105))) + (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -1999 (-579 *4)))) + (-5 *1 (-493 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1006)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-545 *4)) (-5 *6 (-343 (-1070 *4))) - (-4 *4 (-13 (-357 *7) (-27) (-1100))) - (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1994 (-578 *4)))) - (-5 *1 (-492 *7 *4 *3)) (-4 *3 (-595 *4)) (-4 *3 (-1003))))) + (-12 (-5 *5 (-546 *4)) (-5 *6 (-344 (-1075 *4))) + (-4 *4 (-13 (-358 *7) (-27) (-1105))) + (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -1999 (-579 *4)))) + (-5 *1 (-493 *7 *4 *3)) (-4 *3 (-596 *4)) (-4 *3 (-1006))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-545 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1075))) (-5 *5 (-1070 *2)) - (-4 *2 (-13 (-357 *6) (-27) (-1100))) - (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *1 (-492 *6 *2 *7)) (-4 *7 (-1003)))) + (|partial| -12 (-5 *3 (-546 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1080))) (-5 *5 (-1075 *2)) + (-4 *2 (-13 (-358 *6) (-27) (-1105))) + (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *1 (-493 *6 *2 *7)) (-4 *7 (-1006)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-545 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1075))) - (-5 *5 (-343 (-1070 *2))) (-4 *2 (-13 (-357 *6) (-27) (-1100))) - (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *1 (-492 *6 *2 *7)) (-4 *7 (-1003))))) + (|partial| -12 (-5 *3 (-546 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1080))) + (-5 *5 (-344 (-1075 *2))) (-4 *2 (-13 (-358 *6) (-27) (-1105))) + (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *1 (-493 *6 *2 *7)) (-4 *7 (-1006))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-5 *6 (-1070 *3)) - (-4 *3 (-13 (-357 *7) (-27) (-1100))) - (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-579 *3)) (-5 *6 (-1075 *3)) + (-4 *3 (-13 (-358 *7) (-27) (-1105))) + (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-492 *7 *3 *8)) (-4 *8 (-1003)))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-493 *7 *3 *8)) (-4 *8 (-1006)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-578 *3)) (-5 *6 (-343 (-1070 *3))) - (-4 *3 (-13 (-357 *7) (-27) (-1100))) - (-4 *7 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) + (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-579 *3)) (-5 *6 (-344 (-1075 *3))) + (-4 *3 (-13 (-358 *7) (-27) (-1105))) + (-4 *7 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-492 *7 *3 *8)) (-4 *8 (-1003))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-493 *7 *3 *8)) (-4 *8 (-1006))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-1070 *3)) - (-4 *3 (-13 (-357 *6) (-27) (-1100))) - (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-492 *6 *3 *7)) - (-4 *7 (-1003)))) + (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-1075 *3)) + (-4 *3 (-13 (-358 *6) (-27) (-1105))) + (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-493 *6 *3 *7)) + (-4 *7 (-1006)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-545 *3)) (-5 *5 (-343 (-1070 *3))) - (-4 *3 (-13 (-357 *6) (-27) (-1100))) - (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) - (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-492 *6 *3 *7)) - (-4 *7 (-1003))))) + (|partial| -12 (-5 *4 (-546 *3)) (-5 *5 (-344 (-1075 *3))) + (-4 *3 (-13 (-358 *6) (-27) (-1105))) + (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) + (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-493 *6 *3 *7)) + (-4 *7 (-1006))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-545 *3)) (-5 *5 (-1070 *3)) - (-4 *3 (-13 (-357 *6) (-27) (-1100))) - (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) - (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1003)))) + (-12 (-5 *4 (-546 *3)) (-5 *5 (-1075 *3)) + (-4 *3 (-13 (-358 *6) (-27) (-1105))) + (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-514 *3)) + (-5 *1 (-493 *6 *3 *7)) (-4 *7 (-1006)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-545 *3)) (-5 *5 (-343 (-1070 *3))) - (-4 *3 (-13 (-357 *6) (-27) (-1100))) - (-4 *6 (-13 (-385) (-943 (-478)) (-118) (-575 (-478)))) (-5 *2 (-513 *3)) - (-5 *1 (-492 *6 *3 *7)) (-4 *7 (-1003))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-491 *2)) (-4 *2 (-477))))) -(((*1 *2 *3) (-12 (-5 *2 (-341 *3)) (-5 *1 (-491 *3)) (-4 *3 (-477))))) + (-12 (-5 *4 (-546 *3)) (-5 *5 (-344 (-1075 *3))) + (-4 *3 (-13 (-358 *6) (-27) (-1105))) + (-4 *6 (-13 (-386) (-944 (-479)) (-118) (-576 (-479)))) (-5 *2 (-514 *3)) + (-5 *1 (-493 *6 *3 *7)) (-4 *7 (-1006))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-492 *2)) (-4 *2 (-478))))) +(((*1 *2 *3) (-12 (-5 *2 (-342 *3)) (-5 *1 (-492 *3)) (-4 *3 (-478))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1075)) (-5 *6 (-578 (-545 *3))) (-5 *5 (-545 *3)) - (-4 *3 (-13 (-27) (-1100) (-357 *7))) - (-4 *7 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-490 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-513 *3)) (-5 *1 (-490 *5 *3)) - (-4 *3 (-13 (-27) (-1100) (-357 *5)))))) + (|partial| -12 (-5 *4 (-1080)) (-5 *6 (-579 (-546 *3))) (-5 *5 (-546 *3)) + (-4 *3 (-13 (-27) (-1105) (-358 *7))) + (-4 *7 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-491 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-514 *3)) (-5 *1 (-491 *5 *3)) + (-4 *3 (-13 (-27) (-1105) (-358 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1075)) - (-4 *4 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) (-5 *1 (-490 *4 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 *4)))))) + (|partial| -12 (-5 *3 (-1080)) + (-4 *4 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) (-5 *1 (-491 *4 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1075)) (-5 *5 (-578 *3)) - (-4 *3 (-13 (-27) (-1100) (-357 *6))) - (-4 *6 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) + (|partial| -12 (-5 *4 (-1080)) (-5 *5 (-579 *3)) + (-4 *3 (-13 (-27) (-1105) (-358 *6))) + (-4 *6 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-490 *6 *3))))) + (|:| |limitedlogs| (-579 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-491 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1075)) - (-4 *5 (-13 (-385) (-118) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-490 *5 *3)) - (-4 *3 (-13 (-27) (-1100) (-357 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1755 *1) (|:| -3958 *1) (|:| |associate| *1))) - (-4 *1 (-489))))) -(((*1 *1 *1) (-4 *1 (-489)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-489)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-489)) (-5 *2 (-83))))) + (|partial| -12 (-5 *4 (-1080)) + (-4 *5 (-13 (-386) (-118) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-2 (|:| -2123 *3) (|:| |coeff| *3))) (-5 *1 (-491 *5 *3)) + (-4 *3 (-13 (-27) (-1105) (-358 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1760 *1) (|:| -3964 *1) (|:| |associate| *1))) + (-4 *1 (-490))))) +(((*1 *1 *1) (-4 *1 (-490)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-490)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-490)) (-5 *2 (-83))))) (((*1 *1 *2) - (-12 (-5 *2 (-343 (-478))) (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1100))))) - ((*1 *1 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100)))))) -(((*1 *2 *1) (-12 (-4 *1 (-487 *2)) (-4 *2 (-13 (-340) (-1100)))))) + (-12 (-5 *2 (-344 (-479))) (-4 *1 (-488 *3)) (-4 *3 (-13 (-341) (-1105))))) + ((*1 *1 *2) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105)))))) +(((*1 *2 *1) (-12 (-4 *1 (-488 *2)) (-4 *2 (-13 (-341) (-1105)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-487 *3)) (-4 *3 (-13 (-340) (-1100))) (-5 *2 (-83))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-83)) (-5 *1 (-486))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-486))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-486))))) + (-12 (-4 *1 (-488 *3)) (-4 *3 (-13 (-341) (-1105))) (-5 *2 (-83))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-479)) (-5 *2 (-83)) (-5 *1 (-487))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-487))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-487))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1140 *5)) - (-4 *5 (-13 (-27) (-357 *4))) (-4 *4 (-13 (-489) (-943 (-478)))) - (-4 *7 (-1140 (-343 *6))) (-5 *1 (-485 *4 *5 *6 *7 *2)) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1145 *5)) + (-4 *5 (-13 (-27) (-358 *4))) (-4 *4 (-13 (-490) (-944 (-479)))) + (-4 *7 (-1145 (-344 *6))) (-5 *1 (-486 *4 *5 *6 *7 *2)) (-4 *2 (-287 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-13 (-27) (-357 *5))) - (-4 *5 (-13 (-489) (-943 (-478)))) (-4 *8 (-1140 (-343 *7))) - (-5 *2 (-513 *3)) (-5 *1 (-485 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-13 (-27) (-358 *5))) + (-4 *5 (-13 (-490) (-944 (-479)))) (-4 *8 (-1145 (-344 *7))) + (-5 *2 (-514 *3)) (-5 *1 (-486 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1140 *6)) (-4 *6 (-13 (-27) (-357 *5))) - (-4 *5 (-13 (-489) (-943 (-478)))) (-4 *8 (-1140 (-343 *7))) - (-5 *2 (-513 *3)) (-5 *1 (-485 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1145 *6)) (-4 *6 (-13 (-27) (-358 *5))) + (-4 *5 (-13 (-490) (-944 (-479)))) (-4 *8 (-1145 (-344 *7))) + (-5 *2 (-514 *3)) (-5 *1 (-486 *5 *6 *7 *8 *3)) (-4 *3 (-287 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-545 *3)) (-5 *5 (-1 (-1070 *3) (-1070 *3))) - (-4 *3 (-13 (-27) (-357 *6))) (-4 *6 (-489)) (-5 *2 (-513 *3)) - (-5 *1 (-484 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-477)) (-5 *2 (-83))))) -(((*1 *1 *1 *1) (-4 *1 (-477)))) -(((*1 *1 *1 *1) (-4 *1 (-477)))) -(((*1 *1 *1) (-4 *1 (-477)))) -(((*1 *1 *1) (-4 *1 (-477)))) -(((*1 *1 *1) (-4 *1 (-477)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-477)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-477)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-477)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-477)))) -(((*1 *1 *1 *1) (-4 *1 (-477)))) + (-12 (-5 *4 (-546 *3)) (-5 *5 (-1 (-1075 *3) (-1075 *3))) + (-4 *3 (-13 (-27) (-358 *6))) (-4 *6 (-490)) (-5 *2 (-514 *3)) + (-5 *1 (-485 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-478)) (-5 *2 (-83))))) +(((*1 *1 *1 *1) (-4 *1 (-478)))) +(((*1 *1 *1 *1) (-4 *1 (-478)))) +(((*1 *1 *1) (-4 *1 (-478)))) +(((*1 *1 *1) (-4 *1 (-478)))) +(((*1 *1 *1) (-4 *1 (-478)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-478)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-478)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-478)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-478)))) +(((*1 *1 *1 *1) (-4 *1 (-478)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-478) #1="failed") *5)) (-4 *5 (-954)) - (-5 *2 (-478)) (-5 *1 (-475 *5 *3)) (-4 *3 (-1140 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-479) #1="failed") *5)) (-4 *5 (-955)) + (-5 *2 (-479)) (-5 *1 (-476 *5 *3)) (-4 *3 (-1145 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-478) #1#) *4)) (-4 *4 (-954)) (-5 *2 (-478)) - (-5 *1 (-475 *4 *3)) (-4 *3 (-1140 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-479) #1#) *4)) (-4 *4 (-955)) (-5 *2 (-479)) + (-5 *1 (-476 *4 *3)) (-4 *3 (-1145 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-478) #1#) *4)) (-4 *4 (-954)) (-5 *2 (-478)) - (-5 *1 (-475 *4 *3)) (-4 *3 (-1140 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-388 *3 *2)) (-4 *2 (-1140 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-393 *3 *2)) (-4 *2 (-1140 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-479) #1#) *4)) (-4 *4 (-955)) (-5 *2 (-479)) + (-5 *1 (-476 *4 *3)) (-4 *3 (-1145 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-389 *3 *2)) (-4 *2 (-1145 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-254)) (-5 *1 (-394 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-254)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-687))) - (-5 *1 (-471 *3 *2 *4 *5)) (-4 *2 (-1140 *3))))) + (-12 (-4 *3 (-254)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-688))) + (-5 *1 (-472 *3 *2 *4 *5)) (-4 *2 (-1145 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-471 *4 *2 *5 *6)) - (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-687)))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-472 *4 *2 *5 *6)) + (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-688)))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-1140 *4)) (-5 *1 (-471 *4 *2 *5 *6)) - (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-687)))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-472 *4 *2 *5 *6)) + (-4 *4 (-254)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-688)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1075))) (-4 *6 (-308)) - (-5 *2 (-578 (-245 (-850 *6)))) (-5 *1 (-470 *5 *6 *7)) (-4 *5 (-385)) - (-4 *7 (-13 (-308) (-748)))))) + (-12 (-5 *3 (-579 *6)) (-5 *4 (-579 (-1080))) (-4 *6 (-308)) + (-5 *2 (-579 (-245 (-851 *6)))) (-5 *1 (-471 *5 *6 *7)) (-4 *5 (-386)) + (-4 *7 (-13 (-308) (-749)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-578 (-850 *6))) (-5 *4 (-578 (-1075))) (-4 *6 (-385)) - (-5 *2 (-578 (-578 *7))) (-5 *1 (-470 *6 *7 *5)) (-4 *7 (-308)) - (-4 *5 (-13 (-308) (-748)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1070 *5)) (-4 *5 (-385)) (-5 *2 (-578 *6)) - (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-850 *5)) (-4 *5 (-385)) (-5 *2 (-578 *6)) - (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-467)))) - ((*1 *2 *3) (-12 (-5 *3 (-467)) (-5 *1 (-468 *2)) (-4 *2 (-1114))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-5 *2 (-467)) (-5 *1 (-468 *4)) (-4 *4 (-1114))))) -(((*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-77)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-467))) (-5 *1 (-467))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1075))) (-5 *1 (-467))))) -(((*1 *1 *1) (-5 *1 (-467)))) -(((*1 *2 *1) (-12 (-5 *2 (-1059)) (-5 *1 (-467))))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-467))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 (-467))) (-5 *2 (-1075)) (-5 *1 (-467))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1075)) (-5 *3 (-578 (-467))) (-5 *1 (-467))))) + (-12 (-5 *3 (-579 (-851 *6))) (-5 *4 (-579 (-1080))) (-4 *6 (-386)) + (-5 *2 (-579 (-579 *7))) (-5 *1 (-471 *6 *7 *5)) (-4 *7 (-308)) + (-4 *5 (-13 (-308) (-749)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1075 *5)) (-4 *5 (-386)) (-5 *2 (-579 *6)) + (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-749))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-851 *5)) (-4 *5 (-386)) (-5 *2 (-579 *6)) + (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-749)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-468)))) + ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *1 (-469 *2)) (-4 *2 (-1119))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1080)) (-5 *2 (-468)) (-5 *1 (-469 *4)) (-4 *4 (-1119))))) +(((*1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-77)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-468))) (-5 *1 (-468))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-1080))) (-5 *1 (-468))))) +(((*1 *1 *1) (-5 *1 (-468)))) +(((*1 *2 *1) (-12 (-5 *2 (-1063)) (-5 *1 (-468))))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-468))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 (-468))) (-5 *2 (-1080)) (-5 *1 (-468))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-579 (-468))) (-5 *1 (-468))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *6)) (-5 *5 (-1 (-341 (-1070 *6)) (-1070 *6))) + (-12 (-5 *3 (-626 *6)) (-5 *5 (-1 (-342 (-1075 *6)) (-1075 *6))) (-4 *6 (-308)) (-5 *2 - (-578 - (-2 (|:| |outval| *7) (|:| |outmult| (-478)) - (|:| |outvect| (-578 (-625 *7)))))) - (-5 *1 (-464 *6 *7 *4)) (-4 *7 (-308)) (-4 *4 (-13 (-308) (-748)))))) + (-579 + (-2 (|:| |outval| *7) (|:| |outmult| (-479)) + (|:| |outvect| (-579 (-626 *7)))))) + (-5 *1 (-465 *6 *7 *4)) (-4 *7 (-308)) (-4 *4 (-13 (-308) (-749)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1070 *5)) (-4 *5 (-308)) (-5 *2 (-578 *6)) - (-5 *1 (-464 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-748)))))) + (-12 (-5 *3 (-1075 *5)) (-4 *5 (-308)) (-5 *2 (-579 *6)) + (-5 *1 (-465 *5 *6 *4)) (-4 *6 (-308)) (-4 *4 (-13 (-308) (-749)))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-308)) (-5 *2 (-1070 *4)) - (-5 *1 (-464 *4 *5 *6)) (-4 *5 (-308)) (-4 *6 (-13 (-308) (-748)))))) + (-12 (-5 *3 (-626 *4)) (-4 *4 (-308)) (-5 *2 (-1075 *4)) + (-5 *1 (-465 *4 *5 *6)) (-4 *5 (-308)) (-4 *6 (-13 (-308) (-749)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-462 *3)) (-4 *3 (-13 (-658) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-463 *3)) (-4 *3 (-13 (-659) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-462 *3)) (-4 *3 (-13 (-658) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-461)))) - ((*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-461))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-461))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-461))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-463 *3)) (-4 *3 (-13 (-659) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-462)))) + ((*1 *1 *2) (-12 (-5 *2 (-332)) (-5 *1 (-462))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-462))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-462))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-823)) (-4 *4 (-313)) (-4 *4 (-308)) (-5 *2 (-1070 *1)) + (-12 (-5 *3 (-824)) (-4 *4 (-314)) (-4 *4 (-308)) (-5 *2 (-1075 *1)) (-4 *1 (-276 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1070 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-5 *2 (-1075 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-315 *3 *2)) (-4 *3 (-144)) (-4 *3 (-308)) (-4 *2 (-1140 *3)))) + (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-144)) (-4 *3 (-308)) (-4 *2 (-1145 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-295)) (-5 *2 (-1070 *4)) (-5 *1 (-460 *4))))) -(((*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308)))) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-295)) (-5 *2 (-1075 *4)) (-5 *1 (-461 *4))))) +(((*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-314)) (-4 *2 (-308)))) ((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1164 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295))))) + (-12 (-5 *3 (-824)) (-5 *2 (-1169 *4)) (-5 *1 (-461 *4)) (-4 *4 (-295))))) (((*1 *2 *2) - (-12 (-5 *2 (-1164 *4)) (-4 *4 (-354 *3)) (-4 *3 (-254)) (-4 *3 (-489)) + (-12 (-5 *2 (-1169 *4)) (-4 *4 (-355 *3)) (-4 *3 (-254)) (-4 *3 (-490)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-823)) (-4 *4 (-308)) (-5 *2 (-1164 *1)) (-4 *1 (-276 *4)))) - ((*1 *2) (-12 (-4 *3 (-308)) (-5 *2 (-1164 *1)) (-4 *1 (-276 *3)))) + (-12 (-5 *3 (-824)) (-4 *4 (-308)) (-5 *2 (-1169 *1)) (-4 *1 (-276 *4)))) + ((*1 *2) (-12 (-4 *3 (-308)) (-5 *2 (-1169 *1)) (-4 *1 (-276 *3)))) ((*1 *2) - (-12 (-4 *3 (-144)) (-4 *4 (-1140 *3)) (-5 *2 (-1164 *1)) - (-4 *1 (-346 *3 *4)))) + (-12 (-4 *3 (-144)) (-4 *4 (-1145 *3)) (-5 *2 (-1169 *1)) + (-4 *1 (-347 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *6)) - (-5 *1 (-349 *3 *4 *5 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))))) + (-12 (-4 *3 (-254)) (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *6)) + (-5 *1 (-350 *3 *4 *5 *6)) (-4 *6 (-13 (-347 *4 *5) (-944 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-254)) (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-5 *2 (-1164 *6)) - (-5 *1 (-351 *3 *4 *5 *6 *7)) (-4 *6 (-346 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1164 *1)) (-4 *1 (-354 *3)))) + (-12 (-4 *3 (-254)) (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-5 *2 (-1169 *6)) + (-5 *1 (-352 *3 *4 *5 *6 *7)) (-4 *6 (-347 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1169 *1)) (-4 *1 (-355 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1164 (-1164 *4))) (-5 *1 (-460 *4)) + (-12 (-5 *3 (-824)) (-5 *2 (-1169 (-1169 *4))) (-5 *1 (-461 *4)) (-4 *4 (-295))))) (((*1 *2 *1) - (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-83)))) + (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4)))) + (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-460 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-313)) (-5 *2 (-823)))) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-461 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-314)) (-5 *2 (-824)))) ((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-295)) (-5 *2 (-823)) (-5 *1 (-460 *4))))) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-295)) (-5 *2 (-824)) (-5 *1 (-461 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 *4)) (-5 *3 (-478)) (-4 *4 (-295)) (-5 *1 (-460 *4))))) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-479)) (-4 *4 (-295)) (-5 *1 (-461 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1020)) (-4 *4 (-295)) (-5 *1 (-460 *4))))) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1024)) (-4 *4 (-295)) (-5 *1 (-461 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 *4)) (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-460 *4))))) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-688)) (-4 *4 (-295)) (-5 *1 (-461 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1164 *5)) (-5 *3 (-687)) (-5 *4 (-1020)) (-4 *5 (-295)) - (-5 *1 (-460 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-687)) (-5 *2 (-1070 *4)) (-5 *1 (-460 *4)) (-4 *4 (-295))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1164 *4)) (-4 *4 (-295)) (-5 *2 (-1070 *4)) (-5 *1 (-460 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) - (-4 *4 (-295)) (-5 *2 (-1170)) (-5 *1 (-460 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-99)))))) -(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-482)))))) -(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1123)))))) -(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-479)))))) -(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1120)))))) -(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-480)))))) -(((*1 *2 *1) (-12 (-4 *1 (-459)) (-5 *2 (-627 (-1121)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-459)) (-5 *3 (-100)) (-5 *2 (-687))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-457))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1115))) (-5 *1 (-456))))) -(((*1 *2 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-317 *3)) (-4 *5 (-317 *3)) - (-5 *1 (-453 *3 *4 *5 *2)) (-4 *2 (-622 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-450))))) -(((*1 *2 *1) (-12 (-5 *2 (-1035)) (-5 *1 (-450))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-274 *3)))) + (-12 (-5 *2 (-1169 *5)) (-5 *3 (-688)) (-5 *4 (-1024)) (-4 *5 (-295)) + (-5 *1 (-461 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-688)) (-5 *2 (-1075 *4)) (-5 *1 (-461 *4)) (-4 *4 (-295))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 *4)) (-4 *4 (-295)) (-5 *2 (-1075 *4)) (-5 *1 (-461 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) + (-4 *4 (-295)) (-5 *2 (-1175)) (-5 *1 (-461 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-99)))))) +(((*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-483)))))) +(((*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-1128)))))) +(((*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-480)))))) +(((*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-1125)))))) +(((*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-481)))))) +(((*1 *2 *1) (-12 (-4 *1 (-460)) (-5 *2 (-628 (-1126)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-460)) (-5 *3 (-100)) (-5 *2 (-688))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-458))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1120))) (-5 *1 (-457))))) +(((*1 *2 *2) + (-12 (-4 *3 (-308)) (-4 *4 (-318 *3)) (-4 *5 (-318 *3)) + (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-623 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-451))))) +(((*1 *2 *1) (-12 (-5 *2 (-1039)) (-5 *1 (-451))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-274 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-449 *3 *4)) (-14 *4 (-478))))) -(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-274 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-450 *3 *4)) (-14 *4 (-479))))) +(((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-274 *3)) (-4 *3 (-1119)))) ((*1 *2 *1) - (-12 (-5 *2 (-687)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1114)) (-14 *4 (-478))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-274 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-688)) (-5 *1 (-450 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-479))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-274 *3)) (-4 *3 (-1119)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-478)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1114)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-274 *3)) (-4 *3 (-1114)))) + (-12 (-5 *2 (-479)) (-5 *1 (-450 *3 *4)) (-4 *3 (-1119)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-274 *3)) (-4 *3 (-1119)))) ((*1 *2 *2) - (-12 (-5 *2 (-83)) (-5 *1 (-449 *3 *4)) (-4 *3 (-1114)) (-14 *4 (-478))))) -(((*1 *2 *1) (-12 (-4 *1 (-442 *3 *2)) (-4 *3 (-72)) (-4 *2 (-752))))) -(((*1 *1) (-5 *1 (-439)))) + (-12 (-5 *2 (-83)) (-5 *1 (-450 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-479))))) +(((*1 *2 *1) (-12 (-4 *1 (-443 *3 *2)) (-4 *3 (-72)) (-4 *2 (-753))))) +(((*1 *1) (-5 *1 (-440)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) + (-12 (-5 *2 (-479)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-688)) (-4 *5 (-144)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-478)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-687)) + (-12 (-5 *2 (-479)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-688)) (-4 *5 (-144)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) - (-5 *3 (-578 (-766 *4))) (-14 *4 (-578 (-1075))) (-14 *5 (-687)) - (-5 *1 (-438 *4 *5))))) + (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479))))) + (-5 *3 (-579 (-767 *4))) (-14 *4 (-579 (-1080))) (-14 *5 (-688)) + (-5 *1 (-439 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-578 (-1075))) (-14 *5 (-687)) + (-12 (-14 *4 (-579 (-1080))) (-14 *5 (-688)) (-5 *2 - (-578 - (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478)))))) - (-5 *1 (-438 *4 *5)) + (-579 + (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479)))))) + (-5 *1 (-439 *4 *5)) (-5 *3 - (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478)))))))) + (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-437 (-343 (-478)) (-194 *4 (-687)) (-766 *3) (-203 *3 (-343 (-478))))) - (-14 *3 (-578 (-1075))) (-14 *4 (-687)) (-5 *1 (-438 *3 *4))))) + (-438 (-344 (-479)) (-194 *4 (-688)) (-767 *3) (-203 *3 (-344 (-479))))) + (-14 *3 (-579 (-1080))) (-14 *4 (-688)) (-5 *1 (-439 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) - (-14 *4 (-578 (-1075))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5))))) + (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479))))) + (-14 *4 (-579 (-1080))) (-14 *5 (-688)) (-5 *2 (-83)) (-5 *1 (-439 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-437 (-343 (-478)) (-194 *5 (-687)) (-766 *4) (-203 *4 (-343 (-478))))) - (-14 *4 (-578 (-1075))) (-14 *5 (-687)) (-5 *2 (-83)) (-5 *1 (-438 *4 *5))))) + (-438 (-344 (-479)) (-194 *5 (-688)) (-767 *4) (-203 *4 (-344 (-479))))) + (-14 *4 (-579 (-1080))) (-14 *5 (-688)) (-5 *2 (-83)) (-5 *1 (-439 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) - (-5 *1 (-437 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) + (-12 (-4 *4 (-308)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) + (-5 *1 (-438 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5))))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) + (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-83)) - (-5 *1 (-437 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) + (-12 (-4 *4 (-308)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-83)) + (-5 *1 (-438 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) + (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) - (-5 *2 (-83)) (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6))))) + (-12 (-5 *3 (-579 *6)) (-4 *6 (-750)) (-4 *4 (-308)) (-4 *5 (-711)) + (-5 *2 (-83)) (-5 *1 (-438 *4 *5 *6 *7)) (-4 *7 (-855 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *2)) - (-4 *2 (-854 *3 *4 *5)))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *2)) + (-4 *2 (-855 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) - (-4 *5 (-854 *2 *3 *4))))) + (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) + (-4 *5 (-855 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) + (-12 (-5 *3 (-579 *6)) (-4 *6 (-750)) (-4 *4 (-308)) (-4 *5 (-711)) (-5 *2 - (-2 (|:| |mval| (-625 *4)) (|:| |invmval| (-625 *4)) - (|:| |genIdeal| (-437 *4 *5 *6 *7)))) - (-5 *1 (-437 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6))))) + (-2 (|:| |mval| (-626 *4)) (|:| |invmval| (-626 *4)) + (|:| |genIdeal| (-438 *4 *5 *6 *7)))) + (-5 *1 (-438 *4 *5 *6 *7)) (-4 *7 (-855 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-625 *3)) (|:| |invmval| (-625 *3)) - (|:| |genIdeal| (-437 *3 *4 *5 *6)))) - (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6)) - (-4 *6 (-854 *3 *4 *5))))) + (-2 (|:| |mval| (-626 *3)) (|:| |invmval| (-626 *3)) + (|:| |genIdeal| (-438 *3 *4 *5 *6)))) + (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6)) + (-4 *6 (-855 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-308)) (-4 *3 (-710)) (-4 *4 (-749)) (-5 *1 (-437 *2 *3 *4 *5)) - (-4 *5 (-854 *2 *3 *4))))) + (-12 (-4 *2 (-308)) (-4 *3 (-711)) (-4 *4 (-750)) (-5 *1 (-438 *2 *3 *4 *5)) + (-4 *5 (-855 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) - (-5 *2 (-349 *4 (-343 *4) *5 *6)))) + (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 *3 *4 *5)) + (-5 *2 (-350 *4 (-344 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *6)) (-4 *6 (-13 (-346 *4 *5) (-943 *4))) - (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-4 *3 (-254)) - (-5 *1 (-349 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1169 *6)) (-4 *6 (-13 (-347 *4 *5) (-944 *4))) + (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-4 *3 (-254)) + (-5 *1 (-350 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) - (-5 *1 (-437 *3 *4 *5 *6)) (-4 *6 (-854 *3 *4 *5))))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) + (-5 *1 (-438 *3 *4 *5 *6)) (-4 *6 (-855 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-578 *6)) (-4 *6 (-749)) (-4 *4 (-308)) (-4 *5 (-710)) - (-5 *1 (-437 *4 *5 *6 *2)) (-4 *2 (-854 *4 *5 *6)))) + (-12 (-5 *3 (-579 *6)) (-4 *6 (-750)) (-4 *4 (-308)) (-4 *5 (-711)) + (-5 *1 (-438 *4 *5 *6 *2)) (-4 *2 (-855 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-437 *3 *4 *5 *2)) - (-4 *2 (-854 *3 *4 *5))))) + (-12 (-4 *3 (-308)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-438 *3 *4 *5 *2)) + (-4 *2 (-855 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *6 (-548 (-1075))) - (-4 *4 (-308)) (-4 *5 (-710)) (-4 *6 (-749)) - (-5 *2 (-1066 (-578 (-850 *4)) (-578 (-245 (-850 *4))))) - (-5 *1 (-437 *4 *5 *6 *7))))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *5 *6)) (-4 *6 (-549 (-1080))) + (-4 *4 (-308)) (-4 *5 (-711)) (-4 *6 (-750)) + (-5 *2 (-1070 (-579 (-851 *4)) (-579 (-245 (-851 *4))))) + (-5 *1 (-438 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1170)) (-5 *1 (-165 *4)) + (-12 (-5 *3 (-824)) (-5 *2 (-1175)) (-5 *1 (-165 *4)) (-4 *4 - (-13 (-749) - (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 (*2 $)) - (-15 -1947 (*2 $))))))) + (-13 (-750) + (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 (*2 $)) + (-15 -1952 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1170)) (-5 *1 (-165 *3)) + (-12 (-5 *2 (-1175)) (-5 *1 (-165 *3)) (-4 *3 - (-13 (-749) - (-10 -8 (-15 -3776 ((-1059) $ (-1075))) (-15 -3593 (*2 $)) - (-15 -1947 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-435))))) + (-13 (-750) + (-10 -8 (-15 -3782 ((-1063) $ (-1080))) (-15 -3599 (*2 $)) + (-15 -1952 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *6 (-1140 *5)) - (-5 *2 (-1070 (-1070 *7))) (-5 *1 (-434 *5 *6 *4 *7)) (-4 *4 (-1140 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-955)) (-4 *7 (-955)) (-4 *6 (-1145 *5)) + (-5 *2 (-1075 (-1075 *7))) (-5 *1 (-435 *5 *6 *4 *7)) (-4 *4 (-1145 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-625 (-1070 *8))) - (-4 *5 (-954)) (-4 *8 (-954)) (-4 *6 (-1140 *5)) (-5 *2 (-625 *6)) - (-5 *1 (-434 *5 *6 *7 *8)) (-4 *7 (-1140 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-626 (-1075 *8))) + (-4 *5 (-955)) (-4 *8 (-955)) (-4 *6 (-1145 *5)) (-5 *2 (-626 *6)) + (-5 *1 (-435 *5 *6 *7 *8)) (-4 *7 (-1145 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1070 *7)) - (-4 *5 (-954)) (-4 *7 (-954)) (-4 *2 (-1140 *5)) (-5 *1 (-434 *5 *2 *6 *7)) - (-4 *6 (-1140 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1075 *7)) + (-4 *5 (-955)) (-4 *7 (-955)) (-4 *2 (-1145 *5)) (-5 *1 (-435 *5 *2 *6 *7)) + (-4 *6 (-1145 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1070 *7)) (-4 *5 (-954)) (-4 *7 (-954)) - (-4 *2 (-1140 *5)) (-5 *1 (-434 *5 *2 *6 *7)) (-4 *6 (-1140 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1075 *7)) (-4 *5 (-955)) (-4 *7 (-955)) + (-4 *2 (-1145 *5)) (-5 *1 (-435 *5 *2 *6 *7)) (-4 *6 (-1145 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-954)) (-4 *7 (-954)) (-4 *4 (-1140 *5)) - (-5 *2 (-1070 *7)) (-5 *1 (-434 *5 *4 *6 *7)) (-4 *6 (-1140 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-955)) (-4 *7 (-955)) (-4 *4 (-1145 *5)) + (-5 *2 (-1075 *7)) (-5 *1 (-435 *5 *4 *6 *7)) (-4 *6 (-1145 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -1994 (-625 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-625 *3)))) - (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *4 (-1140 *3)) - (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) + (-2 (|:| -1999 (-626 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-626 *3)))) + (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *4 (-1145 *3)) + (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) - (-4 *4 (-1140 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) + (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) + (-4 *4 (-1145 *3)) (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) - (-4 *4 (-1140 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4)))) + (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) + (-4 *4 (-1145 *3)) (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) - (-4 *4 (-1140 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) + (-12 (-5 *2 (-626 *3)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) + (-4 *4 (-1145 *3)) (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-687)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) - (-4 *4 (-1140 *3)) (-5 *1 (-432 *3 *4 *5)) (-4 *5 (-346 *3 *4))))) + (-12 (-5 *2 (-688)) (-4 *3 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) + (-4 *4 (-1145 *3)) (-5 *1 (-433 *3 *4 *5)) (-4 *5 (-347 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-625 *2)) (-5 *4 (-478)) - (-4 *2 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *5 (-1140 *2)) - (-5 *1 (-432 *2 *5 *6)) (-4 *6 (-346 *2 *5))))) + (-12 (-5 *3 (-626 *2)) (-5 *4 (-479)) + (-4 *2 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *5 (-1145 *2)) + (-5 *1 (-433 *2 *5 *6)) (-4 *6 (-347 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-625 *2)) (-5 *4 (-687)) - (-4 *2 (-13 (-254) (-10 -8 (-15 -3947 ((-341 $) $))))) (-4 *5 (-1140 *2)) - (-5 *1 (-432 *2 *5 *6)) (-4 *6 (-346 *2 *5))))) + (-12 (-5 *3 (-626 *2)) (-5 *4 (-688)) + (-4 *2 (-13 (-254) (-10 -8 (-15 -3953 ((-342 $) $))))) (-4 *5 (-1145 *2)) + (-5 *1 (-433 *2 *5 *6)) (-4 *6 (-347 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-687)) (-4 *5 (-295)) (-4 *6 (-1140 *5)) + (-12 (-5 *4 (-688)) (-4 *5 (-295)) (-4 *6 (-1145 *5)) (-5 *2 - (-578 - (-2 (|:| -1994 (-625 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-625 *6))))) - (-5 *1 (-431 *5 *6 *7)) + (-579 + (-2 (|:| -1999 (-626 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-626 *6))))) + (-5 *1 (-432 *5 *6 *7)) (-5 *3 - (-2 (|:| -1994 (-625 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-625 *6)))) - (-4 *7 (-1140 *6))))) + (-2 (|:| -1999 (-626 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-626 *6)))) + (-4 *7 (-1145 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-578 + (-579 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-478))))) - (-5 *1 (-341 *3)) (-4 *3 (-489)))) + (|:| |xpnt| (-479))))) + (-5 *1 (-342 *3)) (-4 *3 (-490)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-687)) (-4 *3 (-295)) (-4 *5 (-1140 *3)) - (-5 *2 (-578 (-1070 *3))) (-5 *1 (-431 *3 *5 *6)) (-4 *6 (-1140 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-428))))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-424))))) + (-12 (-5 *4 (-688)) (-4 *3 (-295)) (-4 *5 (-1145 *3)) + (-5 *2 (-579 (-1075 *3))) (-5 *1 (-432 *3 *5 *6)) (-4 *6 (-1145 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-83)) (-5 *1 (-429))))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-425))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1114)) - (-4 *4 (-317 *3)) (-4 *5 (-317 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1119)) + (-4 *4 (-318 *3)) (-4 *5 (-318 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3972)) (-4 *1 (-422 *3)) - (-4 *3 (-1114))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3978)) (-4 *1 (-423 *3)) + (-4 *3 (-1119))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3971)) (-4 *1 (-422 *4)) - (-4 *4 (-1114)) (-5 *2 (-83))))) + (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3977)) (-4 *1 (-423 *4)) + (-4 *4 (-1119)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3971)) (-4 *1 (-422 *4)) - (-4 *4 (-1114)) (-5 *2 (-83))))) + (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3977)) (-4 *1 (-423 *4)) + (-4 *4 (-1119)) (-5 *2 (-83))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -3971)) (-4 *1 (-422 *3)) (-4 *3 (-1114)) (-4 *3 (-1003)) - (-5 *2 (-687)))) + (-12 (|has| *1 (-6 -3977)) (-4 *1 (-423 *3)) (-4 *3 (-1119)) (-4 *3 (-1006)) + (-5 *2 (-688)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3971)) (-4 *1 (-422 *4)) - (-4 *4 (-1114)) (-5 *2 (-687))))) -(((*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-420))))) -(((*1 *2 *3) - (-12 (-5 *3 (-578 (-478))) (-5 *2 (-478)) (-5 *1 (-419 *4)) - (-4 *4 (-1140 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1140 (-478))) (-5 *1 (-419 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1140 (-478))) (-5 *1 (-419 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-419 *2)) (-4 *2 (-1140 (-478)))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-417 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-778))) (-5 *1 (-416))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-439))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-778))) (-5 *1 (-416))))) + (-12 (-5 *3 (-1 (-83) *4)) (|has| *1 (-6 -3977)) (-4 *1 (-423 *4)) + (-4 *4 (-1119)) (-5 *2 (-688))))) +(((*1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-421))))) +(((*1 *2 *3) + (-12 (-5 *3 (-579 (-479))) (-5 *2 (-479)) (-5 *1 (-420 *4)) + (-4 *4 (-1145 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1145 (-479))) (-5 *1 (-420 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1145 (-479))) (-5 *1 (-420 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-579 *2)) (-5 *1 (-420 *2)) (-4 *2 (-1145 (-479)))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-418 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-579 (-779))) (-5 *1 (-417))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-440))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-779))) (-5 *1 (-417))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-478))) (-5 *1 (-203 *3 *4)) (-14 *3 (-578 (-1075))) - (-4 *4 (-954)))) + (-12 (-5 *2 (-579 (-479))) (-5 *1 (-203 *3 *4)) (-14 *3 (-579 (-1080))) + (-4 *4 (-955)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-478))) (-14 *3 (-578 (-1075))) (-5 *1 (-387 *3 *4 *5)) - (-4 *4 (-954)) (-4 *5 (-193 (-3933 *3) (-687))))) + (-12 (-5 *2 (-579 (-479))) (-14 *3 (-579 (-1080))) (-5 *1 (-388 *3 *4 *5)) + (-4 *4 (-955)) (-4 *5 (-193 (-3939 *3) (-688))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-478))) (-5 *1 (-414 *3 *4)) (-14 *3 (-578 (-1075))) - (-4 *4 (-954))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-478)) (-5 *2 (-83)) (-5 *1 (-413))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-413))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-766 *5))) (-14 *5 (-578 (-1075))) (-4 *6 (-385)) - (-5 *2 (-2 (|:| |dpolys| (-578 (-203 *5 *6))) (|:| |coords| (-578 (-478))))) - (-5 *1 (-404 *5 *6 *7)) (-5 *3 (-578 (-203 *5 *6))) (-4 *7 (-385))))) + (-12 (-5 *2 (-579 (-479))) (-5 *1 (-415 *3 *4)) (-14 *3 (-579 (-1080))) + (-4 *4 (-955))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-479)) (-5 *2 (-83)) (-5 *1 (-414))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-414))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-579 (-767 *5))) (-14 *5 (-579 (-1080))) (-4 *6 (-386)) + (-5 *2 (-2 (|:| |dpolys| (-579 (-203 *5 *6))) (|:| |coords| (-579 (-479))))) + (-5 *1 (-405 *5 *6 *7)) (-5 *3 (-579 (-203 *5 *6))) (-4 *7 (-386))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-578 (-414 *4 *5))) (-5 *3 (-578 (-766 *4))) - (-14 *4 (-578 (-1075))) (-4 *5 (-385)) (-5 *1 (-404 *4 *5 *6)) - (-4 *6 (-385))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-766 *5))) (-14 *5 (-578 (-1075))) (-4 *6 (-385)) - (-5 *2 (-578 (-578 (-203 *5 *6)))) (-5 *1 (-404 *5 *6 *7)) - (-5 *3 (-578 (-203 *5 *6))) (-4 *7 (-385))))) -(((*1 *1) (-5 *1 (-401)))) + (|partial| -12 (-5 *2 (-579 (-415 *4 *5))) (-5 *3 (-579 (-767 *4))) + (-14 *4 (-579 (-1080))) (-4 *5 (-386)) (-5 *1 (-405 *4 *5 *6)) + (-4 *6 (-386))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-579 (-767 *5))) (-14 *5 (-579 (-1080))) (-4 *6 (-386)) + (-5 *2 (-579 (-579 (-203 *5 *6)))) (-5 *1 (-405 *5 *6 *7)) + (-5 *3 (-579 (-203 *5 *6))) (-4 *7 (-386))))) +(((*1 *1) (-5 *1 (-402)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) - (-5 *4 (-578 (-823))) (-5 *5 (-578 (-218))) (-5 *1 (-401)))) + (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *3 (-579 (-777))) + (-5 *4 (-579 (-824))) (-5 *5 (-579 (-218))) (-5 *1 (-402)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) - (-5 *4 (-578 (-823))) (-5 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401)))) - ((*1 *1 *1) (-5 *1 (-401)))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *1 (-401))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-218)))) + (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *3 (-579 (-777))) + (-5 *4 (-579 (-824))) (-5 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *1 (-402)))) + ((*1 *1 *1) (-5 *1 (-402)))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *1 (-402))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-218)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-401)))) - ((*1 *2 *1) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-401))))) + (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-402)))) + ((*1 *2 *1) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-402))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-847 (-177))) (-5 *4 (-776)) (-5 *5 (-823)) (-5 *2 (-1170)) - (-5 *1 (-401)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-1170)) (-5 *1 (-401)))) + (-12 (-5 *3 (-848 (-177))) (-5 *4 (-777)) (-5 *5 (-824)) (-5 *2 (-1175)) + (-5 *1 (-402)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-848 (-177))) (-5 *2 (-1175)) (-5 *1 (-402)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *4 (-776)) (-5 *5 (-823)) - (-5 *2 (-1170)) (-5 *1 (-401))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-847 (-177))) (-5 *2 (-1170)) (-5 *1 (-401))))) + (-12 (-5 *3 (-579 (-848 (-177)))) (-5 *4 (-777)) (-5 *5 (-824)) + (-5 *2 (-1175)) (-5 *1 (-402))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-848 (-177))) (-5 *2 (-1175)) (-5 *1 (-402))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-578 (-578 (-847 (-177))))) (-5 *3 (-578 (-776))) - (-5 *1 (-401))))) + (-12 (-5 *2 (-579 (-579 (-848 (-177))))) (-5 *3 (-579 (-777))) + (-5 *1 (-402))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-578 (-847 (-177))))) (-5 *2 (-578 (-177))) - (-5 *1 (-401))))) + (-12 (-5 *3 (-579 (-579 (-848 (-177))))) (-5 *2 (-579 (-177))) + (-5 *1 (-402))))) (((*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219)))) - ((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) - ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) - ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400)))) - ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-400))))) -(((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1164 (-1164 (-478)))) (-5 *1 (-399))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-579 (-218))) (-5 *1 (-219)))) + ((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401)))) + ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401)))) + ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401)))) + ((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-401))))) +(((*1 *2 *3) + (-12 (-5 *3 (-824)) (-5 *2 (-1169 (-1169 (-479)))) (-5 *1 (-400))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1164 (-1164 (-478)))) (-5 *3 (-823)) (-5 *1 (-399))))) + (-12 (-5 *2 (-1169 (-1169 (-479)))) (-5 *3 (-824)) (-5 *1 (-400))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-749)) (-4 *5 (-710)) (-4 *6 (-489)) - (-4 *7 (-854 *6 *5 *3)) (-5 *1 (-395 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-750)) (-4 *5 (-711)) (-4 *6 (-490)) + (-4 *7 (-855 *6 *5 *3)) (-5 *1 (-396 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-943 (-343 (-478))) (-308) - (-10 -8 (-15 -3922 ($ *7)) (-15 -2979 (*7 $)) (-15 -2978 (*7 $)))))))) + (-13 (-944 (-344 (-479))) (-308) + (-10 -8 (-15 -3928 ($ *7)) (-15 -2983 (*7 $)) (-15 -2982 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) + (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-14 *6 - (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *2)) - (-2 (|:| -2382 *5) (|:| -2383 *2)))) - (-4 *2 (-193 (-3933 *3) (-687))) (-5 *1 (-394 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-749)) (-4 *7 (-854 *4 *2 (-766 *3)))))) + (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *2)) + (-2 (|:| -2387 *5) (|:| -2388 *2)))) + (-4 *2 (-193 (-3939 *3) (-688))) (-5 *1 (-395 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-750)) (-4 *7 (-855 *4 *2 (-767 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-578 (-1075))) (-4 *4 (-144)) (-4 *5 (-193 (-3933 *3) (-687))) + (-12 (-14 *3 (-579 (-1080))) (-4 *4 (-144)) (-4 *5 (-193 (-3939 *3) (-688))) (-14 *6 - (-1 (-83) (-2 (|:| -2382 *2) (|:| -2383 *5)) - (-2 (|:| -2382 *2) (|:| -2383 *5)))) - (-4 *2 (-749)) (-5 *1 (-394 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-854 *4 *5 (-766 *3)))))) + (-1 (-83) (-2 (|:| -2387 *2) (|:| -2388 *5)) + (-2 (|:| -2387 *2) (|:| -2388 *5)))) + (-4 *2 (-750)) (-5 *1 (-395 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-855 *4 *5 (-767 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-578 (-1075))) (-4 *2 (-144)) (-4 *4 (-193 (-3933 *5) (-687))) + (-12 (-14 *5 (-579 (-1080))) (-4 *2 (-144)) (-4 *4 (-193 (-3939 *5) (-688))) (-14 *6 - (-1 (-83) (-2 (|:| -2382 *3) (|:| -2383 *4)) - (-2 (|:| -2382 *3) (|:| -2383 *4)))) - (-5 *1 (-394 *5 *2 *3 *4 *6 *7)) (-4 *3 (-749)) - (-4 *7 (-854 *2 *4 (-766 *5)))))) + (-1 (-83) (-2 (|:| -2387 *3) (|:| -2388 *4)) + (-2 (|:| -2387 *3) (|:| -2388 *4)))) + (-5 *1 (-395 *5 *2 *3 *4 *6 *7)) (-4 *3 (-750)) + (-4 *7 (-855 *2 *4 (-767 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-578 (-1075))) (-4 *2 (-144)) (-4 *3 (-193 (-3933 *4) (-687))) + (-12 (-14 *4 (-579 (-1080))) (-4 *2 (-144)) (-4 *3 (-193 (-3939 *4) (-688))) (-14 *6 - (-1 (-83) (-2 (|:| -2382 *5) (|:| -2383 *3)) - (-2 (|:| -2382 *5) (|:| -2383 *3)))) - (-5 *1 (-394 *4 *2 *5 *3 *6 *7)) (-4 *5 (-749)) - (-4 *7 (-854 *2 *3 (-766 *4)))))) + (-1 (-83) (-2 (|:| -2387 *5) (|:| -2388 *3)) + (-2 (|:| -2387 *5) (|:| -2388 *3)))) + (-5 *1 (-395 *4 *2 *5 *3 *6 *7)) (-4 *5 (-750)) + (-4 *7 (-855 *2 *3 (-767 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-578 *3)) (-5 *5 (-823)) (-4 *3 (-1140 *4)) (-4 *4 (-254)) - (-5 *1 (-393 *4 *3))))) + (-12 (-5 *2 (-579 *3)) (-5 *5 (-824)) (-4 *3 (-1145 *4)) (-4 *4 (-254)) + (-5 *1 (-394 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-823)) (-4 *5 (-254)) (-4 *3 (-1140 *5)) - (-5 *2 (-2 (|:| |plist| (-578 *3)) (|:| |modulo| *5))) (-5 *1 (-393 *5 *3)) - (-5 *4 (-578 *3))))) + (-12 (-5 *6 (-824)) (-4 *5 (-254)) (-4 *3 (-1145 *5)) + (-5 *2 (-2 (|:| |plist| (-579 *3)) (|:| |modulo| *5))) (-5 *1 (-394 *5 *3)) + (-5 *4 (-579 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *5)) (-4 *5 (-1140 *3)) (-4 *3 (-254)) (-5 *2 (-83)) - (-5 *1 (-388 *3 *5))))) + (-12 (-5 *4 (-579 *5)) (-4 *5 (-1145 *3)) (-4 *3 (-254)) (-5 *2 (-83)) + (-5 *1 (-389 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1164 (-578 *3))) (-4 *4 (-254)) (-5 *2 (-578 *3)) - (-5 *1 (-388 *4 *3)) (-4 *3 (-1140 *4))))) + (|partial| -12 (-5 *5 (-1169 (-579 *3))) (-4 *4 (-254)) (-5 *2 (-579 *3)) + (-5 *1 (-389 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-687)) (-4 *4 (-254)) (-4 *6 (-1140 *4)) - (-5 *2 (-1164 (-578 *6))) (-5 *1 (-388 *4 *6)) (-5 *5 (-578 *6))))) + (|partial| -12 (-5 *3 (-688)) (-4 *4 (-254)) (-4 *6 (-1145 *4)) + (-5 *2 (-1169 (-579 *6))) (-5 *1 (-389 *4 *6)) (-5 *5 (-579 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-254)) (-5 *2 (-687)) - (-5 *1 (-388 *5 *3))))) + (-12 (-5 *4 (-579 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-254)) (-5 *2 (-688)) + (-5 *1 (-389 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1994 (-578 *1)))) (-4 *1 (-312 *3)))) + (|partial| -12 (-4 *3 (-490)) (-4 *3 (-144)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -1999 (-579 *1)))) (-4 *1 (-312 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-386 *3 *4 *5 *6)) - (|:| -1994 (-578 (-386 *3 *4 *5 *6))))) - (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) - (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3)))))) + (-2 (|:| |particular| (-387 *3 *4 *5 *6)) + (|:| -1999 (-579 (-387 *3 *4 *5 *6))))) + (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-824)) + (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-489)) (-4 *3 (-144)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1994 (-578 *1)))) (-4 *1 (-312 *3)))) + (|partial| -12 (-4 *3 (-490)) (-4 *3 (-144)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -1999 (-579 *1)))) (-4 *1 (-312 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-386 *3 *4 *5 *6)) - (|:| -1994 (-578 (-386 *3 *4 *5 *6))))) - (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-823)) - (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3)))))) + (-2 (|:| |particular| (-387 *3 *4 *5 *6)) + (|:| -1999 (-579 (-387 *3 *4 *5 *6))))) + (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-144)) (-14 *4 (-824)) + (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1164 (-1075))) (-5 *3 (-1164 (-386 *4 *5 *6 *7))) - (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-823)) - (-14 *6 (-578 (-1075))) (-14 *7 (-1164 (-625 *4))))) + (-12 (-5 *2 (-1169 (-1080))) (-5 *3 (-1169 (-387 *4 *5 *6 *7))) + (-5 *1 (-387 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-824)) + (-14 *6 (-579 (-1080))) (-14 *7 (-1169 (-626 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1075)) (-5 *3 (-1164 (-386 *4 *5 *6 *7))) - (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-823)) (-14 *6 (-578 *2)) - (-14 *7 (-1164 (-625 *4))))) + (-12 (-5 *2 (-1080)) (-5 *3 (-1169 (-387 *4 *5 *6 *7))) + (-5 *1 (-387 *4 *5 *6 *7)) (-4 *4 (-144)) (-14 *5 (-824)) (-14 *6 (-579 *2)) + (-14 *7 (-1169 (-626 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 (-386 *3 *4 *5 *6))) (-5 *1 (-386 *3 *4 *5 *6)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3))))) + (-12 (-5 *2 (-1169 (-387 *3 *4 *5 *6))) (-5 *1 (-387 *3 *4 *5 *6)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 (-1075))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) - (-14 *4 (-823)) (-14 *5 (-578 (-1075))) (-14 *6 (-1164 (-625 *3))))) + (-12 (-5 *2 (-1169 (-1080))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-144)) + (-14 *4 (-824)) (-14 *5 (-579 (-1080))) (-14 *6 (-1169 (-626 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1075)) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-144)) - (-14 *4 (-823)) (-14 *5 (-578 *2)) (-14 *6 (-1164 (-625 *3))))) + (-12 (-5 *2 (-1080)) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-144)) + (-14 *4 (-824)) (-14 *5 (-579 *2)) (-14 *6 (-1169 (-626 *3))))) ((*1 *1) - (-12 (-5 *1 (-386 *2 *3 *4 *5)) (-4 *2 (-144)) (-14 *3 (-823)) - (-14 *4 (-578 (-1075))) (-14 *5 (-1164 (-625 *2)))))) + (-12 (-5 *1 (-387 *2 *3 *4 *5)) (-4 *2 (-144)) (-14 *3 (-824)) + (-14 *4 (-579 (-1080))) (-14 *5 (-1169 (-626 *2)))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-1070 (-850 *4))) (-5 *1 (-353 *3 *4)) - (-4 *3 (-354 *4)))) + (-12 (-4 *4 (-144)) (-5 *2 (-1075 (-851 *4))) (-5 *1 (-354 *3 *4)) + (-4 *3 (-355 *4)))) ((*1 *2) - (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-4 *3 (-308)) - (-5 *2 (-1070 (-850 *3))))) + (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-4 *3 (-308)) + (-5 *2 (-1075 (-851 *3))))) ((*1 *2) - (-12 (-5 *2 (-1070 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) - (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-1075 (-344 (-851 *3)))) (-5 *1 (-387 *3 *4 *5 *6)) + (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1070 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) - (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-1075 (-344 (-851 *3)))) (-5 *1 (-387 *3 *4 *5 *6)) + (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-1070 (-850 *4))) (-5 *1 (-353 *3 *4)) - (-4 *3 (-354 *4)))) + (-12 (-4 *4 (-144)) (-5 *2 (-1075 (-851 *4))) (-5 *1 (-354 *3 *4)) + (-4 *3 (-355 *4)))) ((*1 *2) - (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-4 *3 (-308)) - (-5 *2 (-1070 (-850 *3))))) + (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-4 *3 (-308)) + (-5 *2 (-1075 (-851 *3))))) ((*1 *2) - (-12 (-5 *2 (-1070 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) - (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-1075 (-344 (-851 *3)))) (-5 *1 (-387 *3 *4 *5 *6)) + (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1070 (-343 (-850 *3)))) (-5 *1 (-386 *3 *4 *5 *6)) - (-4 *3 (-489)) (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-1075 (-344 (-851 *3)))) (-5 *1 (-387 *3 *4 *5 *6)) + (-4 *3 (-490)) (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2) - (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2) - (-12 (-5 *2 (-343 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3)))))) + (-12 (-5 *2 (-344 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) - (-5 *2 (-578 (-850 *4))))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) + (-5 *2 (-579 (-851 *4))))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-578 (-850 *4))) (-5 *1 (-353 *3 *4)) - (-4 *3 (-354 *4)))) - ((*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-578 (-850 *3))))) + (-12 (-4 *4 (-144)) (-5 *2 (-579 (-851 *4))) (-5 *1 (-354 *3 *4)) + (-4 *3 (-355 *4)))) + ((*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-579 (-851 *3))))) ((*1 *2) - (-12 (-5 *2 (-578 (-850 *3))) (-5 *1 (-386 *3 *4 *5 *6)) (-4 *3 (-489)) - (-4 *3 (-144)) (-14 *4 (-823)) (-14 *5 (-578 (-1075))) - (-14 *6 (-1164 (-625 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1164 (-386 *4 *5 *6 *7))) (-5 *2 (-578 (-850 *4))) - (-5 *1 (-386 *4 *5 *6 *7)) (-4 *4 (-489)) (-4 *4 (-144)) (-14 *5 (-823)) - (-14 *6 (-578 (-1075))) (-14 *7 (-1164 (-625 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-385)))) - ((*1 *1 *1 *1) (-4 *1 (-385)))) -(((*1 *2 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-687)) - (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) + (-12 (-5 *2 (-579 (-851 *3))) (-5 *1 (-387 *3 *4 *5 *6)) (-4 *3 (-490)) + (-4 *3 (-144)) (-14 *4 (-824)) (-14 *5 (-579 (-1080))) + (-14 *6 (-1169 (-626 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1169 (-387 *4 *5 *6 *7))) (-5 *2 (-579 (-851 *4))) + (-5 *1 (-387 *4 *5 *6 *7)) (-4 *4 (-490)) (-4 *4 (-144)) (-14 *5 (-824)) + (-14 *6 (-579 (-1080))) (-14 *7 (-1169 (-626 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *1)) (-4 *1 (-386)))) + ((*1 *1 *1 *1) (-4 *1 (-386)))) +(((*1 *2 *3) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-688)) + (-5 *1 (-384 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-687)) (|:| -1986 *4))) (-5 *5 (-687)) - (-4 *4 (-854 *6 *7 *8)) (-4 *6 (-385)) (-4 *7 (-710)) (-4 *8 (-749)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-688)) (|:| -1991 *4))) (-5 *5 (-688)) + (-4 *4 (-855 *6 *7 *8)) (-4 *6 (-386)) (-4 *7 (-711)) (-4 *8 (-750)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-383 *6 *7 *8 *4))))) + (-5 *1 (-384 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-688)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-710)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) - (-5 *2 (-83)) (-5 *1 (-383 *4 *5 *6 *7))))) + (-4 *5 (-711)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *6 (-750)) + (-5 *2 (-83)) (-5 *1 (-384 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-478)) (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) - (-5 *2 (-1170)) (-5 *1 (-383 *4 *5 *6 *7)) (-4 *7 (-854 *4 *5 *6))))) + (-12 (-5 *3 (-479)) (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) + (-5 *2 (-1175)) (-5 *1 (-384 *4 *5 *6 *7)) (-4 *7 (-855 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *7)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *2 (-1170)) (-5 *1 (-383 *4 *5 *6 *7))))) + (-12 (-5 *3 (-579 *7)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *2 (-1175)) (-5 *1 (-384 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-478)) + (-12 (-5 *2 (-479)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-687)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-688)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-710)) (-4 *4 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-749)) - (-5 *1 (-383 *5 *6 *7 *4))))) + (-4 *6 (-711)) (-4 *4 (-855 *5 *6 *7)) (-4 *5 (-386)) (-4 *7 (-750)) + (-5 *1 (-384 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-478)) + (-12 (-5 *2 (-479)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-687)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-688)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-710)) (-4 *4 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *7 (-749)) - (-5 *1 (-383 *5 *6 *7 *4))))) + (-4 *6 (-711)) (-4 *4 (-855 *5 *6 *7)) (-4 *5 (-386)) (-4 *7 (-750)) + (-5 *1 (-384 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-1170)) - (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-1175)) + (-5 *1 (-384 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-385)) (-4 *5 (-710)) (-4 *6 (-749)) (-5 *2 (-478)) - (-5 *1 (-383 *4 *5 *6 *3)) (-4 *3 (-854 *4 *5 *6))))) + (-12 (-4 *4 (-386)) (-4 *5 (-711)) (-4 *6 (-750)) (-5 *2 (-479)) + (-5 *1 (-384 *4 *5 *6 *3)) (-4 *3 (-855 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *6))))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-386)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-384 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-578 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-687)) (|:| |poli| *6) + (-579 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-688)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-710)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *5 (-749)) - (-5 *1 (-383 *3 *4 *5 *6))))) + (-4 *4 (-711)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-386)) (-4 *5 (-750)) + (-5 *1 (-384 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-688)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-710)) (-4 *2 (-854 *4 *5 *6)) (-5 *1 (-383 *4 *5 *6 *2)) - (-4 *4 (-385)) (-4 *6 (-749))))) + (-4 *5 (-711)) (-4 *2 (-855 *4 *5 *6)) (-5 *1 (-384 *4 *5 *6 *2)) + (-4 *4 (-386)) (-4 *6 (-750))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-578 (-2 (|:| |totdeg| (-687)) (|:| -1986 *3)))) (-5 *4 (-687)) - (-4 *3 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) (-4 *7 (-749)) - (-5 *1 (-383 *5 *6 *7 *3))))) + (-12 (-5 *2 (-579 (-2 (|:| |totdeg| (-688)) (|:| -1991 *3)))) (-5 *4 (-688)) + (-4 *3 (-855 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) (-4 *7 (-750)) + (-5 *1 (-384 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-385)) (-4 *4 (-710)) (-4 *5 (-749)) (-5 *1 (-383 *3 *4 *5 *2)) - (-4 *2 (-854 *3 *4 *5))))) + (-12 (-4 *3 (-386)) (-4 *4 (-711)) (-4 *5 (-750)) (-5 *1 (-384 *3 *4 *5 *2)) + (-4 *2 (-855 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-854 *5 *6 *7)) (-4 *5 (-385)) (-4 *6 (-710)) - (-4 *7 (-749)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-383 *5 *6 *7 *3))))) + (-12 (-5 *4 (-579 *3)) (-4 *3 (-855 *5 *6 *7)) (-4 *5 (-386)) (-4 *6 (-711)) + (-4 *7 (-750)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-384 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-578 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-687)) (|:| |poli| *6) + (-579 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-688)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-710)) (-4 *6 (-854 *4 *3 *5)) (-4 *4 (-385)) (-4 *5 (-749)) - (-5 *1 (-383 *4 *3 *5 *6))))) + (-4 *3 (-711)) (-4 *6 (-855 *4 *3 *5)) (-4 *4 (-386)) (-4 *5 (-750)) + (-5 *1 (-384 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-578 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-687)) (|:| |poli| *6) + (-579 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-688)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-710)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-385)) (-4 *5 (-749)) - (-5 *1 (-383 *3 *4 *5 *6))))) + (-4 *4 (-711)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-386)) (-4 *5 (-750)) + (-5 *1 (-384 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-578 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *3) + (-579 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-688)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-710)) (-4 *3 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) - (-5 *1 (-383 *4 *5 *6 *3))))) + (-4 *5 (-711)) (-4 *3 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *6 (-750)) + (-5 *1 (-384 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-385)) (-4 *3 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) - (-5 *1 (-383 *4 *3 *5 *6)) (-4 *6 (-854 *4 *3 *5))))) + (-12 (-4 *4 (-386)) (-4 *3 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) + (-5 *1 (-384 *4 *3 *5 *6)) (-4 *6 (-855 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-385)) (-4 *3 (-710)) (-4 *5 (-749)) (-5 *2 (-83)) - (-5 *1 (-383 *4 *3 *5 *6)) (-4 *6 (-854 *4 *3 *5))))) + (-12 (-4 *4 (-386)) (-4 *3 (-711)) (-4 *5 (-750)) (-5 *2 (-83)) + (-5 *1 (-384 *4 *3 *5 *6)) (-4 *6 (-855 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-687)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-688)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-710)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *6 (-749)) - (-5 *2 (-83)) (-5 *1 (-383 *4 *5 *6 *7))))) + (-4 *5 (-711)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *6 (-750)) + (-5 *2 (-83)) (-5 *1 (-384 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-578 *7)) (-5 *3 (-478)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-385)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *7))))) + (-12 (-5 *2 (-579 *7)) (-5 *3 (-479)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-386)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-384 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *2))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *1 (-384 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-385)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *1 (-383 *4 *5 *6 *2))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *4 *5 *6)) (-4 *4 (-386)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *1 (-384 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) - (-5 *3 (-578 *7)))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-855 *4 *5 *6)) (-5 *2 (-579 (-579 *7))) (-5 *1 (-383 *4 *5 *6 *7)) + (-5 *3 (-579 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) - (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) - (-5 *3 (-578 *8)))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) + (-4 *8 (-855 *5 *6 *7)) (-5 *2 (-579 (-579 *8))) (-5 *1 (-383 *5 *6 *7 *8)) + (-5 *3 (-579 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) - (-5 *3 (-578 *7)))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-855 *4 *5 *6)) (-5 *2 (-579 (-579 *7))) (-5 *1 (-383 *4 *5 *6 *7)) + (-5 *3 (-579 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) - (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) - (-5 *3 (-578 *8))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) + (-4 *8 (-855 *5 *6 *7)) (-5 *2 (-579 (-579 *8))) (-5 *1 (-383 *5 *6 *7 *8)) + (-5 *3 (-579 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-710)) (-4 *6 (-749)) - (-4 *7 (-854 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-382 *4 *5 *6 *7)) - (-5 *3 (-578 *7)))) + (-12 (-4 *4 (-13 (-254) (-118))) (-4 *5 (-711)) (-4 *6 (-750)) + (-4 *7 (-855 *4 *5 *6)) (-5 *2 (-579 (-579 *7))) (-5 *1 (-383 *4 *5 *6 *7)) + (-5 *3 (-579 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-710)) (-4 *7 (-749)) - (-4 *8 (-854 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-382 *5 *6 *7 *8)) - (-5 *3 (-578 *8))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-254) (-118))) (-4 *6 (-711)) (-4 *7 (-750)) + (-4 *8 (-855 *5 *6 *7)) (-5 *2 (-579 (-579 *8))) (-5 *1 (-383 *5 *6 *7 *8)) + (-5 *3 (-579 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-578 *6)) (-4 *6 (-854 *3 *4 *5)) (-4 *3 (-254)) (-4 *4 (-710)) - (-4 *5 (-749)) (-5 *1 (-381 *3 *4 *5 *6)))) + (-12 (-5 *2 (-579 *6)) (-4 *6 (-855 *3 *4 *5)) (-4 *3 (-254)) (-4 *4 (-711)) + (-4 *5 (-750)) (-5 *1 (-382 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-578 *7)) (-5 *3 (-1059)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-254)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *7)))) + (-12 (-5 *2 (-579 *7)) (-5 *3 (-1063)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-254)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-382 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-578 *7)) (-5 *3 (-1059)) (-4 *7 (-854 *4 *5 *6)) (-4 *4 (-254)) - (-4 *5 (-710)) (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *7))))) + (-12 (-5 *2 (-579 *7)) (-5 *3 (-1063)) (-4 *7 (-855 *4 *5 *6)) (-4 *4 (-254)) + (-4 *5 (-711)) (-4 *6 (-750)) (-5 *1 (-382 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-854 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-710)) - (-4 *6 (-749)) (-5 *1 (-381 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-379)) (-5 *3 (-478))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-855 *4 *5 *6)) (-4 *4 (-254)) (-4 *5 (-711)) + (-4 *6 (-750)) (-5 *1 (-382 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-380)) (-5 *3 (-479))))) (((*1 *2 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954)))) - ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954))))) + (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-341)) (-4 *3 (-955)))) + ((*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-341)) (-4 *3 (-955))))) (((*1 *2 *3) - (-12 (-5 *2 (-478)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954))))) + (-12 (-5 *2 (-479)) (-5 *1 (-379 *3)) (-4 *3 (-341)) (-4 *3 (-955))))) (((*1 *2 *3) - (-12 (-5 *2 (-478)) (-5 *1 (-378 *3)) (-4 *3 (-340)) (-4 *3 (-954))))) -(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-378 *3)) (-4 *3 (-954))))) -(((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954))))) -(((*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954)))) - ((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-378 *3)) (-4 *3 (-954))))) + (-12 (-5 *2 (-479)) (-5 *1 (-379 *3)) (-4 *3 (-341)) (-4 *3 (-955))))) +(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-379 *3)) (-4 *3 (-955))))) +(((*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-955))))) +(((*1 *2 *2) (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-955)))) + ((*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-379 *3)) (-4 *3 (-955))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-687)) (-5 *4 (-478)) (-5 *1 (-378 *2)) (-4 *2 (-954))))) + (-12 (-5 *3 (-688)) (-5 *4 (-479)) (-5 *1 (-379 *2)) (-4 *2 (-955))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-341 *6)) (-4 *6 (-1140 *5)) (-4 *5 (-954)) - (-5 *2 (-578 *6)) (-5 *1 (-377 *5 *6))))) + (-12 (-5 *3 (-824)) (-5 *4 (-342 *6)) (-4 *6 (-1145 *5)) (-4 *5 (-955)) + (-5 *2 (-579 *6)) (-5 *1 (-378 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-823)) (-5 *1 (-375 *2)) (-4 *2 (-1140 (-478))))) + (|partial| -12 (-5 *3 (-824)) (-5 *1 (-376 *2)) (-4 *2 (-1145 (-479))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-823)) (-5 *4 (-687)) (-5 *1 (-375 *2)) - (-4 *2 (-1140 (-478))))) + (|partial| -12 (-5 *3 (-824)) (-5 *4 (-688)) (-5 *1 (-376 *2)) + (-4 *2 (-1145 (-479))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *1 (-375 *2)) - (-4 *2 (-1140 (-478))))) + (|partial| -12 (-5 *3 (-824)) (-5 *4 (-579 (-688))) (-5 *1 (-376 *2)) + (-4 *2 (-1145 (-479))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *5 (-687)) - (-5 *1 (-375 *2)) (-4 *2 (-1140 (-478))))) + (|partial| -12 (-5 *3 (-824)) (-5 *4 (-579 (-688))) (-5 *5 (-688)) + (-5 *1 (-376 *2)) (-4 *2 (-1145 (-479))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-823)) (-5 *4 (-578 (-687))) (-5 *5 (-687)) - (-5 *6 (-83)) (-5 *1 (-375 *2)) (-4 *2 (-1140 (-478))))) + (|partial| -12 (-5 *3 (-824)) (-5 *4 (-579 (-688))) (-5 *5 (-688)) + (-5 *6 (-83)) (-5 *1 (-376 *2)) (-4 *2 (-1145 (-479))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-823)) (-5 *4 (-341 *2)) (-4 *2 (-1140 *5)) (-5 *1 (-377 *5 *2)) - (-4 *5 (-954))))) + (-12 (-5 *3 (-824)) (-5 *4 (-342 *2)) (-4 *2 (-1145 *5)) (-5 *1 (-378 *5 *2)) + (-4 *5 (-955))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-2 (|:| -3708 *4) (|:| -3924 (-478))))) - (-4 *4 (-1140 (-478))) (-5 *2 (-668 (-687))) (-5 *1 (-375 *4)))) + (-12 (-5 *3 (-579 (-2 (|:| -3714 *4) (|:| -3930 (-479))))) + (-4 *4 (-1145 (-479))) (-5 *2 (-669 (-688))) (-5 *1 (-376 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-341 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-954)) - (-5 *2 (-668 (-687))) (-5 *1 (-377 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1140 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-954)) (-5 *1 (-377 *3 *2)) (-4 *2 (-1140 *3))))) + (-12 (-5 *3 (-342 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-955)) + (-5 *2 (-669 (-688))) (-5 *1 (-378 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-955)) (-5 *1 (-378 *3 *2)) (-4 *2 (-1145 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-955)) (-5 *1 (-378 *3 *2)) (-4 *2 (-1145 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) - (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) + (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) - (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) + (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-687)) (-4 *5 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *5 *3 *6)) - (-4 *3 (-1140 *5)) (-4 *6 (-13 (-340) (-943 *5) (-308) (-1100) (-236))))) + (-12 (-5 *4 (-688)) (-4 *5 (-955)) (-5 *2 (-479)) (-5 *1 (-377 *5 *3 *6)) + (-4 *3 (-1145 *5)) (-4 *6 (-13 (-341) (-944 *5) (-308) (-1105) (-236))))) ((*1 *2 *3) - (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1140 *4)) - (-4 *5 (-13 (-340) (-943 *4) (-308) (-1100) (-236)))))) + (-12 (-4 *4 (-955)) (-5 *2 (-479)) (-5 *1 (-377 *4 *3 *5)) (-4 *3 (-1145 *4)) + (-4 *5 (-13 (-341) (-944 *4) (-308) (-1105) (-236)))))) (((*1 *2 *3) - (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1140 *4)) - (-4 *5 (-13 (-340) (-943 *4) (-308) (-1100) (-236)))))) + (-12 (-4 *4 (-955)) (-5 *2 (-479)) (-5 *1 (-377 *4 *3 *5)) (-4 *3 (-1145 *4)) + (-4 *5 (-13 (-341) (-944 *4) (-308) (-1105) (-236)))))) (((*1 *2 *3) - (-12 (-4 *4 (-954)) (-4 *2 (-13 (-340) (-943 *4) (-308) (-1100) (-236))) - (-5 *1 (-376 *4 *3 *2)) (-4 *3 (-1140 *4)))) + (-12 (-4 *4 (-955)) (-4 *2 (-13 (-341) (-944 *4) (-308) (-1105) (-236))) + (-5 *1 (-377 *4 *3 *2)) (-4 *3 (-1145 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-823)) (-4 *5 (-954)) - (-4 *2 (-13 (-340) (-943 *5) (-308) (-1100) (-236))) (-5 *1 (-376 *5 *3 *2)) - (-4 *3 (-1140 *5))))) + (-12 (-5 *4 (-824)) (-4 *5 (-955)) + (-4 *2 (-13 (-341) (-944 *5) (-308) (-1105) (-236))) (-5 *1 (-377 *5 *3 *2)) + (-4 *3 (-1145 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-954)) (-5 *2 (-478)) (-5 *1 (-376 *4 *3 *5)) (-4 *3 (-1140 *4)) - (-4 *5 (-13 (-340) (-943 *4) (-308) (-1100) (-236)))))) + (-12 (-4 *4 (-955)) (-5 *2 (-479)) (-5 *1 (-377 *4 *3 *5)) (-4 *3 (-1145 *4)) + (-4 *5 (-13 (-341) (-944 *4) (-308) (-1105) (-236)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-83)) (-5 *5 (-999 (-687))) (-5 *6 (-687)) - (-5 *2 - (-2 (|:| |contp| (-478)) - (|:| -1762 (-578 (-2 (|:| |irr| *3) (|:| -2377 (-478))))))) - (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2558 (-478)) (|:| -1762 (-578 *3)))) (-5 *1 (-375 *3)) - (-4 *3 (-1140 (-478)))))) -(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-341 *3)) (-4 *3 (-489)))) - ((*1 *2 *3) - (-12 (-5 *3 (-578 (-2 (|:| -3708 *4) (|:| -3924 (-478))))) - (-4 *4 (-1140 (-478))) (-5 *2 (-687)) (-5 *1 (-375 *4))))) -(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) - ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478))))) - ((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-375 *3)) (-4 *3 (-1140 (-478)))))) + (-12 (-5 *4 (-83)) (-5 *5 (-1002 (-688))) (-5 *6 (-688)) + (-5 *2 + (-2 (|:| |contp| (-479)) + (|:| -1767 (-579 (-2 (|:| |irr| *3) (|:| -2382 (-479))))))) + (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2563 (-479)) (|:| -1767 (-579 *3)))) (-5 *1 (-376 *3)) + (-4 *3 (-1145 (-479)))))) +(((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-342 *3)) (-4 *3 (-490)))) + ((*1 *2 *3) + (-12 (-5 *3 (-579 (-2 (|:| -3714 *4) (|:| -3930 (-479))))) + (-4 *4 (-1145 (-479))) (-5 *2 (-688)) (-5 *1 (-376 *4))))) +(((*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) + ((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479))))) + ((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-376 *3)) (-4 *3 (-1145 (-479)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-578 + (-579 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-478))))) - (-4 *2 (-489)) (-5 *1 (-341 *2)))) + (|:| |xpnt| (-479))))) + (-4 *2 (-490)) (-5 *1 (-342 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-478)) - (|:| -1762 (-578 (-2 (|:| |irr| *4) (|:| -2377 (-478))))))) - (-4 *4 (-1140 (-478))) (-5 *2 (-341 *4)) (-5 *1 (-375 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-370)) (|:| -3886 "void"))) (-5 *1 (-372))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-850 (-478)))) (-5 *1 (-372))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-372))))) -(((*1 *1) (-5 *1 (-372)))) -(((*1 *1) (-5 *1 (-372)))) -(((*1 *1) (-5 *1 (-372)))) -(((*1 *1) (-5 *1 (-372)))) -(((*1 *1) (-5 *1 (-372)))) -(((*1 *1) (-5 *1 (-372)))) -(((*1 *1) (-5 *1 (-372)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-943 (-48))) (-4 *4 (-13 (-489) (-943 (-478)))) - (-4 *5 (-357 *4)) (-5 *2 (-341 (-1070 (-48)))) (-5 *1 (-371 *4 *5 *3)) - (-4 *3 (-1140 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) - (-5 *2 - (-3 (|:| |overq| (-1070 (-343 (-478)))) (|:| |overan| (-1070 (-48))) - (|:| -2619 (-83)))) - (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1140 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) - (-5 *2 (-341 (-1070 (-343 (-478))))) (-5 *1 (-371 *4 *5 *3)) - (-4 *3 (-1140 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-4 *5 (-357 *4)) (-5 *2 (-341 *3)) - (-5 *1 (-371 *4 *5 *3)) (-4 *3 (-1140 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-370))))) + (-2 (|:| |contp| (-479)) + (|:| -1767 (-579 (-2 (|:| |irr| *4) (|:| -2382 (-479))))))) + (-4 *4 (-1145 (-479))) (-5 *2 (-342 *4)) (-5 *1 (-376 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-371)) (|:| -3892 "void"))) (-5 *1 (-373))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-851 (-479)))) (-5 *1 (-373))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-373))))) +(((*1 *1) (-5 *1 (-373)))) +(((*1 *1) (-5 *1 (-373)))) +(((*1 *1) (-5 *1 (-373)))) +(((*1 *1) (-5 *1 (-373)))) +(((*1 *1) (-5 *1 (-373)))) +(((*1 *1) (-5 *1 (-373)))) +(((*1 *1) (-5 *1 (-373)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-944 (-48))) (-4 *4 (-13 (-490) (-944 (-479)))) + (-4 *5 (-358 *4)) (-5 *2 (-342 (-1075 (-48)))) (-5 *1 (-372 *4 *5 *3)) + (-4 *3 (-1145 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-4 *5 (-358 *4)) + (-5 *2 + (-3 (|:| |overq| (-1075 (-344 (-479)))) (|:| |overan| (-1075 (-48))) + (|:| -2624 (-83)))) + (-5 *1 (-372 *4 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-490) (-944 (-479)))) (-4 *5 (-358 *4)) + (-5 *2 (-342 (-1075 (-344 (-479))))) (-5 *1 (-372 *4 *5 *3)) + (-4 *3 (-1145 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-4 *5 (-358 *4)) (-5 *2 (-342 *3)) + (-5 *1 (-372 *4 *5 *3)) (-4 *3 (-1145 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-371))))) (((*1 *2) - (-12 (-4 *3 (-13 (-489) (-943 (-478)))) (-5 *2 (-1170)) (-5 *1 (-369 *3 *4)) - (-4 *4 (-357 *3))))) + (-12 (-4 *3 (-13 (-490) (-944 (-479)))) (-5 *2 (-1175)) (-5 *1 (-370 *3 *4)) + (-4 *4 (-358 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-489) (-943 (-478)))) (-5 *2 (-343 (-478))) - (-5 *1 (-369 *4 *3)) (-4 *3 (-357 *4)))) + (-12 (-4 *4 (-13 (-490) (-944 (-479)))) (-5 *2 (-344 (-479))) + (-5 *1 (-370 *4 *3)) (-4 *3 (-358 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-545 *3)) (-4 *3 (-357 *5)) (-4 *5 (-13 (-489) (-943 (-478)))) - (-5 *2 (-1070 (-343 (-478)))) (-5 *1 (-369 *5 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3))))) -(((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-367 *3 *2)) (-4 *2 (-357 *3))))) + (-12 (-5 *4 (-546 *3)) (-4 *3 (-358 *5)) (-4 *5 (-13 (-490) (-944 (-479)))) + (-5 *2 (-1075 (-344 (-479)))) (-5 *1 (-370 *5 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3))))) +(((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-368 *3 *2)) (-4 *2 (-358 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))) - (-4 *2 (-13 (-749) (-21)))))) + (-12 (-5 *1 (-366 *3 *2)) (-4 *3 (-13 (-144) (-38 (-344 (-479))))) + (-4 *2 (-13 (-750) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-365 *3 *2)) (-4 *3 (-13 (-144) (-38 (-343 (-478))))) - (-4 *2 (-13 (-749) (-21)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-513 *3)) (-5 *1 (-364 *5 *3)) (-4 *3 (-13 (-1100) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-1003)) (-5 *2 (-687))))) -(((*1 *1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-1003)) (-4 *2 (-313))))) -(((*1 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-313)) (-4 *2 (-1003))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *1 (-359 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1100) (-357 *3))) - (-14 *4 (-1075)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-4 *2 (-13 (-27) (-1100) (-357 *3) (-10 -8 (-15 -3922 ($ *4))))) - (-4 *4 (-748)) + (-12 (-5 *1 (-366 *3 *2)) (-4 *3 (-13 (-144) (-38 (-344 (-479))))) + (-4 *2 (-13 (-750) (-21)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-514 *3)) (-5 *1 (-365 *5 *3)) (-4 *3 (-13 (-1105) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-363 *3)) (-4 *3 (-1006)) (-5 *2 (-688))))) +(((*1 *1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-1006)) (-4 *2 (-314))))) +(((*1 *1) (-12 (-4 *1 (-363 *2)) (-4 *2 (-314)) (-4 *2 (-1006))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *1 (-360 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1105) (-358 *3))) + (-14 *4 (-1080)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-4 *2 (-13 (-27) (-1105) (-358 *3) (-10 -8 (-15 -3928 ($ *4))))) + (-4 *4 (-749)) (-4 *5 - (-13 (-1143 *2 *4) (-308) (-1100) - (-10 -8 (-15 -3734 ($ $)) (-15 -3788 ($ $))))) - (-5 *1 (-360 *3 *2 *4 *5 *6 *7)) (-4 *6 (-889 *5)) (-14 *7 (-1075))))) + (-13 (-1148 *2 *4) (-308) (-1105) + (-10 -8 (-15 -3740 ($ $)) (-15 -3794 ($ $))))) + (-5 *1 (-361 *3 *2 *4 *5 *6 *7)) (-4 *6 (-890 *5)) (-14 *7 (-1080))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-83)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-4 *3 (-13 (-27) (-1100) (-357 *6) (-10 -8 (-15 -3922 ($ *7))))) - (-4 *7 (-748)) + (-12 (-5 *4 (-83)) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-4 *3 (-13 (-27) (-1105) (-358 *6) (-10 -8 (-15 -3928 ($ *7))))) + (-4 *7 (-749)) (-4 *8 - (-13 (-1143 *3 *7) (-308) (-1100) - (-10 -8 (-15 -3734 ($ $)) (-15 -3788 ($ $))))) + (-13 (-1148 *3 *7) (-308) (-1105) + (-10 -8 (-15 -3740 ($ $)) (-15 -3794 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059)))))) - (-5 *1 (-360 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1059)) (-4 *9 (-889 *8)) - (-14 *10 (-1075))))) + (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063)))))) + (-5 *1 (-361 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1063)) (-4 *9 (-890 *8)) + (-14 *10 (-1080))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-83)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-4 *3 (-13 (-27) (-1100) (-357 *6) (-10 -8 (-15 -3922 ($ *7))))) - (-4 *7 (-748)) + (-12 (-5 *4 (-83)) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-4 *3 (-13 (-27) (-1105) (-358 *6) (-10 -8 (-15 -3928 ($ *7))))) + (-4 *7 (-749)) (-4 *8 - (-13 (-1143 *3 *7) (-308) (-1100) - (-10 -8 (-15 -3734 ($ $)) (-15 -3788 ($ $))))) + (-13 (-1148 *3 *7) (-308) (-1105) + (-10 -8 (-15 -3740 ($ $)) (-15 -3794 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059)))))) - (-5 *1 (-360 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1059)) (-4 *9 (-889 *8)) - (-14 *10 (-1075))))) + (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063)))))) + (-5 *1 (-361 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1063)) (-4 *9 (-890 *8)) + (-14 *10 (-1080))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *2 (-3 (|:| |%expansion| (-260 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1059)) (|:| |prob| (-1059)))))) - (-5 *1 (-359 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1100) (-357 *5))) - (-14 *6 (-1075)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) (-5 *2 (-83)))) - ((*1 *2 *1) (-12 (-4 *1 (-357 *3)) (-4 *3 (-1003)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-709)) (-4 *2 (-954)))) - ((*1 *2 *1) (-12 (-4 *1 (-357 *2)) (-4 *2 (-1003))))) + (|:| |%problem| (-2 (|:| |func| (-1063)) (|:| |prob| (-1063)))))) + (-5 *1 (-360 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1105) (-358 *5))) + (-14 *6 (-1080)) (-14 *7 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-5 *2 (-83)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *3)) (-4 *3 (-1006)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *3 (-710)) (-4 *2 (-955)))) + ((*1 *2 *1) (-12 (-4 *1 (-358 *2)) (-4 *2 (-1006))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1075)) (-5 *3 (-578 *1)) (-4 *1 (-357 *4)) (-4 *4 (-1003)))) + (-12 (-5 *2 (-1080)) (-5 *3 (-579 *1)) (-4 *1 (-358 *4)) (-4 *4 (-1006)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1075)) (-4 *1 (-357 *3)) (-4 *3 (-1003))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1003)) - (-5 *2 (-2 (|:| -3930 (-478)) (|:| |var| (-545 *1)))) (-4 *1 (-357 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-341 *3)) (-4 *3 (-489)) (-5 *1 (-355 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-308)) (-4 *1 (-276 *3)))) + (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1080)) (-4 *1 (-358 *3)) (-4 *3 (-1006))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1006)) + (-5 *2 (-2 (|:| -3936 (-479)) (|:| |var| (-546 *1)))) (-4 *1 (-358 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-342 *3)) (-4 *3 (-490)) (-5 *1 (-356 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-308)) (-4 *1 (-276 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1140 *4)) (-4 *4 (-1119)) - (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1140 (-343 *3))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1145 *4)) (-4 *4 (-1124)) + (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1145 (-344 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-144)) (-4 *1 (-312 *4)))) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-144)) (-4 *1 (-312 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1164 *4)) (-5 *3 (-1164 *1)) (-4 *4 (-144)) - (-4 *1 (-315 *4 *5)) (-4 *5 (-1140 *4)))) + (-12 (-5 *2 (-1169 *4)) (-5 *3 (-1169 *1)) (-4 *4 (-144)) + (-4 *1 (-316 *4 *5)) (-4 *5 (-1145 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *3)) (-4 *3 (-144)) (-4 *1 (-346 *3 *4)) - (-4 *4 (-1140 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1164 *3)) (-4 *3 (-144)) (-4 *1 (-354 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) - ((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-353 *3 *2)) (-4 *3 (-354 *2)))) - ((*1 *2) (-12 (-4 *1 (-354 *2)) (-4 *2 (-144))))) -(((*1 *2 *3) (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) - ((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-353 *3 *2)) (-4 *3 (-354 *2)))) - ((*1 *2) (-12 (-4 *1 (-354 *2)) (-4 *2 (-144))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-144)) (-4 *1 (-347 *3 *4)) + (-4 *4 (-1145 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-4 *3 (-144)) (-4 *1 (-355 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) + ((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-354 *3 *2)) (-4 *3 (-355 *2)))) + ((*1 *2) (-12 (-4 *1 (-355 *2)) (-4 *2 (-144))))) +(((*1 *2 *3) (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *2)) (-4 *2 (-144)))) + ((*1 *2) (-12 (-4 *2 (-144)) (-5 *1 (-354 *3 *2)) (-4 *3 (-355 *2)))) + ((*1 *2) (-12 (-4 *1 (-355 *2)) (-4 *2 (-144))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-625 *4)) (-5 *1 (-353 *3 *4)) - (-4 *3 (-354 *4)))) - ((*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3))))) + (-12 (-4 *4 (-144)) (-5 *2 (-626 *4)) (-5 *1 (-354 *3 *4)) + (-4 *3 (-355 *4)))) + ((*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-626 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-625 *4)) (-5 *1 (-353 *3 *4)) - (-4 *3 (-354 *4)))) - ((*1 *2) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3))))) + (-12 (-4 *4 (-144)) (-5 *2 (-626 *4)) (-5 *1 (-354 *3 *4)) + (-4 *3 (-355 *4)))) + ((*1 *2) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-626 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3))))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-626 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-625 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-144)) (-5 *2 (-625 *3))))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-312 *4)) (-4 *4 (-144)) (-5 *2 (-626 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-355 *3)) (-4 *3 (-144)) (-5 *2 (-626 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-349 *3 *4 *5 *6)) (-4 *6 (-943 *4)) (-4 *3 (-254)) - (-4 *4 (-897 *3)) (-4 *5 (-1140 *4)) (-4 *6 (-346 *4 *5)) - (-14 *7 (-1164 *6)) (-5 *1 (-351 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-350 *3 *4 *5 *6)) (-4 *6 (-944 *4)) (-4 *3 (-254)) + (-4 *4 (-898 *3)) (-4 *5 (-1145 *4)) (-4 *6 (-347 *4 *5)) + (-14 *7 (-1169 *6)) (-5 *1 (-352 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1164 *6)) (-4 *6 (-346 *4 *5)) (-4 *4 (-897 *3)) - (-4 *5 (-1140 *4)) (-4 *3 (-254)) (-5 *1 (-351 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1169 *6)) (-4 *6 (-347 *4 *5)) (-4 *4 (-898 *3)) + (-4 *5 (-1145 *4)) (-4 *3 (-254)) (-5 *1 (-352 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-254)) (-4 *3 (-897 *2)) (-4 *4 (-1140 *3)) - (-5 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-13 (-346 *3 *4) (-943 *3)))))) + (-12 (-4 *2 (-254)) (-4 *3 (-898 *2)) (-4 *4 (-1145 *3)) + (-5 *1 (-350 *2 *3 *4 *5)) (-4 *5 (-13 (-347 *3 *4) (-944 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-687)) (-5 *4 (-1164 *2)) (-4 *5 (-254)) (-4 *6 (-897 *5)) - (-4 *2 (-13 (-346 *6 *7) (-943 *6))) (-5 *1 (-349 *5 *6 *7 *2)) - (-4 *7 (-1140 *6))))) + (-12 (-5 *3 (-688)) (-5 *4 (-1169 *2)) (-4 *5 (-254)) (-4 *6 (-898 *5)) + (-4 *2 (-13 (-347 *6 *7) (-944 *6))) (-5 *1 (-350 *5 *6 *7 *2)) + (-4 *7 (-1145 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)))) ((*1 *2) - (-12 (-4 *4 (-144)) (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)) - (-5 *1 (-345 *3 *4 *5)) (-4 *3 (-346 *4 *5)))) + (-12 (-4 *4 (-144)) (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)) + (-5 *1 (-346 *3 *4 *5)) (-4 *3 (-347 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) - (-5 *2 (-625 *3))))) + (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) + (-5 *2 (-626 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1164 *1)) (-4 *1 (-315 *4 *5)) (-4 *4 (-144)) - (-4 *5 (-1140 *4)) (-5 *2 (-625 *4)))) + (-12 (-5 *3 (-1169 *1)) (-4 *1 (-316 *4 *5)) (-4 *4 (-144)) + (-4 *5 (-1145 *4)) (-5 *2 (-626 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1140 *3)) - (-5 *2 (-625 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489))))) + (-12 (-4 *1 (-347 *3 *4)) (-4 *3 (-144)) (-4 *4 (-1145 *3)) + (-5 *2 (-626 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 (-478))))) (-5 *1 (-306 *3)) - (-4 *3 (-1003)))) + (-12 (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 (-479))))) (-5 *1 (-306 *3)) + (-4 *3 (-1006)))) ((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-1003)) - (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -3919 (-687))))))) + (-12 (-4 *1 (-330 *3)) (-4 *3 (-1006)) + (-5 *2 (-579 (-2 (|:| |gen| *3) (|:| -3925 (-688))))))) ((*1 *2 *1) - (-12 (-5 *2 (-578 (-2 (|:| -3708 *3) (|:| -2383 (-478))))) (-5 *1 (-341 *3)) - (-4 *3 (-489))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-341 *3)) (-4 *3 (-489))))) + (-12 (-5 *2 (-579 (-2 (|:| -3714 *3) (|:| -2388 (-479))))) (-5 *1 (-342 *3)) + (-4 *3 (-490))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-342 *3)) (-4 *3 (-490))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-341 *4)) (-4 *4 (-489))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-478)) (-5 *1 (-341 *2)) (-4 *2 (-489))))) + (-12 (-5 *3 (-479)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-342 *4)) (-4 *4 (-490))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-479)) (-5 *1 (-342 *2)) (-4 *2 (-490))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-478)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-341 *2)) (-4 *2 (-489))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-323))) (-5 *1 (-218)))) - ((*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144)))) - ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489))))) -(((*1 *1 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-489))))) -(((*1 *2 *1) (-12 (-4 *1 (-340)) (-5 *2 (-478))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *3 (-83)) (-5 *1 (-79)))) - ((*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3962)) (-4 *1 (-340)))) - ((*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823))))) -(((*1 *2 *2) (-12 (-5 *2 (-823)) (|has| *1 (-6 -3962)) (-4 *1 (-340)))) - ((*1 *2) (-12 (-4 *1 (-340)) (-5 *2 (-823))))) -(((*1 *2 *3) - (-12 (-5 *3 (-478)) (|has| *1 (-6 -3962)) (-4 *1 (-340)) (-5 *2 (-823))))) -(((*1 *2 *3) - (-12 (-5 *3 (-478)) (|has| *1 (-6 -3962)) (-4 *1 (-340)) (-5 *2 (-823))))) -(((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-687)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-338)) (-5 *2 (-687))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-687)))) - ((*1 *1 *1) (-4 *1 (-338)))) + (-12 (-5 *3 (-479)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-342 *2)) (-4 *2 (-490))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-324))) (-5 *1 (-218)))) + ((*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-490)) (-4 *2 (-144)))) + ((*1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-490))))) +(((*1 *1 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-490))))) +(((*1 *2 *1) (-12 (-4 *1 (-341)) (-5 *2 (-479))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-5 *3 (-83)) (-5 *1 (-79)))) + ((*1 *2 *2) (-12 (-5 *2 (-824)) (|has| *1 (-6 -3968)) (-4 *1 (-341)))) + ((*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-824))))) +(((*1 *2 *2) (-12 (-5 *2 (-824)) (|has| *1 (-6 -3968)) (-4 *1 (-341)))) + ((*1 *2) (-12 (-4 *1 (-341)) (-5 *2 (-824))))) +(((*1 *2 *3) + (-12 (-5 *3 (-479)) (|has| *1 (-6 -3968)) (-4 *1 (-341)) (-5 *2 (-824))))) +(((*1 *2 *3) + (-12 (-5 *3 (-479)) (|has| *1 (-6 -3968)) (-4 *1 (-341)) (-5 *2 (-824))))) +(((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-688)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339)) (-5 *2 (-688))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-339)) (-5 *2 (-688)))) + ((*1 *1 *1) (-4 *1 (-339)))) (((*1 *1 *2) - (-12 (-5 *2 (-343 *4)) (-4 *4 (-1140 *3)) (-4 *3 (-13 (-308) (-118))) - (-5 *1 (-335 *3 *4))))) + (-12 (-5 *2 (-344 *4)) (-4 *4 (-1145 *3)) (-4 *3 (-13 (-308) (-118))) + (-5 *1 (-336 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1140 *3)) (-5 *1 (-335 *3 *2)) (-4 *3 (-13 (-308) (-118)))))) + (-12 (-4 *2 (-1145 *3)) (-5 *1 (-336 *3 *2)) (-4 *3 (-13 (-308) (-118)))))) (((*1 *2 *1) (-12 (-4 *3 (-13 (-308) (-118))) - (-5 *2 (-578 (-2 (|:| -2383 (-687)) (|:| -3749 *4) (|:| |num| *4)))) - (-5 *1 (-335 *3 *4)) (-4 *4 (-1140 *3))))) + (-5 *2 (-579 (-2 (|:| -2388 (-688)) (|:| -3755 *4) (|:| |num| *4)))) + (-5 *1 (-336 *3 *4)) (-4 *4 (-1145 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687)) + (-12 (-5 *2 (-766)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-688)) (-14 *4 (-688)) (-4 *5 (-144))))) (((*1 *2 *1) - (-12 (-5 *2 (-765)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-687)) (-14 *4 (-687)) + (-12 (-5 *2 (-766)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-688)) (-14 *4 (-688)) (-4 *5 (-144))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1059)) (-4 *1 (-332))))) -(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1059))))) -(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-1059))))) -(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-332)) (-5 *2 (-83))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1003))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-1003))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1063)) (-4 *1 (-333))))) +(((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-1063))))) +(((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-1063))))) +(((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-83))))) +(((*1 *2 *1) (-12 (-4 *1 (-333)) (-5 *2 (-83))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-1006))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-1006))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1003)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-329 *3))))) + (-12 (-4 *3 (-1006)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-330 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-328 *3 *4)) (-4 *3 (-954)) (-4 *4 (-1003)) + (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-955)) (-4 *4 (-1006)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 (-343 (-850 (-478))))) (-5 *4 (-578 (-1075))) - (-5 *2 (-578 (-578 *5))) (-5 *1 (-325 *5)) (-4 *5 (-13 (-748) (-308))))) + (-12 (-5 *3 (-579 (-344 (-851 (-479))))) (-5 *4 (-579 (-1080))) + (-5 *2 (-579 (-579 *5))) (-5 *1 (-326 *5)) (-4 *5 (-13 (-749) (-308))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 (-478)))) (-5 *2 (-578 *4)) (-5 *1 (-325 *4)) - (-4 *4 (-13 (-748) (-308)))))) + (-12 (-5 *3 (-344 (-851 (-479)))) (-5 *2 (-579 *4)) (-5 *1 (-326 *4)) + (-4 *4 (-13 (-749) (-308)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 (-140 (-478))))) (-5 *2 (-578 (-140 *4))) - (-5 *1 (-324 *4)) (-4 *4 (-13 (-308) (-748))))) + (-12 (-5 *3 (-344 (-851 (-140 (-479))))) (-5 *2 (-579 (-140 *4))) + (-5 *1 (-325 *4)) (-4 *4 (-13 (-308) (-749))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-578 (-343 (-850 (-140 (-478)))))) (-5 *4 (-578 (-1075))) - (-5 *2 (-578 (-578 (-140 *5)))) (-5 *1 (-324 *5)) - (-4 *5 (-13 (-308) (-748)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-343 (-850 (-140 (-478)))))) - (-5 *2 (-578 (-578 (-245 (-850 (-140 *4)))))) (-5 *1 (-324 *4)) - (-4 *4 (-13 (-308) (-748))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-245 (-343 (-850 (-140 (-478))))))) - (-5 *2 (-578 (-578 (-245 (-850 (-140 *4)))))) (-5 *1 (-324 *4)) - (-4 *4 (-13 (-308) (-748))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-343 (-850 (-140 (-478))))) - (-5 *2 (-578 (-245 (-850 (-140 *4))))) (-5 *1 (-324 *4)) - (-4 *4 (-13 (-308) (-748))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-245 (-343 (-850 (-140 (-478)))))) - (-5 *2 (-578 (-245 (-850 (-140 *4))))) (-5 *1 (-324 *4)) - (-4 *4 (-13 (-308) (-748)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-478)) (-5 *1 (-323))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-177)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-177)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-323)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-687)) (-5 *2 (-343 (-478))) (-5 *1 (-323))))) -(((*1 *1 *1) (-5 *1 (-177))) ((*1 *1 *1) (-5 *1 (-323))) - ((*1 *1) (-5 *1 (-323)))) -(((*1 *1 *1) (-5 *1 (-177))) ((*1 *1 *1) (-5 *1 (-323))) - ((*1 *1) (-5 *1 (-323)))) -(((*1 *1) (-5 *1 (-177))) ((*1 *1) (-5 *1 (-323)))) -(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-323)))) - ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-323))))) -(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-323)))) - ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-323))))) -(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-323)))) - ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-323))))) -(((*1 *2 *3) (-12 (-5 *3 (-687)) (-5 *2 (-1170)) (-5 *1 (-323))))) + (-12 (-5 *3 (-579 (-344 (-851 (-140 (-479)))))) (-5 *4 (-579 (-1080))) + (-5 *2 (-579 (-579 (-140 *5)))) (-5 *1 (-325 *5)) + (-4 *5 (-13 (-308) (-749)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-344 (-851 (-140 (-479)))))) + (-5 *2 (-579 (-579 (-245 (-851 (-140 *4)))))) (-5 *1 (-325 *4)) + (-4 *4 (-13 (-308) (-749))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-579 (-245 (-344 (-851 (-140 (-479))))))) + (-5 *2 (-579 (-579 (-245 (-851 (-140 *4)))))) (-5 *1 (-325 *4)) + (-4 *4 (-13 (-308) (-749))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-344 (-851 (-140 (-479))))) + (-5 *2 (-579 (-245 (-851 (-140 *4))))) (-5 *1 (-325 *4)) + (-4 *4 (-13 (-308) (-749))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-245 (-344 (-851 (-140 (-479)))))) + (-5 *2 (-579 (-245 (-851 (-140 *4))))) (-5 *1 (-325 *4)) + (-4 *4 (-13 (-308) (-749)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-479)) (-5 *1 (-324))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-344 (-479))) (-5 *1 (-177)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *2 (-344 (-479))) (-5 *1 (-177)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-688)) (-5 *2 (-344 (-479))) (-5 *1 (-324)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-688)) (-5 *2 (-344 (-479))) (-5 *1 (-324))))) +(((*1 *1 *1) (-5 *1 (-177))) ((*1 *1 *1) (-5 *1 (-324))) + ((*1 *1) (-5 *1 (-324)))) +(((*1 *1 *1) (-5 *1 (-177))) ((*1 *1 *1) (-5 *1 (-324))) + ((*1 *1) (-5 *1 (-324)))) +(((*1 *1) (-5 *1 (-177))) ((*1 *1) (-5 *1 (-324)))) +(((*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-324)))) + ((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-324))))) +(((*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-324)))) + ((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-324))))) +(((*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-324)))) + ((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-324))))) +(((*1 *2 *3) (-12 (-5 *3 (-688)) (-5 *2 (-1175)) (-5 *1 (-324))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-320 *4 *2)) - (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3972))))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-321 *4 *2)) + (-4 *2 (-13 (-318 *4) (-10 -7 (-6 -3978))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-320 *4 *2)) - (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3972))))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-321 *4 *2)) + (-4 *2 (-13 (-318 *4) (-10 -7 (-6 -3978))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1114)) (-5 *1 (-320 *4 *2)) - (-4 *2 (-13 (-317 *4) (-10 -7 (-6 -3972))))))) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *4 (-1119)) (-5 *1 (-321 *4 *2)) + (-4 *2 (-13 (-318 *4) (-10 -7 (-6 -3978))))))) (((*1 *1 *2) - (-12 (-5 *2 (-609 *3)) (-4 *3 (-749)) (-4 *1 (-319 *3 *4)) (-4 *4 (-144))))) + (-12 (-5 *2 (-610 *3)) (-4 *3 (-750)) (-4 *1 (-320 *3 *4)) (-4 *4 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-317 *3)) (-4 *3 (-1114)) (-4 *3 (-749)) (-5 *2 (-83)))) + (-12 (-4 *1 (-318 *3)) (-4 *3 (-1119)) (-4 *3 (-750)) (-5 *2 (-83)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *1 (-317 *4)) (-4 *4 (-1114)) + (-12 (-5 *3 (-1 (-83) *4 *4)) (-4 *1 (-318 *4)) (-4 *4 (-1119)) (-5 *2 (-83))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-478)) (|has| *1 (-6 -3972)) (-4 *1 (-317 *3)) (-4 *3 (-1114))))) + (-12 (-5 *2 (-479)) (|has| *1 (-6 -3978)) (-4 *1 (-318 *3)) (-4 *3 (-1119))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3972)) (-4 *1 (-317 *2)) (-4 *2 (-1114)) (-4 *2 (-749)))) + (-12 (|has| *1 (-6 -3978)) (-4 *1 (-318 *2)) (-4 *2 (-1119)) (-4 *2 (-750)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3 *3)) (|has| *1 (-6 -3972)) (-4 *1 (-317 *3)) - (-4 *3 (-1114))))) -(((*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1164 *1)) (-4 *1 (-312 *3))))) + (-12 (-5 *2 (-1 (-83) *3 *3)) (|has| *1 (-6 -3978)) (-4 *1 (-318 *3)) + (-4 *3 (-1119))))) +(((*1 *2) (-12 (-4 *3 (-144)) (-5 *2 (-1169 *1)) (-4 *1 (-312 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144))))) (((*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144))))) (((*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144))))) (((*1 *2 *1) (-12 (-4 *1 (-312 *2)) (-4 *2 (-144))))) -(((*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1070 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1070 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1075 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-1075 *3))))) (((*1 *2) (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) @@ -11965,1176 +11969,1176 @@ (-12 (-4 *4 (-144)) (-5 *2 (-83)) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) ((*1 *2) (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *4 (-144)) (-5 *2 (-578 (-1164 *4))) (-5 *1 (-311 *3 *4)) + (-12 (-4 *4 (-144)) (-5 *2 (-579 (-1169 *4))) (-5 *1 (-311 *3 *4)) (-4 *3 (-312 *4)))) ((*1 *2) - (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) - (-5 *2 (-578 (-1164 *3)))))) + (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-490)) + (-5 *2 (-579 (-1169 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-1070 *3))))) + (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-490)) (-5 *2 (-1075 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-489)) (-5 *2 (-1070 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144))))) -(((*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-489)) (-4 *2 (-144))))) + (-12 (-4 *1 (-312 *3)) (-4 *3 (-144)) (-4 *3 (-490)) (-5 *2 (-1075 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-490)) (-4 *2 (-144))))) +(((*1 *1) (|partial| -12 (-4 *1 (-312 *2)) (-4 *2 (-490)) (-4 *2 (-144))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1059)) (-4 *1 (-310 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) - ((*1 *1 *2) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) + (-12 (-5 *3 (-1063)) (-4 *1 (-310 *2 *4)) (-4 *2 (-1006)) (-4 *4 (-1006)))) + ((*1 *1 *2) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1059)) (-4 *1 (-310 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003))))) + (-12 (-5 *2 (-1063)) (-4 *1 (-310 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006))))) (((*1 *1 *1) (-4 *1 (-145))) - ((*1 *1 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003))))) + ((*1 *1 *1) (-12 (-4 *1 (-310 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-1006))))) (((*1 *2 *1) - (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1059))))) -(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003))))) + (-12 (-4 *1 (-310 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) (-5 *2 (-1063))))) +(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-310 *3 *2)) (-4 *3 (-1006)) (-4 *2 (-1006))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) + (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) (-4 *2 - (-13 (-338) - (-10 -7 (-15 -3922 (*2 *4)) (-15 -1992 ((-823) *2)) - (-15 -1994 ((-1164 *2) (-823))) (-15 -3904 (*2 *2))))) + (-13 (-339) + (-10 -7 (-15 -3928 (*2 *4)) (-15 -1997 ((-824) *2)) + (-15 -1999 ((-1169 *2) (-824))) (-15 -3910 (*2 *2))))) (-5 *1 (-302 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-295)) (-5 *2 (-862 (-1070 *4))) (-5 *1 (-301 *4)) - (-5 *3 (-1070 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) + (-12 (-4 *4 (-295)) (-5 *2 (-863 (-1075 *4))) (-5 *1 (-301 *4)) + (-5 *3 (-1075 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) + (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) + (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) + (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) + (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) + (|partial| -12 (-5 *2 (-1075 *3)) (-4 *3 (-295)) (-5 *1 (-301 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) + (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) + (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) + (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) + (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-823)) (-5 *2 (-1070 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) -(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295))))) -(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295))))) -(((*1 *2 *2) (-12 (-5 *2 (-823)) (-5 *1 (-301 *3)) (-4 *3 (-295))))) + (-12 (-5 *3 (-824)) (-5 *2 (-1075 *4)) (-5 *1 (-301 *4)) (-4 *4 (-295))))) +(((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-301 *3)) (-4 *3 (-295))))) +(((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-301 *3)) (-4 *3 (-295))))) +(((*1 *2 *2) (-12 (-5 *2 (-824)) (-5 *1 (-301 *3)) (-4 *3 (-295))))) (((*1 *2 *1) (-12 (-4 *1 (-295)) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4))))) + (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-301 *4))))) (((*1 *2) - (-12 (-5 *2 (-1164 (-578 (-2 (|:| -3379 (-810 *3)) (|:| -2382 (-1020)))))) - (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) + (-12 (-5 *2 (-1169 (-579 (-2 (|:| -3384 (-811 *3)) (|:| -2387 (-1024)))))) + (-5 *1 (-297 *3 *4)) (-14 *3 (-824)) (-14 *4 (-824)))) ((*1 *2) - (-12 (-5 *2 (-1164 (-578 (-2 (|:| -3379 *3) (|:| -2382 (-1020)))))) - (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1070 *3) *2)))) + (-12 (-5 *2 (-1169 (-579 (-2 (|:| -3384 *3) (|:| -2387 (-1024)))))) + (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 (-3 (-1075 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1164 (-578 (-2 (|:| -3379 *3) (|:| -2382 (-1020)))))) - (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) + (-12 (-5 *2 (-1169 (-579 (-2 (|:| -3384 *3) (|:| -2387 (-1024)))))) + (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-824))))) (((*1 *2) - (-12 (-5 *2 (-625 (-810 *3))) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) - (-14 *4 (-823)))) + (-12 (-5 *2 (-626 (-811 *3))) (-5 *1 (-297 *3 *4)) (-14 *3 (-824)) + (-14 *4 (-824)))) ((*1 *2) - (-12 (-5 *2 (-625 *3)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) + (-12 (-5 *2 (-626 *3)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 - (-3 (-1070 *3) (-1164 (-578 (-2 (|:| -3379 *3) (|:| -2382 (-1020))))))))) + (-3 (-1075 *3) (-1169 (-579 (-2 (|:| -3384 *3) (|:| -2387 (-1024))))))))) ((*1 *2) - (-12 (-5 *2 (-625 *3)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) + (-12 (-5 *2 (-626 *3)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-824))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) - (-4 *4 (-295)) (-5 *2 (-687)) (-5 *1 (-292 *4)))) + (-12 (-5 *3 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) + (-4 *4 (-295)) (-5 *2 (-688)) (-5 *1 (-292 *4)))) ((*1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-297 *3 *4)) (-14 *3 (-823)) (-14 *4 (-823)))) + (-12 (-5 *2 (-688)) (-5 *1 (-297 *3 *4)) (-14 *3 (-824)) (-14 *4 (-824)))) ((*1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) + (-12 (-5 *2 (-688)) (-5 *1 (-298 *3 *4)) (-4 *3 (-295)) (-14 *4 - (-3 (-1070 *3) (-1164 (-578 (-2 (|:| -3379 *3) (|:| -2382 (-1020))))))))) + (-3 (-1075 *3) (-1169 (-579 (-2 (|:| -3384 *3) (|:| -2387 (-1024))))))))) ((*1 *2) - (-12 (-5 *2 (-687)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-823))))) + (-12 (-5 *2 (-688)) (-5 *1 (-299 *3 *4)) (-4 *3 (-295)) (-14 *4 (-824))))) (((*1 *2) (-12 (-4 *1 (-295)) - (-5 *2 (-578 (-2 (|:| -3708 (-478)) (|:| -2383 (-478)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-478)) (-5 *2 (-1087 (-823) (-687)))))) + (-5 *2 (-579 (-2 (|:| -3714 (-479)) (|:| -2388 (-479)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-295)) (-5 *3 (-479)) (-5 *2 (-1092 (-824) (-688)))))) (((*1 *1) (-4 *1 (-295)))) (((*1 *2) (-12 (-4 *1 (-295)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-823)) + (-12 (-5 *3 (-824)) (-5 *2 - (-3 (-1070 *4) (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020))))))) + (-3 (-1075 *4) (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024))))))) (-5 *1 (-292 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-823)) - (-5 *2 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) + (|partial| -12 (-5 *3 (-824)) + (-5 *2 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) (-5 *1 (-292 *4)) (-4 *4 (-295))))) (((*1 *2 *3) - (-12 (-5 *3 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) - (-4 *4 (-295)) (-5 *2 (-625 *4)) (-5 *1 (-292 *4))))) + (-12 (-5 *3 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) + (-4 *4 (-295)) (-5 *2 (-626 *4)) (-5 *1 (-292 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) - (-5 *2 (-1164 (-578 (-2 (|:| -3379 *4) (|:| -2382 (-1020)))))) + (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) + (-5 *2 (-1169 (-579 (-2 (|:| -3384 *4) (|:| -2387 (-1024)))))) (-5 *1 (-292 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 *4)) (-4 *4 (-295)) (-5 *2 (-862 (-1020))) + (-12 (-5 *3 (-1075 *4)) (-4 *4 (-295)) (-5 *2 (-863 (-1024))) (-5 *1 (-292 *4))))) (((*1 *2) - (-12 (-5 *2 (-862 (-1020))) (-5 *1 (-289 *3 *4)) (-14 *3 (-823)) - (-14 *4 (-823)))) + (-12 (-5 *2 (-863 (-1024))) (-5 *1 (-289 *3 *4)) (-14 *3 (-824)) + (-14 *4 (-824)))) ((*1 *2) - (-12 (-5 *2 (-862 (-1020))) (-5 *1 (-290 *3 *4)) (-4 *3 (-295)) - (-14 *4 (-1070 *3)))) + (-12 (-5 *2 (-863 (-1024))) (-5 *1 (-290 *3 *4)) (-4 *3 (-295)) + (-14 *4 (-1075 *3)))) ((*1 *2) - (-12 (-5 *2 (-862 (-1020))) (-5 *1 (-291 *3 *4)) (-4 *3 (-295)) - (-14 *4 (-823))))) + (-12 (-5 *2 (-863 (-1024))) (-5 *1 (-291 *3 *4)) (-4 *3 (-295)) + (-14 *4 (-824))))) (((*1 *2) - (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) - (-5 *2 (-687)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) + (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) + (-5 *2 (-688)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-687))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-688))))) (((*1 *2) - (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) + (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-5 *2 (-83)) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1119)) (-4 *5 (-1140 *3)) (-4 *6 (-1140 (-343 *5))) + (-12 (-4 *3 (-1124)) (-4 *5 (-1145 *3)) (-4 *6 (-1145 (-344 *5))) (-5 *2 (-83)) (-5 *1 (-286 *4 *3 *5 *6)) (-4 *4 (-287 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2 *3) - (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-1140 *4)) - (-4 *5 (-1140 (-343 *3))) (-5 *2 (-83)))) + (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1145 *4)) + (-4 *5 (-1145 (-344 *3))) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2 *3) - (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-1140 *4)) - (-4 *5 (-1140 (-343 *3))) (-5 *2 (-83)))) + (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1145 *4)) + (-4 *5 (-1145 (-344 *3))) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2 *3) - (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-1140 *4)) - (-4 *5 (-1140 (-343 *3))) (-5 *2 (-83)))) + (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1145 *4)) + (-4 *5 (-1145 (-344 *3))) (-5 *2 (-83)))) ((*1 *2 *3) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2) - (-12 (-4 *3 (-1119)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) - (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5))))) + (-12 (-4 *3 (-1124)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) + (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-1140 *4)) - (-4 *5 (-1140 (-343 *3))) (-5 *2 (-83)))) + (-12 (-4 *1 (-287 *4 *3 *5)) (-4 *4 (-1124)) (-4 *3 (-1145 *4)) + (-4 *5 (-1145 (-344 *3))) (-5 *2 (-83)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83)))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83)))) ((*1 *2 *1) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-83))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-83))))) (((*1 *2 *2) - (-12 (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) - (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4)))))) + (-12 (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) + (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) - (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4)))))) + (-12 (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) + (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1164 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) - (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4)))))) + (-12 (-5 *2 (-1169 *1)) (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) + (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4)))))) (((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-625 (-343 *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-626 (-344 *4)))))) (((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-625 (-343 *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-626 (-344 *4)))))) (((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-625 (-343 *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-626 (-344 *4)))))) (((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-5 *2 (-625 (-343 *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-5 *2 (-626 (-344 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) - (-5 *2 (-2 (|:| |num| (-1164 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) + (-5 *2 (-2 (|:| |num| (-1169 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) - (-5 *2 (-2 (|:| |num| (-1164 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) + (-5 *2 (-2 (|:| |num| (-1169 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1164 *3)) (-4 *3 (-1140 *4)) (-4 *4 (-1119)) - (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1140 (-343 *3)))))) + (-12 (-5 *2 (-1169 *3)) (-4 *3 (-1145 *4)) (-4 *4 (-1124)) + (-4 *1 (-287 *4 *3 *5)) (-4 *5 (-1145 (-344 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1119)) - (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) - (-5 *2 (-2 (|:| |num| (-625 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1124)) + (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) + (-5 *2 (-2 (|:| |num| (-626 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-308) (-1100) (-908))))) + (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1105) (-909))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1119)) (-4 *5 (-1140 (-343 *2))) (-4 *2 (-1140 *4)) + (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1145 (-344 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1119)) - (-4 *4 (-1140 (-343 *2))) (-4 *2 (-1140 *3))))) + (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1124)) + (-4 *4 (-1145 (-344 *2))) (-4 *2 (-1145 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1119)) (-4 *5 (-1140 (-343 *2))) (-4 *2 (-1140 *4)) + (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1145 (-344 *2))) (-4 *2 (-1145 *4)) (-5 *1 (-286 *3 *4 *2 *5)) (-4 *3 (-287 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1119)) - (-4 *4 (-1140 (-343 *2))) (-4 *2 (-1140 *3))))) + (|partial| -12 (-4 *1 (-287 *3 *2 *4)) (-4 *3 (-1124)) + (-4 *4 (-1145 (-344 *2))) (-4 *2 (-1145 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1140 *4)) (-4 *4 (-1119)) - (-4 *6 (-1140 (-343 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-1124)) + (-4 *6 (-1145 (-344 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-287 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *5 (-1119)) (-4 *6 (-1140 *5)) - (-4 *7 (-1140 (-343 *6))) (-5 *2 (-578 (-850 *5))) + (-12 (-5 *3 (-1080)) (-4 *5 (-1124)) (-4 *6 (-1145 *5)) + (-4 *7 (-1145 (-344 *6))) (-5 *2 (-579 (-851 *5))) (-5 *1 (-286 *4 *5 *6 *7)) (-4 *4 (-287 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1119)) - (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) (-4 *4 (-308)) - (-5 *2 (-578 (-850 *4)))))) + (-12 (-5 *3 (-1080)) (-4 *1 (-287 *4 *5 *6)) (-4 *4 (-1124)) + (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) (-4 *4 (-308)) + (-5 *2 (-579 (-851 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) (-4 *6 (-1140 (-343 *5))) - (-5 *2 (-578 (-578 *4))) (-5 *1 (-286 *3 *4 *5 *6)) + (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-4 *6 (-1145 (-344 *5))) + (-5 *2 (-579 (-579 *4))) (-5 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-287 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-4 *3 (-313)) (-5 *2 (-578 (-578 *3)))))) + (-12 (-4 *1 (-287 *3 *4 *5)) (-4 *3 (-1124)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-4 *3 (-314)) (-5 *2 (-579 (-579 *3)))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-308)) (-4 *3 (-1140 *4)) (-4 *5 (-1140 (-343 *3))) + (-12 (-4 *4 (-308)) (-4 *3 (-1145 *4)) (-4 *5 (-1145 (-344 *3))) (-4 *1 (-282 *4 *3 *5 *2)) (-4 *2 (-287 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-478)) (-4 *2 (-308)) (-4 *4 (-1140 *2)) - (-4 *5 (-1140 (-343 *4))) (-4 *1 (-282 *2 *4 *5 *6)) + (-12 (-5 *3 (-479)) (-4 *2 (-308)) (-4 *4 (-1145 *2)) + (-4 *5 (-1145 (-344 *4))) (-4 *1 (-282 *2 *4 *5 *6)) (-4 *6 (-287 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-308)) (-4 *3 (-1140 *2)) (-4 *4 (-1140 (-343 *3))) + (-12 (-4 *2 (-308)) (-4 *3 (-1145 *2)) (-4 *4 (-1145 (-344 *3))) (-4 *1 (-282 *2 *3 *4 *5)) (-4 *5 (-287 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) + (-12 (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) (-4 *1 (-282 *3 *4 *5 *2)) (-4 *2 (-287 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-349 *4 (-343 *4) *5 *6)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-4 *3 (-308)) + (-12 (-5 *2 (-350 *4 (-344 *4) *5 *6)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 *3 *4 *5)) (-4 *3 (-308)) (-4 *1 (-282 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1140 *3)) - (-4 *5 (-1140 (-343 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-83))))) + (-12 (-4 *1 (-282 *3 *4 *5 *6)) (-4 *3 (-308)) (-4 *4 (-1145 *3)) + (-4 *5 (-1145 (-344 *4))) (-4 *6 (-287 *3 *4 *5)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) - (-5 *2 (-1164 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5))))) + (-12 (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) + (-5 *2 (-1169 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-308)) (-4 *4 (-1140 *3)) (-4 *5 (-1140 (-343 *4))) - (-5 *2 (-1164 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5))))) + (-12 (-4 *3 (-308)) (-4 *4 (-1145 *3)) (-4 *5 (-1145 (-344 *4))) + (-5 *2 (-1169 *6)) (-5 *1 (-279 *3 *4 *5 *6)) (-4 *6 (-287 *3 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-206)) (-5 *1 (-278))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-775 (-1080) (-687)))) (-5 *1 (-278))))) -(((*1 *2 *1) (-12 (-5 *2 (-862 (-687))) (-5 *1 (-278))))) -(((*1 *2 *1) (-12 (-5 *2 (-439)) (-5 *1 (-278))))) -(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-277 *3)) (-4 *3 (-749))))) -(((*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-313)) (-4 *2 (-308))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-776 (-1085) (-688)))) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-863 (-688))) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-440)) (-5 *1 (-278))))) +(((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-277 *3)) (-4 *3 (-750))))) +(((*1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-314)) (-4 *2 (-308))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1070 *3)) (-4 *3 (-313)) (-4 *1 (-276 *3)) (-4 *3 (-308))))) + (-12 (-5 *2 (-1075 *3)) (-4 *3 (-314)) (-4 *1 (-276 *3)) (-4 *3 (-308))))) (((*1 *2 *1) - (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1070 *3))))) + (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)) (-5 *2 (-1075 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) - (-5 *2 (-1070 *3)))) + (|partial| -12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)) + (-5 *2 (-1075 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-313)) (-5 *2 (-1070 *3))))) + (-12 (-4 *1 (-276 *3)) (-4 *3 (-308)) (-4 *3 (-314)) (-5 *2 (-1075 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-954)) (-4 *3 (-709))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-273 *2 *3)) (-4 *2 (-955)) (-4 *3 (-710))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-687)) (-4 *1 (-273 *3 *4)) (-4 *3 (-954)) (-4 *4 (-709)) + (-12 (-5 *2 (-688)) (-4 *1 (-273 *3 *4)) (-4 *3 (-955)) (-4 *4 (-710)) (-4 *3 (-144))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-478)) (-4 *1 (-270 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-102))))) + (-12 (-5 *3 (-479)) (-4 *1 (-270 *4 *2)) (-4 *4 (-1006)) (-4 *2 (-102))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-102))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-270 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-102))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-102)) (-4 *3 (-709))))) + (-12 (-4 *1 (-270 *2 *3)) (-4 *2 (-1006)) (-4 *3 (-102)) (-4 *3 (-710))))) (((*1 *2 *3) - (-12 (-5 *3 (-478)) (-4 *4 (-710)) (-4 *5 (-749)) (-4 *2 (-954)) - (-5 *1 (-268 *4 *5 *2 *6)) (-4 *6 (-854 *2 *4 *5))))) + (-12 (-5 *3 (-479)) (-4 *4 (-711)) (-4 *5 (-750)) (-4 *2 (-955)) + (-5 *1 (-268 *4 *5 *2 *6)) (-4 *6 (-855 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1070 *7)) (-5 *3 (-478)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) - (-4 *5 (-749)) (-4 *6 (-954)) (-5 *1 (-268 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1075 *7)) (-5 *3 (-479)) (-4 *7 (-855 *6 *4 *5)) (-4 *4 (-711)) + (-4 *5 (-750)) (-4 *6 (-955)) (-5 *1 (-268 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 *6)) (-4 *6 (-954)) (-4 *4 (-710)) (-4 *5 (-749)) - (-5 *2 (-1070 *7)) (-5 *1 (-268 *4 *5 *6 *7)) (-4 *7 (-854 *6 *4 *5))))) + (-12 (-5 *3 (-1075 *6)) (-4 *6 (-955)) (-4 *4 (-711)) (-4 *5 (-750)) + (-5 *2 (-1075 *7)) (-5 *1 (-268 *4 *5 *6 *7)) (-4 *7 (-855 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1070 *7)) (-4 *7 (-854 *6 *4 *5)) (-4 *4 (-710)) (-4 *5 (-749)) - (-4 *6 (-954)) (-5 *2 (-1070 *6)) (-5 *1 (-268 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1075 *7)) (-4 *7 (-855 *6 *4 *5)) (-4 *4 (-711)) (-4 *5 (-750)) + (-4 *6 (-955)) (-5 *2 (-1075 *6)) (-5 *1 (-268 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1070 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 *8)) (-4 *7 (-749)) - (-4 *8 (-954)) (-4 *9 (-854 *8 *6 *7)) (-4 *6 (-710)) (-5 *2 (-1070 *8)) + (-12 (-5 *3 (-1075 *9)) (-5 *4 (-579 *7)) (-5 *5 (-579 *8)) (-4 *7 (-750)) + (-4 *8 (-955)) (-4 *9 (-855 *8 *6 *7)) (-4 *6 (-711)) (-5 *2 (-1075 *8)) (-5 *1 (-268 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-343 (-478))) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) - (-14 *4 (-1075)) (-14 *5 *3)))) + (-12 (-5 *2 (-344 (-479))) (-5 *1 (-266 *3 *4 *5)) (-4 *3 (-308)) + (-14 *4 (-1080)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) - (-5 *6 (-478)) (-5 *2 (-1110 (-831))) (-5 *1 (-265)))) + (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) + (-5 *6 (-479)) (-5 *2 (-1115 (-832))) (-5 *1 (-265)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) - (-5 *6 (-478)) (-5 *7 (-1059)) (-5 *2 (-1110 (-831))) (-5 *1 (-265)))) + (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) + (-5 *6 (-479)) (-5 *7 (-1063)) (-5 *2 (-1115 (-832))) (-5 *1 (-265)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) - (-5 *6 (-177)) (-5 *7 (-478)) (-5 *2 (-1110 (-831))) (-5 *1 (-265)))) + (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) + (-5 *6 (-177)) (-5 *7 (-479)) (-5 *2 (-1115 (-832))) (-5 *1 (-265)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-261 (-478))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-992 (-177))) - (-5 *6 (-177)) (-5 *7 (-478)) (-5 *8 (-1059)) (-5 *2 (-1110 (-831))) + (-12 (-5 *3 (-261 (-479))) (-5 *4 (-1 (-177) (-177))) (-5 *5 (-994 (-177))) + (-5 *6 (-177)) (-5 *7 (-479)) (-5 *8 (-1063)) (-5 *2 (-1115 (-832))) (-5 *1 (-265))))) (((*1 *2 *3) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-265)) (-5 *3 (-177))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-245 *6)) (-5 *4 (-84)) (-4 *6 (-357 *5)) - (-4 *5 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *6)))) + (-12 (-5 *3 (-245 *6)) (-5 *4 (-84)) (-4 *6 (-358 *5)) + (-4 *5 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-578 *7)) (-4 *7 (-357 *6)) - (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) + (-12 (-5 *3 (-245 *7)) (-5 *4 (-84)) (-5 *5 (-579 *7)) (-4 *7 (-358 *6)) + (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-578 (-245 *7))) (-5 *4 (-578 (-84))) (-5 *5 (-245 *7)) - (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) + (-12 (-5 *3 (-579 (-245 *7))) (-5 *4 (-579 (-84))) (-5 *5 (-245 *7)) + (-4 *7 (-358 *6)) (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-578 (-245 *8))) (-5 *4 (-578 (-84))) (-5 *5 (-245 *8)) - (-5 *6 (-578 *8)) (-4 *8 (-357 *7)) (-4 *7 (-13 (-489) (-548 (-467)))) + (-12 (-5 *3 (-579 (-245 *8))) (-5 *4 (-579 (-84))) (-5 *5 (-245 *8)) + (-5 *6 (-579 *8)) (-4 *8 (-358 *7)) (-4 *7 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-84))) (-5 *5 (-245 *7)) - (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) + (-12 (-5 *3 (-579 *7)) (-5 *4 (-579 (-84))) (-5 *5 (-245 *7)) + (-4 *7 (-358 *6)) (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-84))) (-5 *6 (-578 (-245 *8))) - (-4 *8 (-357 *7)) (-5 *5 (-245 *8)) (-4 *7 (-13 (-489) (-548 (-467)))) + (-12 (-5 *3 (-579 *8)) (-5 *4 (-579 (-84))) (-5 *6 (-579 (-245 *8))) + (-4 *8 (-358 *7)) (-5 *5 (-245 *8)) (-4 *7 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-245 *5)) (-5 *4 (-84)) (-4 *5 (-357 *6)) - (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *5)))) + (-12 (-5 *3 (-245 *5)) (-5 *4 (-84)) (-4 *5 (-358 *6)) + (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-357 *6)) - (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) + (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-358 *6)) + (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-357 *6)) - (-4 *6 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) + (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-4 *3 (-358 *6)) + (-4 *6 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-5 *6 (-578 *3)) (-4 *3 (-357 *7)) - (-4 *7 (-13 (-489) (-548 (-467)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *3))))) + (-12 (-5 *4 (-84)) (-5 *5 (-245 *3)) (-5 *6 (-579 *3)) (-4 *3 (-358 *7)) + (-4 *7 (-13 (-490) (-549 (-468)))) (-5 *2 (-51)) (-5 *1 (-264 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-261 *3)) (-4 *3 (-489)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-83)) (-5 *1 (-261 *3)) (-4 *3 (-490)) (-4 *3 (-1006))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-478)) (-5 *1 (-261 *3)) (-4 *3 (-489)) (-4 *3 (-1003))))) + (-12 (-5 *2 (-479)) (-5 *1 (-261 *3)) (-4 *3 (-490)) (-4 *3 (-1006))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-83))))) -(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-687))))) +(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-688))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-254)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2391 *1))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2396 *1))) (-4 *1 (-254))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-254))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-250)) (-4 *2 (-1114)))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-579 *1)) (-4 *1 (-254))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-250)) (-4 *2 (-1119)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-578 (-545 *1))) (-5 *3 (-578 *1)) (-4 *1 (-250)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-245 *1))) (-4 *1 (-250)))) + (-12 (-5 *2 (-579 (-546 *1))) (-5 *3 (-579 *1)) (-4 *1 (-250)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-579 (-245 *1))) (-4 *1 (-250)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-245 *1)) (-4 *1 (-250))))) (((*1 *1 *1 *1) (-4 *1 (-250))) ((*1 *1 *1) (-4 *1 (-250)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-545 *1)) (-4 *1 (-250))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-545 *1))) (-4 *1 (-250))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-545 *1))) (-4 *1 (-250))))) -(((*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-578 (-84)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1075)) (-5 *2 (-83)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-546 *1)) (-4 *1 (-250))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-546 *1))) (-4 *1 (-250))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-546 *1))) (-4 *1 (-250))))) +(((*1 *2 *1) (-12 (-4 *1 (-250)) (-5 *2 (-579 (-84)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-250)) (-5 *3 (-1080)) (-5 *2 (-83)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-250)) (-5 *2 (-83))))) (((*1 *2 *3) - (-12 (-5 *3 (-545 *5)) (-4 *5 (-357 *4)) (-4 *4 (-943 (-478))) (-4 *4 (-489)) - (-5 *2 (-1070 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *3 (-546 *5)) (-4 *5 (-358 *4)) (-4 *4 (-944 (-479))) (-4 *4 (-490)) + (-5 *2 (-1075 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-545 *1)) (-4 *1 (-954)) (-4 *1 (-250)) (-5 *2 (-1070 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-258)) (-5 *1 (-248)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-258)) (-5 *1 (-248)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-258)) (-5 *1 (-248)))) + (-12 (-5 *3 (-546 *1)) (-4 *1 (-955)) (-4 *1 (-250)) (-5 *2 (-1075 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-258)) (-5 *1 (-248)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-258)) (-5 *1 (-248)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-258)) (-5 *1 (-248)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 (-1059))) (-5 *3 (-1059)) (-5 *2 (-258)) (-5 *1 (-248))))) + (-12 (-5 *4 (-579 (-1063))) (-5 *3 (-1063)) (-5 *2 (-258)) (-5 *1 (-248))))) (((*1 *2 *2) - (-12 (-4 *3 (-954)) (-4 *4 (-1140 *3)) (-5 *1 (-135 *3 *4 *2)) - (-4 *2 (-1140 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1114))))) -(((*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1114))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-658)) (-4 *2 (-1114))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-658)) (-4 *2 (-1114))))) + (-12 (-4 *3 (-955)) (-4 *4 (-1145 *3)) (-5 *1 (-135 *3 *4 *2)) + (-4 *2 (-1145 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-12 (-5 *1 (-245 *2)) (-4 *2 (-21)) (-4 *2 (-1119))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-659)) (-4 *2 (-1119))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-245 *2)) (-4 *2 (-659)) (-4 *2 (-1119))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 (-245 *3))) (-5 *1 (-245 *3)) (-4 *3 (-489)) - (-4 *3 (-1114))))) + (-12 (-5 *2 (-579 (-245 *3))) (-5 *1 (-245 *3)) (-4 *3 (-490)) + (-4 *3 (-1119))))) (((*1 *2 *3) - (-12 (-4 *4 (-385)) + (-12 (-4 *4 (-386)) (-5 *2 - (-578 - (-2 (|:| |eigval| (-3 (-343 (-850 *4)) (-1066 (-1075) (-850 *4)))) - (|:| |eigmult| (-687)) (|:| |eigvec| (-578 (-625 (-343 (-850 *4)))))))) - (-5 *1 (-244 *4)) (-5 *3 (-625 (-343 (-850 *4))))))) + (-579 + (-2 (|:| |eigval| (-3 (-344 (-851 *4)) (-1070 (-1080) (-851 *4)))) + (|:| |eigmult| (-688)) (|:| |eigvec| (-579 (-626 (-344 (-851 *4)))))))) + (-5 *1 (-244 *4)) (-5 *3 (-626 (-344 (-851 *4))))))) (((*1 *2 *3) - (-12 (-4 *4 (-385)) + (-12 (-4 *4 (-386)) (-5 *2 - (-578 - (-2 (|:| |eigval| (-3 (-343 (-850 *4)) (-1066 (-1075) (-850 *4)))) - (|:| |geneigvec| (-578 (-625 (-343 (-850 *4)))))))) - (-5 *1 (-244 *4)) (-5 *3 (-625 (-343 (-850 *4))))))) + (-579 + (-2 (|:| |eigval| (-3 (-344 (-851 *4)) (-1070 (-1080) (-851 *4)))) + (|:| |geneigvec| (-579 (-626 (-344 (-851 *4)))))))) + (-5 *1 (-244 *4)) (-5 *3 (-626 (-344 (-851 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-343 (-850 *6)) (-1066 (-1075) (-850 *6)))) (-5 *5 (-687)) - (-4 *6 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *6))))) (-5 *1 (-244 *6)) - (-5 *4 (-625 (-343 (-850 *6)))))) + (-12 (-5 *3 (-3 (-344 (-851 *6)) (-1070 (-1080) (-851 *6)))) (-5 *5 (-688)) + (-4 *6 (-386)) (-5 *2 (-579 (-626 (-344 (-851 *6))))) (-5 *1 (-244 *6)) + (-5 *4 (-626 (-344 (-851 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-343 (-850 *5)) (-1066 (-1075) (-850 *5)))) - (|:| |eigmult| (-687)) (|:| |eigvec| (-578 *4)))) - (-4 *5 (-385)) (-5 *2 (-578 (-625 (-343 (-850 *5))))) (-5 *1 (-244 *5)) - (-5 *4 (-625 (-343 (-850 *5))))))) + (-2 (|:| |eigval| (-3 (-344 (-851 *5)) (-1070 (-1080) (-851 *5)))) + (|:| |eigmult| (-688)) (|:| |eigvec| (-579 *4)))) + (-4 *5 (-386)) (-5 *2 (-579 (-626 (-344 (-851 *5))))) (-5 *1 (-244 *5)) + (-5 *4 (-626 (-344 (-851 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-343 (-850 *5)) (-1066 (-1075) (-850 *5)))) (-4 *5 (-385)) - (-5 *2 (-578 (-625 (-343 (-850 *5))))) (-5 *1 (-244 *5)) - (-5 *4 (-625 (-343 (-850 *5))))))) + (-12 (-5 *3 (-3 (-344 (-851 *5)) (-1070 (-1080) (-851 *5)))) (-4 *5 (-386)) + (-5 *2 (-579 (-626 (-344 (-851 *5))))) (-5 *1 (-244 *5)) + (-5 *4 (-626 (-344 (-851 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-343 (-850 *4)))) (-4 *4 (-385)) - (-5 *2 (-578 (-3 (-343 (-850 *4)) (-1066 (-1075) (-850 *4))))) + (-12 (-5 *3 (-626 (-344 (-851 *4)))) (-4 *4 (-386)) + (-5 *2 (-579 (-3 (-344 (-851 *4)) (-1070 (-1080) (-851 *4))))) (-5 *1 (-244 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-988))) (-5 *1 (-243))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-1005))) (-5 *1 (-243))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1005)) (-5 *1 (-243))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-578 (-869))) (-5 *1 (-243))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-869))) (-5 *1 (-243))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-990))) (-5 *1 (-243))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-1008))) (-5 *1 (-243))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1008)) (-5 *1 (-243))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-579 (-870))) (-5 *1 (-243))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-579 (-870))) (-5 *1 (-243))))) (((*1 *1) (-5 *1 (-243)))) (((*1 *1) (-5 *1 (-243)))) (((*1 *1) (-5 *1 (-243)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-478)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1114)) (-4 *4 (-317 *2)) - (-4 *5 (-317 *2)))) + (-12 (-5 *3 (-479)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1119)) (-4 *4 (-318 *2)) + (-4 *5 (-318 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -3972)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1003)) - (-4 *2 (-1114))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-308)) (-5 *2 (-578 (-1055 *4))) (-5 *1 (-237 *4 *5)) - (-5 *3 (-1055 *4)) (-4 *5 (-1157 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1157 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1157 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1157 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1131 (-478))) (-4 *1 (-234 *3)) (-4 *3 (-1114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-478)) (-4 *1 (-234 *3)) (-4 *3 (-1114))))) + (-12 (|has| *1 (-6 -3978)) (-4 *1 (-240 *3 *2)) (-4 *3 (-1006)) + (-4 *2 (-1119))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-308)) (-5 *2 (-579 (-1059 *4))) (-5 *1 (-237 *4 *5)) + (-5 *3 (-1059 *4)) (-4 *5 (-1162 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1162 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1162 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-237 *3 *2)) (-4 *2 (-1162 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1136 (-479))) (-4 *1 (-234 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-479)) (-4 *1 (-234 *3)) (-4 *3 (-1119))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3971)) (-4 *1 (-190 *3)) - (-4 *3 (-1003)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1114))))) + (-12 (-5 *2 (-1 (-83) *3)) (|has| *1 (-6 -3977)) (-4 *1 (-190 *3)) + (-4 *3 (-1006)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-83) *3)) (-4 *1 (-234 *3)) (-4 *3 (-1119))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-516)) (-5 *3 (-526)) (-5 *4 (-243)) (-5 *1 (-232))))) -(((*1 *2 *1) (-12 (-5 *2 (-516)) (-5 *1 (-232))))) -(((*1 *2 *1) (-12 (-5 *2 (-526)) (-5 *1 (-232))))) + (-12 (-5 *2 (-517)) (-5 *3 (-527)) (-5 *4 (-243)) (-5 *1 (-232))))) +(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-232))))) +(((*1 *2 *1) (-12 (-5 *2 (-527)) (-5 *1 (-232))))) (((*1 *2 *1) (-12 (-5 *2 (-243)) (-5 *1 (-232))))) -(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-231))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1005)) (-5 *1 (-231))))) +(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-231))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1008)) (-5 *1 (-231))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-439)) (-5 *1 (-231))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-440)) (-5 *1 (-231))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-231))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-343 (-478))) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) - (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4)))))) + (-12 (-5 *3 (-344 (-479))) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) + (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-545 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4))) - (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *4 *2))))) + (-12 (-5 *3 (-546 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4))) + (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-578 (-545 *2))) (-5 *4 (-1075)) - (-4 *2 (-13 (-27) (-1100) (-357 *5))) - (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *5 *2))))) + (|partial| -12 (-5 *3 (-579 (-546 *2))) (-5 *4 (-1080)) + (-4 *2 (-13 (-27) (-1105) (-358 *5))) + (-4 *5 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-489) (-943 (-478)) (-575 (-478)))) (-5 *1 (-228 *3 *2)) - (-4 *2 (-13 (-27) (-1100) (-357 *3))))) + (-12 (-4 *3 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *1 (-228 *3 *2)) + (-4 *2 (-13 (-27) (-1105) (-358 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-13 (-489) (-943 (-478)) (-575 (-478)))) - (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1100) (-357 *4)))))) + (-12 (-5 *3 (-1080)) (-4 *4 (-13 (-490) (-944 (-479)) (-576 (-479)))) + (-5 *1 (-228 *4 *2)) (-4 *2 (-13 (-27) (-1105) (-358 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1075)) (-4 *5 (-13 (-489) (-943 (-478)) (-575 (-478)))) + (-12 (-5 *4 (-1080)) (-4 *5 (-13 (-490) (-944 (-479)) (-576 (-479)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-578 (-545 *3))) (|:| |vals| (-578 *3)))) - (-5 *1 (-228 *5 *3)) (-4 *3 (-13 (-27) (-1100) (-357 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-579 (-546 *3))) (|:| |vals| (-579 *3)))) + (-5 *1 (-228 *5 *3)) (-4 *3 (-13 (-27) (-1105) (-358 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-83)) (-5 *1 (-227 *4 *3)) - (-4 *3 (-13 (-357 *4) (-908)))))) + (-12 (-4 *4 (-490)) (-5 *2 (-83)) (-5 *1 (-227 *4 *3)) + (-4 *3 (-13 (-358 *4) (-909)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-578 (-2 (|:| |func| *2) (|:| |pole| (-83))))) - (-4 *2 (-13 (-357 *4) (-908))) (-4 *4 (-489)) (-5 *1 (-227 *4 *2))))) + (|partial| -12 (-5 *3 (-579 (-2 (|:| |func| *2) (|:| |pole| (-83))))) + (-4 *2 (-13 (-358 *4) (-909))) (-4 *4 (-490)) (-5 *1 (-227 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-357 *3) (-908)))))) + (-12 (-4 *3 (-490)) (-5 *1 (-227 *3 *2)) (-4 *2 (-13 (-358 *3) (-909)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489))))) + (-12 (-4 *2 (-13 (-358 *3) (-909))) (-5 *1 (-227 *3 *2)) (-4 *3 (-490))))) (((*1 *2) - (-12 (-4 *2 (-13 (-357 *3) (-908))) (-5 *1 (-227 *3 *2)) (-4 *3 (-489))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-478))) (-5 *1 (-226))))) -(((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-226))))) -(((*1 *2 *1) - (-12 (-4 *3 (-188)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-225 *4)) - (-4 *6 (-710)) (-5 *2 (-1 *1 (-687))) (-4 *1 (-210 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-954)) (-4 *3 (-749)) (-4 *5 (-225 *3)) (-4 *6 (-710)) - (-5 *2 (-1 *1 (-687))) (-4 *1 (-210 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-687)) (-4 *1 (-225 *2)) (-4 *2 (-749))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-84)))) - ((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-84)))) + (-12 (-4 *2 (-13 (-358 *3) (-909))) (-5 *1 (-227 *3 *2)) (-4 *3 (-490))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-479))) (-5 *1 (-226))))) +(((*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-226))))) +(((*1 *2 *1) + (-12 (-4 *3 (-188)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *5 (-225 *4)) + (-4 *6 (-711)) (-5 *2 (-1 *1 (-688))) (-4 *1 (-210 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-955)) (-4 *3 (-750)) (-4 *5 (-225 *3)) (-4 *6 (-711)) + (-5 *2 (-1 *1 (-688))) (-4 *1 (-210 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-688)) (-4 *1 (-225 *2)) (-4 *2 (-750))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-84)))) + ((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-84)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) - (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-687)))) + (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-955)) (-4 *3 (-750)) + (-4 *5 (-225 *3)) (-4 *6 (-711)) (-5 *2 (-688)))) ((*1 *2 *1) - (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) - (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-687)))) - ((*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-749)) (-5 *2 (-687))))) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) + (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-750)) (-5 *2 (-688))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-578 (-218))) (-5 *4 (-1075)) (-5 *2 (-51)) + (|partial| -12 (-5 *3 (-579 (-218))) (-5 *4 (-1080)) (-5 *2 (-51)) (-5 *1 (-218)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-578 (-218))) (-5 *4 (-1075)) (-5 *1 (-220 *2)) - (-4 *2 (-1114))))) -(((*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-323)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) -(((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) + (|partial| -12 (-5 *3 (-579 (-218))) (-5 *4 (-1080)) (-5 *1 (-220 *2)) + (-4 *2 (-1119))))) +(((*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-324)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) +(((*1 *1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-824)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) (((*1 *1) (-5 *1 (-115))) - ((*1 *1 *2) (-12 (-5 *2 (-1033 (-177))) (-5 *1 (-218)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-219))))) -(((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) -(((*1 *1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-218)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-823)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-776)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) + ((*1 *1 *2) (-12 (-5 *2 (-1037 (-177))) (-5 *1 (-218)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-219))))) +(((*1 *1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-824)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) +(((*1 *1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-824)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-777)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-777)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) (((*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-218)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-578 (-218))) (-5 *1 (-219))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-218)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1063)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *3 (-579 (-218))) (-5 *1 (-219))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) + (-12 (-5 *3 (-830)) (-5 *2 - (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) - (|:| |yValues| (-992 (-177))))) + (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) + (|:| |yValues| (-994 (-177))))) (-5 *1 (-124)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-343 (-478))) + (-12 (-5 *3 (-830)) (-5 *4 (-344 (-479))) (-5 *2 - (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) - (|:| |yValues| (-992 (-177))))) + (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) + (|:| |yValues| (-994 (-177))))) (-5 *1 (-124)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) - (|:| |yValues| (-992 (-177))))) - (-5 *1 (-124)) (-5 *3 (-578 (-847 (-177)))))) + (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) + (|:| |yValues| (-994 (-177))))) + (-5 *1 (-124)) (-5 *3 (-579 (-848 (-177)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) - (|:| |yValues| (-992 (-177))))) - (-5 *1 (-124)) (-5 *3 (-578 (-578 (-847 (-177))))))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-218)))) + (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) + (|:| |yValues| (-994 (-177))))) + (-5 *1 (-124)) (-5 *3 (-579 (-579 (-848 (-177))))))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-218)))) ((*1 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-218))))) -(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-218)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218))))) -(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-218)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-218))))) +(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-218)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-218))))) +(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-218)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-218))))) (((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-218)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177) (-177))) (-5 *1 (-218)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-177) (-177))) (-5 *1 (-218))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-992 (-343 (-478))))) (-5 *1 (-218)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 (-992 (-323)))) (-5 *1 (-218))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-994 (-344 (-479))))) (-5 *1 (-218)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 (-994 (-324)))) (-5 *1 (-218))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-218))) (-5 *4 (-1075)) (-5 *2 (-83)) (-5 *1 (-218))))) + (-12 (-5 *3 (-579 (-218))) (-5 *4 (-1080)) (-5 *2 (-83)) (-5 *1 (-218))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1167)) - (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1003))))) + (-12 (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1172)) + (-5 *1 (-212 *3)) (-4 *3 (-13 (-549 (-468)) (-1006))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-995 (-323))) (-5 *2 (-1167)) (-5 *1 (-212 *3)) - (-4 *3 (-13 (-548 (-467)) (-1003))))) + (-12 (-5 *4 (-997 (-324))) (-5 *2 (-1172)) (-5 *1 (-212 *3)) + (-4 *3 (-13 (-549 (-468)) (-1006))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-780 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) - (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1167)) (-5 *1 (-212 *6)))) + (-12 (-5 *3 (-781 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) + (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1172)) (-5 *1 (-212 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-780 *5)) (-5 *4 (-995 (-323))) - (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1167)) (-5 *1 (-212 *5)))) + (-12 (-5 *3 (-781 *5)) (-5 *4 (-997 (-324))) + (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1172)) (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-782 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) - (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1168)) (-5 *1 (-212 *6)))) + (-12 (-5 *3 (-783 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) + (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1173)) (-5 *1 (-212 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-782 *5)) (-5 *4 (-995 (-323))) - (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1168)) (-5 *1 (-212 *5)))) + (-12 (-5 *3 (-783 *5)) (-5 *4 (-997 (-324))) + (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1173)) (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1168)) - (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1003))))) + (-12 (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1173)) + (-5 *1 (-212 *3)) (-4 *3 (-13 (-549 (-468)) (-1006))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-995 (-323))) (-5 *2 (-1168)) (-5 *1 (-212 *3)) - (-4 *3 (-13 (-548 (-467)) (-1003))))) + (-12 (-5 *4 (-997 (-324))) (-5 *2 (-1173)) (-5 *1 (-212 *3)) + (-4 *3 (-13 (-549 (-468)) (-1006))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-785 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) - (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1168)) (-5 *1 (-212 *6)))) + (-12 (-5 *3 (-786 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) + (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1173)) (-5 *1 (-212 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-785 *5)) (-5 *4 (-995 (-323))) - (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1168)) (-5 *1 (-212 *5)))) + (-12 (-5 *3 (-786 *5)) (-5 *4 (-997 (-324))) + (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1173)) (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *5 (-578 (-218))) - (-5 *2 (-1167)) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *5 (-579 (-218))) + (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1167)) + (-12 (-5 *3 (-1 (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-780 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1167)) (-5 *1 (-213)))) + (-12 (-5 *3 (-781 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-780 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *2 (-1167)) + (-12 (-5 *3 (-781 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *2 (-1172)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) + (-12 (-5 *3 (-783 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) (-5 *2 (-1168)) + (-12 (-5 *3 (-783 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-848 (-177)) (-177))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1168)) + (-12 (-5 *3 (-1 (-848 (-177)) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-992 (-323))) (-5 *2 (-1168)) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-994 (-324))) (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-323))) - (-5 *2 (-1168)) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-324))) + (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1168)) (-5 *1 (-213)))) + (-12 (-5 *3 (-786 (-1 (-177) (-177) (-177)))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-992 (-323))) - (-5 *2 (-1168)) (-5 *1 (-213)))) + (-12 (-5 *3 (-786 (-1 (-177) (-177) (-177)))) (-5 *4 (-994 (-324))) + (-5 *2 (-1173)) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-245 *7)) (-5 *4 (-1075)) (-5 *5 (-578 (-218))) - (-4 *7 (-357 *6)) (-4 *6 (-13 (-489) (-749) (-943 (-478)))) (-5 *2 (-1167)) + (-12 (-5 *3 (-245 *7)) (-5 *4 (-1080)) (-5 *5 (-579 (-218))) + (-4 *7 (-358 *6)) (-4 *6 (-13 (-490) (-750) (-944 (-479)))) (-5 *2 (-1172)) (-5 *1 (-214 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-177))) (-5 *2 (-1167)) (-5 *1 (-217)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-579 (-177))) (-5 *2 (-1172)) (-5 *1 (-217)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-578 (-177))) (-5 *4 (-578 (-218))) (-5 *2 (-1167)) + (-12 (-5 *3 (-579 (-177))) (-5 *4 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-217)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *2 (-1167)) (-5 *1 (-217)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-848 (-177)))) (-5 *2 (-1172)) (-5 *1 (-217)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-578 (-847 (-177)))) (-5 *4 (-578 (-218))) (-5 *2 (-1167)) + (-12 (-5 *3 (-579 (-848 (-177)))) (-5 *4 (-579 (-218))) (-5 *2 (-1172)) (-5 *1 (-217)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-177))) (-5 *2 (-1168)) (-5 *1 (-217)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-579 (-177))) (-5 *2 (-1173)) (-5 *1 (-217)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-578 (-177))) (-5 *4 (-578 (-218))) (-5 *2 (-1168)) + (-12 (-5 *3 (-579 (-177))) (-5 *4 (-579 (-218))) (-5 *2 (-1173)) (-5 *1 (-217))))) (((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-215))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-215))))) -(((*1 *2 *2) (-12 (-5 *2 (-478)) (-5 *1 (-215))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-215))))) +(((*1 *2 *2) (-12 (-5 *2 (-479)) (-5 *1 (-215))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-992 (-177))) - (-5 *2 (-1168)) (-5 *1 (-215))))) + (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-994 (-177))) + (-5 *2 (-1173)) (-5 *1 (-215))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-992 (-177))) - (-5 *5 (-83)) (-5 *2 (-1168)) (-5 *1 (-215))))) + (-12 (-5 *3 (-1 (-140 (-177)) (-140 (-177)))) (-5 *4 (-994 (-177))) + (-5 *5 (-83)) (-5 *2 (-1173)) (-5 *1 (-215))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-847 (-177)) (-177) (-177))) + (-12 (-5 *2 (-1 (-848 (-177)) (-177) (-177))) (-5 *3 (-1 (-177) (-177) (-177) (-177))) (-5 *1 (-213))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-782 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) - (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1033 (-177))) + (-12 (-5 *3 (-783 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) + (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-782 *5)) (-5 *4 (-995 (-323))) - (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1033 (-177))) + (-12 (-5 *3 (-783 *5)) (-5 *4 (-997 (-324))) + (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) - (-5 *1 (-212 *3)) (-4 *3 (-13 (-548 (-467)) (-1003))))) + (-12 (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) + (-5 *1 (-212 *3)) (-4 *3 (-13 (-549 (-468)) (-1006))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-995 (-323))) (-5 *2 (-1033 (-177))) (-5 *1 (-212 *3)) - (-4 *3 (-13 (-548 (-467)) (-1003))))) + (-12 (-5 *4 (-997 (-324))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *3)) + (-4 *3 (-13 (-549 (-468)) (-1006))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-785 *6)) (-5 *4 (-995 (-323))) (-5 *5 (-578 (-218))) - (-4 *6 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1033 (-177))) + (-12 (-5 *3 (-786 *6)) (-5 *4 (-997 (-324))) (-5 *5 (-579 (-218))) + (-4 *6 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-785 *5)) (-5 *4 (-995 (-323))) - (-4 *5 (-13 (-548 (-467)) (-1003))) (-5 *2 (-1033 (-177))) + (-12 (-5 *3 (-786 *5)) (-5 *4 (-997 (-324))) + (-4 *5 (-13 (-549 (-468)) (-1006))) (-5 *2 (-1037 (-177))) (-5 *1 (-212 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) + (-12 (-5 *3 (-783 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-782 (-1 (-177) (-177)))) (-5 *4 (-992 (-323))) - (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) + (-12 (-5 *3 (-783 (-1 (-177) (-177)))) (-5 *4 (-994 (-324))) + (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-848 (-177)) (-177))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-847 (-177)) (-177))) (-5 *4 (-992 (-323))) - (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-848 (-177)) (-177))) (-5 *4 (-994 (-324))) + (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-992 (-323))) - (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-177) (-177) (-177))) (-5 *4 (-994 (-324))) + (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-847 (-177)) (-177) (-177))) (-5 *4 (-992 (-323))) - (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) + (-12 (-5 *3 (-1 (-848 (-177)) (-177) (-177))) (-5 *4 (-994 (-324))) + (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-992 (-323))) - (-5 *5 (-578 (-218))) (-5 *2 (-1033 (-177))) (-5 *1 (-213)))) + (-12 (-5 *3 (-786 (-1 (-177) (-177) (-177)))) (-5 *4 (-994 (-324))) + (-5 *5 (-579 (-218))) (-5 *2 (-1037 (-177))) (-5 *1 (-213)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-785 (-1 (-177) (-177) (-177)))) (-5 *4 (-992 (-323))) - (-5 *2 (-1033 (-177))) (-5 *1 (-213))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-174 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-4 *1 (-211 *3)))) - ((*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) - (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) - (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-578 *4))))) + (-12 (-5 *3 (-786 (-1 (-177) (-177) (-177)))) (-5 *4 (-994 (-324))) + (-5 *2 (-1037 (-177))) (-5 *1 (-213))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-174 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-4 *1 (-211 *3)))) + ((*1 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-211 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) + (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-579 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-954)) (-4 *3 (-749)) - (-4 *5 (-225 *3)) (-4 *6 (-710)) (-5 *2 (-578 (-687))))) + (-12 (-4 *1 (-210 *4 *3 *5 *6)) (-4 *4 (-955)) (-4 *3 (-750)) + (-4 *5 (-225 *3)) (-4 *6 (-711)) (-5 *2 (-579 (-688))))) ((*1 *2 *1) - (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) - (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-578 (-687)))))) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) + (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-579 (-688)))))) (((*1 *2 *1) - (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-954)) (-4 *4 (-749)) - (-4 *5 (-225 *4)) (-4 *6 (-710)) (-5 *2 (-83))))) + (-12 (-4 *1 (-210 *3 *4 *5 *6)) (-4 *3 (-955)) (-4 *4 (-750)) + (-4 *5 (-225 *4)) (-4 *6 (-711)) (-5 *2 (-83))))) (((*1 *2 *1) - (-12 (-4 *1 (-210 *3 *4 *2 *5)) (-4 *3 (-954)) (-4 *4 (-749)) (-4 *5 (-710)) + (-12 (-4 *1 (-210 *3 *4 *2 *5)) (-4 *3 (-955)) (-4 *4 (-750)) (-4 *5 (-711)) (-4 *2 (-225 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-954)) (-4 *3 (-749)) - (-4 *4 (-225 *3)) (-4 *5 (-710))))) + (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-955)) (-4 *3 (-750)) + (-4 *4 (-225 *3)) (-4 *5 (-711))))) (((*1 *1 *1) - (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-954)) (-4 *3 (-749)) - (-4 *4 (-225 *3)) (-4 *5 (-710))))) + (-12 (-4 *1 (-210 *2 *3 *4 *5)) (-4 *2 (-955)) (-4 *3 (-750)) + (-4 *4 (-225 *3)) (-4 *5 (-711))))) (((*1 *2 *1) (-12 (-5 *2 (-278)) (-5 *1 (-205))))) (((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-111)))) ((*1 *2 *1) (-12 (-5 *1 (-156 *2)) (-4 *2 (-158)))) ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-204))))) (((*1 *2 *1) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204))))) (((*1 *1 *2) (-12 (-5 *2 (-156 (-205))) (-5 *1 (-204))))) -(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-204))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-204))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-687)) - (-4 *3 (-13 (-658) (-313) (-10 -7 (-15 ** (*3 *3 (-478)))))) + (|partial| -12 (-5 *2 (-688)) + (-4 *3 (-13 (-659) (-314) (-10 -7 (-15 ** (*3 *3 (-479)))))) (-5 *1 (-201 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-200 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-199 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-199 *2)) (-4 *2 (-1114))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-478)) (-5 *1 (-196)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-478)) (-5 *1 (-196))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-1170)) (-5 *1 (-196)))) - ((*1 *2 *3) (-12 (-5 *3 (-578 (-1059))) (-5 *2 (-1170)) (-5 *1 (-196))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1059)) (-5 *3 (-478)) (-5 *1 (-196))))) -(((*1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-196))))) -(((*1 *1 *2) (-12 (-5 *2 (-1164 *4)) (-4 *4 (-1114)) (-4 *1 (-193 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-245 (-850 (-478)))) - (-5 *2 - (-2 (|:| |varOrder| (-578 (-1075))) - (|:| |inhom| (-3 (-578 (-1164 (-687))) "failed")) - (|:| |hom| (-578 (-1164 (-687)))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-200 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-12 (-4 *1 (-199 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-199 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-199 *2)) (-4 *2 (-1119))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-479)) (-5 *1 (-196)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-479)) (-5 *1 (-196))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-1175)) (-5 *1 (-196)))) + ((*1 *2 *3) (-12 (-5 *3 (-579 (-1063))) (-5 *2 (-1175)) (-5 *1 (-196))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1063)) (-5 *3 (-479)) (-5 *1 (-196))))) +(((*1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-196))))) +(((*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-4 *4 (-1119)) (-4 *1 (-193 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-245 (-851 (-479)))) + (-5 *2 + (-2 (|:| |varOrder| (-579 (-1080))) + (|:| |inhom| (-3 (-579 (-1169 (-688))) "failed")) + (|:| |hom| (-579 (-1169 (-688)))))) (-5 *1 (-191))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-4 *1 (-190 *3)))) - ((*1 *1) (-12 (-4 *1 (-190 *2)) (-4 *2 (-1003))))) -(((*1 *1) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100)))))) -(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100)))))) -(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100)))))) -(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1100)))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-4 *1 (-190 *3)))) + ((*1 *1) (-12 (-4 *1 (-190 *2)) (-4 *2 (-1006))))) +(((*1 *1) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105)))))) +(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105)))))) +(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105)))))) +(((*1 *1 *2) (-12 (-5 *1 (-179 *2)) (-4 *2 (-13 (-308) (-1105)))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178))))) (((*1 *2 *2) (-12 (-5 *2 (-177)) (-5 *1 (-178)))) ((*1 *2 *2) (-12 (-5 *2 (-140 (-177))) (-5 *1 (-178))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-177))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-83)) (-5 *3 (-850 *6)) (-5 *4 (-1075)) - (-5 *5 (-743 *7)) (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-4 *7 (-13 (-1100) (-29 *6))) (-5 *1 (-176 *6 *7)))) + (|partial| -12 (-5 *2 (-83)) (-5 *3 (-851 *6)) (-5 *4 (-1080)) + (-5 *5 (-744 *7)) (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-4 *7 (-13 (-1105) (-29 *6))) (-5 *1 (-176 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-83)) (-5 *3 (-1070 *6)) (-5 *4 (-743 *6)) - (-4 *6 (-13 (-1100) (-29 *5))) - (-4 *5 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-176 *5 *6))))) + (|partial| -12 (-5 *2 (-83)) (-5 *3 (-1075 *6)) (-5 *4 (-744 *6)) + (-4 *6 (-13 (-1105) (-29 *5))) + (-4 *5 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-176 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-743 *4)) (-5 *3 (-545 *4)) (-5 *5 (-83)) - (-4 *4 (-13 (-1100) (-29 *6))) - (-4 *6 (-13 (-385) (-943 (-478)) (-575 (-478)))) (-5 *1 (-176 *6 *4))))) + (|partial| -12 (-5 *2 (-744 *4)) (-5 *3 (-546 *4)) (-5 *5 (-83)) + (-4 *4 (-13 (-1105) (-29 *6))) + (-4 *6 (-13 (-386) (-944 (-479)) (-576 (-479)))) (-5 *1 (-176 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1059)) (-4 *4 (-13 (-385) (-943 (-478)) (-575 (-478)))) - (-5 *2 (-83)) (-5 *1 (-176 *4 *5)) (-4 *5 (-13 (-1100) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-954)) (-14 *3 (-578 (-1075))))) + (-12 (-5 *3 (-1063)) (-4 *4 (-13 (-386) (-944 (-479)) (-576 (-479)))) + (-5 *2 (-83)) (-5 *1 (-176 *4 *5)) (-4 *5 (-13 (-1105) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-955)) (-14 *3 (-579 (-1080))))) ((*1 *1 *1) - (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) - (-14 *3 (-578 (-1075)))))) + (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-955) (-750))) + (-14 *3 (-579 (-1080)))))) (((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-954)) - (-14 *4 (-578 (-1075))))) + (-12 (-5 *2 (-83)) (-5 *1 (-50 *3 *4)) (-4 *3 (-955)) + (-14 *4 (-579 (-1080))))) ((*1 *2 *1) - (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-954) (-749))) - (-14 *4 (-578 (-1075)))))) + (-12 (-5 *2 (-83)) (-5 *1 (-175 *3 *4)) (-4 *3 (-13 (-955) (-750))) + (-14 *4 (-579 (-1080)))))) (((*1 *1 *2) - (-12 (-5 *2 (-261 *3)) (-4 *3 (-13 (-954) (-749))) (-5 *1 (-175 *3 *4)) - (-14 *4 (-578 (-1075)))))) + (-12 (-5 *2 (-261 *3)) (-4 *3 (-13 (-955) (-750))) (-5 *1 (-175 *3 *4)) + (-14 *4 (-579 (-1080)))))) (((*1 *1 *1) - (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-954) (-749))) - (-14 *3 (-578 (-1075)))))) + (-12 (-5 *1 (-175 *2 *3)) (-4 *2 (-13 (-955) (-750))) + (-14 *3 (-579 (-1080)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1075)) (-5 *6 (-83)) - (-4 *7 (-13 (-254) (-118) (-943 (-478)) (-575 (-478)))) - (-4 *3 (-13 (-1100) (-864) (-29 *7))) + (-12 (-5 *4 (-1080)) (-5 *6 (-83)) + (-4 *7 (-13 (-254) (-118) (-944 (-479)) (-576 (-479)))) + (-4 *3 (-13 (-1105) (-865) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-743 *3)) (|:| |f2| (-578 (-743 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-744 *3)) (|:| |f2| (-579 (-744 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-171 *7 *3)) (-5 *5 (-743 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-343 (-478))) (-5 *1 (-169))))) + (-5 *1 (-171 *7 *3)) (-5 *5 (-744 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-344 (-479))) (-5 *1 (-169))))) (((*1 *2 *3) - (-12 (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-295)) (-5 *2 (-83)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1140 *4))))) + (-12 (-5 *3 (-688)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1145 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-687)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1140 *4))))) + (-12 (-5 *3 (-688)) (-4 *4 (-295)) (-5 *1 (-168 *4 *2)) (-4 *2 (-1145 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-295)) (-5 *2 (-578 (-2 (|:| |deg| (-687)) (|:| -2555 *3)))) - (-5 *1 (-168 *4 *3)) (-4 *3 (-1140 *4))))) + (-12 (-4 *4 (-295)) (-5 *2 (-579 (-2 (|:| |deg| (-688)) (|:| -2560 *3)))) + (-5 *1 (-168 *4 *3)) (-4 *3 (-1145 *4))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-83)) (-4 *5 (-295)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1762 (-578 (-2 (|:| |irr| *3) (|:| -2377 (-478))))))) - (-5 *1 (-168 *5 *3)) (-4 *3 (-1140 *5))))) + (|:| -1767 (-579 (-2 (|:| |irr| *3) (|:| -2382 (-479))))))) + (-5 *1 (-168 *5 *3)) (-4 *3 (-1145 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-308)) (-4 *6 (-1140 (-343 *2))) - (-4 *2 (-1140 *5)) (-5 *1 (-167 *5 *2 *6 *3)) (-4 *3 (-287 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-308)) (-4 *6 (-1145 (-344 *2))) + (-4 *2 (-1145 *5)) (-5 *1 (-167 *5 *2 *6 *3)) (-4 *3 (-287 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-687)) (-5 *1 (-164 *4 *2)) (-14 *4 (-823)) (-4 *2 (-1003))))) -(((*1 *2 *3) (-12 (-5 *2 (-341 (-1070 (-478)))) (-5 *1 (-163)) (-5 *3 (-478))))) -(((*1 *2 *3) (-12 (-5 *2 (-578 (-1070 (-478)))) (-5 *1 (-163)) (-5 *3 (-478))))) + (-12 (-5 *3 (-688)) (-5 *1 (-164 *4 *2)) (-14 *4 (-824)) (-4 *2 (-1006))))) +(((*1 *2 *3) (-12 (-5 *2 (-342 (-1075 (-479)))) (-5 *1 (-163)) (-5 *3 (-479))))) +(((*1 *2 *3) (-12 (-5 *2 (-579 (-1075 (-479)))) (-5 *1 (-163)) (-5 *3 (-479))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-578 (-478))) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) + (-12 (-5 *3 (-579 (-479))) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 (-823))) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) + (-12 (-5 *3 (-579 (-824))) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1077 (-343 (-478)))) (-5 *2 (-343 (-478))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) -(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1077 (-343 (-478)))) (-5 *1 (-162))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1164 (-625 *4))) (-4 *4 (-144)) - (-5 *2 (-1164 (-625 (-850 *4)))) (-5 *1 (-161 *4))))) + (-12 (-5 *3 (-1082 (-344 (-479)))) (-5 *2 (-344 (-479))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) +(((*1 *2 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1082 (-344 (-479)))) (-5 *1 (-162))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1169 (-626 *4))) (-4 *4 (-144)) + (-5 *2 (-1169 (-626 (-851 *4)))) (-5 *1 (-161 *4))))) (((*1 *1) (-5 *1 (-159)))) (((*1 *1) (-5 *1 (-159)))) (((*1 *1) (-5 *1 (-159)))) (((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-159))))) -(((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-578 (-83)))))) -(((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-578 (-767)))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-1080))) (-5 *1 (-156 *3)) (-4 *3 (-158))))) -(((*1 *2 *3) (-12 (-5 *3 (-439)) (-5 *2 (-627 (-155))) (-5 *1 (-155))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1114)) (-5 *1 (-154 *3 *2)) (-4 *2 (-611 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-579 (-83)))))) +(((*1 *2 *1) (-12 (-4 *1 (-158)) (-5 *2 (-579 (-768)))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-1085))) (-5 *1 (-156 *3)) (-4 *3 (-158))))) +(((*1 *2 *3) (-12 (-5 *3 (-440)) (-5 *2 (-628 (-155))) (-5 *1 (-155))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-154 *3 *2)) (-4 *2 (-612 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1114)) (-5 *2 (-687)) (-5 *1 (-154 *4 *3)) (-4 *3 (-611 *4))))) + (-12 (-4 *4 (-1119)) (-5 *2 (-688)) (-5 *1 (-154 *4 *3)) (-4 *3 (-612 *4))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1114)) (-5 *1 (-154 *3 *2)) (-4 *2 (-611 *3))))) + (|partial| -12 (-4 *3 (-1119)) (-5 *1 (-154 *3 *2)) (-4 *2 (-612 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-748))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1762 (-341 *3)))) (-5 *1 (-153 *4 *3)) - (-4 *3 (-1140 (-140 *4)))))) + (-12 (-4 *4 (-13 (-308) (-749))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1767 (-342 *3)))) (-5 *1 (-153 *4 *3)) + (-4 *3 (-1145 (-140 *4)))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) - (-4 *3 (-1140 (-140 *2)))))) + (-12 (-4 *2 (-13 (-308) (-749))) (-5 *1 (-153 *2 *3)) + (-4 *3 (-1145 (-140 *2)))))) (((*1 *2 *3) - (-12 (-5 *2 (-140 *4)) (-5 *1 (-153 *4 *3)) (-4 *4 (-13 (-308) (-748))) - (-4 *3 (-1140 *2))))) + (-12 (-5 *2 (-140 *4)) (-5 *1 (-153 *4 *3)) (-4 *4 (-13 (-308) (-749))) + (-4 *3 (-1145 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) - (-4 *3 (-1140 (-140 *2))))) + (-12 (-4 *2 (-13 (-308) (-749))) (-5 *1 (-153 *2 *3)) + (-4 *3 (-1145 (-140 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-308) (-748))) (-5 *1 (-153 *2 *3)) - (-4 *3 (-1140 (-140 *2)))))) + (-12 (-4 *2 (-13 (-308) (-749))) (-5 *1 (-153 *2 *3)) + (-4 *3 (-1145 (-140 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-748))) (-5 *1 (-153 *3 *2)) - (-4 *2 (-1140 (-140 *3)))))) + (-12 (-4 *3 (-13 (-308) (-749))) (-5 *1 (-153 *3 *2)) + (-4 *2 (-1145 (-140 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) + (-12 (-5 *5 (-83)) (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-341 *3)) (-5 *1 (-153 *4 *3)) - (-4 *3 (-1140 (-140 *4)))))) + (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-342 *3)) (-5 *1 (-153 *4 *3)) + (-4 *3 (-1145 (-140 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-308) (-748))) (-5 *1 (-153 *3 *2)) - (-4 *2 (-1140 (-140 *3)))))) + (-12 (-4 *3 (-13 (-308) (-749))) (-5 *1 (-153 *3 *2)) + (-4 *2 (-1145 (-140 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-83)) (-4 *5 (-13 (-308) (-748))) - (-5 *2 (-578 (-2 (|:| -1762 (-578 *3)) (|:| -1579 *5)))) - (-5 *1 (-153 *5 *3)) (-4 *3 (-1140 (-140 *5))))) + (-12 (-5 *4 (-83)) (-4 *5 (-13 (-308) (-749))) + (-5 *2 (-579 (-2 (|:| -1767 (-579 *3)) (|:| -1584 *5)))) + (-5 *1 (-153 *5 *3)) (-4 *3 (-1145 (-140 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-308) (-748))) - (-5 *2 (-578 (-2 (|:| -1762 (-578 *3)) (|:| -1579 *4)))) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4)))))) + (-12 (-4 *4 (-13 (-308) (-749))) + (-5 *2 (-579 (-2 (|:| -1767 (-579 *3)) (|:| -1584 *4)))) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-578 (-140 *4))) (-5 *1 (-126 *3 *4)) - (-4 *3 (-1140 (-140 (-478)))) (-4 *4 (-13 (-308) (-748))))) + (-12 (-5 *2 (-579 (-140 *4))) (-5 *1 (-126 *3 *4)) + (-4 *3 (-1145 (-140 (-479)))) (-4 *4 (-13 (-308) (-749))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-140 *4))) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4))))) + (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-579 (-140 *4))) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-308) (-748))) (-5 *2 (-578 (-140 *4))) - (-5 *1 (-153 *4 *3)) (-4 *3 (-1140 (-140 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3))))) + (-12 (-4 *4 (-13 (-308) (-749))) (-5 *2 (-579 (-140 *4))) + (-5 *1 (-153 *4 *3)) (-4 *3 (-1145 (-140 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-579 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-254)) (-5 *1 (-151 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-308) (-1100) (-908)))))) + (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1105) (-909)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-308) (-1100) (-908)))))) + (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1105) (-909)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-308) (-1100) (-908)))))) + (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1105) (-909)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-308) (-1100) (-908)))))) + (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1105) (-909)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-308) (-1100) (-908)))))) + (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1105) (-909)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-308) (-1100) (-908)))))) + (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1105) (-909)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-847 *3) (-847 *3))) (-5 *1 (-148 *3)) - (-4 *3 (-13 (-308) (-1100) (-908)))))) + (-12 (-5 *2 (-1 (-848 *3) (-848 *3))) (-5 *1 (-148 *3)) + (-4 *3 (-13 (-308) (-1105) (-909)))))) (((*1 *2 *2) - (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) + (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) + (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) + (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) + (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) + (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) + (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-847 *3)) (-4 *3 (-13 (-308) (-1100) (-908))) + (-12 (-5 *2 (-848 *3)) (-4 *3 (-13 (-308) (-1105) (-909))) (-5 *1 (-148 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-78))) (-5 *1 (-147))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-78))) (-5 *1 (-147))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-147))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1055 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1059 *2)) (-4 *2 (-254)) (-5 *1 (-146 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) (((*1 *1 *1) (-12 (-5 *1 (-146 *2)) (-4 *2 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 (-343 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 (-343 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) -(((*1 *2 *1) (-12 (-5 *2 (-1055 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1059 (-344 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1059 (-344 *3))) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) +(((*1 *2 *1) (-12 (-5 *2 (-1059 *3)) (-5 *1 (-146 *3)) (-4 *3 (-254))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-143))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-143))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1035)) (-5 *3 (-243)) (-5 *1 (-139))))) -(((*1 *2 *3) (-12 (-5 *3 (-1035)) (-5 *2 (-627 (-232))) (-5 *1 (-139))))) -(((*1 *2 *3) (-12 (-5 *3 (-1059)) (-5 *2 (-578 (-627 (-232)))) (-5 *1 (-139))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1039)) (-5 *3 (-243)) (-5 *1 (-139))))) +(((*1 *2 *3) (-12 (-5 *3 (-1039)) (-5 *2 (-628 (-232))) (-5 *1 (-139))))) +(((*1 *2 *3) (-12 (-5 *3 (-1063)) (-5 *2 (-579 (-628 (-232)))) (-5 *1 (-139))))) (((*1 *1) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-137 *2)) (-4 *2 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-965)) (-4 *3 (-1100)) + (-12 (-4 *1 (-137 *3)) (-4 *3 (-144)) (-4 *3 (-966)) (-4 *3 (-1105)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1) (-5 *1 (-132))) - ((*1 *1 *2) (-12 (-5 *2 (-478)) (-5 *1 (-132))))) -(((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-479)) (-5 *1 (-132))))) +(((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1075)))) + (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)) (-4 *2 (-358 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1080)))) ((*1 *1 *1) (-4 *1 (-131)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *1 (-129 *4 *2)) (-4 *2 (-357 *4)))) + (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)) (-4 *2 (-358 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-995 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) + (-12 (-5 *3 (-997 *2)) (-4 *2 (-358 *4)) (-4 *4 (-490)) (-5 *1 (-129 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-995 *1)) (-4 *1 (-131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1075))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-997 *1)) (-4 *1 (-131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-131)) (-5 *2 (-1080))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478))))) (((*1 *1 *1 *1) (-4 *1 (-114))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-477)) (-5 *1 (-130 *2))))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-579 *2)) (-4 *2 (-478)) (-5 *1 (-130 *2))))) (((*1 *1 *1) (-4 *1 (-114))) - ((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-477))))) + ((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-130 *2)) (-4 *2 (-478))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-489))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-490))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-489))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-490))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-489))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-490))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-489))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-490))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-489))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-490))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *2)) (-4 *2 (-357 *4)) (-5 *1 (-129 *4 *2)) - (-4 *4 (-489))))) -(((*1 *2 *2) (-12 (-4 *3 (-489)) (-5 *1 (-129 *3 *2)) (-4 *2 (-357 *3))))) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-358 *4)) (-5 *1 (-129 *4 *2)) + (-4 *4 (-490))))) +(((*1 *2 *2) (-12 (-4 *3 (-490)) (-5 *1 (-129 *3 *2)) (-4 *2 (-358 *3))))) (((*1 *1) (-5 *1 (-128)))) -(((*1 *2) (-12 (-5 *2 (-823)) (-5 *1 (-128))))) +(((*1 *2) (-12 (-5 *2 (-824)) (-5 *1 (-128))))) (((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-177)) (-5 *2 - (-2 (|:| |brans| (-578 (-578 (-847 *4)))) (|:| |xValues| (-992 *4)) - (|:| |yValues| (-992 *4)))) - (-5 *1 (-124)) (-5 *3 (-578 (-578 (-847 *4))))))) + (-2 (|:| |brans| (-579 (-579 (-848 *4)))) (|:| |xValues| (-994 *4)) + (|:| |yValues| (-994 *4)))) + (-5 *1 (-124)) (-5 *3 (-579 (-579 (-848 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-829)) + (-12 (-5 *3 (-830)) (-5 *2 - (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) - (|:| |yValues| (-992 (-177))))) + (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) + (|:| |yValues| (-994 (-177))))) (-5 *1 (-124)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-829)) (-5 *4 (-343 (-478))) + (-12 (-5 *3 (-830)) (-5 *4 (-344 (-479))) (-5 *2 - (-2 (|:| |brans| (-578 (-578 (-847 (-177))))) (|:| |xValues| (-992 (-177))) - (|:| |yValues| (-992 (-177))))) + (-2 (|:| |brans| (-579 (-579 (-848 (-177))))) (|:| |xValues| (-994 (-177))) + (|:| |yValues| (-994 (-177))))) (-5 *1 (-124))))) (((*1 *1 *2) - (-12 (-5 *2 (-823)) (-5 *1 (-123 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-308)) - (-14 *5 (-899 *3 *4))))) + (-12 (-5 *2 (-824)) (-5 *1 (-123 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-308)) + (-14 *5 (-900 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-83) *2)) (-4 *1 (-122 *2)) (-4 *2 (-1114))))) + (|partial| -12 (-5 *3 (-1 (-83) *2)) (-4 *1 (-122 *2)) (-4 *2 (-1119))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -3971)) (-4 *1 (-122 *2)) (-4 *2 (-1114)) - (-4 *2 (-1003))))) + (-12 (|has| *1 (-6 -3977)) (-4 *1 (-122 *2)) (-4 *2 (-1119)) + (-4 *2 (-1006))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) + (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-343 *5)) - (|:| |c2| (-343 *5)) (|:| |deg| (-687)))) - (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1140 (-343 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-344 *5)) + (|:| |c2| (-344 *5)) (|:| |deg| (-688)))) + (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1145 (-344 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1140 *2)) (-4 *2 (-1119)) (-5 *1 (-119 *2 *4 *3)) - (-4 *3 (-1140 (-343 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-343 *6)) (-4 *5 (-1119)) (-4 *6 (-1140 *5)) - (-5 *2 (-2 (|:| -2383 (-687)) (|:| -3930 *3) (|:| |radicand| *6))) - (-5 *1 (-119 *5 *6 *7)) (-5 *4 (-687)) (-4 *7 (-1140 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) - (-5 *2 (-2 (|:| |radicand| (-343 *5)) (|:| |deg| (-687)))) - (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1140 (-343 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1119)) (-4 *5 (-1140 *4)) - (-5 *2 (-2 (|:| -3930 (-343 *5)) (|:| |poly| *3))) (-5 *1 (-119 *4 *5 *3)) - (-4 *3 (-1140 (-343 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-115))))) -(((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-115))))) + (-12 (-4 *4 (-1145 *2)) (-4 *2 (-1124)) (-5 *1 (-119 *2 *4 *3)) + (-4 *3 (-1145 (-344 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-344 *6)) (-4 *5 (-1124)) (-4 *6 (-1145 *5)) + (-5 *2 (-2 (|:| -2388 (-688)) (|:| -3936 *3) (|:| |radicand| *6))) + (-5 *1 (-119 *5 *6 *7)) (-5 *4 (-688)) (-4 *7 (-1145 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| |radicand| (-344 *5)) (|:| |deg| (-688)))) + (-5 *1 (-119 *4 *5 *3)) (-4 *3 (-1145 (-344 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1124)) (-4 *5 (-1145 *4)) + (-5 *2 (-2 (|:| -3936 (-344 *5)) (|:| |poly| *3))) (-5 *1 (-119 *4 *5 *3)) + (-4 *3 (-1145 (-344 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-115))))) +(((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-115))))) (((*1 *1) (-5 *1 (-115)))) (((*1 *1) (-5 *1 (-115)))) (((*1 *1) (-5 *1 (-115)))) @@ -13150,993 +13154,993 @@ (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-115))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 (-115))) (-5 *1 (-112)))) - ((*1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 (-115))) (-5 *1 (-112)))) + ((*1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-112))))) (((*1 *1) (-5 *1 (-112)))) (((*1 *1) (-5 *1 (-112)))) (((*1 *1) (-5 *1 (-112)))) (((*1 *1) (-5 *1 (-112)))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-742))) (-5 *1 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-156 (-110)))) (-5 *1 (-111))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-156 (-110)))) (-5 *1 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-743))) (-5 *1 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-156 (-110)))) (-5 *1 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-156 (-110)))) (-5 *1 (-111))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-578 (-478))) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) - (-14 *4 (-687)) (-4 *5 (-144))))) + (-12 (-5 *2 (-579 (-479))) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-479)) + (-14 *4 (-688)) (-4 *5 (-144))))) (((*1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144))))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144))))) (((*1 *1) - (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-478)) (-14 *3 (-687)) (-4 *4 (-144))))) + (-12 (-5 *1 (-106 *2 *3 *4)) (-14 *2 (-479)) (-14 *3 (-688)) (-4 *4 (-144))))) (((*1 *2 *1) - (-12 (-5 *2 (-578 *5)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) - (-14 *4 (-687)) (-4 *5 (-144))))) + (-12 (-5 *2 (-579 *5)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-479)) + (-14 *4 (-688)) (-4 *5 (-144))))) (((*1 *1 *2) - (-12 (-5 *2 (-578 *5)) (-4 *5 (-144)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-478)) - (-14 *4 (-687))))) -(((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-105))))) + (-12 (-5 *2 (-579 *5)) (-4 *5 (-144)) (-5 *1 (-106 *3 *4 *5)) (-14 *3 (-479)) + (-14 *4 (-688))))) +(((*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-105))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) (((*1 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) (((*1 *2 *2) (-12 (-5 *2 (-83)) (-5 *1 (-105))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-103)) (-5 *3 (-687)) (-5 *2 (-1170))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-103)) (-5 *3 (-688)) (-5 *2 (-1175))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-102)))) (((*1 *1) (-5 *1 (-101)))) (((*1 *1) (-5 *1 (-101)))) (((*1 *1) (-5 *1 (-101)))) -(((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-100))))) -(((*1 *2 *1) (-12 (-5 *2 (-687)) (-5 *1 (-100))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-100))))) -(((*1 *1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-99))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1003)))) - ((*1 *1 *2) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1003))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-97 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-96 *2)) (-4 *2 (-1003))))) +(((*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-100))))) +(((*1 *2 *1) (-12 (-5 *2 (-688)) (-5 *1 (-100))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-100))))) +(((*1 *1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-99))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1006)))) + ((*1 *1 *2) (-12 (-5 *1 (-98 *2)) (-4 *2 (-1006))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-97 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-96 *2)) (-4 *2 (-1006))))) (((*1 *1 *1 *1) (-5 *1 (-83))) ((*1 *1 *1 *1) (-4 *1 (-94)))) (((*1 *1 *1 *1) (-5 *1 (-83))) ((*1 *1 *1 *1) (-4 *1 (-94)))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-749)) (-5 *1 (-92 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-749))))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2) (-12 (-5 *2 (-687)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478))))) - ((*1 *2 *2) (-12 (-5 *2 (-687)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1140 (-478)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-90 *2)) (-4 *2 (-1114))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3972)) (-4 *1 (-90 *2)) (-4 *2 (-1114))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-308) (-943 (-343 *2)))) (-5 *2 (-478)) (-5 *1 (-86 *4 *3)) - (-4 *3 (-1140 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *1 (-85 *2)) (-4 *2 (-1003))))) -(((*1 *2 *3) (-12 (-5 *2 (-84)) (-5 *1 (-85 *3)) (-4 *3 (-1003))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-750)) (-5 *1 (-92 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-92 *2)) (-4 *2 (-750))))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2) (-12 (-5 *2 (-688)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479))))) + ((*1 *2 *2) (-12 (-5 *2 (-688)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-83)) (-5 *1 (-91 *3)) (-4 *3 (-1145 (-479)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-90 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -3978)) (-4 *1 (-90 *2)) (-4 *2 (-1119))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-308) (-944 (-344 *2)))) (-5 *2 (-479)) (-5 *1 (-86 *4 *3)) + (-4 *3 (-1145 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-84)) (-5 *1 (-85 *2)) (-4 *2 (-1006))))) +(((*1 *2 *3) (-12 (-5 *2 (-84)) (-5 *1 (-85 *3)) (-4 *3 (-1006))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-578 (-1 *4 (-578 *4)))) (-4 *4 (-1003)) + (-12 (-5 *2 (-84)) (-5 *3 (-579 (-1 *4 (-579 *4)))) (-4 *4 (-1006)) (-5 *1 (-85 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-85 *4)))) + (-12 (-5 *2 (-84)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1006)) (-5 *1 (-85 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-84)) (-5 *2 (-578 (-1 *4 (-578 *4)))) - (-5 *1 (-85 *4)) (-4 *4 (-1003))))) -(((*1 *2 *1) (-12 (-5 *2 (-578 (-869))) (-5 *1 (-78)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1059) (-689))) (-5 *1 (-84))))) + (|partial| -12 (-5 *3 (-84)) (-5 *2 (-579 (-1 *4 (-579 *4)))) + (-5 *1 (-85 *4)) (-4 *4 (-1006))))) +(((*1 *2 *1) (-12 (-5 *2 (-579 (-870))) (-5 *1 (-78)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1063) (-690))) (-5 *1 (-84))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84))))) (((*1 *2 *1) (-12 (-5 *2 (-83)) (-5 *1 (-84))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-83) (-84) (-84))) (-5 *1 (-84))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-439)) (-5 *2 (-83)) (-5 *1 (-84))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-84)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1059)) (-5 *1 (-84))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-689)) (-5 *1 (-84)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1059)) (-5 *3 (-689)) (-5 *1 (-84))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1059) (-689))) (-5 *1 (-84))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-578 (-869))) (-5 *1 (-78))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-4 *1 (-76 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1114))))) -(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1114))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-3973 "*"))) (-4 *5 (-317 *2)) (-4 *6 (-317 *2)) - (-4 *2 (-954)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1140 *2)) - (-4 *4 (-622 *2 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-440)) (-5 *2 (-83)) (-5 *1 (-84))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-84)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1063)) (-5 *1 (-84))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-690)) (-5 *1 (-84)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1063)) (-5 *3 (-690)) (-5 *1 (-84))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1063) (-690))) (-5 *1 (-84))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-579 (-870))) (-5 *1 (-78))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-4 *1 (-76 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1119))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-3979 "*"))) (-4 *5 (-318 *2)) (-4 *6 (-318 *2)) + (-4 *2 (-955)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1145 *2)) + (-4 *4 (-623 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-3973 "*"))) (-4 *5 (-317 *2)) (-4 *6 (-317 *2)) - (-4 *2 (-954)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1140 *2)) - (-4 *4 (-622 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-3979 "*"))) (-4 *5 (-318 *2)) (-4 *6 (-318 *2)) + (-4 *2 (-955)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1145 *2)) + (-4 *4 (-623 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-954)) (-4 *2 (-622 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1140 *4)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4))))) + (-12 (-4 *4 (-955)) (-4 *2 (-623 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1145 *4)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-954)) (-4 *2 (-622 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) - (-4 *3 (-1140 *4)) (-4 *5 (-317 *4)) (-4 *6 (-317 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *1 (-73 *3)) (-4 *3 (-1003))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-73 *3))))) + (-12 (-4 *4 (-955)) (-4 *2 (-623 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) + (-4 *3 (-1145 *4)) (-4 *5 (-318 *4)) (-4 *6 (-318 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-5 *1 (-73 *3)) (-4 *3 (-1006))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-73 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-73 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1003))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1006)) (-5 *1 (-73 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1006))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-578 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-73 *2)))) + (-12 (-5 *3 (-1 (-579 *2) *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-73 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-73 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1006)) (-5 *1 (-73 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-83))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-385) (-118))) (-5 *2 (-341 *3)) (-5 *1 (-70 *4 *3)) - (-4 *3 (-1140 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-578 *3)) (-4 *3 (-1140 *5)) (-4 *5 (-13 (-385) (-118))) - (-5 *2 (-341 *3)) (-5 *1 (-70 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-478))) (-4 *3 (-954)) (-5 *1 (-69 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-69 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-954)) (-5 *1 (-69 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1003)) (-5 *1 (-62 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-308)) (-4 *5 (-489)) - (-5 *2 - (-2 (|:| |minor| (-578 (-823))) (|:| -3246 *3) - (|:| |minors| (-578 (-578 (-823)))) (|:| |ops| (-578 *3)))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-823)) (-4 *3 (-595 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-1164 (-625 *4))) (-5 *1 (-61 *4 *5)) - (-5 *3 (-625 *4)) (-4 *5 (-595 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-489)) - (-5 *2 (-2 (|:| |mat| (-625 *5)) (|:| |vec| (-1164 (-578 (-823)))))) - (-5 *1 (-61 *5 *3)) (-5 *4 (-823)) (-4 *3 (-595 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-687)) (-5 *1 (-58 *3)) (-4 *3 (-1114)))) - ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1114)) (-5 *1 (-58 *3))))) + (-12 (-4 *4 (-13 (-386) (-118))) (-5 *2 (-342 *3)) (-5 *1 (-70 *4 *3)) + (-4 *3 (-1145 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-579 *3)) (-4 *3 (-1145 *5)) (-4 *5 (-13 (-386) (-118))) + (-5 *2 (-342 *3)) (-5 *1 (-70 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-479))) (-4 *3 (-955)) (-5 *1 (-69 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-69 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-955)) (-5 *1 (-69 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1006)) (-5 *1 (-62 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-308)) (-4 *5 (-490)) + (-5 *2 + (-2 (|:| |minor| (-579 (-824))) (|:| -3250 *3) + (|:| |minors| (-579 (-579 (-824)))) (|:| |ops| (-579 *3)))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-824)) (-4 *3 (-596 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-490)) (-5 *2 (-1169 (-626 *4))) (-5 *1 (-61 *4 *5)) + (-5 *3 (-626 *4)) (-4 *5 (-596 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-490)) + (-5 *2 (-2 (|:| |mat| (-626 *5)) (|:| |vec| (-1169 (-579 (-824)))))) + (-5 *1 (-61 *5 *3)) (-5 *4 (-824)) (-4 *3 (-596 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-688)) (-5 *1 (-58 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2) (-12 (-5 *2 (-579 *3)) (-4 *3 (-1119)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-478)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1114)) (-4 *3 (-317 *4)) - (-4 *5 (-317 *4))))) + (-12 (-5 *2 (-479)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1119)) (-4 *3 (-318 *4)) + (-4 *5 (-318 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-478)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1114)) (-4 *5 (-317 *4)) - (-4 *3 (-317 *4))))) + (-12 (-5 *2 (-479)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1119)) (-4 *5 (-318 *4)) + (-4 *3 (-318 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-578 (-1075))) (-4 *4 (-1003)) - (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4))))))) + (-12 (-5 *3 (-579 (-1080))) (-4 *4 (-1006)) + (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-578 (-978 *4 *5 *2))) (-4 *4 (-1003)) - (-4 *5 (-13 (-954) (-789 *4) (-548 (-793 *4)))) - (-4 *2 (-13 (-357 *5) (-789 *4) (-548 (-793 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-579 (-980 *4 *5 *2))) (-4 *4 (-1006)) + (-4 *5 (-13 (-955) (-790 *4) (-549 (-794 *4)))) + (-4 *2 (-13 (-358 *5) (-790 *4) (-549 (-794 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-578 (-978 *5 *6 *2))) (-5 *4 (-823)) (-4 *5 (-1003)) - (-4 *6 (-13 (-954) (-789 *5) (-548 (-793 *5)))) - (-4 *2 (-13 (-357 *6) (-789 *5) (-548 (-793 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1005)) (-5 *3 (-689)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1005)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-689)) (-5 *1 (-51))))) + (-12 (-5 *3 (-579 (-980 *5 *6 *2))) (-5 *4 (-824)) (-4 *5 (-1006)) + (-4 *6 (-13 (-955) (-790 *5) (-549 (-794 *5)))) + (-4 *2 (-13 (-358 *6) (-790 *5) (-549 (-794 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1008)) (-5 *3 (-690)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1008)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-690)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 (-626 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-355 *3))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 (-626 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-355 *3))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 (-625 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 (-626 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-355 *3))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-579 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-578 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-579 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4))))) (((*1 *2) - (-12 (-4 *3 (-489)) (-5 *2 (-578 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-354 *3))))) + (-12 (-4 *3 (-490)) (-5 *2 (-579 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-355 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-687)) (-5 *1 (-43 *4 *3)) (-4 *3 (-354 *4))))) + (-12 (-4 *4 (-490)) (-5 *2 (-688)) (-5 *1 (-43 *4 *3)) (-4 *3 (-355 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-84)) (-5 *4 (-687)) (-4 *5 (-13 (-385) (-943 (-478)))) - (-4 *5 (-489)) (-5 *1 (-41 *5 *2)) (-4 *2 (-357 *5)) + (-12 (-5 *3 (-84)) (-5 *4 (-688)) (-4 *5 (-13 (-386) (-944 (-479)))) + (-4 *5 (-490)) (-5 *1 (-41 *5 *2)) (-4 *2 (-358 *5)) (-4 *2 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *5 (-545 $)) $)) - (-15 -2978 ((-1025 *5 (-545 $)) $)) - (-15 -3922 ($ (-1025 *5 (-545 $)))))))))) + (-10 -8 (-15 -2983 ((-1029 *5 (-546 $)) $)) + (-15 -2982 ((-1029 *5 (-546 $)) $)) + (-15 -3928 ($ (-1029 *5 (-546 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-357 *3)) + (-12 (-4 *3 (-13 (-386) (-944 (-479)))) (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-358 *3)) (-4 *2 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) - (-15 -2978 ((-1025 *3 (-545 $)) $)) - (-15 -3922 ($ (-1025 *3 (-545 $)))))))))) + (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) + (-15 -2982 ((-1029 *3 (-546 $)) $)) + (-15 -3928 ($ (-1029 *3 (-546 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-357 *3)) + (-12 (-4 *3 (-13 (-386) (-944 (-479)))) (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-358 *3)) (-4 *2 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) - (-15 -2978 ((-1025 *3 (-545 $)) $)) - (-15 -3922 ($ (-1025 *3 (-545 $)))))))))) + (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) + (-15 -2982 ((-1029 *3 (-546 $)) $)) + (-15 -3928 ($ (-1029 *3 (-546 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-385) (-943 (-478)))) (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) - (-4 *2 (-357 *3)) + (-12 (-4 *3 (-13 (-386) (-944 (-479)))) (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) + (-4 *2 (-358 *3)) (-4 *2 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) - (-15 -2978 ((-1025 *3 (-545 $)) $)) - (-15 -3922 ($ (-1025 *3 (-545 $)))))))))) + (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) + (-15 -2982 ((-1029 *3 (-546 $)) $)) + (-15 -3928 ($ (-1029 *3 (-546 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-489)) (-5 *2 (-1070 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-490)) (-5 *2 (-1075 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *4 (-545 $)) $)) - (-15 -2978 ((-1025 *4 (-545 $)) $)) - (-15 -3922 ($ (-1025 *4 (-545 $)))))))))) + (-10 -8 (-15 -2983 ((-1029 *4 (-546 $)) $)) + (-15 -2982 ((-1029 *4 (-546 $)) $)) + (-15 -3928 ($ (-1029 *4 (-546 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) - (-15 -2978 ((-1025 *3 (-545 $)) $)) - (-15 -3922 ($ (-1025 *3 (-545 $))))))))) + (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) + (-15 -2982 ((-1029 *3 (-546 $)) $)) + (-15 -3928 ($ (-1029 *3 (-546 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) - (-15 -2978 ((-1025 *3 (-545 $)) $)) - (-15 -3922 ($ (-1025 *3 (-545 $))))))))) + (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) + (-15 -2982 ((-1029 *3 (-546 $)) $)) + (-15 -3928 ($ (-1029 *3 (-546 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-578 *2)) + (-12 (-5 *3 (-579 *2)) (-4 *2 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *4 (-545 $)) $)) - (-15 -2978 ((-1025 *4 (-545 $)) $)) - (-15 -3922 ($ (-1025 *4 (-545 $))))))) - (-4 *4 (-489)) (-5 *1 (-41 *4 *2)))) + (-10 -8 (-15 -2983 ((-1029 *4 (-546 $)) $)) + (-15 -2982 ((-1029 *4 (-546 $)) $)) + (-15 -3928 ($ (-1029 *4 (-546 $))))))) + (-4 *4 (-490)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-578 (-545 *2))) + (-12 (-5 *3 (-579 (-546 *2))) (-4 *2 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *4 (-545 $)) $)) - (-15 -2978 ((-1025 *4 (-545 $)) $)) - (-15 -3922 ($ (-1025 *4 (-545 $))))))) - (-4 *4 (-489)) (-5 *1 (-41 *4 *2))))) + (-10 -8 (-15 -2983 ((-1029 *4 (-546 $)) $)) + (-15 -2982 ((-1029 *4 (-546 $)) $)) + (-15 -3928 ($ (-1029 *4 (-546 $))))))) + (-4 *4 (-490)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-489)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-490)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-308) (-250) - (-10 -8 (-15 -2979 ((-1025 *3 (-545 $)) $)) - (-15 -2978 ((-1025 *3 (-545 $)) $)) - (-15 -3922 ($ (-1025 *3 (-545 $)))))))))) + (-10 -8 (-15 -2983 ((-1029 *3 (-546 $)) $)) + (-15 -2982 ((-1029 *3 (-546 $)) $)) + (-15 -3928 ($ (-1029 *3 (-546 $)))))))))) (((*1 *2 *3) - (-12 (-5 *3 (-687)) (-4 *4 (-308)) (-4 *5 (-1140 *4)) (-5 *2 (-1170)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1140 (-343 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-39 *3)) (-4 *3 (-1140 (-48)))))) + (-12 (-5 *3 (-688)) (-4 *4 (-308)) (-4 *5 (-1145 *4)) (-5 *2 (-1175)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1145 (-344 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-83)) (-5 *1 (-39 *3)) (-4 *3 (-1145 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) - (-5 *2 (-2 (|:| -3836 *3) (|:| |entry| *4)))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1006)) (-4 *4 (-1006)) + (-5 *2 (-2 (|:| -3842 *3) (|:| |entry| *4)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-83))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-478)) (-4 *2 (-357 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-943 *4)) - (-4 *3 (-489))))) + (-12 (-5 *4 (-479)) (-4 *2 (-358 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-944 *4)) + (-4 *3 (-490))))) (((*1 *2 *3) - (-12 (-5 *3 (-578 *5)) (-4 *5 (-357 *4)) (-4 *4 (-489)) (-5 *2 (-765)) + (-12 (-5 *3 (-579 *5)) (-4 *5 (-358 *4)) (-4 *4 (-490)) (-5 *2 (-766)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1070 *2)) (-4 *2 (-357 *4)) (-4 *4 (-489)) + (-12 (-5 *3 (-1075 *2)) (-4 *2 (-358 *4)) (-4 *4 (-490)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-850 (-478))) (-5 *3 (-1075)) (-5 *4 (-992 (-343 (-478)))) + (-12 (-5 *2 (-851 (-479))) (-5 *3 (-1080)) (-5 *4 (-994 (-344 (-479)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1075)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) + (-12 (-5 *3 (-1075 *1)) (-5 *4 (-1080)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1075 *1)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-851 *1)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1070 *1)) (-5 *3 (-1075)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1070 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-850 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1075)) (-4 *1 (-29 *3)) (-4 *3 (-489)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-489))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1070 *1)) (-5 *4 (-1075)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1070 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-850 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) + (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *2 (-579 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-490)) (-5 *2 (-579 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1075 *1)) (-5 *3 (-1080)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1075 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-851 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1080)) (-4 *1 (-29 *3)) (-4 *3 (-490)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-490))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1075 *1)) (-5 *4 (-1080)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1075 *1)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-851 *1)) (-4 *1 (-27)) (-5 *2 (-579 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1075)) (-4 *4 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-489)) (-5 *2 (-578 *1)) (-4 *1 (-29 *3))))) -((-1199 . 629353) (-1200 . 629051) (-1201 . 628655) (-1202 . 628535) - (-1203 . 628433) (-1204 . 628320) (-1205 . 628204) (-1206 . 628151) - (-1207 . 628014) (-1208 . 627939) (-1209 . 627783) (-1210 . 627555) - (-1211 . 626591) (-1212 . 626344) (-1213 . 626060) (-1214 . 625776) - (-1215 . 625492) (-1216 . 625173) (-1217 . 625081) (-1218 . 624989) - (-1219 . 624897) (-1220 . 624805) (-1221 . 624713) (-1222 . 624621) - (-1223 . 624526) (-1224 . 624431) (-1225 . 624339) (-1226 . 624247) - (-1227 . 624155) (-1228 . 624063) (-1229 . 623971) (-1230 . 623869) - (-1231 . 623767) (-1232 . 623665) (-1233 . 623573) (-1234 . 623522) - (-1235 . 623470) (-1236 . 623400) (-1237 . 622980) (-1238 . 622786) - (-1239 . 622759) (-1240 . 622636) (-1241 . 622513) (-1242 . 622369) - (-1243 . 622199) (-1244 . 622075) (-1245 . 621836) (-1246 . 621763) - (-1247 . 621538) (-1248 . 621292) (-1249 . 621239) (-1250 . 621061) - (-1251 . 620892) (-1252 . 620816) (-1253 . 620743) (-1254 . 620590) - (-1255 . 620437) (-1256 . 620253) (-1257 . 620072) (-1258 . 620017) - (-1259 . 619962) (-1260 . 619889) (-1261 . 619813) (-1262 . 619745) - (-1263 . 619602) (-1264 . 619495) (-1265 . 619427) (-1266 . 619357) - (-1267 . 619287) (-1268 . 619237) (-1269 . 619187) (-1270 . 619137) - (-1271 . 619016) (-1272 . 618700) (-1273 . 618631) (-1274 . 618552) - (-1275 . 618433) (-1276 . 618353) (-1277 . 618273) (-1278 . 618120) - (-1279 . 617971) (-1280 . 617895) (-1281 . 617838) (-1282 . 617766) - (-1283 . 617703) (-1284 . 617640) (-1285 . 617579) (-1286 . 617507) - (-1287 . 617393) (-1288 . 617342) (-1289 . 617287) (-1290 . 617235) - (-1291 . 617183) (-1292 . 617155) (-1293 . 617127) (-1294 . 617099) - (-1295 . 617055) (-1296 . 616984) (-1297 . 616933) (-1298 . 616885) - (-1299 . 616834) (-1300 . 616782) (-1301 . 616666) (-1302 . 616550) - (-1303 . 616458) (-1304 . 616366) (-1305 . 616243) (-1306 . 616177) - (-1307 . 616111) (-1308 . 616052) (-1309 . 616024) (-1310 . 615996) - (-1311 . 615968) (-1312 . 615940) (-1313 . 615830) (-1314 . 615779) - (-1315 . 615728) (-1316 . 615677) (-1317 . 615626) (-1318 . 615575) - (-1319 . 615524) (-1320 . 615496) (-1321 . 615468) (-1322 . 615440) - (-1323 . 615412) (-1324 . 615384) (-1325 . 615356) (-1326 . 615328) - (-1327 . 615300) (-1328 . 615272) (-1329 . 615169) (-1330 . 615117) - (-1331 . 614951) (-1332 . 614767) (-1333 . 614556) (-1334 . 614441) - (-1335 . 614208) (-1336 . 614109) (-1337 . 614016) (-1338 . 613901) - (-1339 . 613507) (-1340 . 613291) (-1341 . 613242) (-1342 . 613214) - (-1343 . 613138) (-1344 . 613039) (-1345 . 612940) (-1346 . 612841) - (-1347 . 612742) (-1348 . 612643) (-1349 . 612544) (-1350 . 612386) - (-1351 . 612310) (-1352 . 612143) (-1353 . 612085) (-1354 . 612027) - (-1355 . 611720) (-1356 . 611466) (-1357 . 611382) (-1358 . 611250) - (-1359 . 611192) (-1360 . 611140) (-1361 . 611058) (-1362 . 610983) - (-1363 . 610912) (-1364 . 610858) (-1365 . 610807) (-1366 . 610733) - (-1367 . 610659) (-1368 . 610578) (-1369 . 610497) (-1370 . 610442) - (-1371 . 610368) (-1372 . 610294) (-1373 . 610220) (-1374 . 610143) - (-1375 . 610089) (-1376 . 610031) (-1377 . 609932) (-1378 . 609833) - (-1379 . 609734) (-1380 . 609635) (-1381 . 609536) (-1382 . 609437) - (-1383 . 609338) (-1384 . 609224) (-1385 . 609110) (-1386 . 608996) - (-1387 . 608882) (-1388 . 608768) (-1389 . 608654) (-1390 . 608537) - (-1391 . 608461) (-1392 . 608385) (-1393 . 607998) (-1394 . 607653) - (-1395 . 607551) (-1396 . 607290) (-1397 . 607188) (-1398 . 606983) - (-1399 . 606870) (-1400 . 606768) (-1401 . 606611) (-1402 . 606522) - (-1403 . 606428) (-1404 . 606348) (-1405 . 606274) (-1406 . 606196) - (-1407 . 606137) (-1408 . 606079) (-1409 . 605977) (-7 . 605949) (-8 . 605921) - (-9 . 605893) (-1413 . 605774) (-1414 . 605692) (-1415 . 605610) - (-1416 . 605528) (-1417 . 605446) (-1418 . 605364) (-1419 . 605270) - (-1420 . 605200) (-1421 . 605130) (-1422 . 605039) (-1423 . 604945) - (-1424 . 604863) (-1425 . 604781) (-1426 . 604683) (-1427 . 604523) - (-1428 . 604325) (-1429 . 604189) (-1430 . 604089) (-1431 . 603989) - (-1432 . 603896) (-1433 . 603837) (-1434 . 603504) (-1435 . 603404) - (-1436 . 603286) (-1437 . 603074) (-1438 . 602895) (-1439 . 602737) - (-1440 . 602534) (-1441 . 602116) (-1442 . 602065) (-1443 . 601956) - (-1444 . 601841) (-1445 . 601772) (-1446 . 601703) (-1447 . 601634) - (-1448 . 601568) (-1449 . 601443) (-1450 . 601226) (-1451 . 601148) - (-1452 . 601098) (-1453 . 601027) (-1454 . 600884) (-1455 . 600743) - (-1456 . 600662) (-1457 . 600581) (-1458 . 600525) (-1459 . 600469) - (-1460 . 600396) (-1461 . 600256) (-1462 . 600203) (-1463 . 600144) - (-1464 . 600085) (-1465 . 599930) (-1466 . 599878) (-1467 . 599761) - (-1468 . 599644) (-1469 . 599527) (-1470 . 599396) (-1471 . 599117) - (-1472 . 598982) (-1473 . 598926) (-1474 . 598870) (-1475 . 598811) - (-1476 . 598752) (-1477 . 598696) (-1478 . 598640) (-1479 . 598443) - (-1480 . 596117) (-1481 . 595990) (-1482 . 595846) (-1483 . 595719) - (-1484 . 595667) (-1485 . 595615) (-1486 . 595563) (-1487 . 591549) - (-1488 . 591455) (-1489 . 591318) (-1490 . 591109) (-1491 . 591007) - (-1492 . 590905) (-1493 . 589999) (-1494 . 589923) (-1495 . 589794) - (-1496 . 589669) (-1497 . 589592) (-1498 . 589515) (-1499 . 589388) - (-1500 . 589261) (-1501 . 589095) (-1502 . 588968) (-1503 . 588841) - (-1504 . 588624) (-1505 . 588190) (-1506 . 587826) (-1507 . 587774) - (-1508 . 587715) (-1509 . 587627) (-1510 . 587539) (-1511 . 587448) - (-1512 . 587357) (-1513 . 587266) (-1514 . 587175) (-1515 . 587084) - (-1516 . 586993) (-1517 . 586902) (-1518 . 586811) (-1519 . 586720) - (-1520 . 586629) (-1521 . 586538) (-1522 . 586447) (-1523 . 586356) - (-1524 . 586265) (-1525 . 586174) (-1526 . 586083) (-1527 . 585992) - (-1528 . 585901) (-1529 . 585810) (-1530 . 585719) (-1531 . 585628) - (-1532 . 585537) (-1533 . 585446) (-1534 . 585355) (-1535 . 585264) - (-1536 . 585173) (-1537 . 585011) (-1538 . 584903) (-1539 . 584660) - (-1540 . 584373) (-1541 . 584178) (-1542 . 584022) (-1543 . 583862) - (-1544 . 583811) (-1545 . 583749) (-1546 . 583698) (-1547 . 583635) - (-1548 . 583582) (-1549 . 583530) (-1550 . 583478) (-1551 . 583426) - (-1552 . 583336) (-1553 . 583149) (-1554 . 582995) (-1555 . 582915) - (-1556 . 582835) (-1557 . 582755) (-1558 . 582625) (-1559 . 582393) - (-1560 . 582365) (-1561 . 582337) (-1562 . 582309) (-1563 . 582229) - (-1564 . 582152) (-1565 . 582075) (-1566 . 581994) (-1567 . 581935) - (-1568 . 581777) (-1569 . 581584) (-1570 . 581099) (-1571 . 580857) - (-1572 . 580595) (-1573 . 580494) (-1574 . 580413) (-1575 . 580332) - (-1576 . 580262) (-1577 . 580192) (-1578 . 580034) (-1579 . 579730) - (-1580 . 579502) (-1581 . 579380) (-1582 . 579322) (-1583 . 579260) - (-1584 . 579198) (-1585 . 579133) (-1586 . 579071) (-1587 . 578792) - (-1588 . 578724) (-1589 . 578514) (-1590 . 578462) (-1591 . 578408) - (-1592 . 578317) (-1593 . 578230) (-1594 . 576483) (-1595 . 576404) - (-1596 . 575663) (-1597 . 575546) (-1598 . 575340) (-1599 . 575179) - (-1600 . 575018) (-1601 . 574858) (-1602 . 574720) (-1603 . 574626) - (-1604 . 574528) (-1605 . 574434) (-1606 . 574320) (-1607 . 574238) - (-1608 . 574141) (-1609 . 573945) (-1610 . 573854) (-1611 . 573760) - (-1612 . 573693) (-1613 . 573624) (-1614 . 573572) (-1615 . 573513) - (-1616 . 573439) (-1617 . 573387) (-1618 . 573230) (-1619 . 573073) - (-1620 . 572921) (-1621 . 572163) (-1622 . 571852) (-1623 . 571500) - (-1624 . 571283) (-1625 . 571020) (-1626 . 570645) (-1627 . 570461) - (-1628 . 570327) (-1629 . 570161) (-1630 . 569995) (-1631 . 569861) - (-1632 . 569727) (-1633 . 569593) (-1634 . 569459) (-1635 . 569328) - (-1636 . 569197) (-1637 . 569066) (-1638 . 568686) (-1639 . 568560) - (-1640 . 568432) (-1641 . 568182) (-1642 . 568059) (-1643 . 567809) - (-1644 . 567686) (-1645 . 567436) (-1646 . 567313) (-1647 . 567030) - (-1648 . 566759) (-1649 . 566486) (-1650 . 566188) (-1651 . 566086) - (-1652 . 565941) (-1653 . 565800) (-1654 . 565649) (-1655 . 565488) - (-1656 . 565400) (-1657 . 565372) (-1658 . 565290) (-1659 . 565193) - (-1660 . 564725) (-1661 . 564374) (-1662 . 563941) (-1663 . 563802) - (-1664 . 563732) (-1665 . 563662) (-1666 . 563592) (-1667 . 563501) - (-1668 . 563410) (-1669 . 563319) (-1670 . 563228) (-1671 . 563137) - (-1672 . 563051) (-1673 . 562965) (-1674 . 562879) (-1675 . 562793) - (-1676 . 562707) (-1677 . 562633) (-1678 . 562528) (-1679 . 562302) - (-1680 . 562224) (-1681 . 562149) (-1682 . 562056) (-1683 . 561952) - (-1684 . 561856) (-1685 . 561687) (-1686 . 561610) (-1687 . 561533) - (-1688 . 561442) (-1689 . 561351) (-1690 . 561151) (-1691 . 560998) - (-1692 . 560845) (-1693 . 560692) (-1694 . 560539) (-1695 . 560386) - (-1696 . 560233) (-1697 . 560167) (-1698 . 560014) (-1699 . 559861) - (-1700 . 559708) (-1701 . 559555) (-1702 . 559402) (-1703 . 559249) - (-1704 . 559096) (-1705 . 558943) (-1706 . 558869) (-1707 . 558795) - (-1708 . 558740) (-1709 . 558685) (-1710 . 558630) (-1711 . 558575) - (-1712 . 558504) (-1713 . 558300) (-1714 . 558199) (-1715 . 558011) - (-1716 . 557918) (-1717 . 557782) (-1718 . 557646) (-1719 . 557510) - (-1720 . 557442) (-1721 . 557326) (-1722 . 557210) (-1723 . 557094) - (-1724 . 557041) (-1725 . 556956) (-1726 . 556871) (-1727 . 556563) - (-1728 . 556508) (-1729 . 555856) (-1730 . 555541) (-1731 . 555257) - (-1732 . 555139) (-1733 . 555020) (-1734 . 554961) (-1735 . 554902) - (-1736 . 554851) (-1737 . 554800) (-1738 . 554749) (-1739 . 554696) - (-1740 . 554643) (-1741 . 554584) (-1742 . 554471) (-1743 . 554358) - (-1744 . 554191) (-1745 . 554099) (-1746 . 553986) (-1747 . 553902) - (-1748 . 553787) (-1749 . 553696) (-1750 . 553605) (-1751 . 553484) - (-1752 . 553297) (-1753 . 553245) (-1754 . 553190) (-1755 . 553003) - (-1756 . 552880) (-1757 . 552807) (-1758 . 552734) (-1759 . 552614) - (-1760 . 552541) (-1761 . 552468) (-1762 . 552128) (-1763 . 552055) - (-1764 . 551835) (-1765 . 551502) (-1766 . 551319) (-1767 . 551176) - (-1768 . 550816) (-1769 . 550648) (-1770 . 550480) (-1771 . 550224) - (-1772 . 549968) (-1773 . 549773) (-1774 . 549578) (-1775 . 548984) - (-1776 . 548908) (-1777 . 548769) (-1778 . 548362) (-1779 . 548235) - (-1780 . 548078) (-1781 . 547761) (-1782 . 547281) (-1783 . 546801) - (-1784 . 546299) (-1785 . 546231) (-1786 . 546160) (-1787 . 546089) - (-1788 . 545917) (-1789 . 545798) (-1790 . 545679) (-1791 . 545603) - (-1792 . 545527) (-1793 . 545254) (-1794 . 545140) (-1795 . 545089) - (-1796 . 545038) (-1797 . 544987) (-1798 . 544936) (-1799 . 544885) - (-1800 . 544744) (-1801 . 544571) (-1802 . 544340) (-1803 . 544154) - (-1804 . 544126) (-1805 . 544098) (-1806 . 544070) (-1807 . 544042) - (-1808 . 544014) (-1809 . 543986) (-1810 . 543958) (-1811 . 543907) - (-1812 . 543841) (-1813 . 543751) (-1814 . 543380) (-1815 . 543229) - (-1816 . 543078) (-1817 . 542873) (-1818 . 542751) (-1819 . 542677) - (-1820 . 542600) (-1821 . 542526) (-1822 . 542449) (-1823 . 542372) - (-1824 . 542298) (-1825 . 542221) (-1826 . 541989) (-1827 . 541836) - (-1828 . 541541) (-1829 . 541388) (-1830 . 541066) (-1831 . 540928) - (-1832 . 540790) (-1833 . 540710) (-1834 . 540630) (-1835 . 540366) - (-1836 . 539635) (-1837 . 539499) (-1838 . 539409) (-1839 . 539274) - (-1840 . 539207) (-1841 . 539139) (-1842 . 539052) (-1843 . 538965) - (-1844 . 538798) (-1845 . 538724) (-1846 . 538580) (-1847 . 538120) - (-1848 . 537741) (-1849 . 536979) (-1850 . 536835) (-1851 . 536691) - (-1852 . 536529) (-1853 . 536292) (-1854 . 536152) (-1855 . 536006) - (-1856 . 535767) (-1857 . 535531) (-1858 . 535292) (-1859 . 535100) - (-1860 . 534977) (-1861 . 534773) (-1862 . 534550) (-1863 . 534311) - (-1864 . 534170) (-1865 . 534032) (-1866 . 533893) (-1867 . 533640) - (-1868 . 533384) (-1869 . 533227) (-1870 . 533073) (-1871 . 532833) - (-1872 . 532548) (-1873 . 532410) (-1874 . 532323) (-1875 . 531657) - (-1876 . 531481) (-1877 . 531299) (-1878 . 531123) (-1879 . 530941) - (-1880 . 530762) (-1881 . 530583) (-1882 . 530396) (-1883 . 530014) - (-1884 . 529835) (-1885 . 529656) (-1886 . 529469) (-1887 . 529087) - (-1888 . 528094) (-1889 . 527710) (-1890 . 527326) (-1891 . 527208) - (-1892 . 527051) (-1893 . 526909) (-1894 . 526792) (-1895 . 526610) - (-1896 . 526486) (-1897 . 526197) (-1898 . 525908) (-1899 . 525625) - (-1900 . 525342) (-1901 . 525064) (-1902 . 524976) (-1903 . 524891) - (-1904 . 524794) (-1905 . 524697) (-1906 . 524477) (-1907 . 524377) - (-1908 . 524274) (-1909 . 524196) (-1910 . 523871) (-1911 . 523583) - (-1912 . 523510) (-1913 . 523125) (-1914 . 523097) (-1915 . 522898) - (-1916 . 522724) (-1917 . 522483) (-1918 . 522428) (-1919 . 522353) - (-1920 . 521985) (-1921 . 521870) (-1922 . 521793) (-1923 . 521720) - (-1924 . 521639) (-1925 . 521558) (-1926 . 521477) (-1927 . 521376) - (-1928 . 521317) (-1929 . 521079) (-1930 . 520957) (-1931 . 520835) - (-1932 . 520608) (-1933 . 520555) (-1934 . 520501) (-1935 . 520169) - (-1936 . 519845) (-1937 . 519657) (-1938 . 519466) (-1939 . 519302) - (-1940 . 518967) (-1941 . 518800) (-1942 . 518559) (-1943 . 518235) - (-1944 . 518045) (-1945 . 517830) (-1946 . 517659) (-1947 . 517237) - (-1948 . 517010) (-1949 . 516739) (-1950 . 516602) (-1951 . 516461) - (-1952 . 515984) (-1953 . 515861) (-1954 . 515625) (-1955 . 515371) - (-1956 . 515121) (-1957 . 514828) (-1958 . 514688) (-1959 . 514548) - (-1960 . 514408) (-1961 . 514219) (-1962 . 514030) (-1963 . 513855) - (-1964 . 513581) (-1965 . 513146) (-1966 . 513118) (-1967 . 513046) - (-1968 . 512887) (-1969 . 512724) (-1970 . 512563) (-1971 . 512396) - (-1972 . 512343) (-1973 . 512290) (-1974 . 512161) (-1975 . 512101) - (-1976 . 512048) (-1977 . 511978) (-1978 . 511918) (-1979 . 511859) - (-1980 . 511799) (-1981 . 511740) (-1982 . 511680) (-1983 . 511621) - (-1984 . 511563) (-1985 . 511421) (-1986 . 511326) (-1987 . 511235) - (-1988 . 511119) (-1989 . 511025) (-1990 . 510927) (-1991 . 510833) - (-1992 . 510692) (-1993 . 510430) (-1994 . 509574) (-1995 . 509418) - (-1996 . 509049) (-1997 . 508993) (-1998 . 508942) (-1999 . 508839) - (-2000 . 508754) (-2001 . 508666) (-2002 . 508520) (-2003 . 508371) - (-2004 . 508081) (-2005 . 508003) (-2006 . 507928) (-2007 . 507875) - (-2008 . 507822) (-2009 . 507791) (-2010 . 507728) (-2011 . 507610) - (-2012 . 507521) (-2013 . 507401) (-2014 . 507106) (-2015 . 506912) - (-2016 . 506724) (-2017 . 506579) (-2018 . 506434) (-2019 . 506148) - (-2020 . 505706) (-2021 . 505672) (-2022 . 505635) (-2023 . 505598) - (-2024 . 505561) (-2025 . 505524) (-2026 . 505493) (-2027 . 505462) - (-2028 . 505431) (-2029 . 505397) (-2030 . 505363) (-2031 . 505309) - (-2032 . 505133) (-2033 . 504899) (-2034 . 504665) (-2035 . 504436) - (-2036 . 504384) (-2037 . 504329) (-2038 . 504260) (-2039 . 504172) - (-2040 . 504103) (-2041 . 504031) (-2042 . 503801) (-2043 . 503750) - (-2044 . 503696) (-2045 . 503665) (-2046 . 503559) (-2047 . 503334) - (-2048 . 503024) (-2049 . 502850) (-2050 . 502668) (-2051 . 502397) - (-2052 . 502324) (-2053 . 502259) (-2054 . 501783) (-2055 . 501221) - (-2056 . 500495) (-2057 . 499934) (-2058 . 499306) (-2059 . 498727) - (-2060 . 498653) (-2061 . 498601) (-2062 . 498549) (-2063 . 498475) - (-2064 . 498420) (-2065 . 498368) (-2066 . 498316) (-2067 . 498264) - (-2068 . 498194) (-2069 . 497746) (-2070 . 497540) (-2071 . 497291) - (-2072 . 496957) (-2073 . 496703) (-2074 . 496401) (-2075 . 496198) - (-2076 . 495909) (-2077 . 495361) (-2078 . 495224) (-2079 . 495022) - (-2080 . 494742) (-2081 . 494657) (-2082 . 494324) (-2083 . 494183) - (-2084 . 493892) (-2085 . 493672) (-2086 . 493546) (-2087 . 493421) - (-2088 . 493274) (-2089 . 493130) (-2090 . 493014) (-2091 . 492883) - (-2092 . 492511) (-2093 . 492251) (-2094 . 491981) (-2095 . 491741) - (-2096 . 491411) (-2097 . 491071) (-2098 . 490663) (-2099 . 490245) - (-2100 . 490048) (-2101 . 489773) (-2102 . 489605) (-2103 . 489409) - (-2104 . 489187) (-2105 . 489032) (-2106 . 488847) (-2107 . 488744) - (-2108 . 488716) (-2109 . 488688) (-2110 . 488514) (-2111 . 488440) - (-2112 . 488380) (-2113 . 488327) (-2114 . 488258) (-2115 . 488189) - (-2116 . 488070) (-2117 . 487892) (-2118 . 487837) (-2119 . 487591) - (-2120 . 487518) (-2121 . 487448) (-2122 . 487378) (-2123 . 487289) - (-2124 . 487099) (-2125 . 487026) (-2126 . 486957) (-2127 . 486892) - (-2128 . 486837) (-2129 . 486746) (-2130 . 486455) (-2131 . 486129) - (-2132 . 486055) (-2133 . 485733) (-2134 . 485528) (-2135 . 485443) - (-2136 . 485358) (-2137 . 485273) (-2138 . 485188) (-2139 . 485103) - (-2140 . 485018) (-2141 . 484933) (-2142 . 484848) (-2143 . 484763) - (-2144 . 484678) (-2145 . 484593) (-2146 . 484508) (-2147 . 484423) - (-2148 . 484338) (-2149 . 484253) (-2150 . 484168) (-2151 . 484083) - (-2152 . 483998) (-2153 . 483913) (-2154 . 483828) (-2155 . 483743) - (-2156 . 483658) (-2157 . 483573) (-2158 . 483488) (-2159 . 483403) - (-2160 . 483318) (-2161 . 483216) (-2162 . 483128) (-2163 . 482920) - (-2164 . 482862) (-2165 . 482807) (-2166 . 482720) (-2167 . 482609) - (-2168 . 482523) (-2169 . 482377) (-2170 . 482315) (-2171 . 482287) - (-2172 . 482259) (-2173 . 482231) (-2174 . 482203) (-2175 . 482034) - (-2176 . 481883) (-2177 . 481732) (-2178 . 481560) (-2179 . 481352) - (-2180 . 481228) (-2181 . 481020) (-2182 . 480928) (-2183 . 480836) - (-2184 . 480701) (-2185 . 480606) (-2186 . 480512) (-2187 . 480417) - (-2188 . 480293) (-2189 . 480265) (-2190 . 480237) (-2191 . 480209) - (-2192 . 480181) (-2193 . 480153) (-2194 . 480125) (-2195 . 480097) - (-2196 . 480069) (-2197 . 480041) (-2198 . 480013) (-2199 . 479985) - (-2200 . 479957) (-2201 . 479929) (-2202 . 479901) (-2203 . 479873) - (-2204 . 479845) (-2205 . 479792) (-2206 . 479764) (-2207 . 479736) - (-2208 . 479658) (-2209 . 479605) (-2210 . 479552) (-2211 . 479499) - (-2212 . 479421) (-2213 . 479331) (-2214 . 479236) (-2215 . 479142) - (-2216 . 479060) (-2217 . 478754) (-2218 . 478558) (-2219 . 478463) - (-2220 . 478355) (-2221 . 477944) (-2222 . 477916) (-2223 . 477752) - (-2224 . 477675) (-2225 . 477488) (-2226 . 477309) (-2227 . 476885) - (-2228 . 476733) (-2229 . 476553) (-2230 . 476380) (-2231 . 476120) - (-2232 . 475868) (-2233 . 475057) (-2234 . 474890) (-2235 . 474672) - (-2236 . 473848) (-2237 . 473717) (-2238 . 473586) (-2239 . 473455) - (-2240 . 473324) (-2241 . 473193) (-2242 . 473062) (-2243 . 472867) - (-2244 . 472673) (-2245 . 472530) (-2246 . 472215) (-2247 . 472100) - (-2248 . 471760) (-2249 . 471600) (-2250 . 471461) (-2251 . 471322) - (-2252 . 471193) (-2253 . 471108) (-2254 . 471056) (-2255 . 470576) - (-2256 . 469314) (-2257 . 469187) (-2258 . 469045) (-2259 . 468709) - (-2260 . 468604) (-2261 . 468355) (-2262 . 468123) (-2263 . 468018) - (-2264 . 467943) (-2265 . 467868) (-2266 . 467793) (-2267 . 467734) - (-2268 . 467664) (-2269 . 467611) (-2270 . 467549) (-2271 . 467479) - (-2272 . 467116) (-2273 . 466829) (-2274 . 466719) (-2275 . 466532) - (-2276 . 466439) (-2277 . 466346) (-2278 . 466259) (-2279 . 466039) - (-2280 . 465820) (-2281 . 465402) (-2282 . 465130) (-2283 . 464987) - (-2284 . 464894) (-2285 . 464751) (-2286 . 464599) (-2287 . 464445) - (-2288 . 464375) (-2289 . 464168) (-2290 . 463991) (-2291 . 463782) - (-2292 . 463605) (-2293 . 463571) (-2294 . 463537) (-2295 . 463506) - (-2296 . 463388) (-2297 . 463075) (-2298 . 462797) (-2299 . 462676) - (-2300 . 462549) (-2301 . 462464) (-2302 . 462391) (-2303 . 462302) - (-2304 . 462231) (-2305 . 462175) (-2306 . 462119) (-2307 . 462063) - (-2308 . 461993) (-2309 . 461923) (-2310 . 461853) (-2311 . 461755) - (-2312 . 461677) (-2313 . 461599) (-2314 . 461456) (-2315 . 461377) - (-2316 . 461305) (-2317 . 461102) (-2318 . 461046) (-2319 . 460858) - (-2320 . 460759) (-2321 . 460641) (-2322 . 460520) (-2323 . 460377) - (-2324 . 460234) (-2325 . 460094) (-2326 . 459954) (-2327 . 459811) - (-2328 . 459685) (-2329 . 459556) (-2330 . 459433) (-2331 . 459310) - (-2332 . 459205) (-2333 . 459100) (-2334 . 458998) (-2335 . 458848) - (-2336 . 458695) (-2337 . 458542) (-2338 . 458398) (-2339 . 458244) - (-2340 . 458168) (-2341 . 458089) (-2342 . 457936) (-2343 . 457857) - (-2344 . 457778) (-2345 . 457699) (-2346 . 457597) (-2347 . 457538) - (-2348 . 457476) (-2349 . 457359) (-2350 . 457233) (-2351 . 457156) - (-2352 . 457024) (-2353 . 456718) (-2354 . 456535) (-2355 . 455993) - (-2356 . 455774) (-2357 . 455601) (-2358 . 455431) (-2359 . 455358) - (-2360 . 455282) (-2361 . 455203) (-2362 . 454906) (-2363 . 454744) - (-2364 . 454510) (-2365 . 454068) (-2366 . 453938) (-2367 . 453798) - (-2368 . 453489) (-2369 . 453187) (-2370 . 452871) (-2371 . 452465) - (-2372 . 452397) (-2373 . 452329) (-2374 . 452261) (-2375 . 452167) - (-2376 . 452060) (-2377 . 451953) (-2378 . 451852) (-2379 . 451751) - (-2380 . 451650) (-2381 . 451573) (-2382 . 451250) (-2383 . 450833) - (-2384 . 450206) (-2385 . 450142) (-2386 . 450023) (-2387 . 449904) - (-2388 . 449796) (-2389 . 449688) (-2390 . 449532) (-2391 . 448932) - (-2392 . 448649) (-2393 . 448481) (-2394 . 448359) (-2395 . 447963) - (-2396 . 447727) (-2397 . 447526) (-2398 . 447318) (-2399 . 447125) - (-2400 . 446858) (-2401 . 446679) (-2402 . 446610) (-2403 . 446534) - (-2404 . 446393) (-2405 . 446190) (-2406 . 446046) (-2407 . 445796) - (-2408 . 445488) (-2409 . 445132) (-2410 . 444973) (-2411 . 444767) - (-2412 . 444607) (-2413 . 444534) (-2414 . 444500) (-2415 . 444435) - (-2416 . 444398) (-2417 . 444261) (-2418 . 444023) (-2419 . 443953) - (-2420 . 443767) (-2421 . 443518) (-2422 . 443362) (-2423 . 442839) - (-2424 . 442642) (-2425 . 442430) (-2426 . 442268) (-2427 . 441869) - (-2428 . 441702) (-2429 . 440627) (-2430 . 440504) (-2431 . 440287) - (-2432 . 440157) (-2433 . 440027) (-2434 . 439870) (-2435 . 439767) - (-2436 . 439709) (-2437 . 439651) (-2438 . 439545) (-2439 . 439439) - (-2440 . 438523) (-2441 . 436396) (-2442 . 435582) (-2443 . 433779) - (-2444 . 433711) (-2445 . 433643) (-2446 . 433575) (-2447 . 433507) - (-2448 . 433439) (-2449 . 433361) (-2450 . 433005) (-2451 . 432823) - (-2452 . 432284) (-2453 . 432108) (-2454 . 431887) (-2455 . 431666) - (-2456 . 431445) (-2457 . 431227) (-2458 . 431009) (-2459 . 430791) - (-2460 . 430573) (-2461 . 430355) (-2462 . 430137) (-2463 . 430036) - (-2464 . 429303) (-2465 . 429248) (-2466 . 429193) (-2467 . 429138) - (-2468 . 429083) (-2469 . 428933) (-2470 . 428685) (-2471 . 428524) - (-2472 . 428344) (-2473 . 428057) (-2474 . 427671) (-2475 . 426799) - (-2476 . 426459) (-2477 . 426291) (-2478 . 426069) (-2479 . 425819) - (-2480 . 425471) (-2481 . 424461) (-2482 . 424150) (-2483 . 423938) - (-2484 . 423374) (-2485 . 422861) (-2486 . 421105) (-2487 . 420633) - (-2488 . 420034) (-2489 . 419784) (-2490 . 419650) (-2491 . 419438) - (-2492 . 419362) (-2493 . 419286) (-2494 . 419179) (-2495 . 418997) - (-2496 . 418832) (-2497 . 418654) (-2498 . 418073) (-2499 . 417912) - (-2500 . 417339) (-2501 . 417269) (-2502 . 417194) (-2503 . 417122) - (-2504 . 416984) (-2505 . 416797) (-2506 . 416690) (-2507 . 416583) - (-2508 . 416468) (-2509 . 416353) (-2510 . 416238) (-2511 . 415960) - (-2512 . 415810) (-2513 . 415667) (-2514 . 415594) (-2515 . 415509) - (-2516 . 415436) (-2517 . 415363) (-2518 . 415290) (-2519 . 415147) - (-2520 . 414997) (-2521 . 414823) (-2522 . 414673) (-2523 . 414523) - (-2524 . 414397) (-2525 . 414011) (-2526 . 413727) (-2527 . 413443) - (-2528 . 413034) (-2529 . 412750) (-2530 . 412677) (-2531 . 412530) - (-2532 . 412424) (-2533 . 412350) (-2534 . 412280) (-2535 . 412201) - (-2536 . 412124) (-2537 . 412049) (-2538 . 411900) (-2539 . 411797) - (-2540 . 411739) (-2541 . 411675) (-2542 . 411611) (-2543 . 411514) - (-2544 . 411417) (-2545 . 411257) (-2546 . 411171) (-2547 . 411085) - (-2548 . 411000) (-2549 . 410941) (-2550 . 410882) (-2551 . 410823) - (-2552 . 410764) (-2553 . 410594) (-2554 . 410506) (-2555 . 410409) - (-2556 . 410375) (-2557 . 410344) (-2558 . 410260) (-2559 . 410204) - (-2560 . 410142) (-2561 . 410108) (-2562 . 410074) (-2563 . 410040) - (-2564 . 410006) (-2565 . 409972) (-2566 . 409938) (-2567 . 409904) - (-2568 . 409870) (-2569 . 409836) (-2570 . 409724) (-2571 . 409690) - (-2572 . 409639) (-2573 . 409605) (-2574 . 409508) (-2575 . 409446) - (-2576 . 409355) (-2577 . 409264) (-2578 . 409209) (-2579 . 409157) - (-2580 . 409105) (-2581 . 409053) (-2582 . 409001) (-2583 . 408578) - (-2584 . 408412) (-2585 . 408359) (-2586 . 408290) (-2587 . 408237) - (-2588 . 408007) (-2589 . 407851) (-2590 . 407330) (-2591 . 407189) - (-2592 . 407155) (-2593 . 407100) (-2594 . 406390) (-2595 . 406075) - (-2596 . 405571) (-2597 . 405493) (-2598 . 405441) (-2599 . 405389) - (-2600 . 405205) (-2601 . 405153) (-2602 . 405101) (-2603 . 405025) - (-2604 . 404963) (-2605 . 404745) (-2606 . 404678) (-2607 . 404584) - (-2608 . 404490) (-2609 . 404307) (-2610 . 404225) (-2611 . 404103) - (-2612 . 403957) (-2613 . 403306) (-2614 . 402604) (-2615 . 402500) - (-2616 . 402399) (-2617 . 402298) (-2618 . 402187) (-2619 . 402019) - (-2620 . 401815) (-2621 . 401722) (-2622 . 401645) (-2623 . 401589) - (-2624 . 401519) (-2625 . 401399) (-2626 . 401298) (-2627 . 401201) - (-2628 . 401121) (-2629 . 401041) (-2630 . 400964) (-2631 . 400894) - (-2632 . 400824) (-2633 . 400754) (-2634 . 400684) (-2635 . 400614) - (-2636 . 400544) (-2637 . 400451) (-2638 . 400323) (-2639 . 400081) - (-2640 . 399911) (-2641 . 399791) (-2642 . 399422) (-2643 . 399253) - (-2644 . 399137) (-2645 . 398641) (-2646 . 398260) (-2647 . 398014) - (-2648 . 397922) (-2649 . 397825) (-2650 . 397163) (-2651 . 397050) - (-2652 . 396976) (-2653 . 396885) (-2654 . 396695) (-2655 . 396505) - (-2656 . 396434) (-2657 . 396363) (-2658 . 396282) (-2659 . 396201) - (-2660 . 396076) (-2661 . 395943) (-2662 . 395862) (-2663 . 395788) - (-2664 . 395623) (-2665 . 395466) (-2666 . 395238) (-2667 . 395092) - (-2668 . 394988) (-2669 . 394884) (-2670 . 394803) (-2671 . 394441) - (-2672 . 394360) (-2673 . 394273) (-2674 . 394192) (-2675 . 393996) - (-2676 . 393776) (-2677 . 393589) (-2678 . 393267) (-2679 . 392974) - (-2680 . 392681) (-2681 . 392371) (-2682 . 392054) (-2683 . 391902) - (-2684 . 391714) (-2685 . 391241) (-2686 . 391159) (-2687 . 390943) - (-2688 . 390727) (-2689 . 390468) (-2690 . 390047) (-2691 . 389534) - (-2692 . 389404) (-2693 . 389130) (-2694 . 388951) (-2695 . 388836) - (-2696 . 388732) (-2697 . 388677) (-2698 . 388600) (-2699 . 388530) - (-2700 . 388457) (-2701 . 388402) (-2702 . 388329) (-2703 . 388274) - (-2704 . 387919) (-2705 . 387511) (-2706 . 387358) (-2707 . 387205) - (-2708 . 387124) (-2709 . 386971) (-2710 . 386818) (-2711 . 386683) - (-2712 . 386548) (-2713 . 386413) (-2714 . 386278) (-2715 . 386143) - (-2716 . 386008) (-2717 . 385952) (-2718 . 385799) (-2719 . 385688) - (-2720 . 385577) (-2721 . 385492) (-2722 . 385382) (-2723 . 385279) - (-2724 . 381128) (-2725 . 380680) (-2726 . 380253) (-2727 . 379636) - (-2728 . 379035) (-2729 . 378817) (-2730 . 378639) (-2731 . 378380) - (-2732 . 377969) (-2733 . 377675) (-2734 . 377232) (-2735 . 377054) - (-2736 . 376661) (-2737 . 376268) (-2738 . 376083) (-2739 . 375876) - (-2740 . 375656) (-2741 . 375350) (-2742 . 375151) (-2743 . 374522) - (-2744 . 374365) (-2745 . 373976) (-2746 . 373925) (-2747 . 373876) - (-2748 . 373825) (-2749 . 373777) (-2750 . 373725) (-2751 . 373579) - (-2752 . 373527) (-2753 . 373381) (-2754 . 373329) (-2755 . 373183) - (-2756 . 373132) (-2757 . 372759) (-2758 . 372708) (-2759 . 372659) - (-2760 . 372608) (-2761 . 372560) (-2762 . 372508) (-2763 . 372459) - (-2764 . 372407) (-2765 . 372358) (-2766 . 372306) (-2767 . 372257) - (-2768 . 372191) (-2769 . 372075) (-2770 . 370931) (-2771 . 370530) - (-2772 . 370423) (-2773 . 370181) (-2774 . 370031) (-2775 . 369881) - (-2776 . 369720) (-2777 . 367513) (-2778 . 367252) (-2779 . 367098) - (-2780 . 366952) (-2781 . 366806) (-2782 . 366587) (-2783 . 366455) - (-2784 . 366380) (-2785 . 366305) (-2786 . 366170) (-2787 . 366041) - (-2788 . 365912) (-2789 . 365786) (-2790 . 365660) (-2791 . 365534) - (-2792 . 365408) (-2793 . 365305) (-2794 . 365205) (-2795 . 365111) - (-2796 . 364981) (-2797 . 364830) (-2798 . 364454) (-2799 . 364340) - (-2800 . 364099) (-2801 . 363641) (-2802 . 363331) (-2803 . 362764) - (-2804 . 362195) (-2805 . 361185) (-2806 . 360643) (-2807 . 360330) - (-2808 . 359992) (-2809 . 359661) (-2810 . 359341) (-2811 . 359288) - (-2812 . 359161) (-2813 . 358661) (-2814 . 357518) (-2815 . 357463) - (-2816 . 357408) (-2817 . 357332) (-2818 . 357213) (-2819 . 357138) - (-2820 . 357063) (-2821 . 356985) (-2822 . 356762) (-2823 . 356703) - (-2824 . 356644) (-2825 . 356541) (-2826 . 356438) (-2827 . 356335) - (-2828 . 356232) (-2829 . 356151) (-2830 . 356077) (-2831 . 355863) - (-2832 . 355629) (-2833 . 355595) (-2834 . 355561) (-2835 . 355533) - (-2836 . 355505) (-2837 . 355288) (-2838 . 355010) (-2839 . 354860) - (-2840 . 354730) (-2841 . 354600) (-2842 . 354500) (-2843 . 354323) - (-2844 . 354163) (-2845 . 354063) (-2846 . 353886) (-2847 . 353726) - (-2848 . 353567) (-2849 . 353428) (-2850 . 353278) (-2851 . 353148) - (-2852 . 353018) (-2853 . 352871) (-2854 . 352744) (-2855 . 352641) - (-2856 . 352534) (-2857 . 352437) (-2858 . 352272) (-2859 . 352124) - (-2860 . 351709) (-2861 . 351609) (-2862 . 351506) (-2863 . 351418) - (-2864 . 351338) (-2865 . 351188) (-2866 . 351058) (-2867 . 351006) - (-2868 . 350933) (-2869 . 350858) (-2870 . 350582) (-2871 . 350470) - (-2872 . 350158) (-2873 . 349981) (-2874 . 348383) (-2875 . 347755) - (-2876 . 347696) (-2877 . 347580) (-2878 . 347464) (-2879 . 347320) - (-2880 . 347168) (-2881 . 347009) (-2882 . 346850) (-2883 . 346644) - (-2884 . 346457) (-2885 . 346305) (-2886 . 346150) (-2887 . 345995) - (-2888 . 345843) (-2889 . 345706) (-2890 . 345283) (-2891 . 345157) - (-2892 . 345031) (-2893 . 344905) (-2894 . 344765) (-2895 . 344624) - (-2896 . 344483) (-2897 . 344339) (-2898 . 343591) (-2899 . 343433) - (-2900 . 343247) (-2901 . 343092) (-2902 . 342854) (-2903 . 342609) - (-2904 . 342364) (-2905 . 342154) (-2906 . 342017) (-2907 . 341807) - (-2908 . 341670) (-2909 . 341460) (-2910 . 341323) (-2911 . 341113) - (-2912 . 340810) (-2913 . 340666) (-2914 . 340525) (-2915 . 340302) - (-2916 . 340161) (-2917 . 339939) (-2918 . 339742) (-2919 . 339586) - (-2920 . 339259) (-2921 . 339100) (-2922 . 338941) (-2923 . 338782) - (-2924 . 338611) (-2925 . 338440) (-2926 . 338266) (-2927 . 337914) - (-2928 . 337791) (-2929 . 337629) (-2930 . 337556) (-2931 . 337483) - (-2932 . 337410) (-2933 . 337337) (-2934 . 337264) (-2935 . 337191) - (-2936 . 337068) (-2937 . 336895) (-2938 . 336772) (-2939 . 336686) - (-2940 . 336620) (-2941 . 336554) (-2942 . 336488) (-2943 . 336422) - (-2944 . 336356) (-2945 . 336290) (-2946 . 336224) (-2947 . 336158) - (-2948 . 336092) (-2949 . 336026) (-2950 . 335960) (-2951 . 335894) - (-2952 . 335828) (-2953 . 335762) (-2954 . 335696) (-2955 . 335630) - (-2956 . 335564) (-2957 . 335498) (-2958 . 335432) (-2959 . 335366) - (-2960 . 335300) (-2961 . 335234) (-2962 . 335168) (-2963 . 335102) - (-2964 . 335036) (-2965 . 334970) (-2966 . 334323) (-2967 . 333676) - (-2968 . 333548) (-2969 . 333425) (-2970 . 333302) (-2971 . 333161) - (-2972 . 333007) (-2973 . 332863) (-2974 . 332688) (-2975 . 332078) - (-2976 . 331954) (-2977 . 331830) (-2978 . 331152) (-2979 . 330455) - (-2980 . 330354) (-2981 . 330298) (-2982 . 330242) (-2983 . 330186) - (-2984 . 330130) (-2985 . 330071) (-2986 . 330007) (-2987 . 329899) - (-2988 . 329791) (-2989 . 329683) (-2990 . 329404) (-2991 . 329330) - (-2992 . 329104) (-2993 . 329023) (-2994 . 328945) (-2995 . 328867) - (-2996 . 328789) (-2997 . 328710) (-2998 . 328632) (-2999 . 328539) - (-3000 . 328440) (-3001 . 328372) (-3002 . 328323) (-3003 . 327632) - (-3004 . 326992) (-3005 . 326201) (-3006 . 326120) (-3007 . 326016) - (-3008 . 325925) (-3009 . 325834) (-3010 . 325760) (-3011 . 325686) - (-3012 . 325612) (-3013 . 325557) (-3014 . 325502) (-3015 . 325436) - (-3016 . 325370) (-3017 . 325308) (-3018 . 325033) (-3019 . 324541) - (-3020 . 324083) (-3021 . 323830) (-3022 . 323642) (-3023 . 323301) - (-3024 . 323005) (-3025 . 322837) (-3026 . 322706) (-3027 . 322566) - (-3028 . 322411) (-3029 . 322242) (-3030 . 320856) (-3031 . 320723) - (-3032 . 320582) (-3033 . 320353) (-3034 . 320294) (-3035 . 320238) - (-3036 . 320182) (-3037 . 319917) (-3038 . 319705) (-3039 . 319566) - (-3040 . 319459) (-3041 . 319342) (-3042 . 319276) (-3043 . 319203) - (-3044 . 319089) (-3045 . 318836) (-3046 . 318736) (-3047 . 318542) - (-3048 . 318234) (-3049 . 317768) (-3050 . 317663) (-3051 . 317557) - (-3052 . 317408) (-3053 . 317268) (-3054 . 316856) (-3055 . 316612) - (-3056 . 315954) (-3057 . 315801) (-3058 . 315687) (-3059 . 315577) - (-3060 . 314757) (-3061 . 314500) (-3062 . 314306) (-3063 . 313280) - (-3064 . 312832) (-3065 . 311443) (-3066 . 310592) (-3067 . 310543) - (-3068 . 310494) (-3069 . 310445) (-3070 . 310378) (-3071 . 310303) - (-3072 . 310113) (-3073 . 310041) (-3074 . 309966) (-3075 . 309894) - (-3076 . 309777) (-3077 . 309726) (-3078 . 309647) (-3079 . 309568) - (-3080 . 309489) (-3081 . 309438) (-3082 . 309196) (-3083 . 308894) - (-3084 . 308812) (-3085 . 308730) (-3086 . 308669) (-3087 . 308280) - (-3088 . 307408) (-3089 . 306835) (-3090 . 305600) (-3091 . 304793) - (-3092 . 304543) (-3093 . 304293) (-3094 . 303868) (-3095 . 303624) - (-3096 . 303380) (-3097 . 303136) (-3098 . 302892) (-3099 . 302648) - (-3100 . 302404) (-3101 . 302162) (-3102 . 301920) (-3103 . 301678) - (-3104 . 301436) (-3105 . 300858) (-3106 . 300742) (-3107 . 299900) - (-3108 . 299869) (-3109 . 299524) (-3110 . 299298) (-3111 . 299199) - (-3112 . 299100) (-3113 . 297334) (-3114 . 297222) (-3115 . 296174) - (-3116 . 296082) (-3117 . 295160) (-3118 . 294827) (-3119 . 294494) - (-3120 . 294391) (-3121 . 294280) (-3122 . 294169) (-3123 . 294058) - (-3124 . 293947) (-3125 . 292860) (-3126 . 292740) (-3127 . 292605) - (-3128 . 292473) (-3129 . 292341) (-3130 . 292047) (-3131 . 291753) - (-3132 . 291408) (-3133 . 291182) (-3134 . 290956) (-3135 . 290845) - (-3136 . 290734) (-3137 . 289272) (-3138 . 287568) (-3139 . 287259) - (-3140 . 287107) (-3141 . 286584) (-3142 . 286255) (-3143 . 286062) - (-3144 . 285869) (-3145 . 285676) (-3146 . 285483) (-3147 . 285370) - (-3148 . 285247) (-3149 . 285133) (-3150 . 285019) (-3151 . 284926) - (-3152 . 284833) (-3153 . 284723) (-3154 . 284522) (-3155 . 283378) - (-3156 . 283285) (-3157 . 283171) (-3158 . 283078) (-3159 . 282831) - (-3160 . 282720) (-3161 . 282506) (-3162 . 281975) (-3163 . 281857) - (-3164 . 281560) (-3165 . 280832) (-3166 . 280256) (-3167 . 279778) - (-3168 . 279534) (-3169 . 279290) (-3170 . 278947) (-3171 . 278341) - (-3172 . 277898) (-3173 . 277743) (-3174 . 277599) (-3175 . 277279) - (-3176 . 277124) (-3177 . 276984) (-3178 . 276844) (-3179 . 276704) - (-3180 . 276429) (-3181 . 276210) (-3182 . 275691) (-3183 . 275479) - (-3184 . 275267) (-3185 . 274887) (-3186 . 274713) (-3187 . 274504) - (-3188 . 274312) (-3189 . 274139) (-3190 . 273003) (-3191 . 272638) - (-3192 . 272438) (-3193 . 272238) (-3194 . 271402) (-3195 . 271374) - (-3196 . 271306) (-3197 . 271236) (-3198 . 271072) (-3199 . 271044) - (-3200 . 271016) (-3201 . 270962) (-3202 . 270812) (-3203 . 270753) - (-3204 . 270060) (-3205 . 268675) (-3206 . 268615) (-3207 . 268297) - (-3208 . 268226) (-3209 . 268170) (-3210 . 268114) (-3211 . 268058) - (-3212 . 268002) (-3213 . 267928) (-3214 . 267568) (-3215 . 267494) - (-3216 . 267434) (-3217 . 267316) (-3218 . 266373) (-3219 . 266246) - (-3220 . 266033) (-3221 . 265959) (-3222 . 265905) (-3223 . 265851) - (-3224 . 265742) (-3225 . 265432) (-3226 . 265324) (-3227 . 265221) - (-3228 . 265060) (-3229 . 264959) (-3230 . 264861) (-3231 . 264723) - (-3232 . 264585) (-3233 . 264447) (-3234 . 264185) (-3235 . 263976) - (-3236 . 263838) (-3237 . 263547) (-3238 . 263395) (-3239 . 263120) - (-3240 . 262900) (-3241 . 262748) (-3242 . 262596) (-3243 . 262444) - (-3244 . 262292) (-3245 . 262140) (-3246 . 261933) (-3247 . 261546) - (-3248 . 261215) (-3249 . 260876) (-3250 . 260529) (-3251 . 260190) - (-3252 . 259851) (-3253 . 259470) (-3254 . 259089) (-3255 . 258708) - (-3256 . 258343) (-3257 . 257625) (-3258 . 257278) (-3259 . 256833) - (-3260 . 256408) (-3261 . 255797) (-3262 . 255205) (-3263 . 254818) - (-3264 . 254487) (-3265 . 254100) (-3266 . 253769) (-3267 . 253549) - (-3268 . 253028) (-3269 . 252815) (-3270 . 252602) (-3271 . 252389) - (-3272 . 252211) (-3273 . 251998) (-3274 . 251820) (-3275 . 251438) - (-3276 . 251260) (-3277 . 251050) (-3278 . 250960) (-3279 . 250870) - (-3280 . 250779) (-3281 . 250667) (-3282 . 250577) (-3283 . 250470) - (-3284 . 250281) (-3285 . 250225) (-3286 . 250144) (-3287 . 250063) - (-3288 . 249982) (-3289 . 249847) (-3290 . 249712) (-3291 . 249588) - (-3292 . 249467) (-3293 . 249349) (-3294 . 249213) (-3295 . 249080) - (-3296 . 248961) (-3297 . 248754) (-3298 . 248521) (-3299 . 248425) - (-3300 . 248284) (-3301 . 248227) (-3302 . 248170) (-3303 . 248110) - (-3304 . 247715) (-3305 . 247193) (-3306 . 246916) (-3307 . 246496) - (-3308 . 246384) (-3309 . 245946) (-3310 . 245716) (-3311 . 245513) - (-3312 . 245331) (-3313 . 245201) (-3314 . 244995) (-3315 . 244788) - (-3316 . 244598) (-3317 . 244033) (-3318 . 243777) (-3319 . 243486) - (-3320 . 243192) (-3321 . 242895) (-3322 . 242595) (-3323 . 242465) - (-3324 . 242332) (-3325 . 242196) (-3326 . 242057) (-3327 . 240840) - (-3328 . 240532) (-3329 . 240168) (-3330 . 240071) (-3331 . 239831) - (-3332 . 239536) (-3333 . 239241) (-3334 . 238982) (-3335 . 238808) - (-3336 . 238730) (-3337 . 238643) (-3338 . 238543) (-3339 . 238449) - (-3340 . 238368) (-3341 . 238298) (-3342 . 237507) (-3343 . 237437) - (-3344 . 237109) (-3345 . 237039) (-3346 . 236711) (-3347 . 236641) - (-3348 . 236196) (-3349 . 236126) (-3350 . 236022) (-3351 . 235948) - (-3352 . 235874) (-3353 . 235803) (-3354 . 235461) (-3355 . 235333) - (-3356 . 235256) (-3357 . 235025) (-3358 . 234882) (-3359 . 234739) - (-3360 . 234400) (-3361 . 234070) (-3362 . 233857) (-3363 . 233602) - (-3364 . 233252) (-3365 . 233027) (-3366 . 232802) (-3367 . 232577) - (-3368 . 232352) (-3369 . 232139) (-3370 . 231926) (-3371 . 231776) - (-3372 . 231595) (-3373 . 231490) (-3374 . 231368) (-3375 . 231260) - (-3376 . 231152) (-3377 . 230827) (-3378 . 230563) (-3379 . 230252) - (-3380 . 229950) (-3381 . 229641) (-3382 . 228912) (-3383 . 228323) - (-3384 . 228148) (-3385 . 228004) (-3386 . 227849) (-3387 . 227726) - (-3388 . 227621) (-3389 . 227506) (-3390 . 227411) (-3391 . 226930) - (-3392 . 226820) (-3393 . 226710) (-3394 . 226600) (-3395 . 225528) - (-3396 . 225017) (-3397 . 224950) (-3398 . 224877) (-3399 . 224004) - (-3400 . 223931) (-3401 . 223876) (-3402 . 223821) (-3403 . 223789) - (-3404 . 223703) (-3405 . 223671) (-3406 . 223585) (-3407 . 223165) - (-3408 . 222745) (-3409 . 222193) (-3410 . 221089) (-3411 . 219379) - (-3412 . 217829) (-3413 . 217037) (-3414 . 216537) (-3415 . 216051) - (-3416 . 215649) (-3417 . 214999) (-3418 . 214924) (-3419 . 214833) - (-3420 . 214762) (-3421 . 214691) (-3422 . 214635) (-3423 . 214515) - (-3424 . 214461) (-3425 . 214400) (-3426 . 214346) (-3427 . 214243) - (-3428 . 213803) (-3429 . 213363) (-3430 . 212923) (-3431 . 212401) - (-3432 . 212240) (-3433 . 212079) (-3434 . 211768) (-3435 . 211682) - (-3436 . 211592) (-3437 . 211234) (-3438 . 211117) (-3439 . 211036) - (-3440 . 210878) (-3441 . 210765) (-3442 . 210690) (-3443 . 209844) - (-3444 . 208662) (-3445 . 208563) (-3446 . 208464) (-3447 . 208135) - (-3448 . 208057) (-3449 . 207982) (-3450 . 207876) (-3451 . 207720) - (-3452 . 207613) (-3453 . 207478) (-3454 . 207343) (-3455 . 207221) - (-3456 . 207126) (-3457 . 206978) (-3458 . 206883) (-3459 . 206728) - (-3460 . 206573) (-3461 . 206021) (-3462 . 205469) (-3463 . 204854) - (-3464 . 204302) (-3465 . 203750) (-3466 . 203198) (-3467 . 202645) - (-3468 . 202092) (-3469 . 201539) (-3470 . 200986) (-3471 . 200433) - (-3472 . 199880) (-3473 . 199328) (-3474 . 198776) (-3475 . 198224) - (-3476 . 197672) (-3477 . 197120) (-3478 . 196568) (-3479 . 196464) - (-3480 . 195879) (-3481 . 195774) (-3482 . 195699) (-3483 . 195557) - (-3484 . 195465) (-3485 . 195374) (-3486 . 195282) (-3487 . 195187) - (-3488 . 195082) (-3489 . 194959) (-3490 . 194837) (-3491 . 194473) - (-3492 . 194351) (-3493 . 194253) (-3494 . 193892) (-3495 . 193363) - (-3496 . 193288) (-3497 . 193213) (-3498 . 193121) (-3499 . 192940) - (-3500 . 192845) (-3501 . 192770) (-3502 . 192679) (-3503 . 192588) - (-3504 . 192429) (-3505 . 191880) (-3506 . 191331) (-3507 . 188624) - (-3508 . 187218) (-3509 . 186658) (-3510 . 186543) (-3511 . 186171) - (-3512 . 186108) (-3513 . 186045) (-3514 . 185982) (-3515 . 185704) - (-3516 . 185437) (-3517 . 185385) (-3518 . 184794) (-3519 . 184743) - (-3520 . 184555) (-3521 . 184482) (-3522 . 184402) (-3523 . 184289) - (-3524 . 184099) (-3525 . 183735) (-3526 . 183463) (-3527 . 183412) - (-3528 . 183361) (-3529 . 183291) (-3530 . 183172) (-3531 . 183143) - (-3532 . 183039) (-3533 . 182917) (-3534 . 182863) (-3535 . 182686) - (-3536 . 182625) (-3537 . 182444) (-3538 . 182383) (-3539 . 182311) - (-3540 . 181836) (-3541 . 181462) (-3542 . 177889) (-3543 . 177837) - (-3544 . 177709) (-3545 . 177559) (-3546 . 177507) (-3547 . 177366) - (-3548 . 175275) (-3549 . 167632) (-3550 . 167481) (-3551 . 167411) - (-3552 . 167360) (-3553 . 167310) (-3554 . 167259) (-3555 . 167208) - (-3556 . 167012) (-3557 . 166870) (-3558 . 166756) (-3559 . 166635) - (-3560 . 166517) (-3561 . 166405) (-3562 . 166287) (-3563 . 166182) - (-3564 . 166101) (-3565 . 165997) (-3566 . 165063) (-3567 . 164843) - (-3568 . 164606) (-3569 . 164524) (-3570 . 164180) (-3571 . 163041) - (-3572 . 162967) (-3573 . 162872) (-3574 . 162798) (-3575 . 162594) - (-3576 . 162503) (-3577 . 162387) (-3578 . 162274) (-3579 . 162183) - (-3580 . 162092) (-3581 . 162003) (-3582 . 161914) (-3583 . 161825) - (-3584 . 161737) (-3585 . 161249) (-3586 . 161185) (-3587 . 161121) - (-3588 . 161057) (-3589 . 160996) (-3590 . 160256) (-3591 . 160195) - (-3592 . 160134) (-3593 . 159508) (-3594 . 159456) (-3595 . 159328) - (-3596 . 159264) (-3597 . 159210) (-3598 . 159101) (-3599 . 157804) - (-3600 . 157723) (-3601 . 157634) (-3602 . 157576) (-3603 . 157436) - (-3604 . 157351) (-3605 . 157277) (-3606 . 157192) (-3607 . 157135) - (-3608 . 156919) (-3609 . 156780) (-3610 . 156173) (-3611 . 155619) - (-3612 . 155065) (-3613 . 154511) (-3614 . 153904) (-3615 . 153350) - (-3616 . 152790) (-3617 . 152230) (-3618 . 151968) (-3619 . 151529) - (-3620 . 151196) (-3621 . 150857) (-3622 . 150552) (-3623 . 150419) - (-3624 . 150286) (-3625 . 149898) (-3626 . 149805) (-3627 . 149712) - (-3628 . 149619) (-3629 . 149526) (-3630 . 149433) (-3631 . 149340) - (-3632 . 149247) (-3633 . 149154) (-3634 . 149061) (-3635 . 148968) - (-3636 . 148875) (-3637 . 148782) (-3638 . 148689) (-3639 . 148596) - (-3640 . 148503) (-3641 . 148410) (-3642 . 148317) (-3643 . 148224) - (-3644 . 148131) (-3645 . 148038) (-3646 . 147945) (-3647 . 147852) - (-3648 . 147759) (-3649 . 147666) (-3650 . 147573) (-3651 . 147388) - (-3652 . 147078) (-3653 . 145520) (-3654 . 145366) (-3655 . 145229) - (-3656 . 145087) (-3657 . 144885) (-3658 . 142958) (-3659 . 142831) - (-3660 . 142707) (-3661 . 142580) (-3662 . 142359) (-3663 . 142138) - (-3664 . 142011) (-3665 . 141810) (-3666 . 141634) (-3667 . 141117) - (-3668 . 140600) (-3669 . 140323) (-3670 . 139914) (-3671 . 139397) - (-3672 . 139213) (-3673 . 139071) (-3674 . 138576) (-3675 . 137945) - (-3676 . 137889) (-3677 . 137795) (-3678 . 137676) (-3679 . 137606) - (-3680 . 137533) (-3681 . 137303) (-3682 . 136684) (-3683 . 136254) - (-3684 . 136172) (-3685 . 136030) (-3686 . 135556) (-3687 . 135434) - (-3688 . 135312) (-3689 . 135172) (-3690 . 134985) (-3691 . 134869) - (-3692 . 134589) (-3693 . 134521) (-3694 . 134323) (-3695 . 134143) - (-3696 . 133988) (-3697 . 133881) (-3698 . 133830) (-3699 . 133453) - (-3700 . 132926) (-3701 . 132705) (-3702 . 132484) (-3703 . 132245) - (-3704 . 132155) (-3705 . 130413) (-3706 . 129831) (-3707 . 129753) - (-3708 . 124293) (-3709 . 123503) (-3710 . 123126) (-3711 . 123055) - (-3712 . 122794) (-3713 . 122620) (-3714 . 122135) (-3715 . 121713) - (-3716 . 121273) (-3717 . 120410) (-3718 . 120286) (-3719 . 120159) - (-3720 . 120050) (-3721 . 119898) (-3722 . 119784) (-3723 . 119645) - (-3724 . 119564) (-3725 . 119483) (-3726 . 119379) (-3727 . 118961) - (-3728 . 118540) (-3729 . 118466) (-3730 . 118203) (-3731 . 117939) - (-3732 . 117560) (-3733 . 116861) (-3734 . 115818) (-3735 . 115759) - (-3736 . 115685) (-3737 . 115611) (-3738 . 115489) (-3739 . 115239) - (-3740 . 115153) (-3741 . 115078) (-3742 . 115003) (-3743 . 114908) - (-3744 . 111133) (-3745 . 109963) (-3746 . 109303) (-3747 . 109119) - (-3748 . 106914) (-3749 . 106589) (-3750 . 106107) (-3751 . 105666) - (-3752 . 105431) (-3753 . 105186) (-3754 . 105096) (-3755 . 103661) - (-3756 . 103583) (-3757 . 103478) (-3758 . 102002) (-3759 . 101597) - (-3760 . 101196) (-3761 . 101094) (-3762 . 101012) (-3763 . 100854) - (-3764 . 99620) (-3765 . 99538) (-3766 . 99459) (-3767 . 99104) - (-3768 . 99047) (-3769 . 98975) (-3770 . 98918) (-3771 . 98861) - (-3772 . 98731) (-3773 . 98529) (-3774 . 98213) (-3775 . 97792) - (-3776 . 93982) (-3777 . 93380) (-3778 . 92913) (-3779 . 92700) - (-3780 . 92487) (-3781 . 92321) (-3782 . 92108) (-3783 . 91942) - (-3784 . 91776) (-3785 . 91610) (-3786 . 91444) (-3787 . 91174) - (-3788 . 85766) (** . 82813) (-3790 . 82397) (-3791 . 82156) (-3792 . 82100) - (-3793 . 81608) (-3794 . 78800) (-3795 . 78650) (-3796 . 78486) - (-3797 . 78322) (-3798 . 78226) (-3799 . 78108) (-3800 . 77984) - (-3801 . 77841) (-3802 . 77670) (-3803 . 77544) (-3804 . 77400) - (-3805 . 77248) (-3806 . 77089) (-3807 . 76581) (-3808 . 76492) - (-3809 . 75827) (-3810 . 75635) (-3811 . 75540) (-3812 . 75232) - (-3813 . 74060) (-3814 . 73854) (-3815 . 72679) (-3816 . 72604) - (-3817 . 71423) (-3818 . 67842) (-3819 . 67478) (-3820 . 67201) - (-3821 . 67109) (-3822 . 67016) (-3823 . 66739) (-3824 . 66646) - (-3825 . 66553) (-3826 . 66460) (-3827 . 66076) (-3828 . 66005) - (-3829 . 65913) (-3830 . 65755) (-3831 . 65401) (-3832 . 65243) - (-3833 . 65135) (-3834 . 65106) (-3835 . 65039) (-3836 . 64885) - (-3837 . 64727) (-3838 . 64333) (-3839 . 64258) (-3840 . 64152) - (-3841 . 64080) (-3842 . 64002) (-3843 . 63929) (-3844 . 63856) - (-3845 . 63783) (-3846 . 63711) (-3847 . 63639) (-3848 . 63566) - (-3849 . 63325) (-3850 . 62988) (-3851 . 62840) (-3852 . 62767) - (-3853 . 62694) (-3854 . 62621) (-3855 . 62367) (-3856 . 62223) - (-3857 . 60887) (-3858 . 60693) (-3859 . 60422) (-3860 . 60274) - (-3861 . 60126) (-3862 . 59886) (-3863 . 59692) (-3864 . 59424) - (-3865 . 59228) (-3866 . 59199) (-3867 . 59098) (-3868 . 58997) - (-3869 . 58896) (-3870 . 58795) (-3871 . 58694) (-3872 . 58593) - (-3873 . 58492) (-3874 . 58391) (-3875 . 58290) (-3876 . 58189) - (-3877 . 58074) (-3878 . 57959) (-3879 . 57908) (-3880 . 57791) - (-3881 . 57733) (-3882 . 57632) (-3883 . 57531) (-3884 . 57430) - (-3885 . 57314) (-3886 . 57285) (-3887 . 56554) (-3888 . 56429) - (-3889 . 56304) (-3890 . 56164) (-3891 . 56046) (-3892 . 55921) - (-3893 . 55766) (-3894 . 54783) (-3895 . 53924) (-3896 . 53870) - (-3897 . 53816) (-3898 . 53608) (-3899 . 53236) (-3900 . 52825) - (-3901 . 52467) (-3902 . 52109) (-3903 . 51957) (-3904 . 51655) - (-3905 . 51499) (-3906 . 51173) (-3907 . 51103) (-3908 . 51033) - (-3909 . 50824) (-3910 . 50215) (-3911 . 50011) (-3912 . 49638) - (-3913 . 49129) (-3914 . 48864) (-3915 . 48383) (-3916 . 47902) - (-3917 . 47777) (-3918 . 46677) (-3919 . 45601) (-3920 . 45030) - (-3921 . 44812) (-3922 . 36489) (-3923 . 36304) (-3924 . 34221) - (-3925 . 32053) (-3926 . 31907) (-3927 . 31729) (-3928 . 31322) - (-3929 . 31027) (-3930 . 30679) (-3931 . 30513) (-3932 . 30347) - (-3933 . 29934) (-3934 . 16069) (-3935 . 14962) (* . 10915) (-3937 . 10661) - (-3938 . 10477) (-3939 . 9522) (-3940 . 9469) (-3941 . 9409) (-3942 . 9140) - (-3943 . 8513) (-3944 . 7240) (-3945 . 5996) (-3946 . 5127) (-3947 . 3864) - (-3948 . 420) (-3949 . 306) (-3950 . 173) (-3951 . 30))
\ No newline at end of file + (-12 (-5 *3 (-1080)) (-4 *4 (-490)) (-5 *2 (-579 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-490)) (-5 *2 (-579 *1)) (-4 *1 (-29 *3))))) +((-1204 . 629735) (-1205 . 629433) (-1206 . 629037) (-1207 . 628917) + (-1208 . 628815) (-1209 . 628702) (-1210 . 628586) (-1211 . 628533) + (-1212 . 628396) (-1213 . 628321) (-1214 . 628165) (-1215 . 627937) + (-1216 . 626973) (-1217 . 626726) (-1218 . 626442) (-1219 . 626158) + (-1220 . 625874) (-1221 . 625555) (-1222 . 625463) (-1223 . 625371) + (-1224 . 625279) (-1225 . 625187) (-1226 . 625095) (-1227 . 625003) + (-1228 . 624908) (-1229 . 624813) (-1230 . 624721) (-1231 . 624629) + (-1232 . 624537) (-1233 . 624445) (-1234 . 624353) (-1235 . 624251) + (-1236 . 624149) (-1237 . 624047) (-1238 . 623955) (-1239 . 623904) + (-1240 . 623852) (-1241 . 623782) (-1242 . 623362) (-1243 . 623168) + (-1244 . 623141) (-1245 . 623018) (-1246 . 622895) (-1247 . 622751) + (-1248 . 622581) (-1249 . 622457) (-1250 . 622218) (-1251 . 622145) + (-1252 . 621920) (-1253 . 621674) (-1254 . 621621) (-1255 . 621443) + (-1256 . 621274) (-1257 . 621198) (-1258 . 621125) (-1259 . 620972) + (-1260 . 620819) (-1261 . 620635) (-1262 . 620454) (-1263 . 620399) + (-1264 . 620344) (-1265 . 620271) (-1266 . 620195) (-1267 . 620127) + (-1268 . 619984) (-1269 . 619877) (-1270 . 619809) (-1271 . 619739) + (-1272 . 619669) (-1273 . 619619) (-1274 . 619569) (-1275 . 619519) + (-1276 . 619398) (-1277 . 619082) (-1278 . 619013) (-1279 . 618934) + (-1280 . 618815) (-1281 . 618735) (-1282 . 618655) (-1283 . 618502) + (-1284 . 618353) (-1285 . 618277) (-1286 . 618220) (-1287 . 618148) + (-1288 . 618085) (-1289 . 618022) (-1290 . 617961) (-1291 . 617889) + (-1292 . 617775) (-1293 . 617724) (-1294 . 617669) (-1295 . 617617) + (-1296 . 617565) (-1297 . 617537) (-1298 . 617509) (-1299 . 617481) + (-1300 . 617437) (-1301 . 617366) (-1302 . 617315) (-1303 . 617267) + (-1304 . 617216) (-1305 . 617164) (-1306 . 617048) (-1307 . 616932) + (-1308 . 616840) (-1309 . 616748) (-1310 . 616625) (-1311 . 616559) + (-1312 . 616493) (-1313 . 616434) (-1314 . 616406) (-1315 . 616378) + (-1316 . 616350) (-1317 . 616322) (-1318 . 616212) (-1319 . 616161) + (-1320 . 616110) (-1321 . 616059) (-1322 . 616008) (-1323 . 615957) + (-1324 . 615906) (-1325 . 615878) (-1326 . 615850) (-1327 . 615822) + (-1328 . 615794) (-1329 . 615766) (-1330 . 615738) (-1331 . 615710) + (-1332 . 615682) (-1333 . 615654) (-1334 . 615551) (-1335 . 615499) + (-1336 . 615333) (-1337 . 615149) (-1338 . 614938) (-1339 . 614823) + (-1340 . 614590) (-1341 . 614491) (-1342 . 614398) (-1343 . 614283) + (-1344 . 613889) (-1345 . 613673) (-1346 . 613624) (-1347 . 613596) + (-1348 . 613520) (-1349 . 613421) (-1350 . 613322) (-1351 . 613223) + (-1352 . 613124) (-1353 . 613025) (-1354 . 612926) (-1355 . 612768) + (-1356 . 612692) (-1357 . 612525) (-1358 . 612467) (-1359 . 612409) + (-1360 . 612102) (-1361 . 611848) (-1362 . 611764) (-1363 . 611632) + (-1364 . 611574) (-1365 . 611522) (-1366 . 611440) (-1367 . 611365) + (-1368 . 611294) (-1369 . 611240) (-1370 . 611189) (-1371 . 611115) + (-1372 . 611041) (-1373 . 610960) (-1374 . 610879) (-1375 . 610824) + (-1376 . 610750) (-1377 . 610676) (-1378 . 610602) (-1379 . 610525) + (-1380 . 610471) (-1381 . 610413) (-1382 . 610314) (-1383 . 610215) + (-1384 . 610116) (-1385 . 610017) (-1386 . 609918) (-1387 . 609819) + (-1388 . 609720) (-1389 . 609606) (-1390 . 609492) (-1391 . 609378) + (-1392 . 609264) (-1393 . 609150) (-1394 . 609036) (-1395 . 608919) + (-1396 . 608843) (-1397 . 608767) (-1398 . 608380) (-1399 . 608035) + (-1400 . 607933) (-1401 . 607672) (-1402 . 607570) (-1403 . 607365) + (-1404 . 607252) (-1405 . 607150) (-1406 . 606993) (-1407 . 606904) + (-1408 . 606810) (-1409 . 606730) (-1410 . 606656) (-1411 . 606578) + (-1412 . 606519) (-1413 . 606461) (-1414 . 606359) (-7 . 606331) (-8 . 606303) + (-9 . 606275) (-1418 . 606156) (-1419 . 606074) (-1420 . 605992) + (-1421 . 605910) (-1422 . 605828) (-1423 . 605746) (-1424 . 605652) + (-1425 . 605582) (-1426 . 605512) (-1427 . 605421) (-1428 . 605327) + (-1429 . 605245) (-1430 . 605163) (-1431 . 605065) (-1432 . 604905) + (-1433 . 604707) (-1434 . 604571) (-1435 . 604471) (-1436 . 604371) + (-1437 . 604278) (-1438 . 604219) (-1439 . 603886) (-1440 . 603786) + (-1441 . 603668) (-1442 . 603456) (-1443 . 603277) (-1444 . 603119) + (-1445 . 602916) (-1446 . 602498) (-1447 . 602447) (-1448 . 602338) + (-1449 . 602223) (-1450 . 602154) (-1451 . 602085) (-1452 . 602016) + (-1453 . 601950) (-1454 . 601825) (-1455 . 601608) (-1456 . 601530) + (-1457 . 601480) (-1458 . 601409) (-1459 . 601266) (-1460 . 601125) + (-1461 . 601044) (-1462 . 600963) (-1463 . 600907) (-1464 . 600851) + (-1465 . 600778) (-1466 . 600638) (-1467 . 600585) (-1468 . 600526) + (-1469 . 600467) (-1470 . 600312) (-1471 . 600260) (-1472 . 600143) + (-1473 . 600026) (-1474 . 599909) (-1475 . 599778) (-1476 . 599499) + (-1477 . 599364) (-1478 . 599308) (-1479 . 599252) (-1480 . 599193) + (-1481 . 599134) (-1482 . 599078) (-1483 . 599022) (-1484 . 598825) + (-1485 . 596499) (-1486 . 596372) (-1487 . 596228) (-1488 . 596101) + (-1489 . 596049) (-1490 . 595997) (-1491 . 595945) (-1492 . 591931) + (-1493 . 591837) (-1494 . 591700) (-1495 . 591491) (-1496 . 591389) + (-1497 . 591287) (-1498 . 590381) (-1499 . 590305) (-1500 . 590176) + (-1501 . 590051) (-1502 . 589974) (-1503 . 589897) (-1504 . 589770) + (-1505 . 589643) (-1506 . 589477) (-1507 . 589350) (-1508 . 589223) + (-1509 . 589006) (-1510 . 588572) (-1511 . 588208) (-1512 . 588156) + (-1513 . 588097) (-1514 . 588009) (-1515 . 587921) (-1516 . 587830) + (-1517 . 587739) (-1518 . 587648) (-1519 . 587557) (-1520 . 587466) + (-1521 . 587375) (-1522 . 587284) (-1523 . 587193) (-1524 . 587102) + (-1525 . 587011) (-1526 . 586920) (-1527 . 586829) (-1528 . 586738) + (-1529 . 586647) (-1530 . 586556) (-1531 . 586465) (-1532 . 586374) + (-1533 . 586283) (-1534 . 586192) (-1535 . 586101) (-1536 . 586010) + (-1537 . 585919) (-1538 . 585828) (-1539 . 585737) (-1540 . 585646) + (-1541 . 585555) (-1542 . 585393) (-1543 . 585285) (-1544 . 585042) + (-1545 . 584755) (-1546 . 584560) (-1547 . 584404) (-1548 . 584244) + (-1549 . 584193) (-1550 . 584131) (-1551 . 584080) (-1552 . 584017) + (-1553 . 583964) (-1554 . 583912) (-1555 . 583860) (-1556 . 583808) + (-1557 . 583718) (-1558 . 583531) (-1559 . 583377) (-1560 . 583297) + (-1561 . 583217) (-1562 . 583137) (-1563 . 583007) (-1564 . 582775) + (-1565 . 582747) (-1566 . 582719) (-1567 . 582691) (-1568 . 582611) + (-1569 . 582534) (-1570 . 582457) (-1571 . 582376) (-1572 . 582317) + (-1573 . 582159) (-1574 . 581966) (-1575 . 581481) (-1576 . 581239) + (-1577 . 580977) (-1578 . 580876) (-1579 . 580795) (-1580 . 580714) + (-1581 . 580644) (-1582 . 580574) (-1583 . 580416) (-1584 . 580112) + (-1585 . 579884) (-1586 . 579762) (-1587 . 579704) (-1588 . 579642) + (-1589 . 579580) (-1590 . 579515) (-1591 . 579453) (-1592 . 579174) + (-1593 . 579106) (-1594 . 578896) (-1595 . 578844) (-1596 . 578790) + (-1597 . 578699) (-1598 . 578612) (-1599 . 576865) (-1600 . 576786) + (-1601 . 576045) (-1602 . 575928) (-1603 . 575722) (-1604 . 575561) + (-1605 . 575400) (-1606 . 575240) (-1607 . 575102) (-1608 . 575008) + (-1609 . 574910) (-1610 . 574816) (-1611 . 574702) (-1612 . 574620) + (-1613 . 574523) (-1614 . 574327) (-1615 . 574236) (-1616 . 574142) + (-1617 . 574075) (-1618 . 574006) (-1619 . 573954) (-1620 . 573895) + (-1621 . 573821) (-1622 . 573769) (-1623 . 573612) (-1624 . 573455) + (-1625 . 573303) (-1626 . 572545) (-1627 . 572234) (-1628 . 571882) + (-1629 . 571665) (-1630 . 571402) (-1631 . 571027) (-1632 . 570843) + (-1633 . 570709) (-1634 . 570543) (-1635 . 570377) (-1636 . 570243) + (-1637 . 570109) (-1638 . 569975) (-1639 . 569841) (-1640 . 569710) + (-1641 . 569579) (-1642 . 569448) (-1643 . 569068) (-1644 . 568942) + (-1645 . 568814) (-1646 . 568564) (-1647 . 568441) (-1648 . 568191) + (-1649 . 568068) (-1650 . 567818) (-1651 . 567695) (-1652 . 567412) + (-1653 . 567141) (-1654 . 566868) (-1655 . 566570) (-1656 . 566468) + (-1657 . 566323) (-1658 . 566182) (-1659 . 566031) (-1660 . 565870) + (-1661 . 565782) (-1662 . 565754) (-1663 . 565672) (-1664 . 565575) + (-1665 . 565107) (-1666 . 564756) (-1667 . 564323) (-1668 . 564184) + (-1669 . 564114) (-1670 . 564044) (-1671 . 563974) (-1672 . 563883) + (-1673 . 563792) (-1674 . 563701) (-1675 . 563610) (-1676 . 563519) + (-1677 . 563433) (-1678 . 563347) (-1679 . 563261) (-1680 . 563175) + (-1681 . 563089) (-1682 . 563015) (-1683 . 562910) (-1684 . 562684) + (-1685 . 562606) (-1686 . 562531) (-1687 . 562438) (-1688 . 562334) + (-1689 . 562238) (-1690 . 562069) (-1691 . 561992) (-1692 . 561915) + (-1693 . 561824) (-1694 . 561733) (-1695 . 561533) (-1696 . 561380) + (-1697 . 561227) (-1698 . 561074) (-1699 . 560921) (-1700 . 560768) + (-1701 . 560615) (-1702 . 560549) (-1703 . 560396) (-1704 . 560243) + (-1705 . 560090) (-1706 . 559937) (-1707 . 559784) (-1708 . 559631) + (-1709 . 559478) (-1710 . 559325) (-1711 . 559251) (-1712 . 559177) + (-1713 . 559122) (-1714 . 559067) (-1715 . 559012) (-1716 . 558957) + (-1717 . 558886) (-1718 . 558682) (-1719 . 558581) (-1720 . 558393) + (-1721 . 558300) (-1722 . 558164) (-1723 . 558028) (-1724 . 557892) + (-1725 . 557824) (-1726 . 557708) (-1727 . 557592) (-1728 . 557476) + (-1729 . 557423) (-1730 . 557338) (-1731 . 557253) (-1732 . 556945) + (-1733 . 556890) (-1734 . 556238) (-1735 . 555923) (-1736 . 555639) + (-1737 . 555521) (-1738 . 555402) (-1739 . 555343) (-1740 . 555284) + (-1741 . 555233) (-1742 . 555182) (-1743 . 555131) (-1744 . 555078) + (-1745 . 555025) (-1746 . 554966) (-1747 . 554853) (-1748 . 554740) + (-1749 . 554573) (-1750 . 554481) (-1751 . 554368) (-1752 . 554284) + (-1753 . 554169) (-1754 . 554078) (-1755 . 553987) (-1756 . 553866) + (-1757 . 553679) (-1758 . 553627) (-1759 . 553572) (-1760 . 553385) + (-1761 . 553262) (-1762 . 553189) (-1763 . 553116) (-1764 . 552996) + (-1765 . 552923) (-1766 . 552850) (-1767 . 552510) (-1768 . 552437) + (-1769 . 552217) (-1770 . 551884) (-1771 . 551701) (-1772 . 551558) + (-1773 . 551198) (-1774 . 551030) (-1775 . 550862) (-1776 . 550606) + (-1777 . 550350) (-1778 . 550155) (-1779 . 549960) (-1780 . 549366) + (-1781 . 549290) (-1782 . 549151) (-1783 . 548744) (-1784 . 548617) + (-1785 . 548460) (-1786 . 548143) (-1787 . 547663) (-1788 . 547183) + (-1789 . 546681) (-1790 . 546613) (-1791 . 546542) (-1792 . 546471) + (-1793 . 546299) (-1794 . 546180) (-1795 . 546061) (-1796 . 545985) + (-1797 . 545909) (-1798 . 545636) (-1799 . 545522) (-1800 . 545471) + (-1801 . 545420) (-1802 . 545369) (-1803 . 545318) (-1804 . 545267) + (-1805 . 545126) (-1806 . 544953) (-1807 . 544722) (-1808 . 544536) + (-1809 . 544508) (-1810 . 544480) (-1811 . 544452) (-1812 . 544424) + (-1813 . 544396) (-1814 . 544368) (-1815 . 544340) (-1816 . 544289) + (-1817 . 544223) (-1818 . 544133) (-1819 . 543762) (-1820 . 543611) + (-1821 . 543460) (-1822 . 543255) (-1823 . 543133) (-1824 . 543059) + (-1825 . 542982) (-1826 . 542908) (-1827 . 542831) (-1828 . 542754) + (-1829 . 542680) (-1830 . 542603) (-1831 . 542370) (-1832 . 542217) + (-1833 . 541922) (-1834 . 541769) (-1835 . 541447) (-1836 . 541309) + (-1837 . 541171) (-1838 . 541091) (-1839 . 541011) (-1840 . 540747) + (-1841 . 540016) (-1842 . 539880) (-1843 . 539790) (-1844 . 539655) + (-1845 . 539588) (-1846 . 539520) (-1847 . 539433) (-1848 . 539346) + (-1849 . 539179) (-1850 . 539105) (-1851 . 538961) (-1852 . 538501) + (-1853 . 538122) (-1854 . 537360) (-1855 . 537216) (-1856 . 537072) + (-1857 . 536910) (-1858 . 536673) (-1859 . 536533) (-1860 . 536387) + (-1861 . 536148) (-1862 . 535912) (-1863 . 535673) (-1864 . 535481) + (-1865 . 535358) (-1866 . 535154) (-1867 . 534931) (-1868 . 534692) + (-1869 . 534551) (-1870 . 534413) (-1871 . 534274) (-1872 . 534021) + (-1873 . 533765) (-1874 . 533608) (-1875 . 533454) (-1876 . 533214) + (-1877 . 532929) (-1878 . 532791) (-1879 . 532704) (-1880 . 532038) + (-1881 . 531862) (-1882 . 531680) (-1883 . 531504) (-1884 . 531322) + (-1885 . 531143) (-1886 . 530964) (-1887 . 530777) (-1888 . 530395) + (-1889 . 530216) (-1890 . 530037) (-1891 . 529850) (-1892 . 529468) + (-1893 . 528475) (-1894 . 528091) (-1895 . 527707) (-1896 . 527589) + (-1897 . 527432) (-1898 . 527290) (-1899 . 527173) (-1900 . 526991) + (-1901 . 526867) (-1902 . 526578) (-1903 . 526289) (-1904 . 526006) + (-1905 . 525723) (-1906 . 525445) (-1907 . 525357) (-1908 . 525272) + (-1909 . 525175) (-1910 . 525078) (-1911 . 524858) (-1912 . 524758) + (-1913 . 524655) (-1914 . 524577) (-1915 . 524252) (-1916 . 523964) + (-1917 . 523891) (-1918 . 523506) (-1919 . 523478) (-1920 . 523279) + (-1921 . 523105) (-1922 . 522864) (-1923 . 522809) (-1924 . 522734) + (-1925 . 522366) (-1926 . 522251) (-1927 . 522174) (-1928 . 522101) + (-1929 . 522020) (-1930 . 521939) (-1931 . 521858) (-1932 . 521757) + (-1933 . 521698) (-1934 . 521460) (-1935 . 521338) (-1936 . 521216) + (-1937 . 520989) (-1938 . 520936) (-1939 . 520882) (-1940 . 520550) + (-1941 . 520226) (-1942 . 520038) (-1943 . 519847) (-1944 . 519683) + (-1945 . 519348) (-1946 . 519181) (-1947 . 518940) (-1948 . 518616) + (-1949 . 518426) (-1950 . 518211) (-1951 . 518040) (-1952 . 517618) + (-1953 . 517391) (-1954 . 517120) (-1955 . 516983) (-1956 . 516842) + (-1957 . 516365) (-1958 . 516242) (-1959 . 516006) (-1960 . 515752) + (-1961 . 515502) (-1962 . 515209) (-1963 . 515069) (-1964 . 514929) + (-1965 . 514789) (-1966 . 514600) (-1967 . 514411) (-1968 . 514236) + (-1969 . 513962) (-1970 . 513527) (-1971 . 513499) (-1972 . 513427) + (-1973 . 513268) (-1974 . 513105) (-1975 . 512944) (-1976 . 512777) + (-1977 . 512724) (-1978 . 512671) (-1979 . 512542) (-1980 . 512482) + (-1981 . 512429) (-1982 . 512359) (-1983 . 512299) (-1984 . 512240) + (-1985 . 512180) (-1986 . 512121) (-1987 . 512061) (-1988 . 512002) + (-1989 . 511944) (-1990 . 511802) (-1991 . 511707) (-1992 . 511616) + (-1993 . 511500) (-1994 . 511406) (-1995 . 511308) (-1996 . 511214) + (-1997 . 511073) (-1998 . 510811) (-1999 . 509955) (-2000 . 509799) + (-2001 . 509430) (-2002 . 509374) (-2003 . 509323) (-2004 . 509220) + (-2005 . 509135) (-2006 . 509047) (-2007 . 508901) (-2008 . 508752) + (-2009 . 508462) (-2010 . 508384) (-2011 . 508309) (-2012 . 508256) + (-2013 . 508203) (-2014 . 508172) (-2015 . 508109) (-2016 . 507991) + (-2017 . 507902) (-2018 . 507782) (-2019 . 507487) (-2020 . 507293) + (-2021 . 507105) (-2022 . 506960) (-2023 . 506815) (-2024 . 506529) + (-2025 . 506087) (-2026 . 506053) (-2027 . 506016) (-2028 . 505979) + (-2029 . 505942) (-2030 . 505905) (-2031 . 505874) (-2032 . 505843) + (-2033 . 505812) (-2034 . 505778) (-2035 . 505744) (-2036 . 505690) + (-2037 . 505514) (-2038 . 505280) (-2039 . 505046) (-2040 . 504817) + (-2041 . 504765) (-2042 . 504710) (-2043 . 504641) (-2044 . 504553) + (-2045 . 504484) (-2046 . 504412) (-2047 . 504182) (-2048 . 504131) + (-2049 . 504077) (-2050 . 504046) (-2051 . 503940) (-2052 . 503715) + (-2053 . 503405) (-2054 . 503231) (-2055 . 503049) (-2056 . 502778) + (-2057 . 502705) (-2058 . 502640) (-2059 . 502164) (-2060 . 501602) + (-2061 . 500876) (-2062 . 500315) (-2063 . 499687) (-2064 . 499108) + (-2065 . 499034) (-2066 . 498982) (-2067 . 498930) (-2068 . 498856) + (-2069 . 498801) (-2070 . 498749) (-2071 . 498697) (-2072 . 498645) + (-2073 . 498575) (-2074 . 498127) (-2075 . 497921) (-2076 . 497672) + (-2077 . 497338) (-2078 . 497084) (-2079 . 496782) (-2080 . 496579) + (-2081 . 496290) (-2082 . 495742) (-2083 . 495605) (-2084 . 495403) + (-2085 . 495123) (-2086 . 495038) (-2087 . 494705) (-2088 . 494564) + (-2089 . 494273) (-2090 . 494053) (-2091 . 493927) (-2092 . 493802) + (-2093 . 493655) (-2094 . 493511) (-2095 . 493395) (-2096 . 493264) + (-2097 . 492892) (-2098 . 492632) (-2099 . 492362) (-2100 . 492122) + (-2101 . 491792) (-2102 . 491452) (-2103 . 491044) (-2104 . 490626) + (-2105 . 490429) (-2106 . 490154) (-2107 . 489986) (-2108 . 489790) + (-2109 . 489568) (-2110 . 489413) (-2111 . 489228) (-2112 . 489125) + (-2113 . 489097) (-2114 . 489069) (-2115 . 488895) (-2116 . 488821) + (-2117 . 488761) (-2118 . 488708) (-2119 . 488639) (-2120 . 488570) + (-2121 . 488451) (-2122 . 488273) (-2123 . 488218) (-2124 . 487972) + (-2125 . 487899) (-2126 . 487829) (-2127 . 487759) (-2128 . 487670) + (-2129 . 487480) (-2130 . 487407) (-2131 . 487338) (-2132 . 487273) + (-2133 . 487218) (-2134 . 487127) (-2135 . 486836) (-2136 . 486510) + (-2137 . 486436) (-2138 . 486114) (-2139 . 485909) (-2140 . 485824) + (-2141 . 485739) (-2142 . 485654) (-2143 . 485569) (-2144 . 485484) + (-2145 . 485399) (-2146 . 485314) (-2147 . 485229) (-2148 . 485144) + (-2149 . 485059) (-2150 . 484974) (-2151 . 484889) (-2152 . 484804) + (-2153 . 484719) (-2154 . 484634) (-2155 . 484549) (-2156 . 484464) + (-2157 . 484379) (-2158 . 484294) (-2159 . 484209) (-2160 . 484124) + (-2161 . 484039) (-2162 . 483954) (-2163 . 483869) (-2164 . 483784) + (-2165 . 483699) (-2166 . 483597) (-2167 . 483509) (-2168 . 483301) + (-2169 . 483243) (-2170 . 483188) (-2171 . 483101) (-2172 . 482990) + (-2173 . 482904) (-2174 . 482758) (-2175 . 482696) (-2176 . 482668) + (-2177 . 482640) (-2178 . 482612) (-2179 . 482584) (-2180 . 482415) + (-2181 . 482264) (-2182 . 482113) (-2183 . 481941) (-2184 . 481733) + (-2185 . 481609) (-2186 . 481401) (-2187 . 481309) (-2188 . 481217) + (-2189 . 481082) (-2190 . 480987) (-2191 . 480893) (-2192 . 480798) + (-2193 . 480674) (-2194 . 480646) (-2195 . 480618) (-2196 . 480590) + (-2197 . 480562) (-2198 . 480534) (-2199 . 480506) (-2200 . 480478) + (-2201 . 480450) (-2202 . 480422) (-2203 . 480394) (-2204 . 480366) + (-2205 . 480338) (-2206 . 480310) (-2207 . 480282) (-2208 . 480254) + (-2209 . 480226) (-2210 . 480173) (-2211 . 480145) (-2212 . 480117) + (-2213 . 480039) (-2214 . 479986) (-2215 . 479933) (-2216 . 479880) + (-2217 . 479802) (-2218 . 479712) (-2219 . 479617) (-2220 . 479523) + (-2221 . 479441) (-2222 . 479135) (-2223 . 478939) (-2224 . 478844) + (-2225 . 478736) (-2226 . 478325) (-2227 . 478297) (-2228 . 478133) + (-2229 . 478056) (-2230 . 477869) (-2231 . 477690) (-2232 . 477266) + (-2233 . 477114) (-2234 . 476934) (-2235 . 476761) (-2236 . 476501) + (-2237 . 476249) (-2238 . 475438) (-2239 . 475271) (-2240 . 475053) + (-2241 . 474229) (-2242 . 474098) (-2243 . 473967) (-2244 . 473836) + (-2245 . 473705) (-2246 . 473574) (-2247 . 473443) (-2248 . 473248) + (-2249 . 473054) (-2250 . 472911) (-2251 . 472596) (-2252 . 472481) + (-2253 . 472141) (-2254 . 471981) (-2255 . 471842) (-2256 . 471703) + (-2257 . 471574) (-2258 . 471489) (-2259 . 471437) (-2260 . 470957) + (-2261 . 469695) (-2262 . 469568) (-2263 . 469426) (-2264 . 469090) + (-2265 . 468985) (-2266 . 468736) (-2267 . 468504) (-2268 . 468399) + (-2269 . 468324) (-2270 . 468249) (-2271 . 468174) (-2272 . 468115) + (-2273 . 468045) (-2274 . 467992) (-2275 . 467930) (-2276 . 467860) + (-2277 . 467497) (-2278 . 467210) (-2279 . 467100) (-2280 . 466913) + (-2281 . 466820) (-2282 . 466727) (-2283 . 466640) (-2284 . 466420) + (-2285 . 466201) (-2286 . 465783) (-2287 . 465511) (-2288 . 465368) + (-2289 . 465275) (-2290 . 465132) (-2291 . 464980) (-2292 . 464826) + (-2293 . 464756) (-2294 . 464549) (-2295 . 464372) (-2296 . 464163) + (-2297 . 463986) (-2298 . 463952) (-2299 . 463918) (-2300 . 463887) + (-2301 . 463769) (-2302 . 463456) (-2303 . 463178) (-2304 . 463057) + (-2305 . 462930) (-2306 . 462845) (-2307 . 462772) (-2308 . 462683) + (-2309 . 462612) (-2310 . 462556) (-2311 . 462500) (-2312 . 462444) + (-2313 . 462374) (-2314 . 462304) (-2315 . 462234) (-2316 . 462136) + (-2317 . 462058) (-2318 . 461980) (-2319 . 461837) (-2320 . 461758) + (-2321 . 461686) (-2322 . 461483) (-2323 . 461427) (-2324 . 461239) + (-2325 . 461140) (-2326 . 461022) (-2327 . 460901) (-2328 . 460758) + (-2329 . 460615) (-2330 . 460475) (-2331 . 460335) (-2332 . 460192) + (-2333 . 460066) (-2334 . 459937) (-2335 . 459814) (-2336 . 459691) + (-2337 . 459586) (-2338 . 459481) (-2339 . 459379) (-2340 . 459229) + (-2341 . 459076) (-2342 . 458923) (-2343 . 458779) (-2344 . 458625) + (-2345 . 458549) (-2346 . 458470) (-2347 . 458317) (-2348 . 458238) + (-2349 . 458159) (-2350 . 458080) (-2351 . 457978) (-2352 . 457919) + (-2353 . 457857) (-2354 . 457740) (-2355 . 457614) (-2356 . 457537) + (-2357 . 457405) (-2358 . 457099) (-2359 . 456916) (-2360 . 456374) + (-2361 . 456155) (-2362 . 455982) (-2363 . 455812) (-2364 . 455739) + (-2365 . 455663) (-2366 . 455584) (-2367 . 455287) (-2368 . 455125) + (-2369 . 454891) (-2370 . 454449) (-2371 . 454319) (-2372 . 454179) + (-2373 . 453870) (-2374 . 453568) (-2375 . 453252) (-2376 . 452846) + (-2377 . 452778) (-2378 . 452710) (-2379 . 452642) (-2380 . 452548) + (-2381 . 452441) (-2382 . 452334) (-2383 . 452233) (-2384 . 452132) + (-2385 . 452031) (-2386 . 451954) (-2387 . 451631) (-2388 . 451214) + (-2389 . 450587) (-2390 . 450523) (-2391 . 450404) (-2392 . 450285) + (-2393 . 450177) (-2394 . 450069) (-2395 . 449913) (-2396 . 449313) + (-2397 . 449030) (-2398 . 448862) (-2399 . 448740) (-2400 . 448344) + (-2401 . 448108) (-2402 . 447907) (-2403 . 447699) (-2404 . 447506) + (-2405 . 447239) (-2406 . 447060) (-2407 . 446991) (-2408 . 446915) + (-2409 . 446774) (-2410 . 446571) (-2411 . 446427) (-2412 . 446177) + (-2413 . 445869) (-2414 . 445513) (-2415 . 445354) (-2416 . 445148) + (-2417 . 444988) (-2418 . 444915) (-2419 . 444881) (-2420 . 444816) + (-2421 . 444779) (-2422 . 444642) (-2423 . 444404) (-2424 . 444334) + (-2425 . 444148) (-2426 . 443899) (-2427 . 443743) (-2428 . 443220) + (-2429 . 443023) (-2430 . 442811) (-2431 . 442649) (-2432 . 442250) + (-2433 . 442083) (-2434 . 441008) (-2435 . 440885) (-2436 . 440668) + (-2437 . 440538) (-2438 . 440408) (-2439 . 440251) (-2440 . 440148) + (-2441 . 440090) (-2442 . 440032) (-2443 . 439926) (-2444 . 439820) + (-2445 . 438904) (-2446 . 436777) (-2447 . 435963) (-2448 . 434160) + (-2449 . 434092) (-2450 . 434024) (-2451 . 433956) (-2452 . 433888) + (-2453 . 433820) (-2454 . 433742) (-2455 . 433386) (-2456 . 433204) + (-2457 . 432665) (-2458 . 432489) (-2459 . 432268) (-2460 . 432047) + (-2461 . 431826) (-2462 . 431608) (-2463 . 431390) (-2464 . 431172) + (-2465 . 430954) (-2466 . 430736) (-2467 . 430518) (-2468 . 430417) + (-2469 . 429684) (-2470 . 429629) (-2471 . 429574) (-2472 . 429519) + (-2473 . 429464) (-2474 . 429314) (-2475 . 429066) (-2476 . 428905) + (-2477 . 428725) (-2478 . 428438) (-2479 . 428052) (-2480 . 427180) + (-2481 . 426840) (-2482 . 426672) (-2483 . 426450) (-2484 . 426200) + (-2485 . 425852) (-2486 . 424842) (-2487 . 424531) (-2488 . 424319) + (-2489 . 423755) (-2490 . 423242) (-2491 . 421486) (-2492 . 421014) + (-2493 . 420415) (-2494 . 420165) (-2495 . 420031) (-2496 . 419819) + (-2497 . 419743) (-2498 . 419667) (-2499 . 419560) (-2500 . 419378) + (-2501 . 419213) (-2502 . 419035) (-2503 . 418454) (-2504 . 418293) + (-2505 . 417720) (-2506 . 417650) (-2507 . 417575) (-2508 . 417503) + (-2509 . 417365) (-2510 . 417178) (-2511 . 417071) (-2512 . 416964) + (-2513 . 416849) (-2514 . 416734) (-2515 . 416619) (-2516 . 416341) + (-2517 . 416191) (-2518 . 416048) (-2519 . 415975) (-2520 . 415890) + (-2521 . 415817) (-2522 . 415744) (-2523 . 415671) (-2524 . 415528) + (-2525 . 415378) (-2526 . 415204) (-2527 . 415054) (-2528 . 414904) + (-2529 . 414778) (-2530 . 414392) (-2531 . 414108) (-2532 . 413824) + (-2533 . 413415) (-2534 . 413131) (-2535 . 413058) (-2536 . 412911) + (-2537 . 412805) (-2538 . 412731) (-2539 . 412661) (-2540 . 412582) + (-2541 . 412505) (-2542 . 412430) (-2543 . 412281) (-2544 . 412178) + (-2545 . 412120) (-2546 . 412056) (-2547 . 411992) (-2548 . 411895) + (-2549 . 411798) (-2550 . 411638) (-2551 . 411552) (-2552 . 411466) + (-2553 . 411381) (-2554 . 411322) (-2555 . 411263) (-2556 . 411204) + (-2557 . 411145) (-2558 . 410975) (-2559 . 410887) (-2560 . 410790) + (-2561 . 410756) (-2562 . 410725) (-2563 . 410641) (-2564 . 410585) + (-2565 . 410523) (-2566 . 410489) (-2567 . 410455) (-2568 . 410421) + (-2569 . 410387) (-2570 . 410353) (-2571 . 410319) (-2572 . 410285) + (-2573 . 410251) (-2574 . 410217) (-2575 . 410105) (-2576 . 410071) + (-2577 . 410020) (-2578 . 409986) (-2579 . 409889) (-2580 . 409827) + (-2581 . 409736) (-2582 . 409645) (-2583 . 409590) (-2584 . 409538) + (-2585 . 409486) (-2586 . 409434) (-2587 . 409382) (-2588 . 408959) + (-2589 . 408793) (-2590 . 408740) (-2591 . 408671) (-2592 . 408618) + (-2593 . 408388) (-2594 . 408232) (-2595 . 407711) (-2596 . 407570) + (-2597 . 407536) (-2598 . 407481) (-2599 . 406771) (-2600 . 406456) + (-2601 . 405952) (-2602 . 405874) (-2603 . 405822) (-2604 . 405770) + (-2605 . 405586) (-2606 . 405534) (-2607 . 405482) (-2608 . 405406) + (-2609 . 405344) (-2610 . 405126) (-2611 . 405059) (-2612 . 404965) + (-2613 . 404871) (-2614 . 404688) (-2615 . 404606) (-2616 . 404484) + (-2617 . 404338) (-2618 . 403687) (-2619 . 402985) (-2620 . 402881) + (-2621 . 402780) (-2622 . 402679) (-2623 . 402568) (-2624 . 402400) + (-2625 . 402196) (-2626 . 402103) (-2627 . 402026) (-2628 . 401970) + (-2629 . 401900) (-2630 . 401780) (-2631 . 401679) (-2632 . 401582) + (-2633 . 401502) (-2634 . 401422) (-2635 . 401345) (-2636 . 401275) + (-2637 . 401205) (-2638 . 401135) (-2639 . 401065) (-2640 . 400995) + (-2641 . 400925) (-2642 . 400832) (-2643 . 400704) (-2644 . 400462) + (-2645 . 400292) (-2646 . 399923) (-2647 . 399754) (-2648 . 399638) + (-2649 . 399142) (-2650 . 398761) (-2651 . 398515) (-2652 . 398423) + (-2653 . 398326) (-2654 . 397664) (-2655 . 397551) (-2656 . 397477) + (-2657 . 397385) (-2658 . 397195) (-2659 . 397005) (-2660 . 396934) + (-2661 . 396863) (-2662 . 396782) (-2663 . 396701) (-2664 . 396576) + (-2665 . 396443) (-2666 . 396362) (-2667 . 396288) (-2668 . 396123) + (-2669 . 395966) (-2670 . 395738) (-2671 . 395590) (-2672 . 395486) + (-2673 . 395382) (-2674 . 395297) (-2675 . 394929) (-2676 . 394848) + (-2677 . 394761) (-2678 . 394680) (-2679 . 394484) (-2680 . 394264) + (-2681 . 394077) (-2682 . 393755) (-2683 . 393462) (-2684 . 393169) + (-2685 . 392859) (-2686 . 392542) (-2687 . 392390) (-2688 . 392202) + (-2689 . 391729) (-2690 . 391647) (-2691 . 391431) (-2692 . 391215) + (-2693 . 390956) (-2694 . 390535) (-2695 . 390022) (-2696 . 389892) + (-2697 . 389618) (-2698 . 389439) (-2699 . 389324) (-2700 . 389220) + (-2701 . 389165) (-2702 . 389088) (-2703 . 389018) (-2704 . 388945) + (-2705 . 388890) (-2706 . 388817) (-2707 . 388762) (-2708 . 388407) + (-2709 . 387999) (-2710 . 387846) (-2711 . 387693) (-2712 . 387612) + (-2713 . 387459) (-2714 . 387306) (-2715 . 387171) (-2716 . 387036) + (-2717 . 386901) (-2718 . 386766) (-2719 . 386631) (-2720 . 386496) + (-2721 . 386440) (-2722 . 386287) (-2723 . 386176) (-2724 . 386065) + (-2725 . 385980) (-2726 . 385870) (-2727 . 385767) (-2728 . 381616) + (-2729 . 381168) (-2730 . 380741) (-2731 . 380124) (-2732 . 379523) + (-2733 . 379305) (-2734 . 379127) (-2735 . 378868) (-2736 . 378457) + (-2737 . 378163) (-2738 . 377720) (-2739 . 377542) (-2740 . 377149) + (-2741 . 376756) (-2742 . 376571) (-2743 . 376364) (-2744 . 376144) + (-2745 . 375838) (-2746 . 375639) (-2747 . 375010) (-2748 . 374853) + (-2749 . 374464) (-2750 . 374413) (-2751 . 374364) (-2752 . 374313) + (-2753 . 374265) (-2754 . 374213) (-2755 . 374067) (-2756 . 374015) + (-2757 . 373869) (-2758 . 373817) (-2759 . 373671) (-2760 . 373620) + (-2761 . 373247) (-2762 . 373196) (-2763 . 373147) (-2764 . 373096) + (-2765 . 373048) (-2766 . 372996) (-2767 . 372947) (-2768 . 372895) + (-2769 . 372846) (-2770 . 372794) (-2771 . 372745) (-2772 . 372679) + (-2773 . 372563) (-2774 . 371419) (-2775 . 371018) (-2776 . 370911) + (-2777 . 370669) (-2778 . 370519) (-2779 . 370369) (-2780 . 370208) + (-2781 . 368001) (-2782 . 367740) (-2783 . 367586) (-2784 . 367440) + (-2785 . 367294) (-2786 . 367075) (-2787 . 366943) (-2788 . 366868) + (-2789 . 366793) (-2790 . 366658) (-2791 . 366529) (-2792 . 366400) + (-2793 . 366274) (-2794 . 366148) (-2795 . 366022) (-2796 . 365896) + (-2797 . 365793) (-2798 . 365693) (-2799 . 365599) (-2800 . 365469) + (-2801 . 365318) (-2802 . 364942) (-2803 . 364828) (-2804 . 364587) + (-2805 . 364129) (-2806 . 363819) (-2807 . 363252) (-2808 . 362683) + (-2809 . 361673) (-2810 . 361131) (-2811 . 360818) (-2812 . 360480) + (-2813 . 360149) (-2814 . 359829) (-2815 . 359776) (-2816 . 359649) + (-2817 . 359149) (-2818 . 358006) (-2819 . 357951) (-2820 . 357896) + (-2821 . 357820) (-2822 . 357701) (-2823 . 357626) (-2824 . 357551) + (-2825 . 357473) (-2826 . 357250) (-2827 . 357191) (-2828 . 357132) + (-2829 . 357029) (-2830 . 356926) (-2831 . 356823) (-2832 . 356720) + (-2833 . 356639) (-2834 . 356565) (-2835 . 356350) (-2836 . 356116) + (-2837 . 356082) (-2838 . 356048) (-2839 . 356020) (-2840 . 355992) + (-2841 . 355775) (-2842 . 355497) (-2843 . 355347) (-2844 . 355217) + (-2845 . 355087) (-2846 . 354987) (-2847 . 354810) (-2848 . 354650) + (-2849 . 354550) (-2850 . 354373) (-2851 . 354213) (-2852 . 354054) + (-2853 . 353915) (-2854 . 353765) (-2855 . 353635) (-2856 . 353505) + (-2857 . 353358) (-2858 . 353231) (-2859 . 353128) (-2860 . 353021) + (-2861 . 352924) (-2862 . 352759) (-2863 . 352611) (-2864 . 352196) + (-2865 . 352096) (-2866 . 351993) (-2867 . 351905) (-2868 . 351825) + (-2869 . 351675) (-2870 . 351545) (-2871 . 351493) (-2872 . 351420) + (-2873 . 351345) (-2874 . 351069) (-2875 . 350957) (-2876 . 350645) + (-2877 . 350468) (-2878 . 348870) (-2879 . 348242) (-2880 . 348183) + (-2881 . 348067) (-2882 . 347951) (-2883 . 347807) (-2884 . 347655) + (-2885 . 347496) (-2886 . 347337) (-2887 . 347131) (-2888 . 346944) + (-2889 . 346792) (-2890 . 346637) (-2891 . 346482) (-2892 . 346330) + (-2893 . 346193) (-2894 . 345770) (-2895 . 345644) (-2896 . 345518) + (-2897 . 345392) (-2898 . 345252) (-2899 . 345111) (-2900 . 344970) + (-2901 . 344826) (-2902 . 344078) (-2903 . 343920) (-2904 . 343734) + (-2905 . 343579) (-2906 . 343341) (-2907 . 343096) (-2908 . 342851) + (-2909 . 342641) (-2910 . 342504) (-2911 . 342294) (-2912 . 342157) + (-2913 . 341947) (-2914 . 341810) (-2915 . 341600) (-2916 . 341297) + (-2917 . 341153) (-2918 . 341012) (-2919 . 340789) (-2920 . 340648) + (-2921 . 340426) (-2922 . 340229) (-2923 . 340073) (-2924 . 339746) + (-2925 . 339587) (-2926 . 339428) (-2927 . 339269) (-2928 . 339098) + (-2929 . 338927) (-2930 . 338753) (-2931 . 338401) (-2932 . 338278) + (-2933 . 338116) (-2934 . 338043) (-2935 . 337970) (-2936 . 337897) + (-2937 . 337824) (-2938 . 337751) (-2939 . 337678) (-2940 . 337555) + (-2941 . 337382) (-2942 . 337259) (-2943 . 337173) (-2944 . 337107) + (-2945 . 337041) (-2946 . 336975) (-2947 . 336909) (-2948 . 336843) + (-2949 . 336777) (-2950 . 336711) (-2951 . 336645) (-2952 . 336579) + (-2953 . 336513) (-2954 . 336447) (-2955 . 336381) (-2956 . 336315) + (-2957 . 336249) (-2958 . 336183) (-2959 . 336117) (-2960 . 336051) + (-2961 . 335985) (-2962 . 335919) (-2963 . 335853) (-2964 . 335787) + (-2965 . 335721) (-2966 . 335655) (-2967 . 335589) (-2968 . 335523) + (-2969 . 335457) (-2970 . 334810) (-2971 . 334163) (-2972 . 334035) + (-2973 . 333912) (-2974 . 333789) (-2975 . 333648) (-2976 . 333494) + (-2977 . 333350) (-2978 . 333175) (-2979 . 332565) (-2980 . 332441) + (-2981 . 332317) (-2982 . 331639) (-2983 . 330942) (-2984 . 330841) + (-2985 . 330785) (-2986 . 330729) (-2987 . 330673) (-2988 . 330617) + (-2989 . 330558) (-2990 . 330494) (-2991 . 330386) (-2992 . 330278) + (-2993 . 330170) (-2994 . 329891) (-2995 . 329817) (-2996 . 329591) + (-2997 . 329510) (-2998 . 329432) (-2999 . 329354) (-3000 . 329276) + (-3001 . 329197) (-3002 . 329119) (-3003 . 329026) (-3004 . 328927) + (-3005 . 328859) (-3006 . 328810) (-3007 . 328119) (-3008 . 327479) + (-3009 . 326688) (-3010 . 326607) (-3011 . 326503) (-3012 . 326412) + (-3013 . 326321) (-3014 . 326247) (-3015 . 326173) (-3016 . 326099) + (-3017 . 326044) (-3018 . 325989) (-3019 . 325923) (-3020 . 325857) + (-3021 . 325795) (-3022 . 325520) (-3023 . 325028) (-3024 . 324570) + (-3025 . 324317) (-3026 . 324129) (-3027 . 323788) (-3028 . 323492) + (-3029 . 323324) (-3030 . 323193) (-3031 . 323053) (-3032 . 322898) + (-3033 . 322729) (-3034 . 321343) (-3035 . 321210) (-3036 . 321069) + (-3037 . 320840) (-3038 . 320781) (-3039 . 320725) (-3040 . 320669) + (-3041 . 320404) (-3042 . 320192) (-3043 . 320053) (-3044 . 319946) + (-3045 . 319829) (-3046 . 319763) (-3047 . 319690) (-3048 . 319576) + (-3049 . 319323) (-3050 . 319223) (-3051 . 319029) (-3052 . 318721) + (-3053 . 318255) (-3054 . 318150) (-3055 . 318044) (-3056 . 317895) + (-3057 . 317755) (-3058 . 317343) (-3059 . 317099) (-3060 . 316441) + (-3061 . 316288) (-3062 . 316174) (-3063 . 316064) (-3064 . 315244) + (-3065 . 315050) (-3066 . 314024) (-3067 . 313576) (-3068 . 312187) + (-3069 . 311336) (-3070 . 311287) (-3071 . 311238) (-3072 . 311189) + (-3073 . 311122) (-3074 . 311047) (-3075 . 310857) (-3076 . 310785) + (-3077 . 310710) (-3078 . 310638) (-3079 . 310521) (-3080 . 310470) + (-3081 . 310391) (-3082 . 310312) (-3083 . 310233) (-3084 . 310182) + (-3085 . 309939) (-3086 . 309637) (-3087 . 309555) (-3088 . 309473) + (-3089 . 309412) (-3090 . 309023) (-3091 . 308151) (-3092 . 307578) + (-3093 . 306343) (-3094 . 305536) (-3095 . 305286) (-3096 . 305036) + (-3097 . 304611) (-3098 . 304367) (-3099 . 304123) (-3100 . 303879) + (-3101 . 303635) (-3102 . 303391) (-3103 . 303147) (-3104 . 302905) + (-3105 . 302663) (-3106 . 302421) (-3107 . 302179) (-3108 . 301601) + (-3109 . 301485) (-3110 . 300643) (-3111 . 300612) (-3112 . 300267) + (-3113 . 300041) (-3114 . 299942) (-3115 . 299843) (-3116 . 298077) + (-3117 . 297965) (-3118 . 296917) (-3119 . 296825) (-3120 . 295903) + (-3121 . 295570) (-3122 . 295237) (-3123 . 295134) (-3124 . 295023) + (-3125 . 294912) (-3126 . 294801) (-3127 . 294690) (-3128 . 293603) + (-3129 . 293483) (-3130 . 293348) (-3131 . 293216) (-3132 . 293084) + (-3133 . 292790) (-3134 . 292496) (-3135 . 292151) (-3136 . 291925) + (-3137 . 291699) (-3138 . 291588) (-3139 . 291477) (-3140 . 290015) + (-3141 . 288311) (-3142 . 288002) (-3143 . 287850) (-3144 . 287327) + (-3145 . 286998) (-3146 . 286805) (-3147 . 286612) (-3148 . 286419) + (-3149 . 286226) (-3150 . 286113) (-3151 . 285990) (-3152 . 285876) + (-3153 . 285762) (-3154 . 285669) (-3155 . 285576) (-3156 . 285466) + (-3157 . 285265) (-3158 . 284121) (-3159 . 284028) (-3160 . 283914) + (-3161 . 283821) (-3162 . 283574) (-3163 . 283463) (-3164 . 283249) + (-3165 . 283131) (-3166 . 282834) (-3167 . 282106) (-3168 . 281530) + (-3169 . 281052) (-3170 . 280808) (-3171 . 280564) (-3172 . 280221) + (-3173 . 279615) (-3174 . 279172) (-3175 . 279017) (-3176 . 278873) + (-3177 . 278553) (-3178 . 278398) (-3179 . 278258) (-3180 . 278118) + (-3181 . 277978) (-3182 . 277703) (-3183 . 277484) (-3184 . 276965) + (-3185 . 276753) (-3186 . 276541) (-3187 . 276161) (-3188 . 275987) + (-3189 . 275778) (-3190 . 275470) (-3191 . 275278) (-3192 . 275105) + (-3193 . 273969) (-3194 . 273604) (-3195 . 273404) (-3196 . 273204) + (-3197 . 272368) (-3198 . 272340) (-3199 . 272272) (-3200 . 272202) + (-3201 . 272038) (-3202 . 272010) (-3203 . 271982) (-3204 . 271928) + (-3205 . 271778) (-3206 . 271719) (-3207 . 271026) (-3208 . 269641) + (-3209 . 269581) (-3210 . 269263) (-3211 . 269192) (-3212 . 269136) + (-3213 . 269080) (-3214 . 269024) (-3215 . 268968) (-3216 . 268894) + (-3217 . 268304) (-3218 . 267944) (-3219 . 267870) (-3220 . 267810) + (-3221 . 267692) (-3222 . 266749) (-3223 . 266622) (-3224 . 266409) + (-3225 . 266335) (-3226 . 266281) (-3227 . 266227) (-3228 . 266118) + (-3229 . 265808) (-3230 . 265700) (-3231 . 265597) (-3232 . 265436) + (-3233 . 265335) (-3234 . 265237) (-3235 . 265099) (-3236 . 264961) + (-3237 . 264823) (-3238 . 264561) (-3239 . 264352) (-3240 . 264214) + (-3241 . 263923) (-3242 . 263771) (-3243 . 263496) (-3244 . 263276) + (-3245 . 263124) (-3246 . 262972) (-3247 . 262820) (-3248 . 262668) + (-3249 . 262516) (-3250 . 262309) (-3251 . 261922) (-3252 . 261591) + (-3253 . 261252) (-3254 . 260905) (-3255 . 260566) (-3256 . 260227) + (-3257 . 259846) (-3258 . 259465) (-3259 . 259084) (-3260 . 258719) + (-3261 . 258001) (-3262 . 257654) (-3263 . 257209) (-3264 . 256784) + (-3265 . 256173) (-3266 . 255581) (-3267 . 255194) (-3268 . 254863) + (-3269 . 254476) (-3270 . 254145) (-3271 . 253925) (-3272 . 253404) + (-3273 . 253191) (-3274 . 252978) (-3275 . 252765) (-3276 . 252587) + (-3277 . 252374) (-3278 . 252196) (-3279 . 251814) (-3280 . 251636) + (-3281 . 251426) (-3282 . 251336) (-3283 . 251246) (-3284 . 251155) + (-3285 . 251043) (-3286 . 250953) (-3287 . 250846) (-3288 . 250657) + (-3289 . 250601) (-3290 . 250520) (-3291 . 250439) (-3292 . 250358) + (-3293 . 250223) (-3294 . 250088) (-3295 . 249964) (-3296 . 249843) + (-3297 . 249725) (-3298 . 249589) (-3299 . 249456) (-3300 . 249337) + (-3301 . 249079) (-3302 . 248794) (-3303 . 248722) (-3304 . 248626) + (-3305 . 248485) (-3306 . 248428) (-3307 . 248371) (-3308 . 248311) + (-3309 . 247916) (-3310 . 247394) (-3311 . 247117) (-3312 . 246697) + (-3313 . 246585) (-3314 . 246147) (-3315 . 245917) (-3316 . 245714) + (-3317 . 245532) (-3318 . 245402) (-3319 . 245196) (-3320 . 244989) + (-3321 . 244799) (-3322 . 244234) (-3323 . 243978) (-3324 . 243687) + (-3325 . 243393) (-3326 . 243096) (-3327 . 242796) (-3328 . 242666) + (-3329 . 242533) (-3330 . 242397) (-3331 . 242258) (-3332 . 241041) + (-3333 . 240733) (-3334 . 240369) (-3335 . 240272) (-3336 . 240032) + (-3337 . 239737) (-3338 . 239442) (-3339 . 239183) (-3340 . 239009) + (-3341 . 238931) (-3342 . 238844) (-3343 . 238744) (-3344 . 238650) + (-3345 . 238569) (-3346 . 238499) (-3347 . 237708) (-3348 . 237638) + (-3349 . 237310) (-3350 . 237240) (-3351 . 236912) (-3352 . 236842) + (-3353 . 236397) (-3354 . 236327) (-3355 . 236223) (-3356 . 236149) + (-3357 . 236075) (-3358 . 236004) (-3359 . 235662) (-3360 . 235534) + (-3361 . 235457) (-3362 . 235226) (-3363 . 235083) (-3364 . 234940) + (-3365 . 234601) (-3366 . 234271) (-3367 . 234058) (-3368 . 233803) + (-3369 . 233453) (-3370 . 233228) (-3371 . 233003) (-3372 . 232778) + (-3373 . 232553) (-3374 . 232340) (-3375 . 232127) (-3376 . 231977) + (-3377 . 231796) (-3378 . 231691) (-3379 . 231569) (-3380 . 231461) + (-3381 . 231353) (-3382 . 231028) (-3383 . 230764) (-3384 . 230453) + (-3385 . 230151) (-3386 . 229842) (-3387 . 229113) (-3388 . 228524) + (-3389 . 228349) (-3390 . 228205) (-3391 . 228050) (-3392 . 227927) + (-3393 . 227822) (-3394 . 227707) (-3395 . 227612) (-3396 . 227131) + (-3397 . 227021) (-3398 . 226911) (-3399 . 226801) (-3400 . 225729) + (-3401 . 225218) (-3402 . 225151) (-3403 . 225078) (-3404 . 224205) + (-3405 . 224132) (-3406 . 224077) (-3407 . 224022) (-3408 . 223990) + (-3409 . 223904) (-3410 . 223872) (-3411 . 223786) (-3412 . 223366) + (-3413 . 222946) (-3414 . 222394) (-3415 . 221290) (-3416 . 219580) + (-3417 . 218030) (-3418 . 217238) (-3419 . 216738) (-3420 . 216252) + (-3421 . 215850) (-3422 . 215200) (-3423 . 215125) (-3424 . 215034) + (-3425 . 214963) (-3426 . 214892) (-3427 . 214836) (-3428 . 214716) + (-3429 . 214662) (-3430 . 214601) (-3431 . 214547) (-3432 . 214444) + (-3433 . 214004) (-3434 . 213564) (-3435 . 213124) (-3436 . 212602) + (-3437 . 212441) (-3438 . 212280) (-3439 . 211969) (-3440 . 211883) + (-3441 . 211793) (-3442 . 211435) (-3443 . 211318) (-3444 . 211237) + (-3445 . 211079) (-3446 . 210966) (-3447 . 210891) (-3448 . 210045) + (-3449 . 208863) (-3450 . 208764) (-3451 . 208665) (-3452 . 208336) + (-3453 . 208258) (-3454 . 208183) (-3455 . 208077) (-3456 . 207921) + (-3457 . 207814) (-3458 . 207679) (-3459 . 207544) (-3460 . 207422) + (-3461 . 207327) (-3462 . 207179) (-3463 . 207084) (-3464 . 206929) + (-3465 . 206774) (-3466 . 206222) (-3467 . 205670) (-3468 . 205055) + (-3469 . 204503) (-3470 . 203951) (-3471 . 203399) (-3472 . 202846) + (-3473 . 202293) (-3474 . 201740) (-3475 . 201187) (-3476 . 200634) + (-3477 . 200081) (-3478 . 199529) (-3479 . 198977) (-3480 . 198425) + (-3481 . 197873) (-3482 . 197321) (-3483 . 196769) (-3484 . 196665) + (-3485 . 196080) (-3486 . 195975) (-3487 . 195900) (-3488 . 195758) + (-3489 . 195666) (-3490 . 195575) (-3491 . 195483) (-3492 . 195388) + (-3493 . 195283) (-3494 . 195160) (-3495 . 195038) (-3496 . 194674) + (-3497 . 194552) (-3498 . 194454) (-3499 . 194093) (-3500 . 193564) + (-3501 . 193489) (-3502 . 193414) (-3503 . 193322) (-3504 . 193141) + (-3505 . 193046) (-3506 . 192971) (-3507 . 192880) (-3508 . 192789) + (-3509 . 192630) (-3510 . 192081) (-3511 . 191532) (-3512 . 188825) + (-3513 . 188653) (-3514 . 187247) (-3515 . 186687) (-3516 . 186572) + (-3517 . 186200) (-3518 . 186137) (-3519 . 186074) (-3520 . 186011) + (-3521 . 185733) (-3522 . 185466) (-3523 . 185414) (-3524 . 184773) + (-3525 . 184722) (-3526 . 184534) (-3527 . 184461) (-3528 . 184381) + (-3529 . 184268) (-3530 . 184078) (-3531 . 183714) (-3532 . 183442) + (-3533 . 183391) (-3534 . 183340) (-3535 . 183270) (-3536 . 183151) + (-3537 . 183122) (-3538 . 183018) (-3539 . 182896) (-3540 . 182842) + (-3541 . 182665) (-3542 . 182604) (-3543 . 182423) (-3544 . 182362) + (-3545 . 182290) (-3546 . 181815) (-3547 . 181441) (-3548 . 177910) + (-3549 . 177858) (-3550 . 177730) (-3551 . 177580) (-3552 . 177528) + (-3553 . 177387) (-3554 . 175330) (-3555 . 167687) (-3556 . 167536) + (-3557 . 167466) (-3558 . 167415) (-3559 . 167365) (-3560 . 167314) + (-3561 . 167263) (-3562 . 167067) (-3563 . 166925) (-3564 . 166811) + (-3565 . 166690) (-3566 . 166572) (-3567 . 166460) (-3568 . 166342) + (-3569 . 166237) (-3570 . 166156) (-3571 . 166052) (-3572 . 165118) + (-3573 . 164898) (-3574 . 164661) (-3575 . 164579) (-3576 . 164235) + (-3577 . 163096) (-3578 . 163022) (-3579 . 162927) (-3580 . 162853) + (-3581 . 162649) (-3582 . 162558) (-3583 . 162442) (-3584 . 162329) + (-3585 . 162238) (-3586 . 162147) (-3587 . 162058) (-3588 . 161969) + (-3589 . 161880) (-3590 . 161792) (-3591 . 161304) (-3592 . 161240) + (-3593 . 161176) (-3594 . 161112) (-3595 . 161051) (-3596 . 160311) + (-3597 . 160250) (-3598 . 160189) (-3599 . 159563) (-3600 . 159511) + (-3601 . 159383) (-3602 . 159319) (-3603 . 159265) (-3604 . 159156) + (-3605 . 157859) (-3606 . 157778) (-3607 . 157689) (-3608 . 157631) + (-3609 . 157491) (-3610 . 157406) (-3611 . 157332) (-3612 . 157247) + (-3613 . 157190) (-3614 . 156974) (-3615 . 156835) (-3616 . 156228) + (-3617 . 155674) (-3618 . 155120) (-3619 . 154566) (-3620 . 153959) + (-3621 . 153405) (-3622 . 152845) (-3623 . 152285) (-3624 . 152023) + (-3625 . 151584) (-3626 . 151251) (-3627 . 150912) (-3628 . 150607) + (-3629 . 150474) (-3630 . 150341) (-3631 . 149953) (-3632 . 149860) + (-3633 . 149767) (-3634 . 149674) (-3635 . 149581) (-3636 . 149488) + (-3637 . 149395) (-3638 . 149302) (-3639 . 149209) (-3640 . 149116) + (-3641 . 149023) (-3642 . 148930) (-3643 . 148837) (-3644 . 148744) + (-3645 . 148651) (-3646 . 148558) (-3647 . 148465) (-3648 . 148372) + (-3649 . 148279) (-3650 . 148186) (-3651 . 148093) (-3652 . 148000) + (-3653 . 147907) (-3654 . 147814) (-3655 . 147721) (-3656 . 147628) + (-3657 . 147443) (-3658 . 147133) (-3659 . 145575) (-3660 . 145421) + (-3661 . 145284) (-3662 . 145142) (-3663 . 144940) (-3664 . 143013) + (-3665 . 142886) (-3666 . 142762) (-3667 . 142635) (-3668 . 142414) + (-3669 . 142193) (-3670 . 142066) (-3671 . 141865) (-3672 . 141689) + (-3673 . 141172) (-3674 . 140655) (-3675 . 140378) (-3676 . 139969) + (-3677 . 139452) (-3678 . 139268) (-3679 . 139126) (-3680 . 138631) + (-3681 . 138000) (-3682 . 137944) (-3683 . 137850) (-3684 . 137731) + (-3685 . 137661) (-3686 . 137588) (-3687 . 137358) (-3688 . 136739) + (-3689 . 136309) (-3690 . 136227) (-3691 . 136085) (-3692 . 135611) + (-3693 . 135489) (-3694 . 135367) (-3695 . 135227) (-3696 . 135040) + (-3697 . 134924) (-3698 . 134644) (-3699 . 134576) (-3700 . 134378) + (-3701 . 134198) (-3702 . 134043) (-3703 . 133936) (-3704 . 133885) + (-3705 . 133508) (-3706 . 132981) (-3707 . 132760) (-3708 . 132539) + (-3709 . 132300) (-3710 . 132210) (-3711 . 130468) (-3712 . 129886) + (-3713 . 129808) (-3714 . 124348) (-3715 . 123558) (-3716 . 123181) + (-3717 . 123110) (-3718 . 122849) (-3719 . 122675) (-3720 . 122190) + (-3721 . 121768) (-3722 . 121328) (-3723 . 120465) (-3724 . 120341) + (-3725 . 120214) (-3726 . 120105) (-3727 . 119953) (-3728 . 119839) + (-3729 . 119700) (-3730 . 119619) (-3731 . 119538) (-3732 . 119434) + (-3733 . 119016) (-3734 . 118595) (-3735 . 118521) (-3736 . 118258) + (-3737 . 117994) (-3738 . 117615) (-3739 . 116916) (-3740 . 115873) + (-3741 . 115814) (-3742 . 115740) (-3743 . 115666) (-3744 . 115544) + (-3745 . 115294) (-3746 . 115208) (-3747 . 115133) (-3748 . 115058) + (-3749 . 114963) (-3750 . 111188) (-3751 . 110018) (-3752 . 109358) + (-3753 . 109174) (-3754 . 106969) (-3755 . 106644) (-3756 . 106162) + (-3757 . 105721) (-3758 . 105486) (-3759 . 105241) (-3760 . 105151) + (-3761 . 103716) (-3762 . 103638) (-3763 . 103533) (-3764 . 102057) + (-3765 . 101652) (-3766 . 101251) (-3767 . 101149) (-3768 . 101067) + (-3769 . 100909) (-3770 . 99675) (-3771 . 99593) (-3772 . 99514) + (-3773 . 99159) (-3774 . 99102) (-3775 . 99030) (-3776 . 98973) + (-3777 . 98916) (-3778 . 98786) (-3779 . 98584) (-3780 . 98216) + (-3781 . 97795) (-3782 . 93985) (-3783 . 93383) (-3784 . 92916) + (-3785 . 92703) (-3786 . 92490) (-3787 . 92324) (-3788 . 92111) + (-3789 . 91945) (-3790 . 91779) (-3791 . 91613) (-3792 . 91447) + (-3793 . 91177) (-3794 . 85769) (** . 82816) (-3796 . 82400) (-3797 . 82159) + (-3798 . 82103) (-3799 . 81611) (-3800 . 78803) (-3801 . 78653) + (-3802 . 78489) (-3803 . 78325) (-3804 . 78229) (-3805 . 78111) + (-3806 . 77987) (-3807 . 77844) (-3808 . 77673) (-3809 . 77547) + (-3810 . 77403) (-3811 . 77251) (-3812 . 77092) (-3813 . 76584) + (-3814 . 76495) (-3815 . 75830) (-3816 . 75638) (-3817 . 75543) + (-3818 . 75235) (-3819 . 74063) (-3820 . 73857) (-3821 . 72682) + (-3822 . 72607) (-3823 . 71426) (-3824 . 67845) (-3825 . 67481) + (-3826 . 67204) (-3827 . 67112) (-3828 . 67019) (-3829 . 66742) + (-3830 . 66649) (-3831 . 66556) (-3832 . 66463) (-3833 . 66079) + (-3834 . 66008) (-3835 . 65916) (-3836 . 65758) (-3837 . 65404) + (-3838 . 65246) (-3839 . 65138) (-3840 . 65109) (-3841 . 65042) + (-3842 . 64888) (-3843 . 64730) (-3844 . 64336) (-3845 . 64261) + (-3846 . 64155) (-3847 . 64083) (-3848 . 64005) (-3849 . 63932) + (-3850 . 63859) (-3851 . 63786) (-3852 . 63714) (-3853 . 63642) + (-3854 . 63569) (-3855 . 63328) (-3856 . 62991) (-3857 . 62843) + (-3858 . 62770) (-3859 . 62697) (-3860 . 62624) (-3861 . 62370) + (-3862 . 62226) (-3863 . 60890) (-3864 . 60696) (-3865 . 60425) + (-3866 . 60277) (-3867 . 60129) (-3868 . 59889) (-3869 . 59695) + (-3870 . 59427) (-3871 . 59231) (-3872 . 59202) (-3873 . 59101) + (-3874 . 59000) (-3875 . 58899) (-3876 . 58798) (-3877 . 58697) + (-3878 . 58596) (-3879 . 58495) (-3880 . 58394) (-3881 . 58293) + (-3882 . 58192) (-3883 . 58077) (-3884 . 57962) (-3885 . 57911) + (-3886 . 57794) (-3887 . 57736) (-3888 . 57635) (-3889 . 57534) + (-3890 . 57433) (-3891 . 57317) (-3892 . 57288) (-3893 . 56557) + (-3894 . 56432) (-3895 . 56307) (-3896 . 56167) (-3897 . 56049) + (-3898 . 55924) (-3899 . 55769) (-3900 . 54786) (-3901 . 53927) + (-3902 . 53873) (-3903 . 53819) (-3904 . 53611) (-3905 . 53239) + (-3906 . 52828) (-3907 . 52470) (-3908 . 52112) (-3909 . 51960) + (-3910 . 51658) (-3911 . 51502) (-3912 . 51176) (-3913 . 51106) + (-3914 . 51036) (-3915 . 50827) (-3916 . 50218) (-3917 . 50014) + (-3918 . 49641) (-3919 . 49132) (-3920 . 48867) (-3921 . 48386) + (-3922 . 47905) (-3923 . 47780) (-3924 . 46680) (-3925 . 45604) + (-3926 . 45033) (-3927 . 44815) (-3928 . 36492) (-3929 . 36307) + (-3930 . 34224) (-3931 . 32056) (-3932 . 31910) (-3933 . 31732) + (-3934 . 31325) (-3935 . 31030) (-3936 . 30682) (-3937 . 30516) + (-3938 . 30350) (-3939 . 29937) (-3940 . 16071) (-3941 . 14964) (* . 10917) + (-3943 . 10663) (-3944 . 10479) (-3945 . 9522) (-3946 . 9469) (-3947 . 9409) + (-3948 . 9140) (-3949 . 8513) (-3950 . 7240) (-3951 . 5996) (-3952 . 5127) + (-3953 . 3864) (-3954 . 420) (-3955 . 306) (-3956 . 173) (-3957 . 30))
\ No newline at end of file |